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Abstract

Autonomous underwater vehicles (AUVs) are a valuable resource in several oceanic
applications such as security, surveillance and data collection for ocean prediction.
These vehicles typically travel at speeds comparable to ocean currents, and their
movement is significantly affected by these dynamic currents. Further, the speed of
currents may vary greatly with depth. Hence, path planning to generate safe and
fast vehicle trajectories in such a three-dimensional environment becomes crucial for
the successful operation of these vehicles. In addition, many marine vehicles can only
move in specific directions and with a speed that is dependent on the direction of
travel. Such constraints must be respected in order to plan safe and optimal paths.

Thus, our motivation in this thesis is to study path planning for vehicles with and
without motion constraints in three-dimensional dynamic flow-fields. We utilize the
time-optimal path planning methodology given by Lolla et al. (2012) for this purpose.

In this thesis, we first review some existing path planning methods (both in two
and three-dimensional settings). Then, we discuss the theoretical basis of the rigorous
partial differential equation based methodology that is utilized in order to plan safe
and optimal paths. This is followed by an elaborate discussion about the application
of this methodology to the various types of marine vehicles. We then look at the robust
and accurate numerical methods developed in order to solve the governing equations
for the path planning methodology with high accuracy in real ocean domains. We
illustrate the working and capabilities of our path planning algorithm by means of
a number of applications. First we study some benchmark examples with known
analytical solutions. Second, we look at more complex flow-fields that analytically
model different oceanic flows. Finally, we look at the path planning for different types
of marine vehicles in a realistic ocean domain to illustrate the capabilities of the path
planning methodology and the developed numerical framework.

Thesis Supervisor: Pierre F.J. Lermusiaux
Title: Professor
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Chapter 1

Introduction

1.1 Background and Motivation

The problem of planning feasible, safe and optimal paths in complex, dynamic envi-

ronments has received a great deal of attention from many branches of science and

engineering. In the most general sense, 'path planning' refers to a set of rules provided

to an autonomous robot which enables the unit to navigate from one configuration

to another, in an 'optimal' fashion. Typically, such optimality is governed by some

objective function. Autonomous robotic platforms are becoming ubiquitous day by

day, and are used to perform a variety of tasks with different levels of complexity.

Such scenarios require the robots to optimize a wide range of objective functions, and

hence there does not exist a universal path planning theory that is applicable to all

possible situations.

Optimal navigation of autonomous underwater vehicles (AUVs) is crucial for many

applications, ranging from security to search and rescue to data collection. Underwa-

ter gliders and floats are ideal for such missions due to their high levels of autonomy

and long-range endurance. However, these vehicles typically travel at relatively slow

speeds, and in many cases the speed of the local ocean currents becomes comparable

to this speed (Schmidt et al., 1996; Elisseeff et al., 1999; Yan et al., 2014). Hence,

the effect of such ocean currents on the motion of the vehicle cannot be neglected.

Further, the environment in which these vehicles operate, i.e.; the oceans, is a highly

21



dynamic and multi-scale system with high spatio-temporal variability. Thus, it is

extremely challenging to develop accurate and efficient methodologies to plan paths

optimize a desired objective function while accommodating both the environmental

constraints and the vehicle limitations.

Robotic path planning is a field of active research. This field has been extensively

studied, with many key breakthroughs. However, general robotic path planning and

underwater path planning differ at a fundamental level. Most research pertaining to

underwater path planning has focused on the direct extension of methodologies for

robotic path planning. Underwater path planning focuses on autonomous vehicles

such as propelled AUVs but also gliders and floats that execute long-range missions

(order of days to months). Consequently, it becomes important to optimize perfor-

mance parameters such as the energy spent as well as the quality of data collected

in addition to generating feasible and safe trajectories. The difficulty in underwater

path planning is primarily due to the dynamic environmental fields that directly and

indirectly affect the motion of the vehicle as well as the possibility of infinitely many

possible movement choices at any time. This makes it a difficult problem to even

generate feasible trajectories for oceanic vehicles.

Work has gone into extending approaches such as the A* algorithm (Hart et al.,

1968) and the rapidly exploring random trees (RRTs; LaValle (1998); LaValle and

Kuffner Jr (2000); Kuffner and LaValle (2000) or other graph search based methods

towards underwater path planning (Alvarez et al., 2004; Garau et al., 2005). The

A* scheme converts the path planning problem into a graph search problem (Dechter

and Pearl, 1985). It first looks at the feasibility of paths between adjacent cells after

the entire network is generated, solves the graph search problem by any of the known

approaches, such as the depth-first search, breadth-first search, Djikstra's method

(Johnson, 1973; Dijkstra, 1959), etc. The A* method makes use of heuristics, which

provides the estimate of the cost of the best route that passes through a particular

node. The choice of heuristic heavily determines the speed of convergence (Hart et al.,

1968). Although this method is widely used by the robotics community, its depen-

dence on heuristics, and inability to account for dynamic environmental fields implies

22



that it is not directly applicable to accurate underwater path planning. Rapidly ex-

ploring random trees (RRTs) are a randomized data structure that is widely used in

several streams of path planning research (LaValle, 1998). RRTs work by incremen-

tally building a randomized search tree from the start position to the end position.

Biasing may be added to RRTs in order to account for directionality in the movement

of the vehicle as well as the effects of the background dynamic flow field (Urmson

and Simmons, 2003; Huynh et al., 2014; Heo and Chung, 2013). Although RRTs ef-

ficiently sample high-dimensional and non-convex search spaces, the paths predicted

are often sub-optimal (Bry and Roy, 2011). Further, the effects of dynamic flow-fields

cannot be accurately incorporated in this formulation. Both these drawbacks make

it impractical for RRTs to be readily adapted for underwater path planning.

Recently, Lolla et al. (2012, 2014a,b) proposed an exact methodology for under-

water path planning that accurately accounts for the effects of the dynamic environ-

mental flow-field on the vehicle motion, as well as predicts the globally optimal paths

without the requirement of any heuristics. The governing equations for time-optimal

path planning are solved forward in time using the level set method to study the evo-

lution of the set of all points that are reachable at a certain instant, also called the

reachability set. The optimal path is then given by the trajectory of the point that

always traveled on the boundary of this reachability set and crossed the destination in

optimal time. This methodology has been shown to be exact (Lolla and Lermusiaux,

2017), computationally efficient (Lolla et al., 2012) and is able to account for unsafe

forbidden regions and stationary or moving obstacles (Lolla et al., 2015).

Subramani et al. (2017b); Edwards et al. (2017); Mirabito et al. (2017) conducted

multiple sea-trials to experimentally demonstrate the effectiveness of the said algo-

rithm. The AUV following the optimal path required up to 15% less travel time than

the AUV following a straight line path. This conclusively demonstrates the applica-

bility of the said algorithm. Further, this work has also been extended to compute

the paths that require the minimum amount of energy (Subramani and Lermusiaux,

2016; Subramani et al., 2017a). It can also be used towards designing paths that

maximize the quality of data collected by the autonomous vehicle (Lolla, 2016).
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Existing work in the area has only looked at the applications of this methodology

two-dimensional or quasi-two-dimensional scenarios. However, oceanic currents often

differ greatly with depth (Cushman-Roisin and Beckers, 2011). In order to reach the

destination in optimal time, underwater vehicles can utilize the favorable currents and

also avoid adverse currents by diving or rising to appropriate depths. This implies

that the extension of this methodology to fully three-dimensional real ocean domains

is vital. Carrying out simulations over real ocean domains is numerically extremely

challenging. Oceans are one of the most complex dynamical systems, with multiple

time-scales that span from a fraction of a second to multiple years and length-scales

that span from several millimeters to hundreds of kilometers (Cushman-Roisin and

Beckers, 2011). Such a multi-scale nature of the setup implies that small distur-

bances in some scales may cause significant errors in the other scales. This prompts

the development and application of robust numerical techniques and highly accurate

numerical schemes to obtain the results with high confidence. Further, there exist

several different types of marine vehicles with specific degrees of freedom and motion

constraints. Typical marine gliders used for sampling data perform a sinusoidal mo-

tion (Rudnick et al., 2004; Testor et al., 2010; Javaid et al., 2014) whereas floats that

drift with the ocean currents are only able perform vertical motion by adjusting their

buoyancy (Roemmich et al., 2009; Kobayashi et al., 2012). In order to plan feasible,

safe and optimal trajectories for such vehicles, we need to respect such motion con-

straints and hence special treatment is required to account for constrained motion in

the methodology. The desired attributes listed above are crucial to the application

of this exact optimal planning methodology to real ocean scenarios.

Optimal path planning in three-dimensional domains is complex, and hence not

many people have studied algorithms for the same beyond two-dimensions. However,

utilizing environmental flows and planning feasible paths in three-dimensions has been

elaborately studied by several researchers from a wide variety of areas. For example,

Kiraly et al. (2004) look at computing feasible three-dimensional trajectories for a

bronchoscope in the various airways inside the human body. Similarly, Siddon (1985)

looks at planning paths for three-dimensional CT arrays in radiology.
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Planning feasible and collision-free trajectories for aerial vehicles is an active

field, with many established approaches. Lozano-P6rez and Wesley (1979) look at a

network-based approach to plan paths in domains with forbidden regions and obsta-

cles. Mittal and Deb (2007) attempt to plan feasible paths offline using evolutionary

algorithms. Wong and Fu (1986) uses a network based approach on two-dimensional

sections of the three-dimensional domain for computational efficiency. This idea of

planning collision-free paths is also extended to larger aircraft and around congested

airports. Most authors utilize optimization techniques similar to integer program-

ming for such cases. For example, Richards and How (2002) uses mixed integer linear

programming in order to plan aircraft trajectories with collision avoidance. Frazzoli

et al. (2001) approach the same problem using semi-definite programming. Prete

and Mitchell (2004); Krozel et al. (2006) look at network based approaches to com-

pute safe aircraft trajectories that minimize travel in time-varying three-dimensional

hazardous weather regions.

The various biological systems in nature also serve as a motivation for optimal

planning problems. Richardson (2012); Sachs et al. (2013) look at the approaches

to mimic the dynamic soaring of the Albatross for autonomous aerial vehicles in

order to optimize their energy consumption. These birds utilize the lee eddies located

downwind of sharp-crested waves in order to increase their speed. Such a maneuver

requires minor adjustments to the trajectory but saves significant amount of energy.

Such a dynamic soaring pattern has been used in unmanned aerial vehicles to utilize

environmental flows in order to travel at faster speeds (Bonnin, 2016). Other similar

dynamic soaring patterns to minimize the energy spent during travel are also studied

by Zhao (2004); Zhao and Qi (2004). Some authors have also considered the path

planning problem from a continuum viewpoint, eliminating the need for network

based models. For example, Connolly et al. (1990); Wang and Chirikjian (2000) look

at robotic path planning in three dimensions by using the potential field method. In

this method, it is assumed that all obstacles exert a repelling force whereas the target

position exerts an attractive force on a potential function. Although this method looks

at path planning from a continuous standpoint, heuristics are needed to account for
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the effect of external flow fields on the computed path.

Due to the strong dynamic flows and vehicle constraints, the above mentioned

three-dimensional path planning algorithms cannot be directly applied for underwater

path planning. Some advances have been made in order to plan optimal paths in the

three-dimensional ocean domains. Garau et al. (2014) look at planning optimal glider

paths using the A* algorithm in three dimensions in the western Mediterranean sea.

As mentioned before, even though the A* algorithm is efficient, its dependence on

heuristics does not guarantee global optimality. Witt and Dunbabin (2008) who

build upon the work done by Kruger et al. (2007) to find paths that minimize the

energy spent during the travel of an autonomous vehicle in three-dimensional oceanic

domains. This is achieved by using the present current to the greatest advantage. This

method efficiently chooses an energy optimal path amongst the considered candidate

paths. However, as all the possible paths can never be considered, this method also

cannot ensure strict global optimality of the paths.

Pereira et al. (2013) provide an algorithm to compute three-dimensional vehicle

paths that minimize the risk of collision with ships and land. They use the Regional

Ocean Modeling System (ROMS) to obtain oceanic flow-fields and then use a Markov

decision process based approach as well as a expectation minimization based approach

to decrease the risk of collision. Further, an experimental example of a Slocum glider

is demonstrated in order to elaborate of the efficiency of this methodology. Smith

et al. (2010) further extend this methodology in order to track a dynamically evolving

ocean feature while minimizing the risk of collision with ships and other possible

obstacles.Petillot et al. (2001) utilize data from an on-board sonar sensor in order to

plan paths that minimize the risk of collisions with objects and obstacles in the ocean.

This approach is efficient in that it does not require any offline computation, and the

routing is completely performed on-board. However, very few oceanic vehicles are

equipped with a sonar (or any other similar sensor), and hence such an algorithm

cannot be used for all types of oceanic vehicles.

Another approach towards optimal path planning is to use a myopic optimization,

where the vehicle chooses the short term optimal option amongst all the possible
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options. Although this method cannot guarantee global optimality, its ease of imple-

mentation makes it a preferred choice for some researchers. For example, Zamuda and

Sosa (2014) look at a glider that gathers data while following a path towards some

set destination. A short-term opportunistic sampling algorithm is used to maximize

the quality of the data collected.

After a brief review of the existing work on three-dimensional path planning, we

now look at the goal of this thesis, which is summarized in the following section.

1.2 Goal of this Work

In this thesis, we aim to extend the fundamental time-optimal path planning method-

ology to fully 3 dimensional flow fields and also to vehicles with heading-dependent

speeds using high order accurate and consistent numerical schemes that are applicable

for complex real ocean domains and dynamics. Specifically, this work involves: (i)

extending the theoretical basis in order to study path planning for different types

of marine vehicles; (ii) developing novel high order accurate numerical schemes on

suitable non-dimensional forms of the governing equations, and (iii) efficiently imple-

menting the developed theory and schemes in order to compute time-optimal paths

in realistic dynamic ocean environments.

1.3 Layout of Thesis

In this thesis, we look at the exact time-optimal path planning methodology for

three-dimensional realistic ocean fields, as well as optimal planning strategies for the

different types of oceanic vehicles. The second chapter discusses the problem formu-

lation along with the relevant assumptions. It then reviews the differential equations

governing forward reachability and time-optimal paths, and the use of the level set

method - a tool central for the efficient and accurate solution of the path planning

problem. Then, a more general version of the theorem first mentioned in Lolla et al.

(2012) that considers motion of vehicles with heading-dependent speeds is stated and
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proved. Lolla (2016); Lolla and Lermusiaux (2017) look at this problem from the

point of view of optimal control to arrive at the same result. This is followed by the

application of this theorem for to study the optimal motion of various types of oceanic

vehicles with different motion constraints, such as gliders, floats, etc. Finally, we look

at the case where the motion of the vehicle is deterministic in certain directions.

We show that such a constrained motion of the vehicle reduces the dimensionality

of the problem, that is in such cases, a three-dimensional path planning problem is

decomposed in to a two-dimensional version with appropriately constructed external

velocity field and vehicle speed profile.

The third chapter then looks at the development of novel robust numerical treat-

ments and schemes to accurately solve the path planning problem for real ocean

domains. These issues arise primarily because these domains are extremely skewed in

length and velocity scales. We first discuss a non-dimensional form of the Hamilton-

Jacobi level set equation that is insensitive towards variable scales. This is followed

by high order spatial and temporal schemes that allow us to accurately study the

evolution of the level set function, governed by the aforementioned non-dimensional

equation. Finally, we discuss the forward-backward consistent implicit backward trac-

ing schemes that are in accord with the forward numerics, and accurately backtrack

the optimal trajectory as well as compute the corresponding optimal headings.

Finally, chapter 4 looks at the various applications of the developed theoretical

and numerical results. First, several benchmarking tests are performed in order to

ensure the order of accuracy of the numerical schemes. This is followed by two simple

cases and the results are compared with the analytical solutions. We then move onto

more complicated three-dimensional analytical flows, such as the double gyre flow

and the Arnold-Beltrami-Childress (ABC) flow. Several unique characteristics of our

methodology are highlighted through these examples. Finally, we look at examples

of the application of our methodologies to fully 3 dimensional realistic oceanic flow

fields, and for various types of marine vehicles.

Chapter 5 summarizes the work done, highlights the main contributions of this

thesis, and discusses some promising directions for future research in this area.
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Chapter 2

Time-Optimal Path Planning: Theory

2.1 Review of the Level Set Method and Hamilton-

Jacobi Equations

In this section, we introduce the level set method and discuss its utility in problems

involving interface tracking. The governing equations for time-optimal path planning

are solved forward in time to track the boundary of the set of all reachable points

(the reachability set), for which the level set method is employed (Lolla et al., 2012,

2014a,b). Hence, in this section, we explain the theoretical basis of the level set

method that allow the reader to completely understand the methodology presented

in section (2.4) as well as the numerical details discussed in chapter 3. The evolution

of this aforementioned reachability set is governed by a Hamilton-Jacobi equation,

which is a type of hyperbolic partial differential equations (PDEs). In this section,

we also go through a review of Hamilton-Jacobi equations in order to understand

their peculiar characteristics and to design efficient numerical schemes. Specifically,

we discuss the fundamentals of the level set method, interface tracking, the basics

of the Hamilton-Jacobi equations and their connections with viscosity solutions of

hyperbolic conservation laws.
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2.1.1 Level Set Method

The key motivation behind the level set method is to allow us to represent, track and

study the properties of an interface as it evolves in space and time. Developed by Os-

her and Sethian (1988), the level set method provides us a way to implicitly represent

the interface and track its evolution. This is in turn the Eulerian perspective of the

interface tracking problem, as opposed to the particle-based (Lagrangian) approach,

where hypothetical particles are seeded along the initial interface and their evolution

is studied by solving an ordinary differential equation for each of the particles. Al-

though the particle based method is more intuitive, faster to implement and faster in

computation due to only localized computations; there are several major pitfalls of

this approach, some of which are mentioned below:

" Particle based methods induce distortions in the shape of the interface as it

evolves. Especially if the velocity field varies greatly, then particles might be

concentrated in some parts of the interface, and some regions may have sparse

particle density. This can induce unnatural corners and distortions. A way to

alleviate this problem is to re-seed particles along the evolved interface repeat-

edly after certain duration. Although this approach may decrease the severity of

these drawbacks, it cannot completely nullify them. It is also computationally

expensive and suffers in accuracy.

" As discussed later in this section, our problem reduces to studying the solution

of a hyperbolic conservation law. In general, hyperbolic partial differential

equations admit locally non-differentiable solutions, and the interface may be

bent, twisted and pinched in such way by the flow that it crosses itself. Particle

based approaches lack the detailed treatment of such cases and it becomes

difficult to handle the cases where the interface crosses itself.

* It has also been shown that particle based approaches suffer from stability issues

when the interface evolves with curvature dependent speed (Persson, 2005))

These issues become of paramount importance while trying to obtain solutions of
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hyperbolic equations, which prompts us to utilize the level set method. The core of

level set methods lies in embedding an iso-contour along the interface of a function

with one higher dimension than the interface itself. This 'level set' function is defined

on a fixed grid independent of the position of the interface, which allows us to embrace

an Eulerian perspective.

The level set of any function f : R' - R is the set of points along which the

function f takes a constant value. Mathematically, this translates to the following

set: {x I f(x) = c}, where c is a known (or given) constant. This eases the problem

of interface tracking in arbitrary dimensions, as instead of explicitly tracking the

interface, we can now embed a level set of a function defined over the entire domain

and track the evolution of this interface by means of the embedded level set, typically

by solving an initial-value partial differential equation for the level set function. That

is., given an open domain Q C R" and a hypersurface &Q C R" 1 , we construct a

Lipschitz continuous function # : R" -+ R, such that OQ forms a specific level set of

the function #. Typically in literature as well as in this work, we construct # such

that DQ is the zero level set of 0 (i.e. &Q = {x I O(x) = 0}).

Note that, the general form this approach requires information about the dynam-

ics of the entire domain to study interface evolution. It may be the case that the

information about such global dynamics is unavailable. As will be discussed in sec-

tion 3.4, new methods have been developed whereby this drawback is addressed. The

benefit of this formulation is that the level set method gives us the ability to rep-

resent the interface implicitly, and enables its tracking through solving an evolution

equation on a fixed (or at least, known) domain, thus eliminating the particle-related

issues of the Lagrangian based approach.

In all front tracking problems, the interface (&Q) divides the domain Q in 3 parts:

the inner region (Q-), the outer region (Q+) and the interface (&Q) itself. We desire

for the level set function to keep a track of whether any point lies 'inside', 'outside'

or on the interface. For this purpose, we adopt the following sign convention for our
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level set function #:

> 0 for x E Q+ (x outside oQ)

#(x, t) < 0 for x E Q- (x inside OQ)

= 0 for x E &Q (x on &Q)

(2.1)

Figure 2-1 depicts the signs of the level set field in the different regions, for an arbitrary

front in two dimensions. Same concepts extend to three-dimensional fields, for which

such a depiction becomes harder.

Figure 2-1: Sign convention for O(x, t). The shaded gray region lies inside the considered
zero level set and hence 0 < 0 in this region. The white region is outside the zero level set,
which implies # > 0. The other iso-contours of q are shown for reference.

This convention is followed throughout this work, and allows us to easily determine

whether a point lies inside or outside the interface at any time.

In order to study how the front evolves due to some externally imposed velocity

field, we resort to the duality between the Lagrangian and the Eulerian viewpoints

through the material (or total) derivative. The material derivative of some function
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f in a velocity field ! is defined as:

Df O f(x, t) dx
S ' + - Vf(x, t) (2.2)Dt at dt

The left side of equation (2.2) is the Lagrangian derivative, and right side is its

Eulerian representation. But, the function value for any Lagrangian point in the

domain does not change in time. Instead, the function value is only advected with

the point itself. This implies that : = 0. Hence, we have:
Dt Hecwhae

Df(x, t) dx
at + d Vf(x, t) = 0 (2.3)

Consider any point x on a level set of the function #, that is #(x, t) = c. The

velocity experienced by this point at that instant is identical to the velocity at the

point x, that is d.

We first consider the case where an interface moves in a direction normal to itself

with a constant speed F. This means that every point on the considered level set

of the function # experiences a velocity equal to Fi, where i is the local normal

direction. Thus equation (2.3) now becomes:

Dq#(x, t)t Fii -V(x, t) = 0 (2.4)at

Now we consider the case of an externally imposed velocity field V(x, t). This simply

implies that

dx

Substituting equation (2.5) in equation (2.3), we obtain equation (2.6), which allows

us to track the evolution of function # in an externally imposed velocity field.

00(x, t) + V(x, t) - V#(x, t) = 0 (2.6)
at

Even though equation (2.4) and equation (2.6) are initial value partial differential
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equations for the level set function 0, one can always recover the interface at any

time t by considering the zero level set (iso-contour with c = 0) of #(x, t). Note that,

if initially the value of q along the interface was different from 0 (some c), then one

should consider the corresponding 'c level set' (iso-contour bearing the value c) to

retrieve the interface position.

Equation (2.4) and equation (2.6) can be superposed to obtain equation (2.7) in

the case where the interface is moving in an imposed velocity field V, and is also

evolving with a speed F normal to itself.

OX t) + (V(x, t) + Fi) - VO(x, t) = 0 (2.7)
0t

Equation (2.7) can be looked at as the front evolution for the case where the effective

total velocity at any point x on the front is (V(x, t) + Fi). This forms the basis of

level set method and also the starting point for section (2.4).

Note that, in some cases the velocity field away from the interface may not be

known. In this formulation, even though we solve for the level set function # over the

entire domain, the values of q away from the interface does not affect the evolution of

the interface. Hence one can use any Lipschitz continuous velocity field to substitute

for the regions where the velocity field is not known. It can also be noted that equation

(2.7) is an unsteady Hamilton-Jacobi equation (Sethian, 1998). Weak solutions to

these equations allow for formation of singularities and shocks, and solutions with

mild singularities is typical of these equations, as will be seen later.

In order to study the front evolution, equation (2.7) is solved on a discretized

domain with a numerical procedure. The accuracy of the numerical method and

parameters such as the discretization size and the time stepping control the accuracy

of the solution. In chapter 3 we discuss our development and implementation of high

order accurate numerical schemes required to exactly study the front propagation and

growth.

We now discuss the choice of the level set function #. As mentioned before, any

arbitrary Lipschitz continuous function can be used as the level set function. A
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preferred choice for the implicit level set function # is the signed distance function

d(x), because it is smooth and maintains fixed gradients in the iso-contours (Sethian,

1999a)), especially near the zero level set. Simply, the signed distance function value

at any point x is the minimum distance between x and the interface &Q. As per our

convention discussed in equation (2.1), d(x) is negative for x inside the front and is

positive for x outside. By definition, d(x) = 0 for x E aQ, consistent with the zero

level set representation of the front. Equation (2.7) illustrates the definition of the

signed distance function.

[ minx - xol for x E Q+
xoEaQ

d(x) =-min Ix-xol forx c Q (2.8)
xoEaQ

0 for x E &Q

A defining property of of the signed distance function is that it is the unique viscosity

solution of the static Hamilton-Jacobi (Eikonal) equation given by equation (2.9).

IVd(x)I = 1 (2.9)

This property has inspired development of fast and efficient schemes for constructing

a signed distance field over a given domain (with respect to a known front), some of

which are discussed in section (3.4).

Figure 2-2 shows signed distance function contours in a square Cartesian domain

with respect to a closed curve. Note that the 3D representation of # is a cone-like

surface, which is a direct implication of equation (2.9). Note that the cross-section

of this shape depends on the curve with respect to which the signed distance is

computed.

2.1.2 Hamilton-Jacobi Equations

As mentioned in the above discussion, equation (2.7) is a Hamilton-Jacobi equation.

In this section, we discuss the main traits of Hamilton-Jacobi equations and the
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(a) signed distance function: 2D contours (b) signed distance function: 3D view

Figure 2-2: Signed distance function with respect to a closed curve in 2 dimensions. The
curve is represented in white, and # = 0 on the curve. If plotted in 3D, # assumes a distorted
conical surface as seen from the second figure.

possibility of the formation of weak solutions. The allowance of weak solutions is

important in designing numerical schemes, as the scheme should be able to account

for locally non-differentiable solutions.

An unsteady Hamilton-Jacobi equation is of the form given by equation (2.10)

(Osher and Fedkiw, 2006))

+ H(x, t, q, V#) = 0 (2.10)at

For example, equation (2.6) is an example of Hamilton-Jacobi equation, where H(x, t, q, V) =

V -V0.

Hamilton-Jacobi equations depend on (at most) the first derivatives of the argu-

ment # and are hyperbolic in nature. Further, a direct correspondence can be drawn

between Hamilton-Jacobi equations and conservation laws. In particular, the solution

u to a conservation law is the derivative of a solution q to a Hamilton-Jacobi equation

(Osher and Fedkiw, 2006). Conversely, the solution # to a Hamilton-Jacobi equation

is the integral of the solution u of a conservation law. This allows us to point out

several important points. We know that the solutions of conservation laws may be

discontinuous. For example, Burger's equation with a sinusoidal initial condition de-
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velops a discontinuity in the solution in finite time (Smoller, 1994). This implies that

solutions of Hamilton-Jacobi equations can develop kinks (discontinuities in the first

derivative) even though the initial data is smooth. As solutions of conservation laws

may not be unique, we need to impose some entropy condition to select the 'physically

relevant' solution amongst the set of solutions of the Hamilton-Jacobi equation.

The numerical solution technique used to solve equation (2.7) should consider the

possibility of formation of singularities and kinks, and yield the physically correct

non-smooth solution. Thus, the numerical solution to the level set equation (2.7) is

based on the viscosity solutions to the related Hamilton-Jacobi equation (Sethian,

1998; Crandall et al., 1984). The idea of viscosity solutions was first introduced by

Crandall and Lions (1983), wherein an additional term proportional to the second

derivative of the function, with a numerical viscosity v is added to the equation.

This is analogous to the fluid viscosity (or diffusion), which also acts on the second

derivative of solution variable. For example, equation (2.10) becomes:

-- + H(x, t, #, Vq) = vV 2# (2.11)at

The role of this additional term is to introduce some diffusion in the problem, thus

smoothing out the generated shocks and discontinuities. The solution to equation

(2.11) is then computed under the limit v -+ 0+, yielding the viscosity solution of

equation (2.10). It can be proven that the viscosity solution of a Hamilton-Jacobi

equation is unique (Crandall and Lions, 1983; Souganidis, 1985).

We now discuss some mathematical background of viscosity solutions to unsteady

Hamilton-Jacobi equations. Consider the unsteady Hamilton-Jacobi equation (2.10)

on a domain Q C R", where q: Q x R+ -+ R.

0- is a viscosity sub-solution of equation (2.10) if, for all C 1 functions V)(x, t), such

that #~ - 4 has a local maximum at (x, t), we have:

+ H(x, t, , VV) < 0 (2.12)
St

Similarly, 0+ is a viscosity super-solution of equation (2.10) if, for all C' functions
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(x, t), such that #+ - @ has a local minimum at (x, t), we have:

+ H(x, t, 0, VV) > 0 (2.13)at

In simple words, the viscosity super-solution (#+) utilizes a hyper-surface that is

tangent from above to the graph of # at x as an approximation for V0 (which may

not exist at x). This is referred to as 'super-differential'. Similarly, the viscosity

sub-solution (0+) approximates V0 by a hyper-surface tangent to # from below at x,

which is called 'sub-differential'. Figure 2-3 depicts super and sub-differentials for a

general graph.

x xX

(a) Super-differential (b) Sub-differential

Figure 2-3: Super-differentials and sub-differentials (modified from Bressan (2011). VO
is approximated by the super-differential V0+ (shaded gray plane in the first image) for
viscosity-super solution and by the sub-differential Vo- (shaded gray plane in the second
image) for viscosity sub-solution. Graphs of the corresponding b functions are shown for
the convenience of understanding.

A function # is the viscosity solution of equation (2.10) if it is both a viscosity

super-solution and a viscosity sub-solution. Note that nowhere in the definition is 0

ever differentiated. Only the test functions 0 (which are C1 continuous) are differ-

entiated. We refer to Bressan (2011) and Crandall and Lions (1983) for a detailed

treatment of viscosity solutions of Hamilton-Jacobi equations. We also state some

important points regarding viscosity solutions:

* If # is a smooth (differentiable) solution of equation (2.10), then it is also a

viscosity solution
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" If the viscosity solution # is differentiable at a particular point x (at any time

t), then it exactly satisfies equation (2.10) at x

" Given the initial conditions, the viscosity solution is unique

" It can be shown that viscosity solution is indeed the solution obtained from the

vanishing viscosity method (as described above, with equation (2.11). Hence,

viscosity solutions are the unique solutions obtained from smoothed Hamilton-

Jacobi equations in the limiting condition

In order to numerically solve for viscosity solution of an unsteady Hamilton-Jacobi

equation, entropy conditions are used. We use the entropy condition that was given

by Sethian (1994) to pick out the unique viscosity solution. Simply stated, the entropy

condition is as follows: "If the front is viewed as a burning flame, then once a particle

is burnt, it stays burnt". careful adherence to this condition yields physically correct

viscosity solutions. This condition simply means that the zero level set can pass

through a point at most once, and that once it has passed through a particular point,

the value of the level set function assumes some pre-fixed value to denote that the

point has been "burnt". Mathematically, this means that at any point, information

is reached through the characteristic that reaches this point for the first time and

all later characteristic lines that arrive at this point are truncated. This allows us

to design numerical schemes consistent with the viscosity solution of the Hamilton-

Jacobi equation. A simple way to implement these schemes is to set the value of #

in the interior of the front 0Q- to be some constant negative value (as points inside

the front have already been touched by the front). Once any point assumes this

value, it can never change. This way a point can never be touched by the front twice

(or more), and that prohibits the front from creating twist and self-loops. This in

turn yields the correct viscosity solution of the Hamilton-Jacobi equation. Chapter

3 discusses high order numerical schemes for Hamilton-Jacobi equations that hinge

upon this viscosity solution. A front can revisit the positions it has visited before if it

is exclusively advected (F is zero, but the external field V is non-zero). That is, the

entropy condition is dormant for advecting transport. For propagating fronts, that is
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fronts moving due to their own speed, the entropy condition ensures that twists and

loops are not allowed to form.

Figure 2-4 shows the evolution of a cosine curve normal to itself with constant

speed for schemes with and without the entropy condition imposed. It is clear from

this example that in the case of propagating fronts, even smooth initial conditions can

cause sharp corners or kinks. First case does violates the entropy condition, and hence

the evolved front passes through itself to develop a tail-like region. This solution is

called the 'swallowtail' solution. The second figure plots the evolution of the front

when the entropy condition is satisfied. This ensures that the curve does not cross

itself, although the sharp corner created propagates in time without diffusing. This is

the correct viscosity solution of this problem. Finally, we refer the reader to Sethian

(1999b) for a thorough discussion on convergence and stability of various numerical

schemes used to solve the Hamilton-Jacobi and level set equations, and to Osher and

Fedkiw (2001) for the applications of level set method to various other fields.

(a) Entropy violating solution (b) Entropy satisfying solution

Figure 2-4: Entropy condition violating and entropy condition satisfying solutions (adapted
from Sethian (1994).Both consider the evolution of a cosine curve, but the entropy violat-
ing scheme develops a tail-like region whereas the entropy satisfying scheme produces the
physically correct solution

40



2.2 Problem Formulation

In what follows, we discuss the problem statement and introduce the reader to the

notation used. We consider the motion of a vehicle in domain Q C R3 that experiences

a dynamic velocity field V(x, t). The maximum speed that the vehicle can travel at

is denoted by F(h, x, t) which is a given function of the heading direction (h^), spatial

location (x), and the present time (t). The unit heading of the vehicle (relative to

the flow field) is h, represented as an ordered pair (0, sc), where 0 and o are the

polar and azimuthal angles respectively. Note that we only have 2 degrees of freedom

in the heading direction, as the third degree of freedom (in the radial direction) is

accounted for through the speed of the vehicle (F(h, x, t)), that is there are no implicit

assumptions to start off with. We consider 3 predominant cases:

" The vehicle can freely move at any heading and the maximum vehicle speed F

is independent of the heading h; that is, F(h, x, t) = F(t) only.

" The maximum vehicle speed depends on the direction in which the vehicle

is headed, and or the vehicle can only move in certain directions; that is,

F(h, x, t) = F(h, t).

" Even though the vehicle moves in R', the control over vehicle heading is only in

one dimension (typically only over 0). This is relevant to many real situations

where the vehicle performs a fixed vertical motion (deterministic P), but can be

steered freely in the horizontal (variable 0). Note that although we demonstrate

this methodology for known p, it can readily be extended to the cases where

the vehicle motion is known along some parametric curve in the 0 - W space.

For this case we have, F(h(0, y), x, t) = F(x, h(0), t).

We assume that the start point (x,) and the destination (x1 ) are known a priori.

Let the trajectory of the vehicle be given by X(t). The vehicle moves due to its own

speed F, (0 < F, < F(h, t)) in the direction specified by the heading h(t), and is

also advected by the present velocity field V(X(t), t). Hence, the effective velocity

experienced by the vehicle is given by equation (2.14). Using this, the evolution
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equation for the vehicle trajectory can be written as equation (2.15). Figure 2-5

shows the components affecting the motion of the vehicle as it moves from the start

point to the target along some trajectory.

V(x t) Target
Xf

z

y

X01

Xo V(xo, t)

Start
XS ' F(h, t) h(xo, t)

Figure 2-5: Depiction of the problem statement. The dashed line represents a trajectory
between the start point x, and the target xf. The vehicle (at position xo at some time t)
experiences the velocity V(xo, t) and is steers itself along chosen heading h(xo, t) with speed
F(h, t). The net motion of the vehicle is a vector sum of the observed velocity field and the
steering movement of the vehicle.

Veff (X(t), t) = (FI' + V(X(t), t)) (2.14)

dX(t)

dt = Vef (X(t), t) = F,(f, t) (t) + V(X(t), t) (2.15)

Further, we denote the 'first arrival time' function by T(x : xo, to), that is the time at

which the vehicle reaches any specified point for the first time, given that it started

from xO at time to. Clearly, we have:

T(x, : xe, 0) = 0 and X(T(xf : xe, 0)) = xf (2.16)

We wish to compute the vehicle heading and its speed as a function of time which

will yield minimum travel time for the vehicle between x, and xf, subject to the

constraints imposed by equation (2.15) and equation (2.16). As will be discussed
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later, it can be shown that in order for the vehicle to reach the desired destination in

the minimum amount of time, it must travel at the maximum allowable speed (Lolla

and Lermusiaux, 2017; Lolla, 2016). Hence, the problem can be formulated as:

h(t)optima = arg min T(xf : x, 0) (2.17)
h

This optimization will yield the sequence of headings (as a function of time) at

which the vehicle should be steered relative to the flow-field for minimum travel time

between x, and xf, and the value of this minimum travel time T(xf : x8 , 0). In some

cases, it is also desirable to obtain way-points along the path to be followed by the

vehicle. These way-points are close to each other, and the vehicle is steered in be-

tween the way-points through another set of control laws (such as some feedback-type

control). In such cases, this framework is used to provide a 'high-level' description

of the path to be followed. This sort of structure is particularly useful when infor-

mation about the velocity at a sub-grid scale is not well-known. Such a sequence of

way-points can also be readily generated from the obtained results.

Assumptions and Remarks:

e In this work, we assume that the external velocity field V(x, t) is exactly known.

Our main focus is on oceanic vehicles, where this external velocity field can be

estimated well by various methods, but it still possesses some uncertainty. How-

ever, this work can be utilized to predict a sample path for a specific velocity

realization or the path corresponding to the averaged velocity field or most prob-

able velocity field in such cases. Further work has also been done by Subramani

et al. (2017c); Wei (2015) based on the same framework to study time-optimal

paths in stochastic environments. We also assume that the trajectories followed

by the vehicle are a continuous function of time. This imposes a constraint that

the velocity field experienced by the vehicle cannot be a Dirac delta function.

Otherwise, then the trajectory of the vehicle will not be continuous. Note that,

for the applications we consider, the velocity field is almost always smooth and
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slowly varying. Hence, this assumption is well-justified.

" We are primarily looking at oceanic applications. Hence it is assumed that the

geometric dimensions of the vehicle are much smaller than the distance traveled

by the vehicle, in order to obtain globally optimal long distance trajectories.

" We also assume that the vehicle behaves as a point mass and the interaction

between the flow and the vehicle is purely kinematic. We assume that the

vehicle speed (F) that we use is the effective vehicle speed; that is, the speed

that the vehicle would be able to achieve after considering the effect of drag

forces and inertia.

" In this work, we only seek time-optimality. In many cases, optimality in some

other objective function, such as energy spent, quality of data collected etc.

may be desired. The current framework can be extended inorder to optimize a

general objective function that depends on the travel time, followed trajectory

and possible other parameters. We refer the reader to Subramani and Lermu-

siaux (2016) for an example of energy optimization as well as Lolla (2016) for

computing optimal sampling locations based on reachability.

2.3 Theoretical Results

In this section, we discuss the level set method based path planning methodology.

We first discuss the concept of reachability and its link to Hamilton-Jacobi equations.

The basis of the path planning methodology is a theorem first presented in Lolla

et al. (2012), and further developed in Lolla and Lermusiaux (2017); Lolla (2016).

We present the general form of this theorem and comment about its implications.

As seen before, our approach to computing optimal paths in dynamic environments

can be segregated into two parts: forward evolution (in time) of the reachability set

and backward tracing (in time) of the optimal path. These two parts are discussed

in depth in this section. Finally, we present the application of this theorem to the
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different marine vehicles as described before, namely: vehicles with isotropic speeds,

vehicles with anisotropic speeds and vehicles with fixed vertical motion.

We now look at reachability sets. A reachability set (at a fixed time) is the set

of all the points that can be visited by the vehicle until this fixed time, given the

starting point of the vehicle. The boundary of this set is called the reachability front.

This means that at any time, all he points that lie on the reachability front have been

reached for the first time at the current time (value of the first arrival time function

at these points is the current time itself). Thus, the reachability front contains all the

present locations of the vehicle that lie on the possible realizable paths and are the

farthest away from the start position. In general, the reachable set at time t, starting

from x8, 7Z(x,, t) is defined as:

R(x,, t) = {yX I Y, E S[o,,](x), T C [0, t] (2.18)

Here, y, denotes a feasible trajectory (set of points) with starting point x, and

satisfy equation (2.15) (Falcone and Zidani, 2012). The set S[ot] is the set of all

feasible trajectories (starting from x, at time t = 0) till time t.

The fundamental idea behind the path planning methodology used is as follows:

If we keep track of the reachability front at all times, we can determine when this

front reaches the target. The time at which it crosses the target for the first time

is the minimum travel time between the start point and the target. Further, the

path(s) traced by the point(s) on the reachability front that reaches the target is /
are exactly the optimal path(s) we wish to compute. Figure 2-6 pictorially depicts

the reachability front, and the possible heading choices at two different positions.

Our approach is extremely efficient because at each time, it only considers headings

that maximally 'expand' the reachability set and hence there is no redundancy. If

this was not done, computing an optimal path in dynamic environments would not

be easy. The difficulty arises because at any instant, a vehicle has an infinite heading

choices to choose from. For each of these headings, there again exist infinite headings

at the next instant, and so on. Hence, choosing an optimal sequence of heading

45



S V(x, t) X 1Target
xf

Z (x1, t)

Start
Y xs

x
Reachability

Front

Figure 2-6: Evolution of the reachability front in 3 dimensions. 2 sample positions (xi and

x2 ) and the possible headings at these positions are shown (tangent planes to the reachability
front at these positions shown for reference). The dashed lines show the trajectories followed
by fictitious particles to reach x1 and x2 .

would become very extremely challenging with such an approach. A simplification

could be made by imposing heuristics as done in some other approximate methods

(see chapter 1), but that would not guarantee global optimality. Another way would

be to compute all possible paths, and choose the optimal. This is extremely expensive

and cannot be applied beyond toy problems.

In what follows, we discuss the evolution of the reachability front and show that

its dynamics are governed by a Hamilton-Jacobi equation. The level set method is

then used to track the propagation of the reachability front. Finally, we discuss the

extraction of the optimal path once the'reachability front crosses the target.

In what follows, we discuss a theorem that forms the basis of our methodology

and the discuss its applications to the different cases mentioned in section (2.2).

As can be seen from equation (2.15), we have 2 free control parameters: namely

the vehicle speed (F,) and the vehicle heading (h). We would like to predict the

optimal values of these control parameters (as a function of time) such that the first

arrival time function for the target point T(xf : x, to) is minimized. The optimal

parameter values will then be used to determine the optimal path. In this regard,
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we now look at the theorem that allows us to choose optimal values of these control

parameters in order to minimize the first arrival time at the target point (given the

start time and position).

Theorem. Let V(x, t) be a Lipschitz continuous velocity field in all its arguments.

Assume that the set of permissible heading directions W is a subset of R". Let the

vehicle speed F(h, t) : W x [0, oo) -> R+ be Lipschitz continuous in all of its arguments.

Let T(xf : x, 0) denote the optimal first arrival time at target xf, given that the

vehicle started from start position x, at time t = 0.

We assume that the possible vehicle trajectories X(t) are governed by equation (2.15),

with initial condition X(0) = x. Then, the evolution of the reachability front is given

by the zero level set of the function # : R' x [0, oo) --+ R, where #(x, t) is the unique

viscosity solution of the following equation:

+t max (F(h,t)h(t) V# + V(x, t) -VO) =0 (2.19)

For the initial conditions:

(x, 0) = x - x., (2.20)

That is,

1. The optimal arrival time T(xf xs, 0) satisfies*

T(xf x, 0) = inf {t I O(xf, t) = 0} (2.21)
t>o

2. the optimal trajectory (or trajectories) X(t) are given by the characteristic lines

of equation (2.19). That is, X(t) satisfies the following equation:

dX
= F(h,t)h(t) + V(X,t) (2.22)

dt
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Where

h(t) = arg max (F(h, t)h(t) - v) (2.23)

El

The proof of this theorem for the case when / is differentiable is discussed in

appendix A. For a more general version of the proof, we refer the reader to Lolla and

Lermusiaux (2017); Lolla (2016).

Figure 2-7 describes the evolution of the reachability front through the motion of

an arbitrary fictitious vehicle that resides on the reachability front at time t. The

optimal heading is chosen such that F(h, t) - h(xo(t), t) has the maximum projection

along V0. If this choice of optimal heading is not made, then the vehicle will end

up inside the reachability front at later times, and would not reach the destination in

optimal time. Along with this motion, the vehicle is also advected due to the external

velocity field V(xo, t). We track the optimal motion of all such fictitious vehicles that

lie on the reachability front implicitly through the equation (2.19), which is equivalent

to tracking the propagation of the reachability front (and the reachability set).

It should be mentioned that this formulation does not guarantee the uniqueness

of the optimal path. Theoretically, all the possible optimal paths can be predicted

by this methodology. The only constraint that we impose is to obtain path(s) that

take the minimum possible time to reach the destination. As described before, while

numerically computing the optimal paths, we seek viscosity solutions of equation

(2.19). That is, we permit local non-differentiability. This in turn means that we

allow for multiple characteristics to merge and propagate as kinks. As optimal paths

are nothing but characteristics of equation (2.19), we have multiple optimal heading

choices whenever we encounter a kink while backtracking the path. Each of these

choices leads to a different optimal path. The important point to note is that even

though the optimal path may not be unique, all such paths take the exact same time

to reach the destination, which indeed is the minimum possible travel time between

the selected start and target positions.

48



.-**. xo(t + At)

V(xo(t), t)

F(h, t) -h(xo (t), t)

{x (x t +At)= 0}

{x 1 $(x, t) = } .

Figure 2-7: Motion of a fictitious vehicle on the reachability front. The black arrows
indicate possible steering choices for the vehicle (assuming anisotropic speed). The red
arrow is the preferred (optimal) steering direction, as it has the maximum projection along
V$ (dotted gray line). Apart from its own motion, the vehicle is also advected due to
the external velocity (cyan arrow) and moves from xo(t) to xo(t + At) in one time step.
Implicitly tracking the optimal motion of all such vehicles on the current reachability front
yields the new evolved reachability front (black dotted curve).

2.4 Forward Evolution of Reachability Set

Section (2.3) suggests us to look at the path planning problem in two sub-parts:

evolution of the reachability set (and reachability front) and back tracing of the

optimal path. In this section, we look at the former. We first consider vehicles with

isotropic speed. That is, vehicles that can freely move in any direction. Then we look

at vehicles whose speed varies with the direction and / or can move only in certain

directions. Vehicles such as oceanic floats fall in this category. specific treatment of

these types of vehicles is also discussed in chapter 3. Finally, we consider the case

of vehicles with fixed vertical motion that can only be steered in the horizontal, and

show that such a constraint on the motion of the vehicle reduces the dimensionality

of the problem.
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2.4.1 Vehicles with Isotropic Speed

In this case, we assume that the vehicle is allowed to travel in all possible directions

('W = R3) and also that the speed of the vehicle does not depend on the direction of

its travel. That means:

F(h, t) = F(t) (2.24)

Consider equation (2.19) which governs the evolution of the level set function q.

Substituting F(h, t) = F(t), we get:

8+ max (F(t)fi(t) -VO + V(x, t) -V#O = 0 (2.25)

(2.26)

That is,

ao + F(t) max (h(t) VO) + V(x, t) -VO = 0 (2.27)

(2.28)

Now h(t) - VO will be maximum only when h(t) = kV# for some k E R. Note that

h(t) is also constrained to be a unit vector. This means that k1V5 = 1. Hence,

k 1 '. Substituting this in equation (2.27), we get:

+ F(t) IVi + V(x, t) -V = 0 (2.29)
at

With the optimal headings given by: h(x, t) = V.(Xt)

We refer to this equation as the modified Hamilton-Jacobi level set equation (Lolla

et al., 2012; Lolla, 2016), subject to the initial condition given by equation (2.20).

In this equation, the second term on the left hand side refers to contribution due

to the vehicle motion. We refer to this as the 'optimal propulsion term'. The last

term on the left hand side is referred to as the 'advection term'.

50



Equation (2.29) is solved forward in time until the zero level set reaches the des-

tination. That is, until #(xf, T) = 0. The time T is the optimal arrival time.

2.4.2 Vehicles with Anisotropic Speed

We now focus on vehicles that have speed dependent on the direction they travel in.

This type of vehicles are ubiquitous in oceanic scenarios, and need a more general

treatment vehicles with direction-independent speeds. Some examples of such vehicles

are marine floats that can only travel in the vertical direction, or sea-gliders that can

travel only along certain polar angles. Speeds of various ships and sailboats depend

on the direction of the wind, and hence they travel at different speeds in different

directions (Lolla and Lermusiaux, 2017; Hessels, 2014).This framework though, is not

limited to any specific type of motion and can be used with any restriction on vehicle

motion, given that this restriction is known a priori.

In such cases, we need to solve the general form of the modified Hamilton-Jacobi

level set equation, that is equation (2.19). As the external velocity field is not a

function of the vehicle heading, it can be taken out of the maximization to yield:

a+ max F(h, t)h(t) -V + V(x, t) - VO = 0 (2.30)
ath

In this case, the optimal propulsion term is given by max (F(f, t)h(t) - V#) and the

advection term is still V(x, t) - V0.

Similar to the last case, equation (2.30) is solved until the zero level set crosses

the target for the first time, subject to the initial condition given by equation (2.20).

Note that, in this case the maximization needs to be performed at each time, and at

each spatial location in order to obtain the optimal headings (Lolla and Lermusiaux,

2017; Hessels, 2014). There are several ways to compute this maximum, which are

discussed in depth in chapter 3.
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2.4.3 Vehicles with deterministic Constrained Motion

We now present novel path planning results for vehicles whose motion is deterministic

along a parametric constraint. The theory presented in the following work is general

and may be applied for any parametric constraints on the motion of the vehicle.

However, we look at the vehicles whose vertical motion is pre-determined. Many

oceanic vehicles travel vertically by adjusting their buoyancy, and in such cases this

vertical motion is fixed which typically is a sinusoid, such as a glider performing a yo

- yo motion to sample data (Rudnick et al., 2004; Testor et al., 2010; Javaid et al.,

2014). Oceanic floats also sometimes are constrained to fixed vertical motion, with

one cycle lasting up to 10 days (Roemmich et al., 2009; Kobayashi et al., 2012). Figure

2-8 schematically represents the vertical motion of gliders and floats. For example,

for some vehicles, this can imply that the control over the heading direction is only in

the horizontal plane. In general, one direct way to plan paths for such cases is to use

the framework for vehicles with anisotropic speeds, and to only consider the specific

heading directions that are permitted.

The aspect of exactly knowing the vertical motion of the vehicle offers great ad-

vantage in terms of computational expense. Specifically, a problem in 3 dimensions

with known motion in 1 direction can be reduced to a 2 dimensional problem. This

reduces the computational expense significantly.

We now look at a vehicle with known vertical motion and complete freedom over

the heading choice in the horizontal plane. We also assume that the horizontal speed

of the vehicle is independent of the direction. Although these assumptions simplify the

equations, this theory is applicable to cases with extra restrictions on the horizontal

movement as well.

Let us assume that the vertical velocity of the vehicle is known, and denoted by

U.. The external velocity field is given by V = (Vi, Vy, V). The vertical position of

the vehicle is given by: z = f Udt. The unit vectors in the X and Y directions are

d. and Y respectively. Let us look at equation (2.30). Note that, in this case the

optimization of the heading h is only performed with respect to 0, as the motion in
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(a) Sinusoidal motion of an underwater glider

(b) Motion of a profiling float

Figure 2-8: Motion of an oceanic glider and float, modified from Lust and Stevens (2015)
and Kobayashi et al. (2012) respectively. The glider performs a sinusoidal motion, diving to

a fixed depth. The float on the other hand dives to a particular depth and travels at this

fixed depth for a pre-decided duration. It then dives deeper, and collects data while rising

from this depth. Ultimately it travels at the ocean surface to transmit data.

W is known. Expanding the variables for 3 dimensions, we get:

max ((F(f(O), t)h(6) 4 8, F(h(9), t)h(9) - 6y, U,(t)) -V#) + V - VO = 0

(2.31)

Let us denote F(h(6), t)h(6) - 6x by Fx(h(6), t) and F(h(O),'t)h(9) -8, by Fy(h(6), t).
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Hence equation (2.31) becomes:

0 + max (F(h(6), t) - .+ F (h(O), t) -# + Uz(t) -# + V - (2.32)
at f'(0)

o+ max (F.(fi(O), t) -#. + F (fi(O), t) -0, + U.(t) -0_z + V- V# =
at fh(0)

ao+ max (F. (fi(0), t) - 2+ F,, (fi(0), t) -0y) + V,,od - V 0 = 0 (2.32)
at h(O)

where, #i = , and Vmod = (V(x, t), Vy(x, t), V(x, t) + Uz(t)). In order to solve

efficiently, we split this equation into two parts:

+ max ((F(t), Fy(t))- (#4, qY)) + (V(x, t), VYl(x, t))- (#2, #y) =0
at F. (t), Fy M)

(2.33)

)+ (Vz(x, t)+ UZ(t)) -#Z = (2.34)

a /\ 8,
at at at(2.35)

Note that equation (2.33) is simply anisotropic path planning in 2 dimensions. Fur-

ther, for the case of heading independent speeds, it can be reduced similarly to how

equation (2.29) was reduced, to yield equation (2.36)

+( =0 (2.36)

where the subscript 2D indicates that only the horizontal components are considered.

At each time step, we first solve equation (2.36), after which we add the contribution

due to equation (2.34).

In real oceanic scenarios, the vertical velocity of the flows is often very small

compared to the vehicle speed, that is: V << U. (Pedlosky, 2013). In such cases if
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we neglect the flow vertical velocity, equation (2.34) reduces to:

o + Vzx,) - = 0 (2.37)

Computational Remarks

1. Time-optimal paths with fixed vertical motions in negligible vertical flows. It

can be seen that equation (2.36) corresponds to the 'movement' of the zero

level set in the horizontal plane, and equation (2.34) corresponds to its motion

in the vertical direction. By splitting the original equation (2.30) into two, we

have effectively decoupled the motion in the vertical direction and motion in the

horizontal plane. Now, as mentioned above, if we ignore V, then the second

equation simply states that the zero level set is propagated vertically at the

speed of the vehicle. This means that if we started with a planar reachability

set, then it will always remain planar, and will be transported vertically as a

whole. Note that it will still undergo deformations in the horizontal plane, but

none in the vertical. This makes solving the system consisting of equation (2.36)

and equation (2.37) even easier as effectively we only need to solve for equation

(2.36), knowing that the level zero level set (and hence the vehicle) can only

exist at a depth of zt f1 Uz(t)dt. Note that while solving equation (2.36), one

needs to sample the correct velocity field. Specifically, while solving at time t,

the velocity field that needs to be considered is given by:

V 2 D = MV (x, y, Zt), lj,,(x, Y, Zt)) (2.38)

That is, solving equation (2.30) with the vertical motion constraints is equivalent

to solving equation (2.36), but with correctly sampled X and Y velocity field

at a depth zt, as mentioned above.

This idea can also be

2. Time-optimal paths with fixed vertical motions in general flows. The above

directly extended to the case where the vertical velocity is not ignored. For
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such instances, we first solve the 2D path planning problem similar to the earlier

one, but with a modified velocity field as explained ahead. Although, as we are

not ignoring the vertical flow velocities, now our zero level set will not remain

planar at all times (even though we started with a planar zero level set). To

this end, we construct a new 'hybrid' 2D velocity field. This field is constructed

by setting the velocity at each point on the zero level set to be the velocity that

the location of this corresponding point experiences. This means that such a

velocity field is not a real velocity field at any depth, but a manually 'stitched'

field which could be used for solving equation (2.36). Once computation of the

optimal heading and evolution of the zero level set is complete for the particular

time, we again find the actual positions of the points on the zero level set (in 3

dimensions) by adding the vertical velocities experienced by these points at the

corresponding locations. This in turn is analogous to solving equation (2.34) in

a Lagrangian way. The same procedure is repeated for each time step thereafter.

We now summarize the above results by an algorithm consisting of a few key steps:

1. Obtain the positions of the points that lie on the zero level set at current time.

Construct a hybrid velocity field in 2D that uses the velocities experienced by

these points (at their current positions).

2. Use this velocity field to solve equation (2.36) to obtain optimal headings and

positions of the zero level set points in 2D.

3. Obtain the final positions of the zero level set points by using the positions of

the zero level set points in 2D and then compute their correct depth by adding

the displacement due to the local total vertical velocity.

Interactions of the zero level set with obstacles and / or bathymetry can also be

handled in a similar way. The points on the zero level set that try to pass through

these forbidden regions are forced not to move by also setting the vehicle velocity at

these points to be equal to zero. For vehicles such as gliders that perform sinusoidal

(yo-yo) motion, the direction of the vehicle velocity is inverted once they reach the
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bottom bathymetry. This can again be easily performed as we individually keep track

of the vertical motion of zero level set points.

2.5 Backward Tracing of the Optimal Path

As described in section (2.3), the second part of the path planning problem involves

tracing the optimal path, given that the zero level set has crossed the destination.

We now look at the method to obtain this optimal path. The optimal path is the

trajectory followed by a particle that always travels on the zero level set and reaches

the destination in the shortest amount of time, as seen in section (2.3). This is a.

Lagrangian way of looking at the reachability front. This in turn means that the

optimal path is a characteristic of equation (2.19) that reaches the target xf at time

T(xf : x,, 0), given by equation (2.21). Hence, in order to obtain the complete path

followed by the vehicle, we need to trace the path backwards, starting from the target

position (xf) and time t = T(xf : x,, 0), and going to the start position x8, and time

t = 0. We refer to this as backward tracing or backtracking of the optimal path.

While solving the forward evolution equation of the reachability set (equation

(2.29)), we also need to compute the optimal heading direction for each point on the

reachability front at that particular time. While solving the backtracking problem, as

we are looking for a characteristic of equation (2.19), the partial differential equation

(PDE) manifests itself as an ordinary differential equation (ODE) along this path.

That is, we only need to know the optimal heading only at the present location of the

vehicle (at the corresponding time) in order to backtrack the path. This information

is readily available, and no extra computation is required.

It is necessary to mention here that as we are solving for a characteristic curve of a

PDE, consistency needs to be maintained between the temporal schemes for the PDE

and the ODE. If the temporal schemes are different, then the two are not directly

numerically compatible, and may cause significant errors. New results on this topic

are included in chapter 3.

We now look at the differential equation followed by the optimal path (trajectory).
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This equation is the same as equation (2.22), but with additional constraints.

dX
= F(h, t)h(t) + V(X(t), t) (2.39)

where

h(t) = arg max (F(, t)h(t) -V#(X, t) (2.40)
h

and

X(T(xf x, 0)) = x1  (2.41)

We recall that the optimal travel time T(x1 : x,, 0) is defined by equation (2.21).Hence,

to obtain the obtain headings, we first solve equation (2.39) backward in time, for

which equation (2.41) is used as an initial condition. The optimal headings at each

time are given by equation (2.40), following the vehicle in a Lagrangian sense.

x I (x, t) = 0

X (t)

-Fh(X, t) X

.. -V(X, 0

X(t - At) .

{x IqO(X,t ~At)=z0}

Figure 2-9: Backtracking the optimal path. The optimal path is given by the trajectory
of the point that always moved on the reachability front to reach the destination xf at time
T(xf : x, 0). In order to compute the optimal trajectory, we start from xf and march
backward in time by taking into account the motion due to vehicle steering (red arrow) and
advection due to the external velocity field (cyan arrow).

For vehicles with isotropic speeds, equation (2.39) is reduced to equation (2.42),

where the optimal heading h(t) has been replaced by its expression h(t) =V(X(t)")
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since in that case the optimal h(t) is exactly the normal to the level set. This equation

is also subject to the initial condition given by equation (2.41).

dX V#(X t)
=t F 'V X + V (X (t), t) (2.42)

dt |V#(X, t)f

For the case of path planning for vehicles with known vertical motion, as described

before, optimal headings provide us the travel direction in the horizontal plane. As

we know the vertical motion of the vehicle, a vector sum of the horizontal and the

vertical travel directions yields the optimal heading direction for such vehicles.
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Chapter 3

Numerical Challenges, Schemes and

Implementation

We reviewed he theoretical foundation behind our path planning methodology and

extended it to vehicles with anisotropic and constrained motions in the previous chap-

ter. Another equally important aspect is its applicability in realistic conditions and

the accuracy of the results. Specifically, we describe the partial differential equation

governing the evolution of the reachability set (equation (2.19)) and the ordinary dif-

ferential equation governing the corresponding time-optimal path (equation (2.22). In

this chapter, novel approaches towards the accurate, consistent and efficient numerical

implementation of these equations are introduced.

To compute and predict accurate reachability sets and time-optimal paths in re-

alistic 3D conditions, several critical computational, numerical, and implementation

questions arise. They include: (i) how to obtain accurate solutions of level-set con-

tours in dynamic fields with sharply skewed and anisotropic length and temporal

scales; (ii) how to solve for the reachability front evolution with highly accurate

numerical schemes that minimize numerical dissipation and other errors; (iii) numer-

ically, what are the best approaches to handle constrained and anisotropic vehicle

motions in 3 dimensions (iv) how to ensure that the forward-backward numerical

consistency is maintained in all the computations; (v) what are some approaches to

efficiently re-construct <5 to be a signed distance function, as the level set function is
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distorted and the signed distance property is lost during advection (vi) what are the

efficient implementation techniques for execution in complex domains. The results

presented in this section provide solutions to each of these key questions.

First, we present the various challenges that arise while applying our methodology

to realistic 3D scenarios followed by the solutions to surmount them. We then discuss

the non-dimensional form of the Hamilton-Jacobi level set equation, which is crucial

in solving the path planning problem for real ocean domains. After this, we explain

the various high order spatial and temporal numerical schemes used to solve for the

evolution of the zero level set function. We then look at the methods to perform

maximization of the Hamiltonian from equation (2.19), and mention the relative

merits of various approaches. This is followed by the discussion about reinitialization

of the signed distance function, which is necessary to maintain regularity of the level

set function q. Finally, we go over the schemes for backtracking the optimal path,

and the necessity of consistency between temporal schemes for forward evolution and

backward tracing.

3.1 Challenges in Implementation for 3D Realistic

Ocean Flows

3.1.1 Challenges in Forward Evolution

In this section, we take a look at the various challenges that we face in the forward

evolution of the reachability set. First, we discuss the issues pertaining to skewed

length scales, and then look at the other issues that may affect the accuracy of

evolution of the zero level set.

Skewed Parameter Scales:

Most environmental domains and flows such as ocean and atmospheric flows are

extremely skewed in terms of length and/or velocity scales. That is, the length of the

domain and/or the velocity in one or more directions is much larger than those in the
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other directions. Even in biological flows such as blood flow in the vascular system,

extreme skewness in length-scales is often observed (Wiedeman, 1963). A similar

disparity between length and velocity scales is also observed in several artificial flows.

For example, some micro-fluidic devices take the advantage of the different scales

to efficiently separate the various components of a fluid mixture (Sackmann et al.,

2014). Although we study the specifics of ocean flows, the considerations in the

following work are general and the conclusions hold for many natural and man-made

engineering systems.

As is well known, the depth of oceans is typically much smaller than their longi-

tudinal or latitudinal dimensions. For example, let us look at the deepest point in all

of the earth's oceans: the Mariana Trench, which is close to 11,000 meters (11 kilo-

meters) deep. This depth is about 10 times smaller than 10 latitude, which is about

110 kilometers. Oceans typically spans several degrees of latitude and longitude (for

example, length of the Pacific ocean is over 15,500 kilometers).

Such skewed length scales significantly affect any simulation based 3D study of

oceanic domains. For example, as discussed in chapter 4, we will consider a domain

off the coast of New Jersey, in the Atlantic ocean. The length and breadth of the

domain is off the order of 400 km, whereas we only consider the top 100 meters as the

operable region for our AUVs. The domain is divided in 128 cells along latitudinal and

longitudinal directions respectively. This implies that the length of an individual cell

in the longitudinal and latitudinal (X and Y) directions (- 0(3 km)) is much larger

than the depth of the domain (Z direction). This implies that our 3 dimensional

grid cells are extremely thin, and hence even extremely small deviations from the

exact solutions in the horizontal directions may cause a major change in the vertical

direction.

Similar to length scales, the velocity magnitudes in different directions are also

extremely different. The vertical velocity of ocean flows may be orders of magnitude

smaller than the latitudinal or longitudinal velocity. Typically, the vertical velocity is

obtained as a diagnostic variable especially in hydrostatic ocean models, by enforcing

the divergence-free condition and accounting for the free surface motion (Haley and
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Lermusiaux, 2010)), which is typically much smaller in magnitude than the other

velocity components. This implies that, while computing the advective fluxes, the

vertical fluxes may be severely altered even by small relative errors in the fluxes in

other directions, thus impacting the accuracy of the zero level set evolution in 3D.

Accuracy in Level Set Evolution:

In the forward evolution of the level set function #, what we are really interested in is

the movement of the zero level set front. Particularly, the evolution of the zero level set

needs to be as close to the truth as possible, because, small deviations from the truth

may not change the arrival times much, but could severely alter the computation

of the optimal path. As mentioned in chapter 2, we utilize the entropy condition

specified by Sethian (Sethian, 1994)) in order to solve for the viscosity solution of

equation (2.19). Through this condition, the value of the level set function inside the

reachability set is set to some constant different from the other permissible values of

the level set function (typically this value is set to be some negative constant). The

level set function behaves is a signed distance function with respect to the reachability

front outside the reachability set. This implies that there is a discontinuity in the

level set function at the reachability front. As is well known, finite difference and

finite volume numerical schemes are diffusive of shocks and discontinuities, and these

errors are amplified with time (mainly due to compounding of errors). Hence high

order schemes are required for the spatial as well as temporal solves for the evolution

of the reachability set.

For the case of anisotropic vehicle speeds, there is a need for maximization over

a term concerning the gradient of the level set function. For vehicles whose speed

strongly depends on the heading, slight errors in the level set function computation

can easily be amplified. Further, for vehicles with only a few permissible heading

directions, slight deviations from the truth may cause the computed heading direction

to be vastly different from the optimal one, this effect aggravating over time. Hence,

due to the multiple reasons mentioned above, high accuracy in the forward evolution

of the level set function is required.
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3.1.2 Challenges in Backward Tracing

We now focus our attention on the issues faced in the backward tracing of the optimal

path, once the forward evolution of the reachability set is complete. Specifically, we

look at the requirement of numerical consistency in temporal schemes between forward

and backward evolutions, and the possibility of amplification of errors.

Consistency in Temporal Schemes:

An important consistency in the computation of the optimal path by solving equation

(2.22) is the consistency of temporal schemes between the forward evolution and the

backtracking. As we solve equation (2.22), we are solving for a characteristic of

equation (2.19). That is, we are trying to track the position of a hypothetical vehicle

that always remained on the zero level set of # as it traveled and its position coincided

with the destination xf at T(xf : x8, 0). In the limiting case of At -+ 0, the path of

this vehicle will be traced in continuous time. But, as we can only solve numerically

for a finitely small At, care needs to be taken to consistently follow the path of this

hypothetical vehicle.

The forward reachability evolution is governed by a PDE, and hence it represents

the motion of the hypothetical 'optimal' point that reaches the destination through

an implicit functional representation of the reachability front in space. Note that,

even though the above-mentioned PDE implicitly represents the reachability front, it

is solved using explicit numerical time integration. Backward tracing of the optimal

involves an ODE, which means that we explicitly (in space) trace the motion of

the particular optimal point in time. For minimal numerical errors, we would like

to match the implicit functional representation of the point (in space) in an exact

fashion while backtracking the path, which in turn, is the position of the optimal point

as a function of time. Specifically, we need to maintain two numerical consistency

properties: forward/backward explicit /implicit consistency for the numerical time

integration. and type of time-integration consistency. First, if the forward temporal

evolution is explicit, then the backward temporal evolution needs to be implicit, and
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vice versa. Second, the exact nature of the forward evolution scheme also needs to be

'mimicked' by the back tracing scheme. For example, if the forward evolution uses the

forward Euler time marching, then the backward tracing must to use the backward

Euler scheme (marching backward in time). If such consistency is not maintained,

then backward tracking will not guarantee the exact position tracing of the optimal

vehicle in time, and hence the path constructed will not be accurate and numerically

consistent.

-- ,,, Fh(Xt)

-V(Xt)

V(Xt_1)-

Fhi(Xt_1)

*--. bXt_1

Figure 3-1: Error in backward tracing due to numerical temporal inconsistency. The
external velocity (cyan arrow) and optimal heading direction (red arrow) are chosen to be
those at point Xt (normal to the zero level set at this point shown by dotted gray line),
which leads the vehicle to X*. However, the forward evolution was explicit; that is the
external velocity and optimal heading values point at Xt_1 were used in order to move from
Xt- 1 to Xt; shown with dotted cyan and red lines respectively. This inconsistency implies
that the computed position of the vehicle , X*_ 1 is different from the correct position Xt_1.
In addition, further errors are caused if compatible forward and backward time integration
schemes are not used for the PDE and the ODE respectively. For example, if one uses
the forward Euler scheme for the PDE evolution and a Runge-Kutta (RK) scheme for the
backward evolution, then the exact nature of the schemes is different. This causes additional
numerical errors. Alleviation of such errors is crucial, and will be discussed later in the thesis.

Figure 3-1 schematically represents the discrepancy arising if the correct numerical

temporal consistency is not maintained (we consider the isotropic speed case here,

but the same issues hold true for the anisotropic speed cases as well). The actual
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path that was followed by the fictitious vehicle during forward evolution is shown

in dotted lines. This path uses the normal direction and velocity of point Xt- 1 ,

assuming explicit forward evolution. Ideally, our backtracking scheme should take

the vehicle from Xt to reach Xt_1. However, if an explicit backtracking scheme is

also used, then, the normal direction and the velocity values at point Xt are used.

In this backtracking, the resulting point reached is then X*_ 1 , which may be far off

from Xt_ 1. Such an error is typically worse if the normal direction to the zero level

set changes rapidly in the vicinity of Xt and is amplified through time marching.

Amplification of Errors During Time-Integration:

We now discuss the time-compounded effects of numerical errors in the forward and

backward solves on the optimal paths that are obtained. All of the issues discussed

above initially introduce local errors, that are compounded as time marching is carried

out. Such growing errors may cause the computed optimal paths to be far off from

the real optimal paths, and if not addressed, would lead to a low confidence in the

results. Specifically two scenarios may emerge:

1. Backward accumulation of errors. While solving ODE (2.22) backward in time,

we start from the target position and utilize the forward PDE computed optimal

headings and the time dependent velocity field at trajectory points to evolve

the optimal path. The introduced errors may imply that the vehicle that starts

from the target position and numerically backtracks the computed optimal path

will never reach the start point.

2. Effect of accumulation of errors on the predicted forward vehicle motions. Solv-

ing ODE (2.22) backward not only provides us with the optimal path, but also

gives us the time series of optimal headings at which the vehicle should be

steered in order to reach the target in the shortest time. As a verification, one

can then check to see if the vehicle steered with the computed optimal head-

ings actually reaches to the target point. Similarly to the last case, errors in

the optimal headings solution may imply that if we steer our numerical vehicle
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forward from the start point towards to the target point along the computed

optimal headings (forward ODE time-integration), the vehicle will never reach

the target position.

Either of the cases described above is unacceptable, and all computed optimal

paths should be tested with these two checks. Thus, it is clear that even small

numerical errors or inconsistencies may end up causing large deviations from the

exact solutions, and hence we need to make sure to be computationally accurate and

consistent throughout the solve.

3.1.3 Solutions

As seen above, the major numerical challenges we face while solving path planning

problems for realistic complex oceanic or environmental flows and domains are that:

(i) the length and velocity scales are extremely skewed; (ii) slight errors in the forward

evolution caused by low-order numerical schemes and the compounding numerical er-

rors lead to large differences in the computed optimal headings (iii) diverging paths

are computed if correct numerical consistency is not maintained throughout the com-

putation, and (iv) the computed optimal headings may not actually lead to feasible

paths.

Next, we address the approaches to alleviate these difficulties. First, we non-

dimensionalize the Hamilton-Jacobi level set equation governing the forward evolu-

tion, that is equation (2.19). This implies that the various length and velocity scales

now do not affect the accuracy of computation, as each of the non-dimensional terms

is of the same order of magnitude.

We then solve this non-dimensionalized equation with highly accurate numerical

schemes to capture exactly the evolution of the zero level set front. We provide

schemes and illustrations up to 5 th order in space and 3 " order in time. This implies

that the computed optimal headings are close to exact, which is necessary for a near-

exact optimal path. Note that, one can go to even higher order schemes than the

ones mentioned, but the gain in accuracy is minuscule as compared to the increased
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computational expenses.

Lastly, as mentioned before, we make sure that numerical temporal consistency

is maintained throughout. As it is much easier to solve a PDE through explicit time

marching, we use implicit time marching for the backward tracing of optimal path.

That is the headings and velocities are implicitly represented in which case an iterative

solver is necessary to arrive at the correct answer. Further details regarding implicit

backtracking are discussed in section (3.5).

3.2 Non-Dimensionalization of the Hamilton-Jacobi

Equation

In this section, we discuss the non-dimensionalization of the Hamilton-Jacobi equation

governing the evolution of the level set function. Specifically, we look at equation

(2.30), restated here for convenience.

+ max (F(f, t)h(t) -V + V(x, t) . V# = 0 (3.1)
at h

We now look at the non-dimensionalization of each term on the left hand side. For

this purpose, a reference scale needs to be set up for each of the variables. The

choice of the reference scales for each of the spatial dimensions, as well as each of the

velocities utilizes information about the domain length and the approximate velocity

magnitudes in the respective dimensions. The other variables that remain are the

level set function # and the time t. We propose the following non-dimensionalizing

scales for each of the variables, summarized in table 3.1.

Note that the scales chosen for the spatial variables require minimal computa-

tion. The characteristic scales for the velocities consider an average over the entire

spatial and temporal domain of interest, and are required to be computed once per

simulation. Note that another suitable scale for velocities could have also been the

maximum velocity in that direction over the entire temporal domain of interest. Al-

though an acceptable choice, the maximum velocity might be much larger than the
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Table 3.1: Scales for non-dimensionalization

Variable Scale
X X' = Lx (Characteristic length in the X direction)

y yC = Ly (Characteristic length in the Y direction)

z zc = L, (Characteristic length in the Z direction)

VX V = meanx,t(V(x, t))

V Vyc = meanx,t (M~ Xt))

Vz VZC = meanx,t (VX, 0))

t tc = max (max(Vcrax)- max(Vy,Fmax) max(Vzc,Fzmax)

typical expected velocity magnitudes, and hence the non-dimensionalization is not

very effective in such cases. If the velocities in different regions vary greatly, then the

domain can be divided into appropriate sub-domains and a separate non-dimensional

scale for the velocities can also be chosen in each of the domains. The characteristic

time scale proposed is an estimate for the travel time assuming that the vehicle either

travels only at its own speed or is only advected with the flow, whichever is the faster

choice. Specifically, we look at the maximum of the travel times along each of the

basis directions (that is, along the X, Y and Y directions) when the vehicle optimally

chooses the to either travel with the flow, or travel on its own, but not both. It must

be stated that these choices are far from unique, and appropriate characteristic scales

should be adapted to the problem.

A peculiar point to notice is that we have not defined any scale for the level set

function q in table 3.1. This is because, when the terms in the equation are replaced by

the corresponding non-dimensional quantities, the characteristic scale of # is linearly

involved with each term, and hence it can be factored out. Hence, # does not require

any scale of its own. Note that, if there were additional terms involved in the equation

due to various effects, such that q cannot be factored out, then one can choose an

appropriate scale for it by using its interpretation as the signed distance function
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from the reachability front. For example, a characteristic scale that we propose for #

is the maximum distance between any point in the domain and the start position of

the vehicle. That is,

#c=max (Ix - x, 1) (3.2)
xEQ

Dividing all the variables with the concerned characteristic scales, we obtain a new

form of equation (2.30), which is numerically well conditioned. This non-dimensional

form is given by equation (3.3).

a * (t) 00* h h(t) 9#* hz(t) (*+ max F (f, t) + +tc at* h,,y,hz XC ax* yC ay* zC az* 0 (3)

+ (Vxx* + "VY'* + zvz
x( Ox* yC &y* zc Z Oz*

Where the superscript (**) refers to the non-dimensional quantity corresponding to

(e). For the case of isotropic speeds, this equation reduces to equation (3.4).

1t 0* 1 ( ,,0* 2 ()
2 2 2

+F + -+
tc at* (X9)2 aX) (yc)2 )y* (z)2 (z* _ (3.4)

+ k\VX&* + V* + "Vz V*

From these equations, it can be seen that the advective fluxes in each direction scale

with the ratio L in that corresponding direction. As stated before, even though bothL

Vz and Lz are much smaller that either of V, and Lx or V, and Ly, the ratio - can

easily be comparable to x and ! This means that even though the length and the

velocity in the Z direction is small, the advection contribution in this direction is not

negligible. This arises from the incompressible continuity equation.

Focusing our attention on the optimal propulsion term (second term on the left

hand side), it is clear that the contribution due to each of the directional terms scales

as -. This again implies that even though length of the domain in the Z direction is

much smaller, the contribution to the optimal propulsion term in this direction can
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be substantial. Hence, ignoring the vertical direction may cause large errors, as its

contributions to both the optimal propulsion and advection are comparable to the

other existing terms.

3.3 Forward Evolution

We now discuss the numerical schemes and the general implementation for solving the

forward evolution of # by using either equation (3.3) or equation (3.4). First, we take

a look at the solver and the grid details as well as the imposed initial and boundary

conditions. This is followed by a discussion on advection and optimal propulsion

schemes. Lastly, we look at the various high order time marching schemes utilized in

this work.

We use a 3D structured grid with rectangular prismatic elements in a cuboid

domain. All the equations are solved using the finite volume method as it allows

for an easier implementation of high order schemes. In our case, the velocity field is

deterministic and is known a priori, hence we do not have any coupling of variables.

Further, we solve for the optimal propulsion and the advection terms independently

of each other. If the domain is irregular in shape, then the extraneous regions are

masked, and the external velocity as well as the vehicle speed in these regions is set

to be zero. This ensures that the values of the level set function never changes in

these regions.

We use the initial conditions provided by equation (2.20). Although this is an ideal

initial condition, computationally, this introduces a singularity at the start point.

Hence, we modify this initial condition as:

#(x, 0) = Ix - xj - ro (3.5)

Where ro is a small quantity (comparable to the grid size). This creates a small zero

level set sphere around the start point of radius ro. The interior of this sphere is

then set to a constant negative value due to the entropy condition. This eliminates

72



the singularity and provides a smooth initial condition. This implies that while back-

tracking, the optimal path will only guide us to the surface of this sphere. As ro is

small enough, we can then claim that the vehicle can travel from this surface point

to the actual start position in a straight line.

The evolution of the reachability front does not depend on the function values

away from the front. Hence the boundary conditions do not have a direct impact on

the evolution of the zero level set. This only restriction on the boundary conditions is

that they should not introduce any new reachable points in the domain. To this end,

we use radiation boundary conditions for 4 at all boundaries. That is, the imposed

boundary condition is - = 0, where n is the local surface normal. While solving

numerically, this derivative is computed such that the order of discretization matches

the order of advection and optimal propulsion schemes.

We now discuss the numerical schemes applied and implemented to solve for the

advection and the optimal propulsion terms and the time marching schemes.

3.3.1 Advection Term

The numerical schemes implemented for solving the advection term utilize the given

velocity field explicitly, and find suitable approximations for V# by using the sign of

this known velocity field. We implement schemes with order of accuracy up to 5.

We use the finite volume method to solve the PDE at hand. As is well known, the

finite volume method is a reformulation of the control volume approach applied to

individual computational elements. This means that we require estimates of # values

on the faces of the individual grid cells.

A simple first order scheme uses upwinding to approximate # values on the cell

faces. Looking in the X direction, the east face value is either set to be the value of

the east cell or the value of the present cell depending on the sign of the velocity V.
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Similar idea also applies for the Y and the Z directions. Specifically,

{ O~E if V, < 0 (3.6)
qp if V, > 0

where the subscript e specifies the east face, and the subscripts E and P denote

the east and the present cells respectively. Similar equations are considered for the

west, the north, the south, the front and the back faces. Once the face values are

approximated, the net flux contribution in all the directions can be computed, and

their addition (after multiplying by the appropriate dimensional constants) yields the

net advective flux contribution for each cell.

Alternatively, the advective fluxes can also be computed by using the total vari-

ation diminishing (TVD) schemes. These schemes ensure that the total variation,

given by TV f does not grow in time. The second order TVD scheme with

various flux limiters is implemented in Ueckermann and Lermusiaux (2012), which

is able to solve the optimal path planning problem in 2 dimensions. An issue with

TVD schemes involves their their extension to higher order of accuracy (Sweby, 1984;

LeVeque, 2002). This prompts us to resort back to upwinding in order to use higher

order numerical schemes.

The current work utilizes the essentially non-oscillatory (ENO) schemes and its

extension to the weighted essentially non-oscillatory (WENO) scheme for Hamilton-

Jacobi equations (Shu and Osher, 1988; Jiang and Shu, 1996). The general unsteady

Hamilton-Jacobi equation, given by equation (2.10), only contains at most the first

derivatives of the unknown function #. ENO and WENO schemes find highly accurate

estimates for this first derivative, and hence they can be used for any Hamilton-

Jacobi equation. We combine upwinding with these schemes to obtain up to 5 th

order accuracy in the advective flux estimates. As these schemes provide us with

the estimates for the derivatives of q (that is, of V#), they can also be used in the

computation of the optimal propulsion term with equal accuracy, as will be seen later.

These schemes are presented in detail in appendix (B.1) and (B.2).
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3.3.2 Optimal Propulsion Term

The second contribution to the rate of change of the level set function # is through the

optimal movement of the vehicle due to its own speed. We now look at the numerical

schemes used to compute the contribution of this term, such that the overall order

of accuracy is maintained. We first look at the case of isotropic speed, for which

equation (2.19) reduces to equation (2.25). We then look at the methods to compute

the optimal propulsion term for vehicles with anisotropic speed.

Isotropic Speed

For the case of heading independent speed, the optimal propulsion term is given by:

002 + ,02 + ,,)2) 2

FIV#| = F + + (3.7)

We use the Godunov scheme to compute FIV01 efficiently by using the estimates

for ox, oy and #, that were computed previously (Osher and Fedkiw, 2006). The

Godunov scheme can be expressed in a concise manner by equation (3.8).

o2 = max (max (#;, 0)2, min (0, 0)2

#2 =max (max (-, 0)2, min (+, 0)2 (3.8)

2 = max (max (-, 0)2, min (0, 0)2

where ox, oy and q, represent the x, y and z derivatives of # respectively. Further, #$

represents the forward difference approximation to qi and #7 represents the backward

difference approximation to #j. That is:

0+ = 0i+1 - O

A 1 (3.9)

Axi

As we are computing 1V11, we only require 2, 02 and k2, and not the actual gradient

values. Further, we have represented the entire scheme in terms of #- and 0+ only.
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This makes it convenient and efficient to use appropriate estimates for 0- and 0+

borrowed from the advection computation. It also ensures that the order of accuracy

maintained, and increases the computational efficiency as the estimates for O; and

04 have to be computed only once.

The numerical details behind the Godunov scheme and equation (3.8) are dis-

cussed in section (B.3).

Anisotropic Speed

If the speed of the vehicle depends on the direction of travel, the optimal propulsion

term is given by:

max (F(f, t)fl(t) -V) (3.10)

In the most general case, this cannot be reduced further. In order to compute the

contribution of this term, a maximization is required to be performed at each point

in the domain, at all times. We discuss some approaches to solve this maximization

problem, and discuss the advantages/disadvantages of each method.

In some cases, if the analytical expression for vehicle speed F in terms of the

heading h (and the time t) is known, then the maximization may be performed

analytically. As an example, we consider the case of an oceanic float. These vehicles

can only travel in the vertical direction by adjusting their buoyancy, and are advected

by the flow in the horizontal plane. We model this by enforcing the following:

h = {iz, -iz, 0} (3.11)

where Ti = (0, 0, 1) is the unit vector along the Z (vertical) direction. This implies

that the only directions that the vehicle can be steered in are vertically up or vertically

down (or the vehicle can stay at the same place). Using this in the maximization term,
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we get equation (3.12).

max (F(f, t)h(t) - V#) F max ((0, 0, 1) -(0, OU, O))

=max (iZ) (3.12)

Hence, the final Hamilton-Jacobi equation to be solved for the motion of a float is

given by equation (3.13)

o+ V-VO+F = 0 (3.13)
at 0Z

with the optimal heading given by:

(t) sgn( (3.14)
Oz

where sgn is the signum function.

Similarly, if the vehicle is permitted to only travel along certain directions then

the maximum is calculated over all the directional derivatives along the permitted

directions.

Another way to solve the maximization is to construct a look-up table prior to

the forward evolution (Lolla, 2016; Lolla and Lermusiaux, 2017). This table holds the

optimal heading directions for all possible level set gradient directions. That is, given

V0(xt) (unit vector in the direction of V#(x, t)), the table returns optimal h(x, t)
1VP(x1t)

such that the propulsion term is optimized. This table is constructed in a brute-force

sense, where the value of the optimal propulsion term is computed for all possible

headings, the maximum one is chosen. This is referred to as 'offline maximization'.

This maximization is only performed once, at the start of the simulation, in the case

when the vehicle speed does not depend on time.

Such a maximization can also be performed after every time step while the forward

evolution of 0 is being carried out. This is called 'online maximization'. In this case,
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the optimal heading direction is computed at each point and at each time by testing

all permissible heading directions and choosing the maximum.

Often, offline maximization is computationally favorable (especially when the

speed does not vary with time) as the propulsion term is only required to be com-

puted once per heading direction. If the maximum speed varies with time, then the

online maximization may prove to be more efficient, as in such a case the offline table

has to be separately constructed for each time. Care needs to be taken in making

sure that the discretization of the polar domain for the computation of the optimal

heading is comparable to the grid discretization, otherwise unfavorable errors may

be introduced. As of the isotropic speed case, the formulation for anisotropic speed

vehicles is also in terms of Vq5 or its components. The specific value of Vq5 is borrowed

from the advection term computation as it maintains the order of accuracy, and also

avoids repetitive computation.

3.3.3 Time Marching

We now discuss the time marching schemes used in the forward evolution computa-

tion. All the temporal schemes used are explicit and are up to 3rd order in accuracy.

Often, it is desirable to have a higher order of accuracy for the temporal error as

well. For higher accuracy, we resort to the Runge-Kutta (RK) schemes (Gottlieb and

Shu, 1998; Osher and Fedkiw, 2006). Specifically, we use the total variation diminish-

ing (TVD) Runge-Kutta schemes. While there are numerous RK schemes, these TVD

RK schemes guarantee that no spurious oscillations are produced as a consequence of

the higher-order accurate temporal discretization, as long as no spurious oscillations

in time are produced with the forward Euler scheme, which is the building block of

these schemes. The first order accurate TVD RK scheme is just the standard forward

Euler time marching scheme. We assume that the forward Euler method is TVD in

conjunction with the spatial discretization of the PDE. Then higher-order accurate

methods are obtained by sequentially taking Euler steps and combining the results

with the initial data using a convex combination. Since the Euler steps are assumed

TVD and the convex combination operation is TVD as long as the coefficients are
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positive, the resulting higher-order accurate method is TVD. Unfortunately, ENO and

WENO schemes are not TVD when used in conjunction with upwinding. However, it

can be shown that ENO and WENO schemes always result in a total variation value

that is finite, and hence are considered to be total variation bounded (TVB) scheme

(Osher and Fedkiw, 2006). As TVD is a stricter condition than TVB, the numerical

method using TVD RK scheme for time marching along with ENO/WENO schemes

for spatial discretization is total variation bounded. Numerical details of the 2 nd and

3 rd order TVD RK schemes are in appendix (B.4).

While fourth-order accurate (and higher) TVD RK schemes exist (Gottlieb and

Shu, 1998; Gottlieb et al., 2001)), this improved temporal accuracy does not make

a significant difference, especially since the spatial schemes also contribute to the

net numerical errors. Also, the fourth-order accurate (and higher) TVD RK methods

require both the upwind and the downwind differencing approximations, doubling the

computational cost of evaluating the spatial operators (Gottlieb et al., 2001). Thus,

they are not considered in this work.

3.3.4 Data Storage

During the forward time integration, the zero level set of # represents the reachability

front. In order to be able to retrieve the optimal path, we store this front at every

time step. The front is extracted from #(x, t) using the surface extraction algorithm

in MATLAB@. As the reachability front is always 1 dimension lower than the domain

(it is a curve in 2D, and a surface in 3D), the amount of storage required at each time

step for only storing the reachability front is 0(n2 ), where n is the number of grid

points along a dimension. Thus, only saving the zero level set surface is much cheaper

than storage of the entire # field at each time step, which requires 0(n 3) space.

3.4 Reinitialization

This section looks at the reinitialization of the signed distance field (Keck, 1998; Min,

2010; Russo and Smereka, 2000). We first discuss the need of reinitialization, followed
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by the conditions to be satisfied by the reinitialization methods. Finally,we discuss

an efficient reinitialization algorithm that is implemented in this work that utilizes

the various numerical schemes described in the prior sections.

As stated by equation (3.5), we initialize the level set function 0 as a signed

distance function with respect to a small spherical surface centered at the start po-

sition. As the level set function evolves with time, the zero level set surface grows,

propagates and distorts. In the general case, the signed distance property of # is

gradually lost due to the presence of the advective velocity field, similar to the work

from Lolla (2012). Theoretically, the optimal propulsion term maintains the signed

distance property of # through time, but it is also subject to numerical errors.

We now show that the signed distance property of # is not maintained if its

evolution is governed by equation (2.29) (Lolla, .2012). It can also be shown that

equation (2.30) also does not maintain this property in general, but as equation

(2.29) is a special case of equation (2.30) (for vehicles with isotropic speeds), showing

that even this special case does not satisfy the condition is sufficient to claim that

equation (2.30) does not maintain the signed distance field in general.

Assume that # is a signed distance field at some time t. That is, # is the unique

viscosity solution of the following Eikonal equation:

IV# = 1 (3.15)

Consider the evolution of #, given by equation (2.29). By substituting IVOI 1, we

obtain the following equation:

-- + F(t) + V(x, t) - VO = 0 (3.16)
at
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and taking x, y and z derivatives of equation (3.16), we get equation (3.17).

_#x aV a(V#)
t+ -VO+V =0

09X axx
aO' av
at ay

___ av
atf az

.Vq V. a VO =0

V(V#)
-VO+V-a =0

(3.17)

We intend to compute a9, which can be written as:

alv#i 1_
at |v#| ( at a t

ao)
+ OX az (3.18)

Substituting the above quantities,

at

-1

V-1
Iv -I

( x
OYav +O

y

+ (U #)

OV)
az

a z

(3.19)

This can be simplified as:

at
-1

'VoI
(V - 1(VV -V#) + IV -

2
(3.20)

Equation (3.20) implies that:

(3.21)at = 0 2V - (VV -V ) = -V - V (V# -V )

This is an extra imposed condition between the velocity field V and the level set

function #, which may not be true. Hence, equation (3.21) implies that in general,

(3.22)a V#0
at 0

This in turn means that VI # 1 for later times, and hence the signed distance

property of # is gradually lost. Further, if V = 0, then a = 0 at all times. This

means that the optimal propulsion term maintains the signed distance property of the
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function #. Note that, the loss of signed distance property is not at all a numerical

issue. It is the correct property of the exact viscosity solution of equation (2.29).

Hence, even with accurate numerical schemes and even with exact schemes, # will

deviate from a signed distance function as it is evolved through equation (2.29).

This may cause the field q(x, t) to develop steep gradients at some places and

shallow gradients at other places. Analytically, this is not an issue, but computa-

tionally, this can lead to large numerical errors in the evolution of the reachability

front and in the evaluation of its geometrical properties such as the directions of the

normals and the curvature. This problem, in general, cannot be alleviated by using a

higher order scheme to approximate the spatial gradients, or for the time integration

as shown by Mulder et al. (1992). Reinitialization is defined as a process in which

#(x, t) is reset to a new scalar signed-distance field with the zero iso-contour being

unchanged. We require the reinitialization method to:

" Modify #(x, t) such that it now satisfies the signed distance property with re-

spect to the current zero level set of #(x, t)

" Keep the current zero level set of #(x, t) unchanged

An intuitive scheme to reinitialize # is to compute the distance of each point

in the domain with respect to all the points on the zero level set, and then choose

the minimum amongst them. Although extremely easy to implement, this procedure

is intensive on both memory and computation and hence it is seldom used. The

computational cost of such a method is 0(n3 ) and if reinitialization is required often,

then this step becomes the bottleneck of using level set method.

We now look at a PDE based scheme implemented in the present work for efficient

reinitialization of the function 0, first given by Sussman et al. (1994a), and later

worked on by multiple researchers (Sussman et al., 1998; Sethian and Smereka, 2003;

Sun et al., 2010). Consider the following equation:

+ sgn(o) (1V#$0 - 1) = 0 (3.23)
at
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with the initial condition O(x, 0) = #o(x), and #o implicitly defines the zero level set

at a particular time step through its zero iso-contour. Equation (3.23) is a Hamilton-

Jacobi equation, and is solved in pseudo-time to steady state. Solution of equation

(3.23) implies that IVOI = 1, which is the signed distance with respect to the initial

zero iso-contour provided through 40. This equation can be solved using the spatial

and temporal schemes discussed before for high accuracy. Assuming smooth fields,

the distorted # (which is to be reinitialized) is not far from a signed distance function,

and in such cases this equation quickly converges to steady state. A known drawback

of this method is that it may shrink the volume enclosed by the zero level set surface,

displacing it inward. In order to fix this issue, we use the idea of subcell fix, as

given by Russo and Smereka (2000). This method still solves equation (3.23), but

now the gradients within one grid cell of the zero level set surface are computed by

utilizing the information that # = 0 on the surface. Gradients farther than one grid

cell are computed as before. This drastically reduces the displacement of the zero

level set during reinitialization. This scheme for reinitialization is implemented in

three dimensions in the current work. More details and further modifications to this

method may be found in Sun et al. (2010); Sussman et al. (1994b); Zhao et al. (2001).

Another important aspect is the frequency of reinitialization. Reinitializing the

level set field after every time step may marginally increase the accuracy, but it is ex-

tremely expensive. Hence, we reinitialize # after a fixed number of time steps or after

the Fr6chet distance between the zero level sets exceeds some threshold, whichever is

lower. This choice is somewhat empirical, and may vary with the problem.

It must be noted that there exist many more reinitialization techniques, and this is

an area of active research. Min (2010) details some of the commonly used techniques.

A useful and efficient approach to reinitialization is to solve equation (2.9) by using

fast marching method (Sethian, 1996, 1999a)) the computational cost of which is

O(n - log(n)), a significant improvement over the 0(n3 ) operations required by the

brute-force method. Chopp (2009) and Adalsteinsson and Sethian (1999) present an

approach using extension velocities that maintains the signed distance property of 0.

Li et al. (2005) consider a cost function which ensures that 0 always remains close to
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a signed distance field, whereas Ovsyannikov et al. (2012); Sabelnikov et al. (2014)

add a source term to equation (2.19) such that # remains a signed distance field.

As mentioned several times before, even though we solve for q(x, t) at all points

in the domain, the only quantity we are interested is the position of the zero level

set surface (as a function of time). This is unaffected by the evolution of the level

set function away from the zero level set at all times. Hence, an efficient approach is

to only solve equation (2.25) in the vicinity of the zero level set surface at each time

instant. This approach is called the 'narrow band level set method' and is an efficient

alternative to the regular level set method. First introduced by Adalsteinsson and

Sethian (1995), this approach only computes # values within a set distance - also

called the 'active band' near the zero level set. Reinitialization is required at each

time step in this approach as the new grid cells where 4 is undefined enter the active

band as it moves with the zero level set. Efficient reinitialization schemes given by

Adalsteinsson and Sethian (1995); Peng et al. (1999) and other approaches based on

the fast marching method provide an efficient way to achieve this. Note that, even

though narrow band level set method requires extra computations (for reinitialization)

at every time step, the savings due to not solving for # away from the zero level set

are large, and the net computational cost of the narrow band level set method is often

much cheaper than the regular level set computation.

3.5 Implicit Backward Tracing

In this section we look at the second part of the path planning problem, namely the

backward tracing of the optimal path once the destination lies on the zero level set of

0. Optimal path from the start position x, to the destination xf is a characteristic

line of the Hamilton-Jacobi equation governing the evolution of #, that passes through

the destination.

The optimal path is obtained by solving the ODE given by equation (3.24) back-
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ward in time, with the initial condition X(t = T(xf : x8, 0)) = xf.

dX
dt= V(X, t) + Fh(X, t) (3.24)

While solving for a characteristic, the consistency of temporal schemes must be main-

tained. As all the time marching schemes that we utilize for the Hamilton-Jacobi

equation are explicit in nature (i.e., explicit time integration is used while solving the

PDE (2.29)), we find that the corresponding schemes for the optimal path computa-

tion must be implicit. Further, the scheme used for characteristic computation must

mimic the temporal scheme from the forward evolution computation. These are new

results that we present next and that were implemented for 3D domains and flows.

3.5.1 Computation of Normals

At each step during the forward evolution, only the position of the zero level set

surface is stored. In order to do this, the surface represented by multiple triangular

surfaces, and the vertices of all these triangles along with the connectivity matrix of

these vertices is stored.

We first study the case of the vehicles with isotropic speed. For this case, the

optimal headings h are the normals to the zero level set surface. The normal to the

zero level set surface at any point lying on its surface is computed in the following

way:

1. The triangle to which the given point belongs is found out.

2. The normal direction to the plane of this triangle is computed by calculating

the cross product of the edge vectors. This normal is placed at the centroid of

the triangle.

3. Normal directions at the vertices of this triangle are computed. Normal at each

of the vertex is computed by first computing normals to all the triangles that

have the said point as a vertex. As shown in figure 3-2, the normal direction at

this vertex is then given by a weighted combination of the constituent triangle
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normal directions, where the weights are proportional to the angle subtended

by the corresponding triangle and the concerned vertex.

4. Once the normals at each of the vertex and the centroid are computed, the

normal at the given point is computed by a weighted average of these 4 normals,

where the weights are proportional to the distance between the given point and

the location of the normal.

5. It is important to ensure that the chosen normal direction points outwards (with

respect to the reachability set). The is checked by considering the dot product

of the normal vector with V0. It is safe to assume that $ does not deviate

much with respect to the signed distance function. Hence, the orientation of

the normal that has positive projection along V0 is chosen as the outward

pointing normal.

fl=
Zc3

Figure 3-2: Computation of normals at the vertices. In order to compute the normal
direction at the vertex(fi), we consider the weighted average of the normals of all the triangles
that have the considered point as a vertex (i), where the weighting factor is the angle
subtended by each of the triangle at this vertex (ai). Once the normals at all the vertices
are computed, these normals along with the surface normal (situated at the centroid) are
used to compute normal at the required point.
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In the case of vehicles with anisotropic speed, the normal direction at a given point

is computed in the same fashion, and the optimal heading is obtained by querying it

in the offline maximization table.

3.5.2 Backtracking Schemes

We now obtain various backtracking schemes that are numerically consistent with the

corresponding forward evolution schemes. We only discuss the schemes for vehicles

with isotropic speeds. The extension to vehicles with anisotropic speeds is straightfor-

ward through the use of the maximization table, as mentioned above. As the forward

evolution is explicit, all these backtracking schemes are implicit, and iterative solves

are required at each time step. Our naming convention is such that the references to

the backtracking schemes are made by the corresponding forward evolution schemes.

For example, the backtracking scheme corresponding to the forward Euler tempo-

ral evolution of the PDE is referred to as the forward Euler backtracking scheme.

Hence, even though the name of the backtracking scheme suggests explicit nature,

they indeed are implicit.

Figure 3-3 schematically represents the methodology behind our implicit back-

tracking schemes. The idea is to iteratively obtain better and better guesses for the

optimal heading and external velocity values until the solution converges.

Following notation is adopted for all schemes for the ease of understanding: super-

script < * > represents iteration number at a specific temporal instant. The time is

indicated in index form (indexed with an interval of At) and denoted as a subscript.

Stopping Criterion

As with almost all other implicit iterative schemes, there is no optimal stopping

criterion. There are multiple stopping criteria that are based on either the change

between the successive solutions or on the difference between the initial solution and
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V(Xt, ),/' -Fh(Xt)

-FF(Xt(1

-V(Xt)

tt-1

-V(Xt'1)

Figure 3-3: Implicit backtracking scheme. The forward Euler backtracking scheme is
discussed as an example. First, the optimal heading and the external velocity at point Xt
and at time t (faint red and cyan arrows respectively) are used to reach the point XfIl>.
The normal to the zero level set at X1l> at time t - 1 is then computed (dotted gray line
at X<'>), and this is used as the new optimal heading to move from Xt to X_2>. This
process is repeated until the required convergence criterion is met.

the current solution (Ferziger et al., 1997). We use the following stopping criterion:

Stop if IX<k+l> - X<k>I < e (3.25)

where e is a small number, typically of the order of the smallest cell size.

Forward Euler Backtracking

The first scheme we obtain is first order accurate, and mimics the forward Euler

scheme for the evolution of the level set function. It also serves as a building block

towards the higher order schemes, similar to the results in (3.3). The scheme is given

by:

X<k+l> = Xp+1 - At. (F( k> PAt) + v(<xk>,p/t)) (3.26)
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with X 0 > = Xp+1, and the stopping criterion given by equation (3.25).

As we are solving backwards in time, the value of Xp+1 is known a priori. The

normal h(X k>, t) is computed by the method described above. Note that, in general

X k, may not lie on the zero level set of #(x, pAt). In such cases, the normal is

computed by taking the projection of this point onto the closest constituent triangle

of the zero level set surface.

For convenience in the forthcoming parts, we rewrite equation (3.26) in terms of

an operator B as:

-~~>=X+ At. B(X~k> pAt) (3.27)

where,

B(X k>, pAt) = (Ffi(Xk>, pAt) + V(X k>, pAt)) (3.28)

TVD RK2 Backtracking

Equation (3.29) describes the new implicit backtracking scheme mimicking the TVD

RK2 scheme for forward evolution.

Xk+> + -At B X + > - B (X4k>,pAt), ( + At (3.29)

This scheme may be initiated similarly to the forward Euler backtracking scheme with

X<O> = Xp+1, along with the stopping criterion given by equation (3.25). Note that

B is the Euler building block, and two computations of this function are required per

iteration, thus doubling the computational cost per iteration as compared to forward

Euler backtracking, that is equation (3.26).

TVD RK3 Backtracking

Finally, we obtain the backward tracing scheme corresponding the TVD RK3 forward

evolution scheme. Equation (3.31) and equation (3.33) describe the iterative equations
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for the backward tracing of the optimal path using TVD RK3 scheme.

Referring to to the discussion on time marching in section (B.4), it can be seen

that #(x, t + At) is computed using equation (B.40). Hence, the optimal trajectory

backtracking equation corresponding to this step becomes:

X,+1 = 1 XP + XP+ (3.30)

Rearranging to compute the unknown (Xp), we get:

X= 3Xp+1 - 2XPg (3.31)

Note that as both the quantities on the right hand side are after time pAt, they are

known. Hence, using equation (3.31), we can compute Xp.

Note that, even though we obtain X, without an iterative solve, we require the

value of X, at intermediate times (for example, we require XPg to compute Xp).

Hence, along with X,, we also need to compute the value of X,1 at every step. This

requires an iterative solve.

Equation (B.39) implies that XPg can be written as:

x P+! - xp+1
A F X~ , ( + At + V X , p + ) At) (3.32)

Invoking the notation from equation (3.28), this can be written as:

X = X 3 - At -B x~ (k> + At (3.33)

Equation (3.31) and equation (3.33) complete our backtracking scheme corresponding

to the TVD RK3 forward evolution. The stopping criterion used is the same as the

schemes above, and is described in equation (3.25). In order to initialize this scheme,

we set X<>= X 3 similar to the earlier schemes. Equation (3.31) is not iterative,

and hence does not require any initialization.
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3.5.3 Backtracking for Vehicles with Deterministic Constrained

Motion

As discussed in chapter 2, the movement of the vehicles with deterministic motion

along some constraint can be decomposed into two components - the motion along

this constrained direction and the motion orthogonal to this constraint direction.

While backtracking the optimal path, the contribution to the vehicle movement due

to these two components is computed independently, and their vector sum yields

the resulting trajectory. Although this is applicable to any general deterministic

constrained motion of the vehicle, we focus on the vehicles whose vertical motion is

known. In this case, we can split the forward evolution in two parts, given by equation

(2.33) and equation (2.34). Similarly to this, the optimal trajectory of the vehicle

can be also decomposed in two parts: the horizontal motion and the vertical motion.

The computation of the horizontal motion can be done by the algorithm mentioned

above, in a consistent way to the forward time-marching used for the level set. Note

that this computation will be in 2 dimensions, and the trajectory point obtained is

actually the projection of the exact point onto the XY plane. The vertical position

is then computed by adding the vertical displacement due to the vehicle velocity and

the local flow velocity.

The effective vertical velocity can be computed explicitly, given by:

Xt - X.
t - - (V(X*) + UZ(t)) (3.34)
At

where X* is the auxiliary position at time t when only the horizontal motion is

accounted for. For numerical consistency, this can also be solved implicitly, as given

by equation (3.35)

Xt - X
t - - (V(Xt) + UZ(t)) (3.35)

Similar to the earlier implicit schemes, this equation also needs to be solved iter-

atively, with fist guess as X'> = X*, and a stopping criterion based on the relative
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error between the successive iterated values. Hence, by first computing the horizon-

tal motion followed by the vertical motion, the optimal trajectory for vehicles with

known vertical velocities can be computed.

3.5.4 Checking of Optimal Paths

Once the optimal paths are computed, then they are tested for accuracy. We do this

in two ways, in order to ensure that the paths are accurate and feasible, as described

previously in section (3.1):

1. While computing the optimal trajectory backwards, ensure that the end point

of the backward tracing is either at the start position or within some allowable

error tolerance from the start position

2. Use the computed optimal headings to then forward evolve the optimal trajec-

tory. Ensure that the end point of this trajectory is at the target position or

within some allowable error tolerance from the target position

The paths that satisfy the above two checks are accepted, and if a path does not

satisfy either of the criteria, then it is re-computed with higher accuracy.
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Chapter 4

Dynamic Three-Dimensional

Applications

This chapter completes the various applications of the exact time-optimal path plan-

ning equations and their novel numerical integration and implementation that were

derived earlier. Results are showcased in both analytical and realistic three-dimensional

flow-fields. We categorize the considered applications 3 types:

1. Applications to benchmark the numerical schemes and the individual terms

contributing to the level set function evolution.

2. Applications that employ analytically known steady and unsteady flow-fields to

model the various oceanic phenomenon.

3. Applications to the real oceanic flow-fields.

Each of these sets highlights specific features of the path planning algorithm and

the novel numerical schemes that were obtained in chapters 2 and 3.

Benchmarking examples allow us to separately study, quantify and check the ef-

fects of the advection and optimal propulsion terms and compare them with the

theoretical outcomes. We also look at the convergence rates of the various schemes

used to approximate spatial gradients against the corresponding expected values.
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This is then followed by some 3D analytical flow-fields that try to model some

typical environmental velocity fields. Specifically, we study path planning in the

following two analytical flows:

1. Unsteady periodic double gyre flow that models a wind driven double gyre in

the real ocean

2. Steady Arnold-Beltrami-Childress (ABC) flow. This field is notable as a simple

example of a fluid flow that can have chaotic trajectories.

These applications effectively .depict the full 3 dimensional nature of our path

planning methodology as well as the ability to account for velocity fields that are

spatially and temporally variable.

The last set of examples looks at path planning for different autonomous vehicles

in realistic ocean domains. The region that we consider is in the North Atlantic

ocean, off the coast of New Jersey, USA. We discuss path planning in this domain for

vehicles with isotropic speed, oceanic floats with constrained motion as well as gliders

performing sinusoidal vertical motion. This final set of examples utilizes the ocean

flow-fields produced by the MSEAS primitive equation model (Haley and Lermusiaux,

2010; Leslie et al., 2010; Haley et al., 2015) and demonstrates the unique features of

our path planning algorithm and numerical schemes.

4.1 Benchmarking and Comparisons

This section deals with the benchmarking of the developed numerical schemes as well

as understanding the individual effects of the advection and the optimal propulsion.

We also look at 2 simple examples and compare the obtained results for the optimal

travel time with their theoretical counterparts.

4.1.1 Convergence Tests

To study and exemplify the convergence of the spatial and temporal numerical schemes

that were discussed in chapter 3. We first examine the performance of numerical
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schemes for the passive advection of a tracer by a divergence-free, deformational flow

in a unit square basin (Lolla, 2016; Durran, 1999). The initial tracer concentration

is a bell curve centered at c = (0.25, 0.25). The tracer field is advected forward for a

fixed time duration, and then backward for the same duration. Ideally, in the absence

of any numerical errors, the resulting tracer field should be exactly same as the one

that we started with. Hence, the advected field is compared with the initial tracer

field to quantify the effect of numerical errors. Grid resolution is varied in order to

compute the order of accuracy of the spatial schemes. In all the simulations, TVD

RK3 time marching is used with a small time step size in order to ensure that the

temporal errors are much smaller than the spatial errors and that they minimally

affect the order of accuracy computations.

The tracer # is advected according to equation (4.1)

+V-VO= 0 (4.1)
at

with initial condition:

#(x, 0) = e-oo(x-c)T(x-c) =- 100((x-0.25)2+(y-0.25)2) (4.2)

The velocity field V in equation (4.1) is analytically known, and is given by equation

(4.3).

V(x, y) = (sin2 (irX) - sin(27ry), - sin2 (7ry) - sin(27rx)) (4.3)

where (x, y) E (0, 1)2. It is clear that the velocity field is divergence-free and vanishes

at the boundaries. This implies that the tracer always remains confined in the interior

of the domain and hence the boundary conditions do not play any role.

Table 4.1 describes the various simulation parameters. We test the donor-cell ( 1 t

order), the ENO (3 rd order) and the WENO (5 t' order) schemes.

Figure 4-1 displays the initial tracer field, the tracer field after the forward advec-

tion is complete, then the tracer field after the backward advection is complete. All

95



Table 4.1: Swirl flow parameters

Parameter
Time of forward / backward advection

Time step size

Considered grid resolutions

Value
1

5 x 10-4

128 x 128

256 x 256

512 x 512

1024 x 1024

these demonstrative results are for a 128 x 128 grid. It is quite clear that the 1 " order

donor-cell scheme introduces heavy diffusion, whereas the 5th order WENO scheme

is able to completely preserve the initial tracer field.

Figure 4-2 shows the relative error versus the grid resolution on a log-log scale, for

all the 3 advection schemes. Lines with slope 1, 3 and 5 are also plotted for reference.

From this plot, it is quite clear that the donor-cell scheme converges at I"t order, the

ENO scheme at 3 rd order and the WENO scheme at 5 th order. The exact orders of

accuracy for these schemes (as computed from the error values) are 0.9979, 2.9649

and 4.9543 respectively. This serves as a validation for our advection schemes and

verification of their implementations.. .

In order to test our time marching schemes, we consider the following ODE in X:

dX
d = cos(27rt)
dt

Subject to the initial condition:

X(0) = 0

(4.4)

(4.5)
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Figure 4-1: Swirl flow test case for advection schemes. In the absence of numerical errors,
the final field should be the same as the initial field. Upwind scheme introduces significant

diffusion. ENO scheme performs well, however some errors are still observed. WENO scheme

almost perfectly conserves the field and minimal errors are introduced.
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Figure 4-2: Order of accuracy for spatial schemes. It is seen that the donor-cell scheme

converges at 1't order, the ENO scheme converges at 3rd order and the WENO scheme

converges at 5 th order.

The exact solution for this ODE is given by equation (4.6)

1
X(t) = - sin(27rt)

27r
(4.6)

We now solve equation (4.4) using forward Euler, TVD RK2 and TVD RK3 methods

to study the order of accuracy of each of these methods. The start time is t, = 0

and the end time is tf = 1. The time step values used are 10-2, 5 x 10-3, 2.5 x 10-3

and 10-3. We plot the error norms against the time step size on a log-log plot, as

shown in figure 4-3. Reference lines with slope 1, 2 and 3 are also plotted. The

orders of accuracy of the forward Euler, the TVD RK2 and the TVD RK3 schemes

as computed from the plotted data are 0.9964, 1.9923 and 2.9988 respectively. That

is, the forward Euler scheme converges at 1" order, the TVD RK2 at 2 "d order and

the TVD RK3 at 3 rd order, which serves as validation of the time-marching schemes.
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Figure 4-3: Order of accuracy of temporal schemes. It can clearly be seen that forward
Euler scheme converges at first order, TVD RK2 converges at second order and TVD RK3
converges at third order.

4.1.2 No Flow

We now look at path planning when the advective velocity field is absent. That is,

V(x, t) = 0. In such cases, the Hamilton-Jacobi level set equation (assuming isotropic

speed vehicle) becomes:

-- + FIV01 = 0
-at

With the initial condition O(x, 0) = Ix - xI - ro (signed distance with respect to a

small sphere of radius ro centered at x,). As discussed in section (3.4), in the absence

of an external velocity field the signed distance property of # is maintained by the

Hamilton-Jacobi equation (2.29). That is, equation (4.7) ensures that IVo(x, t) I = 1

at all times, given that IV#(x, 0)1 = 1. Substituting this in equation (4.7), we have:

(4.8)

99

100

3 4
Time Step Size

I --

slope 2
slope 3

*Forward Euler
+TVD RK2
*TVD RK3

2

(4.7)

ao+ F = 0at



That is,

O(x, t) = (x, 0) -F -t (4.9)

O(xt) = Ix-xsl - (ro+F.t) (4.10)

This means that the zero level set of # at time t will form a sphere of radius r =

ro + F - t, centered at x,. The travel time to the destination position x1 can be

computed as:

#(x, T(xf : x, 0)) = 0 - Ixf - x, = ro + F -T(xf : x, 0) (4.11)

Hence,

T(xf : x, 0) = IXf - - (4.12)
F

Equation (4.10) implies that the zero level set evolves as a sphere and the travel time

between the start and the target positions is given by equation (4.12). This analytical

expression is used to compare the obtained arrival time from the simulation. It can

be easily shown that the optimal path is a straight line joining the start and the end

positions, as the normal direction always points in the radial direction (although, this

optimal path starts only from the surface of the initial zero level set sphere, a a small

distance ro away from the start position).

Table 4.2 discusses the simulation parameters and the other details. We use the

WENO scheme for spatial terms and TVD RK3 scheme for time marching, along with

the radiation boundary conditions at all boundaries. Figure 4-4 shows the evolution of

the zero level set at intermediate times and also the optimal path. For the parameter

values considered, the theoretical optimal travel time is 4.537. From the simulation

results, the computed travel time is 4.540. That is the error in the computed time is

0.041%, which is minimal and can be attributed to the time step size.
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Figure 4-4: Zero level set evolution and optimal path for when the advective velocity field
is absent. The zero level set is represented by the shaded blue surface, the start position
is represented by a black circle (always inside the zero level set) and the target position is
denoted by a black star. The level set evolution stops when the zero level set just crosses
the destination position. Optimal path between the start and the end positions is shown in
red, and is the straight line joining these two points.
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Table 4.2: Simulation parameters for path planning in the absence of advective field

Parameter Value
Domain size (0, 1)3

Start position (x,) (0.4, 0.4, 0.5)

Target position (xf) (0.7, 0.65, 0.75)

Vehicle speed (F) 0.1

Grid resolution 100 x 100 x 100

Time step size 5 x 10-3

Initial zero level set radius (ro) 0.01

Theoretical optimal travel time 4.537

4.1.3 Uniform Velocity Field

We now look at the case when the advective velocity field is uniform and constant.

That is, when V(x, t) = Vo = (uo, vo, wo) for all x and t. In this case as well, a

theoretical formulation for the optimal time can be obtained, as described in the

following work. We compare this theoretical optimal time with the simulation result

in order to study the accuracy of the path planning PDE simulation.

From equation (3.21), it can be seen that even in the case of constant and uniform

velocity, # remains a signed distance field, given that it was a signed distance field

at time t 0. Let us denote the theoretical optimal time by T. In order to compute

the optimal travel time, we consider the inertial reference frame moving with velocity

Vframe = -VO. Value of the advective velocity field (VO in the stationary frame)

in this frame will be V* = V + Vframe = 0. That is, the advective velocity field is

absent in this frame. However, effective target position will now be x*= xf - T - Vo.

That is, the vehicle motion alone will need to account for the transport of the vehicle

between the points x, and x*. Hence, this reduces to the case discussed previously,

with no advective velocity field. We know that the optimal travel time between x,

and xf in such situations is given by equation (4.12). Substituting the specific values,
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we have:

T- x* xsl - ro _xf - x. - T -Vol - ro (4.13)
F F

(FT + ro) 2 = Ixf - x, - T - Vol' (4.14)

Let xf - x, = 6 = (6, 6y, 6,). Substituting this, we get the following quadratic

equation, which can be solved to obtain the value of T.

(FT + ro)2 = (6, - Tuo)2 + (6y - Tvo) 2 + (6z - Two) 2  (4.15)

(F2 - (U2 +v +w2)) T2 + 2 (roF + 6uo + 6vo +6,wo) T= ((62 +62 +62 - _r2)

(4.16)

This is concisely written as:

(F2 - IVo12) T2 + 2 (roF + 6 -Vo) T - (1612 - r2) =0 (4.17)

The non-negative solution of this quadratic equation (which indeed is the optimal

travel time) is given by:

- (roF + 6 -Vo) + (roF + 6 . VO) 2 + (F2 - IVo 12 ) (1612 - r ()1
T =F J02 (4.18)(F2 -Vo 2).

When F = |VO|, equation (4.17) reduces to a linear equation, and in such cases,

T = -ro (4.19)
2 (rolVo l + 6 - Vo)

Equation (4.17) has a non-negative solution as long as F ;> Vo l. But when F < lVo 1,

the discriminant of equation (4.17) may become negative, and in such cases it is

inferred that the destination position is not reachable from the start position for the
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given flow and vehicle parameters. Note that if F > JVol, then all the positions in

the domain are reachable from any start position. It can be shown that in such cases

equation (2.29) reduces to a modified Eikonal equation (Lolla, 2016), and hence this

property follows immediately.

This value of the theoretical optimal travel time can readily be computed as all

the involved parameters are known. For the purposes of the simulation, we consider

a similar setup as the previous case. The external velocity field is given by: Vo =

(0.050, 0.075, 0.065). Hence, JVol = 0.11 > F, and the equation is not Eikonal). The

start and the target positions are x, = (0.25, 0.30, 0.40) and xj = (0.70, 0.65, 0.80).

Apart from these, all the other quantities bear the same values as given in table 4.2.

The theoretical optimal time, computed using equation (4.18) for this setup is 3.377.

The computed optimal time is 3.375, which is off from the true value by 0.029 %.

This amount is extremely small, and can again be attributed to the size of the time

step and other computational inaccuracies.

For uniform advective velocities, the zero level set grows as a sphere with radius

r = ro + F - t, and is also advected along the velocity direction. That is, the center

of this sphere lies at x, = t - VO. This is clearly seen from figure 4-5, where the zero

level set evolves as a sphere, and moves along the direction of the velocity. It can be

shown that the optimal path is a straight line joining x, and xf in this case as well.

4.2 Three-Dimensional Analytical Flow Fields

This section deals with the path planning for vehicles with isotropic motion in three-

dimensional analytically known velocity fields. The two 3D flow fields that we consider

are the analytical double gyre and the steady ABC flow. These examples are chosen

as they are a first approximation of more complex oceanic flows. Both these examples

effectively illustrate how the vehicle utilizes the advective velocity to its advantage in

order to minimize travel time.
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Figure 4-5: Zero level set evolution and optimal path for constant and uniform advective
velocity field. The zero level set is represented by the shaded blue surface, the start po-
sition is represented by a black circle and the target position is denoted by a black star.
The penultimate figure collectively plots the zero level sets at the considered times to help
understand how the zero level set is affected by the external velocity field. Optimal path
between the start and the end positions is shown in red, and is the straight line joining these
two points.
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4.2.1 Three-Dimensional Analytical Double Gyre - Shear Flow

We now look at the analytical double gyre flow, which is a periodic, unsteady and

divergence-free velocity field given by Shadden et al. (2005); Froyland and Padberg

(2009). Note that, this model is not a real fluid flow, in that it is not obtained as

a solution to the Navier-Stokes' equations, but is a simplification of the double gyre

pattern that frequently occurs in geophysical flows (Coulliette and Wiggins, 2001;

Lolla et al., 2014b; Subramani et al., 2017c). We consider this flow in the domain

(0, 2) x (0, 1) x (0, 1). The velocity field is analytically described by equation (4.20).

dfV = -7rA sin (irf(x)) cos(7ry) vy = 7rA cos (7rf(x)) sin(7ry) (4.20)
dx

where,

f (x) = a(t)x2 + b(t)x (4.21)

a(t) = e sin(wt) (4.22)

b(t) = 1 - 2c sin(wt) (4.23)

The flow is completely determined by the parameters A, c and w. A determines the

magnitude of the velocities, w is the angular frequency of oscillations and C approx-

imately determines how far the line separating the gyres moves to the left or right,

that is, the amplitude of motion of the separation line.

The double gyre is a 2 dimensional velocity field. In addition to the velocities

given by equation (4.20), we consider a parabolic velocity profile for the Z direction

that bears positive values in the region of the first gyre and negative values within

the other gyre. Specifically, the Z velocity is given by:

Vz = xy(2 - x) (1 - y) (1 + c sin(wt) - x) (4.24)

Note that this z velocity still keeps the velocity field divergence free. The velocity

field is qualitatively depicted in figure 4-6 and the simulation parameters are specified
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in table 4.3.

Vzma =

Figure 4-6: Three-dimensional analytical double gyre - shear flow velocity field. The

analytical double gyre flow exists in the X - Y plane, and its streamlines are overlaid on

a vorticity plot for the same flow field. The Z direction has a double- parabolic velocity

profile, whose projection is shown over the X - Z and the Y - Z planes.

Figure 4-7 shows the evolution of the zero level set from the start position until

it crosses the considered target locations. This example demonstrates a one-to-all

broadcast, where multiple vehicles leave from the same start point in order to travel

to different target locations. Even though we have multiple vehicles, such a broadcast

only requires one level set evolution per start point, and hence it is computationally

advantageous. The zero level set is evolved from the start point until all the des-

tination positions lie on or inside it. While the zero level set evolves, the time at

which it crosses a particular destination position is noted, and in order to compute

the optimal path, we backtrack from this stored time until the start time. Hence, for

the present scenario, increasing the number of target positions only increases the cost

of the backtracking ODE computation, which is much lesser than the computational

expense of solving the forward evolution PDE.

Figure 4-8 shows the optimal paths to be followed by the vehicles in order to reach
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Figure 4-7: Evolution of the zero level set in analytical double gyre - shear flow. The start
position is marked in black, and the 3 colored stars represent the target positions. Radiation
boundary conditions allow the level set to freely exit the domain. It crosses the green target
at t = 2.07, the orange target at t = 10.38 and the red target at t = 15.
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Table 4.3: Simulation parameters for path planning in analytical double gyre - shear flow

Parameter
Domain size

Start position (x,)

Target position (xf)

A

E

Vehicle speed (F)

Grid resolution

Time step size

Initial zero level set radius (ro)

Value
(0, 2) x (0, 1) x (0, 1)

(0.4,0.4, 0.5)

(0.7, 0.65, 0.75)

0.1

0.1

7r/5

0.05

200 x. 100 x 100

5 x 10-3

0.01

the respective destinations in the shortest time. It can clearly be seen that the vehicle

utilizes the background flow field to its advantage, and even though it travels a much

higher distance (as compared to a straight line path), it does so at a higher effective

speed, thus reaching in the optimal time.

4.2.2 Three-Dimensional Steady ABC Flow

We now look at path planning in the steady Arnold-Beltrami-Childress (ABC) flow.

This flow field is a 3 dimensional divergence-free velocity field which is an exact

solution of Euler's equations. It is a notable case of a simple analytically described

flow field with chaotic trajectories (Zhao et al., 1993). It is given by:

VX = A sin(z) + B cos(y)

vy = B sin(x) + A cos(z)

vZ = C sin(y) + B cos(x)

(4.25)

(4.26)

(4.27)
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Figure 4-8: Optimal paths in the analytical double gyre - shear flow. The vehicles make
optimal use of the gyres in order to reach their destination in the shortest amount of time.

Even though the distance traveled by these vehicles is much larger than the straight line

distance, this is done at a higher effective speed, thus reducing the required time.
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We consider this flow over a domain of (0, 27r) 3 . The simulation parameters as well

as the start and the target positions are summarized in table 4.4. Figure 4-9 shows

the evolution of the zero level set. The chaotic nature of the ABC flow is clearly

visible through the zero level set evolution, wherein the surface is severely twisted,

turned and warped as it evolves. The zero level set surface also merges multiple times

with itself. All of these potential issues are handled satisfactorily by our numerical

schemes, and the final result is an accurate zero level set evolution.

Table 4.4: Simulation parameters for path planning in steady 3D ABC flow

Parameter Value
Domain size (0, 27r) 3

Start position (x,) (3, 3, 3)

Target position (Xf) (2.7, 1.3,4)

A

B v/2

C 1

Vehicle speed (F) 2

Grid resolution 100 x 100 x 100

Time step size 5 x 10-3

Initial zero level set radius (ro) 0.01

Optimal travel time 7.221

Figure 4-10 plots the optimal path as computed by the backtracking equation.

It is clear that the straight line distance between the start and the end position is

extremely small as compared to the actual distance traveled. This in turn implies that

the vehicle maximally uses the advective velocity field to its advantage and travels

this larger distance at a much higher average speed, thus requiring minimum journey

time. Note that the vehicle travels very close to the domain boundary for some of its

journey. As we implement open boundary conditions, if some part of the zero level

set exits the domain, then it can never re-enter the domain. This implies that even
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Figure 4-9: Evolution of the zero level set in the steady 3D ABC flow. The start position
is marked by a black circle, and black star represents the target. It can be seen that the zero
level set is twisted, folded and stretched due to the background velocity field. Final figure
shows the zero level sets at different times overlaid on each other. This makes the chaotic
nature of the flow very clear.
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though the paths may travel close to the boundary, our methodology correctly does

not predict a path that leaves the domain at any point in time. This is because no

velocity information is available outside of the domain, and if it was available, then,

a larger domain should be used in the computations.
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Figure 4-10: Optimal path for the 3D ABC flow. The optimal path is a curved trajectory,
and the distance traveled by the vehicle is much larger than the straight line distance between

the start and the target. This makes it clear that the vehicle maximally uses the advective

velocity field to its advantage.

4.3 Realistic Four-Dimensional Ocean Flow Fields

In this section, we look at the time optimal path planning results for the different types

of oceanic vehicles (as discussed in chapter 2) operating in realistic four-dimensional

(time-space) ocean flow fields. The chosen region is in the Atlantic ocean, off the coast

of New Jersey. This region is considered as it offers a variety of multi-scale oceanic

flow features, such as the Gulf Stream, shelfbreak front, coastal jets, tidal currents

and also the inflow from the Hudson river. Such conditions provide challenging en-

vironments for planning of autonomous missions. Figure 4-11 shows the simulation

domain overlaid on a bathymetry plot of the region. This considered domain spans
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from 37.56'N to 40.99'N and from 73.970W to 70.54'W. The white circle and the

star denote the start and the end position for our planning missions respectively (both

at the surface).

0
42.5" N

-500

40.0 N 4t-1000

-1500

37.5' N
-2000

75.0 W 72.5* W 70.0* W

Figure 4-11: Chosen open domain for realistic path planning missions. The white rectangle
denotes the domain, overlaid on a plot of the bathymetry of the local region, wherein the
shelf-break region can clearly be seen. The circle marks the start position which is northwest
of the Gulf Stream meander whereas the star marks the target position of the mission, just
north of the Hudson Canyon.

The multi-scale ocean flow dynamics in this region is predicted using the MIT

Multidisciplinary Simulation Estimation and Assimilation System (MSEAS) (Haley

and Lermusiaux, 2010). The MSEAS software is used for fundamental research as

well as realistic applications such as monitoring (Lermusiaux, 2007), real-time acoustic

predictions (Be iktepe et al., 2003; Xu et al., 2008) and environmental management

(Cossarini et al., 2009).

The ocean fields used are from the data-assimilative simulations of the considered

region during the period from August 28, 2006 up to September 9, 2006 (Haley et al.,

2015; Subramani et al., 2017a; Chapman and Lynch, 2010). These simulations were

carried out as a part of the Shallow Water '06 (SW06) initiative (WHOI, 2006; Lermu-

siaux et al., 2006; Newhall et al., 2007; Tang et al., 2007; Chapman and Lynch, 2010;
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Lin et al., 2010). The MSEAS software solves the nonlinear free-surface hydrostatic

primitive-equation (PE) model, configured with generalized-level vertical-coordinates

and implicit two-way nested computational domains (Haley and Lermusiaux, 2010).

In the horizontal, they have a 3 km and 1 km grid resolution, respectively, and in the

vertical, they employ 100 levels optimized to the thermocline and flow structures.

The tidal-to-mesoscale ocean re-analysis is initialized with objectively-analyzed

temperature, salinity, and velocity fields for Aug 14, 2006. Two multiscale-in-space

analyses (Lermusiaux, 2002), inshore and offshore of the expected shelfbreak front,

are combined using a shelfbreak-front feature model (Lermusiaux, 1999; Gangopad-

hyay et al., 2003). The Gulf Stream is initialized using synoptic and historical CTD

profiles as well as estimates of its position based on SST and NAVOCEANO feature

analyses. Barotropic tides based on the high-resolution TPXO7.2 surface-tide veloc-

ities and elevation (Egbert and Erofeeva, 2002) for Aug 14 2006 are merged with the

subtidal initial fields, following (Haley et al., 2015). The re-analysis free-surface PE

simulation is then integrated for 42 days. During integration, the ocean data collected

during the AWACS and SW06 exercises as well as data of opportunity (NMFS, etc.)

are assimilated. Finally, the numerical and sub-grid-scale parameters are tuned for

the region by comparison of many PE simulations with independent in situ SW06

measurements.

In what follows, we first discuss path planning for the vehicles with isotropic

motion, followed by the vehicles with anisotropic speeds. Specifically, we look at the

motion of oceanic floats, which can move vertically by adjusting buoyancy, but are

advected in the horizontal (Rudnick et al., 2004). Finally, we look at path planning

for the vehicles whose vertical motion is known, by breaking down the problem in to

a two-dimensional path planning problem, as discussed in section (2.4).

4.3.1 Three-Dimensional Vehicles with Isotropic Speeds

The first 3D example that we consider is of a vehicle with isotropic speed traveling

in the domain above. The start position of the mission is at 37.90'N, 72.22'W. The

vehicle travels to the target position located at 39.85N, 72.30'W, with a maximum
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speed of 50 m/s. As the vehicle speed is isotropic, it can travel freely in any of the 3D

directions. As discussed in chapter 2, in order to be optimal in time, the vehicle has

to always travel at the maximum possible speed (and consequently its heading is the

only control parameter). The maximum allowable depth for the vehicle to travel at

is 100 meters, which is well within the typical range of some oceanic gliders (Rudnick

et al., 2004; Haley et al., 2009; Ramp et al., 2009).

We carry out our 3D path planning simulation on a grid of 128 x 128 x 50 elements

in the longitudinal, latitudinal and vertical directions respectively, where each grid

cell has an approximate size of 2.32 km x 2.98 km x 2 m. We assume that the vehicle

starts its journey on August 29 at 00:00:00 Z. A time step of 6 minutes (360 seconds)

is used. The equations are non-dimensionalized according to the results obtained in

section (3.2). This non-dimensional form of the Hamilton-Jacobi equation is solved,

and then the fluxes are multiplied by the appropriate dimensional constants to study

the growth of the zero level set. We use the WENO scheme for the spatial terms,

and the TVD RK3 for the time marching, which ensures an accurate evolution of the

zero level set.

Figure 4-12 plots the growth of the zero level set (the reachability front) from the

start position until it crosses the target. We observe that the zero level set quickly

reaches the lower limit of the simulation domain, and then evolves as a curtain from

there on. This curtain has some variations in the location along the vertical, and such

creases can clearly be seen. This happens due to the following reasons: First, the

flow in this region is mainly barotropic, dominated by eddies and wind-driven flows

and with little or no reversal in the first 100 m depth. This means that the variation

in the horizontal velocities along the vertical direction is much smaller than these

velocities themselves. Further, there are very few locations where a reversal in the

flow direction with depth in these top 100 m is observed. These phenomena prompt

the zero level set to grow as curtains. Second, the scales in the graph are heavily

skewed. The X and Y scales are in hundreds of kilometers, whereas the Z scale is in

hundreds of meters. Even though the flow is primarily barotropic, there are smaller

variations in the velocities along the depth. But these variations cause some shifts
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in the zero level set position along the depth which are further suppressed and made

to appear smaller due to the skewed graph scales. It can be seen that the evolving

zero level set is abruptly halted and it forms a jagged surface at some places in the

lower region of the domain. This is because in these regions the zero level set hits the

sea floor. We prohibit the zero level set from penetrating the sea floor (as the vehicle

cannot move inside land). This is done by setting the advective velocity field V(x, t)

as well as the vehicle speed F equal to zero in these regions. This ensures that the

optimal path never crosses through any land mass.

Figure 4-13 depicts the optimal path followed by the vehicle. The vehicle requires

3.84 days to travel along this optimal path. To compare, in the absence of any velocity

field the vehicle would travel in a straight line joining the start and target positions

and would require 4.97 days. Hence, it is clear that the vehicle makes efficient use of

the oceanic velocities to reach the target in the shortest amount of time. In the initial

phases of its travel, the vehicle tries to use the favorable flow of the Gulf Stream and

hence travels slightly to the right. It also dives deeper in order to avoid the adverse

currents at the surface. Later on in its journey, we can see that the vehicle is deflected

eastwards due to the inflow from the Hudson river. Finally, the vehicle gradually rises

up to the surface and reaches the destination position in optimal time.

4.3.2 Three-Dimensional Vehicles with Anisotropic Speeds

We now look at the path planning for vehicles with heading-dependent speeds and

constrained motion. Particularly, we consider a vehicle which can travel freely in the

vertical direction, but its motion in the horizontal plane is only through advection.

Most oceanic floats are able to maneuver this way, wherein their vertical motion is a

result of changing the effective buoyancy (Gould et al., 2004).

We assume that this float travels at 10 m/s vertically. The start and the end

positions of the mission are the same as the previous case, with the start position

being 37.90'N, 72.22'W and the target location being 39.85'N, 72.30'W. The float is

released on August 28, 00:00:00 Z, and is allowed to travel at a maximum depth of 100

meters. The simulations are carried on the same grid as described previously, with a
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Figure 4-12: Evolution of the zero level set in realistic ocean domain for a vehicle with

isotropic speed, from August 30 to September 1, 2006. The start point of the mission is

northwest of the Gulf Stream meander, and the target position is just north of the Hudson

Canyon. The level set evolves as curtains due to the barotropic nature of the velocity field.

Further, the level set growth is halted whenever it comes in contact with the sea-floor. This

leads to the jagged surfaces in sub-figures (c) and (d). The level set evolution is shown from

different viewpoints in order to better understand the global picture.

119



0
20

40

1001

40.5
40

39.5

39-
38.5

Latitude 38 -72 -71.5
727-71 5

38 38.5 39 39.5 40 40.5

(a) Path of the vehicle on August

(i)

30, 00:00:00 Z (2 days)

(ii)

-. 72 -71.5 -71
Longitude

(iv)

-73 -72
Longitude

-1

30 39.5 40 40.5 -73.5 -73 -72.5 -72
La(btu) Fp wgitude
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Figure 4-13: Time optimal path followed by a vehicle with isotropic speed in the mid-

Atlantic bight region. Sub-figure (i) shows the isometric view of the optimal path. Sub-

figures (ii), (iii), (iv) depict the top, side and front views of the path respectively. We also

plot the instantaneous velocity field for reference in sub-figure (ii). The optimal paths are

shown at an intermediate time and also at the final time. The vehicle initially tries to utilize

the Gulf Stream, and is later pushed eastwards due to the flow from the Hudson Canyon.

It also dives deeper in order to avoid the adverse currents at the ocean surface.
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resolution of 128 x 128 x 50, with the size of each cell being 2.32 km x 2.98 km x 2 m,

and a time step of 6 minutes. The non-dimensional form of the Hamilton-Jacobi

equation is solved using the WENO scheme for the spatial terms and the TVD RK3

time marching.

Note that, as this is a case of anisotropic path planning, a maximization needs to be

carried out in order to compute the optimal propulsion term. In this specific case, we

have two possible options. First, we can follow the methodology described in section

(3.3) in order to theoretically maximize the optimal propulsion term. Second, we

can construct an offline maximization table that stores the optimal heading directions

(and the corresponding optimal propulsion contribution) as a function of the level set

normal direction. This approach is more general, and can be applied for cases when

the description of the dependence of speed on the heading is not analytically known.

The simulations are carried out using both the above mentioned approaches, and the

results are seen to be the same (hence not shown here). Only the results utilizing

theoretical maximization of the optimal propulsion term are discussed in this work.

Figure 4-14 shows the evolution of the zero level set for a float performing vertical

motion. It is observed that the zero level set of the float evolves much slower than

the one for the glider. The net travel time of the float is 9.53 days. This is expected,

as the float does not have any horizontal velocity of its own. Similar to the previous

case, it is observed that the growth of the zero level set locally stops as soon as it hits

the sea floor. This ensures that the optimal path does not go through any land mass.

Sometimes, the optimal path may contain significant oscillations. This occurs

because the optimal propulsion term is proportional to j 1. If this quantity is close to

zero or if it frequently flips signs, then the corresponding path will contain oscillations.

These oscillations may not always be physical and a float typically cannot respond to

such drastic movements. A simple approach to eliminate such oscillations is to use a

tolerance parameter. That is, we only consider the contribution due to the optimal

propulsion term if the magnitude of I O|Iis larger than some tolerance value r. The

value of w controls the amount of oscillations in the optimal path, however setting

this value to be too high can cause the path to deviate from optimality.
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Figure 4-14: Evolution of the zero level set for float motion, from August 29 to September 6,
2006 in the mid-Atlantic bight region. The zero level set is observed to have greater variations

with depth as compared to the isotropic vehicle motion case. Further, the evolution of the

level set is comparatively slower, and it takes longer for the float to reach the destination.

As the horizontal evolution of the reachability front is only due to oceanic flows, it evolves

faster in the region of faster ocean currents. The level set evolution is shown from different

viewpoints in order to better understand the global picture.
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Figure 4-15: Time optimal path for a float operating in the realistic ocean, from August
30 to September 6, 2006 in the mid-Atlantic bight region. We observe that the float initially
dives to a certain depth in order to avoid the adverse flow at the surface. It then travels at
this constant depth for a while. After this, it dives and rises sharply and then concludes its
journey by traveling at the ocean surface. Dives such as the one seen in sub-figure (c) can
be eliminated by appropriately choosing the tolerance value.

Figure 4-15 shows the optimal path to be followed by the float. It can be seen that

the float initially dives to a certain depth and then travels at this depth for a con-

siderable time in order to avoid the adverse flow at the surface. It then dives deeper,

and quickly rises to the surface to reach the target. Note that, as discussed before,

such dives can be eliminated to respect the limits on the functional characteristics of

the float by setting the appropriate value of the tolerance parameter r.
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4.3.3 Three-Dimensional Vehicles with Fixed Vertical Motion

As the final example in this chapter, we look at a sea-glider operating in the afore-

mentioned region that performs a sinusoidal yo-yo motion. This is the most typical

motion that sea-glider perform in order to sample data (?Ramp et al., 2009; Haley

et al., 2009; Leonard et al., 2010).

Specifically, we look at a sea glider that performs this sinusoidal motion with

dives up to 90 meters in depth. The time-period of each of the dives is 4 hours,

which implies an average vertical speed of 1.25 cm/s. The speed of the glider in the

horizontal plane is 50 cm/s. (Stokey et al., 2005). As discussed before, in the case

of known vertical motion of the vehicle, the 3 dimensional path planning problem

reduces to a 2 dimensional problem. Hence, these simulations are carried out on a 2

dimensional grid of resolution 128 x 128 elements, using the WENO scheme for the

spatial discretization and the TVD RK3 for time marching. While backtracking the

optimal path, we add the deterministic displacement due to the vertical motion of the

vehicle to the path being backtracked in 2D to obtain the full 3 dimensional optimal

path.

During the forward evolution, the level set is evolved as a 2D parametric contour.

If some of the points on this contour hit the ocean floor at some particular time,

then the direction of travel of the vehicle is reversed only at these points. The vehicle

would continue to move in the same direction at the other points until it hits the ocean

floor or reaches the maximum allowable depth. This data of points at which such

reversal of direction occurs is kept in memory and it is enforced while computing the

optimal path backward in time. While planning paths for such vehicles with known

vertical motion, it might happen that the vehicle reaches the location of the target,

but is at a different depth. In such cases, we assume that once the vehicle reaches

the destination coordinates (albeit at a different depth), it can rise / sink locally to

reach the exact target position.

Figure 4-16 shows the optimal path to be followed by a sea-glider performing a

sinusoidal yo-yo motion. The required time for this journey is 4.15 days (almost 25
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dives), which is more than that taken by a vehicle with isotropic speed, but much

lesser than that required for a float. This is expected, as we impose no constraints on

the motion of the vehicle in the first case, whereas stricter constraints are enforced on

the float motion. Note that for the last dive, the vehicle is close to the sea floor and

hence it terminates the dive earlier in order to not collide with the land mass. The

optimal path qualitatively follows a pattern similar to the first case, where it initially

attempts to use the Gulf Stream, and it is later pushed eastwards due to the inflow

from the Hudson River Canyon.
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Figure 4-16: Optimal path to be followed by a glider from August 30 to September 2,
2006 in the mid-Atlantic bight region. The glider performs a yo-yo motion with dives up
to 90 meters deep, and completes approximately 25.dives while traveling to the destination,
requiring 4.15 days for the journey. For the last dive, the glider does not dive to 90 m due
to the obstruction from sea floor.
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Chapter 5

Conclusions and Future Work

In this chapter, we first look at a summary of the work done in this thesis, followed by

some of the key results. We then highlight some of the possible future work directions

regarding this topic.

5.1 Summary and Conclusions

Autonomous vehicles play a crucial role in several oceanic applications. Their high

level of autonomy and endurance is ideal for long-range data sampling as well as

other research and societal missions. Many such tasks require the vehicles to travel

to particular target positions in the shortest amount of time.

Underwater vehicles frequently experience dynamic ocean currents whose effects

on the vehicle's motion cannot be ignored (Schmidt et al., 1996; Elisseeff et al., 1999;

Yan et al., 2014). Further, such multi-scale currents may vary with depth (Cushman-

Roisin and Beckers, 2011). These domains might also have shallow ocean depth and

hence a constrained operable region. All such factors make it extremely challenging

to compute optimal trajectories for these vehicles to follow. Ideally the vehicles

should be able to efficiently use the oceanic velocities at various depths to their

maximum advantage in order to optimally travel to the destination. Further, various

types of autonomous vehicles have different motion constraints (Rudnick et al., 2004;

Kobayashi et al., 2012), and hence the optimal path planning strategy has to take
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into account such constraints while computing a feasible and optimal trajectory.

In this thesis, we look at the theoretical foundations and the practical aspects

of exact time-optimal path planning equations for three dimensional realistic ocean

fields, as well as optimal planning strategies for different types of marine vehicles.

The problem is broadly divided in to two segments: (i) given the start and the target

positions as well as the dynamic flow field, we first study the growth of the reachability

set. This set contains all the points to which there exists a trajectory from the start

point, the evolution of which is governed by a modified Hamilton-Jacobi equation

(Lolla et al., 2012, 2014b). We utilize the level set method to represent and exactly

evolve the boundary of this reachability set (also called the reachability front). (ii) The

second part involves the backward tracing of the optimal path once the reachability

set contains the target position. These optimal paths correspond to the characteristics

of the Hamilton-Jacobi level set differential equation, and are solved by tracking the

trajectory of the particle that always travels on the reachability front and reaches the

destination in the optimal time.

First, we review the theorem that forms the basis of the exact time-optimal path

planning (Lolla, 2016; Lolla and Lermusiaux, 2017). This theorem permits us to mod-

ify the fundamental time optimal path planning for vehicles with heading-dependent

speeds and also for vehicles that can only move is certain directions in 3D. We demon-

strate the applications of the exact optimal path planning equations to different types

of oceanic vehicles operating in fully three-dimensional domains, and prove that the

three-dimensional problem can be reduced to two dimensions if the motion of the

vehicle is constrained along some parametric direction, and this constraint is known

a-priori (for example, oceanic vehicles such as sea-gliders perform deterministic oscil-

latory motion in the vertical direction).

Second, robust numerical schemes are developed to solve the path planning equa-

tions with numerical consistency and with a high order of accuracy in realistic three-

dimensional ocean domains. Fundamental numerical issues arise because these do-

mains have highly skewed length and velocity scales, and even the slightest numerical

errors along a certain dimension may have large consequences along the other dimen-
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sions. To counter this, we develop a novel non-dimensional form of the Hamilton-

Jacobi level set equation that overcomes the skewed-scaling of the lengths and the

velocities. This is followed by a discussion about the high order accurate spatial and

temporal schemes used for the evolution of the reachability set. Finally, we present

the new numerically consistent implicit backward tracing schemes developed for the

accurate computation of the optimal trajectory.

We validate the theory and the schemes using standard benchmarking, and also

discuss the application of these to a wide range of 3D examples. The reachability set

evolution and the optimal trajectory computation are demonstrated and discussed

for various dynamic three-dimensional analytical and realistic flow fields, and for the

different types of marine vehicles.

5.2 Future Work

The current work is by no means complete, and several potential directions of future

work may be identified. We discuss some such possibilities below.

First, we currently solve the Hamilton-Jacobi forward evolution equation over the

entire domain. However, as discussed in section (3.4), a more efficient approach is

to only solve this equation in the vicinity of the zero level set surface, as values of the

level set function # far away from the zero level set do not affect its evolution. This

approach is called narrow band level set method (Adalsteinsson and Sethian, 1995).

The narrow band level set method is extremely efficient in two dimension, but its

marginal utility is not high for three-dimensional cases, and especially for long-range

missions, where the zero level set surface and the corresponding narrow band may

occupy a significant subset of the domain. Further, this method is not ideally suited

for parallel computing environments, and its advantage is lost as the reinitialization

of the narrow band needs to be performed serially. Hence, the present work does not

use the narrow band level set method. A possible addition to the present work would

be to implement the narrow band level set method for the forward evolution of the

reachability front in three dimensions.
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Recently, sea-trials were conducted to validate the time-optimal path planning

algorithm (Subramani et al., 2017b; Edwards et al., 2017; Mirabito et al., 2017). These

trials utilized the two dimensional version of the discussed work and the underwater

vehicles traveled at constant, pre-determined depths. An interesting direction of

future work (given the required resources) would involve testing the three-dimensional

path planning algorithm by conducting actual sea-trials.

In this work, we only look at the optimality in time. In many cases, optimality

with accurately respect to some other parameters may be desired. For example,

path planning PDEs to minimize the energy spent by. the vehicle while during its

journey have been derived and applied to analytical and realistic cases (Subramani

and Lermusiaux, 2016; Subramani et al., 2017a; Subramani, 2014). In general, our

three-dimensional optimal path planning methodology can be extended to cases where

the objective function to be optimized depends on different spatial and temporal

variables.

An assumption in our work is that the velocity field, although dynamic, is exactly

known. Oceanic flow-fields, due to their multi-scale nature, are typically associated

with a level of uncertainty, and the exact flow-field may not be known a-priori. Re-

searchers have studied the extension of current work to plan optimal paths in stochas-

tic flow environments (Subramani et al., 2017c). Hence, a possible direction of future

work is to extend three-dimensional path planning for the case of uncertain external

flow-fields.

Finally, our theory can be extended to implement on-board routing (Lermusiaux,

2007; Heaney et al., 2007; Schofield et al., 2010). As discussed above, ocean field

forecasts are typically uncertain and can be accurately represented by a probability

density function (pdf) (Lermusiaux, 2006; Cossarini et al., 2009; Sapsis and Lermusi-

aux, 2009; Lermusiaux et al., 2010; Gawarkiewicz et al., 2011; Sapsis and Lermusiaux,

2012; Rixen et al., 2012; Ueckermann et al., 2013; Feppon and Lermusiaux, 2017;

Lermusiaux et al., 2017). As the exact realization of the flow is unknown, on-board

routing is required to correct the path of the vehicle during its motion. This can

be achieved by initially planning a globally optimal trajectory, and then assimilating

130



the vehicle positions and the observed velocities to correct the flow field at certain

intervals. After assimilation, re-planning can be done from these positions in order

to compute the modified optimal trajectory.
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Appendix A

Reachability Set Evolution - Proof

Theorem. Let V(x, t) be a Lipschitz continuous velocity field in all its arguments.

Assume that the set of permissible heading directions W is a subset of R'. Let the

vehicle speed F(h, t) : H x [0, oc) -- R+ be Lipschitz continuous in all of its arguments.

Let T(xj : x, 0) denote the optimal first arrival time at target xf, given that the

vehicle started from start position x, at time t = 0.

We assume that the possible vehicle trajectories X(t) are governed by equation (2.15),

with initial condition X(0) = x,. Then, the evolution of the reachability front is given

by the zero level set of the function 0 : Rn x [0, oc) -+ R, where #(x, t) is the unique

viscosity solution of the following equation:

-+ max (F (h, t) h(t) - 0 + V(x, t) - v4) = 0 (A.1)

For the initial conditions:

4(x, 0) = x - X" I (A.2)

That is,

1. The optimal arrival time T(xf : x, 0) satisfies

T(xf : x, 0) = inf {t I #(xf, t) = 0} (A.3)
t>o
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2. the optimal trajectory (or trajectories) X(t) are given by the characteristic lines

of equation (2.19). That is, X(t) satisfies the following equation:

dX
dt =F(ht)htt)+V(X,t) (A.4)

Where

h(t) = arg max (F(h, t)h(t)- VO) (A.5)

Proof. We prove this theorem in 2 parts:

1. We first show that if the vehicle lies on the zero level set of #(x, t) at a particular

time, then it will lie inside the zero level set at all later times if it moves in any

other heading apart from the one prescribed by equation (A.1), and that there

cannot exist any sequence of headings such that the vehicle will lie outside the

zero level set of k at any instant

2. Second, we show that once the vehicle is inside the zero level set of 0, then it

can never return on the zero level set. This in turn reiterates the view of the

zero level set of #(x, t) as the reachability front, and implies that the optimal

first arrival time is when this front crosses the destination for the first time

These collectively imply that the vehicle cannot reach any position outside the

zero level set of 4 and is required to move optimally to stay on it at all times. This

in turn suggests that the evolution of the reachability set (and front) governed by

equation (A.1). Further, in order to always stay on the zero level set, the vehicle

needs to follow the prescribed headings. Substituting these headings into equation

(2.15), we obtain equation (A.4) and equation (A.5).

In order to show these results, we assume a fictitious vehicle at position x that

lies on the zero level set of # at time t, that is O(x, t) = 0. In order to show that this

vehicle will lie inside the front if the optimal heading is not followed, we seek the sign
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of q(x + Ax, t + At) as At -÷ 0+. Assume that this vehicle follows a set of headings

denoted by f(t), different from the optimal headings f(t). Consider the limit:

i (x + Ax, t + At)limA
At--O+ At

(A.6)

As # is assumed Lipschitz continuous, we have that O(x + Ax, t + At) -+ 0 as

At -+ 0+. This prompts us to use L'H6pital's rule to evaluate the limit.

lim (x + Ax, t + At)
im At

dO(x+Ax,t+At)
= lim dt

dt
dt

lim + V#
At-+O+ (at

We know that

Ax dx
lim - = = Veff = F, t) (t) + V(x(t), t)

At-+o+ At dt

Hence, substituting this into equation (A.7), we obtain the following equation:

lim (x + Ax, t + At) _ aq
At-+o+ At at

+ V#5 (F,(h, t)h(t) + V(x(t), t) )

From equation (2.19), we are given that the function # evolves as

= - -max (F(h, t) (t) - V# + V(x, t) - V#

Substituting this into equation (A.i0), we obtain equation (A.12).

q(x + Ax, t + At)
At

- max (F(fi, t)h(t) -VO + V(x, t)
h

. VO)

+s(, t) d n d er , (t) + V(x(t), t))

As V(x, t) does not depend on fi or fi, equation (A. 12) can be simplified to:

lim =(x + Ax, t + At)- max F(N, t)h(t)
At-+o+ At f

- VO) + F,(h, t)h(t) -V#
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Note that the second term on the right hand side of this equation is the value of

F(h, t)h(t) -V# for h (t) = h(t), whereas the first term is the maximum of the same

quantity over all permissible h(t). Hence, for all h(t), we have:

max (F(flt)fi(t) - V#) ; Fv(h,t)h(t)- V# (A.14)

Equation (A.13) and equation (A.14) imply that

lim (x + Ax, t + At) < 0 for all h(t) # h(t) (A.15)
At-o+ At = 0 for h(t) = h(t)

This implies that if any vehicle on the zero level set of # is not steered according to

the optimal heading sequence, then it falls inside the reachability set, as #(x, t) = 0

and L < 0 =- #(x+Ax,t+At) < 0.

Further, equation (A.13) and equation (A.14) also imply that there cannot exist

any h such that L > 0. This implies that, if the vehicle starts on the zero levela9t

set (that is O(x, t) = 0), then there cannot exist any sequence of headings such that

#(x + Ax, t + At) > 0. That is, if that the vehicle started on the zero level set of 0,

then it cannot go beyond the zero level set of # at any time. These above inferences

complete part 1 of the proof.

Also note that, for the optimal path, equation (A.13) suggests us that the speed

of the vehicle should always be the maximum allowable speed for that heading. That

is, Fv(h, t) = F(h, t). This fixes the dependency between the two control parameters

in the problem, and hence, the only real free parameter that needs to be computed

is the vehicle heading.

We now show that if a vehicle lies inside the reachability set at some time t, there

there exists no sequence of headings such that it can again travel along the boundary

of the reachability set (i.e. the reachability front). Mathematically, this means that

if for a vehicle at x at time t, #(xo, to) < 0, then there does not exist any sequence of

heading h(t) such that #(x + Ax, t + At) = 0.

For this purpose, let us assume that #(xo, to) = k, where k < 0. Consider a new
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Lipschitz continuous function 0 : Rn x [0, oo) such that 4'(x, t) = 0 (x, t) - k. This

means that the vehicle lies on the zero level set of b. Further, O(x, t) = 0 =

O(x, t) = -k, that is 4(x, t) > 0. Note that as V is shifted from 0 just from a

constant, and hence it also satisfies the same evolution equation (A.1) (albeit with a

different initial condition). Using the idea mentioned above, there cannot exist any

path from xO to x, as V)(xo, t) = 0 and b(x, t) > 0. This means that once the vehicle

is inside the zero level set, it cannot go back on it.

This completes the proof.
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Appendix B

Numerical Schemes

B.1 Hamilton-Jacobi ENO Scheme

The basis of the Essentially Non-Oscillatory (ENO) and the Weighted Essentially

Non-Oscillatory (WENO) schemes lies in finding better approximations to the forward

and backward differences given by equation (B.1) and equation (B.2). Particularly,

these methods try to find the smoothest possible polynomial interpolants to compute

the numerical fluxes.

(X + AX) -- #(X) (B.1)ox - Ax

AX

The process of finding these approximations is as follows: first we find # by using

the smoothest possible interpolation, and then differentiate it to obtain #x. The

polynomial interpolations are constructed with the help of Newton's divided difference

tables. The zeroth divided differences of # are defined at the grid nodes and are given

by equation (B.3)

DO# = #i (B.3)
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The first order divided differences are defined midway between the gridpoints and are

given by equation (B.4)

0D9 10 - DO#
D-1 = + (B.4)

2 ~ AX

Note that D' ,q# and D _ 0 are the first order forward and backward difference

approximations to the first derivative of 0. The second order and the third order

divided differences are defined at the nodes and midway between the nodes and are

given by equation (B.5) and equation (B.6).

D = 2 2 (B.5)
2Ax

D? 10 - D?#
D-3 1= (B.6)2+ 3Ax

We can now write O(x) in the form given by equation (B.7), where each of the term

Qp is constituted by the pth order divided difference.

O(X) = Qo + Qi(x) + Q2(X) + Q3(x) (B.7)

Upon differentiation, Qo drops out and we get:

O(X)=Q'i(Xi) + Q'2(xi) + Q'3(Xi) (B.8)

Now, we use this polynomial to approximate (0;), and (q+)%. We have Qi(x) =

(D'/2)(x - xi). To find 0;, we substitute k = i - 1 and for +, we consider k = i.

Note that Q'(xi) = D' /2 #. This implies that the contribution of Q'(xi) to equation

(B.8) is the backward and forward difference in the cases of 0- and 0+ respectively.

That is, first order accurate interpolation is indeed first order upwinding.

We now add the contributions due to Q'(x) and Q' (x) to increase the order of ac-

curacy of our estimate. We have 2 choices for the second order divided difference
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(we chose D for the first order correction): D # or D 2 #. The choice here is

dictated by our need of choosing smooth interpolants. As divided differences mea-

sure variation in the data, we compare ID 2I to IDj+#| and choose the smaller one.

Particularly, if ID 2I < ID 2#|, then set c = ID 2I and k* = k - 1, otherwise, we set

c = JDk 1 0# and k* = k (k* will be used in the third order correction). Finally we

have the second order correction as:

Q 2 (x) c(x - Xk)(X - Xk+1) (B.9)

So that,

Q'(xi) = c(2(i - k) - 1)Ax (B.10)

Now to add the third order correction, we compare IDk*+1/ 201 and IDO +3/201- If

I D, 1-/201 < IDk*+ 3/ 201, then we set c* = DO+1/2 0, otherwise we set c* = DO +3/20-

The third order contribution is then given as follows.

Q 3 (X) = c*(X - x*)(X - Xk*+1)(X - Xk*+2) (B.11)

So that,

Q'(xi) = c*(3(i - k*) 2 - 6(i - k*) + 2)Ax 2  (B.12)

The third order approximations to 0+ and 0- are then given by equation (B.8),

starting with k = i - 1 and k = i respectively, which are then used in an upwind

scheme to calculate the numerical fluxes.

B.2 Hamilton-Jacobi WENO Scheme

It can be shown that there are exactly 3 possible approximations to (#;) (and to

(0+)j). We define following quantities to write the approximations to (#O-)i in a
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concise way (same can be done with (0+)i).

Oi-2 - Oi-3

Ax
_ i-1 - Oi-2

V4 - oi___

AX

2 i+2 -

Ax

Then the approximations to (Ox-)i are given by:

v 1  7v 2  11v 3S= -- + (B.13)
3 6 6

v2  5V 3  V 4
o = + - (B.14)

6 6 3

V3 5v 4  v 5
X 3 + 6 (B.15)

It was pointed out that picking exactly one approximation amongst the 3 is an overkill

in smooth regions. Hence, a weighted ENO (WENO) scheme was proposed which

considered a convex combination of the three approximations to increase the order of

accuracy to 5 th order in locally smooth regions. That is, the optimal approximation

is given by:

Ox = wii + w 2 b30 + 03 (B.16)

where, W1 + W 2 + wJ3  1. In particular w, = 0.1 + O(Ax 2), W 2  0.6 + O(Ax 2 ) and

W3 = 0.3 + O(Ax 2 ) give us optimal 5th order approximation to #x in smooth regions.

In order for this method to be well suited even for regions with sharp gradients, we

defined the weights in the following way. We first estimate the smoothness of the
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stencils given by equation (B.13), equation (B.14) and equation (B.15) as:

13 2 1
Si = 2(vi - 2v 2 + v 3 )2 + I (vi - 4v 2 +3v 3) 2

12 4

S2=12 (4 v 42+ v 42

132 1
-3=1(v - 2v + v) + I (v -44+ )2

12 4

Using these smoothness estimates, we define

0.1

(S1 + e)2

0.6
(S2 + E)2

0.3
(33 +6) 2

where,

C = 10-6 max{vl, ... , v } + 10~99

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

Here, the 10- 99 is to avoid division by zero. The first term in c is a scaling term

that aids in the balance between the 5 t" order WENO and the digital ENO weights

(choosing only one approximation). Once the a values are calculated, we compute

the weights by normalizing them with respect to Ea. That is:

(B.24)
a= + a2 + a3

143



W2 = (B.25)
a1 + 2 + a 3

W3 =- 3 (B.26)
a1 + a2 + a3

These weights can be then used in order for the WENO scheme to perform well in

locally smooth regions as well as regions with steep gradients.

Similar treatment is considered to approximate (0+)i, but forward difference ap-

proximations are used for vis instead of the current backward difference approxima-

tions. Other equations stand the same.

B.3 Godunov Scheme

For the case of heading independent speed, the optimal propulsion term is given by:

FIVOI = F + (0)2+ (B.27)

Central idea of the Godunov scheme is to compute IV#| by looking at FIV#I as:

FIV#5I -Fox Fov Fo5V) = V4 . V0 (B.28)
(IVOI |' IV T)

Where V0 is a fictitious velocity that decides the approximation for the gradient

terms to be used based on upwinding. Since upwinding only considers the sign of

the velocity in all directions, we can ignore the factor of F, which is known to be

positive.

Neglecting , it is clear that the approximation of #i is decided by the sign of

#j, for i = x, y, z. Specifically, if the sign of ox is positive, then #x = #-, given by

equation (B.2). Otherwise, ox = 0+, given by equation (B.1). Similar treatment is

followed for #y and oz.

A caveat is that we do not know the sign of ox. The formulation is straightforward
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if the signs of both 0- and #4 are the same. If 0-, 0+ < 0, then it is safe to say that

#x < 0 and hence, Ox = 0+. Similarly, for 05-, 0+ > 0, we have Ox = O-.

Consider the situation when 04 and 0- have different signs. First, we look at the

case when #; < 0 and 0+ > 0. This corresponds to a "V" shaped region, and in order

for no new information to be created (entropy condition to hold), each side of this

V shape should expand outwards. Gudonov scheme achieves this by setting #x = 0.

This means that a region of expansion will have a locally flat #, which satisfies the

entropy condition. Instead of adding numerical diffusion like some other schemes (e.g.

Roe-Fix method), Gudonov scheme chooses the most meaningful realizable solution.

We now look at the case where #- > 0 and #+ < 0, which corresponds to an inverted

V shape. This corresponds to coalescing fronts, and the entropy condition dictates

that the information which reaches the concerned point first should be considered.

That is, once information from a particular front reaches the concerned point, then its

value is not influenced by the information that reaches later. As Ox acts as a fictitious

velocity, the larger value amongst |4 -|and |#+| reaches the point x first and should

therefore be considered. This implies that, for the case with O; > 0 and O; < 0, we

set Ox = max(10- 1, 1# 1). Figure B-1 summarizes how the values of #x are chosen in

different cases. 1V#1 is computed once the appropriate value for V#5 is obtained (by

choosing the correct values of Ox, Oy and 0, using the above procedure).

The complete Godunov scheme can be concisely represented by equation (B.29)

as shown.

2 = max (max (0$-, 0)2, min (0+, 0)2

#2 =max (max (05-, 0)2, min (, 0)2 (B.29)

o2 =max (max (-, 0)2, min (#+, 0)2
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0-> 0 0+ >0 0-<0 O+<0 0-< 0 0+ >0 0- >0 0+< 0

(a) Ox = 0- (b) O2 =q4 (c) 0+,=0 (d)# =max(#jIq4I)

Figure B-1: Upwinding with respect to the sign of Ox to compute the optimal propulsion
term. If both 0- and 0+ are positive, then upwinding dictates that Ox = 0-. Similarly for

O, 4+ < 0, we have Ox = 0+. For the case of q- > 0, 0+ < 0, we set Ox = 0 as no new
information can be created. Finally, for qT < 0, 0+ > 0, we have Ox = max(jo$ 1, 10) due
to the entropy condition.

B.4 Time Marching Schemes

For simplicity, let us write the Hamilton-Jacobi equation governing the forward evo-

lution of # as:

ao(x, t)
& t= - L(#(x, t), t)at (B.30)

Velocity is not included as a variable because it is deterministically known. Equation

(B.30) is discretized using forward Euler scheme as follows:

O(x, t + At) = #(x, t) + At -L(#(x, t), t) (B.31)

For simplicity later on, we define a new operator given by L which essentially com-

prises of the forward Euler scheme. It is given by equation (B.32).

L(y) = (y + At - L(y)) (B.32)
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Hence, we have:

O(x, t + At) = (#(x, t)) (B.33)

Second order TVD RK method is the same as Heun's predictor-corrector method,

given by equation (B.34), equation (B.35) and equation (B.36).

We first obtain an auxiliary value of #(x, t + At), denoted by q(x, t + At)*, by

using forward Euler method.

O(x, t + At)* = (#(x, t)) (B.34)

This is followed by a second application of forward Euler method to obtain a first

order estimate for, given by equation (B.35)

9(x, t + 2At)* = L(#(x, t + At)*) (B.35)

Finally, we perform an averaging step to arrive at the accurate answer.

1
O(x, t + At) = (#(x, t) + #(x, t + 2At)*) (B.36)

This scheme can be concisely written as in equation (B.37).

q(x, t + At) =q(x, t) + At (xt) + At -L(#(x, t), t), t + At (B.37)

Note that this method in turn takes the average (a convex combination) of two inde-

pendent Euler steps, and hence is TVD. Let us now look at the third order TVD RK

scheme, as described below.

Similar to Heun's method, we first obtain the values of #(x, t + At)* and #(x, t +

2At)* using equation (B.34) and equation (B.35).

This is followed by a weighted averaging step to yield q(x, t + 'At), given by
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equation (B.38).

1
#(x, t + At)

2
3 1
4#(x, t) + 4#(x, t + 2At)

Now, we use this value of q(x, t + -At), and compute #(x, t + At) again by using

forward Euler method.

3 1
O5(x) t +F At)* = (q$(x, t + -At)*)

2 2
(B.39)

This is followed a final weighted averaging step, thus yielding O(x, t + At).

1 2 3
O(x, t + At) - #(x, t) + -q#(x, t + -At)

3 3 2
(B.40)
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