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Abstract

For the past few decades there has been an increased interest for efficient quantification
schemes of the response statistics of vibrational systems operating in stochastic settings
with the aim of providing optimal parameters for design and/or operation. Examples
include energy harvesting configurations from ambient vibrations and stochastic load
mitigation in vibrational systems. Although significant efforts have been made to
provide computationally efficient algorithms for the response statistics, most of these
efforts are restricted to systems with very specific characteristics (e.g. linear or weakly
nonlinear systems) or to excitations with very idealized form (e.g. white noise or de-
terministic periodic). However, modern engineering applications require the analysis
of strongly nonlinear systems excited by realistic loads that have radically different
characteristics from white noise or periodic signals. These systems are characterized by
essentially non-Gaussian statistics (such as bimodality of the probability distributions,
heavy tails, and non-trivial temporal correlations) caused by the nonlinear character-
istics of the dynamics, the correlated (non-white noise) structure of the excitation,
and the possibility of non-stationary forcing characteristics (intermittency) related to
extreme events.

In this thesis, we first address the problem of deriving semi-analytical approxima-
tions for the response statistics of strongly nonlinear systems subjected to stationary,
correlated (colored) excitation. The developed method combines two-times moment
equations with new non-Gaussian closures that reflect the underlying nonlinear dy-
namics of the system. We demonstrate how the proposed approach overcomes the
limitations of traditional statistical linearization schemes and can approximate the
statistical steady state solution. The new method is applied for the analysis of bistable
energy harvesters with mechanical and electromagnetic damping subjected to cor-
related excitations. It allows for the computation of semi-analytical expressions for
the non-Gaussian probability distributions of the response and the temporal corre-
lation functions, with minimal computational effort involving the solution of a low-
dimensional optimization problem. The method is also assessed in higher-dimensional
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problems involving linear elastic rods coupled to a nonlinear energy harvester.

In the second part of this thesis, we consider the problem of mechanical systems excited
by stochastic loads with non-stationary characteristics, modeling extreme events. Such
excitations are common in many environmental settings and they lead to heavy-tailed
probability distribution functions. For both design and operation purposes it is impor-
tant to efficiently quantify these high-order statistical characteristics. To this end, we
apply a recently developed approach, the probabilistic decomposition-synthesis (PDS)
method. Under suitable but sufficiently generic assumptions, the PDS method allows
for the probabilistic and dynamic decoupling of the regime associated with extreme
events from the "background" fluctuations. Using this approach we derive fully analyt-
ical formulas for the heavy tailed probabilistic distribution of linear structural modes
subjected to stochastic excitations containing extreme events. The derived formulas
can be evaluated with very small computational cost and are shown to accurately
capture the complicated heavy-tailed and asymmetrical features in the probability
distribution many standard deviations away from the mean. We finally extend the
scheme to quantify the response statistics of nonlinear multi-degree-of-freedom sys-
tems under extreme forcing events, emphasizing again accurate heavy-tail statistics.

The developed scheme is applied for the design and optimization of small mechanical
attachments that can mitigate and suppress extreme forcing events delivered to a
primary system. Specifically, we consider the suppression of extreme impacts due to
slamming in high speed craft motion via optimally designed nonlinear springs/at-
tachments. The very low computational cost for the quantification of the heavy tail
structure of the response allows for direct optimization on the nonlinear characteris-
tics of the attachment. Based on the results of this optimization we propose a new
asymmetric nonlinear spring that far outperforms optimal cubic springs and tuned
mass dampers, which have been used in the past. Accuracy of the developed method
is illustrated through direct comparisons with Monte-Carlo simulations.

Thesis Supervisor: Themistoklis P. Sapsis
Title: Associate Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

1.1 Background and Motivation

For the past few decades there has been an increased interest for efficient quantification

schemes of the response statistics of vibrational systems operating in stochastic settings

with the aim of providing optimal parameters for design and/or operation. Examples

include energy harvesting configurations from ambient vibrations and stochastic load

mitigation in vibrational systems. Although significant efforts have been made to

provide computationally efficient algorithms for the response statistics, most of these

efforts are restricted to systems with very specific characteristics (e.g. linear or weakly

nonlinear systems) or to excitations with very idealized form (e.g. white noise or de-

terministic periodic). However, modern engineering applications require the analysis

of strongly nonlinear systems excited by realistic loads that have radically different

characteristics from white noise or periodic signals. These systems are characterized by

essentially non-Gaussian statistics (such as bimodality of the probability distributions,

heavy tails, and non-trivial temporal correlations) caused by the nonlinear character-

istics of the dynamics, the correlated (non-white noise) structure of the excitation,

and the possibility of non-stationary forcing characteristics (intermittency) related

to extreme events. These are apparent in the ocean engineering environment where

for instance it has been repeatedly reported that extreme and rare ocean waves can

lead to cargo damage or cargo loss, capsizing of ships and, in catastrophic situation,
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injuries on human beings [12, 84, 152].

The inevitable uncertainty introduced through the stochastic character of the excita-

tion and/or the uncertainty of the parameters, can be adequately captured through

a probabilistic perspective, and therefore significant efforts have been made to pro-

vide statistical and probabilistic characteristics of the response. The Fokker-Planck-

Kolmogorov (FPK) equation provides complete statistical description of the response

probability density function [155, 45, 43]. However, analytical solutions for the steady

state pdf of the FPK equation is only available for very few systems. Moreover, FPK

equation cannot easily handle stochastic excitations other than the Gaussian white

noise [25]. For systems under correlated excitations, one can utilize the joint response-

excitation pdf scheme to obtain the complete description of response statistics [126, 153,

27]. However, the large computational cost associated with solving high-dimensional

transport equations hinders the applicability.

In order to lower the computational cost, semi-analytical schemes have been devel-

oped. Among them, the most popular scheme is the statistical linearization method

which replaces the nonlinear equations of motion with a linear set by minimizing the

statistical difference [24, 22]. The accuracy of this approach relies on the assumption

of the Gaussian distribution for the response. Therefore, in cases where the actual

response statistics deviate from Gaussian, the application of statistical linearization

is less straightforward and often not very successful [73, 122, 137]. An alternative

scheme is to derive moment equations that describe the evolution of response sta-

tistical moments [125, 19, 14]. The challenge however with moment equations arises

again if the system contains strong nonlinearities, in which case one needs to apply

appropriate closures to truncate the infinite system of moment equations. Gaussian

closure schemes provide in many cases sufficiently accurate response statistics [66].

However, if the system is essentially nonlinear, non-Gaussian closure techniques should

be utilized [33, 34, 54] in which case it is not always straightforward on how to choose

the closure parameters [31].
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Apart of the technical challenges associated with the strong nonlinearities, the as-

sumption for stationary stochastic excitation is often not sufficient for representing

uncertainty associated with transient events, such as extreme forcing events. Important

examples include ocean waves with extreme magnitude (i.e. freak and rogue waves [112,

105]), slamming loads in high speed crafts, vehicles hitting deep potholes, and ice loads

acting on offshore structures [85]. Such intermittent rare and extreme forcing events

have been represented as identically distributed independent impulses arriving at ran-

dom times, and accordingly studies on the response statistics under Poisson white

noise gained a growing attention. Generalized FPK equation or Kolmogorov-Feller

(KF) equation is the governing equation which provides the evolution of response pdf

under Poisson white noise. However, the exact analytical solution for the statistical

steady state probability density function is only available under special conditions

[151]. Alternative methodologies such as path integral method [82, 65, 8] and the

stochastic averaging method [161, 160] have also been developed, but solving the FP

or KF equations is often very expensive even for low dimensional systems [40].

1.2 Research Objectives

In this work, we first develop a moment equation closure minimization (MECC)

method for the parsimonious approximation of the steady state statistical structure of

strongly nonlinear systems, subjected to correlated excitations. The approach relies on

the derivation of moment equations that describe the dynamics governing the two-time

statistics. These are combined with a non-Gaussian pdf representation for the joint

response-excitation statistics. We then derive a closure scheme which we formulate in

terms of a consistency condition involving the second order statistics of the response,

the closure constraint. A similar condition, the dynamics constraint, is also derived

directly through the moment equations. These two constraints are formulated as a

low-dimensional minimization problem with respect to unknown parameters of the
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representation, the minimization of which imposes an interplay between the dynamics

and the adopted closure. This method will allow the semi-analytical representation

of the two-time, non-Gaussian structure of the solution as well as the joint statistical

structure of the response-excitation over different time instants.

We then apply the developed approach to analyze the response statistics of essentially

nonlinear vibrational systems under correlated stochastic excitations. These are im-

portant for a variety of applications such as energy harvesting and stochastic forcing

mitigation. We demonstrate the effectiveness of the method through bistable nonlinear

energy harvesters with mechanical and electromagnetic damping and we show that

the results compare favorably with direct Monte-Carlo Simulations. The method is

also demonstrated in higher dimensional systems such as a continuous elastic rods

coupled to nonlinear elements. The developed method is one of the main building

blocks for analyzing the response of systems under stationary stochastic excitation

containing rare and extreme events that we study next.

Specifically, the next topic involves the statistical quantification of systems subjected

to statistically non-stationary excitations. In particular, we characterize the complex,

heavy-tailed probability distribution functions describing the response and its local

extrema for structural systems subjected to random forcing that includes extreme

events. The approach is based on the probabilistic decomposition-synthesis method

where we decouple rare events regimes from the background fluctuations. The result of

the analysis has the form of a semi-analytical approximation formula for the pdf of the

response and the pdf of the local extrema. For special limiting cases (lightly damped

or heavily damped systems), the analysis provides fully analytical approximations.

We also demonstrate how the method can be applied to higher dimensional structural

systems through a two-degrees-of-freedom structural system undergoing rare events

due to intermittent forcing. The derived formulas can be evaluated with very small

computational cost and are shown to accurately capture the complicated heavy-tailed

and asymmetrical features in the probability distribution many standard deviations
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away from the mean, through comparisons with expensive Monte-Carlo simulations.

In the last part of this thesis we focus on the quantification and optimization of the

response statistics of general nonlinear multi-degree-of-freedom systems under extreme

forcing events, emphasizing accurate heavy-tail statistics. This is a direct extension of

the previous semi-analytical scheme applied to linear multi-degree-of-freedom systems

under stochastic excitations containing extremes, where we decomposed rare events

from background fluctuations by the probabilistic decomposition-synthesis technique.

We appropriately adapt the developed scheme for the nonlinear case and then apply

it to the design and optimization of small attachments that can mitigate and suppress

extreme forcing events delivered to a primary system. We apply the framework for

the suppression of extreme responses on prototype ocean engineering systems: the

suspended seat and the suspended seat-deck problem in a high speed craft in rough seas.

The suppression is performed via optimal attachments through parametric optimiza-

tion by minimization of the forth-order moments of the response. We also perform

design optimization on the nonlinear characteristics of the attachment (employing a

general, assymetric piecewise linear from) and propose a new design that far outper-

forms optimal cubic energy sink and tuned mass dampers. We emphasize that the

proposed optimization scheme is practically infeasible with traditional methods due

to the large computational cost. Feasibility is achieved through the developed quan-

tification framework for extreme event statistics. For all steps of the analysis accuracy

of the estimation method is illustrated through direct comparisons with Monte-Carlo

simulations.

1.3 Thesis Organization

The thesis is organized as follows. In chapter 2, we provide a survey of probabilistic

computational methods for stochastic dynamical systems. Definitions, derivations,

and applications with appropriate references are provided for a selected number of
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topics. In chapter 3, we present the formulation of the moment equation copula closure

(MECC) method for nonlinear systems under correlated excitations [69] . Applications

of the MECC method are illustrated in chapter 4 considering a bistable nonlinear

oscillator. Generalized examples such as the continuous undamped elastic rod are

also considered, and the results are compared with direct Monte-Carlo simulations.

In chapter 5, we provide the characterization of complex, heavy-tailed probability

distribution functions describing the response and its local extrema for structural

systems subjected to random forcing that includes extreme events [68]. In chapter 6,

the developed computational framework is applied on the probabilistic design and

optimization of ocean structures subjected to stochastic excitation containing extreme

forcing events [67]. In chapter 7, we conclude the thesis with recommendations for

future work.
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Chapter 2

Survey of Probabilistic

Computational Approaches for

Stochastic Dynamical Systems

In a variety of systems uncertainty in the dynamics and system parameters plays a

very important role and therefore a deterministic consideration can be very restrictive

when it comes to the analysis of the response or optimization of the operation. Fur-

thermore, the co-existence of stationary stochastic excitations and rare and extreme

forcing events make the deterministic model even harder to describe the underlying

response statistics. The probabilistic perspective can provide such information but

the numerical treatment of the associated stochastic equations is a challenging task.

In this chapter, we first provide an overview of various uncertainty quantification

methods for stochastic dynamical systems.
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2.1 Fokker-Planck-Kolmogorov Equation

The first method is the Fokker-Planck-Kolmogorov (FPK) equation (or forward diffu-

sion equation) which can provide the complete statistical description of the response

probability density function [144]. Described by a linear parabolic partial differential

equation, the FPK equation governs the diffusion of probability in state space, which

is analogous to the heat equation. The foundation of the the theory has been built

by Rayleigh [117] and Fokker [49], and the solution of FPK equation has been widely

studied.

The externally forced linear systems under the white noise have considered in [88] for

the complete solution of FPK equation. Solutions of FPK equation for the first order

nonlinear systems under Gaussian white noise are investigated [25, 143], especially by

means of Fourier and Laplace transformation approach [7], eigenfunction expansion

method [6], and a method based on the group theory [16]. The steady state solutions

of FPK equation for nonlinear multi-degree-of-freedom systems under Gaussian white

noise are studied in [26, 83, 23]. The stationary pdf of a specific set of single-degree-

of-freedom systems under parametric and external Gaussian white noise has studied

in [44]. More extensive reviews on the solution of FPK equation can be found in [98,

144, 155] and references there in.

One advantage of the FPK equation is that the drift and diffusion coefficients can be

directly connect to the parameters of the dynamical systems [136, 140]. Although the

analysis is based on the assumption of Gaussian excitation with no correlation, the

FPK equation provides a convenient theoretical framework to treat nonlinear random

vibrations. In this section, we provide the summary of FPK equation by describing the

evolution of probability density function for one-dimensional and multi-dimensional

stochastic processes. In the later part of this section, we provide examples to derive

steady state probability density functions considering first and second order differential

equations.
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2.1.1 Derivation of FPK Equation

Let us first consider the one-dimensional stochastic process Xt whose stochastic dif-

ferential equation is given by [136]

dXt = /t(Xt, t)dt + -(Xt t)dWt, (2.1)

where p(Xt, t) indicates the drift term, -(Xt, t) indicates the diffusion term, and Wt

is the standard Wiener process. Here the FPK equation that describes the transient

probability density function f(x, t) of the one dimensional random variable Xt is given

by

af(xt) = a2[(,t)f(xt)] + 2 [D(, t)f(x, t)], (2.2)

where D(x, t) = a2 (x, t)/2.

One-dimensional FPK equation can be generalized for the multi-dimensional (i.e. N-

dimensional) stochastic process Xt whose stochastic differential equation in matrix

form is given by [136, 113]

dXt = p(Xt, t) dt + a(Xt, t) dWt, (2.3)

where p(Xt, t) indicates the N-dimensional drift term, a(Xt, t) is a N by M matrix

describing the diffusion term, and Wt is the M-dimensional standard Wiener process.

The FPK equation which describes the transient probability density function f(x, t)

of the N-dimensional random vector Xt can be expressed by

49f(x t) N 1 1 N N a2 ' = - E [Ai(x, t)f(x, t)] + - E E  [Dij (x, t)f(x, t)], (2.4)
(9t i= ai -2 i= =1ai 09z;
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where

M

Di (x, t) = Uik(x, t)gjk(x, t). (2.5)
k=1

In order to illustrate the treatment of FPK equation in the context of random vi-

brations, we provide examples in the following subsections. These will complete the

description of how the FPK equation can be obtained and solved for the stationary

probability density function by considering first order and second order differential

equations [136, 144].

2.1.2 Application on First Order Differential Equations

We consider the following first order stochastic differential equation with respect to

x(t), subject to the Gaussian white noise.

dx(t) + g(x(t)) = aW(t), x(0) = XO. (2.6)
dt

where g(-) is an arbitrary nonlinear function of x(t) and a is a positive constant

describing the intensity of the white noise. The above equation can be converted into

the Ito stochastic equation:

dxt = -g(xt)dt + adWt. (2.7)

Based on the one-dimensional FPK equation formulated in equation (2.2), the transient

probability density function f(x, t) can be obtained by

f(x, t) a 1 2 
2f(x, t)

& ax[gx f (X, 0)] + 2 a X , 28

where f(x, 0; x0) = 6(x - xo) and 6(.) indicates Dirac Delta function. In the case

where the diffusion coefficient and the drift coefficient are independent of time (i.e.

p(x, t) = p(x) and u(x, t) = o(x)), there exists a stationary probability density
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function f't(x),

fst(x) = lim f (x, t), (2.9)

which does not depend on time. In this case, by letting = 0, the FPK equation canat teFKeuto a

be reduced to

0 1 2 02 fst(x)
[g(x)fst(x)] + -a2 2 = 0. (2.10)

Ox 2 1x2

Note that g(x) does not depend on time. We can rewrite the equation as

2 g(x)fst(x) + -a2 = 0. (2.11)
ax 2 ax

The direct integration of the equation gives

1 r2 rx
fst(x) = - exp [_-2jxg(z)dzJ, (2.12)C a2 0

where C is just a normalization constant.

o = J exp [_2 f(z)dz] dy. (2.13)
=-fo a2 0

2.1.3 Application on Second Order Differential Equations

More intuitive examples in the context of random vibrations can be found in second

order differential equations which describe dynamical systems subject to stochastic

excitations. Here we consider a nonlinear single-degree-of-freedom system excited by

the Gaussian white noise.

d2 x(t) dx(t) +(t (t) (2.14)
dt2  dt + g(x(t)) =

where 0 is the damping coefficient, g(-) indicates an arbitrary nonlinear function of x

and W(t) is a zero mean Gaussian white noise whose intensity is set to be 2a. This
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equation can be converted into

d = X2(t), (2.15)
dt

dX 2 = -/X 2 (t) - g(X 1(t)) + W(t), (2.16)
dt

where we assumed

X1 = X(t), (2.17)

X2 dX(t) (2.18)
dt

Based on the formulation in equation (2.4), the FPK equation that describes the

evolution of response pdf can be derived as follows.

0 0
Gf(x1, x2 t) = - [x2 f(Xi, x 2 , t)]

+ [(3x2 + g(x1 )) f(Xi, X 2 , t)] + a a2f(x1 x2,t). (2.19)

By assuming that the response pdf is independent of time ( = 0, the stationary joint

probability density function X (1, x2) satisfies

k,2- [X 2 fht(X1 , x2)] + [(3x 2 + g(x1 )) fht(X 1 , x 2)] = 0. (2.20)
X2 ax1  Ox2

The above equation can be solved numerically using standard finite-element or finite-

difference methods to obtain the stationary joint probability density function.

We have formulated the FPK equation for one-dimensional and multi-dimensional

stochastic processes, and provided some demonstrations involving first and second

order differential equations subject to the Gaussian white noise in order to derive

the steady state pdf solution of .the FPK equation. We would like to emphasize

that the transient solution of the FPK equation has been characterized by the time

dependency and nonstationarity, however in general, such nonstationary solutions
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cannot be obtained in explicit form. Only the exact steady state solutions for a specific

set of FPK equations associated with second-order nonlinear differential equations

are available under Gaussian white noise excitations. Especially for multi-degree-of

freedom systems, the exact solutions of FPK equations are not readily available and

therefore the use of FPK equations is often inefficient. Consequently, alternative

approximate approaches are developed in order to deal with such difficulties.

31



2.2 Statistical Linearization

In nonlinear stochastic vibration problems, the statistical linearization method (also

known as stochastic linearization) [144, 122, 1371] is by and large the most popular

approach. As a direct extension of the harmonic linearization technique, this method

can be applied to multi-degree-of-freedom systems subject to either stationary or

nonstationary excitations [98]. The basic concept of the statistical linearization is to

replace the original nonlinear equation of motion with an equivalent linear equation,

which can be treated analytically, by minimizing the statistical difference between

those two equations.

This idea was initially introduced by Booton [18] and Kazakov [73, 74], and further im-

proved by many other researchers in the context of nonlinear stochastic control systems

[129, 11, 150], nonlinear structural dynamics [24, 22], nonlinear offshore structures [95],

and random vibrations on multidimensional systems [141, 2, 64]. In this section we

provide an overview of the method with a general nonlinear single-degree-of-freedom

system under stationary stochastic excitation with broadband spectral density, and

then consider a cubic nonlinearity as a specific example. Additional examples and ap-

plications of statistical linearization can be found in [144, 136, 140, 122] and references

therein.

2.2.1 Derivation of the Equivalent Linear Equation

To illustrate the basic idea, we consider the following second order differential equation

which describes a single-degree-of-freedom system excited by a stationary stochastic

process y(t) [136].

W(t) + g(x(t), (t)) = y(t), (2.21)
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where g(-) is an arbitrary nonlinear function that depends on x and x. With the sta-

tistical linearization, we approximate the above governing equation with an equivalent

linear equation in the form of

z(t) + et(t) + keX(t) = y(t), (2.22)

where !e and ke are equivalent linear damping coefficient and stiffness, respectively.

These quantities will be chosen such that the (second order) statistical differences

between equation (2.21) and equation (2.22) are minimized. We demonstrate how

these parameters are determined systematically. We let the difference of equation (2.21)

and equation (2.22) as

e(t) = /e1(t) + ke X(t) - g(x(t), (t)). (2.23)

Note that the difference E(t) is also a stochastic process and therefore the statistical

minimization is performed in terms of the mean squared of the error.

E[E2] = lim -/62()dr. (2.24)
T-+oo TJo

Parameters e and ke will be determined such that the following equation is satisfied.

E[C2] = min E [{/et(t) + kex(t) - g(x(t), (t))}2] }. (2.25)

The minimization will be performed with respect to 3 e and ke, and this can be com-

puted by their gradients,

E7
E[E2 ] = 0, (2.26)

Eke = 0. (2.27)
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This leads

IeE [2(t)] + keE [x(t) (t)] - E [ (t)g(x, )] = 0, (2.28)

keE [x2(t)] + eE [x(t)i(t)] - E [x(t)g(x, )] = 0. (2.29)

Hence we have

E [X2(t)] E [ (t)g(x, 1)] - E [x(t) (t)] E [x(t)g(x, x)] (2.30)

OeE [x2 (t)] E [ 2 (t)] - {E [x(t)(t)]} 2  (

k = F [22 (t)] E [x(t)g(x,t)] - E [x(t)+(t)] E [ (t)g(x, )]
E [x2 (t)] t)] - {E [x(t) (t)]} 2  (2.31)

We observe that , and ke are expressed by the moments, or the expectations of

stochastic responses in terms of x(t) and -(t). This indicates that in order to perform

the statistical linearization, we need to have the estimation of the response statistics

for the stochastic nonlinear system in advance. Indeed, if the probability distribution

for the response is known in advance there is no point for approximating nonlinear

equations into linear ones. This is the main difficulty associated with the statistical

linearization approach.

One can resolve this difficulty by assuming the response x(t) as a Gaussian process.

We note that if we had a linear time-invariant system and the excitation is a stationary

stochastic process with Gaussian distribution, the response process also follows the

Gaussian distribution. If we have a nonlinear system, and its response distribution

does not deviate far from the Gaussian, Gaussian process approximation can still

hold, however, if the system is essentially nonlinear (i.e. bimodal systems), the perfor-

mance of statistical linearization decreases significantly. For example, the statistical

linearization works reliably for systems with unimodal potential function, i.e. response

close to Gaussian. However, when the response is essentially non-Gaussian, e.g. as

it is the case for a double-well oscillator, the application of statistical linearization

is less straightforward and involves the ad-hoc selection of shape parameters for the
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response statistics [31]. We demonstrate how the Gaussian process approximation can

be applied along with the statistical linearization.

2.2.2 Application on Second Order Differential Equation

Let's consider the following nonlinear single-degree-of-freedom system with cubic

stiffness excited by a correlated stochastic force [136].

S+ Ai + kx + cx 3 = y, (2.32)

where A indicates the damping coefficient, k is the linear stiffness and c is the cubic

stiffness. We assume that the excitation has a power spectral density of Syy(w) and is

known in advance. Following the analysis in equation (2.31), we obtain

/e = A, (2.33)

kE [x 2] + cE [x4]ke = .[2 (2.34)
e E [x21

As we have discussed previously, those quantities (E [x2 ] and E [x4]) require the

probability distribution of the stochastic unknown response x(t). In this case, the

potential function of the system is given by

1214
U = kx2 + - cx , (2.35)

2 4

which is the unimodal function in which case the response pdf does not deviate far

from Gaussian structure. Hence we can apply the Gaussian process approximation

following the Isserli's Theorem.

E [x4] = 3 (E [x2 ) 2 . (2.36)
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Then we have

ke = k + 3cE [X2] . (2.37)

Based on the approximation, we can obtain the response spectral density function of

the equivalent linear system.

S..(w) = . (2.38)
1- W2 + e(jW) + ke 12

We note that the response spectral density is expressed in terms of given excitation

spectral density, which indicates the statistical linearization method can be applica-

ble on correlated excitations. Integration of the spectral density function yields the

variance.

o = S((w)d&, (2.39)

0ooS y(w) d (2.40)
-0 | - 2 + Oe(jw) + ke 12 dw 2.0

Jd2. (2.41)
- -W2 + A(jo) + k + 3 C Ug22

We note that ke in the right hand side of the above equation also depends on the

unknown variance Ux as in equation (2.37). This unknown variance can be obtained

by solving the nonlinear equation.

o2 f SY(w) dw = 0. (2.42)
-0- w 2 + A(jW) + k + 3 Xo12

Statistical linearization method has served as one of the most popular approximation

schemes for the response statistics quantification due mainly to its simplicity and its

adaptability to multi-degree-of-freedom cases. However, as we have pointed out, the

accuracy of the solution heavily depends on the structure of the response probability

distribution and in case it deviates far from Gaussian, the reliability of the estimate is

not guaranteed. Furthermore, if the excitation contains extreme forcing events within
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the stochastic excitation, the accuracy of the solution significantly decreases in the

heavy-tail regimes even for the nonlinear systems whose core probability distribution

is close to Gaussian.

This is because the statistical linearization method relies on the minimization of the

mean square error, in other words, the second order statistics [144]. Thus the ap-

proximation of the response statistics higher than second order statistics may not

be reliable. Inaccuracy of the statistical linearization estimates has been reported in

many articles, ranging from the Duffing oscillator under Gaussian white noise [57], to

various nonlinear damping models subject to Gaussian white noise [130], to the Van

der Pol oscillator with Gaussian white noise [163].
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2.3 Moment Equations

Another computational approach developed to quantify the response statistics is the

moment equations method, which describes the evolution of the the joint response-

excitation statistical moments or the response statistical moments [125, 19, 14] depend-

ing on the nature of the stochastic excitation. Especially in the stochastic nonlinear

vibration problems, response moment equations form an infinite hierarchy, and gener-

ally exact solutions are not possible [98]. Thus the challenge with moment equations

arises if the equation of motion of the system contains nonlinear terms. This is the

well known closure problem, which consists of approximately replacing the infinite

hierarchy of equations with a finite set of lower order moments. This is the main

notorious difficulty associated with the moment equations approach.

Among various closure techniques, the Gaussian closure scheme [66] is the simplest

approach along this line in that it assumes the response to be close to Gaussian

distributed. With the assumption of Gaussian distribution, all the higher order of

cumulants can be expressed in terms of lower order of moments enabling us to close

the moment equations [157]. It should be noted that the application of the Gaussian

closure scheme to the moment equations may lead to the exactly same results with

those obtained from the statistical linearization approach with Gaussian process ap-

proximation [144]. Gaussian closure scheme has been studied widely in the context

of nonlinear systems under random vibrations (either Gaussian [32] or non-Gaussian

[66]) and nonlinear liquid sloshing under stochastic excitations [61]. However, the

assumption of Gaussian is not adequate if the response distribution deviates far from

the Gaussian structure.

As an alternative, non-Gaussian closure schemes have also been developed in order

to take into account the nonlinear structure of the response probability distribution

[62, 53, 156]. In most cases, these nonlinear approaches may offer some improvement

compared with the stochastic linearization approach applied to nonlinear systems but
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the associated computational cost is considerably larger [109]. This is because the

complexity of the moment equations dramatically increases as the order of closure

increases [33, 34, 92]. For strongly nonlinear systems, such as bistable systems, these

improvements can be very small.

2.3.1 Derivation of Moment Equations

In this section, we demonstrate how the moment equations can be obtained. One of

the most general ways of obtaining moment equations is by applying the Ito formula

[37] to the following function

h(X) = X 1(t) X2(t) Xk3(t)... X "(t), (2.43)

and by taking the ensemble averages. Thus the moment equations can be directly

obtained as the following equation [144]:

d [a()h(X) 1 1 blx 8~~)2h(X)I
E [h(X)] = E a(X) + E ba(X)bF(X) . (2.44)

As an illustrative purpose, we consider the nonlinear first order differential equation

subject to the Gaussian white noise [136].

(t) + x(t) + cX 3 (t) = W(t). (2.45)

where c is the nonlinear stiffness and W(t) indicates Gaussian white noise. Based on

the formulation given in equation (2.44), by letting

h(y) = yk, (2.46)
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and since n = 1, we have

a, = -(x + cy'), (2.47)

bl= 1, (2.48)

dh
= kyk- 1, (2.49)

dy
d2h

= k(k - 1)yk-2. (2.50)

where k, = k and k2 = k3= ... =k = 0. Plugging above equations into equa-

tion (2.44), we obtain

1
mnk(t) = -kmk(t) - kc mk+2(t) + -k(k - 1)mk-2, (2.51)

2

Here k takes any positive integers k = 1, 2..., and we have used the notation of

mk(t) = E [Yk(t)]. For example, we will have

rh1 (t) = -mi(t) - cm3 (t), (2.52)

r42 (t) = -2m 2(t) - 2cm4 (t) + 1, (2.53)

We note that the equation for moment mk(t) contains unknown higher order moment

mk+2(t). In this way, an infinite set of moment equations will be generated, and to

this end an appropriate closure scheme should be applied.
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2.3.2 Various Closure Schemes

As previously discussed, moment equations cannot be explicitly solved in general due

to the existence of infinite number of higher order moments. Hence the approximate

solutions are derived based on numerous closure techniques, i.e. the central moment

closure, -Gaussian closure, cumulant closure, and non-Gaussian closure. In this section,

we briefly introduce some of the most popular techniques [144, 98].

Central Moment Closure

Central moment closure assumes that all central moments of orders higher than k are

set to be zero and can be discarded from the moment equations:

E [(X1(t) - E[Xi(t)])kl (X 2 (t) - E[X2 (t)])k2 ... (Xn(t) - E[Xn(t)])k" - 0, (2.54)

where k, + k2 +... + kn > k. In this way, one can discard certain higher central moments

so that the moment equations can be exactly solved. The method works well especially

for weakly non-Gaussian processes.

Gaussian Closure

This technique is based on the assumption that X1 (t), X 2 (t), ...Xn (t) obey the Gaussian

distribution. In this way, the first two moments (mi(t) and m2 (t)) uniquely define

the probability distribution, and hence all higher moments, Mk(t) where k > 2, can

be determined. For k > 1,

E [(X1(t) - E[X1 (t)]) (X 2 (t) - E[X2 (t)]) ... (X 2k-1 (t) - E[X2k-l(t)])] = 0, (2.55)
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and

E [(X2 (t) - E[X2 (t)]) ... (X2k (t) - E[X2k(t)])]

= E E [(Xal (t) - E[Xai(t)]) ... (Xa 2k(t) - E[Xa2k(t)])] . (2.56)

Here the summation can be considered as the permutation of 2k elements of k pairs,

and it has % terms. For the simple case of X(t), where n = 1, the above equations

reduce to

E [{X(t) - E[X(t)]} k] 2/ k (t), k 2,4,6, ... (2.57)

=0, k =1,3,5, ... (2.58)

where a.2 (t) is the variance of the stochastic process X(t). Based on this, we can obtain

the approximation for 3rd and 4th order moments:

m 3 (t) = E [{X(t) - E[X(t)]} 3 + 3m1 (t)m2 (t) - 2mW(t), (2.59)

m 4 (t) = E [{X(t) - E[X(t)]} 4] + 4m1(t)E [{X(t) - E[X(t)]} 3]

+ 6m2(t)m 2(t) - 5m4(t). (2.60)

Assuming zero mean mi(t) = E[X(t)] = 0 and variance a2 (t), the above equations

further reduce to

m3(t) = 0, (2.61)

m4 (t) = 3 {m 2 (t)}2 . (2.62)
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Cumulant Closure

Similar to the central moment closure, the cumulant closure technique close the moment

equations by assuming that the cumulants of higher than k-th order are zero. In order

for that, we first require the relation connecting ordinary moments and cumulants of

the stochastic process X(t). We summarize the relation between ordinary moments

and cumulants for first three orders. Readers are refered to [140] and references therein

for the computation of cumulants.

E[X] = AM(X), (2.63)

E[X 2] = A2(X) + (A(X)) 2 , (2.64)

E[X 3] = A3(X) + 3A(X)A2(X) + (A(X)) 3 . (2.65)

where Ak indicates the k-th order cumulant. In this way, the higher order moments

can be approximated by the lower order moments where cumulants with higher than

certain order will set to be zero. This is a very important approach for the analysis of

nonlinear vibrational systems. Its most important drawback is the lack of stability of

the moment equations which can lead to negative variance and other moments that

should be strictly positive (i.e. we may end up with moments which are not associated

to a pdf).
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2.4 Perturbation Method

An alternative approach to compute the response statistics for the nonlinear stochastic

system is the perturbation approach. In this technique, we treat the stochastic system

in a similar manner as a deterministic one as the idea comes from the classical theory

of ordinary differential equations. One should be noted that perturbation method can

be applied only if the nonlinearity is sufficiently small so that the solution can be

expanded in powers of small parameter E [136, 981.

The perturbation approach was first adopted by Crandall [35] in his work for the

estimation of response moments of nonlinear multi-degree-of-freedom systems under

stationary Gaussian excitations. Symmetric and asymmetric nonlinear systems under

stationary stochastic excitations are considered in [133], and systems with nonlinear

damping have been considered in [36, 76]. The response of the Duffing oscillator has

been studied for stationary stochastic excitations [97] and for nonstationary stochastic

excitations [139].

We note that the perturbation method is particularly beneficial in case one has poly-

nomial nonlinearities. This method can be useful for the derivation of power spectral

densities, however it might not be the case for the derivation of response probability

density function due to the non-Gaussian structure of the higher order terms. In this

section we introduce the applicability of perturbation approach on the single-degree-

of-freedom system under stationary stochastic excitations [144].
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2.4.1 Application on Second Order Differential Equation

We consider a nonlinear second order differential equation describing the motion of

single-degree-of-freedom system under stochastic excitation as follows.

z(t) + a (t) + 3x(t) + Eg(x, ) = y(t), (2.66)

where a is the damping coefficient, / is the linear stiffness, g(-) is an arbitrary nonlinear

function of x and :, and we let c < 1. Also the excitation y(t) is considered to be

a stationary Gaussian stochastic process. What perturbation method does is that it

expands the solution x(t) in terms of powers of E,

x(t) = Xo(t) + Ex1(t) + e2 x 2(t) + .... (2.67)

We plug above expansion into equation (2.66), and all terms of same order (with

respect to e) will be equated.

0(1) 1o(t) + a.o(t) + 3xo(t) = y(t), (2.68)

0(6) zi(t) + a 1(t) + o3x 1 (t) = -g~ro, g( ), (2.69)

0(c 2 ) z2 (t) + a 2 (t) + 3x2 (t) = -gX 0 (Xo, o)x 1(t) - g' 0(Xo, io) 1(t), (2.70)

where g' 0 indicates the derivative of g(x, d) with respect to x evaluated at x(t) =

xo(t), similarly g' indicates the derivative of g(x, ) with respect to x evaluated at

(t) = o(t). In this way the nonlinear stochastic equation in equation (2.66) has

been reduced to a set of linear equations, which we are now able to solve. The impulse

response of the left hand side of the linear equations can be obtain by

h(t) = FT- 1  . 1 , (2.71)
(jW)2 + a(jw) +,3
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where FT- 1 indicates the inverse Fourier transform. We can write the steady state

solution.

xo(t) = h(t) * y(t) = j rh(r)y(t - r)dr, (2.72)

xi(t) = - h(t) * g(xo,.to) =- h(r)g(xo(t - r), Xo(t -T))dr, (2.73)

where * indicates the convolution operator. Once each of these linear equations has

been solved, by using equation (2.67) we can compute the response statistics. For

example, the mean of the response becomes

E[x(t)] = E[xo(t)] + EE[xi(t)] + C2 E[X 2 (t)] + ... , (2.74)

= j h(r)E[y(t - r)]dr

- Ej h(r)E[g(xo(t - r), to(t - r))]dT + 0(E2 ). (2.75)

As one can notice, the computational difficulty associated with the perturbation

method is that its complexity increases dramatically as we go to higher order moments.
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2.5 Stochastic Averaging Method

Another class of techniques for the approximate solutions to the nonlinear stochastic

systems is the stochastic averaging method. Stochastic averaging method is a tech-

nique to average the stochastic response with respect to the rapidly varying processes

to obtain the averaged stochastic differential, and it serves as a powerful tool for pre-

dicting the response statistics. In general the stochastic averaging technique consists

of two steps [144]: the first step is to average out the terms independent from the

stochastic forcing, and the second step is to approximate the terms which depend

on the stochastic forcing. In this case, the stochastic forcing can be anything, from

correlated broad-band process to Gaussian white noise.

One of the advantages of stochastic averaging method is that it often reduces the

dimensionality of the problem by significantly simplifying the solution procedures

[98]. Different versions of reviews on the stochastic averaging method have been re-

ported [62, 123, 161, 160]. In particular, this approach has been further classified into

three distinct groups depending on the derivation [144]: the first group is the classical

stochastic averaging (CSA) method [143, 17, 77], the second group is the stochastic

averaging method of energy envelope (SAMEE) [143, 121, 162, 118], and the third

group is the higher order approximation of CSA method [140, 132, 21, 131]. It has been

noted that for systems with linear stiffness the first two groups become equivalent. We

note that further details regarding each method can be found in [144] and references

therein. In the following subsection, we consider the classical stochastic averaging

approach and illustrate the derivation procedure with the single-degree-of-freedom

system under stochastic excitation.
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2.5.1 Application on Second Order Differential Equation

We consider the nonlinear single-degree-of-freedom system whose equation of motion

is given by

z(t) + w2y(t) + E2 g(x, ) = ey(t), (2.76)

where wo is the stiffness of the system, and the parameter E indicates the relative

strength of the nonlinear term. y indicates the stationary stochastic excitation. We

then convert the above differential equation into a set of equations for x and :. Since

the stochastic responses are rapidly fluctuating with respect to time, we adopt the

following transformation:

x(t) = a(t) cos [wot + 0(t)] , (2.77)

(t) = -woa(t) sin [wot + #(t)]. (2.78)

Here a(t) indicates the envelope and 0(t) is the phase of the response, which are slowly

varying with respect to time if e is small. Once we differentiate equation (2.77) with

respect to time, we obtain

t(t) = d(t) cos [wot + #(t)] - a(t) {wot + q(t)} sin [wot + #(t)] . (2.79)

This can be equated with equation (2.78) letting us have

&(t) cos [wot + #(t)] - a(t)q(t) sin [wot + 0(t)] = 0. (2.80)

In a similar fashion, we obtain the following expression by the second derivative of

equation (2.78) with respect to time.

) = - wja(t) cos [wot + #(t)] - wo (t)a(t) cos [wot + #(t)]

- wod(t) sin [wot + 0(t)]. (2.81)
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Once we plug all these results into the equation (2.76), and by rearranging, we obtain

two equations for 6(t) and 0(t).

da(t) C2g (a(t) cos [wot + #(t)] , -a(t)wo sin [wot + #(t)]) sin [wot + #(t)]
dt wo

- y(t) sin [wot + #(t)] (2.82)
a(t)wo

dO(t) C 2

dt t).02g(a(t) cos [wot + 0(t)] , -a(t)wo cos [wot + #(t)]) sin Pot + 0(t)]

- y(t) cos [wot + 0(t)] (2.83)
a(t)wo

We note that these two equations are referred to as the standard form, and this

is equivalent with equation (2.76). From the above equations, one can obtain the

transient probability density function, f(a, #, t), by the FPK equation for the limiting

Markov process [136].
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Chapter 3

Moment-Equation- Copula- Closure

Method for Nonlinear Vibrational

Systems Subjected to Correlated

Noise

3.1 Introduction

In numerous systems in engineering, uncertainty in the dynamics is as important

as the known conservation laws. Such an uncertainty can be introduced by external

stochastic excitations, e.g. energy harvesters or structural systems subjected to ocean

waves, wind excitations, earthquakes, and impact loads [5.5, 143, 136, 140, 107, 144].

For these cases, deterministic models cannot capture or even describe the essential

features of the response and to this end, understanding of the system dynamics and

optimization of its parameters for the desired performance is a challenging task. On

the other hand, a probabilistic perspective can, in principle, provide such information

but then the challenge is the numerical treatment of the resulted descriptive equations,

which are normally associated with prohibitive computational cost.
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The focal point of this work is the development of a semi-analytical method for the in-

expensive probabilistic description of nonlinear vibrational systems of low to moderate

dimensionality subjected to correlated inputs. Depending on the system dimensionality

and its dynamical characteristics, numerous techniques have been developed to quan-

tify the response statistics, i.e. the probability density function (pdf) for the system

state. For systems subjected to white noise, Fokker-Planck-Kolmogorov (FPK) equa-

tion provides a complete statistical description of the response statistics [155, 45, 43].

However, exact analytical solutions of the FPK equation are available only for a small

class of systems. An alternative computational approach, the path integral solution

(PIS) method, has been developed to provide the response pdf for general nonlinear

systems at a specific time instant given the pdf of an earlier time instant. Many studies

have been focused on the application of step-by-step PIS method numerically [154, 106,

42] and analytically [80, 81, 41] reporting its effectiveness on capturing the response

statistics. On the other hand, for non-Markovian systems subjected to correlated exci-

tations the joint response-excitation pdf method provides a computational framework

for the full statistical solution [126, 153, 27]. However, such methodologies rely on the

solution of transport equations for the pdf and they are associated with very high

computational cost especially when it comes to the optimization of system parameters.

To avoid solving the transport equations for the pdf, semi-analytical approximative ap-

proaches with significantly reduced computational cost have been developed. Among

them the most popular method in the context of structural systems is the statistical

linearization method [24, 22, 73, 122, 137], which can also handle correlated excitations.

The basic concept of this approach is to replace the original nonlinear equation of

motion with a linear equation, which can be treated analytically, by minimizing the

statistical difference between those two equations. Statistical linearization performs

very well for systems with unimodal statistics, i.e. close to Gaussian. However, when

the response is essentially nonlinear, e.g. as it is the case for a double-well oscillator,

the application of statistical linearization is less straightforward and involves the ad-

hoc selection of shape parameters for the response statistics [31].
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An alternative class of methods relies on the derivation of moment equations, which

describes the evolution of the the joint response-excitation statistical moments or

(depending on the nature of the stochastic excitation) the response statistical mo-

ments [125, 19, 14]. The challenge with moment equations arises if the equation of

motion of the system contains nonlinear terms in which case we have the well known

closure problem. This requires the adoption of closure schemes, which essentially trun-

cate the infinite system of moment equations to a finite one. The simplest approach

along this line is the Gaussian closure [66] but nonlinear closure schemes have also been

developed (see e.g. [33, 34, 92, 157, 62, 53, 59, 156, 54]). In most cases, these nonlinear

approaches may offer some improvement compared with the stochastic linearization

approach applied to nonlinear systems but the associated computational cost is con-

siderably larger [109]. For strongly nonlinear systems, such as bistable systems, these

improvements can be very small. Bistable systems, whose potential functions have

bimodal shapes, have become very popular in energy harvesting applications [52, 58,

39, 56, 51, 60, 96, 9], where there is a need for fast and reliable calculations that will

be able to resolve the underlying nonlinear dynamics in order to provide with optimal

parameters of operation (see e.g. [70, 79]).

The goal of this work is the development of a closure methodology that can overcome

the limitations of traditional closure schemes and can approximate the steady state

statistical structure of bistable systems excited by correlated noise. We first formulate

the moment equations for the joint pdf of the response and the excitation at two

arbitrary time instants [4]. To close the resulted system of moment equations, we

formulate a two-time representation of the joint response-excitation pdf using copula

functions. We choose the representation so that the single time statistics are con-

sistent in form with the Fokker-Planck-Kolmogorov solution in steady state, while

the joint statistical structure between two different time instants is represented with

a Gaussian copula density. Based on these two ingredients (dynamical information

expressed as moment equations and assumed form of the response statistics), we for-
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mulate a minimization problem with respect to the unknown parameters of the pdf

representation so that both the moment equations and the closure induced by the

representation are optimally satisfied. For the case of unimodal systems, the described

approach reproduces the statistical linearization method while for bi-modal systems

it still provides meaningful and accurate results with very low computational cost.
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3.2 Description of the Method

In this section, we give a detailed description of the proposed method for the inexpen-

sive computation of the response statistics for dynamical systems subjected to colored

noise excitation. The computational approach relies on two basic ingredients:

. Two-time statistical moment equations. These equations will be derived directly

from the system equation and they will express the dynamics that govern the

two-time statistics. For systems excited by white-noise, single time statistics are

sufficient to describe the response but for correlated excitation, this is not the

case and it is essential to consider higher order moments. Note that higher (than

two) order statistical moment equations may be used but in the context of this

work two-time statistics would be sufficient.

" Probability density function (pdf) representation for the joint response-excitation

statistics. This will be a family of probability density functions with embedded

statistical properties such as multi-modality, tail decay properties, correlation

structure between response and excitation, or others. The joint statistical struc-

ture will be represented using copula functions. We will use representations

inspired by the analytical solutions of the dynamical system when this is excited

by white noise. These representations will reflect features of the Hamiltonian

structure of the system and will be used to derive appropriate closure schemes

that will be combined with the moment equations.

Based on these two ingredients, we will formulate a minimization problem with re-

spect to the unknown parameters of the pdf representation so that both the moment

equations and the closure induced by the representation are optimally satisfied. We

will see that for the case of unimodal systems the described approach reproduces the

statistical linearization method while for bi-modal systems it still provides meaningful

and accurate results with very low computational cost.

For the sake of simplicity, we will present our method through a specific system

involving a nonlinear SDOF oscillator with a double well potential. This system has
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been studied extensively in the context of energy harvesting especially for the case of

white noise excitation [39, 38, 50, 48]. However, for realistic setups it is important to

be able to optimize/predict its statistical properties under general (colored) excitation.

More specifically we consider a nonlinear harvester of the form

+ A.+kix + ka 3 =. (3.1)

where x is the relative displacement between the harvester mass and the base, y

is the base excitation representing a stationary stochastic process, A is normalized

(with respect to mass) damping coefficient, and k, and k3 are normalized stiffness

coefficients.

y(t) h(t)

kh+k 

h

Figure 3-1: Nonlinear energy harvester with normalized system parameters.
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3.3 Two-time Moment System

We consider two generic time instants, t and s. The two-time moment equations

have been considered previously in [4] for the determination of the solution of a 'half'

degree-of-freedom nonlinear oscillator by utilizing a Gaussian closure. We multiply the

equation of motion at time t with the response displacement x(s) and apply the mean

value operator L (ensemble average). This will give us an equation which contains

an unknown term on the right hand side. To determine this term we repeat the same

step but we multiply the equation of motion with y(s). This gives us the following

two-time moment equations:

i(t)y(s) + A (t)y(s) + kix(t)y(s) + k3 x(t) 3y(s) = j(t)y(s), (3.2)

1(t)x(s) + At(t)x(s) + kix(t)x(s) + k3x(t)3X(s) = j(t)x(s). (3.3)

Here the excitation is assumed to be a stationary stochastic process with zero mean and

a given power spectral density; this can have an arbitrary form, e.g. monochromatic,

colored, or white noise. Since the system is characterized by an odd restoring force, we

expect that its response also has zero mean. Moreover, we assume that after an initial

transient the system will be reaching a statistical steady state given the stationary

character of the excitation. Based on properties of mean square calculus [136, 14],

we interchange the differentiation and the mean value operators. Then the moment

equations will take the form:

02 02
0 - 2x(t)y(s) + A-x(t)y(s) + kix(t)y(s) + kax(t)3 y(s) = O y(t)y(s), (3.4)

02 a2
-2 x(t)x(s) + A-x(t)x(s) + kix(t)x(s) + k3x(t)3 X(s) = _2y(t)x(s). (3.5)
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Expressing everything in terms of the covariance functions, above equations will result

in:

a2  a2
-tC + A-Cus + kiC's + k3x(t)3 y(s) = Cts (3.6)

at2 xy at2

2C A-C + k1C + kax(t)3x(s) = aCat2  '+ Aat C~ x+k1Cxs Xat2 vIX' (3.7)

where the covariance function is defined as

CitS = x(t)y(s) = CXY(t - s) = CXY(T). (3.8)

Taking into account the assumption for a stationary response (after the system has

gone through an initial transient phase), the above moment equations can be rewritten

in terms of the time difference T = t - s:

a2  a 2

a2Cy() + Aa Cy(r) + kiCy(T) + k 3x(t) 3y(s) = 2 (T), (3.9)

a 2  a a 2

aCT2(T) + A CX(T)+ kiCx(-T) + k3 X(t) 3 x(s) = 2(-r). (3.10)

Note that all the linear terms in the original equation of motion are expressed in

terms of covariance functions, while the nonlinear (cubic) terms show up in the form

of fourth order moments. To compute the latter we will need to adopt an appropriate

closure scheme.
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3.4 Two-time PDF Representations and Induced

Closures

In the absence of higher-than-two order moments, the response statistics can be ana-

lytically obtained in a straightforward manner. However, for higher order terms it is

necessary to adopt an appropriate closure scheme that closes the infinite system of

moment equations. A standard approach in this case, which performs very well for uni-

modal systems, is the application of Gaussian closure which utilizes Isserlis' Theorem

[63] to connect the higher order moments with the second order statistical quantities.

Despite its success for unimodal systems, Gaussian closure does not provide accurate

results for bistable systems. This is because in this case (i.e. bistable oscillators) the

closure induced by the Gaussian assumption does not reflect the properties of the

system attractor in the statistical steady state.

Here we aim to solve this problem by proposing a non-Gaussian representation for the

joint response-response pdf at two different time instants and for the joint response-

excitation pdf at two different time instants. These representations will:

. incorporate specific properties or information about the response pdf (single

time statistics) in the statistical steady state,

" capture the correlation structure between the statistics of the response and/or

excitation at different time instants by employing Gaussian copula density func-

tions,

. have a consistent marginal with the excitation pdf (for the case of the joint

response-excitation pdf).
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3.4.1 Representation Properties for Single Time Statistics

0.6-

0.5- y=0.5

0.4- y=0. 7

y= 1

o 0.3-

0.2- y=1.5

0.1 -

0
-4 -2 0 2 4

x

Figure 3-2: Representation of the steady state pdf for single time statistics of a system

with double-well potential. The pdf is shown for different energy levels of the system.

We begin by introducing the pdf properties for the single time statistics. The selected

representation will be based on the analytical solutions of the Fokker-Planck equation

which are available for the case of white noise excitation [138, 136], and for vibrational

systems that has an underlying Hamiltonian structure. Here we will leave the energy

level of the system as a free parameter - this will be determined later. In particular,

we will consider the following family of pdf solutions (figure 3-2):

f (x; Y) = 1exp{- U(x)} = 1exp - (kx2 + 1kx) (3.11)

where U is the potential energy of the oscillator, -y is a free parameter connected

with the energy level of the system, and F is the normalization constant expressed as

follows:

f= 0 exp - -(-kix2 + -k 3 x4) dx. (3.12)
00 ( 2 4
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3.4.2 Correlation Structure between Two-time Statistics

Representing the single time statistics is not sufficient since for non-Markovian sys-

tems (i.e. correlated excitation) the system dynamics can be effectively expressed

only through (at least) two-time statistics. To represent the correlation between two

different time instants we introduce Gaussian copula densities [108, 101]. A copula is

a multivariate probability distribution with uniform marginals. It has emerged as an

useful tool for modeling stochastic dependencies allowing the separation of dependence

modeling from the given marginals [114]. Based on this formulation we obtain pdf

representations for the joint response-response and response-excitation at different

time instants.

Joint response-excitation pdf. We first formulate the joint response-excitation pdf

at two different (arbitrary) time instants. In order to design the joint pdf based on

the given marginals of response and excitation, we utilize a bivariate Gaussian copula

whose density can be written as follows [101]:

1 (2cC-' (u) 41D (v) - c 2 (41- (U) 2 + 4D1 (V)2C (u, v)= 2 exp ,(-2 + ()) (3.13)
V1 - C2 2(1 - C2)

where u and v indicate cumulative distribution functions and the standard cumulative

distribution function is given as the following form:

4(x) = 2 exp (_ )dz. (3.14)

Denoting with x the argument that corresponds to the response at time t, with y the

argument for the excitation at time s = t - r, and with g(y) the (zero-mean) marginal
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pdf for the excitation, we have the expression for the joint response-excitation pdf.

q(x, y) = f(x)g(y)C (F(x), G(y)),

1
= f(x)g(y)

/1 - c2

2c--1 (F(x))P-1 (G(y)) - c 2 (4-1 (F(x))2 + 4-1 (G(y)))
2(1 - c 2 )

(3.15)

where c defines the correlation between the response and the excitation and has

values -1 < c < 1 and F(x) and G(y) are the cumulative distribution functions

obtained through the response marginal pdf, f(x), and the excitation marginal pdf,

g(y), respectively. Note that the coefficient c depends on the time difference T = t - s

of the response and excitation. This dependence will be recovered through the resolved

second-order moments (over time) between the response and excitation.

C=O C=0.4
10 10 -

5 51

0 0

-5 -5

-10 -10
-5 0 5 -5 0 5

x x

10 C=0.8 10C

5 5

-5 -5

-10 -10
-5 0 5 -5 0 5

x x

Figure 3-3: The joint response excitation pdf is also shown for different values of the
correlation parameter c ranging from small values (corresponding to large values of Iri)
to larger ones (associated with smaller values of Ir).
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Joint response-response pdf. The joint pdf for two different time instants of the

response, denoted as p(x, z), is a special case of what has been presented. In order to

avoid confusion, a different notation z is used to represent the response at a different

time instant s = t - r. We have:

p(x, z) = f(x)f (z)C (F(x), F(z)) ,

= f(x)f(z)1
V1-1-c2

2c-1 (F(x)) D-1 (F(z)) _ c2 (41D (F(x))2 + 4-1 (F(Z))2

2(1 - c2 )

(3.16)

where c is a correlation constant (that depends on the time-difference r). Note that the

response z at the second time instant follows the same non-Gaussian pdf corresponding

to the single time statistics of the response. In figure 3-3, we present the above joint pdf

(equation (3.15)) with the marginal f (response) having a bimodal structure and the

marginal g (excitation) having a Gaussian structure. For c = 0 we have independence,

which essentially expresses the case of very distant two-time statistics, while as we

increase c the correlation between the two variables increases referring to the case of

small values of T.
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3.4.3 Induced Non-Gaussian Closures

4

3.5
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CD

2.5
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1 .51
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0 0.2 0.4 0.6 0.8 1 1.2 1.4

x(t)x(s)

Figure 3-4: The relation between x(t) 3x(s) and x(t)x(s). Exact relation is illustrated in

red curve and approximated relation using non-Gaussian pdf representations is depicted

in black curve.

Using these non-Gaussian pdf representations, we will approximate the fourth order

moment terms that show up in the moment equations. We numerically observe that

in the context of the pdf representations given above, the relation between x(t)3x(s)

and x(t)x(s) is essentially linear (see figure 3-4). To this end, we choose a closure of

the following form for both the response-response and the response-excitation terms:

x(t)3x(s) = pxx x(t)x(s), (3.17)

where px,x is the closure coefficient for the joint response-response statistics. The value

of p., is obtained by expanding both x(t)3x(s) and x(t)x(s) with respect to c keeping
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up to the first order terms:

z = J xzP(x, z)dxdz

=2 xf(x) erf' (2F(x) - 1) dx c + O(c2) (3.18)

x 3 z = Jf x 3 zp(x,z)dxdz

= 2 J x 3 f(x) erf- 1 (2F(x) - 1) dx} Jzf(z) erf- 1 (2F(z) - 1) dz c + O(c 2 ),

(3.19)

where the error function is given by:

erf(x) = j e- dt. (3.20)

Thus, we observe that the assumed copula function in combination with the marginal

densities prescribe an explicit dependence between fourth- and second-order moments,

expressed through the coefficient:

f X 3 f(x) erf-1 (2F(x) - 1) dx
Px'x = f xf(x) erf-1 (2F(x) - 1) dx (3.21)

We emphasize that this closure coefficient does not depend on the time-difference r

but only on the single time statistics and in particular the energy level of the system,

defined by -y. To this end, for any given marginal pdf f, we can analytically find what

would be the closure coefficient under the assumptions of the adopted copula function.

The corresponding coefficient for the joint response-excitation statistics p.,, can be

similarly obtained through a first order expansion of the moments:

Pxy = f x 3f(x) erf' (2F(x) - 1) dx (3.22)
f xf(x) erf-' (2F(x) - 1) dx

The closure coefficient px,y has exactly the same form with the closure coefficient Pxx

and it does not depend on the statistical properties of the excitation nor on the time-
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difference r but only on the energy level -y. We will refer to equations (equation (3.21))

and (equation (3.22)) as the closure constraints. This will be one of the two sets of

constraints that we will include in the minimization procedure for the determination

of the solution.

3.4.4 Closed Moment Equations

The next step involves the application of above closure scheme on the derived two-time

moment equations. By directly applying the induced closure schemes on equations

(equation (3.9)) and (equation (3.10)), we have the linear set of moment equations

for the second-order statistics:

a2 0 a2
C2v(r) + A Cxy(r) + (ki + px,yk3)C2,(T) = 2 CYY(T), (3.23)

a-T2  - T

02 0 2
-2 C 2(r) + A-Cx(r) + (ki + p,k3)C2() = 092 CX(-r). (3.24)
T2 OT 4r2

Using the Wiener-Khinchin theorem, we transform the above equations to the corre-

sponding power spectral density equations:

{(jW) 2 + A(jw) + ki + plk3 }Sxy (w) = (jW) 2SYY(w), (3.25)

{(jw) 2 - A(jw) + ki + px,xk 3}S22(w) = (jOW) 2 SY(w). (3.26)

These equations allow us to obtain an expression for the power spectral density of the

response displacement in terms of the excitation spectrum:

S22(w) = WSyy(w) (3.27)
{ki + px,yk 3 - w 2 + j(Aw)}{ki + px,xk 3 -w 2 _j(Aw)}(

Integration of the above equation will give us the variance of the response:

2 = jSxx(w)dw

00 W4W-Syy(w)dw. (3.28)
J {ki + px,yk 3- w2 + j(Aw)}{ki + px,xk 3 -w 2 -j(Aw)}
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The last equation is the second constraint, the dynamics constraint, which expresses the

second order dynamics of the system. Our goal is to optimally satisfy it together with

the closure constraints defined by equations (equation (3.21)) and (equation (3.22)).

3.4.5 Moment Equation Copula Closure (MECC) Method

The last step is the minimization of the two set of constraints, the closure constraints

and the dynamics constraint, which have been expressed in terms of the system re-

sponse variance x 2. The minimization will be done in terms of the unknown energy

level y and the closure coefficients p,, and px,y. More specifically, we define the

following cost function which incorporates our constraints:

J(, Px'x ) - {x wSYY(W) dw
' 1''k + p,yk - w 2 + j(Aw)}{ki + px,xk 3 - w 2 _ (/C)}

2
f x 3f(x) erf-1 (2F(x) - 1) dx

j xIx f xf (x) erf- 1 (2F(x) - 1) dx }
f X 3f(x) erf (2F(x) - 1F (2F(x) - 1) dx (3.29)

+ '-''y fxf (x) erf -1 (2F(x) - 1) dx '

Note that in the context of statistical linearization only the first constraint is min-

imized while the closure coefficient is the one that follows exactly from a Gaussian

representation for the pdf. In this context there is no attempt to incorporate in an equal

manner the mismatch in the dynamics and the pdf representation. The minimization

of this cost function essentially allows mismatch for the equation (expressed through

the dynamic constraint) but also for the pdf representation (expressed through the

closure constraints). For linear systems and an adopted Gaussian pdf for the response

the above cost function vanishes identically.
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Chapter 4

Applications of

Moment-Equation-Copula- Closure

Method

4.1 Formulation

In chapter 3, we have developed computational framework which allows for the in-

expensive and accurate approximation of the second order statistics of the system

even for oscillators associated with double-well potentials. In addition, it allows for

the semi-analytical approximation of the full non-Gaussian joint response-excitation

pdf in a post-processing manner.

In this chapter, we illustrate applications of the developed approach through nonlinear

single-degree-of-freedom energy harvesters with double-well potentials subjected to

correlated noise with Pierson-Moskowitz power spectral density. We also consider

the case of bi-stable oscillators coupled with electromechanical energy harvesters

(one and a half degrees-of-freedom systems), and we demonstrate how the proposed

probabilistic framework can be used for performance optimization and parameters

selection. In the later section, we extend the applicability of MECC method to a
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general linear structure attached with a nonlinear energy harvesters. We consider

two examples, the linear single-degree-of-freedom system and the linear undamped

elastic rod, under stochastic forcing with Pierson-Moskowitz spectrum and provide the

comparison of semi-analytical results and direct Monte-Carlo simulations. We note

that, for all applications, it is assumed that the stationary stochastic excitation has a

power spectral density given by the Pierson-Moskowitz spectrum, which is typical for

excitation created by random water waves:

1 1
S(w) = q - exp(--1), (4.1)

where q controls the intensity of the excitation.
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4.2 SDOF Bistable Oscillator Excited by Colored

Noise

For the colored noise excitation that we just described, we apply the MECC method.

We consider a set of system parameters that correspond to a double well potential.

Depending on the intensity of the excitation (which is adjusted by the factor q), the

response of the bistable system 'lives' in three possible regimes. If q is very low, the

bistable system is trapped in either of the two wells while if q is very high the energy

level is above the homoclinic orbit and the system performs cross-well oscillations. Be-

tween these two extreme regimes, the stochastic response exhibits combined features

and characteristics of both energy levels and it has a highly nonlinear, multi-frequency

character [47, 46].

Despite these challenges, the presented MECC method can inexpensively provide with

a very good approximation of the system's statistical characteristics as it is shown in

figure 4-1. In particular in figure 4-1, we present the response variance as the intensity

of the excitation varies for two sets of the system parameters. We also compare our

results with direct Monte-Carlo simulations and with a standard Gaussian closure

method [136, 140, 55].

For the Monte-Carlo simulations the time series for the excitation has been generated

as the sum of cosines over a range of frequencies. The amplitudes and the range of

frequencies are determined through the power spectrum while the phases are assumed

to be random variables which follow a uniform distribution. In the presented examples,

the excitation has power spectral density that follows the Pierson-Moskowitz spectrum.

Once each ensemble time series for the excitation has been computed, the governing

ordinary differential equation is solved using a 4th/5th order Runge-Kutta method.

For each realization the system is integrated for a sufficiently long time interval in

order to guarantee that the response statistics have converged. For each problem, we

generate 100 realizations in order to compute the second-order statistics. However,
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for the computation of the full joint pdf, a significantly larger number of samples is

needed reaching the order of 107.

2.5 2
Monte Carlo Simulation Monte Carlo Simulation

-- Guassian Closure 1.8 - Guassian Closure
- MECC Method -MECC Method

2 - -1.6 --

1.4 -
1.5 1.2
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--. 5 0.6 0..-5o

0.5 -0.5 0.4

. 1 0 1 202-2 -1 0 1 2
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q q
(a) (b)

Figure 4-1: Mean square response displacement with respect to the amplification factor
of Pierson-Moskowitz spectrum for the bistable system with two different sets of system
parameters. (a) A = 1, ki = -1, and k3 = 1. (b) A = 0.5, ki = -0.5, and k3 = 1.

We observe that for very large values of q the computed approximation closely follows

the Monte-Carlo simulation. On the other hand, the Gaussian closure method sys-

tematically underestimates the variance of the response. For lower intensities of the

excitation, the exact (Monte-Carlo) variance presents a non-monotonic behavior with

respect to q due to the co-existence of the cross- and intra-well oscillations. While

the Gaussian closure has very poor performance on capturing this trend, the MECC

method can still provide a satisfactory approximation of the dynamics. Note that the

non-smooth transition observed in the MECC curve is due to the fact that for very

low values of q the minimization of the cost function (equation (3.29)) does not reach

a zero value while this is the case for larger values of q. In other words, in the strongly

nonlinear regime neither the dynamics constraint nor the closure constraint is satisfied

exactly, yet this optimal solution provides with a good approximation of the system

dynamics.

After we have obtained the unknown parameters ^y, PXX and px,y by minimizing the cost

function for each given q, we can then compute the covariance functions and the joint
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pdf in a post-process manner. More specifically, since a known y corresponds to a spe-

cific px,y (equation (equation (3.22))) we can immediately determine C.,(r) by taking

the inverse Fourier transform of S, found through equation (equation (3.25)). The

next step is the numerical integration of the closed moment equation (equation (3.24))

utilizing the determined value px, with initial conditions given by

C22(0) = Jx2f (x -y) dx, and Ox(0) = 0, (4.2)

where the second condition follows from the symmetry properties of Cxx. Note that

we integrate equation (equation (3.24)) instead of using the inverse Fourier transform

as we did for Cxy(T) so that we can impose the variance found in the last equation by

integrating the resulted density for the determined -y. Using the correlation functions

Cxx(r) and Cxy(r) we can also determine, for each case, the correlation coefficient c

of the copula function for each time-difference T. The detailed steps are given at the

end of this subsection.
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Figure 4-2: Correlation functions C,, and Cy of the bistable system with system
parameters A = 1, k1 = -1, and k3 = 1 subjected to Pierson-Moskowitz spectrum. (a)
Amplification factor of q = 2. (b) Amplification factor of q = 10.

The results as well as a comparison with the Gaussian closure method and a direct

Monte-Carlo simulation are presented in figure 4-2. We can observe that through the

proposed approach we are able to satisfactorily approximate the correlation function

even close to the non-linear regime q = 2, where the Gaussian closure method presents

important discrepancies.

Finally, using the computed parameters -y and closure coefficients, pxx and px,y, we

can also construct the three-dimensional non-Gaussian joint pdf for the response-

response-excitation at different time instants. This will be derived based on the three-
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dimensional Gaussian copula density of the following form:

C (F(x), F(z), G(y)) = 1 (1
exp L<D-' (F(x))

4,1 (F(z))

4-' (G(y))

- T

I <,-1 (F(x))

D-1 (G(y))
II.

(4.3)

The three-dimensional non-Gaussian joint pdf for the response-response-excitation at

different time instants can be expressed as follows:

fx(t),x(t+r),y(t+r) (x, z, y) = f(x)f(z)g(y)C (F(x), F(z), G(y))

= f(x)f(z)g(y) 1v/d-tR

x exp -- F,D-' (F(x))

<D-1 (F(z))

4-1 (G(y)) I
T

. (R-1 - I) - F<D-1 (F(x))

<D-1 (F(z))

(4.4)

where R represents the 3 x 3 correlation matrix with all diagonal elements equal to 1:

c

1 CZ

z 1

cxv czy

cXY

czy

1]

(4.5)

The time dependent parameters cxz, cXY, czy of the copula function can be found

through the resolved moments, by expanding the latter as:

Co(T) = JJ xzfx(t),x(t+r),y(t+r)(x, z, y)dxdydz = 2F2 cxz + 0

Cx (T) = JJ Xyfx(t),x(t+-r),(t+r))(x, z, y)dxdydz = 2.Fgcxy + 0 (civ),

CXY(O) = ZYfx(t),X(t+r),Y(t+r) (x7 z, y)dxdydz = 2,gczy + 0 (c 2).
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where,

Y = J xf(x) erf~ 1 (2F(x) - 1) dx and 9 = J xg(x) erf - (2G(x) - 1) dx.

If necessary higher order terms may be retained in the Taylor expansion although for

the present problem a linear approximation was sufficient. The computed approxima-

tion is presented in figure 4-3 through two dimensional marginals as well as through

isosurfaces of the full three-dimensional joint pdf. We compare with direct Monte-

Carlo simulations and as we are able to observe, the computed pdf compares favorably

with the expensive Monte-Carlo simulation. The joint statistics using the Monte-Carlo

approach were computed using 107 number of samples while the computational cost

of the MECC method involved the minimization of a three dimensional function.

76



Monte Carlo Simulation

5

10 55

y0 -5 0

-10 -5 Z

5

01

10 55

0 0 5
y -57

-10 -5 z

MECC Method

55

00

5 5

0
y -50

-10 5Z

5-

00

5,
100

y -5
-10 -5 Z

Figure 4-3: Joint pdf fx(t)x(t+r)y(t+r) (x, z, y) computed using direct Monte-Carlo sim-

ulation and the MECC method. The system parameters are given by A = 1, k, = -1,
and k3 = 1 and the excitation is Gaussian following a Pierson-Moskowitz spectrum with

q = 10. The pdf is presented through two dimensional marginals as well as through

isosurfaces. (a) r = 3. (b) r = 10.
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4.3 SDOF Bistable Oscillator Coupled to an Elec-

tromechanical Harvester

In practical configurations, energy harvesting occurs through a linear electromechanical

transducer coupled to the nonlinear oscillator [56, 712, 99]. In this section, we assess

how our method performs for a bistable nonlinear SDOF oscillator coupled to a linear

electromechanical transducer. The equations of motion in this case take the form:

+ At + kix + k3X3 + av= t, (4.9)

(4.10)i + Ov = ,

where x is the response displacement, y is a stationary stochastic excitation, v is the

voltage across the load, A is the normalized damping coefficient, k, and k3 are the

normalized stiffness coefficients, a and 6 are the normalized coupling coefficients, and

# is the normalized time coefficient for the electrical system. All the coefficients except

k, are positive. Based on the linearity of the second equation, we express the voltage

in an integral form:

v(t) = 6j ()e- d4 = 6 (t) * e-Ou(t), (4.11)

where * indicates convolution and u(t) represents the Heaviside step function. We

then formulate the second-order moment equations following a similar approach with
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the previous section.

A ax(t)x(s) +

av(t)v(s) + 3v(t)v(s) =

02

5t2 y(t)y(s),

(4.12)

02

(4.13)

a x(t)v(s).

(4.14)

In this case, we estimate two additional covariance functions, v(t)y(s) and v(t)x(s)

before applying MECC method:

v(t)y(s) = 6o i(()y(s)e-I(-C)d(,

= 6 Cxy(C -

= 6 Cxy(t - s) * e~ tu(t),

= 6 .Cxy(r), * e-' U(t),

(4.15)

(4.16)

(4.17)

(4.18)

where T = t - s is the time difference of two generic time instants t and s. Considering

the power spectrum, the Fourier transform of the above gives:

F{v(t)y(s)} = SVY(w) = Sc(w). (4.19)

Similarly, we also obtain for v(t)x(s):

F{v(t)x(s)}
j6W

S~x() + .WSxx(W) .

By applying the previously described closure scheme on equations (equation (4.12))

and (equation (4.13)), we have a linear set of moment equations for the second-order
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02
-;2 X(t)y(s) + A a x(t)y(s) + kix(t)y(s) + k3 x(t)3y(s) + av(t)y(s) =

02
8-x(t)x(s) + kix(t)x(s) + k3 x(t) 3 x(s) + av(t)x(s) =

(4.20)



statistics:

02

02
2 ~Cxx(T)

+ Aa Cxy(r) + (ki + px,yk 3)C2y(T) + a6 Cxy(r) * e-tu(t)

+ A--CX(-r)
09r

+ (ki + p.,.k 3)C2x(r) + a5--C22(T) * e-tu(t)
09T

C + 3CoQr )+

02

= 2 CYYr)

(4.21)

02

(4.22)

0(2
(4.23)

Using the Wiener-Khinchin theorem, we transform the above equations to the corre-

sponding power spectral density equations:

{(jW) 2 + A(jw) + ki

{(jW) 2 - A(jw) + ki

" P'Y3 -jajw SYW+ + }S(w)

+ pxxk3 - 0W}SX(w)

= (jW) 2SYY(w),

= (jW) 2SXY(w),

{-(jW) + /}SVV(w) = - J(jw)SVX(w).

(4.24)

(4.25)

(4.26)

These equations allow us to obtain an expression for the power spectral density of the

response displacement and response voltage in terms of the excitation spectrum:

w 4

{k + p,k3 - W2 + j(Aw) + jQ}

1
x { ki + p,k3 - 2

62w 6

S. (W) {2 + w2 }{ki + px,yk 3 - w 2 + j(Aw) + }

. W Syy (w), (4.27)
(AW) _

1
x . Syy(w).

{ki + p.,xk3 - j2_ (Aw) _
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Integration of the above equation will give us the variance of the response displacement

and voltage:

T27 [00 4
Jo ki + p,,,k3 - W2 + j(AW) + }

13j

x Svy(w)dw, (4.29)
{ki + p ,,k3 - W2 j(Aw) - 61

jo { } 62W6

{32 + W2}{ki + px,k3 - W2 + j(Aw) + }

x Syy(w)dw. (4.30)
{ki + px,xk3 - LO2 j(Xj C6

Equation (equation (4.29)) expresses the second order dynamics of the SDOF bistable

oscillator coupled with an electromechanical harvester, and is the dynamics constraint

for this system. We will minimize it together with the closure constraints defined by

equations (equation (3.21)) and (equation (3.22)):

p f x3f(x) erf - (2F(x) - 1) dx

JQ) x',Py) f xf(x) erf-' (2F(x) - 1) dx }
f x3 f (x) er f- (2F(x) - 1) dx

+ f xf(x) erf 1 (2F(x) - 1) dx

+ f-00 W4SYY(w)
o {ki + px,yk 3 - L2 + j(Aw) + }

1+~

}2{k1 + p.,xk3 - W2-j(Aw) - ic dw}

(4.31)

In figure 4-4, we illustrate the variance of the response displacement and the voltage

as the intensity of the excitation varies for two sets of the system parameters. For

both sets of system parameters, we observe that for large intensity of the excitation,

the MECC method computes the response variances (displacement and voltage) very

accurately, while the Gaussian closure method systematically underestimates them.
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For lower intensities of the excitation, the response displacement variance computed

by the Monte-Carlo simulation presents a non-monotonic behavior with respect to q.

While the Gaussian closure has very poor performance on capturing this trend, the

MECC method can still provide a satisfactory approximation of the dynamics.
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Figure 4-4: Mean square response displacement and mean square response voltage with
respect to the amplification factor of Pierson-Moskowitz spectrum for bistable system
with two different sets of system parameters. Electromechanical harvester parameters
are a = 0.01, # = 1, and 6 = 1. (a) A = 1, ki = -1, and k3 = 1. (b) A = 0.5, ki = -0.5,
and k3 = 1.0.
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Following similar steps with the previous section, we obtain the covariance functions of

the response displacement and voltage and the joint pdf in a post-process manner. The

results as well as a comparison with the Gaussian closure method and the Monte-Carlo

simulation are illustrated in figure 4-5. We can observe that through the proposed

approach we are able to satisfactorily approximate the correlation function even close

to the non-linear regime q = 2, where the Gaussian closure method presents important

discrepancies. In figure 4-6, we illustrate two dimensional marginal pdfs as well as

isosurfaces of the full three-dimensional joint pdf. We compare with direct Monte-Carlo

simulations and as we are able to observe, the computed pdf closely approximates the

expensive Monte-Carlo simulation in statistical regimes which are far from Gaussian.
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-MECC Method
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Figure 4-5: Correlation functions C,, and C,, of the bistable system with A = 1,
k, = -1, and k3 = 1 subjected to Pierson-Moskowitz spectrum. Electromechanical

harvester parameters are a = 0.01, ,3 = 1, and 6 = 1. (a) Amplification factor of q = 2.

(b) Amplification factor of q = 10.
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Figure 4-6: Joint pdf fx(t)x(t+r)(t+7 ) (x, z, y) computed using direct Monte-Carlo sim-

ulation and the MECC method. The system parameters are given by A = 1, k, = -1,
and k3 = 1 under Pierson-Moskowitz spectrum q = 10. Electromechanical harvester pa-

rameters are a = 0.01, # = 1, and 6 = 1. The pdf is presented through two dimensional

marginals as well as through isosurfaces. (a) r = 3. (b) r = 10.

Finally in figure 4-7, we demonstrate how the proposed MECC method can be used

to study robustness over variations of the excitation parameters. In particular, we

present the mean square response displacement and response voltage estimated for

various amplification factors q and frequency-varied excitation spectra:

Sp(w) = S(W - wo), (4.32)

where wo is the perturbation frequency. The comparison with direct Monte-Carlo

simulation indicates the effectiveness of the presented method to capture accurately

the response characteristics over a wide range of input parameters.
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Figure 4-7: Performance comparison (mean square response displacement (a) and

voltage (b)) between Monte-Carlo simulations (100 realizations) and MECC method.

Results are shown in terms of the amplification factor q and the perturbation frequency

wo of the excitation spectrum (Pierson-Moskowitz) for the bistable system with A = 1,
k, = -1, and k3 = 1. The electromechanical harvester parameters are a = 0.01, 3 = 1,
and 6 = 1.
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4.4 General Linear Structure Attached with SDOF

Bistable Oscillator

In this section we consider the bistable energy harvester attached to a general linear

structure, and we apply the previously developed Moment Equation Copula Closure

(MECC) method to obtain the response statistics. We first formulate the problem

for a generalized dynamical configuration, and in the later subsections we provide

two examples: one is single-degree-of-freedom system attached with a bistable energy

harvester, and the other is continuous linear elastic rod attached with a bistable

energy harvester. In this way we point out the applicability of the MECC method

to an arbitrary linear structure for the purpose of energy harvesting with bistable

oscillator.

4.4.1 General Linear Structure

IF ft t;c) Xa

Figure 4-8: General linear structure attached with nonlinear (i.e. bistable) energy
harvester.

We first formulate the problem with a general linear structure subject to an external

forcing attached with an energy harvester. The way we set up the problem as well

as definitions and notations are initially introduced in [I28]. Here we adopt the same

procedures by slightly modifying and adjusting to our problem. Interested readers

should first refer to the original paper [128].
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The dynamics of a linear structure can be formulated in terms of a linear operator.

0U(X, t)' = L[u(x, t)] + F(x, t;), x E D, U E Q. (4.33)

Here u(x, t) indicates the response of the linear structure, x is an index taking values in

a discrete or continuous set , and F describes all the stochastic and/or deterministic

forcing acting on the linear structure. We consider a probability space Q which contains

the set of events ZJ E Q. The boundary conditions and initial conditions can be

expressed by

M[u(x, t)] = h(x, t), (4.34)

u(x,to) = fo(x;a), ut(x,to) = go(x; U), x E D, 7 E Q, (4.35)

where M [u(x, t)] is the operator for the boundary condition, fo and go describe the

initial conditions of displacement and velocity, respectively. In our problem the linear

structure is coupled with a nonlinear (bistable) energy harvester connected to the

linear structure at point xa (figure 4-8). We consider the case of bimodal nonlinearity

which can be characterized by negative linear stiffness kia < 0 and positive cubic

stiffness k3a > 0:

mAl + Aa(4 - Ut(Xa, t)) + kia(q - U(Xa, t)) + k3a(q - U(Xa, t))3 = 0, (4.36)

q(to; ) = qo(a), 4(to;O) = 4o(a), C Q, (4.37)

where ma and Aa are mass and damping coefficient of the attachment, respectively.

We note that the coupling with the linear structure has been introduced through the

relative displacement q - u(xa, t) across the nonlinear attachment. Considering the

external force Fe(x, t; 0), we can split the force acting on the linear structure F(x, t; a)
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as follows.

F(x, t; a7) = [Aa( - ut(xa, t)) + kia(q - u(xa, t)) + k3a(q - U(Xa, t))3 6(x - Xa)

+ Fe(x, t;Ui). (4.38)

Now we can characterize the response of the linear structure in terms of a Green's

function [101. Detailed derivation and proofs can be found in [128, 101.

u(x, t) = G(x, tly, s).F(y, s; ZU)dyds

+ [G(x, tly, to)go(y;D) - Gt(x, tjy, to)fo(y; )] dy. (4.39)

By plugging equation (4.38) into the above, we obtain

I G(x, tly, s)Fe(y, s; )dyds
D

+ J [G(x, tly, to)go(y; ) - Gt(x, tly, to)fo(y; a)] dy

+ jG(x, tlxa, s)[Aa(4 - ut(a, s)) + kia(q -u(a, s)) + k4a(q - U(Xa, S))] ds.

(4.40)

Based on these, we can simply replace the equation of motion for the nonlinear

attachment in equation (4.37) as follows:

MA + Aa(4 - ) + k1a(q - + ka(q - ()3 = 0,

q(to; -a) = go(0), 4(to;a) = 40(P) Z E Q,

(4.41)

(4.42)

where we have defined

C(t) = U(Xa, t)

= w (t; Z) +
I t

G(Xa, t IXa,

(4.43)

s) Aa(4 - c(s)) + kia(q - s(s)) + k3a(q - ((s))3 ds.

(4.44)
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The term W-(t; Z) consists of i) an external stochastic forcing on the linear structure

and ii) a stochastic initial conditions.

G(t; ) = GJ ,t Iy, s)e(y, s; ) dyds

+ [G(xatIyto)go(y;a7)- Gt(Xa, tjy, to)fo(y; i)] dy.

We assume that

which are equivalent with

1
= -(v - w).

2

By plugging above relations into equation (4.41) and equation (4.44), we obtain

v(t) = w(t) + 271(t; i)

+2jto

w(to; a) = qO(a),

G(Xa, tIXa, S)[Aatb (S) + kiaW(S) + k3a(W(S)) 3]ds,

Il(to; Z) = g0(p),

where we assumed fo(Xa, a) = 0 and go(xa; a) = 0 without loss of generality. Sub-

stituting v(t) from the second equation into the first equation, we can combine the

equations as

.. + . a + 3a 3

ma ma ma

d2  [
= ~t ) -dt2 If G(Xa, tjXa, s) [Aalb(s) + klaW(s) + k3a(w(s))3]ds1. (4.51)

We note that above stochastic nonlinear integro-differential equation is the exact

reformulation of the original problem we consider and no approximation has been

89

(4.45)

v=q+(, w = q- (4.46)

1
q = 2(V +W),2

2Aa .
ma

(4.47)

2kia
w+

ma

2 k3a 3 =

ma
(4.48)

(4.49)

(4.50)

IWAMMIWAkaft, an_ "_" , - __ , - 1 --- 11.1-1 1 1,.,- - ---. 1-1 - _1-.-. __ - 11



applied. The entire step we described here can be applied to any general linear structure

under external forcing attached with bistable energy harvesters. More generalized

formulation with multiple number of nonlinear attachments to a linear structure has

been discussed in [128]. In the following subsections, we demonstrate how this approach

can be repeated to the two specific linear structures (single-degree-of-freedom linear

structure and continuous linear elastic rod) attached with the bistable energy harvester.

We then describe how the developed MECC method can be utilized to estimate the

response statistics. Semi-analytical results will be compared with direct Monte-Carlo

simulations as well as the traditional Gaussian closure scheme.

4.4.2 Bistable Energy Harvester with Linear SDOF Struc-

ture

z z

k ~ ka

k 1M

r ma

3a

Figure 4-9: TDOF linear structure attached with nonlinear (bistable) energy harvester.

We first consider the example of linear single-degree-of-freedom system attached with

essentially nonlinear bistable energy harvester (figure 4-9) whose equations of motion

are:

m+ A + k( + Aa( - )+ kia(( -70 + kaa(( - 7)3 =y, (4.52)

MAn + Aa( -) + kia(, - () + kaa(77 - ()3 = 0, (4.53)

where m, A, and k are the mass, damping coefficient and stiffness of the linear struc-

ture while ma, Aa, kia and k3a are the mass, damping coefficient, linear stiffness and

cubic stiffness of the attachment. Here we note that in order to impose the bimodal

nonlinearity we consider kia to be negative, kia < 0. Also ( and n indicate the rela-
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tive displacement of the linear structure and the attachment, respectively. y indicates

the excitation displacement whose spectral density is in the Pierson-Moskowitz form

(equation (4.1)). The coupling between the linear structure and the attachment has

been introduced by the relative displacement of C and qj. Thus by letting x = q -

we can re-write above governing equations as

m4 + A + k(+ ma+ md = , (4.54)

maz + Aa + kiax + k3ax3 = -mar. (4.55)

By letting the Fourier transform of ((t) is Z(jw), we take the Fourier transform of

the first equation of above:

(m(jW)2 + A(jw) + k + ma (jw) Z(jw) + ma (jW) 2 X(jW) = (jW) 2Y(jW), (4.56)

then this follows:

-ma(jW) 2

m(jw) 2 + A(jw) + k + ma(jW) 2

+ mjw)Y(j) (4.57)
m(jW)2 + A(jw) + k + ma(jw)2Y(

(jW) 2Z(jw) = -Ma(jW) 4  X(jW)
M(jW)2 + A(jw) + k + ma(jw) 2

+ mj)Y(j). (4.58)M(jW)2 + A(jw) + k + M (j8)2

Above second equation can be rewritten in time domain by taking inverse Fourier

transformation:

((t) = a(t) * x(t) + (t) * y(t), (4.59)
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where

-ma(jw) 4

A(jw) = . Ma ,j) (W (4.60)
(j)2 + Am(j)) + k(+ Ma4

Z(O) =a (j_1 (j ) (4.61)
M(jW)2 + A(jw) + k + ma~o)

and

B(jw) =j) j j (4.62)
m(jW) 2 + A(jw) + k + ma(jw)2 '

(t) = (W) 4  (jW) 2  (4.63)
\ M(jW)2+ A(jw) + k + Ma

We can plug this relation into the second equation of equation (4.55) which gives:

maz + Aa + kiaX+ k3 X 3 + maa * x = -ma3 * y. (4.64)

Again above stochastic nonlinear integro-differential equation (in terms of convolu-

tions) is the exact reformulation of the original governing equations. Moreover the

equation is in the similar form of what we have performed the MECC method in

(section 4.2). We simply follow the same procedures to obtain the response spectral

density function. First we compute the differential equations in terms of covariance

functions by multiplying with x and y at different time instant s and by taking

ensemble average.

020
C9y(T) + A9 Cy(T) + (kia + px,yk3a + maA(jw))Cxy(r) = - maB(jw)Cyy(r),

0T 2  09T

(4.65)

2Cxx(r) + Aa Cxx(r) + (k1a + px,xk3a + maA))Cxx(r) = -MaB(jW)CXY(-T).0 .2 OT6
(4.66)
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Using the Wiener-Khinchin theorem, we transform the above equations to the corre-

sponding power spectral density equations:

{ma (jw) 2 + Aa(jW) + kia + k3apx,y + maA(w)}Sxy(w) = -maB(jw)Syy(w),

(4.67)

{ma(jw)2 - Aa(jW) + kia + k3aPx,x + maA(-w)}Sxx(w) = -maB(jw)S,(w).

(4.68)

These equations can be combined into

SXX(w) = maB(w)B(-w)

(ma(jw)2 + Aa(jW) + kia + k3 apx,y + maA(w))

x SYY(w)
(M()2 - Aa(jW) + kia + k3aPx,x + maA(-w))

(4.69)

Integration of the above equation will give us the variance.

T2 = JO ( (jw)2 maB(w)B(-w)SYY(w)

(Ma )2 + ~Aa(jW) + kia + k~aaP,y + maA(w)

x 1 Idw. (4.70)

(ma(jw)2 - Aa(jW) + kia + k3apx,x + maA(-w))

As before, the last equation is the dynamics constraint, which expresses the second

order dynamics of the system. We aim to optimally satisfy it together with the closure

constraints defined by equations (equation (3.21)) and (equation (3.22)) by construct-

ing and minimizing the following objective function in terms of the unknown energy
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level -y and the closure coefficients px,, and pe,,:

Po m!B(w)B(-w)Syy(w)

(ma (j) 2 + Aa(jW) + kia + k3aPx,y + maA(w)

+ Px7x+ {P~

2
1

X \d

(ma (jw)2 - Aa(jW) + kia + k3aPx,x + maA(-w))
2

f x3f(x) erf 1 (2F(x) - 1) dx
f xf(x) erf (2F(x) - 1) dx

2

f x 3f(x) erf- 1 (2F(x) - 1)dX (4.71)
f xf(x) erf - 1 (2F(x) - 1) dx }

We emphasize that in the context of statistical linearization only the first constraint is

minimized while the closure coefficient is the one that follows exactly from a Gaussian

representation for the pdf. In this case there is no attempt to incorporate in an equal

manner the mismatch in the dynamics and the pdf representation. The minimization

of this cost function essentially allows mismatch for the equation but also for the

pdf representation. Once we have obtained the closure coefficients and the expression

of response spectral density (for relative displacement x), one can easily obtain the

response spectral density for the main linear structure (for the relative displacement

(). From the equation (4.59), we have the following relations:

SC(w) = A(w)s() + B (
( W)= ( jU

(4.72)

However two spectral densities S-c and Syc are unknowns for now, and we first compute

Sxc(w) from

S(W)=A(w) SX( B(w) S (W).
(jw) 2 (jW) 2 (4.73)

Taking into account the second equation of equation (4.66), we obtain

SyX(w) = -
ma(jw) 2 + Aa(jW) + kia + k3aPxx + maA(w)

MaB(W)
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Hence we obtain

Scxw = 2-A(w) ma(jw) 2 + Aa(jW) + kia + k3apxx + maA(w) Sxx(W).
(jW) 2 ma(jw) 2

For brevity, we choose the following notation

T A(w)
Ti~w) (jw)2

ma(jw) 2 + Aa(jW) + kia + k3aPxx + maA(w)

ma(jW) 2

and we simply rewrite into

SXc((w) = Ti(-w)Sox(w).

Now we similarly obtain S, (w):

SCY(w) = A(w)()(jw) 2 + .jj 2 Syy(W).

Taking into account the first equation of equation (4.66), we obtain

SCY (w) = {
(jw)2 (ma(j)2 +

maA(w)B(w)

Aa(jW) + kia + k3aPxy + MaA(w))
+ UW)} SY,,G(w)

(4.79)

We also choose the notation of

T2 (W) = -

(jw)2 (ma(j)2 +

maA(w)B(w)

Aa(jW) + kia + k3aPxy + maA(w))

then we get

Syc(W) = T2 (-w)Shh(w).

(4.75)

(4.76)

(4.77)

(4.78)

B(w), (4.80)

(4.81)
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Finally plugging equation (4.77) and equation (4.81) into equation (4.72), we obtain

the spectral density function for (

Sc~)-A(w) B(w)
S((W) = 2 Ti(-w)Sxx(w) + T2(-L)Syy(W). (4.82)

(jW) 2  (jW)

In figures 4-10 and 4-11, we illustrate the variance of the response displacements (

and x as the intensity of the excitation varies for four different sets of the system

parameters. Those system parameters are summarized in table 4.1, table 4.2, table 4.3,

table 4.4, respectively. For all cases, we observe that the MECC method computes the

response variances very accurately, while the Gaussian closure method systematically

underestimates them. For lower intensities of the excitation, the response displacement

variance computed by the Monte-Carlo simulation presents a non-monotonic behavior

with respect to q. In this regime, the Gaussian closure has very poor performance on

capturing this trend, however the MECC method provides a satisfactory approximation

of the dynamics. Finally we point out that the same procedures can be applied to any

linear multi-degree-of-freedom structures attached with bistable energy harvesters.
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Table 4.1: System parameters for SDOF 1.

m 1 ma 1

A 0.1 Aa 1

k 1 kia -1

- k 3 a 1

Table 4.2: System parameters for SDOF 2.

m 1 ma 1

A 0.1 Aa 0.5

k 1 kia -0.5

- k3a 1

0 5 10 15 20 2
q

- Monte Carlo Simulation
7 - Guassian Closure-MECO Method

6-

5

4-

3-

2.

0 5 10 15 20 2
q

3 ,

5

2.5

2

0.5 -

0 2 4 6 8 10

5

0 2 4 6 8 10
q

Figure 4-10: Mean square response displacements x2 and (2 with respect to the
amplification factor of Pierson-Moskowitz spectrum for SDOF 1 and 2 attached with
the bistable system. System parameters can be found in 4.1 and 4.2.
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Table 4.3: System parameters for SDOF 3.

m 1 ma 0.1

A 0.1 Aa 0.05

k 1 kia -0.05

-_ - k3a 0.1

Table 4.4: System parameters for SDOF 4.

m 1 ma 0.1

A 0.1 Aa 0.1

k 1 kia -0.1

-_- k3 a 0.1

3.5

3

2.5

'2

1.5

1

0.5

0
0

14

12

10

8

6-

4.

2-

0
0

0 0.2 0.4 0.6 0.8 1
q

- Monte Carlo Simulation

1 2 3 4

0.2 0.4 0.6 0.8 1

1 2 3 4

Figure 4-11: Mean square response displacements X 2 and (2 with respect to the

amplification factor of Pierson-Moskowitz spectrum for SDOF 3 and 4 attached with

the bistable system. System parameters can be found in 4.3 and 4.4.
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4.4.3 Non-Gaussian Closure on Continuous System

I x

y(v,t) L

h(t) V

Figure 4-12: linear elastic rod attached with nonlinear (bistable) energy harvester.

The second example is a linear undamped elastic rod connected to a bistable nonlinear

energy harvester by means of a weak linear stiffness. This problem setting has initially

introduced in [149] considering the rod is subject to the impulse and step excitation.

Interested readers should first refer to the original work [149]. The way of setting up

the problem with elastic rod connected to an attachment has been adopted in this

section, however we modify it to our problem by applying correlation excitation as

well as attaching bimodal nonlinear oscillator.

We first specify the governing equations and boundary conditions for this problem

(figure 4-12).

02 y(v, t) + wy(V, t) _- 2 y(v, t) = h(t)J(v + e), -L < v < 0, (4.83)

z(t) + AV(t) + E (x(t) - y(jo, t)) + kix(t) + k3x 3(t) = 0, (4.84)

y(0, t) + E (x(t) - y(0, t)) = 0, (4.85)

y(-Lt) = 0, y(v, 0) = jY(v,0) = x(O) = (0) = 0. (4.86)

where L is the finite length of the linearly elastic rod on a continuous elastic foundation

whose normalized stiffness is 2s. We assume that all the geometric and material

properties of the rod are uniform. Also the bistable oscillator is situated at the point

of vo(v = 0), and the rod is subject to the excitation h at the point of v = -e > -L.

We consider the excitation has the power spectral density in the form of Pierson-
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Moskowitz shape. The damping coefficient, linear and cubic stiffness of the attachment

are denoted as A, ki, and k3, respectively, and we note that k, < 0 in order to impose

the bimodal nonlinearity. 0 < c < 1 indicates the weak coupling stiffness between the

elastic rod and the attachment. From the above, we consider the governing equation

for the attachment (equation (4.84)), and we can rewrite as

zi(t) + A (t) + Ex(t) + kix(t) + k3 x3 (t) = Ey(Wo , t), (4.87)

Here the response of the main system (linear elastic rod) at point 0 (y(Ko, t)) can be

expressed in terms of the Green's functions goo and gOA assuming the main linear

structure (i.e. rod) is initially at rest and an excitation h(t) is applied at point A,

!ZA(v = -e), at t = 0:

y(1,1t) = h(LA, T)goA(t -r )dT - J E (y(vo, r) - x(-r)) goo(t - r)dr, (4.88)

= h(IA, t) * goA(t) + Ex(t) * goo(t) - Ey(E0 , t) * goo(t). (4.89)

Here the green function goo indicates the displacement at point 0 (in the direction

of x) due to the unit impulse excitation at point 0. Similarly goA indicates the

displacement at point 0 due to the unit impulse excitation at point A. We note that

y(vo, t) in the left hand side equation (4.89) also appears in its right hand side giving

us the recursive form. By plugging equation (4.89) into equation (4.87), we obtain

:(t)+ At(t) + ex(t) + k1x(t) + k3 x3 (t)

= eh(VA, t) * goA(t) + E2 x(t) * goo(t) - 6 2 y(Eo, t) * goo(t). (4.90)

Considering the weak coupling between the rod and the attachment C < 1, we ignore

the higher order terms (O(E2)) with respect to e:

z(t)+ A (t) + Ex(t) + kix(t) + k3x3 (t) -h h(A, t) * goA(t) + (2). 4.91)

Now the Green's function describing the response of the rod at position v and time t
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due to the unit impulse at U at i can be obtained by [149]

g( - U, t-)= J (wo (t - ) 2 - (V _ w)2)u(t - i - v + U) (4.92)

where u(-) is a step function and Jo(.) is the Bessel function of zeroth order and first

kind. Then the previous two Green's functions can be rewritten as:

goo(t) = Jo(Wot)u(t), goA(t) = J7(wo t2 - e2)u(t - e), (4.93)

Withe these, we finally have

J-t- AtX+ ExX+ klx +k 3 X 3 = Ch *go0A (4.94)

We point out that equation (4.94) is the exact reformulation of the original governing

equations by means of green functions. Above nonlinear integro-differential equation

can be utilized to obtain the response statistics of the attachment.

Interestingly the above equation is in the exactly same form of what we have worked

on in the previous sections except we have additional small coupling stiffness e term

and the excitation is in a modified form. We can follow the same procedures for the

above governing equation as in previous sections to derive the response power spectral

density, however the analytical form of Fourier transform of go is not readily available.

Instead we assume that the excitation is

= h *goA, (4.95)

and numerically estimate the power spectral density of z. Since we have analytical

expression for goA in time domain, we can compute the convolution with the original

excitation displacement h, and by taking Fourier transformation of its covariance

function Cz(T), we can derive Szz(w). Once we numerically estimate the modified

spectral density Szz(w), we can follow the exactly same procedures in (section 4.2).
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Examples of numerically estimated power spectral density Szz(w) has been illustrated

in figure 4-13. For the completeness, we summarize the final equations. The power

spectral density function for the relative displacement x is

{ki ++ px,zk3 - W2 + j(Aw)}

1
X { 2 - j(Aw)} Szz(w). (4.96)

Tk + + px,k3t-ig2taaefhrp .

The integration gives the variance of the response.

0 {ki + c + px,zka - W2 + j(Aw)}
X W2-d

1
X{ki +6e+ px,2k3 -cc 2 _ j (Aw)} c

1.4

1.2 1

1 1

N

U)

0.8-

0.6-

0.4-

0.2-

0
0 1 2

Wc
3 4

(4.97)

5

Figure 4-13: Spectrum
e = 50, 2 = 0.5.

1 is Szz(w) with e = 10, W2 = 1. Spectrum 2 is Szz(w) with
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The closure coefficient px,z connects the fourth order of moment x(t) 3z(s) and the

second order of moment x(t)z(s) as follows:

x(t)3z(s) = px,z x(t)z(s), (4.98)

and as in equation (4.99), the coefficient can be obtained by

PX'Z = f x 3f (x) erf- 1 (2F(x) - 1) dx
f xf(x) erf-1 (2F(x) - 1) dx

Please note that above relation does not depend on the excitation statistics, rather

it only depends on the response statistics of displacement x, which indicates px,z is

essentially the same as p!,, in equation (3.22). In other words the closure coefficient

px,,y stays the same regardless of the change in excitation.

Finally, we construct the minimization objective function as follows:

JY, PxX PX,z) = - I + + pk 3 -W 2 + j(Aw)}

1 Iw
{k1 + E + pk 3 - 2 j(Aw)}

+ x3f(x) erf' (2F(x) - 1) dx
f xf(x) erf- (2F(x) - 1) dx

+ JX1Z f x 3f (x) erf (2F(x) - 1) dX (4.100)
f f(x) erf- (2F(x) - 1) dx

The minimization will be performed with respect to the unknown energy level -y and the

closure coefficients pxx and px,z. In figure 4-14 and figure 4-15, we have also summarized

the variance of the response displacement x with respect to various intensities of the

excitation for four different cases. Associated parameters are summarized in table 4.5,

table 4.6, table 4.7, and table 4.8, respectively. We observe that the MECC method

computes the response variances very accurately, while the Gaussian closure method

systematically underestimates them. For lower intensities of the excitation, the exact
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(Monte-Carlo) variance presents a non-monotonic behavior with respect to q due to the

co-existence of the cross- and intra-well oscillations. While the Gaussian closure has

very poor performance on capturing this trend, the MECC method can still provide

a satisfactory approximation of the dynamics.
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Table 4.5: System parameters for linear elastic rod 1.

ws1 ma 1

e 10 Aa 1

0.1 kia -1

- k3 a 1

Table 4.6: System parameters for linear elastic rod 2.

28 0.5 ma 1
wMa

e 50 Aa 1

C 0.05 kia -1

-- kaa 1

q

(a)

1000

rx

1500

2

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0
0

- Monte Carlo Simulation
Guassian Closure

-MECC Method

2000 4000 6000
q

(b)

8000 10000

Figure 4-14: Mean square response displacement x2 with

factor of Pierson-Moskowitz spectrum for (a) Rod 1, and

summarized in table 4.5 and table 4.6.

respect to the amplification
(b) Rod 2. Parameters are
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Table 4.7: System parameters for linear elastic rod 3.

W 1 ma 1

e 10 Aa 0.5

0.1 kia -0.5

- k3a 1

Table 4.8: System parameters for linear elastic rod 4.

W2 0.5 ma 1w 0

e 50 Aa 0.5

C 0.05 kia -0.5

- k3 a 1

500
q

(a)

1000

1.2

0.81

I " 0.6

0.4

0.2

1500 0 500
q

(b)

1000 1500

Figure 4-15: Mean square response displacement 2 with respect to the amplification

factor of Pierson-Moskowitz spectrum for (a) Rod 3, and (b) Rod 4. Parameters are

summarized in table 4.7 and table 4.8.
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4.5 Summary

In chapter 3 and chapter 4, we have considered the problem of determining the non-

Gaussian steady state statistical structure of bistable nonlinear vibrational systems

subjected to colored noise excitation. We first derived moment equations that de-

scribe the dynamics governing the two-time statistics. We then combined those with

a non-Gaussian pdf representation for the joint response-response and joint response-

excitation statistics. This representation has i) single time statistical structure con-

sistent with the analytical solutions of the Fokker-Planck equation, and ii) two-time

statistical structure that follows from the adoption of a Gaussian copula function. The

pdf representation takes the form of closure constraints while the moment equations

have the form of a dynamics constraint. We formulated the two sets of constraints as

a low-dimensional minimization problem with respect to the unknown parameters of

the representation. The minimization of both the dynamics constraint and the closure

constraints imposes an interplay between these two factors.

We then applied the presented method to two nonlinear oscillators in the context

of vibration energy harvesting. One is a single degree of freedom (SDOF) bistable

oscillator with linear damping while the other is a same SDOF bistable oscillator

coupled with an electromechanical energy harvester. For both applications, it was

assumed that the stationary stochastic excitation has a power spectral density given

by the Pierson-Moskowitz spectrum. We have shown that the presented method can

provide a very good approximation of second order statistics of the system, when

compared with direct Monte-Carlo simulations, even in essentially nonlinear regimes,

where Gaussian closure techniques fail completely to capture the dynamics. In addi-

tion, we can compute the full (non-Gaussian) probabilistic structure of the solution

in a post-process manner. We emphasize that the computational cost associated with

the new method is considerably smaller compared with methods that evolve the pdf

of the solution since MECC method relies on the minimization of a function with a

few unknown variables.
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Finally the developed MECC method has been applied to a general linear structure

attached with bistable nonlinear oscillator with the aim of energy harvesting. We first

introduced the general framework of how the problem can be formulated in terms

of bimodal nonlinearity, and then we demonstrated MECC method for two specific

examples: linear single-degree-of-freedom system attached with bistable oscillator

and undamped linear elastic rod connected to the bistable oscillator. We provided

comparisons of the MECC results with direct Monte-Carlo simulations which presented

a good agreement for the estimation of variance of the response statistics.
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Chapter 5

Reliability of Linear Structural

Systems Subjected to Extreme

Forcing Events

5.1 Introduction

A large class of physical systems in engineering and science can be modeled by stochas-

tic differential equations. For many of these systems, the dominant source of uncertainty

is due to the forcing which can be described by a stochastic process. Applications

include ocean engineering systems excited by water waves (such as ship motions in

large waves [104, 13, 30, 29] or high speed crafts subjected to rough seas [120, 119])

and rare events in structural systems (such as beam buckling [1, 90], vibrations due to

earthquakes [87, 20] and wind loads [89, 142]). For all of these cases, it is common that

hidden in the otherwise predictable magnitude of the fluctuations are extreme events,

i.e. abnormally large magnitude forces which lead to rare responses in the dynamics

of the system (figure 5-1). Clearly these events must be adequately taken into account

for the effective quantification of the reliability properties of the system. In this work,

we develop an efficient method to fully describe the probabilistic response of linear

structural systems under general time-correlated random excitations containing rare
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and extreme events.

2Excitation F, impulse event

0.1

LL 0

-0.1 -

-0.2
1900 2000 2100 2200 00 2400 2500

Response
0.06 -

0.04

02x, extreme response
x

0

-0.02
1900 2000 2100 2200 2300 2400 2500

time

Figure 5-1: (Top) Background stochastic excitation including impulsive loads in (red)

upward arrows. (Bottom) System response displacement.

Systems under forcing having these characteristics pose significant challenges for tra-

ditional uncertainty quantification schemes. While there is a large class of methods

that can accurately resolve the statistics associated with random excitations (e.g. the

Fokker-Planck equation [140, 136] for systems excited by white-noise and the joint

response-excitation method [126, 153, 69, 5] for arbitrary stochastic excitation) these

have important limitations for high dimensional systems. In addition, even for low-

dimensional systems determining the part of the probability density function (pdf)

associated with extreme events poses important numerical challenges. On the other

hand, Gaussian closure schemes and moment equation or cumulant closure methods

[15, 157] either cannot "see" the rare events completely or they are very expensive and

require the solution of an inverse moment problem in order to determine the pdf of in-

terest [3]. Similarly, approaches relying on polynomial-chaos expansions [159, 158] have

been shown to have important limitations for systems with intermittent responses [94].
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Another popular approach for the study of rare event statistics in systems under inter-

mittent forcing is to represent extreme events in the forcing as identically distributed

independent impulses arriving at random times. The generalized Fokker-Planck equa-

tion or Kolmogorov-Feller (KF) equation is the governing equation that solves for

the evolution of the response pdf under Poisson noise [136]. However, exact analyti-

cal solutions are available only for a limited number of special cases [151]. Although

alternative methods such as the path integral method [82, 65, 8] and the stochastic

averaging method [161, 160] may be applied, solving the FP or KF equations is often

very expensive [100, 40] even for very low dimensional systems.

Here we consider the problem of quantification of the response pdf and the pdf asso-

ciated with local extrema of linear systems subjected to stochastic forcing containing

extreme events based on the recently formulated probabilistic-decomposition synthesis

(PDS) method [102, 103]. The approach relies on the decomposition of the statistics

into a 'non-extreme core', typically Gaussian, and a heavy-tailed component. This

decomposition is in full correspondence with a partition of the phase space into a

'stable' region where we do not have rare events and a region where non-linear insta-

bilities or external forcing lead to rare transitions with high probability. We quantify

the statistics in the stable region using a Gaussian approximation approach, while

the non-Gaussian distribution associated with the intermittently unstable regions of

phase space is performed taking into account the non-trivial character of the dynamics

(either because of instabilities or external forcing). The probabilistic information in

the two domains is analytically synthesized through a total probability argument.

We begin with the simplest case of a linear, single-degree-of-freedom (SDOF) system

and then formulate the method for multi-degree-of-freedom systems. The main result

of our work is the derivation of analytic/semi-analytic approximation formulas for

the response pdf and the pdf of the local extrema of intermittently forced systems that

can accurately characterize the statistics many standard deviations away from the
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mean. Although the systems considered in this work are linear, the method is directly

applicable for nonlinear structural systems as well. This approach circumvents the

challenges that rare events pose for traditional uncertainty quantification schemes,

in particular the computational burden associated with rare events in systems. We

emphasize the statistical accuracy and the computational efficiency of the presented

approach, which we rigorously demonstrate through extensive comparisons with direct

Monte-Carlo simulations. In brief, the principal contributions of this chapter are:

" Analytical (under certain conditions) and semi-analytical (under no restrictions)

pdf expressions for the response displacement, velocity and acceleration for

single-degree-of-freedom systems under intermittent forcing.

. Semi-analytical pdf expressions for the value and the local extrema of the dis-

placement, velocity and acceleration for multi-degree-of-freedom systems under

intermittent forcing.

This chapter is structured as follows. In section 5.2, we provide a general formulation

of the probabilistic decomposition-synthesis method for the case of structural systems

under intermittent forcing. Next, in section 5.3, we apply the developed method

analytically, which is possible for two limiting cases: underdamped systems with

( < 1 or overdamped with ( > 1, where ( is the damping ratio . The system

we consider is excited by a forcing term consisting of a background time-correlated

stochastic process superimposed with a random impulse train (describing the rare and

extreme component). We give a detailed derivation of the response pdf of the system

(displacement, velocity and acceleration) and compare the results with expensive

Monte-Carlo simulations. In section 5.4, we slightly modify the developed formulation

to derive a semi-analytical scheme considering the same linear system but without any

restriction on the damping ratio C, demonstrating global applicability of the approach.

In section 5.5, we demonstrate applicability of our method for multiple-degree-of-

freedom systems and in section 5.6 we present results for the local extrema of the

response. Finally, we offer concluding remarks of this chapter in section 5.7.

112



5.2 The Probabilistic Decomposition-Synthesis Method

for Intermittently Forced Systems

Here we provide a brief presentation of the recently developed probabilistic decomposition-

synthesis method adapted for the case of intermittently forced linear systems [102].

We consider the following vibrational system,

MR(t) + Di(t) + Kx(t) = F(t), x(t) E R", (5.1)

where M is a mass matrix, D is the damping matrix, and K is the stiffness matrix.

We assume F(t) is a stochastic forcing with intermittent characteristics that can be

expressed as

F(t) = Fb(t) + Fr(t). (5.2)

The forcing consists of background component Fb of characteristic magnitude cb and

a rare and extreme component F, with magnitude U, >> Oab. The components Fb and

F, may both be (weakly) stationary stochastic processes, while the sum of the two

processes will in general be non-stationary.

This can be seen if we directly consider the sum of two (weakly) stationary processes

x, and x 2 , with time correlation functions Corr., (T) and CorrX 2 (r), respectively. Then

for the sum z = X1 + x 2 we have

Corrz(t, T) = Corrx,(T) + E[x1(t)X2(t + T)] + E[x1 (t + T)X 2 (t)] + Corr,2 (T).

Therefore the process z is stationary if and only if the cross-covariance terms ]E[Xl (t)X 2 (t+

<)] and E[xi(t + T)x 2(t)] are functions of T or only if they are zero (i.e. x1 and X2 are

not correlated).
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To apply the PDS method we decompose the response into two terms

x(t) = Xb(t) + X,(t), (5.3)

where Xb accounts for the background state (non-extreme) and x, is the response

of extreme responses (due to the -intermittent forcing) - see figure figure 5-2. More

precisely x, is the system response under two conditions: (1) the forcing is given by

F = F, and (2) the norm of the response is greater than a threshold value Ijxj| > Y,

where y is the rare event threshold level that is connected with the typical variance of

the background response fluctuations. These rare transitions correspond with F, but

also include a phase that relaxes the system back to the background state Xb. The back-

ground component Xb corresponds to system response without rare events Xb = X - Xr,

and in this regime the system is primarily governed by the background forcing term Fb.

We require that rare events are statistically independent from each other. In the

generic formulation of the PDS we also need to assume that rare events have negli-

gible effects on the background state Xb but here this assumption is not necessary

due to the linear character of the examples considered. However, in order to apply

the method for general nonlinear structural systems we need to have this condition

satisfied.

Next, we focus on the statistical characteristics of an individual mode u(t) E R of the

original system in equation (5.1). The first step of the PDS method is to quantify

the conditional statistics of the rare event regime. When the system enters the rare

event response at t = to we will have an arbitrary background state ub at to and the

problem will be formulated as:

Ur(t) + Aitr(t) + kUr(t) = Fr(t), with ur (to) = ub and F = F, for t > to. (5.4)

Under the assumption of independent rare events we can use equation (5.4) as a basis

to derive analytical or numerical estimates for the statistical response during the rare
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event regime.

Excitation

Response

Rare component

FI

xr

Background component

Fb

X b

P(X r

P(xb

Figure 5-2: Schematic representation of the PDS method for an intermittently forced

system.

The background component, on the other hand, can be studied through the equation,

Mkb(t) + D34 (t) + Kxb(t) = Fb(t). (5.5)

Because of the non-intermittent character of the response in this regime, it is sufficient

to obtain the low-order statistics of this system. For the case where Fb(t) follows a

Gaussian distribution the problem is straightforward. For non-Gaussian Fb(t) other

methods such as moment equations may be utilized. Consequently, this step provides

us with the statistical steady state probability distribution for the mode of interest

under the condition that the dynamics 'live' in the stochastic background.

Finally once the analysis of the two regimes is completed, we can synthesize the results
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through a total probability argument

f(q) = f (q I tIJJI > y, U E Ub, F = Fr) Pr + f (q I F = Fb)(1 - Pr), (5.6)
rare events background

where q may be any function of interest involving the response. In the last equation,

Pr denotes the rare event probability. This is defined as the probability of the response

exceeding a threshold -y because of a rare event in the excitation:

Pr = P(I|UII > -y, F = Fr) = - J 1(Ijull > y, F = Fr) dt, (5.7)
T 'E T

where 1( -) is the indicator function. The rare event probability measures the total

duration of the rare events taking into account their frequency and duration. The

utility of the presented decomposition is its flexibility in capturing rare responses,

since we can account for the rare event dynamics directly and connect their statistical

properties directly to the original system response.

5.2.1 Problem Formulation for Linear SDOF Systems

In order to demonstrate the method, we begin with a very simple example and we

consider a single-degree-of-freedom linear system (see figure 5-3)

i + Adt- + kx = F(t), (5.8)

where k is the stiffness, A is the damping, C = A/2Vk is the damping ratio, and F(t)

is a stochastic forcing term with intermittent characteristics, which can be written as

F(t) = Fb(t) + Fr(t). (5.9)

Here F is the background forcing component that has a characteristic magnitude

cb and Fr is a rare and large amplitude forcing component that has a characteristic

magnitude -r, which is much larger than the magnitude of the background forcing,

-, >> crb. Despite the simplicity of the system, this may have a significantly complicated
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statistical structure with heavy-tailed features. The basic principles of the PDS method

can be directly demonstrated in this practical case and also generalized to more

complex MDOF linear systems.

F=Fb+F z

k

Figure 5-3: Prototype SDOF system.

For the concreteness, we consider a prototype system motivated from ocean engineering

applications, modeling base excitation of a structural mode:

N(t)

,t+ Ak +kx =hl(t) +E(aj6(t - r), 0 < t<T. ( 5.10)

Here h(t) denotes the zero-mean background base motion term (having opposite sign

from x) with a Pierson-Moskowitz spectrum:

Shh(w) = q 15exp ( 4, (5.11)

where q controls the magnitude of the forcing.

The second forcing term in equation (5.10) describes rare and extreme events. In par-

ticular, we assume this component is a random impulse train (J(.) is a unit impulse),

where N(t) is a Poisson counting process that represents the number of impulses that

arrive in the time interval 0 < t < T, a is the impulse magnitude (characterizing the

rare event magnitude a-,), which we assume is normally distributed with mean p1, and

variance o, and the constant arrival rate is given by v, (or by the mean arrival time

T, = 1/va so that impulse arrival times are exponentially distributed -r - eTa).
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We take the impulse magnitude as being m-times larger than the standard deviation

of the excitation velocity h(t):

p, = mah, with m > 1, (5.12)

where o- is the standard deviation of h(t) which can be directly obtained from the

background excitation term.

W= w2Shh(w)dW (5.13)

This prototype system is widely applicable to other systems with similar features

including structures under wind excitations, systems under seismic excitations, and

vibrations of road vehicles [136, 140, 120].
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5.3 Response PDF of SDOF Systems for Limiting

Cases of Damping

We first apply the probabilistic decomposition-synthesis method for the special cases

( < 1 and ( > 1 to derive analytical approximations for the response pdfs for

the displacement and velocity, and acceleration. We perform the analysis first for

the response displacement and by way of a minor modification obtain the response

velocity and acceleration, as well. Other than these two cases, completely analytical

formulas do not exist (as they require transformations with no explicit solutions),

and alternatively we propose a semi-analytical approach described in section 5.4, that

removes the restriction on ( and is applicable for any ( value.

5.3.1 Background Response PDF

We first consider the statistical response of the system to the background forcing

component,

Zb+ Ab + kXb h(t). (5.14)

Due to the Gaussian character of the statistics, the response is fully characterized by

the spectrum. The spectral density of the displacement, velocity and acceleration of

this system are given by,

SxbXb ) = W 2  Shh(w), (5.15)
(k - W2)2 + A2LO2

Sebib(w) = W2 SXbXb(), (5.16)

S44M=(w) =wSXbXb(w). (5.17)
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Thus we can obtain the variance of response displacement, velocity and acceleration:

01b = Sxbb(w)dw, (5.18)

oXb = jSe(w)dw, (5.19)

o = j S,,,(w)dw. (5.20)

Moreover the envelopes are Rayleigh distributed [86]:

Ub ~ R(OXb), (5.21)

Ub ~ R(CYb), (5.22)

iib ~ R(Cib), (5.23)

where the Rayleigh distribution of R(o-) takes the following form of pdf:

f (x; U) = -exp , x > 0. (5.24)

5.3.2 Impulse Response of SDOF Systems

In order to derive the pdf of the rare component of equation (5.10), we consider

the impulse response of a linear sdof system. Recalling basic results, the governing

equation of the system can written as follows.

$ r (t) + Atr(t) + kXr(t) = 0, (5.25)

under an impulse a at an arbitrary time to, say to = 0, and given a zero background

state ((Xr, r) = (0, 0) at t = 0-) are given by the following equations under the two

limiting cases of interest (heavily damped and lightly damped systems).
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Severely underdamped case < « 1 With the approximation of 4 < 1 (or Wdea W"),

we can simplify responses as

Xr(t) = -ae-C'Wn sin WAt, (5.26)
Wd

ir(t) = ae-CWn" cos wdt, (5.27)

$(t) = - awde~C" sin WAt, (5.28)

and the envelopes as

Ur(t) = ae-C' (5.29)
Wd

itr(t) = ce-Cnt, (5.30)

ii,(t) = - awde-Cwt. (5.31)

Severely overdamped case > 1 Similarly, with the approximation of > 1 (or

wo (w,), we can simplify responses as

Xr(t) = e-(wnwo)t (5.32)

r(t) = ae(Cwn+wo)t, (5.33)

Xr(t) = - ((w + wo)aedCn+wa)t. (5.34)

Where above we adopted the standard definitions: w, = v/, ( = A/(2Vk), wo =

WnV('l - 1, and Wd = WoV/TZ- . The results above do not account for non-zero

background initial conditions, i.e. (x, k) = (Xb, Xb) at t = 0-. Non-zero background

initial conditions will modify the prefactor involving a and also adds additional terms

to the results above. We will only take into consideration the leading order impact of

the background state which contributes additionally to the impulse magnitude a in

the leading order terms above and drop the other terms due to the non-zero initial

conditions that do not involve a as they are negligible.
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5.3.3 Extreme Event Response

In the severely underdamped case, the rare event responses can be considered by

appropriately taking into account the background state

xr M tb + Z e -CW"* Sin Wdt, ( 5.35 )
Wd

r(t) ~ ( tb + a)e-Cwnt coswAt, (5.36)

r(t) ~ Wd(4b + a)e-CW"t sin Wdt, (5.37)

The envelopes of the response during the rare event are,

Ur,(t) ~-i -- a eC(Ui, (5.38)
Wd

Ur(t) - lb + ale-CWnt, (5.39)

ui(t) ~ wdlb + ale-Cwt. (5.40)

In equation (5.38) the two contributions tb and a in the term 4b+a are both Gaussian

distributed, and thus their sum is also Gaussian distributed:

r=b +G a ~ f(pa, ab + a). (5.41)

Therefore, the distribution of the quantity lrq is given by the following folded normal

distribution:

1 (n - pa)2 (n + [pa)2
fisi(n) = exp( (n - )2  + exp (n , < n < oo (5.42)

olv27 2or 2ag

where aini = crob + U,. Note in the following subsections we proceed with the approx-

imation of pdf for the system that is underdamped ( < 1, the general steps are exactly

the same for the overdamped case, which we will summarize in the last subsection.
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5.3.4 Rare Event Transition Probability

Next we compute the rare event transition probability defined in equation (5.7) by

considering the time duration Te, a rare response takes to return back to the background

state (see figure 5-4). In other words, Te represents the duration starting from the initial

impulse event time to the point where the response has decayed back to 10% (p, = 0.1)

of its absolute maximum. We note that extremely underdamped systems exhibit

oscillatory behaviors, and for these cases we define the rare event duration as the time

starting from the event to the point where the response envelope has decayed back to

10% of its response absolute maximum:

Ur(re) = pc max{I Xr} = pc Xr( ,) (5.43)
( 11)

where the absolute maximum of x, for heavily underdamped system takes place at

.r We solve the above using equations (5.26) and (5.29) to obtain

2Lr 1

e _= - 1logpc. (5.44)

Since the magnitude of the background excitation 7 only enters as a multiplicative

constant in the analytical form of the rare response, the end time re is independent of

its conditional background magnitude. On the other hand, the response displacement,

velocity, and acceleration are associated with different characteristic end times even

under the same rare events. Accordingly, the rare event time duration Te needs to

be defined separately, and these quantities are be differentiated by Te,dis, Te,,el, and

re,acc. For simplicity in notation, we drop the additional subscript differentiating these

different rare event end times, with it being implied that they are different depending

on the quantity of interest. With the obtained value for re we compute the desired

probability of a rare event using the frequency v (equal to 1/Ta)

Pr = VaTe = Te/Ta. (5.45)
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We emphasize again that the probability of a rare event Pr takes different values for

the response displacement, velocity, and acceleration and will be denoted by Pr,dis,

Pr,vel, and Pr,acc, respectively.

a)
C')
C
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-
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E
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0.8

0.6

0.4

0.2

0

-0.2

-0.4
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-0.8
0 10 20

time
30 40 50

Figure 5-4: Rare event time duration re and the time -r, where the maximum magnitude

of the response takes place.

5.3.5 Probability Density Function for Rare Events

We proceed with the derivation of the pdf in the rare event regime. Consider again

the response displacement during a rare event,

(5.46)
Wd

here t is a random variable uniformly distributed between the initial time when the

rare response has its maximum amplitude -r (to be defined later) and the end time Te

(equation (5.44)) when the response has relaxed back to the background dynamics:

t ~ Uniform(is, Te) (5.47)
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Note that the initial time instant r, is necessary based on the fact that the responses

or response envelopes maximum value do not occur at the exact instant T, = 0 that

an impulse occurs; T, accounts for the actual maximum of the response in reference

to the initial impulse time instant (see figure 5-4).

We condition the rare event distribution as follows,

fu,(r) = J fujIn (rln) f171(n) dn, (5.48)

where we have already derived the pdf for fi7i in equation (6.13), what remains is the

derivation of the pdf for furjiji.

By conditioning on IrI = n, we find the derived distribution for the conditional pdf

for ur is given by

fur n 1(r I n) = s r - -e-Cfl7e-dis) -- (r - -- e-Cwns)} (5.49)

where s(x) denotes the step function which is equal to 1 when x > 0 and 0 otherwise.

Detailed derivation is provided in appendix A.

Using the results equations (5.49) and (6.13) in equation (5.48) we obtain the final

result for the rare event distribution for response displacement as

fu,(r) = fu 1j,(r I n)f;?i(n) dn, (5.50)

1  exp (n - p) 2 + exp (n + p.)2
r'(WnOgi qd/2 (Te,dis - Ts ) foO2 22

x s Wr- W e-(rnredi) r- s - (e- " dn,

(5.51)

The last quantity to be determined is -r, which represents the maximum magnitude

of the response displacement. The maximum magnitude of the rare component of the
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response displacement and acceleration (see equation (5.26)) occur at r, = =1 - 2'

similarly, for the velocity response the maximum occurs at r, = 0.

5.3.6 Analytical PDF for the Underdamped Case < « 1

Displacement Finally, combining the results of sections 5.3.1, 5.3.4, and 5.3.5 using

the total probability law,

(5.52)fu(r) = fUb(r)(1 - Pr,dis) + fr(r)Pr,dis,

we obtain the desired envelope distribution for the displacement of the response

fu(r) = r exp (.)+ b (- edb

+ Vare,dis

r (Wn L-17 V/7 (Te,dis

(1 - VaTe,dis)

I c O e p n -p a ) 2 ( n + a 2 )
S {exp( + exp 2

x sf S(r - -e Cnredis) -- s r - -ihe-Cw ) Idn, (
\rWd( Wd )Id

where r, = d and Te,dis = - log Pc.

Velocity Similarly, we also obtain the envelope distribution of the velocity of the

system. The background dynamics distribution for velocity was obtained in equa-

tion (5.21). Noting that (5.38) itr = WdUr, the rare event pdf will be modified by a

constant factor

(5.54)fit (r) = ftb(r)( - Pr,vei) + wd~ 1 fUr(r/wd)Pr,ve.

126

5.53)



The final formula for the velocity envelope pdf is thus

r /r2\
fi(r) = 2 exp(- (1 - Va.evei)

ors 2or?
Xb X

+ r VaTe,vei (n - r) 2 + exp (n + pa)2
2a7 2 26r2 Jr(WnO-ini I N2 e,vei fo 2 2n :0I

x s (r - ne-CWnTevel) s (r - n) dn, (5.55)

where -r = 0 and re,vel = -g log Pc.

Acceleration Lastly we also obtain the envelope distribution of the acceleration.

Noting that (5.38) fi = UIr, the rare event pdf for acceleration will also be modified

by a constant factor

fg(r) = fubjr)(1 - Pr,acc) + Wdjfut(/w)1,acc. (5.56)

The final formula for the acceleration envelope pdf is then

r (r2\
f (r) = 2 exp- 1 (1- VaTe,acc)

0-7? 2a?Xb \ 0  b/

+ rw xvae,acc exp (n - p) 2 + exp((n + pi)2

r(wno-ini I /27r(Te,acc TO) 2 172 2or 77

x s (r - nwde -nleacc ) - s (r - nwe-Cn)} dn, (5.57)

where -r = 0 and Te,acc = - N log Pc.

5.3.6.1 Comparisons with Monte-Carlo Simulations

Next we compare the accuracy of the derived analytical results given in equations (5.53),

(5.55), and (5.57) through comparisons to Monte-Carlo simulations. For the Monte-

Carlo simulations the excitation time series is generated by superimposing the back-

ground and rare event components. The background excitation, described by a sta-
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tionary stochastic process with a Pierson-Moskowitz spectrum (equation (6.7)), is

simulated through a superposition of cosines over a range of frequencies with cor-

responding amplitudes and uniformly distributed random phases. The intermittent

component is the random impulse train, and each impact is introduced as a velocity

jump with a given magnitude at the point of the impulse impact.

For each of the comparisons performed in this work we generate 10 realizations of the

excitation time series, each with a train of 100 impulses. Once each ensemble time

series for the excitation is computed, the governing ordinary differential equations

are solved using a 4th/5th order Runge-Kutta method (we carefully account for the

modifications in the momentum that an impulse imparts by integrating up to each

impulse time and modifying the initial conditions that the impulse imparts before

integrating the system to the next impulse time). For each realization the system is

integrated for a sufficiently long time so that we have converged response statistics

for the displacement, velocity, and acceleration.

We utilize a shifted Pierson-Moskowitz spectrum Shh(w- 1) in order to avoid resonance.

The other parameters and resulted statistical quantities of the system are given in

table 5.1. As it can be seen in figure 5-5 the analytical approximations compare

favorably with the Monte-Carlo simulations many standard deviations away from zero.

The results are robust to different parameters as far as we satisfy the assumption of

independent (non-overlapping) random events.
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Table 5.1: Parameters and relevant statistical quantities for SDOF system 1.

A 0.01 k 1

To 5000 0.005

Wn 1 Wd 1

= 7 x u- 0.1 q 1.582 x 10-4

=a- 0.0143 0.0063

U:4 0.0179 O-Xb 0.0082

0T1 1  0.0229 Pr,dis 0.0647

Pr,vei 0.0614 Pr,acc 0.0647

0.05 0.1 0.15 0.

0 0.05 0.1 0.15 0.
n

0.05 0.1 0.15

L 10,
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L100
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G)104
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Figure 5-5: [Severely underdamped case] Comparison between direct Monte-Carlo

simulation and the analytical pdf for the SDOF system 1. The pdf for the envelope of

each stochastic process is presented. The dashed line indicates one standard deviation.

Parameters and statistical quantities are summarized in table 5.1.
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5.3.7 Analytical PDF for the Overdamped Case C > 1

In the previous section, we illustrated the derivation of the analytical response pdfs

under the assumption ( < 1. Here, we briefly summarize the results for the response

pdfs for the case where ( > 1. One can follow the same steps starting from equa-

tion (5.32) to obtain these results. We note that for the overdamped case, the system

does not exhibit oscillatory motion as opposed to the underdamped case, and hence

we directly work on response pdfs instead of envelope pdfs, since there is no envelope

in this case for the rare responses.

Displacement The total probability law becomes

fx(r) = fxb(r)(1 - Pr,dis) + fx,(r)Pr,dis, (5.58)

and we obtain the following pdf for the displacement of the system

1 ( r2\
fx(r) = exp -r (1 V-re,dis)

+ VaTe,dis 00 ( (i - A)2
-~ wo) 1/0 (Te,dis - Ts)

x s(r- n e-(Wn-Wo)Te,dis - s r- n-e~wo) 'tdn, (5.59)
\ )w 2 0

whereT, = 0 and Te,dis - ' - cw 1- log Pc.

Velocity Similarly we derive the total probability law for the response velocity

f (r) = f , (r)(1 - Pr,vei) + fir(r)Pr,vei. (5.60)
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The final result for the velocity pdf is

1 ( r2\
fi(r) = exp 2 (1 Vcre,vei)

+ ( vaTe,vel 0O ex (n - Pa) 2

r((w,, + wo)u?72re,ve1 O 2u?2

x {s (r - ne~-(CWn+Wo)Thr ) - s (r - n) dn, (5.61)

where T, = 0 and Te,,el = - , log Pc.

Acceleration The total probability law for the response acceleration is

f (r) = f& (r)(1 - Pr,acc) + fjar (r)Pr,acc, (5.62)

and this gives the following result for the acceleration pdf

1 ( r2\
fh(r) = exp - (1 - VaTeacc)

+ l~aTe,acc 0 exp (n - pa)2

r((Wn + Wo) Or \/ e,acc 10 2U2

x s (r - n((CW + wo)ewn"+wo)reac) - s (r - n ((wn + wo)) dn, (5.63)

where T, = 0 and Te,acc = - I log Pc Note that in this case we do not have the

simple scaling, as in the underdamped case, for the conditionally rare pdf.

5.3.7.1 Comparisons with Monte-Carlo Simulations

We confirm the accuracy of the analytical results given in equations (5.59), (5.61),

and (5.63) for the strongly overdamped case through comparison with direct Monte-

Carlo simulations. The parameters and resulted statistical quantities of the system are

given in table 5.2. The analytical estimates show favorable agreement with numerical

simulations for this case (figure 5-6), just as in the previous underdamped case.
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Table 5.2: Parameters and relevant statistical quantities for SDOF system 2.

A 6 k 1

Ta 1000 3

Wn 1 Wd 2.828

Pa = 7 x Og 0.1 q 1.582 x 10-4

Oa = eT 0.0143 07 0.0063

Cb 0.0056 Xb 0.0022

U? 0.0154 Pr,dis 0.0140

Pr,vel 0.0004 Pracc 0.0004
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Figure 5-6: [Severely overdamped case] Comparison between direct Monte-Carlo

simulation and the analytical pdf for SDOF system 2. The pdf for the value of each

stochastic process is shown. The dashed line indicates one standard deviation. Parame-

ters and statistical quantities are summarized in table 5.2.
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5.4 Semi-analytical Quantification of Response PDFs

in the General Case for Linear SDOF Systems

In the previous section we developed an analytical method to quantify response pdfs

of single-degree-of-freedom linear systems under stochastic excitations containing rare

events. However, explicit analytical expressions were only available for limited SDOF

configurations, i.e. those with ( < 1 or ( > 1. Alternatively, here we propose a semi-

analytical approach to quantify the response pdfs. We note that the semi-analytical

method works for any SDOF system configuration including the severely underdamped

or overdamped cases considered previously. The approach here adapts the numerical

scheme described in [102] for systems undergoing internal instabilities.

We clarify that the scheme is semi-analytical in that

(i) it takes a numerical histogram of rare responses based on the exact solution of

impulse response of the system, and

(ii) weights the conditional rare event distribution f, using the respective distri-

bution for r7, and

(iii) numerically estimates the absolute maximum of the response and computes the

rare event duration Te.

We note that the essence of the algorithm remains the same as in section 5.3. Although

the semi-analytical scheme includes numerical simulations, it still associates with

significantly lower computational cost compared with numerical simulations, i.e. Monte-

Carlo simulation. The reason for this is simple: we simulate and histogram the rare

responses directly based on their analytical form. Furthermore, the beauty of the semi-

analytical scheme is that it is easily extended to multi-degree-of-freedom systems. We

illustrate the extension to MDOF systems in the next section.
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5.4.1 Numerical Histogram of Rare Events

Consider the same SDOF system introduced in section 5.3. Recall that we have

quantified the response pdfs by the PDS method using the total probability law

fX(r) = fXb r)(1'- Pr) + fXr Mr *~r (5.64)

In the previous section, the derivation consisted of estimating all three unknown quan-

tities: the background distribution fxb, the rare event distribution fXr, and the rare

event probability P, analytically. However, in the semi-analytical scheme we will obtain

the the rare event distribution fx, and rare event probability P, by directly simulating

the analytical form of the rare response and by taking a histogram of the numerically

simulated analytical form of the rare response. The background distribution fx, can

still be obtained analytically as in section 5.3.1.

Recall that the rare event distribution is given by

fx,(r) = J fx, riq(r I n)fq (n) dn, (5.65)

where f,(n) is known analytically (section 5.3.2). It is the conditional pdf fxri,(r I n)

that we estimate by a histogram:

fxr,,q(r I n) = Hist{Xriq(t I n)}, t = [0, Te,disI, (5.66)

where we use the exact form of the conditional response:

Xrj (t I n) = e-((WnWo )t - e-((Wn+wo)t. (5.67)

The histogram is taken from t = 0 till the end of the rare event at t = Te. This

gives the semi-analytical approach almost no additional computational costs over the

previous analytical results in the previous section since we have the exact analytical

form of rare responses and performing a histogram of this is a cheap operation. The
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conditional distribution of rare event response for velocity and acceleration can be

derived in similar fashion:

frii7(r I n) = Hist{brit?(t I n)), t = [0, Te,vei] (5.68)

f xi, (r I n) = Hist{zri?(t I n)}, t = [0, Te,accl (5.69)

We note that, as opposed to the fully analytical scheme from before, here we do

not need to approximate the initial instant -r (which was done in order to avoid

overestimation of the magnitude of rare responses when using the envelope based

approach for the underdamped system) because the semi-analytical approach is based

on the exact impulse response.

5.4.2 Numerical Estimation of the Rare Event Transition

Probability

In order to compute the histogram of a rare impulse event, the duration of a rare

response needs to be obtained numerically. Recall that we have defined the duration

of a rare responses by

Xr (-e) = p, max {IXrI}, (5.70)

where pc = 0.1. In the numerical computation of Te, the absolute maximum of the

response needs to be estimated numerically in order to compute Te. Once the rare

event duration has been specified, we can obtain the probability of a rare event by

Pr = VaTe = Te/Ta. (5.71)

Again, this value is independent of the conditional background magnitude. The above

procedure is applied for the rare event response displacement Te,dis, velocity Te,,e, and

acceleration Te,acc-
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5.4.3 Semi-analytical Probability Density Functions

With the description above, we can easily compute the desired response pdfs and the

final semi-analytical results. The only quantities that need numerical estimation are

Te and Hist qrin(t I n)} (which is computed by simulating the analytical form of the

rare response directly for t E [0, re] and by then taking a histogram), where q can be

either x, , or .

Displacement

f (r) = VaTe,dis exp r 2  + VaTe,disj/ Hist {Xrji(t I n)}f,(n) dn. (5.72)
X, v2~ ex -2a b

Velocity

f (r) = 1 VTe"vel exp (-2 + VaTe,vel HisttirI(t I n)}f,(n) dn. (5.73)

Acceleration

f,(r) = v Te,acc exp - ) + VaTe,acc J Hist{: ir (t I n)}f,(n) dn. (5.74)
Xv'2- 20* 0
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5.4.3.1 Comparisons with Monte-Carlo Simulations

We now compare the derived semi-analytical scheme for the response pdfs of a general

single-degree-of-freedom system with Monte-Carlo simulations. Details regarding the

Monte-Carlos simulations are the same as before. For illustration, two SDOF config-

urations are considered with damping ratio values of ( = 0.75 and ( = 1. We note

that these two regimes are where the analytical results derived in section 5.3 are not

applicable and cannot be used.

The parameters and resulted statistical quantities of the sdof system 3 and 4 are

given in table 5.3 and table 5.4, respectively. For both cases, analytical estimates

show favorable agreement with numerical Monte-Carlo simulations for these case

(figure 5-7 and figure 5-8). We emphasize that the computational cost of semi-analytical

scheme for SDOF systems is comparable with that of analytical method, and both are

significantly lower than the costs of Monte-Carlo simulations.
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Table 5.3: Parameters and relevant statistical quantities for SDOF system 3.

A 1.5 k 1

Ta 400 0.75

Wn 1 Wd 0.661

Pa = 7 x -h 0.1 q 1.582 x 10-4

a = Uh 0.0143 Ch 0.0063

gib 0.0137 -Xb 0.0060

U-7 0.0198 Pr,dis 0.0097

Pr,vei 0.0090 Pr,acc 0.0041
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Figure 5-7: [Intermediate damped system] Comparison between direct Monte-

Carlo simulations and the semi-analytical pdf for SDOF system 3. Dashed lines indicate

one standard deviation. Parameters and statistical quantities are summarized in ta-

ble 5.3.
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Table 5.4: Parameters and relevant statistical quantities for SDOF system 4.

A 2 k 1

Ta 400 1

Wn 1 Wd 0

S= 7 X h 0.1 q 1.582 x 10-4

Ora = c-h 0.0143 Uh 0.0063

o_4 0.0120 UlIb 0.0052

-, 0.0187 Pr,dis 0.0122

Pr,vel 0.0075 Pr,acc 0.0032
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Figure 5-8: [Critical damped system] Comparison between direct Monte-Carlo

simulations and the semi-analytical pdf for SDOF system 4. Dashed lines indicate one

standard deviation. Parameters and statistical quantities are summarized in table 5.4.
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We emphasize again that he described semi-analytical approach is applicable to single-

degree-of-freedom systems with any damping ratio (. An an illustrative purpose,

we revisit the SDOF system 1 which is heavily damped case and describe the semi-

analytically obtained pdf as well as Monte-Carlo simulation result in figure 5-9. Note

that although we have exactly same system parameters for SDOF 1, the relevant statis-

tical quantities change since we utilize semi-analytical approach instead of analytical

one here. We also point out that the response pdfs described in figure 5-9 are response

displacement, velocity and acceleration, not response envelopes as in figure 5-5.
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Table 5.5:
method.

Relevant statistical quantities for SDOF system 1 using semi-analytical

-4 0.0179 ot 0.0082

og 0.0229 P,,dis 0.0915

Pr,vei 0.0918 Pr,acc 0.0915

0.05 0.1 0.15 0.
n

102

10
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0 a
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C 10

0 1
210.2
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3

-0.2

10
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0
100

C 10
0

0)

10,2

10 -3

2 -0.1 0
x

-0.2 -0.1 0 0.1 0.2
k

Figure 5-9: [Severely underdamped case; Semi-analytical Method] Compari-

son between direct Monte-Carlo simulation and the semi-analytical pdf for the SDOF
system 1. The pdf for the envelope of each stochastic process is presented. The dashed

line indicates one standard deviation. Statistical quantities are summarized in table 5.5.
System parameters are the same as table 5.1.
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5.5 Semi-analytical Quantification of Response PDFs

for Intermittently Forced MDOF Prototype Sys-

tem

In the previous section we formulated the semi-analytical approach for obtaining

response pdfs for SDOF linear systems under stochastic excitations containing rare

events. The key advantage of the semi-analytical scheme is that the algorithm can be

easily extended to MDOF linear systems with minor modifications (the basic princi-

ples behind the algorithm remain the same, but the details change). In this section we

introduce how the extension can be made for a prototype TDOF linear system; in par-

ticular we consider the multi-degree-of-freedom extension of the considered prototype

system in section 5.2 (see figure 5-10). In particular, the system is given by

mz + A. + kx + Aa( - ) + ka(x - v) = F(t), (5.75)

mai + Aa( -. t) + ka(v - X) = 0, (5.76)

where the stochastic forcing F(t) = F(t) + F,(t) is applied to the first mass (mass m).

As before, Fb(t) = h(t) is the background component and F,(t) = E() a3i(t - Tr) is

the rare event component. The backbone of the scheme, the PDS method with the

total probability law composition, remains the same. We first quantify of background

response statistics and then the rare event statistics and lastly show comparisons with

numerical results.

zi z 2

k ka

F=Fb+F,

Figure 5-10: The considered TDOF system.
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5.5.1 Background Response PDF Quantification

Consider the statistical response of the system to the background forcing component,

(5.77)mx4 + Axb + kx + Aa(xb - vb) + ka(Xb - vb) = Fb(t),

ma + Aa(b - xb) + ka(vb - xb) = 0.

The spectral density of responses are given by

SxbXb(w) =
W

4

{A(w) - B(w) 2c(-W)2
C(Uw) JII -j C(-W)

SF,(w),

Se4b (w) = w 2 XbXb(w),

S41b (w) = w4 SXbX (w),

SvbVb) =

where

W
4

A(wC ) A(-w)C(-w)
13(W) (W

SFb(w),

Sisbi(w) = 2 SVbV (w),

Sebbb (w) = W 4 SVbV (w),

A(w) =(Aa + A)(jw) + (ka + k) - mw 2,

B(w) =Aa(jW) + ka,

2C(w) =Aa(jw) + ka - maw.

(5.78)

(5.79)

(5.80)

(5.81)

(5.82)

(5.83)

(5.84)

(5.85)

(5.86)

Thus we can obtain the following conditionally background variances for the system:

7 =J SXbXb(w) dw,

0
G- 2, = Svbb(Lo) dw,Vb J

2 Xb =
4, S-tb-b ()dL,

00
orb o 

i0b

0- =o S-44 (W)dW,
00o2Xb fn bbxIb

2-? = [00 ,w d .
Ik0 I J W
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5.5.2 Exact Solution under an Impulse Response

Next we derive the exact form of the system's response under an impulse:

mz, + Atr + kx + Aa(/r - i ) + ka(xr - vr) =0,

maiir + Aa(i'r - :,) + ka(Vr - Xr) =0.

(5.89)

(5.90)

where the system is subjected to an impulsive magnitude of r7 = n at t = 0. Note that

the rare event (impulse load) can be treated as the initial velocity of the first mass

where the load is applied. We can rewrite the equations above in matrix form

(5.91)
M 0 [2 A+Aa -Aa [r] + k+ka -ka x] 0

0 Mai of -Aa AaeJ an -rka k V , oa

Assuming solution of the form X, = Ale"t and vr = A2e"*, we obtain

ms2 + (A + Aa)s + k + ka

-AaS - ka

-AaS - ka

mas2 + AaS + ka

A1 0

A2J 0]

For a nontrivial response, the determinant of the coefficient matrix must vanish. Hence,

det ms2 + (A + Aa)S + k + ka

-AaS - ka

-AaS - ka

mas2 + AaS + kaj

= (Ms 2 + (A + Aa)S + k + ka)(mas2 + AaS + ka) - (Aas + ka)2 = 0, (5.93)

where the fourth order polynomial have four roots, i.e si, s2 , 83 , and 84 (in the non-

degenerate case). Thus the impulse response of equation (5.91) is given by

= c A e " + c 2  e2t + C 3 eS3t + C4  I e 4t

Vr(t) A 21 A 2 2 A 2 3 A 2 4 ]

(5.94)
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where ci, c2 , c3 , c4 are constants that are determined from the initial conditions, and

A12 and A 2i can be estimated by

1i

msi + (A + Aa)Si + k + ka
AaSi + ka

i= 1, ... ,4.

Assuming A1 to be 1, we obtain 2 by 4 matrix A as

1

ms2+(A+Aa)s1+k+ka
AaSi+ka

... 1

Ms42 +(A+Aa)S 4 +k+kal
... 'AaS 4+ka

and ci, c2 , c3 , c4 can be obtained by solving

1 1

Si

mS2+(A+Aa)s1+k+ka
Aasi+ka

s1(ms?+(A+Aa)s1+k+ka)
AaS1+ka

... S4

ms+(A+Aa)s 4 +k+ka
. \ 

Aas4+ka

S4 (MS4+(A+Aa)S 4 +k+ka)
. \ 

AaS 4+ka

We note that one can apply the same procedures to any MDOF linear systems.

5.5.3 Semi-analytical Probability Density Function

Once the exact form of impulse response has been obtained, one can revisit sec-

tions 5.4.1 and 5.4.2 to numerically quantify the rare event distribution as well as the

rare event duration. Here we simply state the final results.

Displacements The distribution for the displacements of the system are:

1 -- VeT"dis
fb(r) = '/27rexp (

fv(r) = 1 - l/aTe'4ds exp
-VbV'

r2

2orb

r2

2 )2V2

+ VaTedis

0
+ varedis J

where Tr dis and TVjdis are estimated numerically.

145

(5.95)

(5.96)

Cl

C2

C3

-C4J

0

n

0

0

(5.97)

(5.98)
Hist{Vrii (t n) f,(n) dn,

Hist Vrigq (t n) fn (n) dn,
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Velocities Similarly we derive the distribution of response velocities:

1-) V 'T've - 2? 'V vel j Hist tiri?(t j n)}f,(n) dn,
b'27 X b(5.99)

1 - ve r2 v
fj (r) = 1 'ue exp (- )+ V 'vel j Histfivri (t I n)}f,(n) dn,

abb ,V2,x 2V? 0

where rev, and -reve1 are estimated numerically.

Accelerations The distribution of response accelerations are:

1 - VaTFacc r 2_+__~
(r)= rex ac+v je acc Histjzri,(t n)}f, (n) dn,

-v/-2 2o, ?
X b W(5.100)

f 1 (r) vTeacc exp (- + v)re"acc Hist{Irii (t I )}f,?(n) dn,
0-, 2a3 ?

where Te acc and e",acc are estimated numerically.

5.5.3.1 Comparisons with Monte-Carlo Simulations

Here compare the derived formulas in equations (5.98) to (5.100) for the response

pdfs for the two-degree-of-freedom system in equation (6.2) with Monte-Carlo sim-

ulations. Details regarding the Monte-Carlos simulations are the same as described

in section 5.3.6.1. Results are shown for three different sets of system parameters, and

response pdfs for the displacements, velocities and accelerations for both masses are

compared. Three tdof systems are chosen such that i) symmetric masses with two

dependent modes, ii) symmetric masses with two independent mode, and iii) asym-

metric masses.

The parameters and resulted statistical quantities of the TDOF 1, 2 and 3 are given

in table 5.6, table 5.7 and table 5.8 , respectively. The results of this comparison

demonstrate the accuracy of the proposed semi-analytical method, and agree closely

with the numerical simulations in both the presented cases (see figures 5-11 to 5-13).

Further simulations using different system parameters were also performed and we

obtained similar agreement demonstrating the robustness of the proposed method.
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Table 5.6: Parameters and relevant

m 1 Ma 1

A 0.01 k 1

Aa 1 ka 0.1

Ta 1000 or 0.0199

Pa 0.1 q 1.582 x 10-4

o-c 0.0143 UFb 0.0351

PX 0.0177 PV 0.0190
r,dis _________ __r,dis

PX 0.0098 pv el 0.0209
r,vel r,c.

JjJX 0.0066 PJV 0.0082
r,acc r,acc
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Figure 5-11: [Two DOF System 1] Comparison between direct Monte-Carlo simu-

lation and the semi-analytical approximation. The pdf for the value of the time series

are presented. Dashed line indicates one standard deviation. Parameters and statistical

quantities are summarized in table 5.6.
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quantities for the TDOF system 2.

m 1 ma 1

A 0.1 k 1

Aa 0.1 ka 1

Ta 5000 U77 0.0323

pa 0.1 q 1.582 x 10-4

-a 0.0143 UF 0.0351

P0.0198 PV 0.0218
r,dis 0.0198________ r,dis

Pf el 0.0100 PVvel 0.0205

0.0049 PJfV 0.0126r,acc r,acc
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Figure 5-12: [Two DOF System 2] Comparison between direct Monte-Carlo simu-

lation and the semi-analytical approximation. The pdf for the value of the time series

are presented. Dashed line indicates one standard deviation. Parameters and statistical
quantities are summarized in table 5.7.
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Table 5.8: Parameters and relevant statistical quantities for the TDOF system 3.

m 1 ma 0.05

A 0.05 k 1

Aa 0.1 ka 0.1

Ta 5000 a- 0.0225

pa 0.1 q 1.582 x 10-4

-a 0.0143 O-Fb 0.0351

PX 0.0145 PX' 0.0153
r,dis r,dis ___________

Pv 0.0135 pjvel 0.0150

IPcc 0.0138 PVacc 0.0102
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are presented. Dashed line indicates one standard deviation. Parameters and statistical

quantities are summarized in table 5.8.
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5.6 Semi-analytical Quantification of Peak PDFs

for Intermittently Forced MDOF Prototype Sys-

tem

In previous sections, we have formulated the semi-analytical approach for quantifying

response pdfs for MDOF linear systems under stochastic excitations containing rare

events. One important extension of semi-analytical scheme is the quantification of

local extrema distribution. The local extrema distributions of stochastic responses

play the critical role in fatigue and reliability analysis problems. In this section, we

briefly introduce how the semi-analytical scheme for response pdf quantification can be

easily extended to estimate local extrema distributions. We then demonstrate the semi-

analytical quantification of local extrema distributions for single-degree-of-freedom

system as well as two-degree-of-freedom system, and the results will be compared with

Monte-Carlo simulations. We first quantify of background local extrema statistics and

then the rare event statistics and lastly show comparisons with numerical results.

5.6.1 Background Peak PDF Quantification

For the gaussian process with arbitrary spectral bandwidth 6, the probability density

function of positive maxima can be described as follows [110, 71]:

fm +(C) = ec2/22 + v1 - E2(e- 2/241 ( 1- ,2 -oo < o o oc, (5.101)

2M

where x = ,xis the magnitude of the maxima, spectral bandwidth E = 1 -

and <D(-) is the standard normal cumulative distribution function.

1 rx
< (X) = Xe- 2/2du. (5.102)

22_W -o00
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Spectral moments for the background response displacement xb are given as

mO = jSxbXb(w)dw, (5.103)

m 2 = 0W2SbXb(w)dw, (5.104)

m 4 = jW4SXb(w)dW, (5.105)

where SXbXb (w) is the one-sided spectral density function of the background response

displacement. In the above we can observe that for an infinitely narrow-banded signal

(E = 0), the pdf becomes Rayleigh distribution. On the other hand for an infinitely

broad-banded signal (E = 1), the distribution converges to the Gaussian pdf. For

a signal with in-between spectral bandwidth (0 < E < 1), the pdf has a complex

structure with the form in equation (5.101). Those cases are illustrated in figure 5-14.

Considering the asymmetric structure of the response under intermittent forcing, we

focus on the positive and negative maxima of the background response, and the pdf

can be written as follows:

fb(x) = fm+ -- ( ) + fm+ (-x) }, -oo < x < oo. (5.106)
2 /m-- mo mno
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Figure 5-14: The probability density function of positive maxima with three different
spectral bandwidth (c = 0, e = 1, c = 0.5).

5.6.2 Numerical Histogram of Peaks within Rare Events

Previously we have quantified response pdfs by the PDS method using the total

probability law, and the same approach applies for the quantification of local extrema

(positive/negative maxima) distributions.

f (r) = f (r)(1 - Pr) + fl,(r) Pr. (5.107)

where f&, (r) is the background local extrema distribution, hr,(r) is the rare event

local extrema distribution, P, is the background probability, and Pr is the rare event

probability. The rare event local extrema distribution can be decomposed into the

conditional rare event local extrema distribution under the given impulse magnitude

r7 = n.

f.r (r) = frin(r I n)fq(n) dn, (5.108)
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where f,(n) is known analytically (section 5.3.2). Now we quantify the conditional

local extrema pdf ft,n(r I n) by a histogram:

fej,i(r I n) = Hist{.M (xri(t I n))}, t = [0, Te,dis] , (5.109)

where M(.) is an operator which finds all the positive/negative maxima. The posi-

tive/negative maxima are defined as where its derivative becomes zero. For a given im-

pulse magnitude rq = n, it finds all the positive/negative maxima between t E [0, Te,dis].

5.6.3 Semi-analytical Probability Density Function

With the description above, we can obtain the desired positive/negative maxima pdfs

and the final semi-analytical results. Note that all the quantities (i.e. probability of

rare event P, and rare event time duration -e ) stay the same as in the response pdf

cases. The only modifications are i) background peak pdf fjb(r), and ii) numerical

histogram of positive/negative maxima of the impulse response. In below, we show

the full semi-analytical expression of local extrema pdfs for single-degree-of-freedom

case.

Displacement

f&(r) = (1 - VaTe,dis) f&,(r) + Vcje,dis j Hist{M (Xrln(t I n)) }fj7 (n) dn. (5.110)

Velocity

f;(r) = (1 - VaTe,vei) f;,(r) + V.'ce,,ei / Hist{M (Itrl(t I n))}fr,(n) dn. (5.111)

Acceleration

f;(r) = (1 - vQre,acC) fb (r) + vaTe,acc j Hist{.M (-ri(t j n))}fn(n)dn. (5.112)

In the case of multi-degree-of-freedom systems, we can follow the same steps to obtain

the full semi-analytical expressions. In below we summarize the expressions for TDOF
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system.

Displacements

f (r) = (1 - Varedis) f, (r) + V-redi,

fo(r) = (1 - VaQerjis) f, (r) + Vare,,dis

jHistAt (xri(t I n))jf7(n) dn

jHistM (Vrin(t I n))}f?,(n) dn.

f;(r) = (i - vaTevei) fhb(r) + vrel

f;(r) = (i - varT,'jvq) f& (r) + voje,ej

Hist{M (irJi7(t I n)) }f77(n) dn,

j Hist{ M (iri(t I n))}fO(n) dn.

Accelerations

f (r) = (1 - vaTeracc)

fh(r) = (1 - VaTacc)

f b(r) + VlTe acc j Hist{M (z iri(t I n)) }f7,(n) dn,

feb(r) + VMre',acc Hist{M (irj,7(t I n)) }fo (n) dn.

5.6.3.1 Comparisons with Monte-Carlo Simulations

We compare the derived schemes for the local extrema distribution quantification for

the single-degree-of-freedom system and the two-degree-of-freedom system with Monte-

Carlo simulations. Details regarding the Monte-Carlos simulations are the same as

described in section 5.3.6.1 except 100 realizations with 100 impulses are utilized. For

illustration, results are shown for SDOF 3, SDOF 4 and TDOF 1, and local extrema

pdfs for the displacements, velocities and accelerations are compared. Note that the

relevant statistical quantities do not change, and one can refer table 5.3, table 5.4 and

table 5.6, respectively. The results of the comparison demonstrate the accuracy of the

proposed semi-analytical method, and agree closely with the numerical simulations

in all the presented cases. Throughout the comparison the semi-analytical scheme

demonstrates accurate estimation of heavy tail trends, and the non-Gaussian/non-

Rayleigh structure of background peak distribution has been also captured properly.
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5.7 Summary

We have formulated a robust approximation method to quantify the probabilistic re-

sponse of structural systems subjected to stochastic excitation containing intermittent

components. The foundation of our approach is the recently developed probabilistic

decomposition-synthesis method for the quantification of rare events due to internal

instabilities to the problem where extreme responses are triggered by external forcing.

The intermittent forcing is represented as a background component, modeled through

a colored processes with energy distributed across a range of frequencies, and addition-

ally a rare/extreme component that can be represented by impulses that are Poisson

distributed with large inter-arrival time. Owing to the nature of the forcing, even

the probabilistic response of a linear system can be highly complex with asymmetry

and complicated tail behavior that is far from Gaussian, which is the expected form

of the response pdf if the forcing did not contain an intermittently extreme component.

Table 5.9: Summary of the of developed analytical/semi-analytical response pdfs.

DOF Damping ratio ( Analytical scheme Semi-analytical scheme

4 < 1 section 5.3 (5.3.6)

(< 1

SDOF = I section 5.4

(> 1

_ >> 1 section 5.3 (5.3.7)

MDOF section 5.5

The main result of this work is the derivation of analytical/semi-analytical expressions

for the pdf of the response and its local extrema for structural systems (including the

response displacement, velocity, and acceleration pdf). These expressions decompose

the pdf into a probabilistic core, capturing the statistics under background excitation,

as well as a heavy tail component associated with the extreme transitions resulting

by the rare impacts. We have performed a thorough analysis for linear SDOF sys-
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tems under various system parameters and also derived analytical formulas for two

special cases of parameters (lightly damped or heavily damped systems). The general

semi-analytical decomposition is applicable for any arbitrary set of system parame-

ters and we have demonstrated its validity through comprehensive comparisons with

Monte-Carlo simulations. The general framework is also directly applicable to MDOF

systems, as well as systems with nonlinearities and we have assessed its performance

through a 2DOF linear system of two coupled oscillators excited through the first mass.

Modifications of the method to compute statistics of local extrema have also been

presented. The derived methodologies are summarized in table 5.9. We emphasize

that the developed approach allows for computation of the response pdf of structural

systems many orders of magnitude faster than a direct Monte-Carlo simulation, which

is currently the only reliable tool for such computations.

163



164



Chapter 6

Extreme events and their optimal

mitigation in nonlinear structural

systems excited by stochastic loads

6.1 Introduction

For a plethora of structural systems it is essential to specify their reliability under uncer-

tain environmental loading conditions and most importantly provide design guidelines

using knowledge of their response characteristics. This involves accurate estimation

of the structural systems probabilistic response. Environmental loads are typically

random by nature and are likely to include intermittently occurring components of

an extreme magnitude, representing abnormal environmental events or conditions.

Although extreme loadings occur with lower probability than typical conditions, their

impact is significant and cannot be neglected since these events determine the sys-

tems behavior away from the average operating conditions, which are precisely the

conditions that are important to quantify for safe assessment and design. Important

examples include mechanical and ocean engineering systems. High speed crafts in

rough seas [120, 119], wave impacts on fixed or floating offshore platforms and ship

capsize events [104, 13, 105, 91, 84], vibrations of buildings or bridge structures due
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to earthquakes or strong wind excitations [87, 20, 89, 142] are just a few examples

where extreme responses occur infrequently but are critical in determining the overall

systems reliability.

Numerous research endeavors have been dedicated on the effective suppression and

rapid dissipation of the energy associated with extreme impacts on structures. Many

of these schemes rely on linear configurations, known as tuned mass damper (TMD)

and result in a halving of the resonance frequency. Although the mitigation perfor-

mance is highly effective when most of the energy is concentrated at the characteristic

frequency of the system, their effectiveness drastically drops if there is a mistuning in

frequency. Moreover, it is not clear how these configurations perform in the presence

of rare impulsive loads. Many of these limitations can be overcome by utilizing small

attachments coupled with the primary system through nonlinear springs, also known

as nonlinear energy sinks (NES). If carefully chosen these nonlinear attachments can

lead to robust, irreversible energy transfer from the primary structure to the attach-

ment and dissipation there [146, 147]. The key mechanism behind the efficient energy

dissipation in this case is the targeted energy transfer phenomenon which is an es-

sentially nonlinear mechanism and relies primarily on the energy level of the system,

rather then the resonant frequency [148, 75]. Such configurations have been proven

to be successful on the mitigation of deterministic impulsive loads on large structures

[134, 135, 93] and their performance has been measured through effective nonlinear

measures such as effective damping and stiffness [127, 115].

Despite their success, nonlinear configurations have been primarily developed for deter-

ministic impulsive loads. To quantify and optimize their performance in the realistic

settings mentioned previously it is essential to understand their effects on the statistics

of the response and in particular in the heavy tails of the probability distribution

function (PDF). However, quantifying the PDF of nonlinear structures under ran-

dom forcing containing impulsive.type extreme events, poses many challenges for

traditional methods. Well established approaches for determining the statistics of
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nonlinear dynamical systems include the Fokker-Planck equation [140, 136], the joint

response-excitation method [126, 153, 69, 5], Gaussian closure schemes, moment equa-

tion or cumulant closure methods [15, 157], the Polynomial-Chaos approach [159], and

stochastic averaging methods [161]. For systems associated with heavy tails, however,

these methods either cannot capture the statistics of rare and extreme type events due

to inherent limitations [94] or are far too computationally expensive in practice, even

for low-dimensional systems [100, 40]. Alternatively, one can study the statistics of the

extreme events alone (by ignoring the background 'non-extreme' forcing fluctuations)

through a Poisson process representation and then analyze the response using the

generalized Fokker-Planck or Kolmogorov-Feller equations [136], which governs the

evolution of the corresponding PDF, or by applying the path integral formalism [82,

65], or even through special stochastic averaging techniques [160]. While attractive,

these ideas lead, in general, to analytical results for a very limited number of special

cases. Besides, it is still an important aspect to account for the background random

fluctuations in the forcing term in order to fully characterize the systems overall

probabilistic properties (e.g. this is important in order to fully determine all the

moments of the response). Moreover, even though the background forcing compo-

nent does not directly correspond to extreme events, the background term may have

important consequences for the initiation of intermittent type extreme responses [102].

In this work we consider the problem of nonlinear structural systems under general

time-correlated stochastic forcing that includes extreme, impulsive type random events.

We address two important challenges related to this problem. The first is the develop-

ment of a fast and accurate estimation method for the response statistics, expressed

through the PDF, with emphasis on the accurate estimation of the tail form (events

far away from the mean). The second is the design and parameter optimization of

small attachments that can mitigate or suppress the effects of the extreme forcing

events on the system response while they also improve the system behavior during

the regular regime. The two problems are connected since extreme event suppression

is directly reliant upon a fast and accurate estimation method for the response pdf
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under different designs or parameters. Indeed, without a fast and reliable method

to evaluate response statistics, in particular tail statistics, optimization cannot be

performed because of the inherent computational cost associated with typical quan-

tification methods such as Monte-Carlo. This aspect highlights the practical utility

of the proposed fast PDF estimation scheme. We will illustrate the pdf estimation

method and shock mitigation design analysis throughout the manuscript with a prac-

tical motivating prototype system related to high speed vehicle motion in rough seas,

however we emphasize the proposed method broad applicability.

The probabilistic quantification scheme formulated here is based on the most general

probabilistic decomposition-synthesis framework [102, 103], that has recently been ap-

plied in linear systems subjected to stochastic forcing containing extreme events [68]

and can be used to efficiently estimate the PDF for the response displacement, ve-

locity, and acceleration. We begin by formulating the response pdf quantification

method (developed for linear multi-degree-of-freedom (MDOF) systems in [68]) for

the case of nonlinear MDOF systems. This is achieved by combining the probabilistic

decomposition-synthesis framework [102, 103] with the statistical linearization method

[122]. The scheme circumvents the rare-event problem and enables rapid design and

optimization in the presence of extreme events. We emphasize the statistical accuracy

of the derived scheme, which we have validated through extensive comparisons with

direct Monte-Carlo simulations. Next, we consider two prototype ocean engineering

systems and perform a quantitative comparison of the performance of TMD and NES,

evaluating their effectiveness at shock suppression under stochastic excitation con-

taining extreme events. Finally, we perform optimization on a very generic, possibly

asymmetric family of piecewise linear springs. Previous endeavors in the context of

single-sided vibro-impact NES have shown that asymmetries in the NES can improve

the shock mitigation properties (see [135]). In agreement with these results, our opti-

mization scheme leads to the derivation of a new asymmetric NES which significantly

improves the shock mitigation properties of the system in the realistic setting of

stochastic excitation.
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The chapter is structured as follows. In section 6.2 we describe the prototype mod-

els for high speed craft motion that we utilize throughout the work as practically

relevant example. Next, in section 6.3 we provide a brief review of the probabilistic

decomposition-synthesis (PDS) framework for the response pdf quantification of a

linear single-degree-of-freedom system subject to a random forcing term containing ex-

treme impulse type events. Section 6.4 describes the proposed general semi-analytical

PDF estimation method for nonlinear MDOF structures and also includes a section

on quantifying the conditionally rare response via the effective stiffness and damping

framework. In section 6.5 we present the mitigation of extreme events analysis on the

prototype high speed craft designs for both TMD and cubic NES attachments. Next,

in section 6.6 we propose a new piecewise linear and asymmetric NES design that

we optimize for extreme event mitigation. Finally in section 6.7 we offer concluding

remarks.
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6.2 Prototype models for high speed vehicle mo-

tion in rough seas

Here we describe the prototype models that we apply the quantification method

for extreme event analysis and optimization. Specifically, we model the motion of a

high-speed craft in random seas through two prototype systems: one being a two-

degree-of-freedom system consisting of a suspended seat attached to the hull and

the second being a three-degree-of-freedom system where the seat is attached to a

suspended deck, which is attached on the hull; both prototypes contain a small linear

or nonlinear energy sink (NES) vibration absorber.

6.2.1 2DOF Suspended seat system

In figure 6-1 we illustrate the first model consisting of a linear primary structure under

base excitation that is attached to a small oscillator connected through a nonlinear

spring (with cubic nonlinearity). This is a prototype system modeling the suspended

seat of a high speed craft [111, 28]. The vibration absorber is attached to the seat

with the aim to minimize ocean wave impacts on the operator of the vehicle and

naturally we require that the attachment mass is much lower than the seat mass (i.e.

ma < 0. 1m). The equation of motion for this two-degree-of-freedom system is given

by:

msz + As + ksx + Aa(t -,b) + ka(x - v) + ca(xV)3 = m (t), (6.1)

mai + Aa(i - J) + ka(V - x) + Ca(V - x) 3 = -ma(t), (6.2)

where x, v are the relative displacements of the seat response and attachment response,

respectively, with reference to the base motion (t) (that is, x = ^ - and v = V - ).
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Figure 6-1: [Suspended seat] Mechanical model for the suspended seat problem with

a small attachment (vibration absorber).

6.2.2 3DOF Suspended deck-seat system

The second prototype system is a suspended deck design for a high speed craft [145,

116, 78] and is illustrated in figure 6-2. In this case, the vibration absorber is attached

to the suspended deck. The attachment mass is comparable to the seat mass and

both are considerably smaller than the deck (i.e. ma ~ m, < O.lmh). The governing

equations for this three-degree-of-freedom system are given by:

my + Ay + khy + A,(y -) + k,(y - x)

+ Aa( - ) + ka(y - v) + ca(y - v) 3 = -mh (t) (6.3)

mjt + As( - y) + k,(x - y) = -mSc(t) (6.4)

maV + Aa(' - y) + ka(V - y) + Ca(V - y) 3 = -ma (t), (6.5)

where, again, x, y, v are the relative displacements of the seat response, the deck

response and the attachment response, respectively, with reference to the base motion

0{t).
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Figure 6-2: [Suspended deck-seat] Mechanical model for the suspended deck-seat
problem with a small attachment (vibration absorber).

In both prototypes the aim of the vibration mitigating attachment is to minimize

extreme impacts on the seat attachment as this represents an operator on the vehicle.

We first examine the case of tuned-mass damper vibration absorber ka # 0, ca = 0 and

the essentially nonlinear energy sink absorber ka = 0, Ca # 0, that has been studied

extensively in the context of shock mitigation [147]. In the last section we will examine

the performance of an asymmetric, piecewise linear, spring.

6.2.3 The structure of the intermittently extreme stochastic

forcing

Motivated by the ocean engineering systems in section 6.2, we consider base motion

of the form,
N(t)

(t) = h(t)+ ( ai6(t-Tj), 0< t ; T (6.6)
i=1

In the expression above, h(t) denotes a zero-mean smooth motion characterized by a

Pierson-Moskowitz spectrum,

Shh(w) = q- exp ( 4, (6.7)

where q controls the magnitude of the motion. The second term in equation (6.6)

describes rare and extreme impulses in terms of a random impulse train (6(.) is
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a unit impulse), occurring due to slamming events. For this component, N(t) is a

Poisson counting process that represents the number of impulses that arrive in the

time interval 0 < t < T, a is the impulse magnitude, which we assume is normally

distributed with mean /t and variance o, and the constant arrival rate is given by v,.

We take the impulse magnitude as being /-times larger than the standard deviation

of the excitation velocity h(t): p,, = / o-h, with 3 > 1.

173

- , A- , , -- - - - kL-



6.3 Review of the probabilistic decomposition-synthesis

(PDS) method

We first provide a brief review of the semi-analytical response quantification method

for a linear single-degree-of-freedom system [68] subjected to stochastic excitation

containing rare events. The purpose of this section is to provide a self-contained

review of the core ideas, since the scheme for nonlinear structural systems that is

described in the following section depends upon these concepts. Interested readers

should first read chapter 5 where we discuss the semi-analytical response quantification

method with full details.

Consider the following linear system

+ At + kx = ((w), (6.8)

k is the stiffness, A is the damping, and ( = A/2vk is the damping ratio. Despite the

simplicity of this system, the structure of the statistical response may be significantly

complex and posses heavy-tails.

The framework to estimate the response PDF of equation (6.8) is the probabilistic

decomposition-synthesis (PDS) method [102]. The basic idea is to decouple the rare

events regime from the background fluctuations and then quantify the statistics of

the two components separately. The results are then synthesized to obtain the full

response PDF by using the total probability law:

fx(r) = fXb(r)(1 - Pr) + fx,(r)Pr,, (6.9)

where fx,(r) is the conditional PDF due to the smooth motion of the base, fxr(r) is

the conditional PDF due to the extreme impacts and Pr is the overall probability that

the system operates in the extreme events regime.
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6.3.1 Background response PDF

We first obtain the statistical response of the system under the condition that only

the background (smooth) forcing component is acting. We have,

4b + Xb + kxb = h(t ). (6.10)

In this case the analysis is particularly simple since the system is linear and time-

invariant and the response PDF, fXb, is a zero-mean Gaussian. The spectral density

of the response displacement and the variance are given by:

SxbWbw) = 4Shh) = f1S0x(w) dw. (6.11)
(k - w2) 2 + (Aw)2= Jo

The computations for the response velocity and acceleration can be similarly obtained.

6.3.2 Numerical histogram for rare events

The next step is to compute the rare event distribution fx, and the rare event proba-

bility P,. Specifically, the rare event distribution can be written as,

fx,(r) = Jf,1 (r I n) f,(n) dn, (6.12)

where f,(n) is the distribution of the impulse magnitude, and fxr is the conditional

PDF of the response for an impact of magnitude r7.

It is important to note that once an impulse of magnitude a hits the system, the

momentum of the system right after the impact would be J4 + a, since the momentum

of the system right before the impact is ;4. As these two variables are both Gaussian

distributed and independent, their sum is also Gaussian distributed and is given by,

r7 =xb +a ~(A, jb+ J2). (6.13)
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We estimate the conditional PDF fxr,7(r I n) by the numerically computed histogram:

fri1,(r I n) = Hist{ Xri(t I n)}, t E [0, Te], (6.14)

where -re is the typical duration of the rare event (see next subsection) and the

conditional response XrI, is given by,

Xrji7(t I n) = n e-((Cwn-wo)t - e-(CWn+Wo)t). (6.15)
2w,

The conditionally extreme event distribution for velocity and acceleration are derived

in a similar fashion.

6.3.3 Numerical estimation of the rare event probability

In order to compute the histogram of a rare impulse event, the duration of a rare

response needs to be obtained numerically. We define the typical duration of a rare

response by

Xr(Te) = p, max {IxrI}, (6.16)

where pc = 0.1, or in other words, the histogram is taken over the time it takes for

the system response to decay to 10% of its maximum value. The absolute value of the

maximum of the response needs to be estimated numerically.

Once this rare event duration has been specified, we can also obtain the probability

of a rare event by

Pr = VaTe = Te/Ta. (6.17)

Note that the extreme event duration for the displacement -re, velocity -r, and accel-

eration T: are in generally different.
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6.3.4 Semi-analytical response probability distributions

With the description above, we obtain the response PDF using the total probability

law. The resulting response PDF takes the form,

fz(r) = 1 - VT exp r2  + Vr
UZb 2Owb) J 00

Hist{Zri(t I n)}f,(n) dn,

where the argument z is either x, , or i. The validity of this approximation has been

thoroughly verified in [68].
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6.4 PDF quantification method for nonlinear MDOF

systems

Here we formulate the probabilistic-decomposition method for multi-degree-of-freedom,

nonlinear mechanical systems. There are some important differences with respect to

the case of linear systems studied in [68]. Firstly, for the background component the

system nonlinearities can be important and to this end we must utilize an appro-

priate statistical quantification method. Here we employ the statistical linearization

approach [124]. Secondly, to characterize the statistics in the rare event regime it is

even more crucial to take into account the nonlinear properties of the system, since

these control the shock mitigation capabilities of the attachment.

To achieve this we use two alternative approaches. The first one is based on the

direct simulation of the system for a range of initial conditions corresponding to all

possible impact magnitudes. The second is based on the notion of effective stiffness

and damping [127], which are measures that characterize the system response under

various excitation magnitudes taking into account the presence of the nonlinear attach-

ment. We provide comparisons with direct Monte-Carlo simulations to demonstrate

the accuracy of both approaches. We first present the analysis for the background

component

6.4.1 Quantification of the response pdf for the background

component

For the background regime, we must account for nonlinearities and their interaction

with the background part of the excitation. We use the statistical linearization method,

since we are only interested in resolving the low-order statistics of the background

response of the system (the rare events component defines the tails of the PDF).

Consider the response of the suspended seat problem, equation (6.2), under the exci-
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tation term h(t):

ms + A8  + kx + Aa( - b) + ka(x - v) + Ca(X - V)' = -mAO(t), (6.19)

mai) + Aa(i, - t) + ka(V - x) + Ca(V - X)' = -mah(t). (6.20)

We first multiply the above two equations by x(s), v(s), h(s) at different time in-

stant s - t, and take ensemble averages to write the resulting equations in terms of

covariance functions.

m8 C" + AsC'x + ksCxx + Aa (C'x - C'x) + ka (Cxx - Cvx)

+ ca(x(t) -v(t)) 3 x(s) = -mC,, (6.21)

m3 C" + AsC'v + ksCxv + Aa (C'v - C',) + ka (Cxv - Cvv)

+ Ca(x(t) -v(t)) 3 v(s) = -mnC",, (6.22)

mSCx + AsCxh + ksCxh + Aa (Cxh - Cvh) + ka (Cxh - Cvh)

+ Ca(X(t) - v(t))3 h(s) = -mSChh, (6.23)

maC"x + Aa (C'x - C' ) + ka (Cvx - Cxx)

+ Ca(V(t) - x(t))3 x(s) = -maChx, (6.24)

maCv + Aa (C'v - C'v) + ka (Cvv - Cxv)

+ ca(V(t) - x(t))3 v(s) = -maCh', (6.25)

maC"h + Aa (Cvh - Cxh) + ka (Cvh - Cxh)

+ Ca(V(t) - x(t))3 h(s) = -maCih. (6.26)

Here ' indicates the partial differentiation with respect to the time difference r = t - s.

We then apply Isserlis' theorem based on the Gaussian process approximation for
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response to express the fourth-order moments in terms of second-order moments [63].

(X(t) - v(t)) 3 X(s) = (3o -

(x(t) - v(t)) 3 v(s) = (30r2

(X(t) - v(t)) 3 h(s) = (302

6ax, + 3a. ) CXX - (3Tx - 6urx + 3U2) C ,

- 6u + 3o ) C.v - (3U2 - 6axv + 3u2) C,, I

- 6o-2 + 3o.) C2 - (3U - 6urx + 30r.) Cv.

(6.27)

(6.28)

(6.29)

This leads to a set of linear equations in terms of the covariance functions. Thus, the

Wiener-Khinchin theorem can be applied to write the equations in terms of the power

spectrum, giving

SVV p; 02 ,7 In O 2) =

( _ ,=

Sh(w; o, UXV, O) -

Sch(w; oU, , o) -

(* Shh)W4

3(,)
2 )S ()

(A(-w) -C(-w)

Shh(w),

(A(w) - c(w))

(A(w)C(w) - B(w))A(-w)C(-w)B(-w))

( B w B(-W) ~
(ms+ma-) L3( -w)J W4C(W) B(-W

(A (w ) 2c -

m2(w)) W)

(A(w) - "(w) S

(ms + ma B) w2
A(w)C(w)- _ ) Sh(w),

( B(W(w)

- 1(-w))

where,

A(w; o , -x ) = - m'w2 + (A, + Aa)(jW)

+k + ka + Ca(3J - 6u-v + 3U2),

B(w; O , -cxv, U,) =Aa(jW) + ka + Ca(3O - 6j-x + 30 ),

C(w; o , -, o) = - maw + Aa(jW) + ka + Ca(3O - 6- +33).

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

At this point o, U2 , and a-v are still unknown, but can be determined by integrating

180

/A(w) )( + a(-w) W4
M+ mas, !(kMs+MaB(-,w) W

hh (LU)



both sides of equations (6.30) to (6.32) and forming the following system of equations:

S= J(w; , - w)d, (6.38)

S= j S.(w; or, 2, or)d, (6.39)

O2 = IOISJ(W; o,-,f) dW. (6.40)

By solving the above we find af, o , and a-v. This procedure determines the Gaussian

PDF approximation for the background regime response. Further details regarding

the special case of a linear attachment and the analysis for the suspended deck-seat

problem can be found in appendix B.

6.4.2 Quantification of the response pdf for the extreme event

component

We are going to utilize two alternative methods for the quantification of the statistics

in the extreme event regime. The first approach is to obtain the conditional statistics

based on direct simulations of the system response. The second method is utilizing

effective measures [127] that also characterize the system nonlinear response in the

presence of attachments.

6.4.2.1 Rare response PDF using direct simulations of the system under

impulsive excitation

To compute the conditionally extreme distribution p, and the probability of rare

events P, we follow the steps described in algorithm 1, which provides a high-level

description for a single mode. The procedure is repeated for each degree of freedom

of interest (in this case it is more efficient to simply store all the impulse realizations

and then run the procedure for each degree of freedom of interest). We emphasize

that the numerical simulation of impulse response for nonlinear systems is efficient,

since the integrations are necessarily short due the impulsive nature of the forcing and
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the condition on the rare event end time in equation (6.16). Moreover, throughout

these simulations we do not take into account the background excitation since this is

negligible compared with the effect of the initial conditions induced by the impact.

Algorithm 1 Calculation of P, and fx,(r) = f f~1l(r I n)f,(n) dn.

1: discretize f7(n)

2: for all n values over the discretization f,7 do

3: solve ODE system for X (t) under impulse n, neglecting I
4: Te" +n {te I pc maxt jXn(t)I = X"(te)} t> we set pc =0.1

5: p,"r +-Hist I Xn(t) It E [0, -Fen]

6: end for

7: PXr f JPX 177 P77

8: Te+ f -re p n

9: P, V- iaTe

10: output: ]PPxr

Comparison with Monte-Carlo Simulations

The full response PDF is composed using the total probability law,

fz 1 - vaT dis exp ( + VQecV HistI Zri(t I n)If77(n) dn, (6.41)
UzbV/W 2a b 0

where z is either the displacement, velocity or acceleration of the seat/attachment

response. We utilize a shifted Pierson-Moskowitz spectrum Shh(w - 1) for the back-

ground forcing term in order to avoid system resonance.

For the Monte-Carlo simulations the excitation time series is generated by superimpos-

ing the background and rare event components. The background excitation, described

by a stationary stochastic process with a Pierson-Moskowitz spectrum (equation (6.7)),

is simulated through a superposition of cosines over a range of frequencies with cor-

responding amplitudes and uniformly distributed random phases. The intermittent

182



- __________________________ -~

component is the random impulse train, and each impact is introduced as a velocity

jump at the point of the impulse. For each of the comparisons performed in this

work we generated 10 realizations of the excitation time series, each with a train

of 100 impulses. Once each ensemble for the excitation is computed, the governing

ordinary differential equations are solved using a 4th/5th order Runge-Kutta method

(we carefully account for the modifications in the momentum that an impulse imparts

by integrating up to each impulse time and modifying the initial conditions that the

impulse imparts before integrating the system to the next impulse time). We verified

that this number of ensembles and their durations leads to converged response statis-

tics for the displacement, velocity, and acceleration.

In figure 6-3 we show comparisons for the suspended seat problem with parameters

and relevant statistical quantities given in table 6.1. In figure 6-5 we also show com-

parisons for the suspended deck-seat problem with parameters and relevant statistical

quantities in table 6.2. For both cases the adopted quantification scheme is able to

compute the distributions for the quantities of interest extremely fast (less than a

minute on a laptop), while the corresponding Monte-Carlo simulations take order of

hours to complete.

Note that our method is able to capture the complex heavy tail structure many

standard deviations away from the mean (dashed vertical line denotes 1 standard

deviation). We emphasize that similar accuracy is observed for a variety of system

parameters that satisfy the assumptions on the forcing. The close agreement vali-

dates that the proposed scheme is applicable and can be accurately used for system

optimization and design.
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quantities for the suspended seat system.

MS 1 ma 0.05

As 0.01 Aa 0.021

k, 1 ka 0

- Ca 3.461

Ta 5000 an 0.0227

p,= 7 x h 0.1 q 1.582 x 10-4

a = U- 0.0141 Uh 0.0063

P 0.0214 PV 0.0107

Px 0.0210 PV 0.0100

PI 0.0212 I 0.0096
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Figure 6-3: Suspended seat with a NES attached; Comparison between PDS method

and Monte-Carlo simulations, with parameters given in table 6.1. Left column: seat

response. Right column: NES response.
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Table 6.2:
system.

Parameters and relevant statistical quantities for the suspended deck-seat

mh 1 mS 0.05 ma 0.05

Ah 0.01 A, 0.1 Aa 0.035

kh 1 k, 1 ka 0

- - Ca 5.860

Ta 5000 pa = 7 x ah 0.1 q 1.582 x 10-4

o7 0.0232 Ora = ch 0.0141 Uh 0.0063

py 0.0245 PI 0.0247 Pv 0.0162

PY 0.0234 Px 0.0202 Pi) 0.0161r r r

IP .03 Px 0.0081 I 0.0146
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Figure 6-4: Suspended deck-seat with an NES attached; Comparison between the PDS
method and Monte-Carlo simulations, with parameters given in table 6.2. Left column:
seat response. Right column: deck response.
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Figure 6-5: Suspended deck-seat with an NES attached (Continued); Comparison be-

tween the PDS method and Monte-Carlo simulations, with parameters given in table 6.2.

NES response.

6.4.3 Rare response PDF using effective measures

Here we describe an alternative technique to quantify the rare event PDF component

using the effective stiffness and damping framework described in [127]. These effective

measures express any degree-of-freedom of the coupled nonlinear system, for a given

initial energy level, as an equivalent linear single-degree-of-freedom system. Specifi-

cally, these effective measures correspond to the values of damping and stiffness for a

linear system that has (for the same initial conditions) a response that is as close as

possible to that of the original system, in the mean square sense.

We focus on the suspended seat problem to illustrate this strategy. It should be pointed

out that the accuracy and applicability of this approach has some limitations:
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" The accurate estimation of the PDF requires the knowledge of the effective

measures over a sufficiently large range of initial impulses.

. The motion of the system should have an oscillatory character so that it can be

captured by effective measures.

. The statistics of the attachment motion cannot be obtained directly from the

effective measures.

To derive the PDF in the rare event regime we reduce the system to an effective linear

system for the degree-of-freedome of interest. Consider the suspended seat system

under an impulse,

ms. + Ast + ksx + Aa(-t ) + ka(X V) + Ca(X -V) 3 = 0
(6.42)

mali + Aa(i -. t)+ ka(V X)+ Ca(V X) 3 = 0

with initial conditions, at an arbitrary time say to = 0,

x = 0, = n, v = 0, i = 0. (6.43)

To determine the effective linear system for this system, we follow the strategy in [127]

and compute the effective stiffness and damping:

d

keff(t; n) = 2 ) Aeff(t;n) =- ,2 (6.44)

where (-) denotes spline interpolation of the local maxima of the time series. We can

then compute the weighted-average effective stiffness and damping:

- 2 f({m8 
2 )8 ds -s (\m 22) dskeff (n) = Aeff(n) = 2 . (6.45)

0 f(X 2)8ds ' f( 2),ds

With the weighted-average effective measures we rewrite the original two-degree-of-

freedom system during rare events into an equivalent linear single-degree-of-freedom

system with coefficients that depend on the initial impact (or the initial energy level
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of the system):

+ Xeff(n):i + ekff(n) x = 0 (6.46)

Using the effective system in equation (6.46) we can obtain the conditionally rare

PDF using the analysis for the linear system in section 6.3.1. The damping ratio and

natural frequency now become functions of the initial impact, n:

Wn(n) = keff(n), (n) =) , W.(n) = Wn(n) ((n) 2 - 1 (6.47)
2 kef(n)

Subsequently, the PDF is obtained by taking a histogram of

Xrln(t I n) = ) e-(C(n)wn(n)-wo(n))t _ e-((n)Wn(n)+wo(n))t). (6.48)
2w,,(n)

In figure 6-6 (top) we present the suppression of the probability for large motions of

the primary structure due to the presence of the NES (parameters given in table 6.1).

This suppression is fully expressed in terms of the effective damping measure shown in

the lower plot. Note that the suppression of the tail begins when the effective damping

attains values larger than one.
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Figure 6-6: (Top) Suspended seat problem without and with a NES attached; (Bottom)

Normalized weighted-averaged effective damping Aeff(n))/As as a function of impulse

magnitudes rq.

We emphasize that in the context of effective measures the motion of the system

is assumed oscillatory. Motions with radically different characteristics will not be

captured accurately from the last representation and the resulted histograms will not

lead to an accurate representation of the tail. This problem is, in general, circumvented

if we employ the first approach for the computation of the conditional PDF during

extreme impacts. On the other hand, the advantage of the second approach is that we

can interpret the form of the tail in the various regimes with respect to the properties

of the effective measures (figure 6-6). This link between dynamics (effective measures)

and statistics (heavy tail form) is important for the design process of the NES.

Comparison with Monte-Carlo simulations

Here we compare the PDS method combined with the effective measures with direct

Monte-Carlo simulations. In figure 6-7 we show the response PDF for the primary

structure for parameters given in table 6.1. Details regarding the Monte-Carlo com-

putations are provided in section 6.4.2.1. We observe that the PDS method utilizing

effective measures performs satisfactorily over a wide range similarly with the first
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general scheme, based on individual trajectories computation.
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Figure 6-7: Suspended seat problem with an NES attached; Comparison between PDS

estimate using effective measures and Monte-Carlo simulations. System parameters are

given in table 6.1.

6.4.4 Quantification of the absolute response pdf

The developed PDF quantification schemes provide statistical description for relative

quantities (with respect to the base), that is x = X-, y = y - and v = V^- . However,

for the prototype systems that we consider we are more interested for the suppression

of absolute quantities, instead of relative ones. As we illustrate below, the absolute

response PDF can be derived from the relative response PDF in a straightforward

manner .
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Background component

For the background regime, we the absolute motion is expressed as:

Xb = Xb + h. (6.49)

As the relative motion and base motion h(t) are both Gaussian distributed (but not

independent), their sum is also Gaussian distributed and it is given by,

HV(t' U ) = .A/(0, al + a2 + 2Uxh). (6.50)

In the previous section we have derived both u2 and a2, and what remains is the

covariance term cxh whose spectral density function is given in equation (6.32). This

is given by:

OUxh = j h (W; o2, owo, o)dw. (6.51)

Extreme event component

For the extreme event component the motion of the motion is assumed very small

(compared with the magnitude of the impact), in which case we have:

Xr = XT. (6.52)

The estimation of the conditional PDF for Xr has already been described in sec-

tion 6.4.2.

Comparison with Monte-Carlo Simulations

The full absolute response PDF is expressed using eq. (6.41), where z is either relative

or absolute displacement, velocity or acceleration of the seat/attachment response. We

compare the PDS method with direct Monte-Carlo simulations for the case of absolute

motions. In figure 6-8 we show the absolute response PDF for the primary structure
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for parameters given in table 6.1. Details regarding the Monte-Carlo computations

are provided in section 6.4.2.1.
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Figure 6-8: Suspended seat problem with an NES attached; Comparison between PDS

method and Monte-Carlo simulations. System parameters are given in table 6.1.

194

103

102

101

100

0.12 0.14

L-
0
(L

0
-J

0~1

10.21
0

Nuerical

!- D

' 'E "

1 V0

I

10 -1

4



6.5 System optimization for extreme event mitiga-

tion

We now consider the problem of optimization in the presence of stochastic excita-

tioiq containing extreme events. The developed method provides a rapid and accurate

semi-analytic estimation scheme for the statistical response of the nonlinear structural

system. In particular, we can efficiently obtain the response statistics of the primary

structure (the seat) for any given shock mitigating attachment and accurately capture

the heavy-tailed structure of the distribution. This allows us to explore rare event

mitigation performance characteristics of different attachment parameters and per-

form optimization. Such analysis is not practically feasible via a direct Monte-Carlo

approach since a single parameter set takes on the order of hours to compute the

resulting response PDF with converged tail statistics.

We consider the prototype systems described in section 6.2 with the aim to suppress

the large energy delivered to the passenger (i.e. the seat). In all cases we optimize the

attachment parameters, while the parameters of the primary structure are assumed

to be fixed.

6.5.1 Optimization objective

We adopt the forth-order moment as our measure to reflect the severity of extreme

events on the seat:

= J 24f (r) dr, (6.53)

where the argument 2 can be either absolute displacement of the seat or absolute

velocity depending on the optimization objective. The goal here is to minimize this

measure and analyze the performance characteristics of the attachment when its pa-

rameters are varied.
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We illustrate the results of the optimization using the following normalized measure:

a = 2/(6.54)

where ^ is either x or .b, and z, is the corresponding quantity without any attachment.

Values of this measure which are less than 1 (-y < 1) denote effective extreme event

suppression.

6.5.2 Optimization of NES and TMD parameters

Results are shown for the suspended seat problem with an attachment mass ma = 0.05.

For a NES attachment (ka = 0) we optimize over Ca and Aa, while for a TMD (Ca = 0)

we vary ka and Aa (figure 6-9). The resulted response PDF that minimize the dis-

placement moments are illustrated in figure 6-10. The same analysis is performed for

the suspended deck-seat problem with the same attachment mass ma = 0.05 for both

systems (figure 6-11). The resulted response PDF are illustrated in figure 6-12.

In both cases of systems we observe that the TMD and the optimal cubic NES can

improve significantly the behavior of the primary structure in terms of reducing the

displacement during impacts, with a reduction of 66-68% of the fourth-order moment.

We also observe that the NES design is more robust to variations in the attachment

parameters over the TMD design, which requires more stringent attachment parameter

values for best performance with respect to y. This is in line with the fact that the

NES attachment performs better over a broader excitation spectrum than the TMD

configuration, which requires carefully tuning. Note that for the case of the deck-seat

problem (figure 6-11) we can achieve much larger mitigation of the absolute velocity

at the order of 32-34% compared with the simpler system of the seat attached to the

hull directly (figure 6-9), where the suppression is much smaller, 2-4%.

We performed the grid search for demonstration purposes to illustrate the performance

characteristics as the stiffness and damping are varied; clearly, if we are only interested
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in the optimal attachment the use of an appropriate global optimizer (such a particle

swarm optimizer) would be more appropriate. All the results shown where computed

using the proposed PDF estimation method. As a further check and validation, we

benchmarked the semi-analytical PDF estimates and compare them with Monte-Carlo

results for the extremity measure -y over a coarse grid of the attachment parameters.
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Table 6.3: Suspended seat system parameters.

ms 1 ma 0.05

As 0.01 ks 1

Ta 5000

a= 7 x ah 0.1 q 1.582 x 10-4

O-a =U 0.0141 O 0.0063

Displacement Velocity

0.05 0.1 0.15 0.2
k

0.5
0.9 0.45

0.8 0.4
0.35

0.7 0.3

2 0.25
0.6

0.2

0.5 0.15

0.1
0.4 0.05

1
0.9

0.9

0.8 0.8

0.7

0.7 0.6

u" 0.5
0.6

0.4

0.5 0.3
0.2

0.4 0.1

0.1

0.2 0.4 U.6
x

Figure 6-9: [Suspended seat] The result of the parametric grid search optimization

of the suspended seat attached with (a) TMD (ca = 0) and (b) NES (ka = 0). Optimiza-

tion has been performed with respect to the stiffness (linear/nonlinear) and damping

coefficients of the attachment, and the optimal solutions are marked by a red cross (x)

along with the numeric value of the optimal measure -y. Optimization of the response

displacement (left subplots) and velocity (right subplots) are presented. Parameters

without attachment are shown in table 6.3.
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Figure 6-10: [Suspended seat] Comparison of the response PDF for optimization of

the displacement fourth-order moment. Red curve: without any attachment; Green curve:

TMD (Aa = 0.018, ka = 0.036); Blue curve: optimal NES (Aa = 0.018, ca = 3.121).
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Table 6.4: Suspended deck-seat system parameters.

mh 1 ms 0.05

ma 0.05 Ah 0.01

kh 1 As 0.1

ks 1 Ta 5000

S=7 x -h 0.1 q 1.582 x 10 4

-a = c-h 0.0141 Uh 0.0063

Displacement Velocity

0.05 0.1 0.15 0.2 0.25 0.3

u.U* u. 0.15 0.2

2.4

2.2

2
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14
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Figure 6-11: [Suspended deck-seat] The result of parametric grid search optimiza-
tion of the suspended deck-seat attached with (a) TMD (Ca = 0) and (b) NES (ka = 0).
Optimization has been performed with respect to the stiffness (linear/nonlinear) and
damping coefficients of the attachment and the optimal solutions are marked by a red
cross (x) along with the numeric value of the optimal measure -Y. Optimization of the re-
sponse displacement (left figures) and velocity (right figures) are presented. Parameters

without attachment are shown in table 6.4.
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6.6 Design and optimization of a piecewise linear

NES

To further improve the shock mitigation properties of the attachment, we utilize a

more generic form of NES consisting of a possibly asymmetric, piecewise linear spring.

Similarly with the cubic NES and TMD attachments, we perform parameter optimiza-

tion on the NES spring restoring characteristics and obtain a new optimal design that

outperforms the TMD and cubic NES for the considered problems.

Here, we focus on suppressing large displacements of the seat, although velocity or

acceleration would also be appropriate depending on the desired objectives. The gen-

eral form of the considered spring consists of a linear regime with slope equal to that

of the optimal TMD within a range of 4 standard deviations of the expected seat

motion (e.g. when the TMD is employed). For motions (displacements) outside this

range the spring has also a linear structure but with different slopes, a-, for nega-

tive displacements (beyond 4 standard deviations) and a, for positive displacements

(beyond 4 standard deviations). Therefore, the optimal linear stiffness operates for

small to moderate displacement values and outside this regime, when the response is

very large, we allow the stiffness characteristics to vary. The objective is to determine

the optimal values for the curve in the extreme motion regime with respect to opti-

mization criterion.

Therefore, the analytical form of the piecewise linear spring is given by:

aX + 01, x ;> 4-C,

f(x) = kox, -4c < x < 4o-, (6.55)

a_ 1x + /- 1, x < - 4 C,

where, c is the standard deviation of the relative displacement ( = x - v between the

primary structure (the seat) and the attachment for the case of a TMD attachment.
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The parameters, a, > 0 and a_, 0 define the slopes in the positive and negative

extreme response regimes, which we seek to optimize. Moreover, the values for #1 and

0_1 are obtained by enforcing continuity:

1= 4(k. - ai)o, (6.56)

_= - 4(ko - a_1)OC. (6.57)

The value of the stiffness in the center regime, k0, is chosen using the optimal TMD

attachment.

6.6.1 Application to the suspended seat and deck-seat prob-

lem and comparisons

We illustrate the optimization using the fourth-order moment of the seat response,

employing the following measure:

y' = / (6.58)

where Zt is the system response with the optimal TMD attachment (from the previous

parametric grid search optimization) and 2^ is the response of the system with the

piecewise linear NES attachment. Parameters corresponding to values less than 1

(-y' < 1) denote additional extreme event suppression, compared with the utilization

of optimal TMD.

The result of the optimization for minimum fourth-order moment for the displacement,

on the suspended seat problem, is shown in figure 6-13 while the corresponding PDF

for the displacement, velocity and acceleration are shown in figure 6-14. We note

the strongly asymmetric character of the derived piecewise linear spring. This is

directly related with the asymmetric character of the impulsive excitation, which is in

general positive. The performance of the optimized piecewise linear spring is radically

improved compared with the optimal cubic NES and TMD as it is shown in the PDF
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comparisons. Specifically, for rare events (probability of 1%) we observe a reduction

of the motion amplitude by 50%, while for the velocity the reduction is smaller. A

representative time series illustrating the performance of the optimal design for the

suspended seat problem is shown in figure 6-15. The PDF for the acceleration for

this set of parameters is not changing significantly. Our results are in agreement with

previous studies involving single-sided vibro-impact NES that have been shown to

improve shock mitigation properties in deterministic setups [135].
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The result of the optimization for the suspended deck-seat problem is shown in figure 6-

16 and the corresponding PDF are shown in figure 6-17. Similarly with the previous

problem, the optimization in this case as well leads to a strongly asymmetric piecewise

linear spring. The reduction on the amplitude of the displacement during extreme

events is radical (with an additional reduction of 32%) while the corresponding effects

for the velocity and acceleration are negligible. This small improvement for the velocity

is attributed to the fact that we have focused on minimizing the fourth-order moments

for the displacement.
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6.7 Summary

We have formulated a parsimonious and accurate quantification method for the

heavy-tailed response statistics of nonlinear multi-degree-of-freedom systems under

extreme forcing events. The computational core of our approach is the probabilistic

decomposition-synthesis method which is formulated for nonlinear MDOF systems

under stochastic excitations containing extreme events. Specifically, the excitation is

modeled as a superposition of a Poisson distributed impulse train (with extreme mag-

nitude and large inter-arrival times) and a background (smooth) component, modeled

by a correlated stochastic excitation with broadband spectral density. This algorithm

takes the form of a semi-analytical formula for the response PDF, allowing us to

evaluate response statistics (having complex tail structure) on the order of seconds

for the nonlinear dynamical structures considered.

Based on this computational statistical framework, we proceed with the design and op-

timization of small attachments that can optimally mitigate and suppress the extreme

forcing events delivered to the primary system. We performed the suppression of ex-

treme responses on prototype ocean engineering dynamical structures, the suspended

seat and the suspended deck-seat of high speed crafts, via optimal TMD and cubic

NES attachments through parametric optimization. As an optimization criterion we

selected the forth-order moments of the response displacement, which is a measure

of the severity of large deviations from the mean. Quantitative comparisons of TMD

and cubic NES were presented, evaluating the effectiveness and robustness in terms

of extreme event suppression. We then proposed a new piecewise linear NES with

asymmetries, for extreme event mitigation. The optimization of the new design led to

a strongly asymmetric spring that far outperforms the optimal cubic NES and TMD

for the considered problem.

We emphasize the statistical accuracy of the PDF estimation schemes, which we

demonstrated through comparisons with direct Monte-Carlo simulations. The pre-
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sented schemes are generic, easy to implement, and can profitably be applied to a

variety of different problems in structural engineering where similar characteristics are

present, i.e. structures excited by extreme forcing events represented by impulsive-like

terms that emerge from an otherwise random excitation background of moderate

magnitude.
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Chapter 7

Conclusions

In this chapter we summarize the results and contributions obtained throughout the

thesis. In chapter 3, we considered the problem of non-Gaussian steady state statistics

of nonlinear systems under correlated excitation. We first derived two-times moment

equations, and these were then combined with a non-Gaussian pdf representation for

the joint response-excitation statistics. This representation fulfill two properties: the

single time statistical structure is consistent with the analytical solution of the corre-

sponding Fokker-Planck equation, and the two-time statistical structure has Gaussian

characteristics. Based on the pdf representation, we obtained a closure constraint and

a dynamics constraint, which describes the nonlinear dynamics of the system. We then

formulated these constraints as a minimization problem and performed the minimiza-

tion to obtain a solution that satisfies both constraints as accurately as possible.

We then applied the developed method to nonlinear oscillators in the context of vibra-

tion energy harvesting in chapter 4. We first considered the case of a single-degree-of-

freedom bistable oscillator with linear damping and the same single-degree-of-freedom

bistable oscillator coupled with an electromechanical energy harvester, assuming the

stationary stochastic excitation follows a Pierson-Moskowitz spectrum. Through com-

parisons with direct Monte-Carlo simulations, we have showed the method can provide

a very good approximation of second order statistics of the system, even in essentially

nonlinear regimes where the traditional Gaussian closure method or statistical lineariza-
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tion fails to capture the dynamics. Additionally, we obtained the full non-Gaussian

probabilistic structure of the response. Finally, the developed scheme was demon-

strated to more generic structures, such as linear undamped elastic rods coupled with

bistable nonlinear elements. The developed method provides with an efficient way

to quantify the strongly non-Gaussian statistics for mechanical systems subjected to

correlated excitation. These results have been published in [69].

In chapter 5, we formulated a robust approximation method to quantify the probabilis-

tic response of structural systems subjected to stochastic excitation containing extreme

forcing components. We achieved this by representing the stochastic excitation as the

superposition of a background component, which is modeled by a stationary stochastic

process, and a rare/extreme component, that can be modeled by Poisson distributed

extreme impulses with large inter-arrival time. We then derived the analytical (under

special conditions) and the generalized semi-analytical expressions for the pdf of re-

sponse and its local extrema for structural systems. These expressions decompose the

pdf into a probabilistic core, capturing the statistics under background excitation, as

well as a heavy- tailed component associated with the extreme transitions due to the

rare impacts. We have demonstrated the validity of the analytical and generalized

semi-analytical schemes through comprehensive comparisons with Monte-Carlo simu-

lations for numerous structural systems.

In chapter 6, we generalized the method for the case of nonlinear multi-degree-of-

freedom systems under extreme forcing events. The developed approach allowed us

to evaluate response statistics (of complex non-trivial tail structures) on the order

of seconds for the nonlinear dynamical structures. With the developed scheme, we

conducted design and optimization of small linear and nonlinear attachments that can

optimally mitigate and suppress the extreme forcing events delivered to a primary sys-

tem. We performed the suppression of extreme responses on two prototype dynamical

structures found in ocean engineering: the suspended seat and the suspended seat-deck

of a high speed craft. We employed optimal TMD and cubic NES attachments by per-
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forming parametric optimization through the minimization of the forth-order moments

of the response. We then developed a new design of NES that far outperforms the

optimal cubic NES for the considered problem. We emphasized the statistical accuracy

of the pdf estimation through comparisons with direct Monte-Carlo simulations.

7.1 Future Directions

The developed computational framework is the first, to the best of our knowledge,

that provides with a feasible way to perform optimization with respect to the statis-

tical properties of the response. This is an important step ahead from the standard

paradigm followed in mechanics, where optimization is performed with respect to de-

terministic features of the dynamics, since stochastic simulations (especially focused

on extreme events) are very expensive. Our schemes can be applied on a wide range

of engineering problems where nonlinearity in the dynamics or non-stationarity in

the excitation are important. For many systems in this category the designs have

been restricted by the analysis/optimization tools available. To this end, future work

includes the design, study and optimization of strongly nonlinear configurations with

the aim of optimal and robust energy harvesting and impact mitigation. Areas that

can benefit from the developed computational framework include Mechanical, Ocean,

Civil, and Aerospace Engineering. We believe that the developed schemes are well

suited to a large number of problems involving vibrations in these settings and can

prove to be an important engineering method for design and reliability assessment.

Appropriate experimental schemes should also be developed for the assessment of the

predicted statistical features and this is also an interesting area for future work.
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Appendix A

Probability Distribution of an

Arbitrarily Exponentially Decaying

Function

In this appendix, we provide the detailed derivation of pdf of an arbitrary exponentially

decaying function considered in section 5.3.5. Please consider an arbitrary time series

in the following form.

x(t) = Ae-t, where t - Uniform (Ti, T2 ), (A.1)

where A and a > 0 are constants, and we let T1 < T2 so that the time t is uniformly

distributed between T1 and T2 . In this case, the cumulative distribution function (cdf)

of x(t) can be derived as

F,(x) = IP(Ae-'t < x), (A.2)

= P t> - log(A/x)), (A.3)

= 1 - P t< log(A/x)), (A.4)

= 1 -] fT(t) dt. (A.5)
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Please note that fT(t) is the uniform pdf for time t which can be expressed by step

functions s( -).

fT (t) = T 1 s(t - TF) - s(t - 72 T, T1 < 7 2 . (A.6)

Then the pdf of the response x(t) can then be derived by differentiation.

f.(x) =-Fx(x), (A.7)
dx

fT - log(Ax)), (A.8)
1z (

=x I - s(x - Ae- 2) - s(x - Ae-ar) 1 . (A.9)
ax(Tr2 ~~ -1)

We utilize the above formula for deriving analytical response pdfs in section 5.3.5. We

further note that the step function with respect to x can be derived from the following

relations.

r < t < T2 , (A.10)

-aT 2 < -at < -ari, (A.11)

Ae-a 2 < x < Ae-oT . (A.12)
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Appendix B

Statistical Linearization of the

Background Regime

In this appendix, we provide the detailed derivation of statistical linearization of the

background regime in the context of high speed craft problem, the suspended seat

design and the suspended deck design, in chapter 6.

Suspended seat system with a linear attachment

For the special case

seat problem, A, B,

of a linear attachment, Ca = 0, the operators for the suspended

and C in equations (6.35) to (6.37) reduce to

A(w) = -msw 2 + (As + Aa)(jW) + ks + ka,

B(w) = Aa(jW) + ka,

C(w) = -maw 2 + Aa(jw) + ka.

(B.1)

(B.2)

(B.3)

In this case, we can directly integrate equations (6.30) to (6.32) to obtain the second

order response statistics.
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Suspended deck-seat system

For the suspended deck-seat design the background response is governed by the fol-

lowing system

mhy + Ay + khy + A,(y-) + ks(y - x)

+ Aa( - )) + ka(Y - V) + Ca(Y - V) 3 = -mhh(t), (B.4)

m,zf + As( - y) + k.(x - y) = -m,h(t), (B.5)

maf7 + Aa( -y) + ka(V - Y) + Ca(V - Y) 3 = -mah(t). (B.6)

As before we first multiply the above two equations by y(s), x(s), v(s), h(s) at different

time instant s # t, and take ensemble averages to write the resulting equations in

terms of covariance functions.

mhC" + AhC'n + khCyn + As (C' - C' ) + ks (Cy? - Cx?) + Aa (C' - C')

+ ka (Cy?7 - Cvi) + Ca(Y(t) - v(t))3 7(s) = -mhChi 1 , (B.7)

mSC"7 + A, (C', - C' ) + k, (Cx, - Cy,) = -imC", (B.8)

MaC'f7 + Aa (C',R - C' ) + ka (Cvq - Cyq) + Ca(V(t) - y(t)) 3 7(s) = -naCh7 , (B.9)

where 77 can be either y, X, v, or h, and ' indicates the partial differentiation with

respect to the time difference r = t - s. We then apply Isserlis' theorem based on the

Gaussian process approximation for response to express the fourth-order moments in

terms of second-order moments [631.

(y(t) - v(t)) 3 q(s) = (3Y - 6-Y% + 3o9 Cy, - (3a - 6%y + 3ov) Cvr,. (B.10)

This leads to a set of linear equations in terms of covariance functions and thus the

Wiener-Khinchin theorem can be applied to write the equations in terms of the power
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spectrum. The spectral equations in this case are given by

Sx (W; U2 ,y 1go O2) =y=

x

2 2)

x

x

Soh(w; o , oyo of) =

Syh(w; o , , oU ) =

Sxh(w; U2, a ,7 U) =

Svh (W; a2 7 2

(mh + maSw) + ms)

DAw Uj _ L3(U)
E(w) C(w)2)

(mh + Ma (-w) + ms _) w 4 Shh(W)
x (A\ - D(-W) 2 

_ B(-w)2

~(-w) C(-w)

(mh + mS - mSC(W)D(w) - C()
(AM(w) -V(W)- 

)

V(-w) sC(-D(w) - ma hh(W)

(A(-w)E(-Lo) _ -_B(w2(-
V(-w) W -'D(-w)C(-w) I

(mh + ma A(~) + ms - ma ()B

A(w)C(w) _ D(w) 2
C(w) _3(W)

S(W) B(L)E(w)

mh + ma iw + ms D(-) ~ ma S(w)hh()

(A(-w)C(-w) __ D(-w)2 C(-w) B "(B(--w) B(-w)C(-w) V)

(h+M 13(w)_
+maC(w)

(A(w) - D(W)2

+msgZ)

C(w)

(mh + maA(w) + ms (-w) Ma D(-W) 2  hh (W)

(A(-w)C(-w) _ D(-w) 2 C(-w) _ (-w)
8(-w) ( (-)

(mh--ma~) -- m4?) 2 Shw) 2

E(w) (W) C(w)

(mh + sA(w) - s3(W)2 Ma (,,) 'w2 Sh W)+ ~S() -- msC(W)D(w) mC(W)
A(w)E(w) B(W)2E(w)

D(w) D(w)C())

(mh + ma A(w) + ms (w) - ma D(W)2 ) 2shh(W)

A(w)C(w) _ D(w) 2C(w)
8(w) B(w)(w) w)
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, (B.11)

(B. 12)

(B. 13)

(B. 14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

Sy, (W; Or2, Uy", 0-) =



where

A(w; a-', o-yv, o ) = -mw2 + (Ah + A, + Aa)(jW)

+ kh + k, + ka + Ca(3a - - 6oy, + 302),

B(w; O~, 2.y, ) Aa(jW) + ka + Ca(3OY - 6a-v + 3o ),

C (W; o , o-Ye, I )= -maw 2 +Aa(jW) + ka + ca(3OY - 6-yv + 3oQ),

D(w) = A,(jw) + k8,

E(w) = -mSw 2 + Aa(jw) + ks.

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

Now oy, o, and o-y are still unknown, but can be determined by integrating both

sides of equations (B.11), (B.13), (B.15), and (B.17) and forming the following system

of equations,

2 00

= 10

2 00U-V =

00=

(B.26)

(B.27)

(B.28)

from which we obtain o-, u-,, of.

Suspended deck-saet system with a linear attachment

If the attachment is linear ca = 0, A, B, and C in equations (B.21), (B.22), and (B.25)

reduce to

A(w) = -mhw 2 + (Ah + As + A,)(J) + kh+ ks + ka,

13(w) = Aa(jW) + ka,

C(w) = -maw 2 + Aa(jW) + ka,

(B.29)

(B.30)

(B.31)

which can be directly integrated to obtain the second order response statistics.

220

WW" , -. 1- 111. - 1-1-1 - I 111. - - -- AffiffiffilumlWalluffifikMa M-'- --- L. I - . " - ' " -- "' . - 11 1-1-

SY(w UY- , -y, )dw,

Svv (W; 2- , - 2,)dW,



Bibliography

[1] A. M. Abou-Rayan and A. H. Nayfeh. "Stochastic response of a buckled beam to
external and parametric random excitations". In: In: AIAA/ASME/ASCE/AH-
S/A SC Structures (1993), pp. 1030-1040.

[2] T. S. Atalik and S. Utku. "Stochastic linearization of multi-degree-of-freedom
non-linear systems". In: Earthquake Engineering & Structural Dynamics 4.4
(1976), pp. 411-420.

[3] G. A. Athanassoulis and P. N. Gavriliadis. "The truncated Hausdorff moment
problem solved by using kernel density functions". In: Probabilistic Engineering
Mechanics 17.3 (July 2002), pp. 273-291.

[4] G. A. Athanassoulis, I. C. Tsantili, and Z. G. Kapelonis. "Two-time, response-
excitation moment equations for a cubic half-oscillator under Gaussian and
cubic-Gaussian colored excitation. Part 1: The monostable case". In: arXiv
preprint arXiv:1304.2195 (2013).

[5] G. Athanassoulis, I.C. Tsantili, and Z.G. Kapelonis. "Beyond the Markovian
assumption: Response-excitation probabilistic solution to random nonlinear
differential equations in the long time". In: Proceedings of the Royal Society A
471 (2016), p. 20150501.

[6] J. D. Atkinson. "Eigenfunction expansions for randomly excited non-linear
systems". In: Journal of Sound and Vibration 30.2 (1973), pp. 153-172.

[7] J. D. Atkinson and T. K. Caughey. "Spectral density of piecewise linear first
order systems excited by white noise". In: International Journal of Non-Linear
Mechanics 3.2 (1968), pp. 137-156.

[8] G. Barone, G. Navarra, and A. Pirrotta. "Probabilistic response of linear struc-
tures equipped with nonlinear damper devices (PIS method)". In: Probabilistic
engineering mechanics 23.2 (2008), pp. 125-133.

[9] D. A. W. Barton, S. G. Burrow, and L. R. Clare. "Energy harvesting from
vibrations with a nonlinear oscillator". In: Journal of Vibration and Acoustics
132.2 (2010), p. 021009.

[10] G. Barton. Elements of Green's functions and propagation: potentials, diffusion,
and waves. Oxford University Press, 1989.

221



[11] J. J. Beaman and J. K. Hedrick. "Improved statistical linearization for analysis
and control of nonlinear stochastic systems: Part I: An extended statistical
linearization technique". In: Journal of Dynamic Systems, Measurement, and
Control 103.1 (1981), pp. 14-21.

[12] R. F. Beck, W. E. Cummins, J. F. Dalzell, P. Mandel, and W. C. Webster.
"Motions in waves". In: Principles of naval architecture 3 (1989), p. 2.

[13] V. L. Belenky and N. B. Sevastianov. Stability and Safety of Ships: Risk of
Capsizing. The Society of Naval Architects and Marine Engineers, 2007.

[14] J. Beran. Statistics for long-memory processes. Vol. 61. CRC Press, 1994.

[15] M. Beran. Statistical Continuum Theories. Interscience Publishers, 1968.

[16] G. W. Bluman. "Similarity solutions of the one-dimensional Fokker-Planck
equation". In: International Journal of Non-linear Mechanics 6.2 (1971), pp. 143-
153.

[17] N. N. Bogolyubov and Y. A. Mitropolskii. Asymptotic methods in the theory
of nonlinear oscillations. Tech. rep. DTIC Document, 1955.

[18] R. C. Booton, M. V. Mathews, and W. W. Seifert. Nonlinear Servomechanisms
with Random Inputs. MIT Dynamic Analysis and Control Laboratory, 1953.

[19] D. C. C. Bover. "Moment equation methods for nonlinear stochastic systems".
In: Journal of Mathematical Analysis and Applications 65.2 (1978), pp. 306-
320.

[20] L. J. Branstetter, G. D. Jeong, J. T.P. Yao, Y.K. Wen, and Y.K. Lin. "Mathe-
matical modelling of structural behaviour during earthquakes". In: Probabilistic
Engineering Mechanics 3.3 (Sept. 1988), pp. 130-145.

[21] A. Bruckner and Y. K. Lin. "Application of complex stochastic averaging to
non-linear random vibration problems". In: International journal of non-linear
mechanics 22.3 (1987), pp. 237-250.

[22] T. K. Caughey. "Equivalent linearization techniques". In: The Journal of the
Acoustical Society of America 35.11 (1963), pp. 1706-1711.

[23] T. K. Caughey. "On the response of a class of nonlinear oscillators to stochastic
excitation". In: Proceedings Collog. Int. du Centre National de la Recherche
Scientifique 148 (1964), pp. 392-402.

[24] T. K. Caughey. "Response of a nonlinear string to random loading". In: Journal
of Applied Mechanics 26.3 (1959), pp. 341-344.

[25] T. K. Caughey and J. K. Dienes. "Analysis of a nonlinear first-order system
with a white noise input". In: Journal of Applied Physics 32.11 (1961), pp. 2476-
2479.

[26] T. K. Caughey and F. Ma. "The exact steady-state solution of a class of non-
linear stochastic systems". In: International Journal of Non-Linear Mechanics
17.3 (1982), pp. 137-142.

222



[27] H. Cho, D. Venturi, and George E. Karniadakis. "Adaptive discontinuous
Galerkin method for response-excitation PDF equations". In: SIAM Journal
on Scientific Computing 35.4 (2013), B890-B911.

[28] T. E. Coe, J. T. Xing, R. A. Shenoi, and D. Taunton. "A simplified 3-D human
body-seat interaction model and its applications to the vibration isolation
design of high-speed marine craft". In: Ocean Engineering 36.9 (2009), pp. 732-
746.

[29] W. Cousins and T. P. Sapsis. "Quantification and prediction of extreme events
in a one-dimensional nonlinear dispersive wave model". In: Physica D 280
(2014), pp. 48-58.

[30] W. Cousins and T. P. Sapsis. "Reduced order precursors of rare events in
unidirectional nonlinear water waves". In: Journal of Fluid Mechanics 790
(2016), pp. 368-388.

[31] D. Crandall, P. Felzenszwalb, and D. Huttenlocher. "Spatial priors for part-
based recognition using statistical models". In: Computer Vision and Pattern
Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. Vol. 1.
IEEE. 2005, pp. 10-17.

[32] S. H. Crandall. "Heuristic and equivalent linearization techniques for random vi-
bration of nonlinear oscillators". In: 8th International Conference on Nonlinear
Oscillations. Vol. 1. 1979, pp. 211-226.

[33] S. H. Crandall. "Non-Gaussian closure for random vibration of non-linear
oscillators". In: International Journal of Non-Linear Mechanics 15.4 (1980),
pp. 303-313.

[34] S. H. Crandall. "Non-Gaussian closure techniques for stationary random vi-
bration". In: International journal of non-linear mechanics 20.1.(1985), pp. 1-
8.

[35] S. H. Crandall. "Perturbation techniques for random vibration of nonlinear
systems". In: The Journal of the Acoustical Society of America 35.11 (1963),
pp. 1700-1705.

[36] S. H. Crandall, G. R. Khabbaz, and J. E. Manning. "Random vibration of an
oscillator with nonlinear damping". In: The Journal of the Acoustical Society
of America 36.7 (1964), pp. 1330-1334.

[37] I. G. Cumming. "Derivation of the moments of a continuous stochastic system".
In: International Journal of Control 5.1 (1967), pp. 85-90.

[38] M. F. Daqaq. "On intentional introduction of stiffness nonlinearities for energy
harvesting under white Gaussian excitations". In: Nonlinear Dynamics 69.3
(2012), pp. 1063-1079.

[39] M. F. Daqaq. "Transduction of a bistable inductive generator driven by white
and exponentially correlated Gaussian noise". In: Journal of Sound and Vibra-
tion 330.11 (2011), pp. 2554-2564.

223



[40] A. Di Matteo, M. Di Paola, and A. Pirrotta. "Probabilistic characterization of
nonlinear systems under Poisson white noise via complex fractional moments".
In: Nonlinear Dynamics 77.3 (2014), pp. 729-738.

[41] A. Di Matteo, I. A. Kougioumtzoglou, A. Pirrotta, T. D. Spanos, and M. Di
Paola. "Stochastic response determination of nonlinear oscillators with frac-
tional derivatives elements via the Wiener path integral". In: Probabilistic
Engineering Mechanics 38 (2014), pp. 127-135.

[42] M. Di Paola and R. Santoro. "Path integral solution for non-linear system
enforced by Poisson white noise". In: Probabilistic Engineering Mechanics 23.2
(2008), pp. 164-169.

[43] M. Di Paola and A. Sofi. "Approximate solution of the Fokker-Planck-Kolmogorov
equation". In: Probabilistic Engineering Mechanics 17.4 (2002), pp. 369-384.

[44] M. F. Dimentberg. "An exact solution to a certain non-linear random vibration
problem". In: International Journal of Non-Linear Mechanics 17.4 (1982),
pp. 231-236.

[45] J. F. Dunne and M. Ghanbari. "Extreme-value prediction for non-linear stochas-
tic oscillators via numerical solutions of the stationary FPK equation". In:
Journal of Sound and Vibration 206.5 (1997), pp. 697-724.

[46] M. I. Dykman, R. Mannella, R. V. E. McClintock, F. Moss, and S. M. Soskin.
"Spectral density of fluctuations of a double-well Duffing oscillator driven by
white noise". In: Physical Review A 37.4 (1988), p. 1303.

[47] M. I. Dykman, S. M. Soskin, and M. A. Krivoglaz. "Spectral distribution of a
nonlinear oscillator performing Brownian motion in a double-well potential".
In: Physica A: Statistical Mechanics and its Applications 133.1 (1985), pp. 53-
73.

[48] M. Ferrari, V. Ferrari, M. Guizzetti, B. And6, S. Baglio, and C. Trigona. "Im-
proved energy harvesting from wideband vibrations by nonlinear piezoelectric
converters". In: Sensors and Actuators A: Physical 162.2 (2010), pp. 425-431.

[49] A. D. Fokker. "Dissertation Leiden". In: Ann. d. Physik 43 (1914), p. 812.

[50] L. Gammaitoni, I. Neri, and H. Vocca. "Nonlinear oscillators for vibration
energy harvesting". In: Applied Physics Letters 94.16 (2009), p. 164102.

[51] P. L. Green, E. Papatheou, and N. D. Sims. "Energy harvesting from human
motion and bridge vibrations: An evaluation of current nonlinear energy har-
vesting solutions". In: Journal of Intelligent Material Systems and Structures
(2013).

[52] P. L. Green, K. Worden, K. Atallah, and N. D. Sims. "The benefits of Duffing-
type nonlinearities and electrical optimisation of a mono-stable energy harvester
under white Gaussian excitations". In: Journal of Sound and Vibration 331.20
(2012), pp. 4504-4517.

[53] M. Grigoriu. "A consistent closure method for non-linear random vibration".
In: International journal of non-linear mechanics 26.6 (1991), pp. 857-866.

224

-11 , -- - - 1- --. - 1-11--t . .1 - , ,, __ ''. 1- -11 . WNINUMAXAN. J. 1-1-1. _. _--a. "" , , 1. - I~ - " -- ,". __1__.__---_



[54] M. Grigoriu. "Moment closure by Monte Carlo simulation and moment sensi-
tivity factors". In: International journal of non-linear mechanics 34.4 (1999),
pp. 739-748.

[55] M. Grigoriu. Stochastic calculus: applications in science and engineering. Springer,
2002.

[56] E. Halvorsen. "Fundamental issues in nonlinear wideband-vibration energy
harvesting". In: Physical Review E 87.4 (2013), p. 042129.

[57] N. C. Hampl. "Non-Gaussian stochastic analysis of nonlinear systems". In:
Proceedings of the second international workshop on stochastic methods in
structural mechanics. 1986, pp. 277-288.

[58] R. L. Harne and K. W. Wang. "A review of the recent research on vibration
energy harvesting via bistable systems". In: Smart Materials and Structures
22.2 (2013), p. 023001.

[59] A. M. Hasofer and M. Grigoriu. "A new perspective on the moment closure
method". In: Journal of applied mechanics 62.2 (1995), pp. 527-532.

[60] Q. He and M. F. Daqaq. "New Insights into Utilizing Bi-stability for Energy
Harvesting under White Noise". In: Journal of Vibration and Acoustics (2014).

[61] R. A. Ibrahim and A. Soundararajan. "Non-linear parametric liquid sloshing
under wide band random excitation". In: Journal of Sound and Vibration 91.1
(1983), pp. 119-134.

[62] R. A. Ibrahim, A. Soundararajan, and H. Heo. "Stochastic response of nonlinear
dynamic systems based on a non-Gaussian closure". In: Journal of applied
mechanics 52.4 (1985), pp. 965-970.

[63] L. Isserlis. "On a formula for the product-moment coefficient of any order of
a normal frequency distribution in any number of variables". In: Biometrika
(1918), pp. 134-139.

[64] W. D. Iwan and I. M. Yang. "Application of statistical linearization techniques
to nonlinear multidegree-of-freedom systems". In: Journal of Applied Mechanics
39.2 (1972), pp. 545-550.

[65] R. Iwankiewicz and S. R. K. Nielsen. "Solution techniques for pulse problems
in non-linear stochastic dynamics". In: Probabilistic engineering mechanics 15.1
(2000), pp. 25-36.

[66] R. N. Iyengar and P. K. Dash. "Study of the random vibration of nonlinear
systems by the Gaussian closure technique". In: Journal of Applied Mechanics
45.2 (1978), pp. 393-399.

[67] H. K. Joo, M. A. Mohamad, and T. P. Sapsis. "Extreme events and their
optimal mitigation in nonlinear structural systems excited by stochastic loads:
Application to ocean engineering systems". In: Submitted (2017).

[68] H. K. Joo, M. A. Mohamad, and T. P. Sapsis. "Heavy-tailed response of struc-
tural systems subjected to stochastic excitation containing extreme forcing
events". In: Submitted (2016).

225



[69] H. K. Joo and T. P. Sapsis. "A moment-equation-copula-closure method for
nonlinear vibrational systems subjected to correlated noise". In: Probabilistic
Engineering Mechanics (2016).

[70] H. K. Joo and T. P. Sapsis. "Performance measures for single-degree-of-freedom
energy harvesters under stochastic excitation". In: Journal of Sound and Vi-
bration 333.19 (2014), pp. 4695-4710.

[71] H. Karadeniz. Stochastic analysis of offshore steel structures: an analytical
appraisal. Springer Science & Business Media, 2012.

[72] M. A. Karami and D. J. Inman. "Powering pacemakers from heartbeat vibra-
tions using linear and nonlinear energy harvesters". In: Applied Physics Letters
100.4 (2012), p. 042901.

[73] I. E. Kazakov. "An approximate method for the statistical investigation of
nonlinear systems". In: Trudy VVIA im Prof. NE Zhukovskogo 394 (1954),
pp. 1-52.

[74] I. E. Kazakov. Approximate probability analysis of the operational precision of
essentially nonlinear feedback control systems. 1956.

[75] G. Kerschen, Y. S. Lee, A. F. Vakakis, D. M. McFarland, and L. A. Bergman.
"Irreversible passive energy transfer in coupled oscillators with essential non-
linearity". In: SIAM Journal on Applied Mathematics 66.2 (2005), pp. 648-
679.

[76] G. R. Khabbaz. "Power spectral density of the response of a nonlinear system
to random excitation". In: The Journal of the Acoustical Society of America
38.5 (1965), pp. 847-850.

[77] R. Z. Khasminskii. "A limit theorem for the solutions of differential equations
with random right-hand sides". In: Theory of Probability & Its Applications
11.3 (1966), pp. 390-406.

[78] D. J. Kim, W. Vorus, A. TroeshROESH, and R. Gollwitzer. "Coupled hydro-
dynamic impact and elastic response". In: (1996).

[79] J. M. Kluger, T. P. Sapsis, and A. H. Slocum. "Robust energy harvesting from
walking vibrations by means of nonlinear cantilever beams". In: Journal of
Sound and Vibration (2015).

[80] I. A. Kougioumtzoglou and P. D. Spanos. "An analytical Wiener path integral
technique for non-stationary response determination of nonlinear oscillators".
In: Probabilistic Engineering Mechanics 28 (2012), pp. 125-131.

[81] I. A. Kougioumtzoglou and P. D. Spanos. "Nonstationary stochastic response
determination of nonlinear systems: A Wiener path integral formalism". In:
Journal of Engineering Mechanics 140.9 (2014), p. 04014064.

[82] H. U. K6ylioglu, S. R. K. Nielsen, and R. Iwankiewicz. "Response and reliability
of Poisson-driven systems by path integration". In: Journal of engineering
mechanics 121.1 (1995), pp. 117-130.

226



[83] H. A. Kramers. "Brownian motion in a field of force and the diffusion model
of chemical reactions". In: Physica 7.4 (1940), pp. 284-304.

[84] E. Kreuzer and W. Sichermann. "The effect of sea irregularities on ship rolling".
In: Computing in Science & Engineering 8.3 (2006), pp. 26-34.

[85] P. R. Kry. "Third Canadian geotechnical colloquium: Ice forces on wide struc-
tures". In: Canadian Geotechnical Journal 17.1 (1980), pp. 97-113.

[86] R. S. Langley. "On various definitions of the envelope of a random process."
In: Journal of Sound and Vibration 105.3 (1986), pp. 503-512.

[87] Y. K. Lin. "Application of nonstationary shot noise in the study of system
response to a class of nonstationary excitations". In: Journal of Applied Me-
chanics 30.4 (1963), pp. 555-558.

[88] Y. K. Lin. Probabilistic theory of structural dynamics. Krieger Publishing Com-
pany, 1976.

[89] Y. K. Lin. "Stochastic stability of wind-excited long-span bridges". In: Proba-
bilistic Engineering Mechanics 11.4 (Oct. 1996), pp. 257-261.

[90] Y. K. Lin and C. Q. Cai. Probabilistic structural dynamics: advanced theory
and applications. Mcgraw-hill Professional Publishing, 1995.

[91] P. C. Liu. "A chronology of freaque wave encounters". In: Geofizika 24 (1)
(2007).

[92] Q. Liu and H. G. Davies. "Application of non-Gaussian closure to the nonsta-
tionary response of a Duffing oscillator". In: International journal of non-linear
mechanics 23.3 (1988), pp. 241-250.

[93] J. Luo, N. E. Wierschem, S. A. Hubbard, L. A. Fahnestock, D. D. Quinn,
F. D. Michael, B. F. Spencer, A. F. Vakakis, and L. A. Bergman. "Large-scale
experimental evaluation and numerical simulation of a system of nonlinear
energy sinks for seismic mitigation". In: Engineering Structures 77 (2014),
pp. 34-48.

[94] A. J. Majda and M. Branicki. "Lessons in Uncertainty Quantification for Tur-
bulent Dynamical Systems". In: Discrete and Continuous Dynamical Systems
32 (2012), pp. 3133-3221.

[95] A. K. Malhotra and J. Penzien. "Nondeterministic analysis of offshore struc-
tures". In: Journal of the Engineering Mechanics Division 96.6 (1970), pp. 985-
1003.

[96] B. P. Mann and N. D. Sims. "Energy harvesting from the nonlinear oscilla-
tions of magnetic levitation". In: Journal of Sound and Vibration 319.1 (2009),
pp. 515-530.

[97] J. E. Manning. "Response spectra for nonlinear oscillators". In: Journal of
Engineering for Industry 97.4 (1975), pp. 1223-1226.

[98] C. S. Manohar. "Methods of nonlinear random vibration analysis". In: Sadhana
20.2-4 (1995), pp. 345-371.

227



[99] R. Masana and M. F. Daqaq. "Response of duffing-type harvesters to band-
limited noise". In: Journal of Sound and Vibration 332.25 (2013), pp. 6755-
6767.

[100] A. Masud and L. A. Bergman. "Solution of the four dimensional Fokker-Planck
Equation: Still a challenge". In: ICOSSAR 2005 (2005), pp. 1911-1916.

[101] C. Meyer. "The bivariate normal copula". In: Communications in Statistics-
Theory and Methods 42.13 (2013), pp. 2402-2422.

[102] M. A. Mohamad, W. Cousins, and T. P. Sapsis. "A probabilistic decomposition-
synthesis method for the quantification of rare events due to internal instabili-
ties". In: Journal of Computational Physics 322 (2016), pp. 288-308.

[103] M. A. Mohamad and T. P. Sapsis. "Probabilistic description of extreme events
in intermittently unstable systems excited by correlated stochastic processes".
In: SIAM/ASA J. of Uncertainty Quantification 3.1 (2015), pp. 709-736.

[104] M. A. Mohamad and T. P. Sapsis. "Probabilistic response and rare events in
Mathieu's equation under correlated parametric excitation". In: Ocean Engi-
neering Journal 120 (2016), pp. 289-297.

[105] P. M6ler, C. Garrett, and A. Osborne. "Rogue waves". In: Oceanography 18.3
(2005), p. 66.

[106] A. Naess and J. M. Johnsen. "Response statistics of nonlinear, compliant
offshore structures by the path integral solution method". In: Probabilistic
Engineering Mechanics 8.2 (1993), pp. 91-106.

[107] A. Naess and T. Moan. Stochastic dynamics of marine structures. Cambridge
University Press, 2012.

[108] R. B. Nelsen. An introduction to copulas. Springer Science & Business Media,
2007.

[109] M. N. Noori, A. Saffar, and H. Davoodi. "A comparison between non-Gaussian
closure and statistical linearization techniques for random vibration of a non-
linear oscillator". In: Computers & structures 26.6 (1987), pp. 925-931.

[110] K. Ochi M. Applied probability and stochastic processes: In Engineering and
Physical Sciences. Vol. 226. Wiley-Interscience, 1990.

[111] K. Olausson and K. Garme. "Prediction and evaluation of working conditions
on high-speed craft using suspension seat modeling". In: Proceedings of the
Institution of Mechanical Engineers, Part M: Journal of Engineering for the
Maritime Environment 229.3 (2015), pp. 281-290.

[112] M. Onorato, A. R. Osborne, M. Serio, and S. Bertone. "Freak waves in random
oceanic sea states". In: Physical Review Letters 86.25 (2001), p. 5831.

[113] H. C. Ottinger. Stochastic processes in polymeric fluids: tools and examples for
developing simulation algorithms. Springer Science & Business Media, 2012.

228



[114] L. Qu and W. Yin. "Copula density estimation by total variation penalized
likelihood with linear equality constraints". In: Computational Statistics &
Data Analysis 56.2 (2012), pp. 384-398.

[115] D. D. Quinn, S. Hubbard, N. Wierschem, M. A. Al-Shudeifat, R. J. Ott, J.
Luo, B. F. Spencer, D. M. McFarland, A. F. Vakakis, and L. A. Bergman.
"Equivalent modal damping, stiffening and energy exchanges in multi-degree-of-
freedom systems with strongly nonlinear attachments". In: Proceedings of the
Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics
226.2 (2012), pp. 122-146.

[116] K. P. Ranieri, R. M. Berman, S. D. Wood, R. J. Garelick, C. J. Hauck, and
M. G. Stoddard. Active deck suspension system. US Patent 6,763,774. 2004.

[117] J. W. S. B. Rayleigh. The theory of sound. Vol. 2. Macmillan, 1896.

[118] J. R. Red-Horse and P. D. Spanos. "A Closed Form Solution for a Class of Non-
Stationary Nonlinear Random Vibration Problems". In: Nonlinear Stochastic
Dynamic Engineering Systems. Springer, 1988, pp. 393-403.

[119] M. R. Riley and T. W. Coats. "A Simplified Approach for Analyzing Accel-
erations Induced by Wave- Impacts in High-Speed Planing Craft". In: 3rd
Chesapeake Power Boat Symposium June (2012), pp. 14-15.

[120] M. R. Riley, T. Coats, K. Haupt, and D. Jacobson. "Ride Severity Index - A
New Approach to Quantifying the Comparison of Acceleration Responses of
High-Speed Craft". In: FAST 2011 11th International Conference on Fast Sea
Transportation September (2011), pp. 693-699.

[121] J. B. Roberts. "The energy envelope of a randomly excited non-linear oscillator".
In: Journal of Sound and Vibration 60.2 (1978), pp. 177-185.

[122] J. B. Roberts and P. D. Spanos. Random vibration and statistical linearization.
Courier Dover Publications, 2003.

[123] J. B. Roberts and P. D. Spanos. "Stochastic averaging: an approximate method
of solving random vibration problems". In: International Journal of Non-Linear
Mechanics 21.2 (1986), pp. 111-134.

[124] J. Roberts and P. Spanos. Random Vibration and Statistical Linearization.
Dover Publications, 2003.

[125] N. G. F. Sancho. "Technique for finding the moment equations of a nonlinear
stochastic system". In: Journal of Mathematical Physics 11.3 (1970), pp. 771-
774.

[126] T. P. Sapsis and G. A. Athanassoulis. "New partial differential equations
governing the joint, response-excitation, probability distributions of nonlinear
systems, under general stochastic excitation". In: Probab. Eng. Mech. 23.2-3
(2008), pp. 289-306.

229



[127] T. P. Sapsis, D. Dane Quinn, Alexander F. Vakakis, and Lawrence A. Bergman.
"Effective stiffening and damping enhancement of structures with strongly non-
linear local attachments". In: Journal of vibration and acoustics 134.1 (2012),
p. 011016.

[128] T. P. Sapsis, A. F. Vakakis, and L. A. Bergman. "Effect of stochasticity on tar-
geted energy transfer from a linear medium to a strongly nonlinear attachment".
In: Probabilistic Engineering Mechanics 26.2 (2011), pp. 119-133.

[129] Y. Sawaragi. Statistical Studies on non-linear control systems. Nippon Print.
and Pub. Co., 1962.

[130] G. I. Schu6ller and C. G. Bucher. "Nonlinear damping and its effects on the reli-
ability estimates of structural stystems". In: Random Vibration-Status and Re-
cent Developments: The Stephen Harry Crandall Festschrift 14 (1986), p. 389.

[131] P. R. Sethna. "An extension of the method of averaging". In: Quarterly of
Applied Mathematics 25.2 (1967), pp. 205-211.

[132] P. R. Sethna and S. Orey. "Some asymptotic results for a class of stochastic
systems with parametric excitations". In: International Journal of Non-Linear
Mechanics 15.6 (1980), pp. 431-441.

[133] T. Shimogo. "Nonlinear Vibrations of Systems under Random Loading". In:
Bulletin of JSME 6.21 (1963), pp. 44-52.

[134] M. A. AL-Shudeifat, A. F. Vakakis, and L. A. Bergman. "Shock Mitigation by
Means of Low- to High-Frequency Nonlinear Targeted Energy Transfers in a
Large-Scale Structure". In: Journal of Computational and Nonlinear Dynamics
11.2 (2015).

[135] M. A. AL-Shudeifat, N. Wierschem, D. D. Quinn, A. F. Vakakis, L. A. Bergman,
and B. F. Spencer. "Numerical and experimental investigation of a highly
effective single-sided vibro-impact non-linear energy sink for shock mitigation".
In: International Journal of Non-Linear Mechanics 52 (2013), pp. 96-109.

[136] K. Sobczyk. Stochastic differential equations: with applications to physics and
engineering. Vol. 40. Springer, 2001.

[137] L. Socha. Linearization methods for stochastic dynamic systems. Vol. 730.
Springer, 2008.

[138] C. Soize. The Fokker-Planck equation for stochastic dynamical systems and its
explicit steady state solutions. Vol. 17. World Scientific, 1994.

[139] S. R. Soni and K. Surendran. "Transient response of nonlinear systems to
stationary random excitation". In: Journal of Applied Mechanics 42.4 (1975),
pp. 891-893.

[140] T. T. Soong and M. Grigoriu. "Random vibration of mechanical and structural
systems". In: NASA STI/Recon Technical Report A 93 (1993), p. 14690.

[141] T. D. Spanos. "Formulation of stochastic linearization for symmetric or asym-
metric MDOF nonlinear systems". In: Journal of Applied Mechanics 47.1
(1980), pp. 209-211.

230



[142] S. Spence and M. Gioffre. "Large scale reliability-based design optimization of
wind excited tall buildings". In: Probabilistic Engineering Mechanics 28 (2012),
pp. 206-215.

[143] R. L. Stratonovich and R. A. Silverman. "Topics in the Theory of Random
Noise. Volume II". In: (1967).

[144] C. W. S. To. Nonlinear random vibration: Analytical techniques and applica-
tions. CRC Press, 2011.

[145] N. C. Townsend, T. E. Coe, P. A. Wilson, and R. A. Shenoi. "High speed marine
craft motion mitigation using flexible hull design". In: Ocean Engineering 42
(2012), pp. 126-134.

[146] A. F. Vakakis. "Inducing passive nonlinear energy sinks in vibrating systems".
In: Journal of Vibration and Acoustics 123.3 (2001), pp. 324-332.

[147] A. F. Vakakis, 0. V. Gendelman, L. A. Bergman, D. M. McFarland, G. Kerschen,
and Y. S. Lee. Nonlinear targeted energy transfer in mechanical and structural
systems. Vol. 156. Springer Science & Business Media, 2008.

[148] A. F. Vakakis, L. I. Manevitch, 0. V. Gendelman, and L. A. Bergman. "Dy-
namics of linear discrete systems connected to local, essentially non-linear
attachments". In: Journal of Sound and Vibration 264.3 (2003), pp. 559-577.

[149] A. F. Vakakis, L. I. Manevitch, A. I. Musienko, G. Kerschen, and L. A. Bergman.
"Transient dynamics of a dispersive elastic wave guide weakly coupled to an
essentially nonlinear end attachment". In: Wave Motion 41.2 (2005), pp. 109-
132.

[150] W. E. Vander Velde. Multiple-input describing functions and nonlinear system
design. New York: McGraw-Hill, 1968.

[151] M. Vasta. "Exact stationary solution for a class of non-linear systems driven by
a non-normal delta-correlated process". In: International journal of non-linear
mechanics 30.4 (1995), pp. 407-418.

[152] A. E. P. Veldman, R. Luppes, T. Bunnik, R. H. M. Huijsmans, B. Duz, B.
Iwanowski, R. Wemmenhove, M. J. A. Borsboom, P. R. Wellens, H. J. L. Van
Der Heiden, et al. "Extreme wave impact on offshore platforms and coastal
constructions". In: ASME 2011 30th International Conference on Ocean, Off-
shore and Arctic Engineering. American Society of Mechanical Engineers. 2011,
pp. 365-376.

[153] D. Venturi, T. P. Sapsis, H. Cho, and G. E. Karniadakis. "A computable evolu-
tion equation for the joint response-excitation probability density function of
stochastic dynamical systems". In: Proceedings of the Royal Society A: Mathe-
matical, Physical and Engineering Science 468.2139 (2012), pp. 759-783.

[154] M. F. Wehner and W. G. Wolfer. "Numerical evaluation of path-integral solu-
tions to Fokker-Planck equations". In: Physical Review A 27.5 (1983), p. 2663.

231



[155] S. F. Wojtkiewicz, E. A. Johnson, L. A. Bergman, M. Grigoriu, and B. F.
Spencer Jr. "Response of stochastic dynamical systems driven by additive
Gaussian and Poisson white noise: Solution of a forward generalized Kolmogorov
equation by a spectral finite difference method". In: Computer methods in
applied mechanics and engineering 168.1 (1999), pp. 73-89.

[156] S. F. Wojtkiewicz, B. F. Spencer Jr, and L. A. Bergman. "On the cumulant-
neglect closure method in stochastic dynamics". In: International journal of
non-linear mechanics 31.5 (1996), pp. 657-684.

[157] W. F. Wu and Y. K. Lin. "Cumulant-neglect closure for non-linear oscillators
under random parametric and external excitations". In: International Journal
of Non-Linear Mechanics 19.4 (1984), pp. 349-362.

[158] D. Xiu and G. Karniadakis. "Modeling uncertainty in flow simulations via
generalized polynomial chaos". In: J. Comp. Phys. 187 (2003), pp. 137-167.

[159] D. Xiu and G. Karniadakis. "The Wiener-Askey polynomial chaos for stochastic
differential equations". In: SIAM Journal on Scientific Computing 24 (2002),
pp. 619-644.

[160] Y. Zeng and W. Q. Zhu. "Stochastic averaging of strongly nonlinear oscillators
under Poisson white noise excitation". In: IUTAM symposium on nonlinear
stochastic dynamics and control. Springer. 2011, pp. 147-155.

[161] W. Q. Zhu. "Stochastic averaging methods in random vibration". In: Applied
Mechanics Reviews 41.5 (1988), pp. 189-199.

[162] W. Q. Zhu. "Stochastic averaging of the energy envelope of nearly Lyapunov
systems". In: Random Vibrations and Reliability, Proceedings of the IUTAM
Symposium, Akademie, Berlin. 1983, pp. 347-357.

[163] W. Q. Zhu and J. S. Yu. "On the response of the Van der Pol oscillator to white
noise excitation". In: Journal of sound and vibration 117.3 (1987), pp. 421-431.

232




