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Abstract

The aim of the research presented in this thesis is to design optimal wavefronts and
subwavelength structures that enhance mechanical effects on the nanoscale, focusing
on three types of devices: holographic optical tweezers, broadband solar absorbers,
and acoustic waveguides. Much of the work presented is obtained using open source
software tools.

Advances in spatial wave modulation and nanomaterial fabrication technologies
have created many new degrees of freedom for engineering wave-matter interaction.
When exploring so many parameters, a large number of full-wave scattering problems
must be solved efficiently - calling for a more targeted design approach. We address
this challenge by offering computer-automated design frameworks that effectively
combine the best computational software developed in physics, numerical analysis,
and inverse design.

Part I presents computational inverse design methods for structured illumination
in holographic optical tweezers. Wave optimization is highly nonconvex by nature,
and possesses many local optima due to interference and resonance. By combining
a compact Bessel basis and a fast boundary element method, we achieve a 20-fold
enhancement in torque per intensity, over a standard circular-polarized illumination,
on a model plasmonic nanoparticle.

Part II presents mode analysis and numerical parameter-testing strategies for
periodic subwavelength structures in optics and acoustics. We first summarize the
design and experimental characterization results of a photonic crystal solar absorber
with wide-angle spectral selectivity. Next, we discuss a multiscale acoustic model of a
phononic crystal with strong spatial dispersion.

We are optimistic that our computational frameworks for wavefronts and subwave-
length structures can be generalized and applied to other design problems, such as
metamaterials, 3d manufacturing, and 3d imaging.
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Chapter 1

Introduction

1.1 Motivation and Background

From steam engines to wind turbines to solar panels, engineers have been developing

new and improved systems that store energy, perform work, or transfer heat in

increasingly resourceful and sophisticated ways. We can group such engineering

systems by their primary mode of energy transfer. In the size range from hundreds

of micrometers down to a few nanometers,1 energy transfer is often best mediated

by waves - such as electromagnetic radiation [1, 2, 3] and mechanical vibration [4]

Figure 1.1.1 illustrates the frequency spectrum for sound and electromagnetic waves,

highlighting the different industrial applications in each frequency domain.

The aim of this thesis is to provide computer-aided design and analysis tools

for mechanical systems that use waves as their primary mode of energy transfer.

Specifically, we focus on simulating optimal wavefronts and subwavelength structures

that enhance mechanical effects on the nanoscale. The systems analyzed in this thesis

include: holographic optical tweezers in Chapter 3, photonic crystal solar absorbers in

Chapter 4, and phononic crystal acoustic waveguides in Chapter 5. Each project and

its respective chapter is illustrated in Figure 1.1.2.

Advances in nanoparticle engineering [5, 6, 7, 8, 9, 10, 11], meta-structures [12, 13,

14], and spatial wave modulation [15, 16, 17, 18, 19, 20, 21, 22] have created many

11p1M=10-6M, 1nm=10-9m.
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Figure 1.1.1: Frequency Spectrum for electromagnetic and sound waves.

new degrees of freedom for engineering wave-matter interaction. When exploring so

many parameters, a large number of full-wave scattering problems must be solved

efficiently. For example, if we want to test ten different parameters that each have five

options, we need to run 510 = 9, 765,625 simulations to examine every possible design

candidate. This is often prohibitively time-consuming: A single three-dimensional

(3D) full-wave simulation can easily take a few hours, especially if nontraditional

wavefronts or subwavelength structures need to be modeled with high fidelity. In order

to explore so many degrees of design freedom efficiently, we need a more targeted

numerical design approach. Moreover, wave optimization is highly nonconvex by

nature, and possesses many local optima due to interference and resonance. Thus

convex optimization techniques cannot be simply applied [23].

We address this challenge by offering computer-automated design frameworks that

effectively combine the best computational software developed in physics, numerical

analysis, and inverse design. Much of the work presented is obtained using free and

open source software tools available online [24, 25, 26, 271. These tools allow us to
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Figure 1.1.2: Overview of wavefronts and subwavelength structures studied in the
thesis.

construct multi-component numerical schemes efficiently by modifying and improving

upon high-quality source codes that are released with free and open source software

licenses. In our experience, the availability and transparency of the source codes

greatly reduce guesswork and repetition during development and debugging, and

facilitate effective collaborations. We mainly use C++ as our programming language,

along with Python/Julia and MATLAB. When appropriate, we also use proprietary

simulation engines [28] for large-volume computations.

Our work pushes to open the design space in wave engineering through efficiently

exploring high-dimensional design parameter spaces via large-scale computational

optimization. We are optimistic that our computational frameworks for wavefronts

and subwavelength structures can be generalized and applied to other design problems,

such as metamaterials, 3d manufacturing, and 3d imaging.

1.1.1 Mathematical Similarities in Engineering Light and Sound

On the microscopic level, electric and magnetic waves are governed by different physical

laws. Electromagnetic waves are oscillations of electric and magnetic fields generated
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by charged particles. Electromagnetic waves do not require a material medium and can

radiate through vacuum. The relevant material properties for light waves are electric

permittivity c and magnetic permeability p, which determine the phase velocity in the

medium. Full-wave solutions to electromagnetic scattering problems on the microscopic

level require solving the full Maxwell's equations. This is summarized in the beginning

of my Master's thesis [29] based on [1]. Mechanical waves, on the other hand, cannot

exist in vacuum because they propagate by momentarily deforming and restoring a

material substance, which can be either solid or fluid. The relevant material properties

are density p and compressibility X, as well as elastic modulus, shear modulus, and

viscosity, depending on the medium. As in the case for electromagnetic waves, these

material properties determine the phase velocity in the medium. Full-wave solutions to

acoustic scattering problems on the microscopic level require solving coupled thermal

fluidic equations, as summarized in [30, 4] and in Chapter 5.

Yet on the macroscopic level in the long-wavelength limit, the propagation of

electromagnetic and acoustic waves can be simplified in a similar way: We can

homogenize, or average over a finite volume of interest, the complicated microscopic

system dynamics and characterize each medium using its dispersion relation based

on the material response of the constituent media. Sometimes the relevant material

properties are easily available, as in Chapters 2 and 3 131]. Other times they have to be

measured experimentally, as in Chapter 4, or obtained through multiscale computation,

as in Chapter 5. Analytical and computational methods for wave engineering thus

share a great deal of mathematical similarity on the homogenized scale.

1.1.2 Numerical Methods for Wave Scattering Problems

Wave scattering problems can be simplified greatly if the wavelength is much longer or

shorter than the characteristic geometric feature of the scatterer. When the size of the

characteristic feature is much smaller than the wavelength, the intricate geometries

become negligible. Also, when the feature is much larger than the wavelength, the

intricate oscillations of the waves become negligible and we can simplify the waves

as rays (as in ray optics and ray acoustics). Between these two extremes, we need to
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Figure 1.1.3: Illustration of the tradeoff between the speed and generality of numerical
PDE solvers. Differential methods discretize the entire geometry and are therefore
slowest yet most general (top left). Integral methods discretize the boundaries rather
than the entire domain, and hence increase speed while decreasing generality for
complicated physical problems (middle). Semi-analytic methods are very fast but are
only available for highly symmetric geometries such as spheres (bottom right). The
graph is purely conceptual rather than quantitative.
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solve the governing partial differential equations (PDE's) in their full forms.

The speed and generality of various numerical PDE solvers are illustrated in Figure

1.1.3. First, differential solvers for PDE discretize the entire problem geometry and

solve the governing PDE's on the mesh. If the given scattering problem is 3D, the

mesh is also 3D. Such methods include finite difference time domain (FDTD) [32, 33]

used in Chapters 2 and 4, and finite element method (FEM) [26, 34] used in Chapter 5.

Differential PDE solvers are computationally expensive but are by far the most general

method that can be applied to systems with complicated geometries and material

compositions.

Next, integral methods, including the boundary element method (BEM) [35, 36, 25]

used in Chapter 3, solve the integral form of the PDE on the material boundaries

rather than in the entire domain, and hence increase speed while decreasing generality

for complicated physics and boundary situations.

Lastly, semi-analytic methods, such as multiple scattering [37, 38, 39, 27] used

in Chapter 5, employ analytical solutions of Eq. (??). Semi-analytic methods are

very fast, but are only available for highly symmetrical geometries such as flat layers,

spheres, and cylinders.

1.1.3 Matrix-based Formalism and the Dispersion Equation

It is often useful to formulate the partial differential equations describing a wave

scattering system into a matrix form:

Ax=b, (1.1.1)

where A is an N x N system matrix relating the input and output vectors b and x,

such as the incident and scattered fields. A similar formalism is used with a N - 4000

BEM Matrix in Chapter 3. This is useful when we are interested in engineering or

measuring b and x, such as in Chapters 2, 3, and 4.

We can also relate the scattering problem to an eigenvalue problem for the resonant

modes of the system by setting b = 0:
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A(A)x = 0, (1.1.2)

where we include an explicit dependence on an "eigenvalue" A , which is typically the

frequency w = 27rf or a wavevector component k, representing temporal or spatial

oscillations, respectively. Here, x is the eigenvector, or the input vector that excites the

intrinsic resonance of the system. If A(A) = B - AC for some matrices B and C, this

is simply a linear eigenvalue problem that can be solved by many standard methods

[40]. However, in many practical cases A(A) can depend in a more complicated way

on A. For example, a complicated w-dependence might arise due to material dispersion

[131. When solving for the wavevector A = k at a fixed w, typically A depends

quadratically on k, a so-called "quadratic eigenvalue problem" that can be converted

to a linear eigenvalue problem of twice the size 141].

For the general nonlinear eigenvalue problem (NEP) with an arbitrary (usually

smooth) A(A), there are many methods [42], including solving Eq. (1.1.2) directly

(e.g., by Newton's method) is a large system of nonlinear equations in x and A, or

by applying nonlinear solvers to a single scalar equation in the eigenvalue A for the

determinant of A:

det[A(A) = 0.

In cases where one has a well defined wavevector k, including waveguides and periodic

media [12], the relationship w(k) is called the dispersion relation, which can be

very complicated for an arbitrary periodic medium such as a photonic crystal for

electromagnetism, studied in Chapter 4, or the phononic crystals considered for

acoustic waves in Chapter 5.

In the long wavelength limit, as w and k go to zero, however, matters simplify con-

siderably: the wave doesn't "see" geometric features much smaller than the wavelength,

but instead behaves as if it were traveling through an "average" homogeneous medium.

This is called a homogenization approximation [43, 44, 45], and becomes exact in limit

of infinite wavelength. In an isotropic homogeneous medium, the dispersion relation is
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simply w = cjkj, or equivalently can be define the dispersion equation:

D(w, k) = - c 2 |k1 2 = 0, (1.1.3)

where c is the "phase velocity." In electromagnetism, the ratio co/c, where co ~

3 x 108m/s is the speed of light in vacuum, is called the "effective index of refraction"

of the homogenized material [1].

More generally, c(w) may have a frequency dependence, even at long wavelengths

(small k), corresponding to temporal material dispersion, also called "chromatic"

dispersion [46, pp 14-24]: in the time domain, this gives a homogeneous material that

does not respond instantaneously in time.

Even more generally, many authors have considered materials in which c(w, k) also

depends upon k. The simplest cases are ones in which D(w, k) still depends quadrati-

cally on k but depends also on the direction: an anistropic medium, e.g., described

by an anisotropic permittivity e in electromagnetism. More general dependencies on

k, however, correspond to a nonlocal, or spatially dispersive medium, in which the

response of the medium depends spatially on the input, via some convolution of the

input [47, 481. Nonlocal media can arise from physical materials, e.g., via nonlocal

charge transport in plasmonic materials at small length scales. Many authors have

also attempted to extend the regime of validity of homogenization approximations to

shorter wavelengths by defining an effective nonlocal medium c(o,k) to give the correct

dispersion relation [ref]. This is potentially problematic, because such a homogenized

approximation may correctly reproduce the dispersion relation but fail to reproduce

other behaviors of the exact materials, such as scattering from interfaces. Nevertheless,

nonlocal homogenizations are interesting to explore, both from a numerical standpoint

and because if they do approximately work they would give a much simpler way to

understand complex media.

In this thesis, our numerical strategy is to choose and combine (i) an appropriate

PDE solver to compute A(w) and (ii) an appropriate choice among Eqs. (1.1.1)-(1.1.3)

for optimization or mode analysis, using a corresponding nonlinear solution algorithm.
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1.2 Thesis Organization

As illustrated in Figure 1.1.2, Part I presents the design and analysis of holographic

optical tweezers for nanoparticle manipulation, and Part II presents mode analysis of

dissipative photonic crystals and phononic crystals.

Chapter 2 summarizes a geometric parameter study of optical angular momentum

transfer from a circularly polarized plane wave to thin metal nanoparticles. [29, 49]

Our FDTD analysis shows that higher-order multipolar plasmon modes can contribute

to optical torque by efficiently converting the angular momentum mode of light to

different states through resonant scattering. Torque induced by resonant scattering can

contribute to 80% of the total optical torque in gold particles at multipolar resonance

frequencies.

Chapter 3 presents how large-scale computational optimization 123, 50, 24] can

be used to design superior and non-intuitive structured illumination patterns that

maximize optical force or torque. By combining a compact cylindrical Bessel basis

representation with a fast boundary element method and a standard derivative-free,

local optimization algorithm, we demonstrate a 20-fold enhancement in optical torque

per intensity over circularly polarized plane wave on a model plasmonic particle. We

analyze the optimization results for 2000 random initial configurations, discuss the

tradeoff between robustness and enhancement, and compare the different effects of

multipolar plasmon resonances on enhancing force or torque.

Chapters 4 and 5 discuss dissipative and periodic subwavelength structures in

optics and acoustics. Chapter 4 presents the numerical analysis for a broadband solar

absorber, made of metallic-dielectric photonic crystal (MDPhC) structure developed

and fabricated by Prof. Sang-Gook Kim's group at MIT. The surface of a solar panel

can be intricately patterned and coated to receive as much sunlight as possible from

all directions with minimal reflection. We present FDTD parameter study results and

discuss the tunability and spectrum-selectivity of solar absorption.

Chapter 5 presents a multiscale numerical model for dissipative phononic crystals

with strong nonlocality. The description is based on a nonlocal theory of sound
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propagation proposed by Lafarge and Nemati. [511 We describe the nonlocal effective

properties of a two-dimensional dissipative phononic crystal made of periodic arrays of

rigid and motionless cylinders embedded in a viscothermal fluid such as air. We solve

the nonlocal dispersion equation to find the least-attenuated mode in the phononic

crystal, and compare our nonlocal scheme with the multiple scattering method. While

the multiple scattering method is limited to very simple geometries only, our generalized

method based on FEM is applicable to arbitrary phononic unit cell geometries.
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Chapter 2

Optical Torque from Enhanced

Scattering by Plasmon Resonance

This chapter is based on: Y. E. Lee, K. H. Fung, D. Jin, and N. X. Fang, "Optical

torque from enhanced scattering by multipolar plasmonic resonance," Nanophotonics,

Vol. 3(6): 343-440 (2014).

2.1 Introduction

Optical force arises when the linear momentum carried by light is transferred to

matter through both absorption and scattering [52, 53]. When absorption dominates,

each photon absorbed by the medium transfers a finite quanta of linear momentum

hk [1, 54], where h is the reduced Planck's constant and k is the wavevector of the

incoming light. When scattering dominates, on the other hand, the total transferred

linear momentum from each photon is determined by the difference of the wavevectors

before and after scattering k - k' [55]. The transfer of momentum through scattering

is therefore not necessarily directly proportional to the number of photons scattered,

which is the fundamental reason why it is possible to realize unconventional ways

to transfer linear momentum from light to matter such as the recent example of an

optical 'pulling' force [56, 57, 58].

Investigations on optical manipulation [59, 60] have been extended to the control
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Figure 2.1.1: Two different mechanisms of optical torque generation mediated by
absorption and scattering. A circularly polarized plane wave, denoted by the wavevec-
tor k and the electric field E, is normally incident on two gold nanoparticles at
plasmon resonance. Msca and Mabs are the optical torque generated from scattering
and absorption, respectively. (a) The incident light can exert torque on a triangular
particle through both scattering and absorption. (b) In the case of a circular particle,
scattering cannot contribute to an optical torque.

of optical torque and optical angular momentum [61, 62]. It has been well known that

light carries both spin angular momentum [63, 64] and orbital angular momentum

[65, 66]. Both can be used to rotate small particles. While the optical torque from

absorption is proportional to the number of photons absorbed, torque from scattering

can be modified with greater freedom as in the case of linear force. The essential

requirement to create torque predominantly from scattering is that the scattered

light should be made to exhibit a twist in the azimuthal direction, meaning that the

angular momentum carried by the scattered field should be different from that of

the incident field. This has been widely explored using microscale dielectric particles

that have negligible absorption under stable optical trapping conditions [67]. One

way to produce the necessary twist is to shine a carefully aligned beam that carries

orbital angular momentum [68]. On the other hand, when the incident light carries

only spin angular momentum or has no angular momentum to begin with, the twist

needs to be provided by the optical response of the object; for example, the intrinsic

36



[69, 70, 711 and mimicked [72] anisotropy of the material, as well as the asymmetry

of the structure, such as chirality or structural windmill effects [73, 74, 75, 761. It

has also been theoretically predicted that light can exert "negative optical torque" on

aggregates of dielectric microspheres [77].
In contrast, the manipulation of subwavelength particles remains a more challenging

issue: dielectric nanoparticles have negligibly small optical responses, and absorptive

nanoparticles experience radiation pressure and thermal effects that often predominate

the strength of conventional optical traps [78, 79]. Despite such restraints, researchers

have developed various ways to produce optical torque on the nano-scale: the principles

in creating structurally asymmetric metallic rotors [80, 81] have been scaled down to

the nano-scale by enhancing the optical response of subwavelength particles through the

excitation of surface plasmon resonance [82, 131. Researchers have also demonstrated

KHz-rate spinning of gold nanospheres in water by the absorptive transfer of spin

angular momentum from circularly polarized light 1831. surface plasmon resonance

has also been widely used in designing nano-scale optical elements, inside systems

for the spatial modulation of light such as optical nano-tweezers [84, 85, 86, 87, 881,

optical antennas [89, 90], and OAM-mediating metasurfaces [91, 92]. In fact, the

contributions from absorption and scattering are often left undistinguished in the

discussion of SP-enhanced mechanical effects. To our knowledge, there have been no

systematic studies so far on the optical torque that is particularly associated with the

scattering of light under plasmon resonance.

This article presents the study on how light scattering at plasmon resonance can

provide an additional channel for the control of optical torque, in addition to the

commonly acknowledged mechanism of absorption. Our numerical calculations are

based on simple non-chiral geometries, via exciting the first few orders of multipolar

surface plasmon resonance. In the literature, the phenomena of multipolar surface

plasmon resonance of metallic nanoparticles have been widely reported for various

symmetry-breaking geometries [93, 94, 95, 96, 97, 981, including the flat triangular

nanoprisms [99, 100, 101] used in this work. We show that the angular momentum

carried by the scattered field depends greatly on the azimuthal charge distribution on
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the plasmonic surface, which is governed by the order of the multipolar surface plasmon

resonance. This scattering-dominant mechanism of torque generation is distinctly

different from the conventional means of absorption-dominant torque generation. The

efficiency of angular momentum transfer is analyzed with respect to variations in size

and rotational symmetry.

2.2 Method

Broken rotational symmetry fundamentally provides the selection rule not only for

the emergence of multipolar resonance in plasmonic particles, but also for the possible

channels of optical angular momentum conversion through light-matter interaction.

We propose how structures supporting multipolar resonance can be designed to produce

torque by dictating the azimuthal diffraction order of the scattered field.

Suppose that light carrying an azimuthal angular momentum of J = hmz is

normally incident on an optical system. In the cylindrical (r, 0, Z) coordinates, the

azimuthal field direction follows eimw, where m denotes the total azimuthal order

number. The optical system supports a discrete N-fold rotational symmetry in -,

i.e., the optical properties of the system are identical with respect to a rotation of an

angular period of 27r/N. After the process of scattering, the azimuthal distribution of

the scattered field can change to eim'P, where m' is the total output azimuthal order

of the scattered field that can be expressed as [102, 103]

m' =m + jN, (j = 0, 1, 2, ... ) (2.2.1)

in which j is an integer representing the angular diffraction order. The change in the

azimuthal order number is a result of light diffraction, and therefore can be expressed

by an angular grating rule. Eq. (2.2.1) can be interpreted as the angular counterpart of

the linear grating equation k' = k +jK, (j = 0, 1, 2,...), where k = Iki represents

the linear momentum of the photon in the direction of the wavevector, and K is the

added lattice momentum when the optical properties of the system are identical with
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respect to a translation by a linear period (pitch) of 27/K.

While all light-matter interactions follows Eq. (2.2.1) in principle, the angular

grating effect is negligible when there is no mechanism to couple the light into nonzero

diffraction order j. Most optical systems that are larger than the wavelength lack

a mechanism to selectively enhance a particular output mode, and the dominant

response becomes m = m' with a conserved azimuthal order.

On the other hand, multipolar surface plasmon resonance is inherently successful

at converting the azimuthal phase distribution of the plasmonic nearfield into the

azimuthal order m' that matches the order of the multipolar resonance. Using this

fact, a plasmonic structure possessing discrete rotational symmetry would serve as an

effective 'angular diffraction grating' that can selectively enhance the conversion into

a certain output mode with m' by matching the wavelength of the surface plasmon

mode with the characteristic length scale of the angular grating.

A gold triangle depicted in Figure 2.1.1(a) is a simple example of an angular grating

possessing 3-fold discrete rotational symmetry. We choose to investigate the results

when the incident electric field is a RCP circularly polarized plane wave, described as

E(r, p, z) = Eo [f + i ]eimveikz,

with m = +1 for right-handed circular polarization (RCP). Left-handed circular

polarization (LCP) can be written as

E(r, p, z) = Eo[r- ieimsweikz

with m = -1. Recall that any plane wave can be expressed as a weighted sum of two

orthogonal circular polarization with a phase offset of 7r/2. Throughout this chapter,

an RCP plane wave incidence is assumed without the loss of generality.

After interacting with the gold nanoparticle, the scattered electric field of total

azimuthal order m' can be expressed as

E'(r, p, z) = [E, (r, z) r + E.(r, z) + Ez(r, z)z]e "'
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The resultant azimuthal order number m' is dictated by Eq. (2.2.1), which is m' =

m + 3j for 3-fold symmetry, where j is an integer. Using RCP incidence, the azimuthal

order can be changed into values, including m' = -2, which represents a quadrupole

azimuthal mode with an opposite direction of rotation, henceforth denoted as the

negative quadrupole mode. Eq. (2.2.1) governs the possible orders of multipolar

surface plasmon resonance that can be excited by a normally incident plane wave,

which shows the natural connection between multipolar surface plasmon resonance

and the possible channels of optical angular momentum transfer. Due to this change

in the azimuthal distribution of the scattered field, the triangular particle is expected

to experience a torque from scattering, as well as absorption. In Figure 2.1.1(a), the

circular arrows represent the existence of torque contribution from not only absorption

(red) but also from scattering (blue).

In contrast, a circular disk illustrated in Figure 2.1.1(b) bears continuous rotational

symmetry. Mathematically, one may treat the disk to have N - oo, and so any

non-zero diffraction order will require m' -+ oo, which is practically always decoupled

from the incoming light. The circular disk fails to modify the azimuthal order of

the scattered field. Therefore we predict that no scattering torque would arise for a

circular disk, as illustrated in Figure 2.1.1(b).

As is well-known, the mechanical effects delivered by photons onto an object can

be characterized via inspecting the photonic momentum flux around the object. For a

mechanically fixed object exposed to a steady incident flux, the time-averaged total

torque can be obtained from an area integral of the time-averaged Maxwell Stress

Tensor (MST) T over an arbitrary closed surface S surrounding the object:

Mtot = f(r x T) -dA = Mabs + Msca. (2.2.2)

In general, Meto can be separated into the absorption part Mabs, and the scattering

part Msca, as discussed further below. The component of the MST reads

1
TO, = EcDl + Ba H6 - 16ao(E -D + B - H), (2.2.3)
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where E, D, B and H are the electric field, the electric displacement field, the magnetic

flux density, and the magnetic field, respectively. A pair of indices a and 3 denotes a

particular component of momentum flux that points along the a-axis and crosses the

surface normal to the /-axis.

The distinction between the torque contributions from absorption and scattering

can be made by acknowledging the fact that absorptive torque is proportional to the

number of photons absorbed. For the part of the incoming photons that are eventually

absorbed by the object, the corresponding optical torque can be calculated from [1041

Cabslinc m
Mabs mz. (2.2.4)

2.2.4Here, Cabs(A)= Pabs/Iinc is the absorption cross section, in which Pabs is the power

absorbed by the object and Iic is the incident intensity. The number of absorbed

photons per unit time is Pabs/hW. In all of the calculations, the incident intensity Iinc

is normalized to be 1. Physically, absorption is caused by material dissipation and is

embedded into the calculation through the imaginary part of the dielectric function

Im [E(A)].

Since the value of the total optical torque can be numerically obtained through

Eq. (2.2.2), the scattering contribution is calculated to be Msca= Mt - Mabs. It

is worthwhile to emphasize again that scattering torque cannot be calculated from a

simple expression like Eq. (2.2.4), because the torque from scattering is not simply

proportional to Csca. The scattering cross section does not capture how the angular

momentum of the scattered photons redistributes after scattering. A naive calculation

can cause an over- or under-estimation of torque.

All of the numerical results presented in this letter is calculated using the finite-

difference time-domain (FDTD) method [33, 28]. Without loss of generality, the

metal used in this chapter is gold (with permittivity [31] given in Appendix A), the

dielectric medium is air (with refractive index n = 1), and incident light is modeled as

a broadband pulse that is analyzed as a collection of monochromatic incidence. Linear

scattering is assumed, meaning that the angular frequency w of the photon does not
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Figure 2.2.1: Calculated torque spectra for plasmonic particles excited at different
orders of multipolar resonance. The total torque (black line) equals the summation of
the scattering (blue) and absorption (red) contributions. Multipolar resonance peaks
are labeled with the corresponding azimuthal order number m'. The corresponding
electric field snapshot for each peak is plotted above, with black circular arrows
denoting the direction in which the field pattern rotates. (a) The triangular particle
possessing 3-fold symmetry supports a dipole mode (m' = 1) and a negative quadrupole
mode (m' = -2). (b) The square particle possessing 4-fold symmetry supports a
dipole mode and a negative hexapole mode (m' = -3). (c) In contrast, the circular
particle only supports a dipole mode, and no torque is generated from scattering. All
three particles have the same lateral characteristic length of 400nm and thickness
40nm.

change in the process of scattering.

2.3 Results and Discussion

The numerically obtained torque spectra are plotted in Figure 2.2.1. The results

are compared between three representative geometries possessing different orders of

rotational symmetry: N =3, 4, and oc. The material and the incident illumination

are identical for all three cases, following the setup of Figure 2.1.1. The characteristic

lateral size and the thickness are identically set to be 400 nm and 40nm, respectively.

Figure 2.2.1(a) shows the torque spectrum for a triangular plate with 3-fold discrete

rotational symmetry. A clear enhancement of scattering torque (blue) is observed at
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the wavelength of the negative quadrupole mode (m' = -2). The distribution of the

charges on the metal surface is represented by the colored electric field profiles plotted

4nm above the surface. The scattered quadrupole field rotates in the opposite direction

from the incident field, because the possible orders after conversion is dictated by

Eq. (2.2.1). As a result, an unusually large, scattering-dominant mechanical torque is

created.

Figure 2.2.1(b) shows the consistent response of a square plate with 4-fold discrete

rotational symmetry, which shows that the scattering torque is distinctly enhanced at

the wavelength of the negative hexapole mode (m' = -3). Absorptive torque (red),

on the other hand, does not exhibit sharp peaks, and shows a remarkable similarity

between the three distinct geometries.

In stark contrast, the scattering torque is zero for the case of Figure 2.2.1(c) for the

case of a circular disk with continuous rotational symmetry. No multipolar conversion

is observed for the case of N = oc. Since the azimuthal distribution of the scattered

field resembles that of the incidence, scattering fails to create any torque.

The scattering contribution of torque by objects possessing discrete rotational

symmetry originates from the constructive interference of the diffracted light. For

subwavelength dielectric structures, the angular momentum conversion and hence

torque generation via the scattering mechanism is quite small. However, the situation is

rather different in metallic structures, where the conversion efficiency can be selectively

enhanced by the corresponding order of multipolar surface plasmon resonance.

Traditionally, absorption has been regarded as the predominant mechanism of

optical torque generation on plasmonic particles, especially when the transfer of spin

angular momentum is concerned. Our results show that this is not always true.

Scattering can become the predominant mechanism of torque generation, provided

that the structure supports a conversion of azimuthal order between the incident

and the scattered fields. Although in principle the scattered light with a converted

azimuthal angular momentum cannot propagate to the far field, such a conversion is

still capable of applying a significant torque onto the object in the near field.

To quantify the relative strength of scattering torque in the process, we define a
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dimensionless conversion ratio 7 as

Gsca/hm(

Pext (2.3.1)

In the numerator, Gsca is the total angular momentum per unit time carried away by

the scattered field, hm is the angular momentum of each incoming photon. In the

denominator, Pxt is the extinction power and 1w is the energy of each extinguished

photon. 7 can be either positive or negative. (See Appendix A Figure A.2.1 for the

plot of extinction.)

In Figure 2.3.1, we show the calculated spectra of q for the three particles analyzed

in Figure 2.2.1. (black) The colored lines represent the effect of particle size. According

to Eq. (2.3.1), the value of 77 is equal to 1 in the absence of conversion. This is observed

for all of the lines in the vicinity of A =900nm, which falls into the dipole resonance

regime. q converges to a constant very close to unity as the wavelengths become

larger.

In contrast, the conversion ratios for the three geometries follow a clearly different

trend in the wavelength range 400nm-800nm. In Figure 2.3.1(a), the black line

corresponds to the dimensions of the particles in value of q dips down below zero

when the negative quadrupole mode is excited. This indicates that the scattered field

may carry an angular momentum in the opposite direction to that of the incident

angular momentum, i.e., i1 < 0. Under this circumstance, the object can experience

an extraordinarily large torque. Figure 2.3.1(b) shows a similar trend, and the dips

correspond to the negative hexapole mode of the square particle. The magnitude of

the dip of the square particle is generally much smaller than that of the triangular

particle, indicating a lower efficiency of angular momentum conversion. This is directly

related to the quality of the surface plasmon resonance, which falls as the multipolar

order increases. The size of torque depends not only on the efficiency of conversion

but also on the size of the scatterer. In fact, the amount of torque is very sensitive to

particle size, which explains why the size of torque is larger for the square in Figure

2.2.1, although the conversion is less efficient compared to the triangle.
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Figure 2.3.1: The angular momentum conversion ratio. The strength of angular
momentum conversion is governed by the quality of multipolar plasmon resonance.
The size parameter d is varied in each spectrum around the optimum size. (a) The
triangular particle shows a dip in the conversion ratio at the negative quadrupole
mode (m' = -2). (b) The square particle shows a dip at the negative hexapole mode

(M' = -3). (c) The circular particle shows no multipolar conversion dip.
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For the circular disk in Figure 2.3.1(c), ij does not contain any feature of resonant

angular momentum conversion. The graph shows the baseline that represents the

angular momentum altered by the absorption of gold. This absorptive baseline is

very similar for all of the results presented in Figure 2.3.1, regardless of their size or

rotational symmetry. Since 77 quantifies the efficiency of angular momentum conversion

between the incident and the scattered fields, the similarity in the absorptive baseline

shows the limit for absorptive torque enhancement.

1.0

M 0.5

0

> 0.0 - - -----

c --

-0.5 d=400nm -

400 500 600 700 800 900

Wavelength (nm)

Figure 2.3.2: The importance of broken rotational symmetry in angular momentum
conversion. The conversion ratio is plotted while a 6-fold hexagonal particle is
gradually changed to a 3-fold triangular particle. q of the hexagon (yellow line) is
almost indistinguishable from that of a circular particle (refer to Figure 2.3.1). The
efficiency of the negative conversion is enhanced by breaking the 6-fold symmetry,
thereby creating a larger change in the optical angular momentum after scattering.

In each graph, the colored lines show the optimal size for reaching the best con-

version efficiency. The optimum size can be estimated by comparing the incident

wavelength with the circumferential length of the particle (d ~ A). While the qual-

itative behavior is insensitive to small size variations, the relative size of the dips

represents the difference in the quality of the multipolar surface plasmon resonance.

When the particle size is made much smaller or much larger than A, the metallic

particle can no longer support the high-quality multipolar surface plasmon modes,

and the torque from scattering will be lost.
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The importance of broken rotational symmetry can be explicitly appreciated in

Figure 2.3.2. We show how a varies when continuous symmetry is gradually broken,

from 6-fold symmetry to a 3-fold symmetry. The change in the conversion ratio dip is

indeed very sensitive to the symmetry of the geometry. In this series of geometry being

studied, the lower the order of discrete rotational symmetry is, the more remarkable

the resonant torque enhancement can be.

2.4 Conclusion

In this chapter, we model representative nanoparticles that scatter, absorb, and

radiate light in various directions in space and analyze how radiation force or torque

relates to multipolar plasmon resonance. The numerical simulations suggest that the

SP-enhanced scattering can lead to a negative angular momentum conversion ratio,

and hence produce an extraordinarily large torque. We show that torque induced by

resonant scattering can contribute to 80% of the total optical torque in gold particles

at multipolar resonance frequencies.

While this chapter discusses the concept of angular momentum transfer between

photons and a flat nanostructure in the cylindrical coordinates, we foresee that this

approach can be generalized to three dimensional geometries in the near future. Our

finding may lead to useful applications in the field of light-mediated mechanical

manipulation as well as spatial light manipulation using metamaterial elements.
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Chapter 3

Computational Inverse Design of

Non-intuitive Illumination Patterns

to Maximize Optical Force or Torque

This chapter is based on: Y. E. Lee, 0. D. Miller, M. T. H. Reid, S. G. Johnson and

N. X. Fang, "Computational Inverse Design of Non-Intuitive Illumination Patterns to

Maximize Optical Force or Torque," Optics Express, Vol. 25(6): 6757 (2017).

3.1 Introduction

The enhanced torque results presented in Chapter 2 motivated us to further investigate

how to maximize such unconventional optical forces or torques by varying the incident

fields, from simple circular polarized plane waves to spatially modulated holographic

illumination. Here we show how large-scale computational optimization [23, 50, 24]

can be used to design superior and non-intuitive structured illumination patterns that

achieve 20-fold enhancements (for fixed incident-field intensity) of the optical torque

on sub-micron particles, demonstrating the utility of an optimal design approach for

the many nanoscience applications that rely on optical actuation of nanoparticles

t60, 105, 106].

Recent advances in nanoparticle engineering [5, 7] and holographic beam-generation
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via spatial light modulators (SLMs) [15, 16, 17, 19] and other phase-manipulation

techniques [107, 20, 21, 221 have created many new degrees of freedom for engineering

light-particle interactions beyond traditional optical tweezers.

Structured illumination broadly refers to a technique in which a spatially modulated

laser field pattern is projected onto the sample. In 3D imaging, researchers project

known patterns with different spatial frequencies and record the deformed image after

striking the object surfaces. [108, 109] This allows vision systems such as 3D scanners

to calculate the depth and shape of the objects. In particle manipulation, structured

illumination is used to produce light fields that carry specific distributions of optical

momentum and angular momentum, to be efficiently transferred to the given material

object.

Enhanced and unusual optical forces and torques can be engineered by designing

material objects [110, 81, 83, 70, 1111 and/or structured illumination, with the latter

including "tractor beams" [57, 581 and beams carrying optical angular momentum

[67, 103, 77, 112]. These increased degrees of freedom pose an interesting design

challenge: for a given target object, what is the optimal illumination pattern to

produce the strongest optical force or torque? While a small number of Gaussian

beam parameters can be manually calibrated for optimal performance using manual

trial-and-error [113], an arbitrary 3D vector field requires a more targeted approach.

Moreover, optimization of a 3D vector field is highly nonconvex by nature, and

possesses many local optima due to wave interference and resonance. When exploring

so many parameters, a large number of scattering problems must be solved efficiently,

which requires careful design of the optimization framework.

Research in computational optimization of optical actuation has focused on the

design of new material geometries [114, 115] and on the improvement of multiplexed

optical traps for microscale dielectric particles (holographic optical tweezers) [116, 117,

118, 119, 120, 121, 122]. However, no computational method has been available to

design structured illumination for unconventional target objects that are nonspherical,

lossy, or nanometer-scale, thereby requiring a costly full-wave numerical simulation

for computing optical force and torque.
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We present a compact and rapid computational framework to optimize structured

illumination for the mechanical actuation of an arbitrary target object. We combine

(i) a compact Bessel-basis representation (Sec. 3.2); (ii) a numerical solver based on

boundary element method (BEM) that discretizes the surfaces of a 3D scattering

problem to form a BEM matrix, and solves hundreds of thousands of incident-field

configurations using the same matrix (Sec. 3.2); (iii) an appropriate optimization

algorithm that exploits the smoothness of the nonconvex and nonlinear optimization

problem (Sec. 3.2); and (iv) a suitable figure of merit (FOM) and optimization

constraints (Sec. 3.2). As a result, we rapidly attain many-fold improvements in

optical forces and torques over random field or plane wave illuminations (Sec. 3.3.1),

and discuss the tradeoff between enhancement and robustness of optimization (Sec.

3.3.3). Furthermore, a given material object may have scattering resonances at various

frequencies, and the choice of frequency for the incident field has several important

implications. When comparing interactions with two different resonances, we were

able to distinguish the impact of the change in the resonant field pattern from the

change in the resonance lifetime. Controlling for the change in lifetime, we found

that torque seems to favor higher-order (e.g., quadrupole) resonances with greater

angular momentum, while force seems to favor lower-order (e.g., dipole) resonance

with greater field intensity within the particle (Sec. 3.3.2).

3.2 Method: Optimization Framework

A structured-illumination optimization aims to find the best 3D vector field, i.e., the

one that maximizes a desired FOM for a given scattering problem (see Figure 3.1.1).

Our choice of the Bessel basis expansion is described in Sec. 3.2. Sec. 3.2 and 3.2

discuss the BEM solver and the optimization algorithm. Lastly, Sec. 3.2 explains

force and torque FOMs and the corresponding optimization constraints. The entire

numerical framework is implemented with C++.
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Figure 3.1.1: Schematic of a structured vector-field illumination, analytically repre-
sented with a vector Bessel basis. The right inset shows the distributions for electric
field (color) and polarization (black arrows) of the vector Bessel basis. The illumination
can be optimized to produce maximum mechanical force or torque on an example
target particle. The gold nanotriangle in the left inset has edge length 400nm, thick-
ness 40nm, and rounding diameter 30nm. The scanning electron microscope (SEM)
image shows an experimental sample fabricated using electron-beam lithography. This
demonstrates that such particles can be made, but all results presented here are purely
computational.
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Analytical Representation of Structured Illumination

The computational design of structured illumination requires a compact analytical

representation of an arbitrary 3D vector field. The vector field will contain spatial

variations in both intensity and phase, and must satisfy the vector wave equation [11.
The electric field can be represented using a basis expansion E = N0 ci, where

the complex scalar coefficient ci determines the relative intensity and phase of each

mode 4i.

The choice of coordinates and the basis functions Oi depends on the problem

geometry. While the spherical coordinate system is a common choice in Mie scattering

[38, 541, it requires a very large number of modes N to represent light propagating

along a linear axis and potentially interacting with flat substrates or SLMs. The

Cartesian coordinate system is also ill-suited because it requires large N to describe

laser beams with a finite radius. We find that the cylindrical coordinate system [2, 18]

is well suited, requiring a small number of modes to describe structured illumination

with varying distributions of linear and angular momentum.

Among the wide menu of cylindrical basis functions (e.g., Bessel, Laguerre-Gaussian,

Hermite-Gaussian, and so forth) [18], we choose the Bessel basis [123, 124] for its

compact analytical expression, derived from the scalar generating function

m(r, o, z) = Jm(ktr) exp(imp + ikzz), (3.2.1)

where Jm is the mth-order Bessel function, kt is the transverse wavevector in r, and

kz is the longitudinal wavevector in , satisfying k2 + k2 = 27/A. The ratio between

kt and k2 specifies the numerical aperture of the basis, NA = arctan(kt/kz). Higher

NA represents greater transverse momentum that can increase optical torque. But

the permissible range of NA is often dictated by experimental considerations, and the

range of NA in the optimization can be set accordingly.
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Taking spatial derivatives of Eq. (3.2.1) gives

Mi = V x (i4~u,), (azimuthal polarization) (3.2.2)

1
Ni = -V x Mi, (radial polarization) (3.2.3)

k

where u, is the unit vector in 2, and Mi and Ni are the ith bases for azimuthal and

radial polarization, respectively (right inset of Figure 3.1.1). The incident electric field

Eic can be expressed as:

N

Eic (r, , z) = aiMi + biNi, (3.2.4)
i=O

where ai and bi are the complex scalar coefficients. Bessel basis produces the most

compact expressions for Mi and Ni because the magnitude of 4b does not vary with z,

reducing /Oz terms in Eqs. (3.2.2) and (3.2.3).

We can use Eq. (3.2.4) to approximate a CP planewave configuration near

the nanoparticle by setting NA= 0.010 and aj, bi = 0, except for a, = 1. This

approximation is used once in Figure 3.3.1 to start the optimization from a CP

planewave. All other CP planewave results are computed without approximations,

using E(r, p, z) = [ur + iup] exp(ip + ikz) instead of Eq. (3.2.4).

Note that we intentionally decouple our optimization framework from the idiosyn-

cratic differences in the spatial resolution of the SLMs. A wide variety of experimental

methods (e.g., superposed pitch-fork holograms) [15] can be used to generate beams

expressed as Eq. (3.2.4), for a finite N and NA. We consider numerical apertures with

opening angles < 10' and 12 basis functions (N = 5).

Numerical Solver

The optimization process itself has no restrictions on the choice of the numerical

solver, so the biggest consideration is the computational cost: the smaller the the

better. We choose the Boundary Element Method (BEM) [35, 36j for several reasons.

In comparison to other scattering methodologies such as the finite-difference or finite-
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element methods, BEM is particularly well-suited to the type of large-scale optimization

problem requiring a rapid update of the incident field for a given geometry and a

given wavelength AoPt.

M C f (3.2.5)
fixed output rapidly updated

BEM matrix current input field

In Eq. (3.2.5), the BEM matrix M remains fixed for a given geometry and frequency,

while the column f representing the incident field is rapidly updated at each step of the

optimization process. This allows hundreds of thousands of scattering configurations

to be computed on the order of a few hours. In addition, BEM projects the 3D

scattering problem onto a 2D surface mesh, thereby reducing the computation volume

by a factor of 1/2000 in the nanoparticle scattering problem we consider. Lastly,

recent improvements [125] have significantly increased the speed with which optical

force and torque can be computed in BEM.

Optimization Algorithm

Structured-illumination optimization is nonlinear and nonconvex, such that searching

for a global optimum is prohibitively expensive. Therefore we choose a local algorithm

with random starting points. We choose one of the simplest solutions available:

constrained optimization by linear approximation (COBLYA) [50], a derivative-free

algorithm that exploits the smoothness of the problem. An open-source implementation

of COBYLA is available through NLopt [24].

The constructed numerical framework is graphically illustrated in Figure 3.2.1.

Figure of Merit and Optimization Constraints for Optical Force

and Torque

We consider two types of optical actuation with respect to the object coordinate (left

inset of Figure 3.1.1); the force F, and torque T2. In order to avoid the optimizer from

increasing the brightness of the beam indefinitely, we choose to divide the force and
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torque by the average incident-field intensity on the particle surface (Iavg = IEinc I2 /2ZO,

where Zo is the impedance of free space), which is easily computed in BEM. We choose

the incident-field rather than the total-field intensity to avoid penalizing high extinction

efficiency. Iavg is measured on the particle surface because we want to account for

the portion of the beam that interacts with the target particle, rather than the entire

beam. We choose nondimensionalized figures of merit:

FOMF FZ (3.2.6)
Iavg 3A2

FOM T~ (47r 2 c\FOMa = -3A3) , (3.2.7)
Iavg 3A

where the constants in parentheses reflect ideal single-channel scattering. The largest

[126, 127, 128] scattering cross-section into a single (spherical harmonic) channel is

3A 2 /27r, which when multiplied by single-photon changes in linear (2hk) and angular

(h) momentum per photon, divided by the photon energy (hw), yields the constants

in Eqs. (3.2.6) and (3.2.7).

Based on the geometry and material composition of the particle, force or torque

in various directions can arise even when the incident field itself does not provide an

imbalance in optical momentum. Optimization constraints can be added to suppress

actuation in undesired directions. We suppress actuation in directions other than

2 using smooth constraints: (IF 2 - F2) /IF1 2 < 0.01 and (IT1 2 - T2) /IT1 2 < 0.01,

where the limiting value 0.01 is set to ensure that Fz and Tz exceed 99% of the force

and torque magnitudes IFl and ITI, respectively.
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Figure 3.2.1: Overview of components comprising the numerical optimization frame-
work. Top: numerical PDE solver based on BEM. Bottom: nonlinear optimizer
that optimizes a parameter vector x to maximize the figure of merit f(x) subject to
constraint c(x). The numerical PDE solver is included in the optimizer to compute
the BEM matrix at every iteration.
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3.3 Results and Discussion

We demonstrate our illumination-field optimization framework on the gold nanotriangle

illustrated in Figure 3.1.1. Chapter 2 analyzes the optical force and torque on such

a particle for circular polarized (CP) planewave illumination. CP planewave is a

common incident-field choice [104, 129, 83, 70] for torque generation due to its intrinsic

spin angular momentum, but we find in our computational optimization that highly

optimized field patterns can show 20x improvement of FOMT. The wavelength

of illumination in each optimization, Aept, is chosen to correspond to the plasmon

resonance wavelengths of the model particle.

Sec. 3.3.1 presents the distribution of 2000 local-optimization results and discusses

the optimized field-patterns. Sec. 3.3.2 analyzes the wavelength-dependence of optical

force and torque for optimized illuminations, based on the choice of Aopt, and compares

the results with the reference force and torque from CP planewave. Lastly, the tradeoff

between robustness and enhancement is discussed in Sec. 3.3.3.

3.3.1 Illumination-field Optimization from 2000 Randomly Se-

lected Initial Configurations

The illumination-field design space is nonconvex and littered with local optima, due

primarily to wave-optical interference effects. We survey this broader design space by

restarting our local-optimization algorithm 2000 times with randomly selected initial

configurations that are constructed using Eq. (3.2.4), where the complex coefficients

ai and bi are uniform random numbers bounded by jail, bil < 1. The results are

summarized in Figures 3.3.1 and 3.3.2 at A0pt = 1028nm (dipole resonance) and 625nm

(quadrupole resonance), respectively. At both wavelengths, we find that more than 50%

of local optimization from random starting points can achieve over 5x enhancement of

FOMT compared to CP planewave reference, and that the optimized field patterns

contain various combinations of Bessel-basis modes without a systematic convergence

to one over the others. The distributions are plotted in log-scale to increase the

visibility of small bins.
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Figure 3.3.1: Distribution of FOM for 2000 randomly chosen incident field configu-
rations at 1028nm, before (black) and after (blue) optimization. Red marks on the
x-axis indicate the initial (triangle) and final (circle) FOM when the optimization
starts from a circularly polarized plane wave. Representative incident fields are plotted
in the right.

In Figure 3.3.1, the median FOMT at 0.913 is very close to the best FOMT at

1.01 and the distribution is predominantly concentrated to the right: the 4 rightmost

bars represent 69% of all samples, which all achieve over 5x enhancement of FOMT

compared to CP planewave reference at 0.169 (marked with a red triangle). The

insets show the optimization results from two different starting points - random field

(top) and CP planewave (bottom) - that reach similar optimized field patterns. We

also observe that a variety of other patterns, dominated by different combinations of

Bessel-basis modes, can produce a nearly identical or superior FOM.

In Figure 3.3.2, the final FOMT distribution is more dispersed between the median

at 3.934 and the best at 10.94, which respectively achieve over 5x and 14x enhance-

ment compared to CP planewave reference at 0.779. As in Figure 3.3.1, the results

concentrate heavily around the median; however, in Figure 3.3.2 a small number of

samples achieve a remarkable improvement above 14-fold. The top inset shows four

different field patterns that produce a nearly identical FOMT above the median, and

the bottom inset shows the field-pattern with the highest FOMT.
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Figure 3.3.2: Distribution of FOM for 2000 randomly chosen incident field configu-
rations at 625nm. Top inset shows four different field patterns with a near-identical
FOM near the median, and the bottom inset shows the field with the best FOM.

The optimized coefficients for the best optimized illuminations at 1028nm and

625nm, plotted in Figures 3.3.1 and 3.3.2, are displayed in Tables 3.3.1 and 3.3.2,

respectively. A comparison of all optimized field patterns at 1028nm and 625nm shows

that the latter contains more higher-order Bessel-basis contributions. Moreover, the

coefficients for the azimuthal mode Mi generally have a larger magnitude than the

coefficients for the radial mode Ni. We find that the radial modes do contribute to

enhancing the optical torque, not through the direct first-order transfer of angular

momentum, but possibly through second-order or higher order effects based on

interference and resonance.

3.3.2 Dependence on Illumination Wavelength

We further investigate the influence of Aopt by plotting optical force or torque per

incident-field intensity Iavg as a function of illumination wavelength. In Figures 3.3.3(a)

and 3.3.3(b), the reference planewave force spectrum (black dashed line) is identical

in both plots, clearly dominated by a broad dipole resonance with smaller peaks at
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Table 3.3.1: Vector Bessel basis coefficients for the best optimized illumination at
Aopt = 1028nm.

as

0.0042 - 0.0076i

-0.0015 - 0.0030i

0.0225 - 0.8850i

-0.0448 - 0.3629i

0.1050 - 0.1177i

-0.0363 - 0.8505i

bi

0.0115 - 0.0009i

0.0014 - 0.0019i

-0.0095 + 0.1075i

-0.0066 + 0.0376i

-0.0016 - 0.0409i

-0.0611 - 0.0033i

Table 3.3.2: Vector Bessel basis coefficients for the best optimized illumination at
Aopt = 625nm.

as

-0.0134 + 0.0157i

-0.0046 + 0.0041i

0.0033 + 0.0717i

-0.9441 + 0.7057i

0.0994 + 0.1361i

-0.1726 + 0.9618i

bi

-0.0020 - 0.0043i

0.0032 - 0.0004i

0.0000 - 0.1100i

-0.0222 + 0.7606i

0.0582 + 0.2958i

-0.7185 - 0.0036i
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Figure 3.3.3: Force spectrum for two different target wavelengths; (a) 1028nm and
(b) 625nm. The spectra for the best (blue line) and the median (red dashed line)
optimized field configurations are each labeled with the factor of enhancement, with
respect to CP planewave reference (black dashed line).

higher-order resonances. Through illumination-field optimization, we can enhance the

force at the dipole mode while suppressing higher-order modes, as shown in Figure

3.3.3(a), and also enhance the force at the quadrupole mode while suppressing the

dipole mode, as shown in Figure 3.3.3(b).

In Figures 3.3.4(a)-3.3.4(c), the reference planewave torque spectrum (black dashed

line) is identical in all three plots and peaks at both dipole and quadrupole resonances

with nearly equal heights, as explained in detail in Chapter 2. Illumination-field

optimization at dipole resonance and off-resonance achieve a similar 6x-boost at the

chosen AOpt value without suppressing the quadrupole resonance. The optimized total

fields in Figure 3.3.4(d) at 1028nm and 805nm both exhibit a 47r phase change around

the circumference of the particle, resembling a quadrupole resonance.

In 3.3.4(c), on the other hand, the best optimization at quadrupole resonance

achieves a remarkable 20x improvement while suppressing much of the dipole resonance;

the median optimization also achieves 12x improvement while suppressing the dipole

resonance to a lesser extent. The optimized total field in Figure 3.3.4(d) at 625nm

shows a distinct, highly resonant distribution.

When comparing interactions with two different resonances, we were able to
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Figure 3.3.4: Torque spectrum for three different target wavelengths; (a) 1028nm,
(b) 805nm, and (c) 625nm. The spectra for the best (blue line) and the median

(red dashed line) optimized field configurations are each labeled with the factor of
enhancement, with respect to CP planewave reference (black dashed line). (d) The
total-field distributions of the initial random field (left) and the final optimized field
(right) for the best optimized field configurations at the three target wavelengths.
Scalebar is 400nm.
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Figure 3.3.5: Comparison between force and torque optimization at dipole (blue)
and quadrupole (red) modes. Left inset shows dipole field illustration with relatively
higher center intensity, and right inset shows quadrupole field illustration with higher
angular momentum.

distinguish the impact of the change in resonant field pattern from the change in the

resonance lifetime. Controlling for the change in lifetime, we found that torque seems

to favor higher-order (e.g., quadrupole) resonances with greater angular momentum,

while force (F), which closely correlates with extinction power, seems to favor lower-

order (e.g., dipole) resonance with greater field intensity within the particle. This is

further shown in Figure 3.3.5. With the use of structured illumination, higher-order

resonances can be excited more effectively, which contributes to higher optical torque

after optimization.

Our numerical optimization framework allows a systematic search of the illumination-

field design space to maximize force or torque on lossy, non-spherical particles with

multipolar scattering channels. In addition, we think a rigorous analytical study of

the fundamental upper bounds on opto-mechanical responses, similar to the analysis

performed on light extinction [11, 130], would be useful in the future.
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3.3.3 Robustness of Optimization

Experimental generation of the designed illumination via SLMs may suffer various types

of manufacturing errors [1311. Figure 3.3.6 shows the tradeoff between enhancement

and robustness to experimental errors. The fractional error is added to the beam using

m

EW = (ai + 6ai)Mi + (bi + 6 bi)Ni, (161 < w - la, bloc), (3.3.1)
i=0

where 3 is a complex-valued random error bounded by the magnitude of the largest

coefficient multiplied by the fractional weight 0 < w < 1. Figure 3.3.6 shows the

decrease in FOMT as a function of w. At Adip, increasing w from 1% to 10% decreased

the best FOM from 0.994 to 0.517, and the median FOM followed a similar trend.

On the other hand, FOMT of the best optimized field at Aquad dropped from 8.624

to 1.433, and the median optimized field changed from 3.92 to 3.237. Figure 3.3.6

demonstrates a clear tradeoff between field enhancement and error tolerance, as one

might expect due to the need to couple strongly to the underlying particle resonances.

For the tolerance requirements of a given experimental setup, the approach we outline

here could easily be adapted to a robust-optimization framework [132, 133] in which

the expected variability is included and optimized against.

3.4 Conclusion

We present a numerical framework for computer optimization of structured illumination

that maximizes optical force or torque on arbitrary scatterers, and show a 20-fold

enhancement in optical torque per intensity on an example plasmonic nanoparticle,

compared to a circularly polarized planewave. Previously, the major bottleneck has

been the cumbersome computation. We overcome this bottleneck with a compact

cylindrical Bessel basis and a fast boundary element method. We are optimistic that

such computational framework for 3D vector fields can be generalized and applied to

other design problems in opto-mechanics, nanophotonics, and 3D imaging.
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Figure 3.3.6: Robustness of the optimized incident fields, quantified by the decrease
in FOMT with respect to fractional random error added to the best (blue) and the
median (red) optimized fields, at Adip (right) and Aquad (left). The error bar represents
the standard deviation for 100 samples.
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Chapter 4

Numerical Parameter Study for a

Metallic-Dielectric Photonic Crystal

(MDPhC) Broadband Solar Absorber

This chapter is based on the FDTD simulation results presented in: J. B. Chou, Y. X.

Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljaci6, N. X. Fang, E.

N. Wang, and S.-G. Kim, "Enabling Ideal Selective Solar Absorption with 2D Metallic

Dielectric Photonic Crystals," Advanced Materials, Vol. 26 (2014).

4.1 Introduction

The field of photonic crystals for electromagnetic waves has been widely investigated

over the past three decades [134, 135, 136, 137, 138, 139]. Photonic crystals are

periodic structures that mimic the properties of semiconductors to guide and trap

light [12], configured so that electromagnetic wave propagation is suppressed for

certain frequency bands due to destructive Bragg scattering. The concept of photonic

crystals has been applied to a variety of engineering applications, such as waveguiding

[140, 141, 142, 143], control of quantum emission and lasing [144, 145, 146], slow light

1147, 148, 149], negative refraction [150, 151], nanoscale thermal control 1136, 137, 138],

and quantum information processing [152]. Periodicity L for photonic crystal structures
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Figure 4.1.1: Left: A simplified schematic of a solar-thermophotovoltaic (STPV)
system. The absorber layer (top) selectively absorbs the useful portion of the solar
spectrum and emits it to the photo-voltaic cell (bottom). Right: the absorption
spectrum of an ideal high-pass selective absorber (blue) is plotted on the solar spectrum
(light pink filled). The low-energy far-infrared portion is totally reflected, while useful
near-infrared, visible, and ultraviolet are totally absorbed.

typically ranges from hundreds of microns down to a tens of nanometers.

Researchers have explored a variety of material geometries for selective solar absorp-

tion 1153]. Recent developments of metal based selective absorbers have demonstrated

iD, 2D, and 3D metallic photonic crystal structures capable of tailoring the absorption

spectrum [136, 137, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164]. In addition

to a desirable optical response, a good receiving surface of a STPV system needs high

temperature reliability, omnidirectional absorption, and wafer-scale fabrication for

mass scalability [165, 166, 167, 168].

In this chapter, we discuss the optical response of a metallic-dielectric photonic

crystal (MDPhC). Micro-cavity photonic crystal structures have been previously de-

veloped by the group of Dr. Ivan Celanovic, Prof. Marin Solja-id, and Prof. John

Joannopoulos [161, 165]. Subsequently, metal-dielectric and metal-semiconductor

photonic crystal structures were developed and improved by Prof. Sang-Gook

Kim's group [169, 167, 170]. The MDPhC serves as the receiving surface of a solar-

thermophotovoltaic (STPV) energy conversion system [156, 161, 160, 135, 171] that

converts sunlight into heat and electricity. As shown in Figure 4.1.1, we want to

engineer a clear high-pass cutoff in the absorptance spectrum that selectively filters
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out the low-energy photons below the cutoff frequency.

4.2 Method

FDTD Simulation and Material Modeling

Finite-difference time-domain (FDTD) simulations are performed to study the influence

of the geometric parameters in Figure 4.2.1(b). As in Chapter 2, a commercial-grade

FDTD solver was used to perform 3D discretization of the multi-material unit cell

[28].

A Drude-Lorentz model of the metal was obtained by fitting room temperature

measured reflection spectra of metallic Ru, deposited with atomic layer deposition

(ALD). The dielectric HfO 2was modeled with a complex permittivity based on the

measured HfO 2 sample, with a long wavelength index of n=2.04. Absorption in the

HfO 2 was experimentally measured to be zero for photon energies 4.96 eV and below.

The absorption spectra were simulated with a linear polarization plane wave at normal

incidence. The A1203 was modeled as a lossless dielectric with refractive index n=1.5.

Optical Characterization

An ultraviolet-visible-near infrared (UV-VIS-NIR) spectrometer (Cary 500i) with

spherical diffuse reflectance measurement accessory was used to measure the total

absolute absorption spectra of the MDPhC, MAPhC, and flat Ru at an incidence of

30 with unpolarized light. For absorption measurements at infrared photon energies, a

fourier transform infrared (FTIR) spectrometer was used with a commercial aluminium

coated reference mirror.

We measure the absolute reflection using a commercial diffuse reference (Labsphere

diffuse reflectance standard) with a readily known reflection spectrum. The FTIR

spectrometer was used to measure the specular reflection from the wavelength range

1pm to 4pm. A commercial reference aluminum coated mirror (Thorlabs) was used

as the reference with a readily known reflection spectrum at angles 300, 450, 50', 600,
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and 700. We used an unpolarized broadband optical source for all measurements.

Summary of Fabrication

The wafer-scale nanofabrication process for the experimental MDPhC sample in

Figures 4.2.1(c)-4.2.1(f) is explained in detail in [168]. The entire fabrication has

been performed by Dr. Jeff Chou in Prof. Sang-Gook Kim's group; my contribution

was to set up and perform FDTD simulations, and assist in optical spectroscopy

characterizations of the fabricated samples.

Here the fabrication steps are summarized briefly. The multilayered structure was

fabricated using the sidewall lithography technique across a six inch wafer [172, 173,

174]; then a 80nm metal layer of ruthenium (Ru) was deposited with atomic layer

deposition (ALD) for conformal deposition purposes. The dielectric filling of HfO 2 is

also deposited via ALD, and excess Hf02 is removed via chemical mechanical polishing

(CMP). A layer of HfO 2 with a thickness of approximately t=25nm is left on top of

the entire structure. HfO 2 is chosen due to its conformal deposition, high melting

temperature, and transparency in the visible and infrared (IR) regime. Cross-sectional

SEM images are obtained via focused ion beam (FIB) milling. The fabricated structure

has been further developed and explored for other applications such as water splitting

[175, 176, 177].

4.3 Results and Discussion

The wafer-scale fabricated MDPhC has a measured absorption of 85% for photon

energies 0.7eV<hw<5eV and an absorption below 10% for hw<0.4eV. Angled measure-

ments show existence of the cavity modes for angles up to 700 from normal. Furnace

tests at 1000*C for 24 hours show a robust optical performance due to its fully en-

capsulated design which helps to retain the metal cavity shapes at high temperatures

[169].

The MDPhC utilizes cut-off frequencies of cavity modes to tailor the absorption.

Since the cut-off frequency is dependent on the geometry of the cavities, the absorption
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Figure 4.2.1: MDPhC images. (a) Schematic diagram of the MDPhC. (b) Schematic of
the cross-section of the MDPhC with period a, cavity radius r, inner and outer cavity
depths dj, d2, metal thickness mt, Al 20 3 thickness st, and thin-film antireflection coat-
ing thickness t. Measured dimensions are a=790nm, r=200nm, d1=200nm, mt=80nm,
st=40nm, and t is estimated to be t ~ 25nm. Hf0 2 is colored semi-transparent blue
for clarity. (c) Photo of the fully fabricated 6 inch wafer. (d) SEM image of the 40 nm
thick Al 203 shells before metallization. (e) SEM image of the fully fabricated wafer
surface, cut into lcmx 1cm squares. (f) SEM image of the sample cross-section taken
at a 420 cut angle.
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spectrum can be tuned by simply modifying the radius and depth of the cavities

[161, 138]. The fully fabricated 6 inch wafer is shown in Figure 4.2.1(c), where it has

been diced into 1 cm x 1 cm chips. An angled scanning electron microscope (SEM)

image of the 70 nm thick Al 203 shells before the metal is deposited is shown in Figure

4.2.1(d) and of the wafer after the CMP process in Figure 4.2.1(e). A cross section

SEM image obtained via FIB milling is shown in Figure 4.2.1(f) which confirms the

complete filling of the metallic cavities. Due to the large area nature of the fabrication,

small variations of the material thicknesses are observed which explains the reason

why Figure 4.2.1(e) and 4.2.1(f) are slightly different, however we find that these small

variations do not significantly impact the absorption spectrum. Along with the cut-off

frequency, the design of the cavities is also based on Q-matching formalism where

maximum absorption occurs when the radiative and the absorptive Q values are equal

[138].

The measured absorption spectrum shown in Figure 4.3.1(a) demonstrates the

broadband absorption of the MDPhC across the majority of the solar spectrum along

with a steep cutoff frequency. Note that absorptance is at = 1 - Rt - T, where Rt

and T are the total reflectance and transmittance. The simulated total transmission

through the MDPhC is shown to verify that the MDPhC is in fact absorbing the

majority of the input light.

In 4.3.1(a), the simulated absorption spectrum of the MDPhC layer agrees well

with experiment throughout 0.3eV<hw<3eV, but diverges for higher photon energies,

where transmission through the metal layer is no longer negligible. At these ultraviolet

frequencies, the silicon substrate absorbs the transmitted light. The cutoff frequency

is located at mode M1 with hw =0.75eV. For infrared photon energies under 0.4eV,

absorption is successfully supressed to be below 10%.

In comparison, the measured MAPhC spectrum is shown in Figure 4.3.1(b), which

has a poorer absorption profile over the visible frequencies due to diffraction losses

[161, 167]. The MAPhC has the same dimensions as the MDPhC, however the MAPhC

does not have the HfO 2 filling. The cut-off frequency for the MAPhC shifted by a

factor of 2.07 to 1.55 eV, which closely matches the measured index of the HfO 2 in
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Figure 4.3.1: Measured (red) and simulated (blue dotted) absorption spectra for (a)
dielectric-filled and (b) air-filled photonic crystals. An absorption measurement for flat
metal (pink) is shown for reference. The first three modes of the simulated spectrum
are labeled as MI, M2, and M3, respectively. The experimental measurements are
provided by Dr. Jeff Chou.

75



MAPhC MDPhC

Figure 4.3.2: Simulated JE12 field images for MDPhC and MAPhC absorptance peaks.
Left: The MAPhC field image shows a standard cavity mode, which corresponds to
the single peak in Figure 4.3.1(b). Right: The MDPhC field images correspond to
Ml, M2, and M3 in Figure 4.3.1(a).

the cavity. The FDTD simulated MAPhC absorption is also shown which agrees well

in frequency, but has higher absorption values than measured. Mismatch between the

simulation and experiment may be attributed to both the smooth cylindrical structure

and perfect uniform geometry in the simulation that are not present in the actual

device due to the large scale fabrication variation.

The broadband optical properties of the MDPhC in the visible regime are due

to the combination of a high density of cavity modes and a thin-film coating layer.

The dielectric filling essentially red-shifts the frequencies of the high order cavity

modes to create a high density of states in the visible regime. Experimentally, this

can be observed in the larger number of peaks in the measured MDPhC absorption

spectrum in comparison to the MAPhC absorption spectrum in Figure 4.3.1. The

first two modes, M1 and M2, are standard cavity modes, however, M3 (-uw =2.2leV,

A3 = 560nm) and higher-order modes support a hybrid cavity and surface plasmon

polariton (SPP) mode.

The simulated E, field images are shown in Figure 4.3.3 for the first five modes.

The first two modes are standard cavity modes with to coupling to SPP modes. M3

and M4 show both cavity and SPP modes, where the SPP modes are propagating
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Figure 4.3.3: Simulated E. field images of the first five modes in the MDPhC absorption

spectrum. Ml and M2 are standard cavity modes with no coupling to SPP modes.
M3, M4, and M5 are coupled cavity-SPP modes at peak photon energies &0 = 2.21eV,
2.55eV, and 3.17eV, respectively. Scalebar is 200nmn.

along the vertical sidewalls of the cavity. M5 shows a high order cavity mode with

little coupling to SPP modes. The higher order modes appear to be dominated by

cavity modes and are what cause the high density of optical states in the visible regime.

The coupling between cavity and SPP modes may also contribute to the increased

absorption in the M3 mode 1178].

The effect of metal thickness on the absorption spectrum of the MDPhC is shown

in Figure 4.3.4, where the thicknesses of both metal (mt) and A1203 (st) are varied to

keep the inner radius r constant. For mt greater than the skin depth, the absorption

spectra remains relatively constant. In this regime, the thickness of the A12 03 has

no impact on the absorption spectra since the fields do not significantly penetrate

the metal. Once the metal thickness is below the skin depth, as shown for , the

transmission of the fields through the metal lowers the absorption spectra. In this

regime, the thickness of the A1 2 0 3 can alter the absorption spectra by allowing for

modes within the A12 03 to occur. However, the fabricated MDPhC presented in this

communication has metal thickness greater than the skin depth, and as a result the

A12 03 thickness has little effect on the absorption spectrum. Therefore, although

the A12 03 thickness varies across the wafer by approximately 40 nm - 80 nm, due

to non-uniform deposition and etching processes, this variation does not impact the

absorption spectrum. Furthermore, variations in the metal thickness across the wafer
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Figure 4.3.4: Simulated absorption spectra with varying metal thickness mt, and
Al 2O 3 thickness st. The inner radius r is held constant. Note that for mt greater
than the plasmonic skin depth. variations in both mo, and s, have little impact on the

absorption spectrum.

also do not have a significant impact on the absorption spectrum, since the minimum

observed metal thicknesses is approximately 70 nm. In summary, as long as the metal

thickness is greater than the skin depth, the absorption spectra is immune to small

variations in metal or Al 203 thicknesses. We comment that this analysis assumes that

the inner radius, r, remains constant. If variations of the metal or A1203 thickness

change the inner radius, r, then the frequency of the modes will red shift or blue shift

depending on the direction of the change in r.

Figure 4.3.5 specifies the influence of a thin-film coating layer that suppresses

reflection and tunes higher-order resonances to enhance absorption near the peak of

the solar spectrum. A thin-film coating layer serves to minimize reflection at the top

surface of the MDPhC by tuning the cavity-SPP hybrid resonance modes. Analytically,

the thin film layer on a flat Hf0 2 and ruthenium interface can be calculated by inserting

the complex permittivity of the metal layer ERu into the Fresnel reflection equation

[1791. To suppress undesired reflection in the visible spectrum of 1.55eV<hw<3.leV,

with an average index of HfO 2 at in the visible regime of n = 2.09, we calculate thin
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Figure 4.3.5: Simulated absorption spectra comparing MDPhCs with (red) and without

(blue) thin-film coating. Corresponding electric field intensity profiles of M3 mode are

shown on the right.

film layer thickness of 22nm to 75nm for a flat surface. Thus, if the proper thin-film

antireflection coating layer thickness is designed to spectrally overlap with the high

density of optical states, high, broadband absorption will occur.

Specifically, coupling into modes within infrared and visible photon energies are

increased, most notably around M3, and higher-energy modes in the ultraviolet are

suppressed. Figure 4.3.5 also shows the intensity plots of the M3 mode with and

without the 25nm coating. We observe a clear reduction in the reflected intensity

at the top metal surface, marked with white arrows due to destructive interference.

Furthermore, integration of the FDTD simulated Poynting vector reveals that the

thin-film coating layer causes 44% of the incident light power to be absorbed at the

top metal surface for mode M3, whereas without an thin-film antireflection coating

layer only 33% is absorbed.

4.4 Conclusion

This chapter summarizes the FDTD numerical analysis for a broadband solar absorber

developed and described in [168]. The surface of a solar panel can be intricately

patterned and coated to receive as much sunlight as possible from all directions with
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minimal reflection. Through numerical parameter-studies, we discuss the tunability

and spectrum-selectivity of the MDPhC optical response. We analyze that the

broadband absorption is due to a high density of optical cavity modes overlapped

with surface plasmon polariton modes, and highlight the importance of the thin film

coating layer in tuning the hybrid resonances. The MDPhC structure may be designed

with various alternative metals and dielectrics to suit any application's needs. With

further optimization of the structure and materials, MDPhCs could play a critical role

in the future of solar energy conversion.
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Chapter 5

Nonlocal Dynamics of Dissipative

Phononic Crystals

This chapter is based on: N. Nemati, Y. E. Lee, D. Lafarge, A. Duclos, and N. X.

Fang, "Nonlocal dynamics of dissipative phononic fluids," Phys. Rev. B., Accepted for

publication on 10 May 2017.

5.1 Introduction

The field of phononic crystals for acoustic and elastic waves [180, 1811, analogous

to photonic crystals for electromagnetic waves discussed in Chapter 4, has been

widely investigated over the past two decades [182, 183, 184, 185]. Phononic crystals

are periodic arrangement of inclusions embedded in a host material, configured so

that mechanical wave propagation is suppressed for certain frequency bands due to

destructive Bragg scattering. The inclusion and the host can be made of fluid or

solid materials. The concept of phononic crystals has been applied to a variety of

engineering applications, including sound isolation [186, 187, 188, 185], wave guiding

[189, 182], nanoscale thermal control 1184], and quantum information processing [1901.

Depending on the structural size, phononic crystals can be engineered in audible

frequencies (kHz) for sound proofing, to ultrasonic imaging (MHz), hypersound (GHz)

in optomechanics, and thermal applications (THz) [184]. Periodicity L can range from
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a few centimeters down to nanometers.

On the other hand, semi-periodic acoustic metamaterials support local resonances

that influence the phase velocity of the wave, resulting in one or more negative effective

medium parameters such as density p, compressibility x, and elastic modulus Y. For

acoustic metamaterials, A is often several times larger than unit length L, and the

design of unconventional material properties require an approproiate effective-medium

theory.

Effective-medium theories aim at establishing simple macroscale equations that

govern the effective dynamics of a composite medium on the scale of A, which is

greater than the characteristic length scale of the microstructure within the unit cell.

Microscale information such as micro-topology, density and compressibilities of each

constituent medium, and volume fraction of the inclusion are collectively encoded

in a few effective parameters on the macroscale, where the medium is assumed to

be homogeneous. These macroscale equations describe the field propagation and the

constitutive relations for effective material properties such as effective density and

compressibility.

Describing the effective properties of phononic crystals and acoustic metamaterials

is generally restrictive: The long-wavelength resonant behaviors of acoustic metamate-

rials are often not captured, and the Bragg scattering in phononic crystals is commonly

thought to escape a macroscopic description. Efforts have been made to capture local

resonances in acoustic metamaterials with elastic materials by coherent potential

approximation [191] that is based on minimizing scatterings in the long-wavelength

limit. An improved scheme has been developed to obtain the effective properties of

the same type of materials in a broader frequency-band, by matching the lowest-order

scattering amplitudes that arise from the unit cell, with that of the homogenized

material (metasolid) [45].

Nonlocal homogenization approaches were formulated to derive broadband effective

electromagnetic parameters, by averaging the response of an appropriate distribution

of sources [43], or by using coherent potential approximation method in the long-

wavelength regime [192]. Although nonlocal effects in electromagnetic materials have
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Figure 5.1.1: Schematic of a two-dimensional phononic crystal. Rigid cylinders are

periodically embedded in a viscothermal fluid medium (e.g., air).

usually been treated as a small correction needed when A is small, these effects have

been observed in the long-wavength regime as well, for both electromagnetic [48] and

acoustic [193] metamaterials.

Here, we study the special case of heterogeneous two-phase media with a motionless

non-deformable solid and a viscothermal fluid. The medium forms a connected fluid

phase which supports wave propagation. In the long wavelength limit A > L, the

standard approach to compute its effective properties is based on the two-scale

asymptotic method. We refer to this approach as the "local theory" [194, Appendix

A] because the theory assumes no spatial dispersion [195, 196]. But local approach

cannot describe the behavior of subwavelength composites that exhibit wavevector-

dependent response. The local approach has been extended to describe fluid/solid

media with Helmholtz structures, but at the cost of separating the fluid region

into different portions, in which different asymptotic expansions and rescaling are

performed [197, 193]. Such limited approaches cannot be generalized to more complex

geometries. Furthermore, because the long-wavelength condition must be satisfied,

the local approach fails to describe Bragg scattering in phononic crystals.

Therefore it is desirable to devise a macroscopic theory that allows for not only

temporal but also spatial dispersion, which is generally applicable regardless of the
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geometry and wavelength. This has been achieved by Lafarge and Nemati [51, 198]

using an analogy with Maxwell's equation and nonlocal constitutive equations for

electromagnetic waves. For solid/solid stationary-random composites or periodic

random media, a general nonlocal form of the macroscopic equations has been proposed

by Willis. [1991 Within the same effective-medium formulation, effective parameters

have been calculated by different techniques, in 1D [200], 2D [2011, and 3D [202, 44].

Our nonlocal description of fluid/rigid media that we discuss here involves equations

of the same form as those of Willis, but without the coupling terms. The absence of

these coupling terms is due to the different ways of defining the macroscopic fields

from microscopic fields, although both schemes have non-asymptotic character and

employ ensemble-averaging concept.

We describe the 1D nonlocal dynamics of phononic crystals composed of two-

dimensional periodic array of rigid cylinders in air (Figure 5.1.1), using the macroscopic

equations of the nonlocal theory with an action-response homogenization method.

We demonstrate that the nonlocal approach enables us to characterize the material

through a complex density and compressibility of an effective fluid in a broadband

regime including the high-frequency range A ~- L. We refer to this effective fluid

as a phononic fluid, in contrast to metafluids, whose properties are based on local

resonances. The validity and precision of the calculations are verified by comparing

the results with a reference obtained using multiple scattering method incorporating

viscothermal losses. To our knowledge, this is the first time that a dissipative phononic

(sonic) crystal is precisely characterized by its effective properties in a large frequency

range extending over Bragg's regime covering the entire first and second Brillouin

zones. This is a breakthrough step towards bridging the macroscale and te microscale.

Sec. 5.2.1 recalls the microscopic governing equations for linear acoustics. Sec.

5.2.3 presents the local and nonlocal approaches of the macroscopic theory in a unified

formulation. Sec. 5.2.4 and Sec. 5.2.5 review the action-response problems to achieve

the effective-medium parameters for local and nonlocal computation, respectively. The

multiple scattering method used as a reference is summarized in Appendix C. The

results are presented in Sec. 5.4 and concluded in Sec. 5.5.
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5.2 Theory

5.2.1 Microscopic Equations

In a heterogeneous rigid-boundary system, as the phononic crystal represented in

Figure 5.1.1, the governing equations consist of bulk-fluid equations and boundary

conditions. On the microscopic scale, the linear equations governing the dynamics of

small-amplitude disturbances in a homogeneous viscothermal fluid come from linearized

balance equations of mass, momentum and energy; the constitutive relations; and a

general state equation of the fluid.

These governing equations describe the small deviations of thermodynamic pressure

p, density p, temperature T, velocity v, and entropy s, from their rest state po, Po, TO,

VO = 0, and so, up to the terms of first order. In the framework of classical irreversible

thermodynamics (203, 204], the two constitutive relations are those of Stokes and

Fourier.

a/. = 271 (eii - 1(V.v)jia) + ((V.v)6ij (5.2.1a)

q = -nVT (5.2. 1b)

Stokes's law is a linear isotropic relation between the components of the viscous shear

stress aij, and strain rate eij = 1(aivj + &jvi), where 6ij is the Kronecker symbol;

and 7 and are the first and second viscosity of the fluid. The Fourier's law of heat

conduction is a corresponding relation between the heat flow q and the temperature

gradient, with the coefficient of thermal conductivity K.

Using Stokes's law of Eq. (5.2.1a), the conservation equations of mass, and

momentum in the bulk fluid Vf for a fluid particle yields [30, 4]:

-b + V - V = 0 (5.2.2a)
at

Ov (I
Po- = Vp+ 7

2 v + (+ 7) V(V-v) (5.2.2b)

where b is defined as b p'/po and p' the density deviation. For convenience, we

85



denote the pressure deviation as well as the absolute pressure, by p.

We expand the thermodynamic equations of state p = p(p, s) and T = T(p, s)

near the rest state up to the first term, using the following thermodynamic identities:

(Op/Os)p = -po3o/cp; (OT/Op)s = =oTo/poc,; cg (Op/Op)8, where co represents the

adiabatic sound speed; where 0 = po[a(1/p)/OT], and cp = To(as/OT), are the

coefficient of thermal expansion and the specific heat at constant pressure evaluated

at the fluid rest sate. Then we can write the state equations as the following.

p' = (1/cO)p - (pOOTo/cP)s'

T' = (To0o/poc,)p'+ (To/cp)s' (5.2.3)

Omitting s' in the latter equations leads to:

7Xop = b+ 0 -r, (5.2.4)

where Xo = p- 1 (ap/p)S is the coefficient of adiabatic compressibility at rest state,

y cp/c, the relative specific heats at constant pressure and constant volume involved

in the thermodynamic identity -y - 1 = /30To/pocp, and r is a simpler notation for the

excess temperature T'.

The linearized energy balance equation is reduced to the linear heat transfer

equation 130, 4],
Os'

poTo V2 -r, (5.2.5)at

which expresses the heat gained per unit volume using Fourier's law in Eq. (5.2.1b).

Combining Eqs. (5.2.3) and (5.2.5) gives the following form of energy balance equation,

-p r = f3T 0  + V 2 , (5.2.6)

which complements the governing equations in the bulk fluid Eqs. (5.2.2)-(5.2.4).
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In the rigid solid region V', energy balance equation is reduced to

TS
pC_ = KSV2 Ts

where pS is the constant solid density, r' solid excess temperature, and rl solid

coefficient of thermal conductivity.

On the fluid/solid interface OV, we have the conditions of continuity of the excess

temperature r = TS and the heat flux KVT = rsVT. The coefficient of thermal

conductivity of the solid is much larger than that of the fluid rs >> r., and the heat

capacity at constant pressure of the solid part is much larger than that of the fluid

part, i.e., (1 - #)psc, > #poc,, where # is the fluid filling fraction (porosity). So we

disregard the fluid excess temperature at the boundaries. In addition, we also assume

no-slip boundary condition. The boundary conditions for the velocity and excess

temperature on OV are:

V = 0, r = 0. (5.2.7)

The microscopic governing equations for the field variables v, b, p and T are: Eqs.

(5.2.2), (5.2.4), and (5.2.6), with boundary condition Eq. (5.2.7).

5.2.2 Effective Medium Approaches: Overview

We summarize the local and nonlocal macroscopic acoustics associated with a given

macroscopically homogeneous fluid/rigid random medium. Then the local and nonlocal

action-response problems are stated, which determine the effective-medium parame-

ters. We consider that the medium occupies the whole space and is assumed to be

macroscopically homogeneous in ensemble-averaged sense. We imagine that we are

given infinite number of samples w of the medium from a probability space Q, the

ensemble of which defines the homogeneous macroscopic medium. In each realization

W, the medium is composed of two regions: the void (pore) region Vf(W) which is a

connected region permeated by the fluid, and the complementary solid-phase region
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V 5(w). The pore-wall region or fluid/(rigid) solid interface is denoted by OV(w). The

characteristic function of the pore region is defined by the following.

w) 1 r E Vf(w) (5.2.8)
0 r E V'(w)

Microscopically, the fields are of the form a(t, r; w), and the dynamics of the

system is governed by Eqs. (5.2.2)-(5.2.7) with V1 , VS and V replaced by V 1 (w), V'(w)

and V(w), respectively. The ensemble-average operation at position r is denoted

equivalently by (..) (r) or (..(r)), that gives the expectation value of the micro-field

at the same position. For instance, (I) (r) = (I(r)) is the porosity #, giving the

probability that the position r lies in the fluid, over an infinite number of realizations.

Since we assume the solid motionless and thermally inert, all microscopic fields a(t, r; w)

that specify the fluid motion in VI(w), are set to be zero in the solid V'(w). The

macroscopic mean A(t, r) of the field a(t, r; w) is defined through A(t, r) = (a(t, r; w)).

The random phononic crystal is the ensemble of realizations obtained by random

translation of this reference configuration in the x and y direction. Thus w can be

regarded here as (wo, wy) with wx and wy random variables uniformly and independently

distributed in [-L/2, L/21. The characteristic function of the pore region is then

interpreted as I(r; w) = I(r - w) = 1 if r - w is in the fluid region, and equals 0 if

r - w is in the solid region of the reference configuration.

We analyze acoustic waves propagating perpendicular to the cylinders in the

direction of principal x-axis, connecting the nearest neighbors in the lattice whose

unit vector is ex.

We present the macroscopic nonlocal computation; for the sake of comparison, we

also present the macroscopic equations of local theory in a Maxwellian form. Also,

ensemble-average concept is employed for both nonlocal and local schemes. For the

local theory, it is equivalent and straightforward to consider only one period of the

sample averaged over a unit cell. This applies also to the nonlocal theory, as long as

the wavelengths remain sufficiently large.
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5.2.3 Local and Nonlocal Macroscopic Equations

The macroscopic or effective-medium equations in local and nonlocal approaches

include field equations that are general and valid for all media, and constitutive

relations involving effective parameters. These equations are written in analogy to

Maxwell equations in electrodynamics.

The macroscopic condensation and velocity are defined as the direct ensemble-

averages B = (b) and V = (v), where V = Ve, is unidirectional.

Since the velocity vanishes on the cylinder walls, the following direct commutation

relation between averaging and divergence operators holds: (V - v) = V - (v) =

V- V = OV/Ox. To clarify this, we replace a, Va, aV and n(r'; w)a(t, r'; w), with v,

V V, v - V and n(r'; w) - v(t, r'; w) in Eqs. (51)-(53) of reference 1511. Note that the

commutation relation requires only that the normal component of the velocity vanishes

on OV(w), thus it holds also for an ideal fluid. Eq. (5.2.2a) is directly averaged to

give:
-- + -- = 0. (5.2.9)
at ax

This is the acoustic counterpart of the electromagnetic equation OB/Ot + V x E = 0.

We refer to V and B as the "Lorentz" fields.

We rewrite the Navier-Stokes equation in Eq. (5.2.2b) as:

av
9 = V -x-INb + j, (5.2.10)

where j is introduced as

j=-V + X 1 Vb +q 9V2V+ (+ 1)V (V v). (5.2.11)

By averaging, we get:

Po = - '-1 VB + J, (5.2.12)Oat

where the expression

J = (j) - X-1 (bVI) (5.2.13)
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is obtained by using the commutation relation (Vb) - V (b) = - (bVI) (see Eqs. (51)

and (53) in [511). Eq. (5.2.12) is analogous to

Eo6j. = p 1V x B - J (5.2.14)
at 0

in the absence of external charges or electric currents, where eO and A0 are the electric

permittivity and magnetic permeability in vacuum. J is the electromagnetic current

associated with the macroscopic motion of the particles, induced by the macroscopic

electromagnetic field perturbation in the medium.

Following Lorentz 12051, in macroscopic electromagnetic framework, this induced

bulk current is formally decomposed into a temporal derivative and a spatial derivative

term: J = OP/Ot + V x M, where P and M are electric and magnetic polarization,

respectively. Substituting this into Eq. (5.2.14) yields OD/at = V x H with

D = EoE+P and H=xoB-M.

Similarly, in our acoustic context, we decompose the induced bulk force J = Jet:

= + m (5.2.15)
at Ox

We then substitute Eq. (5.2.15) into Eq. (5.2.12).

-D --- (5.2.16)
Ot ax

D = po V - P (5.2.17)

H=x B-M

The fields D and H introduced here are the effective acoustic momentum and effective

acoustic pressure on the macroscopic scale, respectively.

As in electromagnetism, we assume the existence of constitutive laws P = 2,V

and M = kmB that relate the polarizations P and M to the Lorentz fields V and B,
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where Xp and km are convolution operators.

P(t, x) = J dt' / dx'xp (t - t', x - x')V(t', x')

M(t, x) = f dt' f dx'xm(t - t', x - x')B(t', x')

Then, we complete the field equations, Eqs. (5.2.9) and (5.2.16), by the following

constitutive relations

D = V (5.2.18)

H =- 1 B

where =o - , and - = - in; and i is the identity operator. Explicitly,

these are the nonlocal constitutive equations

D(t, x) = dt' J dx'p(t - t', x - x')V(t', x') (5.2.19a)

H(t, x) = j dt' J dx'X-(t - t', x - x')B(t', x') (5.2.19b)

stating that the fields D and H at a given time t and position x depend on the fields

V and B at all previous time and all points of the space.

Unlike the Lorentz fields, the electromagnetic fields H, D, P and M, and acoustic

fields H, D, P and M are not the direct average of corresponding microscale fields. In

what follows these are called "Maxwell fields" to be distinguished with Lorentz fields.

The constitutive laws express the Maxwell fields in terms of the Lorentz fields.

Eq. (5.2.19a) is written in the most general form. It is unnecessary to add an extra

convolution term to the right hand side of Eq. (5.2.19a) to relate D(t, x) to B(t', x').

Because the fields V and B are related by the field equation Eq. (5.2.9), the effect

of such an additional term is already incorporated in Eq. (5.2.19a) that includes the

temporal and spatial dispersion in a general manner. The second constitutive relation

Eq. (5.2.19b) is also written in the most general form. Because of Eq. (5.2.9), there is

no need to add an extra convolution term to the right hand side of Eq. (5.2.19b) to
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relate H(t, r) to V(t', r'). Similar arguments can be found in [195], Sec. 103 in the

context of electrodynamics.

We note that the additional terms, which are not required in our framework, are

of the same nature as the Willis coupling terms [1991, which relate acoustic mean

momentum (here, D) to mean strain (here, B), and also relate acoustic mean stress

(here, H) to mean velocity. That is, if we wanted to consider the Willis coupling terms

in the structure of our equations, they would be set to zero.

The general equations Eqs. (5.2.19) in the Fourier space are written as

D(w, k) = p(w, k) V(w, k) (5.2.20a)

H(w, k) = x-1(w, k) B(w, k) (5.2.20b)

provided that

F dw dk

p(t, x) = ] d p(w, k) e-iwt+ikxI
f27r 2,7r

Fdw dk 1 wik
x- 1(tx) = - k X (w, k) e-t+ikx.

2 1T 27

For homogeneous medium with respect to time and space, D(w, k) is related to V(w, k),

and H(w, k) is related to B(w, k) for the same values of w and k.

Now, while the Eqs. (5.2.11), (5.2.13), and (5.2.15) uniquely fix the induced density

field J, they do not determine the related polarization fields P and M independently.

The fields H and D are also still ambiguous. We need an additional condition to

clarify the Maxwell fields. In reference [511, the field H is identified as the acoustic

energy flux S = Se, = (pv) by the "Poynting-Schoch energetic relation:

(pV) = H(V). (5.2.22)

The vector S = HV plays the role of an acoustic Poynting vector analogous to its

counterpart in electromagnetism. Eq. (5.2.22) gives the relevant macroscopic part H

in the microscale pressure field p. As p is the thermodynamic excess pressure, and
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pv is interpreted as the acoustic energy flux, it may be viewed as a thermodynamic

relation. Again, unlike the Lorentz fields; the Maxwell field H is generally not the

direct average of the corresponding microscale field. In particular, H is not exactly

the mean pressure in the fluid (p) /0.

Indeed, M derives from H and B, using the second equation of Eq. (5.2.17); P

derives from M and J, using Eq. (5.2.15); and finally, D derives from P and V, by

the first equation of Eq. (5.2.17). The nonlocal relations Eq. (5.2.19) completed by

Eq. (5.2.22) provide a coherent framework that fully accounts for both temporal and

spatial dispersion.

As in electromagnetism, the spatial dispersion effects can be very small in the long-

wavelength limit. In that case, the nonlocal constitutive relations can be practically

indistinguishable from local constitutive relations, that are expressed as

D(t, x) = dt'p(t - t') V(t', x), (5.2.23a)

H(t, x) = f dt'x 1 (t - t') B(t', x). (5.2.23b)

Temporal dispersion effects are taken into account, in the sense that D and H at a

given (t, x) depend on the history of the fields V and B at the same position. The time

invariance of the system results in the dependence of the density and bulk modulus

kernels on the time-difference t - t'. Therefore, we can write Eqs. (5.2.23) in Fourier

space

D(w, x) = p(w) V(w, x) (5.2.24a)

H(w,x) = x1 (w) B(wx) (5.2.24b)

93



provided that

p(t) = -- p(w) e-iwt,

f27r= d w ) 6 iwt

The above relations correspond to an approximate modeling in long-wavelength regime,

which is meaningful to consider when the geometries are sufficiently simple, without the

involvement of very different pore sizes. The local formalism assumes that divergence

is zero in the limit A >> L .

V.v = 0 (5.2.26)

Thus it cannot describe local resonance behaviors in the medium. If we remove the

viscothermal losses and assume local behavior so that the fluid is incompressible on

the pore scale in Eq. (5.2.26), then the response of the fluid to an excitation should

be instantaneous. Thus, the density and compressibility kernels become proportional

to the Dirac delta: p(t - t') poao6(t - t') and X-1 (t - t') = X 0
16(t - t'), where

the geometric constant ce ;> 1 is known as tortuosity [206], which describes an

apparent increase in the inertia of the incompressible ideal fluid that is forced into the

tortuous pore network. Therefore, in this case, no temporal dispersion manifests. This

demonstrates that the dispersion within the limit of Eqs. (5.2.23) is wholly linked to

the losses.

In presence of the losses, the simplifying assumption - that in the long-wavelength

limit the fluid appears as incompressible on the microscale - enables the separation

of viscous/inertial and thermal/elastic effects. Hence, according to local theory, the

viscous and inertial effects are encoded in the frequency-dependent effective density

p(w) [206] and the thermal and elastic effects are described by the effective bulk

modulus x-1(w) [1941. When the frequency is considered as a complex quantity

because of fluid incompressibility, the poles and zeros of these functions are on the

negative imaginary axis of the frequency [206, 207, 1941. On the real frequency axis

this leads to monotonic variations of these functions, excluding in particular resonant
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behaviors [208], and expressed by simple and robust models of p(w) and x- (w), in

terms of certain geometrical parameters.

To elucidate further why the fluid incompressibility on the pore scale requires a

simple material geometry, suppose that we want to estimate the order of magnitude of

the fluid divergence V -v on the microscopic level. Let v be a characteristic amplitude

of the velocity. Since the geometry is assumed to be simple, the period L is also a

valid estimate of the characteristic pore length. While, for a general compressible

fluid motion, the magnitude of the micro-level divergence can be estimated as v/L, we

know that in our system the correct order of the magnitude of this quantity should

be v/A. As the order of magnitude of v/A relative to v/L is E(= L/A), and the local

asymptotic approach is in the limit E -+ 0, it is clear that the fluid moves in an

incompressible manner on the pore scale in Eq. (5.2.26). Likewise, to estimate the

order of magnitude of the fluid pressure gradient Vp on the microscopic level, let p

be a characteristic amplitude of the pressure represented in the form of p = P + 6p,

where P = (p) /0 (not to be confused with polarization field with the same notation

P) is the mean fluid pressure that varies on the macroscopic scale, and 6p is a pressure

deviation with zero mean value. Therefore, we have Vp - P/A + 6p/L. If the fluid is

compressible, 6p ~ P, and Vp ~ P/L, while in our system Vp ~ P/A. This means

that 6p/L ~ P/A, i.e. the deviation amplitude 3 p compared to the mean value P is

very small, of the order e. Consequently, in the long-wavelength limit e -+ 0, there

is no gradient for the pressure (and its time derivative); the pressure profile can be

regarded as uniform on the pore scale:

OP = 0. (5.2.27)

The above equation is used to obtain x-1 (w) in local theory.

Finally we note that in local theory, p in Eq. (5.2.22) can be replaced by its mean

value in the fluid P = (p) /0 and extracted from the average operator because the

pressure deviation is negligibly small (6p - eP < P). This immediately leads, in this

special case, to the identification H = (p) /0 = P.
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We have interpreted the local constitutive relations as if there is not any difference

between the cell period L and the characteristic pore lengths. Only with this feature,

the application of the two-scale asymptotic homogenization method is justified. In

general, when widely different characteristic pore lengths are present, the scale sep-

aration parameter 6 becomes ill-defined owing to the arbitrariness in the choice of

micro level characteristic length. In that case, Helmholtz structures exhibiting local

resonances may appear in the medium, and the nonlocal description is required in

general. Another case requiring the nonlocal description is when the long-wavelength

condition A >> L is no longer satisfied, meaning that the fluid motion is no longer

divergence-free on the pore scale, and in particular, Bragg scattering may appear.

Contrary to the approximate local framework, the general relations allowing for

spatial dispersion, provide at the same time, the correct and untruncated description

of temporal dispersion. Particularly, in a lossless medium, the temporal dispersion

effects do not completely disappear, that is, the fluid does not respond instantly to an

excitation, due to its compressible motion on the pore scale.

In summary, we establish a closed form, uniquely defined system within both

the local approach and the nonlocal approach, by formulating the definitions of the

macroscopic Lorentz fields based on microscopic fields; the Lorentz and Maxwell fields

Eqs. (5.2.9) and (5.2.16); the constitutive local relations Eq. (5.2.23) and nonlocal

relations Eq. (5.2.19); and the Poynting thermodynamic relation of acoustic energy

flux (5.2.22). Only the nonlocal system takes the full account of the microscopic

equations, and therefore, applies without restrictions on geometries and frequencies.

In the following, we present the recipes to obtain the local effective functions p(w)

and X-j(w) involved in Eqs. (5.2.24), and the nonlocal effective functions p(w, k) and

x1 (w, k) introduced in Eqs. (5.2.20), based on the knowledge of microscale properties.

5.2.4 Local Effective Medium Parameters

The procedure to obtain effective properties of the medium in local theory is based

on two assumptions. The first is the long-wavelength limit A > L. The second is

that fluid motion is divergence-free on the microscopic level. We can directly write
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the two independent action-response problems, the solution of which determines the

frequency-dependent density and bulk modulus. Hereafter, we systematically omit

Re( for convenience; fields expressed as Re(Ue- w) are simply written as Ue-t.

To compute the local effective density p(w) for a given real-value frequency, we

consider the following action-response problem. A harmonic bulk force F(t) = Foe--t

with constant unidirectional amplitude F = Foe, is applied to the flui. This is

equivalent to applying a uniform harmonic macroscopic pressure drop -VP(t) =

Foe-t to the fluid. Coherent with the assumption of the fluid incompressibility on

the microscale, we need to solve the following system in each realization w (i.e., each

random positioning in space without rotation of the phononic crystal sketched in

Figure 5.1.1) in Vf(w).

V.V = 0 (5.2.28a)

-iwpov = -Vp + r1V 2v + F (5.2.28b)

On the boundary &V(w), we set

V= 0 (5.2.29)

where the v(t, r; w) = v(w, r; w)e-wt and p(t, r; w) = p(w, r; w)e-wt. The local

theory's characteristic assumption in Eq. (5.2.28a) leads to the Laplacian form of the

viscous terms in Eq. (5.2.28b) and is consistent with F treated as a spatial constant.

F0 and p correspond to -VP and 5p, respectively, in line with the discussion on the

fluid incompressibility in local theory (Sec. 5.2.3). When we neglect spatial dispersion,

we treat F as a spatial (pore) constant.

We can find unique amplitude fields v(w, r; w) and p(w, r; w), that are solutions

to Eqs. (5.2.28)-(5.2.29). These solutions are periodic with period L in x-direction.

The equations Eqs. (5.2.28)-(5.2.29) in the reference configuration can be obtained by

the aforementioned two-scale asymptotic homogenization method at the leading order

of the asymptotic expansions [209, 2101. Averaging the response field v(w, r; w) over
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the realizations w, the local density for the effective fluid is given by:

F0
p(V) - (5.2.30)iW V(W)

Owing to the construction of the ensemble, exactly the same mean value V(w) is

obtained by solving Eqs. (5.2.28)-(5.2.29) in one single realization, and then, volume

averaging the response velocity in one unit cell. This is how all the numerical results

are obtained.

To compute the local effective bulk modulus x-1 (w) at a real w, we apply an

excitation in the form of a heating rate at constant pressure Q(t) = Qoe~wt, where

Qo is a constant, or equivalently the material is subject to a uniform time harmonic

pressure, such that /oTo9p/Ot = Qoe-at. This results in the following action-response

problem for the amplitude of the excess temperature field T(t, r; w) = T(w, r; w)e-iwt

in V1 (w).

-iPOCpT = r'V2 T + Qo (5.2.31)

On the boundary 0V(w), we set:

T =0. (5.2.32)

There is a unique amplitude field r(w, r ; w) response solution to Eqs. (5.2.31)-(5.2.32),

which is periodic in L. This action-response problem in the reference configuration can

also be obtained at the leading order within the classical asymptotic homogenization

[1941. It is based on the physical assumption that the pressure field is a slowly variable

quantity that may be viewed in first approximation as equal to the mean pressure.

This assumption is incorporated in Eq. (5.2.31) in the very fact that Qo is taken as a

spatial constant. In fact, Qo embodies the term 3oToOp/t in the wave propagation

problem, and it is consistent to treat Qo as a spatial constant: as we saw earlier,

the divergence-free nature of the motion leads to 3oToV(p/Ot) = 0 in Eq. (5.2.27).

Once the solution field T is found, the factor p' analogous to the previous p is given as

p'(w) = -Qo/iwT(w), where T = (T).

In local theory, p' and x are related by X(w) = OXo [7 - (7 - 1)pocp/p'(w)]. Thus
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the local bulk modulus for the effective-fluid medium is:

X-l(m = 0 Q-0 7- ) Tw (5.2.33)

In the local effective fluid, for a given frequency w, there is only one single normal mode

that can propagate in the positive x direction. With this single mode is associated a

local wavenumber kL(W) that verifies the following local dispersion relation

c2 - k2 = 0 (5.2.34)
p(w)x(w) L

such that Im(ki) > 0. The frequency-dependent complex phase velocity c(w) and the

complex impedance Z(w) are obtained as below.

c(w) = W (5.2.35)
kL (W)

Z(w) = [p(w) x-1(w)]1/ 2

5.2.5 Nonlocal Effective Medium Parameters

The procedure to obtain effective properties of the medium in nonlocal computation

can be viewed as a generalization of the preceding local action-response problems

accounting for spatial dispersion. The Fourier coefficients p(w, k) and x-1(w, k) in

(5.2.21) are directly related to the macroscopic (averaged) response of the permeating

fluid subjected to a single-component (W, k) Fourier pressure term,

P(t, x) = Poe-w)t+ikx, (5.2.36)

added to the pressure either in the Navier-Stokes equation in Eq. (5.2.2b) to obtain

the nonlocal effective density, or to the Fourier equation in Eq. (5.2.6), to obtain the

nonlocal effective bulk modulus x-1 [51].

If the perturbation term is added to Eq. (5.2.2b), the excitation performs inhomo-

geneous (variable in time and space) work per unit volume and time. The excitation
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amplitude is written as: Foe-iwt+ikx = -VP. The governing equations in the fluid

region Vf(w) can be written as below.

&bv
-b + V - V = 0 (5.2.37a)

at

Po = -Vp + 17V 2V + (( + li7) V (V -v) + Foe-iwt+ikx (5.2.37b)
to obtain effective p(w, k)

OT Op
POCPj = #T- + TV2r (5.2.37c)at at

7yXop = b + /o3 r (5.2.37d)

On the fluid/solid interfacelf the perterbation term is added to Eq. (5.2.6), the

excitation pumps an inhomogeneous amount of heat per unit volume and time. The

excitation amplitude is written as: Qoe-wt+ikx = iOTO(OP/Ot).

Ob
a+ V -V= 0 (5.2.38a)

po_ = -Vp + i7V 2 V + (C+ 1i) V (V - v) (5.2.38b)

pOC,-r = T TO- + rV2r + Qoe-iwt+ikx (5.2.38c)at at
to obtain effective X-1(w,k)

7xop = b + /or- (5.2.38d)

On the fluid/solid interfaceThe boundary condition for both action-response problems

are:

v = 0, (5.2.39)

r = 0. (5.2.40)

It is important to emphasize that the excitation variables w and k are set as

independent variables here. The solutions to the above systems for the response

fields p, b, r, and v take the form p(t, r; w) = p(w, k, r; w)e-)t+ikx and so on. The

amplitudes are periodic functions of x and are proportional to the excitation amplitude
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P0. However, these solutions are not unique in the sense that the period can be chosen

as any integer multiple of the irreducible period L. In what follows we exclude this

ambiguity by requiring the amplitudes of the solutions to be periodic with L.

Once the two sets of action-response systems are solved independently, we use the

fundamental relation in Eq. (5.2.22) to write

P(v) = (pV),

where the macroscopic part of the pressure response p(t, r; w) is:

P(t, x) = P(w, k)e-iwt+ikx,

whose amplitude is determined by P(w, k) = {(p(w, k, r; w)v(w, k, r; w)) .e,} /V(w, k).

To compute the nonlocal density of the phononic fluid p(w, k), we use the Fourier

transform of Eq. (5.2.16). We apply Eq. (5.2.20a) and postulate that the addition of

the two parts P and Po establishes the field H.

k
p(w, k) = k [P(w, k) + Po] (5.2.41)

wV(w, k)

Owing to the construction of the ensemble, exactly the same mean values V(w, k)

and P(w, k) are obtained by solving Eqs. (5.2.37)-(5.2.39) in one single realization

and then applying the averages ( ) by volume integration in the chosen periodic unit

cell. In order to get the response fields p(w, k, r) and v(w, k, r), we explicitly solve

the PDEs relating the amplitude fields in the reference unit cell.

To compute the nonlocal bulk modulus of the phononic fluid X- 1 (w, k), we use the

Fourier transform of Eq. (5.2.19b). As before, we express H as the sum of P and P.

P(w, k) + Po = x-(w, k)B(w, k)

Here, the field B has yet to be identified based on microscale dynamics. We postulate

that it is composed of two parts, B = B + B0. B(w, k) = (b(w, k, r; w)) is the non-
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isothermal response part that originates in the field b(t, r; w) = b(w, k, r; W)e-iwt+ikx

of the action-response problem Eqs. (5.2.37)-(5.2.39). Bo is an isothermal constant

contribution, that can be directly written by averaging the isothermal term 'YXoPo;

Bo = (XoPo) = #7XoPo, where # is the porosity. This formulation of B has been

suggested in [51].

1X-1(w, k) = [P(w, k) + Po] (5.2.42)B(w, k) + Bo

As before, averaging the amplitudes v(w, k, r; w), b(w, k, r; w), or pv(w, k, r; w) can

be performed equivalently over a single unit-cell.

Contrary to the case of local theory, several normal mode solutions might exist

because we include spatial dispersion with fields varying as e-t+ik . We denote each

normal mode wavefector as k-(w), for n = 1, 2,... The dispersion equation is also

generalized to account for nonlocality:

k2
W 2 kn =0. (5.2.43)

Pn(W, kn)Xn(W, kn)

Furthermore, each wavenumber kn are associated with a frequency-dependent density

and bulk-modulus, such that

Pn(w) = Pn[W, kn(W)],

X-1(w) = Xn'[w,kn(w)].

Therefore, the phase velocity and impedance of the normal mode n are written as

cn(w) = W (5.2.44)
kn(W)'

Z(w) = [p(w) Xn 1(w)]1/ 2 .

Here we focus solely on the least attenuated mode n = 1 and its associated effective

parameters. The results produced by the local and nonlocal theories and respective

upscaling procedures are illustrated in Sec. 5.4. They are evaluated by performing an

independent direct computation of the complex wavenumber or the phase velocity of
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the least attenuated Bloch wave propagating in the reference phononic crystal.

5.3 Numerical Method

5.3.1 2D Finite Element Method for Microscopic Action-Response

Problems

To obtain the effective medium parameters according to local and nonlocal theory, we

use the finite element method (FEM) 134] to discretize the given unit cell geometry and

solve the governing action-response equations for a given W and k. For the local theory,

we solve Eqs. (5.2.28)-(5.2.29) and Eqs. (5.2.31)-(5.2.32) using FEM. For the nonlocal

theory, we solve Eqs. (5.2.37) and Eqs. (5.2.38) using FEM. These nonlocal equations

in their explicit forms are available in Appendix C. We perform FEM computations

using FreeFem++ [26], an open-source PDE solver. The weak form of the equations

to be solved is firstly needed in order to implement the FEM simulations through this

solver. Adaptive meshing was employed to deal with strong field variations in the

medium. This way, we numerically compute p(w, k) and x-1 (w, k) at each w and k.

5.3.2 Relationship to Nonlinear Eigenvalue Problems

Below, we show that solving this effective-medium model closely reproduces the disper-

sion relation. In fact, this method appears to be closely related to the techniques used

for solving general eigenvalue problems, and appears to have a similar computational

cost.

Eqs. (5.2.37)-(5.2.38) can be abstractly written in the form

-= Mb - f,
at

where 4' is a vector including (b, v, r), where p is eliminated via Eq. (5.2.37d). M

is a differential operator, including all of the spatial derivatives and coefficients, and

f is the forcing term from Eq. (5.2.36). In the frequency domain, this becomes a

103



"Helmholtz-like" equation as below.

A,0 = (M + iw)ib = f (5.3.1)

Our effective medium technique corresponds to solving At/ = f for two different

forcing terms F0 and Qo, performing some integrals to find the effective media p in

Eq. (5.2.41) and x-1 in Eq. (5.2.42), in order to solve our scalar root-finding problem

for the nonlocal dispersion equation in Eq. (5.2.43).

In contrast, a direct eigenvalue problem corresponds to solving detA(w, k)=0 for w

or k as described in Section 1.1.3. For frequency-independent materials, this is in fact

a linear eigenvalue problem for w or a quadratic eigenvalue problem for k, which can be

converted into a linear eigenvalue problem of twice the size [41]. Nevertheless, it is still

challenging because the problem is non-Hermitian, and many linear-eigenvalue solvers

will involve repeatedly solving A0 = f [40]. In fact, one popular type of method for

both linear [211] and nonlinear [212, 213, 214] eigenvalue problems involves a very

similar approach of integrating solutions to Af = f around a contour in the complex

A (w or k) plane. This approach has been applied to eigenvalue problems in acoustics

[215]. This is because the scalar quantity g(w, k) =< f, A 1 f > diverges (has a pole)

whenever (w, k) satisfy the exact dispersion relation, and therefore contour-integration

methods can be applied to find these poles within a given contour. And once a

solution w(k) is found, it can be "tracked" as k varies via Newton's method and similar

techniques.

5.3.3 Nonlinear Root-finding Methods: Newton-Raphson Method

and Complex Contour Integration

We solve the nonlinear dispersion equations primarily using the Newton-Raphson

method [2161. Implementation and usage of the Newton's method is straightforward,

but the method requires a good initial guess to converge to a solution. A high-quality

initial guess may be available from physical intuition for certain symple formalisms, but

this is not always the case. When an appropriate initla guess for the Newton-Raphson
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method is not available, we use the complex contour integration to provide the intial

guess [217, 218]. This step is often crucial, especially to find multiple higher-order

resonance modes.

For each mode ka(w) across a frequency range of interst, the dispersion equation

is analytic as a function of w. Once we obtain a good initial guess at the starting

frqeuency wo in the range of interest and find a converged solution at Wo, we can

update the initial guess of the subsequent frequency point to equal the converged

solution from the preceding frequency point. This improves the quality of the initial

guess compared to performing costly complex contour integration at every frequency

point.

5.4 Results and Discussions

We present the results produced by local theory, nonlocal computation, and multiple

scattering (direct Bloch-wave approach) - each describing the propagation of the least

attenuated mode in 2D phononic crystals made of a square lattice of rigid cylinders

embedded in air. We compute the effective macroscopic parameters for the least

attenuated wave based on local and nonlocal theories, and compare the frequency-

dependent phase velocity c, density p, bulk modulus K = x 1 , and impedance Z.

The geometry of the unit cell in Figure 5.1.1 is briefly summarized. The periodicity

is L = 10 pm. The porosity is # = 0.9, and the radius of the cylinders R = L[(1--#)/rr]2

is 1.78 pm. These dimensions have been chosen for proof of concept, rather than for a

particular experimental investigation. The present system is simple, highly symmetric,

and does not exhibit any local resonance, in order to verify the multiscale model

with readily available multiple scattering references. Therefore we expect the local

theory to be valid for long-wavelength (A >> L) frequencies. The nonlocal approach

is expected to be valid over the entire frequency band, without any constraint. The

fluid properties for all computations are indicated in Table 5.4.1 [2191.

The reference values to check our results are computed using the direct Bloch-wave

approach as a reference as summarized in Appendix C. This direct approach provides,
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Table 5.4.1: Fluid properties of

Parameter Units

adiabatic density po kg/M3

temperature To K

sound velocity co m/s

viscosity r kg/ms

sheer modulus ( kg/ms

conductance r. W/mK

adiabatic compressibility Xo 1/Pa

specific heat capacity c, J/kgK

ratio of specific heat y = cp/c, unitless

air used in all computations

Value

1.2

293

343

1.8 x 10-

0.6r7 (ignored in multiple scattering)

2.6 x 10-2

7.1 x 10-6

1005

1.4

in principle, the dispersive Bloch wavenumber without defining effective constitutive

parameters. One of the objectives of the present theoretical analysis is to describe

both viscous and thermal losses precisely from the basic microscale equations, in

effective-medium approaches, as well as in direct Bloch-wave approach. Air produces

meaningful viscous, as well as thermal, losses. The general thermodynamic identity

7 - 1 = f3#To/pocp, shows that the deviation of -y from unity is a second order effect

on the thermal expansion coefficient 30. For a gas, like air, #0 ~ 1/To is nonnegligible

and y is 1.4. Here, because y - 1 is of order one, thermal losses can be comparable to

viscous losses. Indeed, the thickness of the thermal boundary layer 6t = (2K/pocpw) 2

is on the same order as the thickness of viscous boundary layer 6, = (2r7/pow) 2. For

a liquid, like water, 03 is close to zero and -y is very close to 1. In this case, the

vleofteaibtcblmouuX-1 -1values of the adiabatic bulk modulus XO(adiab) and isothermal bulk modulus XO~(isoth)

are very close to each other since X-1diab) =Xoth) Therefore, thermal exchanges

have practically no effects.

The impact of the dissipation on the results can be shown in a more pronounced

way, when the size of the cell is decreased, and thereby the viscous and thermal

losses are enhanced in the medium. We note that for a given value of the normalized

frequency Q = koL/7r = wL/coir, where ko is the wavenumber in air, decreasing the

size of the structure by a factor of a decreases the thickness of boundary layers by
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only y4a. Therefore, at a given normalized frequency Q, a decrease in the size of the

structural unit leads to the increase of the unit-cell space occupied by the boundary

layers; 6/,t/L follows ,. Consequently, decreasing the structural size increases the

viscous and thermal effects at a given value of normalized frequency.

The local theory that does not allow for the spatial dispersion always predicts a

single wave propagating in the medium. For the local theory, the frequency-dependent

local density p(w) and local bulk modulus x1(w) are given by Eqs. (5.2.30) and

(5.2.33). The effective local phase velocity, that is calculated via local dispersion

equation in Eq. (5.2.34), is given by the left equation in Eq. (5.2.35), and the effective

local impedance is achieved by the right equation in Eq. (5.2.35).

Figure 5.4.1 shows the real and imaginary parts of the phase velocity plotted against

the normalized frequency koL/ir. Figure 5.4.2 shows the real and imaginary parts of

the wavenumber plotted against koL/w. The real and imaginary parts of the phase

velocity computed bytr nonlocal computation in Eq. (5.2.44) via Newton's method

converge exactly to the real and imaginary parts of Bloch phase velocity, in Eq.

(C.2.10). The frequency range starts at koL/r = 0.05 corresponding to AO = 40L,

and ends at koL/ir = 2, where the wavelength in air is equal to the periodicity, i.e.,

AO = L. The effective wavelength, according to either nonlocal computation or direct

Bloch-wave approach, is A _ 33L at the starting frequency, and is A ~_ L at the

ending point of the frequency band. The frequency band covers short waves up to

those with wavelengths as small as the periodicity A ~ L. This includes the region

where band gaps would appear in absence of viscothermal losses. The local theory

is valid up to the frequency koL/ir ~ 0.3, where the real part of the wavenumber is

Re(k) ~ 105 [m 1 ] (see Figure 5.4.2).

As shown in Figures 5.4.1 and 5.4.2, nonlocal method accurately computes the

dispersive phase velocity for the entire first and second Brillouin zones. The Brillouin

zones are specified based on the values of the Re(k) obtained at a real frequency w.

The first Brillouin zone is defined as 0 < IRe(k)l < r/L, associated with normalized
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frequency koL/7r between 0 < koL/7r < 1. Regarding the second Brillouin zone 7r/L <

IRe(k)I < 27r/L, its corresponding frequency band lies between 1 < koL/7r < 1.8. The

rapid variations around koL/7r = 1 correspond to the location of the first band gap.

This may be viewed as a Bragg cell resonance, which occurs when the length of the

cell is around A/2. Dissipative losses prevent perfect bandgaps from forming.

In contrast, phase velocities predicted by the local theory cease to be valid above

a certain frequency. As it was mentioned in Sec. 5.2.2, this is because the validity of

the effective-medium parameters generated by the local theory is bounded up to the

frequencies satisfying the condition two conditions. First, the fluid motions remain

incompressible on the microscale in Eq. (5.2.26) when determining the microscopic

velocity pattern. Second, the pressure field remains uniform on the microscale in

Eq. (5.2.27) when determining the excess temperature pattern. So the macroscopic

pressure in the validity domain of the local theory can be simplified as the direct

average of the microscopic pressure in the fluid H = (p) /q = P ~ p.

These characteristics are illustrated in Figure 5.4.3. Figures 5.4.3(a) and 5.4.3(b)

plot the microscopic pressure field normalized by its macroscopic part H, at two

representative frequency points. Figures 5.4.3(c) and 5.4.3(d) plot the divergence of

the microscopic velocity normalized by its macroscopic value at identical representative

frequency points. Figures 5.4.3(a) and 5.4.3(c) are plotted at koL/7r = 0.1, which

is seated in the validity domain of local approach. Figures 5.4.3(b) and 5.4.3(d)

are plotted at koL/7r = 1, which belongs to a region of Bragg scattering and rapid

variations of the microscopic field patterns - where the local description is in error.

Here, the real parts of (V - v)/(V - V) and p/H are plotted in order to depict non-

complex values. Within the validity range of local theory, the microscopic velocity

divergence and pressure are very close to their macroscopic values, as seen from the

uniformity of Figures 5.4.3(a) and 5.4.3(c). On the contrary, when the frequency is in

Bragg's regime, the microscopic velocity divergence and the pressure varies greatly.

This invalidates the assumptions used in the local theory.

The frequency-dependent effective density p[w, ki(w)] = p1 (w), and effective bulk

modulus x 1[w, k, (w)] = x-1 (w), of the corresponding principal normal mode, are
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then calculated by replacing k = k, (w) in the aforementioned excitation terms in Eqs.

(5.2.37b) and (5.2.37c). Subsequently, the nonlocal impedance in (5.2.44) is computed.

Figures 5.4.4(a)-5.4.4(c) show the nonlocal density, bulk modulus, and impedance,

as well as those based on the local theory. The local theory describes correctly the

effective parameters only in the frequency range up to koL/7r ~- 0.3, where AO = 1OL,

and A = 7L, which covers only the lowest one third of the first Brillouin zone.

Figures 5.4.5 and 5.4.6 present the phase velocity for # = 0.7 and # = 0.99,

respectively. We observe good agreement between the nonlocal computation and

multiple scattering method. For the more concentrated medium (0 = 0.7, R = 3.1 Pm),

the discrepancies between local theory and direct Bloch-wave approach predictions

are larger and commence at lower frequency. The trend is the opposite for the

less concentrated medium in Figure 5.4.6. It is well known that more concentrated

phononic crystals exhibit wider band gaps [182]. The scattering phenomena also

become more influential.

Although our analysis concerns a 2D phononic crystal, the present nonlocal ap-

proach and its equations presented therein permits to consider limited cases of three-

dimensional medium, e.g., with spherical inclusions, as long as the propagation is

along an existing principal symmetry axis. We also restricted our study to the prop-

agation along a principal symmetry axis. Here, Poynting-Schoch quantity (pv) in

Eq. (5.2.22) lies in the direction of (v) and H becomes a scalar field. Generalization

to arbitrary directions could be possible, but has not yet been explored. Such a

generalization would extend the definition of the macroscopic fields, action-response

problems, and constitutive operators. Contrary to local theory, where indeed this

generalization can be easily performed by tensor analysis, nonlocal theory requires a

more careful construction because the Fourier components of the constitutive kernels

are k-dependent.
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5.5 Conclusion

We present a multiscale numerical model for dissipative phononic crystals with strong

nonlocality, by combining a nonlocal multiscale homogenization theory [51], a general

FEM-based PDE solver in 2D, and a numerical root-finding method to solve the

nonlinear and nonlocal dispersion equation.

We describe the nonlocal effective medium properties of a two-dimensional dis-

sipative phononic crystal made of periodic arrays of rigid and motionless cylinders

embedded in a viscothermal fluid such as air. To investigate the macroscopic dis-

sipative dynamics of the medium, the nonlocal and local approaches are presented

in a unified formulation in analogy to electromagnetism. Both temporal and spatial

dispersion effects are included in the constitutive relations. We solve the dispersion

equation for the least-attenuated mode in the phononic crystal using the nonlocal

theory and obtain the frequency-dependent effective wavenumbers as eigenvalues of

the medium. We compare our nonlocal scheme with the local theory as well as an

analytical reference method based on multiple scattering (direct Bloch-wave approach).

The multiple scattering method is exact, but is limited to very simple geometries only.

Our nonlocal computation based on FEM accurately predicts the phase velocity

in the entire first and second Brillouin zones, in good agreement with the reference

multiple scattering approach. On the other hand, the local theory approxmimation

is valid only for the lowest one third of the first Brillouin zone. We also discuss and

illustrate the important role of the microscopic distribution of the velocity-divergence

of the fluid as the micro-level origin of the macroscopic spatial dispersion, and present

the resulting effective medium density and compressibility results.

We demonstrate numerically that solving these effective-medium equations closely

reproduces the exact dispersion relations. However, there are several open questions.

First, can one prove this analytically? Or, alternatively, given the exact disper-

sion relation w(k) and eigenfunctions, which can be probably found with a similar

computational cost as discussed in Section 1.1.3, is there a better effective-medium

definition that exactly reproduces w(k)? Most importantly, are any of these nonlo-
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cal homogenized approximations useful beyond reproducing the dispersion relation?

Can they approximately reproduce e.g., scattering coefficients from interfaces in the

medium? This is true of the local homogenization at very long wavelengths, but it

has been a persistent problem with attempts at short-wavelength homogenization

[45, 192, 193, 201].

Looking forward, this work can be extended in several directions. First, it would

be beneficial to test the nonlocal scheme on more generalized geometries and boundary

conditions. Practical applications for acoustic metamaterials would benefit from the

extension of the method to elastic media and 3D structures. It is also highly desirable

to experimentally verify the effective medium parameters to see how useful the values

can be when complicated boundary conditions are introduced.
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Figure 5.4.1: Real and imaginary parts of the phase velocities of the least attenuated

mode for fluid filling fraction # = 0.9, computed using local theory approximation (red

dashed), nonlocal FEM computation (black circles), and multiple scattering reference

(blue). The frequency domain of the validity of the local theory is shown. The Brillouin

zones are determined following the values of the real part of the wavenumber.
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(blue). The frequency domain of the validity of the local theory is shown. The Brillouin

zones are determined following the values of the real part of the wavenumber.
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Figure 5.4.3: Pressure distribution inside the unit cell at (a) long-A (koL/7r = 0.1)
and short-A (koL/7r = 1.0) excitation. Top: normalized velocity divergence at nor-

malized frequency koL/7r (a) = 0.1, and (b) short-wavelength, koL/7r = 1.0. Bottom:
Normalized pressure at (a) long-wavelength, koL/7r = 0.1 and (b) short-wavelength,
koL/7r = 1.0.
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Chapter 6

Summary

This thesis presents hybrid numerical methods for the design and analysis of opti-

mal wavefronts and subwavelength structures in optics and acoustics. We focus on

wave-matter interaction systems that enhance mechanical effects on the nanoscale,

including: holographic optical tweezers in Chapter 3, broadband photonic crystal

solar absorbers in Chapter 4, and nonlocal phononic crystal composite materials in

Chapter 5. We tackle the practical challenges of exploring large numbers of design

parameters for complex wave-engineering systems by offering computer-automated

design frameworks that effectively combine the best computational software developed

in physics, numerical analysis, and inverse design.

In Part I, we present computational inverse design methods for holographic optical

tweezers. Chapter 2 analyzes the interesting physical phenomena of optical torque

enhancement through multipolar plasmonic resonance. We model representative

nanoparticles that scatter, absorb, and radiate light in various directions in space and

analyze how radiation force or torque relates to multipolar plasmon resonance. Our

FDTD numerical simulations suggest that the surface plasmon polariton-enhanced

scattering can lead to a negative angular momentum conversion ratio, and hence

produce an extraordinarily large torque. We show that torque induced by resonant

scattering can contribute to 80% of the total optical torque in gold particles at

multipolar resonance frequencies.

Next, Chapter 3 builds on the observations of Chapter 2 and investigates how
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to maximize such unconventional optical forces or torques by varying the incident

fields, from simple circular polarized plane waves to spatially modulated holographic

illuminations. By combining a compact Bessel basis and a fast boundary element

method, we achieve a 20-fold enhancement in torque per intensity, over a standard

circular-polarized illumination, on a model plasmonic nanoparticle. We numerically

demonstrate a 20-fold enhancement in optical torque per intensity on an example

plasmonic nanoparticle, compared to a circularly polarized planewave. We analyze

the optimization results for 2000 random initial configurations, discuss the tradeoff

between robustness and enhancement, and compare the different effects of multipolar

plasmon resonances on enhancing force or torque.

Previously, the major bottleneck for efficient wavefront design has been the cum-

bersome computation. We overcome this bottleneck with a compact cylindrical Bessel

basis and a fast boundary element method. We are optimistic that such computational

framework for 3D vector fields can be generalized and applied to other interesting

design problems that involve three-dimensional wavefronts or vector fields. Looking

forward, it would be very exciting to develop real-time numerical methods for wavefront

modulation and combine them with experimental setups for holographic imaging and

particle manipulation. Another important future direction is to derive fundamental

upper bounds to wave-induced mechanical effects, such as radiation pressure, radiative

heating, as well as induced thermophoretic and electrophoretic actuation effects.

In Part II, we present mode analysis and numerical parameter-testing strategies

for periodic subwavelength structures in optics and acoustics. Chapter 4 presents

the FDTD numerical analysis for a broadband metallic-dielectric photonic crystal

(MDPhC) solar absorber developed and fabricated in Prof. Sang-Gook Kim's group

at MIT [168]. Through numerical parameter-studies, we discuss the tunability and

spectrum-selectivity of the MDPhC optical response. We analyze that the broadband

absorption is due to a high density of optical cavity modes overlapped with surface

plasmon polariton modes, and highlight the importance of the thin film coating layer

in tuning the hybrid resonances. The MDPhC structure can be designed with various
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alternative metals and dielectrics for various other applications that require a tunable

electromagnetic dispersion. An interesting future direction for computation would be

to combine full-wave optical simulations with deep-subwavelength modeling, such as

density functional theory, for efficient multi-scale modeling of complex structures; i.e.,

composite structures with multiple characteristic length scales due to atomically thin

coatings or nanoparticle inclusions. Another meaningful direction forward would be

to automate structural prototyping through topological shape optimization.

Chapter 5 develops a multiscale numerical model for dissipative phononic crystals

with strong nonlocality, by combining (i) a nonlocal multiscale homogenization theory

developed by Lafarge and Nemati [51], (ii) a general FEM-based PDE solver in 2D, and

(iii) a numerical root-finding method for the nonlocal dispersion equation, based on

Newton-Raphson method and complex contour integration method. We demonstrate

numerically that solving our effective-medium equations closely reproduces the exact

dispersion relations for the least-attenuated mode in the model phononic crystal.

Our nonlocal computation accurately predicts the phase velocity in the entire first

and second Brillouin zones, in good agreement with the reference multiple scattering

approach, while the local theory approxmimation is valid only for the lowest one

third of the first Brillouin zone. We also discuss and illustrate the important role of

the microscopic distribution of the velocity-divergence of the fluid as the micro-level

origin of the macroscopic spatial dispersion, and present the resulting effective medium

density and compressibility results. Several open questions remain to be answered in

the future. In particular, can nonlocal homogenization accurately reproduce not only

the dispersion relation but also the reflection and transmission from the homogenized

medium? It would be extremely useful to verify the nonlocal scheme using more

generalized geometries and boundary conditions, and perform both numerical and

experimental tests. Practical applications for acoustic metamaterials would also benefit

from the extension of the method to elastic media and 3D geometries.

In summary, our work pushes to open the design space for optimal wavefronts

and subwavelength structures by efficiently exploring high-dimensional parameter

spaces via hybrid numerical techniques for PDEs and nonlinear systems. We hope
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our numerical frameworks can be generalized and applied to useful design problems

in wave engineering, to store energy, perform work, or transfer heat - in increasingly

resourceful and sophisticated ways - above and beyond the nanometer scale.
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Appendix A

Material Property and Optical

Extinction of Plasmonic Structures

This chapter is based on: Y. E. Lee, K. H. Fung, D. Jin, and N. X. Fang, "Optical

torque from enhanced scattering by multipolar plasmonic resonance," Nanophotonics,

Vol. 3(6): 343-440 (2014).

A.1 Material Property

The dielectric function of gold used in all our numerical simulations is plotted in

Figure A.1.1. The experimental data from Palik [31] has been smoothly fitted. The

imaginary part of the dielectric function is connected to the absorption of the material.

The optical response of a nanostructure is governed by both the material response

and the geometrical structure. It is important to distinguish between the two, in

order to clearly understand the mechanism behind the resonantly enhanced transfer

of angular optical momentum. According to the results in Chapter 2, the enhanced

optical torque from scattering is predominantly governed by the geometry of the

nanoparticles, whereas that from absorption is nearly unaffected by the shape change.

The absorptive behavior solely reflects the intrinsic response of the material. The

same was found to be true for metallic particles made of other materials, such as silver

and aluminum, for nanoparticles in the size range that supports multipolar plasmonic
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resonance.

A.2 Extinction Spectra

The extinction, scattering, and absorption spectra of the gold nanoparticles are plotted

in Figure A.2.1. This represents the strength of the combined response from the

material, size, and shape of the nanoparticles. The cross sections are calculated using

the total-field scattered-field (TFSF) source in the FDTD simulation, which is a

standard treatment. 128] The polarization of the incident light does not change the

optical response because of the simple particle geometry. Without loss of generality, a

monochromatic, normally incident, linearly polarized plane wave is used as the source

of excitation.

The optical response for the gold nanoparticles with the characteristic length of

d=400nm is dominated by scattering, which means that the number of photons that

are scattered is much greater than the number of photons absorbed. Nevertheless, the

process of scattering has been longtime overlooked as a possible mechanism to create

torque, since there are no means to significantly alter the angular momentum carried

by the scattered field with conventional dielectrics and large particles.

The influence of the material response is prominent in the absorption cross section

(red dotted curve), especially below the wavelength of 500nm. According to the three

absorption cross sections, the amount of light absorbed is nearly the same for all

three particles. While particles with the same material and size with varied shape

show minimal difference in absorption, a variation in material or size creates large

differences in absorption. [541 In other words, absorption is predominantly governed

by the number of the charges on the metallic surface, rather than by a small change

in their distribution.

It is worth highlighting the importance of the particle dimension by comparing the

results from a 400nm particle and a 40nm particle. While both can exhibit plasmonic

resonance, the nature of the localized surface plasmon resonance (LSPR) should be

extremely different for the two cases. The optical response of the 40nm particle is
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Figure A.1.1: The dielectric function of gold. Top: Real part of the dielectric function.
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almost entirely dominated by absorption, [99] unlike the 400nm particle in Figure

A.2.1. While surface plasmon resonance can be excited when there is a surface between

a metal and a dielectric, the characteristics of this can be extremely different depending

on the size of the particles. [220]

In contrast, the scattering cross section (blue curve) shows a clear difference in each

spectrum in Figure A.2.1, especially regarding the emergence of the small resonance

peak near the wavelength of 500nm. The large peak above 900nm represents the

dipole mode, and the small peak corresponds to the negative quadrupole mode for

the triangle in Figure A.2.1(a), and to the negative hexapole mode for the square

in Figure A.2.1(b). The circle in Figure A.2.1(c) does not support any higher-order

multipolar resonance. The shape of the plasmonic particles determines the nature of

scattering. [220] This is especially remarkable when the dimension of the particle is

comparable to the wavelength of light, as the result of this letter indicates.
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Figure A.2.1: The extinction (black), scattering (blue), and absorption (red dotted)

spectra of the three characteristic geometries used in Chapter 2 are plotted as a function

of wavelength. For all cases, the nanoparticle is made of gold; the characteristic lateral

dimension is 400nm; and the thickness is 40nm. The dielectric environment is set as

vacuum, with refractive index n=1.
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Appendix B

Solutions of Vector Wave Equations

in Cylindrical Coordinates

This chapter summarizes well-known equations for mathematically describing laser

beams in cylindrical coordinates, based on [1, 18, 221, 1091.

B. 1 Curvilinear Coordinates

The orthonormal expansions of electromagnetic vector fields rely on the solutions of

the vector wave equation in orthogonal curvilinear coordinates. A coordinate system

composed of intersecting surfaces is defined as a curvilinear coordinate system. Further,

a curvilinear coordinate system is orthogonal if the intersecting surfaces are all at

right angles, and skew if not.

In any curvilinear coordinate system, we can define spatial elements as a function

of (a) coordinate basis u (e.g., #); (b) orthonormal unit vector n'i (e.g., p); and (c)

scale factor hi ensuring that the quantity hjui have the unit of length (e.g., ho = r for

cylindrical coordinates), as summarized in Table B.1.1.

The differential vector is defined as dr = hiduiii= h1dulfi1 + h2 du 2fn2+ h3 du3 ft3

and the scale factor is defined as hi = . The line element is defined as: ds2
19rI
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Cartesian Cylindrical Spherical

nti (kc,ySI2) l 72) , 1, (r, 6,
Ui I(X, y, Z) (r, #, Z) (p, 0, #)
hi (1, 1, 1) (1, r, 1) (1, r, r sin 0)

Table B.1.1: Spatial elements of orthogonal curvilinear coordinates.

dr - dr = h'du?= h'du2 + h2du2 + h2du2. The volume element is defined as:

n

dV =f hidu%

=h1h2h 3 duidu2du3

= 0,y

0 ,1 z

1U 2Y 'U3 y duidu 2du3

4U2z a3z

0(x, y, z)
(OU1, 0u2 , au3 ) dudu2dU3

where the determinant of the Jacobian matrix is used.

Spatial Derivatives in Orthogonal Curvilinear Coordinates

Gradient for a scalar field 4' in orthogonal curvilinear coordinates is expressed as:

1h
V= n,(B.1.1)

hi 0ug

and the Laplacian is:

h2 h3 0

h i au)
+ ( h3h 0

9U2 h2 au2 /
S( h1h2 0

0U3  h3  (U.1.
(B.I.2)

For a vector field F = Ffi + F2 fn2 + F3 fi3 , divergence is defined and express as:

V -F = lim fF =dA
v-+o V

1

hih2h3 Sa (h2h3F1) + a (h3 hlF2) + (hih2F3)I
u 2  1u9 3

(B.1.3)
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The curl is defined as

(V x F) - t d lim (B.1.4)
A-+O A

and expressed as

hi 1f h3 fn2 h3fi3

V x hh2h3 F= ( ( . (B.1.5)

h1 F h2 F2 h3F3

Lastly, the vector Laplacian can be expressed as:

V 2 F = V - (VF) (B.1.6)

=V(V - F) - V x (V x F).

B.2 Vector Wave Solutions for Electromagnetic Wave

Scattering

The vector Helmholtz equation is: [1, 2211

V 2 C + k2 C =0, (B.2.1)

where V 2 C = VV . C - V x V x C. Let the scalar function 0 be a member of a

complete set of solutions of the scalar Helmholtz equation,

V20 + k2 = 0, (B.2.2)

and let a be any constant vector of unit length. Three independent vector solutions of

eq.B.2.1, L, M, N can be constructed from 0 as summarized in Table B.2.1.

An electromagnetic wave propagating in free space always satisfies eq.B.2.1, and

therefore can be always represented as a linear combination of the characteristic vector

functions L, M, N. No coordinate is assumed yet. Conventionally, the electric and
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L M N
construction: L = V M= V x a N = V x M

M= VxN
M=L x a

properties: V x L=0 V-M=O V-N=0
I_-LV-L=V 2 0 =-k 2 0, L-M=O

Table B.2.1: Characteristic vector wavefunctions.

magnetic fields are often expressed only in terms of M, N and not of L.

E = - (anM, + bnN,) (B.2.3)
n

H = - (anNn + bnMn) (B.2.4)

Paraxial approximation of the wave equation

The wave equation ?? can be simplified if the wave is collimated along one direction

(z). Let us specify the time difference and the direction of propagation as the following.

U(x, y, z, t) = u(x, y, z)e-i(kz-wt) (B.2.5)

Paraxial approximation states that &2 u/Oz 2 = 0, which gives the paraxial wave

equation:
&2U 02 U OU

+ 2 = 2ik--. (B.2.6)aX2 ay2 az

B.3 Vector Cylindrical Wave Functions

A beam describes light that propagates in space and time with a confined spatial

distribution in the radial direction. A beam is mathematically represented by the

solution of the vector helmholtz equation in cylindrical coordinates. This section

summarizes the analytical formulas of vector Bessel beams used in Chapter 3.

Let us define 0 (r, t) to be a simple plane wave solution:

0(r, t) = exp(ik -r - iwt). (B.3.1)
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One way to construct L, M, N functions is to setL as a purely longitudinal wave.

Then we obtain L = ik, M = i4k x a, and N = -(k x a) x k.

Beams with a Gaussian Envelope

A simple Gaussian beam can be expressed as:

wo
E(r, z) = Eo exp

w(z) 2 - ikz
W(Z)2

- ik r
2R(z)

where the time dependence of exp[iwt] is omitted.

r, z : radial, axial distance from center axis of the beam

k = 27r/A : wavevector

Eo = IE(0,0)I

w(z) : radius at which field amplitude drops to 1/e of the axial value.

- w(z) = wo 1 0

- ZR = : Rayleigh range, (w( ZR) = Vwo. )

- b = 2ZR A Beam depth of focus

Wo = w(O) : waist size

R(z) = z 1 + (ZA) : radius of curvature of beam's wavefronts

((z) = arctan ( ) : Gouy phase shift

Laguerre-Gaussian Beam

A Laguerre-Gaussian beam is cylindrically symmetric, and is a natural solution of the

paraxial wave equation; written in cylindrical coordinates using Laguerre polynomials.

u(r, 0, z) = CLz)
w(z) ( r w -

w(z) )
III

exp 
2 )

exp tk r2 ei0iP+I+(
2R(z))

(B.3.3)
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* 1 : azimuthal index

" p : radial index, p > 0

* CLG : normalization constantIp

" L' : generalized Laguerre Polynomials

" Recurrence relation: Lk+1(x) = (2k+1-x)Lk(x)-kLk1 (x)
k+1

e Closed form: L,(x) = (n) (-1)'Xkk y k! X

-w : Rayleigh rag,(W( ZR) =V"2W./

e b = 2 ZR = 2irWOA Beam depth of focus

Hermite-Gaussian Beam

Hermite Gaussian beams have a horizontal-vertical divide in the intensity profile, and

is not radially symmetric.

( 1 qO ) 1/22nn!wo q(z)

(z)]n/2

qO q(z)
(B.3.4)

where the complex beam parameter q(z) is defined as q(z) = z + qo = z + ZZR

o For q(z), there is a following relationship:

1 11~ 1
q(z) - R(z) - 7rw2 (z)

* We use the physicists' Hermite polynomial instead of the probabilists' version.

Hn(x) = (-1)"e'2 d e_2 2x -

e Hermite function in ID:

22 

)- (2"n!') e-H(x) = (-1)" (2"n!x/,)7 e 2 x
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Bessel Beam

The amplitude of a Bessel beam is described as the Bessel function of the 1st kind.

Bessel functions are known as cylinder functions or cylindrical harmonics because they

appear in the solution to Laplace's equation in cylindrical coordinates.

o Bessel's D.E.: x291 + xj + (x 2 - a2 )y = 0

0 J_(x) = (-1)"Jn(x).

o Another definition of Bessel function can be obtained from the Bessel's integrals:

Jn(x) = .- f cos(nr - x sin(r)) dTr, or Jn(x) = - f_ ei(nr-x sin(r)) dT.

A Bessel beam is defined using the following parameters.

o Beam aperture angle a = tan-1 (kz/kt)

o Beam propagation direction ft = k/k

o Beam center (xo, Yo, zO)

The scalar generating function for a Bessel beam describes the amplitude distribution

of Bessel beams:

/)m(r, 0, z) = Jm(ktr) exp(imO + ikzz), (B.3.5)

where Jm is the mth-order Bessel function

00 (-1)" 2n+m

Jm(X) = (B.3.6)
n n! F(n + 2 1

with F(z) being the Gamma function. By taking the arbitrary constant vector a is the

unit vector in z direction, we obtain the following vector cylindrical harmonic wave

functions.

Mm = -{(Jm-1 + Jm+1) - ( - Jm+1)S}eikz+m (B.3.7a)
2

Nm = k{ik(Jm- - Jm+1)r~ - kz(Jm-i Jrn+1)q + 2kt Jm2}eikzz+im*k (B.3.7b)
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Appendix C

Explicit Action-response Equations

for Acoustic Nonlocal Theory

This chapter is based on: N. Nemati, Y. E. Lee, D. Lafarge, A. Duclos, and N. X.

Fang, "Nonlocal dynamics of dissipative phononic fluids," Phys. Rev. B., Accepted for

publication on 10 May 2017

C.1 Explicit Action-response Equations

The variables used in this chapter are defined in Chapter (5). To obtain the nonlocal

effective density p(w, k), we solve the following PDEs involving only the amplitude

fields of the form p(w, k, r) in p(t, x) = p(w, k, r)e-iwt+ikx, and so on for the fields v,

b, and -r.

iwb = V.v - ikvx (C.1.1a)

-iwpov = -Vp - ikpex + V 2  2k - 7k +) V(V.v) (C.1.1b)
Ox k 3)

+ik (+ (V.v)e + ik + 17) Vv - + ) k 2 vxex - ikexPo

-iwpocpr = -iw3oTop + IV 2_ + 2ik'xiOr - k2 r (C.1.1c)

-yXop = b+or (C.1.1d)
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The boundary condition is:

V = 0, T = 0 on OV. (C.1.2)

To compute the nonlocal effective bulk modulus x- 1(w, k), we solve

-z

-iw

iwb = V.v + ikvo (C.1.3a)

wpOv = -Vp - ikpe, + 7V 2 v +2k9 - 77k2v + + + n) V(M.)1.3b)

+ik + 17 (V.v)ex + ik + 1 Vv - (+ k2Ve

r a7r
pocpr = -iw3oTop + V2 -r + 2ikK- - k2 r - iwoToPo (C.1.3c)Ob
~YXoP = b+/30T (C.1.3d)

in Vf, subject to

v = 0, r = 0 on OV. (C.1.4)

C.2 Direct Bloch-wave approach

Here, we aim to obtain the phase velocity of the least attenuated Bloch wave prop-

agating in the 2D fluid/solid reference phononic crystal illustrated in Figure 5.1.1,

solving directly the source-free microscopic equations in Eq. (5.2.2)-(5.2.7). Achieving

the Bloch wavenumber kB(w) as eigenvalue of the medium, through direct Bloch-wave

approach, is fundamentally different from the way we obtain this quantity based

on local and nonlocal theories, via Eq. (5.2.34), and Eq. (5.2.43). These theories

define in an appropriate manner, the effective susceptibilities of the media (effective

density, bulk modulus), that concern macroscopic response of a medium to an applied

field. Within these theories, procedures are established to determine the way in

which the effective density and bulk modulus can be obtained based on micro level

'action-response' problems. Once the effective parameters are obtained, the effective
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wavenumbers can be achieved, thus, in an indirect fashion. In contrast, as direct

Bloch-wave approach is not based on a macroscopic theory it cannot by itself define,

independently, the effective susceptibilities of the material.

For the simple fluid/solid geometry illustrated in Figure 5.1.1 a precise and relatively

simple calculation of the possible Bloch wavenumbers kn(W) is feasible by the multiple

scattering approach [222]. We sketch here the generalization of the multiple scattering

approach developed in [223] for a lossless host fluid and the same geometry to the

present case of a viscothermal fluid. The fluid motion corresponding to the source-free

equations in Eq. (5.2.2)-(5.2.7), can be described in terms of three velocity potentials:

the acoustic potential 0', entropic potential #e and vorticity potential ' such that

v= V(a+ e)+V x 0 (C.2.1)

The vorticity potential 4 has just one component, which is directed along the z-axis

and is denoted by 0'. In harmonic regime, three independent Helmholtz equations

[V 2 + (ka) 2] Oa = 0, a = a, e, v (C.2.2)

must be satisfied in VI, where (k')2 , a = a, e, v, are the squared wavenumbers

associated with acoustic, thermal and viscous waves, respectively. The former two

(ka) 2 and (ke) 2 are the opposite-sign of the small and large solutions A = Aa and

A2  Ae of Kirchhoff-Langevin's dispersion equation (see Eq. (14) in [198]), and the

latter is (ky) 2 = iw/v, where v = ri/po is the kinematic viscosity. It is easy to express

the excess temperature in terms of potentials, for instance, by using Eqs. (C.2.1) and

(C.2.2), as well as Eq. (12c) in [198]:

= ( + -_)-l#a + + -)-l#e (C.2.3)
- 1 POCv Aa pocy Ae

The boundary conditions at the solid-fluid interface for the potentials arise from the
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Figure C.2.1: A schematic of wave sscattering by one row infinite number of rigid
cylinders. The incoming and outgoing waves in +x and -x directions are labeled with
arrows. The periodicity of one unit cell is L.

fact that the displacement u and excess temperature fields vanish on aV

u = 0, T = 0 (C.2.4)

These boundary conditions establish the relationship between the potentials, such

that a wave carried by one potential is scattered in the three types of waves through

interacting with the solid cylinders.

We are not concerned with the terms of minor importance related to the intrinsic

bulk fluid attenuation. Thus, as a simplification we set -Aa = (ka) 2 = (w/co)2 , that

is, we neglect the damping of the acoustic mode. After straightforward calculation

using the thermodynamic identity -y - 1 = To/3'co/cp, we obtain: r = (To 3o/cp)iWoa +

(pOCP/#Or.)#e.

Considering one row containing an infinite number of cylinders, as is shown in

Figure C.2.1, we expand the potentials in terms of right and left going plane waves
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cc

# = (A0"eik-'.+ A-e-ik'T)

n=-oo
00

L) = (A~eik.(r--Lex) + A -ikn.(r-Le.,)

n=-oo

The incoming or outgoing of the four types of amplitudes A are illustrated in Figure

C.2.1. The index a refers to the type a, e, or v of potential field. It is clear that

the periodicity of the potential fields with respect to y-coordinates implies that

for each n the y-component of the wavevectors k' must be kg, = 27rn/L, thus

(ka)2 = (k22) 2 + (27rn/L)2 . Another symmetry consideration of the problem is based

on the fact that we are interested only with the solutions leading to a fluid motion

symmetric around each cylinder. This restriction implies that the fields Oa and '

are even functions, and qv an odd function, of y coordinates. Thus, regarding the

terms in the above equations, after combining the up and down components n and

-n, there will appear a y-dependence in the form of cos(27rny/L) for acoustic and

entropic potentials, and in the form of sin(27rny/L) for vorticity potential. To account

explicitly for this symmetry in the notation, we replace the above equations by the

following condensed form of the potentials

00

$"(r) = C (y) (A" eikx + A-nei x)

n=o
00

py(r ) = C (y) ( Ateikg,(x-L) + Leik'(x-L)

n=O

where Cn(y) = cos (27rny/L), a = a, e

sin (27rny/L), a = v

Also, we note that with each n, a, and w, we may associate a characteristic incidence

angle 00, such that k' sin(O') = 27rn/L, and k' cos(9') = k' . For the acoustic type

a = a, this angle is real when the frequency is such that 27rn/(k'L) < 1. It is complex

and equal to 7r/2 - i at higher frequencies, with ( > 0 ensuring that Im(kc,) > 0.

For the entropic and vorticity types, this angle is complex, which is chosen to satisfy
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Im(kc, ) > 0.

The first step in the calculation is to obtain the reflection and transmission

properties of the row of cylinders, or the following scattering matrix, which relates

the outgoing waves to the incoming ones

A- T R A-
R T )(C.2.7)

A+ R T A+

A-a\ A +a

where A-= Ag , A+= A e

A-v Al"

and so on for the vectors A+ and A-. Each of the vectors A+", A+a, AZ", and A-'

contains the whole ensemble of plane wave amplitudes with a = a, e, v, each of which

is indexed by n. The reflection and transmission matrices R and T, respectively, thus

have elements of the type R",O and T'1, where the indexes on the right refer to incoming

waves and those on the left to outgoing waves. The presence of different elements

results from the interactions and transformations of different kinds of potentials into

one another, via boundary conditions in Eq. (C.2.4).

To compute R and T, and thereby construct the scattering matrix, the analysis of

the scattering problem is divided in different elementary parts, that are combined in

the end. At this point, reflection and transmission properties of one row are entirely

determined. Now, we consider an infinite number of rows separated by the distance

L (Figure 5.1.1). We make use of the concept of scattering matrix introduced for an

arbitrary row, and apply the Bloch condition for this case of periodic medium. We

have

A+ A+L A ikBL 0 (C.2-8)

A- A-

where kB denotes the Bloch wavenumber to be determined. The use of scattering-

matrix relation Eq. (C.2.7) and the Bloch condition Eq. (C.2.8) leads to the following
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eigenvalue problem

T R A+ I 0 A+
= eikBL (C.2.9)

0 I AL) (R T (AL

where 0 and I are the zero and identity matrices, respectively.

Since at this stage the reflection and transmission matrices R and T are known,

we are able to solve the above eigenvalue problem numerically. In this manner we get

the complex eigenvalues p = eikBL that determine the possible Bloch wavenumbers kB.

For each eigenvalue y there must be an eigenvalue M- 1 corresponding to the opposite

sign of kB, i.e., the reversed direction of propagation. We restrict the solutions to

forward propagation by imposing IpI < 1 and Im(kB) > 0. Note that the real part of

the wavenumber is defined only modulo 2w/L. Customarily, this indeterminacy issue

is resolved by requiring that -7/L < Re(kB) < r/L, i.e., the wavenumber is chosen to

lie in the first Brillouin zone. With each frequency w there might be associated, in the

first Brillouin zone, different mode solutions kB,n, n = 1, 2, 3, ..., labeled by ascending

order of the values of Im(kB,fl), and characterized by complex phase velocities

cn(w) = (C.2.10)
kB,n(w)

Here, however, we study the least attenuated mode n = 1, propagating in the positive

x direction, and find it convenient to express its wavenumber kB kB,1(w) as a

continuous function of frequency, that becomes zero when the frequency tends to

zero. The wavenumber kB(w) that is defined in this manner, will not always remain

in the first Brillouin zone. As it will be shown in the next section, when the frequency

increases sufficiently, the real part of the wavenumber may be found in the interval

[7r/L, 2ir/L] (or upper), which means that it passes into the second (or higher) Brillouin

zone. The same convention will be applied regarding the selection and presentation of

the wavenumbers in nonlocal computation, where, obviously, the same issues arise.
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Appendix D

List of Acronyms

" d, 2d, 3d: one-, two-, three-dimensional

" ALD: atomic layer deposition

* BEM: boundary element method

" BOBYQA: bound optimization by quadratic approximation

" CAD/CAM: computer-aided design/manufacturing

" CMP: chemical mechanical polishing

" COBYLA: constrained optimization by linear approximation

" CP: circularly polarized, circular polarization

" CVD: chemical vapor deposition

" DMD: digital mirror display

" FDFD: finite-difference frequency domain

" FDTD: finite-difference time domain

" FEM: finite element method

" FIB: focused ion beam

" FIR: far infrared

" FOM: figure of merit

" FTIR: fourier transform infrared
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" IR: infrared

" MAPhC: metallic-air photonic crystal

" MDPhC: metallic-dielectric photonic crystal

" NA: numerical aperture

" NEP: nonlinear eigenvalue problem

" NIR: near infrared

" PDE: partial differential equation

" PW: planewave

" SEM: scanning electron microscopy

" SLM: spatial light modulator

" SPP: surface plasmon polariton

" STPV: solar-thermophotovoltaic

" UV: ultraviolet

" UV-VIS-NIR: ultraviolet-visible-near infrared

" VCWF: vector cylindrical-harmonic wavefunction

" VIS: visible (spectrum)

" VSWF: vector spherical-harmonic wavefunction
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