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Abstract

One of the most fundamental questions in developmental biology and tissue engineering is
how cells organize to form complex structures characterized by tissues, organs and whole
organisms. The coordination of cells to form complex structures is facilitated by their
communication via the surrounding gel (or extracellular matrix) where they live. In addition to
answering questions in development, studying how cells communicate and coordinate over
distance via the extracellular matrix (ECM) can give insight into pathological situations such as
cancer metastasis, and wound healing. Although the exchange of molecular and biochemical
signals is a key mechanism in cell to cell communication, cells can also communicate
biomechanically through the ECM. Modeling mechanical interactions between cells and the ECM
can advance understanding of biomechanical signaling during tissue formation.

Observation of the mechanisms for mechanical interaction between contractile cells within
an extracellular matrix has resulted in detailed models that can describe single-cell migration and
spreading on (and within) various of substrates. By incorporating sub-cellular behaviors (such as
focal adhesion dynamics, cytoskeleton remodeling, actin motor activity and remodeling of the
surrounding fibrous matrix), these models can integrate both the purely mechanical interaction
within the surrounding matrix as well as the internal adaptive response to mechanical cues from
the surrounding matrix. As a result, a vast amount of simulation data can be created from analyzing
single-cell/matrix interactions numerically. In addition, numerous cell types and environmental
conditions may be represented by varying multiple parameters within the model. However,
complex and extensive mechanisms involved in emergent behavior of multiple interacting cells
and surrounding matrix may become intractable due to mathematical and computational
complexity.

This thesis will address how we can exploit simulation data describing the nonlinear
dynamics of single-cell/matrix behavior to create a reduced-order linear state equation in latent
variable space. Furthermore, in order to predict multi-cell emergent behavior, the reduced-order
linear models of single cells are used as components in a comprehensive framework based on
linear superposition of mutually shared matrix dynamics.

The linear latent state equation describing the nonlinear dynamics of a single-cell and
surrounding matrix is created in three steps. First, using Bond Graph Theory, a set of independent
state equations(derived from the bond graph) may be augmented by adding equations using
auxiliary variables necessary to "sufficiently inform" the nonlinear dynamics. This creates an
augmented state space where a linear description of the nonlinear system can be found. Second,
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the augmented (auxiliary and state) variables are simulated for various initial conditions. Using
the resulting simulated data, we perform Principal Component Analysis in order to approximate a
lower dimensional linear manifold within the augmented space. Third, we transform the
augmented state equation to latent space representation by orthogonal projection onto the basis
defined within the lower dimensional linear manifold. While the resultant latent state equation is
linear, complex nonlinearities are embedded in the compact model, leading to precise and global
linearization of nonlinear dynamics.

Using the linear representation of single-cell/matrix dynamics we may perform linear
operations such as projection, to isolate matrix dynamics of individual cells, and superposition, to
combine matrix dynamics of individual cells and approximate a multi-cell matrix environment.
Using these linear operations, we can effectively link single-cell models to predict multi-cell
emergent behaviors. The hypothesis to prove (drawn from experimental evidence) is that multiple
cells can effectively interact by transmitting force to neighboring cells through the shared matrix
environment.

In this thesis, I consider two models describing the nonlinear dynamics of single-cell/ECM
mechanics. The first model is a 1 -D lumped parameter model created to explore the aspects of cell
sensing over an elastic ECM. Although it is possible to reproduce bio-mechanical interactive
behaviors, polarity is not considered within the 1 -Dmodel. The second model is a highly detailed
biophysical distributed parameter system describing cell/ECM mechanics based on previous works
and can accurately reproduce experimental observations.

Thesis Supervisor: H. Harry Asada

Title: Ford Professor Mechanical Engineering
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Introduction

1. Introduction

1.1 Biological Context for the Model

1.1.1 Cell-Cell Mechanical Interaction within an Extracellular Matrix
Environment can drive Emergent Behavior

Biomechanical interaction between cells is a fundamental mechanism during the processes

of development, cancer metastasis, and wound healing. For all these processes, cells must

communicate over distance through the protein gel (extracellular matrix) in which they live[l]-

[6]. It is known that there is a complex interplay between both biochemical and biomechanical

signals to mediate the interaction among cells and matrix components [4], [7], [51], [53]. These

interactions ultimately lead to coordinated movement of cells to produce more complex structures

but are still not completely understood[5].

Remarkably Guo et al. revealed that mechanical force alone transmitted through the

extracellular matrix (ECM), with the attenuation of diffusive factors secreted by cells, can initiate

long-range traction forces to create cell migration and patterning[3]. This evidence suggests that

matrix-mediated mechanical communication is critical for robust cell-cell interactions and pattern

formation. Therefore, examining the mechanical aspect of intercellular communication through

the ECM can give much insight into multi-cell emergent behaviors leading tissue formation and

development [1], [8], [9]. Although the mechanisms driving multi-cell patterning and coordinated

cell organization are still poorly understood, a wide range of likely mechanisms have been

observed and inferred through experiments[3]-[6], [8]-[10]. Based on these inferences,

mathematical and computational models may be created[l], [4], [5], [1l]-[13].

1.1.2 Emergent Changes in ECM through Cooperative Mechanical
Interaction of Cells

To better understand how mechanical cell-cell communication via the ECM can coordinate

the self-organization of cells to form complex structures, some mechanisms to consider are the

intermediate emergent behaviors arising within the matrix itself. The extracellular matrix(ECM)

serves as the medium in which biochemical and molecular signals can be transmitted between cells

to promote collective response[6], [54]. However, in general, these signals are short-lived and
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move over short distances depending on molecular size[5]. Mechanical signals, in the form of

tissue strains and stresses[1], [8], [9] [3], [14], can not only mediate short-range, mechanical cell-

cell communication[6], but also act over long distances and integrate mechanical information over

the whole tissue[3], [10].

Specifically Winer et al. showed that fibroblasts and human mesenchymal stem cells on

fibrin deform the substrate by several microns up to five cell lengths away from their plasma

membrane leading to long distance cell-cell communication [8]. Furthermore, Guo et al. observed

long-range non-dispersed (i.e., confined in the central region connecting two cells) force

transmission within collagen/matrigel mixtures though measurement of increased deformation

velocity between cells. Non-dispersed force transmission is a crucial mechanism for the initiation

and maintenance of long-scale multi-cell linear patterns[3]. Finally, Fernandez et. al showed that

cells (osteoblasts and fibroblasts) embedded inside a 3-Dimensional collagen gel could

spontaneously contract the entire gel volume via collective contractile activity, an important

mechanism behind tissue formation. Furthermore, the authors showed that this behavior is

dependent on the number and spacing (i.e. density) of cells within the gel [10]. These findings

suggest that cell induced emergent mechanical changes within ECM are a critical step in further

emergence leading to tissue formation[3], [6], [10].

This thesis will show that it is possible to predict the aforementioned intermediate emergent

behaviors arising within the matrix using a comprehensive framework that integrates multiple

linearized models describing single-cell/ECM mechanics. The key construct behind the approach

is the superposition of mechanical forces propagated within the ECM by each individual cell

model. Under the correct mathematical formulation we can show that the aforementioned construct

is sufficient to reproduce:

1) Experimentally observed long-range non-dispersed force transmission between cells

through measurement of increased deformation velocity between cells [3].

2) Experimentally observed global contraction of gel volume via collective cell-

contractile activity (as opposed to local deformations of single cell embedded within

the gel)[10].

Through our study of intermediate emergent behaviors arising within the matrix we can

advance our understanding of biomechanical signaling mechanisms during tissue formation and

multi-cellular patterning.
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The cell induced emergent mechanical changes within the ECM described above suggest

that individual cells interact mechanically through integration of the complicated strain fields

propagating within the ECM network[ 10]. Therefore in our model, we consider the superposition

of individual subsystems (describing single cell-ECM interactions) to these elucidate interactive

behaviors. To this end we must construct the individual subsystems in such a way to facilitate

superposition.

1.1.3 Fundamental Components of Single-Cell Matrix Interaction

As mentioned in the previous section, it is desired to model the integration of the

complicated strain fields (induced by individual cells) propagating within the ECM network in

order to reproduce emergent matrix behaviors. Therefore we first model then superpose individual

subsystems (describing single cell-ECM interactions).

Let us consider the basic building block: an individual cell's interactions with the

surrounding matrix environment. Experimental evidence suggests that cellular traction forces

produce local strains in the matrix, which can affect the motility of nearby cells [6] . Thus along

with the ability of the extracellular matrix to transmit stresses, cells can also internally modulate

their state in response to mechanical input[6], [10]. The key concept is that cell-matrix interactions

are fed back to the cell, which influences cell polarity, contractility, stiffness and strength of focal

adhesions [14]-[16]. Specifically, Lo et al., observed experimentally that local change in substrate

tension of 3T3 fibroblasts (on flexible polyacrylamide sheets coated with type I collagen) caused

the cell to change its anterior-posterior polarization, and moved towards the stiffer local

gradient[15].

These findings suggest that, when modeling single-cell/matrix mechanics it is important to

consider the complex interplay between purely mechanical phenomena (resulting from crosstalk

between cell contractility and matrix mechanics) and the cell's internal adaptive response

(resulting from external mechanical cues). Therefore, we propose to model the individual

components (describing single cell interactions) within our more complex modeling framework

by using cell polarity to connect the cell's internal adaptive response to bi-directional cell-matrix

mechanical interaction. Here, cell polarity is defined as asymmetry in cell shape, distinguishing

the anterior-posterior regions of the cell. Given the strain characteristics of the surrounding matrix

(influenced by bi-directional cell/matrix mechanical interactions), the cell modifies its polarity
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Figure 1: Block diagram showing the connection between purely mechanical phenomena (resulting from

crosstalk between cell contractility and matrix mechanics) and the cell's internal adaptive response within the

model.

which in turn changes the protrusion of pseudopodia and lamellipodia. This initiates formation of

new adhesions, and the release of old adhesions on the ECM substrate, and development of

traction[ 15]-[17]. As the ECM substrate, and development of traction[ 15]-[17]. As previously

discussed, the traction forces propagated throughout the surrounding matrix. In order to predict the

more complex collective behavior involved in emergent matrix interactions, our model superposes

the propagation these forces for each individual cell.

1.2 Challenges of Modeling Matrix-Mediated Mechanical
Interactions at the Population Scale

Current computational models that are based on mechanistic understanding at the single-

cell and sub-cellular scale can be used to study interaction between two or three cells with

sufficient detail[11]-[13]. Based on first principles, these computational models can predict

dynamic behaviors of cell-ECM interactions. However, the number of cells capable of being

modeled is limited by mathematical and computational complexity required to describe the sub-

cellular mechanisms involved.

Traditionally, agent based modeling is used to study emergent phenomena because it can

predict the adaptive behavior of individual components as a result of underlying rules [4]-[6], [18].
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However, when simulating large populations, current agent-based models often require abstraction

of details at the single-cell and sub-cellular scale in order to limit mathematical and computational

complexity. In addition, describing the interactions between agents are often determined somewhat

heuristically [18]. In the context of representing mechanical cell-cell communication via the ECM,

Rehnart et al. used a 2-Dimesional hybrid cellular Potts and finite element model to reproduce

observed single cell behavior, pairwise cell interactions and collective cell behavior[6]. However

abstractions were necessary to keep the simulation tractable. These included isotropic and linear

elasticity assumptions of the ECM and exclusion of cell-substrate adhesion from the model. As a

result, nonlinear strain stiffening mechanisms could not be sufficiently modeled and the model

contradicted several important experimental observations[6]. Furthermore in order to increase

efficiency, Rehnart et al. modeled the ECM as a finite element model instead of a more realistic

discrete fibrous network[6]. The fibrous nature of the extracellular matrix (ECM), and the presence

of cross-linked fibers is critical for transmission large scale of forces [1], [9] and therefore a key

component in model cell to cell mechanical interactions. As can be deduced, these simplifications

may put limitations to the translational potential in clinical settings [19].

It is therefore necessary to develop a methodology that can take advantage of the modular

architecture in agent-based models while retaining sufficient mechanistic detail with reduced

complexity. In addition, we would like to develop a method that facilitates the integration of

individual subsystems to represent complex collective behaviors. To this end, we have proposed a

linearized agent-based framework comprised of linearized components based on previously

simulated data obtained from detailed single-cell mechanistic computational models. The

linearized formulation of each agent allows for the superposition of multiple agents to simulate

multi-cell interactions. Using this method, computational expense and time are decreased

significantly and sufficient mechanistic detail is retained in the simulation.

1.3 Prior Work on Representing Large Scale Dynamical Systems
via Low-dimensional Projection and Feature Extraction of

Simulated data

Previous works on model order reduction of nonlinear dynamic systems develop multi-

variate statistical methods that employ order reduction via low-dimensional projection and feature

extraction of simulated data[20]-[25]. Generally, these methods have applications in structural
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dynamics, fluid mechanics, damage detection, and multibody systems. Within these applications,

a very fine scale description is necessary compared to the size of the structure, and the finite

element discretization of the underlying partial differential equations leads to large, potentially

highly nonlinear (therefore requiring a fine discretization in time), numerical problem[23].

Within these previous methods, "snapshots" of the state are generated during preliminary

simulations of the partial differential equations. These "snapshots" are collected in a matrix(X)

and the Singular Value Decomposition of X is computed. Assuming that the first k singular values

are "large" with respect to the succeeding ones, X can be approximated by means of orthogonal

projection of original states onto the k the left-singular vectors of X [22]. Using the results it is

possible to re-write and approximate of the state and output equations of the original system within

a lower dimensional space.

However, contrary to the proposed approach described in this thesis, the resulting reduced-

order equations described in these works remain nonlinear and therefore would not work for our

proposed linear superposition approach. This signifies that the reduced-order computation is still

dependent on the original system order and nonlinearities contained within the original system.

Furthermore, in previous works the original mechanistic system used to simulate data is treated as

a "black box" and consequently the selected simulated variables lack physical meaning and are

insufficient to describe dynamics if the dynamics lie within a nonlinear manifold [20], [22].

Although the reduced order equations may be linearized using Taylor series expansion, the

resulting linearization produces a less accurate model that the proposed approach[26].

1.4 Contributions of this Thesis

The main objective of this thesis is predict emergent behaviors involving matrix-mediated

mechanical interaction between populations of cells on an elastic matrix substrate. From the above

discussion, it is clear that the proposed work can give insight not only to the study and control on

interacting cells but also the general approach may be applied to systems of interacting nonlinear

agents, which would otherwise be prohibitively complex to compute.

In the following chapters we will describe the multiphase approach to prediction of multi-

cell systems:
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Phase 1: Creation of Linear Latent State Equation Describing the Single-cell/matrix

dynamics by:

a. Use of Bond Graph theory to augment the original independent state equations by adding

auxiliary variables necessary to "sufficiently inform[26]" the nonlinear dynamics.

b. Creation of dataset through simulation of auxiliary and state variables for various initial

conditions and application of Principal Component Analysis in order to approximate a

lower dimensional linear manifold within the augmented space

c. Transformation of the augmented state equation to a latent space representation by

orthogonal projection onto the basis defined within the lower dimensional linear manifold

Phase II: Linking single-cell models to predict multi-cell emergent behavior by:

a. Use of linear projection, to isolate matrix dynamics of individual cells in latent space

b. Use of linear superposition to combine matrix dynamics of individual cells and

approximate a multi-cell environment
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Phase I:

Nonlinear Biophysical System Bond Graph
of Single-cell Dynamics Representation

Recast nonlinear equation in higher
dimensional state space using
auxiliary variables

Augmented Representation
of Nonlinear System

Simulation of State and
Auxiliary Variables

Data Matrix Containing
Simulated Variables

Principal Component
Analysis

Basis of Eigenvectors Derived from
Data Covariance Matrix

Orthogonal Projection of State and
Auxiliary Variables onto Basis of
Eigenvectors

Reduced-Order Linear
Representation of Biophysical System

Figure 2: The approach consists of a two-phase system of first creating a reduced order linear model of a

single cell. We first augment the system to a higher dimensional space and then use latent analysis to

transform to the system to a linear latent space where we can truncate to lower order.
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Phase 11:

Reduced-Order Linear Representation
of Cell 1

isolation of ECM variables
through linear projection

Reduced-Order Linear Representation
... ''of Cell K

Isolation of ECM variables
through linear projection

Latent Space Representation + Latent Space Representation
of Cell 1 ECM Dynamics of Cell K ECM Dynamics

Superposition of Individual cell
ECM dynamics

Estimate of Multi-Cell ECM
Dynamics

Multi-Cell ECM dynamics feed back into individual cell models

Figure 3: The approach consists of a two-phase system of second of which is linking single-cell models to

predict multi-cell emergent behavior. First we isolate the matrix dynamics of each model representing single

cell matrix mechanics. Then we superpose the ECM dynamics in order to create a estimate of the multi-

cellular matrix environment.
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In Chapter 2, the general methodology and underlying assumptions are discussed. Chapter

3 applies the approach to a 1-Dimensional lumped parameter case study capable of reproducing

bio-mechanical interactive behaviors. In Chapter 4, applies the approach to a highly detailed

biophysical distributed parameter system describing cell/ECM mechanics[13]. In chapters 2 and

3, the general approach is modified or extended as needed for each model. Chapter 5 is a discussion

and preliminary analysis for extension of the approach to a fully 3-D biophysical distributed

parameter system in which the cell is embedded within a 3-D fibrous matrix.
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2. Methodology, Theory and Computation

2.1 Definition of Nonlinear System using Bond Graph Theory

2.1.1 Problem Statement

Consider nonlinear lumped or distributed (finite mode) parameter dynamical system

described by state equation:

dk g(x)ec RPX (1)
dt

Where x represents the n xI state variable vector. We wish to use Bond Graphs to:

1. Graphically represent the bi-directional exchange of energy through the dynamical system

2. Identify energy storage and dissipation elements and how they connect

In addition we wish to use Bond Graph Theory to show the following:

1. That the equations describing the class of systems capable of being characterized by bond

graphs may be written as a linear combination of nonlinear terms. These nonlinear terms

represent effort and flow within the system.

2. That through augmentation of the system to include nonlinear effort and flow variable

dynamics, we can effectively compensate for the nonlinear dynamics within the system

2.1.2 Bond Graph Representation

Bond graphs are used to describe lumped/distributed parameter multi-energy domain

systems ranging from mechanical, electrical and hydraulic but can also seamlessly incorporate

chemical, thermodynamic or biophysical domains within the same representation[27]-[29]. Bond

graphs can even be used to describe biochemical networks[30], [31]. Because of these

characteristics, it is the natural choice to represent the aforementioned biophysical system

describing cell/ECM mechanics.
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element 1+1 element no detani +1 element no+ j
eO e

fe0+ 11 4
e f

element 0 element 1 element n +n

Figure 4: General Diagram of Bond Graph
Consider the bond graph shown in Fig. 4. Modeling elements (e.g. masses, springs, and

dampers) representing energy storage and dissipation in the system are connected through lines,

termed power bonds.

Two variables (e,f) (termed power variables) are associated with each bond, the product

of which represents power flowing through the bond. In the mechanical domain, variables (e,f)

represent the force (or effort) and velocity (or flow) respectively. The arrow of each bond

represents assumed direction of positive energy flow.

One key feature of the bond is causality, which is represented by a vertical bar placed on

one end of the bond. Causality explains which of the power variables are dependent and which are

independent. Furthermore, causality analysis allows us to find causal relationships among all the

elements and obtain a computable procedure for determining state transitions.

The l's and 0's in the Bond Graph (termed junctions) represents Kirchhoff's Voltage Law

(sum of efforts equals zero), and to Kirchhoff's Current Law (sum of flows equals zero)

respectively. Using the generalized graph in figure 4 we may write the equations represented by

the junctions as:

ln e +nn

= 1 e1 =0. (2)

e=eu (j=2,...,n4) G=f (j=n +,...,n n)

Similarly we may write equations for the elements characterized by constitutive laws that

are functions of the original state variables (x):

23



Methodology, Theory and Computation

e, = j (x)
f1 =1, (x)

(3)

2.1.3 Deriving State Equations using Bond Graphs

The first step to derive the state equations, is to list all of the governing equations for the

bond graph. The table below, summarizes the relationship between bonds and their governing

equations:

Bond w/ Governing equation

Causality

. - element1  , (t) = (Ief, (e (x)) = fI' (x(t))Modeling

Element
Element ej (t) = Oejf (x))= 1ej (x(t))

no
0 Junction nof=0

->I0+<-I i=1

t e = ej (j= 2,...,no)

(n total # ofbonds surrounding 0 junction)

1 Junction lei =0
j =1

I e, = ej (j= 2,...,n,)

(n, total # ofbonds surrounding 1 junction)

Table 1: Summary of relationship between bonds and their governing equations
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The governing equations for the general graph given in figure 4 are the following:

0 junction equations:

for j=1,..., no
no

1. 14 = 0
j=1

2. e = e,

1 junction equations

for j =no +1,..., n, +n, dx
n 0+n I= -

3. e =0 dt
j=n0 +1

4. f, = f
constitutive equations from elements

for j=1,..., no + n,

ej= ej (x)

f1 = 1 1 (x) (4)

Here we use causality to isolate the dependent effort/flow variable within each junction

equation. If we substitute the constitutive equations (describing the effort and flow variables) into

the junction equations we can algebraically manipulate the equations to regain equation(l).

Consequently, the equations in (4) will provide the appropriate state equations governing

the dynamics of the original system. It is important to note that manipulations depends on the

causality and nature of modeling elements (i.e. dissipative or energy storage) of the system. An

example of these manipulations can be seen when the approach is applied to the 3-Deimstional

system in Chapter 4.

Expanding equation (1) to reveal each individual state variable xi 1,...,n) in state

variable vector x c R " :
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dx

dt 14IWi

dx,. = wi,............Wi, A (5

dt

dx L

'7,

containing effort and flow variables represented by their constitutive laws. Essentially we have

written the rate of change of each state variable as a linear combination of the effort and flow

variables represented by their constitutive laws (tt,1 (x), D,j (x)) . This follows from the junction

equations where the effort and flow variables are linearly superposed. It should be noted that r, is

only a subset of the constitutive equations since some were used during algebraic manipulation to

isolate the state variables.

Equation (5) reveals a linear representation of the system with respect to auxiliary variable

vector r . Furthermore we augment the system by explicitly writing the dynamics of rias:

dx ~q?

dt W(6)

d= H(x,rq)
dt

Since the auxiliary variables represent nonlinear output of the constitutive laws, there

dynamics comprise a different nonlinear structure than that of the original state variable dynamics.

Therefore, adding the dynamics to the original state equations provides a richer and more complete

description of the nonlinear system. Here we do not explicitly differentiate ri but only

acknowledge that it will be some nonlinear function H (x, q7) of the original state and the auxiliary

variables. Equation (6) shows that by augmenting the system we may decouple the dynamics into
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linear and nonlinear parts. Writing the equations in this way we explicitly describe and account for

the nonlinear dynamics within the system.

2.2 Linear Reduced Order Latent Representation using Simulated
Data

2.2.lProblem Statement

Consider the augmented system given by equation(6). We wish to create a reduced order

representation of the augmented system in latent variable space denoted by equation:

dz(t) _ Az e IR "x
dt

(7)

Here, m<<n . In order to create the reduced-order latent variable model, we must find

the appropriate transformation matrix V E R(n+n,)xm

lower dimensional linear manifold. V may be

that will allow the dynamics to evolve on a

derived from the principal components (or

eigenvectors) of data covariance matrix:

C = IXTX
N -tf

(8)

Where X is a collection of simulated time samples of variables .A and r for t =1,...,t1 and

N different initial conditions.

2.2.2 Basis of Eigenvectors Derived from Data Covariance Matrix

Let us define an augmented variable vector as:

(9)i= [x]=c R"")x

As previously mentioned we create a data matrix X from simulated data from variables X

and 7 :
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X t' T 7 t')T

X~ ~ (ti ) )T

X (tf, ) 7 (tf, N

X= 1 . R n-nz x(n+n) (10)

1 ,N 7 m ,N

X t,N 1t,N

X eRf " )T 
fT(

We perform Eigen-decomposition on the covariance matrix:

CX = X 'X~VAVT Rf" (""")x~

V = VV7I = RC"" '" -,, x > Vx R n"x'; V, c R" '", (1

m -# of eigenvectors after truncation

Where V is a matrix consisting of m eigenvectors corresponding to the m largest

eigenvalues in eigenvalue matrix A. The number of eigenvectors kept (m) can either be

determined through analysis of variance, cross-validation or examination of unexplained output

variance[32]. In the case of cell/matrix model being studied we can also determine m based on the

magnitude of certain dynamics within the approximated system.

Through orthogonal projection, we may derive the latent space representation of the

augmented state variable vector .:

z(t) V T Vx(t)+V T 77(t) e( RM" (12)

i(t)

We can also approximate the original augmented variable vector (and consequently X

and 77 ) using latent variable (z ):
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~~ Vz() -> X(0)~ V!z(t); W (t) Vt Z(1 (13)

i(t)

2.2.3 Calculation of Linear State Equation in Reduced-Order Latent
Variable Space

Differentiating(6):

dz (t)=V A + dt (14)
dt Xdt dt

Substituting equation (5) into equation(14):

dz v T (W v +V , dq (15)
dt dt

We now substitute the approximate of rfound using latent variable i, given by equation(12)

dz '(W Vz)+ V T d()
dt di' (16)

Since the dynamics of 7 is nonlinear (as shown in equation(6)) we wish to approximate

d t using latent variable z .This is in order to linearize the nonlinear dynamics with respect to the
dt

latent representation of the state and auxiliary variables. It is important to note that if we attempted

to linearize d q with respect to dx using a fixed Jacobian, the resulting structure would be
dt dt

collinear and add no new information to the system. Furthermore, if auxiliary variables consisted

of linear constitutive laws, the equations would also be collinear and therefore redundant.

Consequently, it is necessary to include only nonlinear constitutive laws within the auxiliary

variables and that furthermore linearize with respect to the state and auxiliary variables as opposed

to linearizing the Jacobian. We therefore apply principal component regression (or PCR). PCR

allows for the regression of a specified output on the latent variables z E R' . Using ordinary

least squares we can obtain a vector of estimated regression coefficients (equal to the number of

latent variables). Let the output data matrix be defined as:

29



Methodology, Theory and Computation

Y

(tot, )T

Q(ti'

(, N )T

(tl T

Q(tf,N

y 2 '-- Yn, E RNtfxn,
(17)

where =

dt

And the latent variable matrix be defined as:

Z (to, )T

Z (, )T

Z (t, )T

Z (tON

z( 'N

)T

) T

Z tf,N)"

e RN-Ifxm

Here we have estimated d! numerically from simulated time samples of
dt

backward Euler approximation:

, 7(t)-7(t-At)
At

ri using the

(19)
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For thejth column in data matrix Y we consider each sample individually:

-> j-(t) = Ky z(t) (t = toI,, t, I,..., tflN tI ., , f,N )(20)

Where K. e R"" is the vector of regression coefficients. The ordinary least squares

estimate of K1 is found by:

K" = arg min
t =1O

(y1 (t) - Kj Z(t))2 (21)

Finally we write:

K T (22)
K ' Emxn, 1

(23)d (t)=K-z(t)dt 7

Substituting equation (23) into (16) we obtain:

31
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y1 (t11 )

y1 (t1 1 )

yj (tO,N

y) (ti,N

j ( N)T

Y ~ ZK

K=[K

Using these results we approximate d 17 as:
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z ~') V WV+ TK) z~ (24)
A

Examining (24) we have effectively represented the augmented system in(6) in latent

variable space.

2.3 Linking Individual Reduced Order Models through the
Dynamics of Shared Variables

2.3.lProblem Statement

Let us now consider that the previously described dynamical system is a component of a

larger (more complex) nonlinear system where multiple components are connected through a

shared field (0 ). Each individual component influences the dynamics of the field state. In the

context of biophysical system being studied, each component represents the dynamics of single-

cell/ECM interaction. In the larger more complex system, multiple cells interact through as shared

ECM environment. Therefore the field represents the ECM.

We wish to predict the behavior of the larger more complex nonlinear system by linking

the linear latent space models of the individual components through the field. The linearity of the

dynamics of individual components facilitates the integration to from a more complex system since

we may employ linear systems analysis. This will be accomplished by obtaining an estimate the

nonlinear dynamics of the shared (multi-component) field based on influence of each individual

component.

We have made several assumptions:

1. Each component has the same A matrix (in equation(24)) but starts at different

initial conditions. In the context of the biophysical model being studied, this means that

each cell (component) expresses the same phenotype. Under this assumption, the kith

component may be defined by:

A

z k (O)=Zko (25)
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cmpeme t k k

0 t 

m po ut K

Larger (more complex) Nonlinear System Linear Superposition of the Dynamic Influence of Each
Individual Component on the Field

Figure 5: Conceptual diagram showing how the more complex nonlinear system will be estimated using

superposition of the influence of multiple linear components through a shared field.

Where we have used the linear latent space model to describe the dynamics of the

component.

2. Components are not directly connected, and can only influence each other through the

shared field. This means that the field is the only means of energy exchange between

components. In the context of the biophysical model being studied we further restrict to

purely mechanical energy exchange between components and the shared ECM. Although

multiple energy domains exist for the system, examining the mechanical aspect could be

sufficient to describe critical behaviors[3].

3. The change in field state by each individual component it sufficiently small between time

points. In the context of biophysical system being studied this means that the strain of the

cell on the ECM is below 5%. (i.e. large deformations do not occur quickly between time

points.)

Under these assumptions, we may find an estimate of the shared (multi-component) field

through linear superposition of the dynamic influence of each individual component on the field.

Although, the estimation may not be exact, it will be valid if it can reproduce the specified

behaviors and interactions characterized in the complex nonlinear system.

Let us rearrange the augmented variables defined in i (equation(26)) into two distinct

groups that represent field variables (# ) and component variables (a). For the kth component:

ik X _l aon , Lk] R(n+n?)x1 (26)

11

33



Methodology, Theory and Computation

Here, a' = n" is the group of state and auxiliary variables corresponding to component k

. In the case of the biophysical model being studied, this corresponds to the position and velocities

of the cell and the internal elastic forces and damping forces of the cell. 4k C R-- is the group of

state and auxiliary variables corresponding to the field with respect to an isolated component/field

system. In the case of the biophysical model being studied, this corresponds to the deformations,

traction forces and viscoelastic forces of the ECM considering interaction with a single, isolated

cell.

2.3.2 Isolation of Shared Variables Dynamics

The first step in linking the linear latent space models of the individual components is to

isolate the field variables (0) in latent space. First we isolate these variables in the original

(augmented) space:

xC + = n n + a(27)

Using the previously derived orthogonal projection we may write the latent space

representation as a sum of the latent representations of the component and field separately:

Zk =VT a vT a k VT VT[kxna 0 a 2jT a

Ok 0 $"_ _0 0 0 In-o Ok
I - 1 0 (8

VT  """ " ] Vz (t) +V Vz (t) (28)
0 0 0 'n oV t

kZ. 1k

Were we have substituted for the approximate the original augmented variable vector

defined in equation(13). We define PI and (I--P) as projection matrices to isolate the field

components in latent space:
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zk =z z"
zO= z z

Za (I-1 )Zk

0

P =vT 0

2.3.3 Superposition of Shared Variables of Shared Variable Dynamics

Using the above definition, we may link the field dynamics of each individual component

in the following manner:

(I - P )?-k
Z ~ 0~lF4 Z

Z," = p 4k

kemergen k + . =(Ijp)k + +

t~k

~emergent

() U)

(31)

In the above equations we have modified dynamics of component k by essentially replacing

the individual influence of the field ( ,k) by the estimate of the shared field defined by:

K
emergent _~- .i?
0 (32)

Note that the model of the individual component (equation(25)) must be sufficiently trained

to be robust to the emergent dynamics.

Substituting equation (25) into equation (31) we may write:

kem'ergan ~ Az" + I P (Az')
t~k

(33)

In matrix form (for components k 1 -K) we may write:

35

(29)

0
V

0]
SI non

(32)
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S1,emergant A
2,emergant PA

K,emergant P A

PA
A

PA

*P A z'
0

Z2

. . .Z

By definition:

1 ,emergant

Z2,emergant

K ,emergant

4P
L

P ... P Z0- 0
I ... p 2

P ... K

Substituting equation (35) into equation(34):

. ,emergant

2,emergant

Kemergant P A

A . . .. POA I

A .. POA ILP
PO ~ .. ~O z ,emergant

S .. 1 2,emergant

P K

P .. I K ,emergant

#- pseudo inverse

Equation (36) represents the K coupled dynamic equations that can be used to predict the

behaviors of the larger (more complex) nonlinear system.
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3. Application of Approach to 1-Dimensional Lumped
Parameter Cell-Matrix Mode

3.1 Definition of 1-D Cell Motility Model on a 1-D Elastic Substrate

For proof of concept, we begin with a 1 -D simple lumped parameter model of interacting

cell/ECM behavior. Although quite simple, it is still possible to reproduce bio-mechanical interactive

behaviors. The general structure is modified from the 1 -D cell motility model given in [33] . The

cell is treated as a viscoelastic deformable body [34]interacting with a 1 -D deformable ECM[35].

The cell body consists of two masses (which represent the leading edge and trailing edge of the cell)

connected through a spring and damper (which represents the viscoelastic nature of the cell). The

ECM is made up of springs connected through multiple nodes.

The cell can attach to the ECM at the leading and trailing edge through the multiple nodes

present within the ECM. To move forward, the current cell attachments must be broken and the

cell can "grab" and attach to the closest ECM nodes. Depending on the node attachments the ECM

stiffness parameters of the sections behind the trailing edge, between the leading and trailing edges,

and in front of the leading edge will change. These parameters are nonlinear functions that change

depending on the position of the ECM node attachments. Consequently the equilibrium position of

the leading and trailing edge are adjusted to compensate for the changing ECM stiffness's.

Furthermore there is a constant stiffness ( QG6 ) associated with the ECM node attachments of

the leading and trailing edges.
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A L
Leading Edge

Trailin nil - f,.,
EdeLa Elastic Substrate

XECM IXECM 2

Figure 6: A) overview of the mechanical structure of 1 -D lumped parameter cell migration model B) Bond

graph corresponding to the 1-D lumped parameter system. Bond graph representing cell dynamics (green

junctions) is linked to the bond graph representation

3.2 Bond Graph Representation

Consider the bond graph shown in Fig. 6b which describes the 1 -D lumped parameter

cell/ECM dynamics. The elements (masses, springs, and dampers) representing the system are

connected through lines, termed power bonds. The two variables are associated with each bond,

the product of which represents power flowing through the bond. In the mechanical domain,

variables represent the force and velocity respectively. The l's and 0's describe two types of

junctions. The former represents the mechanical domain equivalent to Kirchhoff's Voltage Law,

while the latter represents the mechanical domain equivalent to Kirchhoff's Current Law.

The bond graph representing cell dynamics (green junctions) is linked to the bond graph

representing ECM dynamics (grey junctions) through the elastic elements representing cell to ECM

node attachments (red elements). Spring elements connecting adjacent nodes within the ECM (blue

elements) are functions of the number of nodes within the sections behind the trailing edge , between

the leading and trailing edges , and in front of the leading edge and are also functions of the
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corresponding stiffness parameters within each section.

given by the vector:

The state variables within the system are

X =Xlead Xtrail 9 Plead 9 Ptrail 9 XECM I XECM 2 9 XAECM - cell 9 n 9 n2 99*** nN ECM G

AECM XECM1 - XECM2 (37)
XAcell = Xlead - Xtrail

Where I'' Xp XBCM l XRM , XMM' X'' l' are positions corresponding to the leading edge,

trailing edge and corresponding ECM node attachments as described in Fig. 1. Variables Pied' and

P"raii represent the momentum of the leading and trailing edge and x,, x , ..., x.NECM
(N,,, = total #

of nodes within ECM) represent the position of each node within the ECM.

3.3 Deriving State Equations using Bond Graphs

Using the bond graph we may write the dynamic equations of the system as a combination

of the state variables(x's) and the effort and flow variables(e's,f's) associated with the (linear

and nonlinear) constitutive laws of the elements described within the bond graph.

dx,,

dt Ami

dp, =e - e -
dt cell AECM ECM I Btrail

dx lead flea
dt

dp kd eECM2 + ePJIECM - e e

dt

fECMI (
fAECM

1-
N1

N
2

+ fECM

fECM2 -(1 _ N 2 )N

N ECM = N, +N 2 + N3

dxECM 
I 

fECM 
I

dt

dxECM 2
= ECM 2

dt

dx ACdECM 
ECM 2 ECM Idt

dt -4flead fa-ail

for i = , N, I

for i [N,,... N +N 21

for i [N, + N2,. N, + 2
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Equation (38) describes the state variable dynamics as a linear combination of effort and

flow variables. Rewriting the system in matrix form:

dx w .* (39)
dt

Where W, e Rnxnl is a constant weight matrix and ri represents the auxiliary variables are

defined by:

q = firail 9 flead 9ecel 9 eBirai, fEcMl 9 fECM2

eECM19eECM2 9e M9419fn2 . NECM IE Rnyx (40)

It has been shown that augmenting the state variables with auxiliary variables (1) derived

from the system dynamics is necessary for depicting the nonlinear system dynamics behavior as a

whole[26] . The augmented state vector may be defined as:

x= )E R (41)

The augmented variable vector is termed sufficiently informing in that it in can completely

reproduce the nonlinear dynamics of the system. Here we propose that an approximate linear

variation can be found within the augmented data.

3.4 Linear Reduced Order Latent Representation using Simulated
Data

3.4.1 Modifications from section 2.2

Although the variables described in the augmented vector given by (41) are sufficient to

inform the dynamics of isolated single-cell/ECM, additional variables are added for the multi-cell

ECM case. This is in order to track the cell's leading and trailing edge location with respect to it's

ECM. Furthermore we must ensure that the ECM variables are consistent among the individual

models. Consequently, we record the index of the ECM node currently attached to the leading and

trailing cell edges ( iled trail ). Specifying these indices will further create an address for the cell

on the ECM. The original ECM state variables X&-M,Xm2 in (37) (which represent the positions of

the attached ECM nodes) are defined as follows:
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XECM I = Xnodei ,1d

IECMI = Xnodei,ad if node iead is attached to leading edge (i,,,,ed i,,,,)
XECM X"O"I-d(42)

fECM I Fodei J
XECM2 = 1
fECM2 = .t, if node itraj, is attached to leading edge (i,,,,, # 'ead)

fECM 2 =

We also include the forces e, (i = 1,..., NECM) of all the ECM the nodes comprising the

ECM. We redefine auxiliary variables to include the additional aforementioned variables.

ng=( [fn,n' 42 nEG 2 nEC,

S= [ ECM19 ECM2 9 ECM 19ECM2 9 eAECM I TeRx1 (43)

SF d (ilead) d (itrai n a

dt ' dt Jrail 'Lead eceji ,efitraii 0 R

Note that IL contains only variables associated with the cell dynamics and N contains

only variables associated with the ECM. Following from (42)we may write a relationship between

and 4O:

z4 = M (44)

Where lMTis a n4 x n, binary membership matrix. If the leading edge of the cell is attached

the ECM node the elements at the 1st and 3rd and 5th rows and column are 1. If the trailing edge

of the cell is attached the ECM node the elements at the 2nd and 4th, rows and column are 1 and

5ht row are -1. All other elements representing unattached ECM nodes are 0.

Augmenting equation (3) with the additional variables we may write:

1lead

trail - -

d =I W, ZI EC XflEC (45)

dt e., L
e NECM _

dx*
di
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The augmented state vector may be re-defined as:

x* =+ n+n+ +

nx* = 2+nx +n ECM;* 72+nR + nECM

Since all the variables contained in equation (41) are included in the new set of variables

the new set is still sufficient to describe the single-cell/ECM behavior. We conduct simulations of

the nonlinear switching model of the single-cell/ECM dynamics described using a diverse set of

initial conditions. With these simulations, a large number of aforementioned variables equation (46)

are sampled. A data matrix is formed by arranging these samples in the following manner:

x* (t 1 )T

x* (tfl)T

x* (tIN)T

-x* (tf,N )T

?7* (t )T

17* (t1, )T

S(tf,N 
T

(47)

We use the covariance of the data matrix in (47) to transform the variables specified in (46)

into latent space as previously outlined in section 2.2.2. and 2.2.3 to obtain equation.

3.4.2 Model Evaluation and Analysis

As can be seen in figure 7, there is good agreement between the trajectories of the real cell

compared to the reduced order latent variable model. The total mean squared error MSE = .02.
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Time

Original simulation Latent Variable Model
(7WV)

Figure 7: Trajectories of the real cell compared to the reduced order latent variable model
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3.5 Linking Individual Reduced Order Models through the
Dynamics of Shared Variables

3.5.1Modifications from section 2.3

First, we isolate variables in latent space:

na

i(t)=vT , =V =vTW
A1

=VT W

W t
W=

L On, n,

1a

0

0

0

-0

Ilxf 1 (n.+nvl*)x2nm.

I Ix,,

Further simplification gives:

i(t)= V T WM "

1a

4a

i+

i,_ -

+

+V T W

0

0+
0

0

+VTW

0

0

0

0

i

(48)

VTW

0

M0110
0

0

0

+

0

0

0

0

0

V T WC (49)
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Where we substitute equation(44) and Ma

n xn % n xn On xn

M 0 0
M = rI, 'b,~li

" 0 0 0
On% n 

xn nO Onxn,

On xn % n xn On xn

n0 
0 nx 0

n xn

is defined as:

On%,4 xn14  On%, xn Z

On xfl n 

0
fl4 X

On 170 xfl1 O 10 xfl4

In% xn 14  On% xn Z
n xn On xn

70 ' 0 '1 X

0On ZOxn 7

On xn

0 n xn
04 170 n1

e R2 11*x2 q* (50)

Furthermore c E 2n,. is defined as:

0 O% 0 0 M

0 n 0x n n-0 M 0

C 0 n,,xn%0q0 ZO10 x 7

0
n xn 0

n xn n xn

O n O n,0 fi10  ZO 0 n x fl1

0 0  
xn 0

n,7 xn,7

Let us define the variables related to the ECM,

0

0

z VT W 1
i = W 00

0

iqo

0n% xflq

O10 114On% xnig

0 n xn

On xn

4 a

cell and

0n xn

O10 xnX

On4 xn
Onl, xn,,
in rn

4 4

interface

0n 
xn

On.U xn 170

M

as:

e R 2 *x2n * (51)

(52)
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ia =V T W

zV
T W

0

0
0
.0

0

0

YO

X4

=VT M

V T WC

0
0
1qO
0
0

X+110

fla
i'+6

(W *) V i
=VV11.

=VTWC(VTW) #

(54)

Then substituting equation(49):

i(t)= VTW VI VT) Z4+Z (55)

Finally we may write:

i(t) = V aV) Az(t)+(VWC(VW) +I i (56)

Equation (56) provides the state equations where the latent variables associated with ECM

dynamics as an additive term.

Using the modified framework in equation we propose to replace the ECM dynamics of the

individual isolated cells (iZ(t)) with an emergent state variable (i emergant (t) ) that represents the

multi-cell environment. In order to this, a second key assumption is necessary. Mainly, it must

possible to estimate the multi-cell ECM environment and corresponding ECM states by superposing

ECM dynamics of multiple isolated single-cell ECM models. Although, the estimation may not be

exact, it will be valid if it can reproduce the specified emergent behavior which as previously

mentioned is the cells moving forward towards each other.
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The ECM variables of individual single agent models are added to create the combined ECM

environment influenced by multiple cells. The state equation given by equation specified for each

individual (j) agent is:

iemergant VWMJVz Az(t) + vTWC VTmW +1 ieerga (57)

The individual ECM are supposed to create an estimate of the combined ECM environment

influenced by multiple cells:

2

iemergen = 3z (58)
j=1

z =Pz4
Where 04 0

PO =V TMV* (59)

3.5.2 Model Evaluation and Analysis

The position trajectories of the original nonlinear simulation (green) and the linear

superposition estimation (red) are shown in figure 8. As can be seen, approximation of the ECM

using linear superposition leads to the production of the correct emergent behavior (i.e. the two cells

move towards each other). These results suggest that it is possible to reproduce the general required

motion to indicate emergent behavior.
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Time

ti -

t 2

t3

t -

Original simulation Latent Variable Model
(7LV)

Figure 8: Python simulation of position trajectories of the original nonlinear simulation (green) and the linear

state equation where variables are estimated using superposition (red).
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4. Application of Approach to 3-Dimensional
Distributed Parameter Cell-Matrix Model

4.1 Definition of Nonlinear Distributed Parameter Model of 3-D Cell
Spreading on a 2.5D Elastic Substrate

Consider the 3-D distributed parameter cell model shown in figure 9. The full biophysical

model simulates cell migration and spreading on an elastic substrate and incorporates focal adhesion

dynamics, cytoskeleton and nucleus remodeling, actin motor activity, and lamellipodia

protrusion[1 1], [13]. The inner and outer membrane of the cell is divided into a triangular mesh

consisting of 200 nodes. The ECM is a complex fibrous network that is divided into2000 nodes. It

measures 2um thick and 60um in diameter. The ECM fibers are modeled after Collagen Type I. The

bulk stiffness of the substrate is estimated to be 5kPa.

The cell membrane deforms and gains traction as the nodes distributed over the outer

membrane bond to nodes on the ECM surface, and form focal adhesions. The ECM deforms due to

the cell and can also influence the cell dynamics because the cell's anterior-posterior polarization

(or cell's polarity) is changed based on the direction of local maximum stiffness in the

ECM[36]. Consequently, the cell continuously updates its lamellipodial protrusions in order to

reflect the cell's polarity change to local maximum stiffness direction.

The dynamical system to be linearized is a set of nonlinear differential equations that describe

the deformation of the cell outer membrane and ECM substrate.

4.2 Bond Graph Representation

In order to create a bond graph describing the deformations of the outer cell membrane we

must consider the 3-D position of each node on the outer membrane and each node within the ECM

substrate:
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Figure 9: Nonlinear Distributed Parameter Model of 3-D Cell Spreading on a 2.5D Elastic Substrate. The

membrane of the cell is divided into a triangular mesh consisting of 200 nodes. The ECM is a complex

( C =(C co)T eR 3(200)XI)

x ( x, y., zX)

(e (e e00)T- ~3(20)x) (60)

x"e =(xe,, xYe )E 30>

Furthermore, we must identify the modeling elements (e.g. masses, springs, and dampers)

representing energy storage and dissipation in the system and their connectivity. Let us examine the

forces interacting on a membrane node and ECM node shown in figure 10.

Each membrane node is acted upon by five forces. It should be noted that the inertia of the

node is not considered. Therefore the node is a point mass. These forces are summarized in Table 2:
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Table 2: Summary of forces acting at a single (massless) membrane node

Each ECM is acted upon by 3 forces. The constitutive equations for these forces are

summarized in Table 3:

Free Body Diagram

F Ia

F A F
FD

Free Body Diagram

F e*

R dx
Rdt

Figure 10: Forces interacting on a single membrane node and ECM node single node
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Cortical Tension Force T T(

F C = F (xD) Nonlinear Spring
Elastic Energy Force E E X)

Focal Adhesion Force FA FAc X
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Equation Modeling Element
Force

F' = (D Ee Nonlinear Spring
Elastic Energy Force F E

Focal Adhesion Force FA =DFAe ( e Nonlinear Spring

r dxe Linear Damping
Frictional Dissipative Force D R dt )

Table 3: Summary of forces acting at a single (massless) ECM node

Membrane nodes can bond to the ECM nodes through focal adhesions. When the focal

adhesion forces of the bonded membrane ECM node pair are equal and opposite. Therefore the ith

membrane node bonded to the jth ECM node:

F, = -F (when bonded)FA,I FAJi (61)

However, if the bond between the ith membrane node bonded to thejth ECM node is ruptured

the focal adhesion force automatically switches to zero:

FC =0 (when ruptured)
F = 0FA,]

(62)

This adds another source of nonlinearity to the system.

The forces described in the above tables are 3-Dimensional and involve nonlinear

kinematics to represent each spring modeling element. An accurate bond graph describing the node

requires the use of and modified bond graph representation used for multiple dimensions[37].
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F'
FA,

-'x.I

T :

.ex..
ii

Figure 11: Simplified Conceptual Bond Graph of Cell ECM Interface

However for simplicity let us consider the simplified conceptual Bond Graph structure in figure 11

which contains the bonds and causality necessary to derive the governing equations.

Here, R = C + C,, and g =C represent the linear damping elements for the membrane

node and ECM node respectively. The focal adhesion bond is shown as with a multiport capacitive

element C=nb -Ka (termed C-Field). C-fields are multi-port generalizations of the basic scalar

elements, and can be used in order to model complex multi-dimensional systems[28], [38], [39].

4.3 Deriving Equations from Bond Graphs

From above the bond graph may list the governing equations:
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1 junction equations

for i=1,...,200

d xF
(cC +C4ct) +FA +F Ffi + Fj, =0

for i=1,...,2000

dxe
Ce i+Fe +F =oCi t FAJi Ei

constitutive equations from nonlinear elements

FA ="FAC(Xc )

S=E (X)

constant
F {
TcI=T (XL)

F,,A (DA'(X,X)F = ( x"

E (E) (63)

FA = FAe e

From causality, the damping linear damping forces are dependent on the other forces:

Therefore we may write for the ith membrane node and ith ECM node:

dxc 1
1 (Fc+Fc +Fj,+F )

dt (c + c,) FA EliF (64)
d xKciX 1 (Fe Fe
dt Ce FA,i *)

The state equation describing the 3-Dimensional position of the n = 200 and the nEcM

2000 nodes are given by:
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FA

E F,n _

FE'

dt Fc

_____1 1 11 -F

(c+c.,,) (c,+c,,,) (c +c,,,) C- G
dt .

1 1 1 1 1 Fe

d (C, +cor) (Cc +C,,) (Cc +C-,) C, Ce

dx'. ,Fe
"' F n_-d

F e

FE,, (65)

Equation (65) reveals a linear representation of the system with respect auxiliary variable

vector ri. Furthermore we augment the system by explicitly writing the dynamics of ras previously

explained in section 2.1.2. For clarity we re-write equation(6):

dx
-=W,-e R""' (n=3-n,,em +3-nECM

dt (66)
drq = H (x, j7) E R"q
dt

4.4 Incorporation of Cell Polarity

As previously discussed in section 4.1, the cell continuously updates its lamellipodial

protrusions in order to reflect its polarity change to local maximum stiffness direction. As shown in

figure 12, depending on the polarity direction (dv,) the cell membrane is split into a leading and

trailing edge. The lamellipodial protrusion force (F) of all membrane nodes at the trailing edge is

set to zero. Depending the distance of the membrane node from the elastic substrate, the

lamellipodial protrusion force at the leading edge can be nonzero.

55



Application of Approach to 3-Dimensional Distributed Parameter Cell-Matrix Model

F, =0
odes in the trailing edge

have zero LaLellipodial

protrusion force

Nodes in the leading edgeod
have nonzero Lamnellip odial

protrusion force

Figure 12: Polarization direction determines the leading edge of the cell and lamellipodial protrusion force
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We wish to represent the dependency of lamellipodial protrusion force on the cell polarity

direction within the state equations given in equation(65). First we re-write equation (65) to isolate

the lamellipodial protrusion forces at each node:

(C +C,.) (CC +C.1)

(Cc + C.)

(C' +C.')

(Cc + C.)

I I

C, Ce

(c + .

(Ce + Cor) C ,
0

W, '0

F e

FAM

F e

0

0

0

0

0

0
(Cc +Ccjg FL

0

0

0 (67)

Next, we define 1] as:

1
(Cc +Ccort)

0

0
FC

FC'

L,n

0

0

e R nxl > F'
0

~FL
trailing edge

leading edge
(68)

In order to relate the lamellopodial protrusion force at each node to the global polarity

direction vector (d 0 , e =R- ), we have created a membership function matrix M,, E R .
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0 0 0 0

0 0 0 0

1 1 0 0

0 1 0 1
M, - E-.: -n i x360 (69)

1 0 1 1

0 1 1 0

0 0 0 0

0 0 0 0

The jith column of MO/ corresponds the j degree polarity angle pol = arctan do1 x jpoj
dpolo -dp

(rounded to the nearest integer degree). Therefore, there are 360 columns in the matrix. Each element

in thejth column of the M takes a 1 or 0 value depending on whether Fl. has a zero or nonzero

value. We re-write II as:

1 d,,o x dpo
u(d, 1 M :r, arctan -d dp (7 F0

(CC + Ccort 0 d,, -d01(0

FL = const

If the polarity direction is pre-determined we may write:

dx .*
dx = W, - Y7 + u(dPdt (71)

dry* =H(x,r,*)
dt

Equation (71) describes open-loop augmented state equations since the polarity is shown as

an independent input to the system. However as previously mentioned a cell's polarity is changed

based on the direction of local maximum stiffness in the ECM. In order to mathematically represent

this relationship, we use an equation modified from [36]:
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d d,,, J= (d,,, x (d"ax stiff ,ECM x d,) (72)

Here dmEffECl is a 3 dimensional vector representing the direction of local maximum

stiffness in the ECM and a nonlinear function of the auxiliary and state variables of the system:

d"stifECM ="Id (X, 17) e 13x1 (73)

In equation (73) we do not specify the relationship explicitly but only acknowledge that it

will be some nonlinear function of the original state and the auxiliary variables. Therefore

may write the closed loop augmented state equations as:

dx =W,* -t7* +u (d,,,,)
dt

= H (x, 1*)
dt

d ( d ) =

we

(74)

4.5 Linear Reduced Order Latent Representation using Simulated
Data

4.5.1 Modifications from section 2.2

For the given system, the augmented state vector modified from (9) is:

x = e R (n+"n )X (75)

Where we have eliminated the lamellipodial protrusion force from the definition of the

auxiliary variable vector:
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0

0

0

0

0

S1 0

77 71 (c, +ce.,) F

F,

0

0

0 (76)

0

In order to create a reduced order representation of the augmented system in latent

variable space, we calculate the transformation V* as shown in equation (11)in section 2.2.2. Here,

V* is derived using the data covariance matrix of simulated time samples of A and /7 for t 1,..., t1

and N different initial conditions:

x(tT 11* (to,)

x(tf ,N)' ,(tfN)

X t,N 77 (t,N )

-x f,N) 77(f,N)
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Using V* we can find the latent space representation as in(12). Differentiating we again

obtain:

6dz =~ Tc Tdq *cf X r d*= X -- + q & (78)

Substituting equation 4.7:

ci= *W* -7 * +u(cdo ))+V*T d*
1 & (79)

As previously discussed in section 2.2.2 we can estimate an approximate of / using latent

variables and substitute into equation(79):

dz
dt

As explained in 2.2.3, we can approximate d q
dt

(80)
))+V*T c*77 t

using PCR:

a *(

Substituting:

=V*i(W*V*u(d,,))+VK* z(T )
(82)

=( V*'W,,V,* +V* K* )z(t)+V *TU(d,,)

We have left IU explicit in the equation(82), as we will use the exact equations given in (70)

and (72) to drive the reduced order latent variable system. However, the nonlinear relationship

described in (73) will be estimated using PCR. In order to do this, let us rearrange the augmented
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variables defined in k into two distinct groups that represent field variables (0) and component

variables (, ) as discussed section 2.3.2:

5cL, = K [] c l~,
a = X , Fc",FF FJ] (83)

= xF asF p o t t

Since, as previously stated, the direction of maximum ECM stiffness depends the cell

location xcen,,,
nmmnmem i

and the stresses (or Forces) within the field, we will regress only the

latent variable representation associated with these variables to onto dsiff ,ECM.

siff,ECM - K j
ZF PFOZ

z P z

0
PF~ *T 1 f

# ~ rEC

01
*

\fx - -E A i I

(84)

P = V *T'"""J " " V*
nmeL 0 0_

J.. matrix of ones

Where coefficient matrix IQ can be may be estimated by the least squares method. We may

now write the reduced order latent space equations as:
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"Plant"
"Controller"

IH d

a,*W*V +V*K|ztj+ + :~i , rta Q)ox

d~d,,,)'FH Fd F

f .VJ I A*
I------------------------------------------------- ------ ---------------------- I

L -- - - - - m- - - -I

"Sensor"

Figure 13: Block Diagram of the reduced order latent space represented in (85)

dz - (V *TW* V* +V,,*T K*)Z(t)+v*T 1 -M r:arctan dp010 x dp0 , *F

=t x7 d,, K7 x, =Kc + d,,,-d,' gi-d,, d,,,-
d (dpol ) _ K- X F ZFO- Il dp." Ldpol L1]lO 85

dt LdPol x z ] XdPOjJKd[z zdl ' - dpod

D(d,,,ds Ec.)

Were we have rewritten input polarity dynamics as using triple product expansion. Under the

assumptions stated in 2.3.1 we can link the above system. Figure 13 shows the block diagram of the

equations in (85). From the basic structure we may identify pseudo plant (A matrix), controller

(polarity equation) and sensor (direction of maximum stiffness equation) blocks.

4.5.2 Model Evaluation and Analysis

In order to evaluate the model, calculated the latent space trajectory and compared with the

original simulation.

As can be seen in figure 14there is good agreement between the deformations of the real cell

compared to the reduced order latent variable model. Figure 15 shows the mean squared error as a

function of latent variable dimension (m):
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1 if -
1

5'E =-_ Iee,) (86)
tf 1=0

Where et is the residual error between the linear state transitions and the original nonlinear

simulation at time t. As can be seen, as the number of latent variables increase the mean squared

error decreases significantly. At 100 latent variables, the mean square error is MSE = 5 x 10-" .

However, since the cell deforms around 1 x 10-' per time step the mean squatted error for 10 latent

variables is still sufficiently low.
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Time(min)
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II

t9

Original simulation

Figure 14: Comparison of cell morphologies over time between the

variable simulation using 100 latent variables(blue).

Latent Variable Model
(100LV)

original simulation (green) and the latent
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100

70

50
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I I I I I I I I I
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mean squared error

Figure 15: Mean squared error as a function of latent variable dimension (m)
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The main distinction between the number of latent variables considered and the resulting

model is that as more latent variables are included, higher order dynamics may be described. This

means that with 10 latent variables the model can capture the average lower frequency deformations

of the cell and ECM, but does not capture fast fluctuations displayed in the original simulation.

However if 100 latent variables are included within the model, these fluctuation may be reproduced.

Figures 16 and 17 show the eigenvalues for the A* matrix (which corresponds to open loop

poles of the system) of the 10 latent variable and 100 latent variable model. As can be seen in figure

16 the majority poles for the 10 latent variable model reveal more damped frequencies. However

when 100 latent variables are used within the model, the imaginary component of complex pole pairs

are larger, indicating higher frequencies within the model.

0.08

0.06-

0.04-

0.02-

E 0

-0.02

-0.04

-0.06-

-0.08L
-0.0 -0.03 -0.02 -0.01 0

Re
0.01 0.02 0.03 0.04

Figure 16: Eigenvalues for the matrix (which corresponds to open loop poles of the system) of the 10 latent

variable model. The majority poles are near the real axis indicating lower frequencies.
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-0.03 -0.02 -0.01 0
Re

0.01 0.02 0.03 0.04

Figure 17: Eigenvalues for the matrix (which corresponds to open loop poles of the system) of the 100 latent

variable model. The imaginary component of complex pole pairs are larger, indicating higher frequencies within

the model.
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Since the majority of the dynamics within the reduced order latent space model have been

represented linearly, the computation time from the original simulation is decreased significantly.

Figure 18 show the computation time a function of latent variable dimension (m). This is compared

to the original simulation which took seven hours to compute the same number of time points.

100

Cn
CU

CU

C
4-

0

E
:3

70

50

20

0 10 20 30 40 50 60 70 80 90

Time(sec)
Figure 18: Computation time a function of latent variable dimension (m). This is compared to the original

simulation which too seven hours to compute the same number of time points
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4.6 Linking Individual Reduced Order Models through the

Dynamics of Shared Variables

Now let us consider the case of multiple cells interacting on an elastic substrate. As

mentioned previously, experimental findings showed that cells transmit forces through the ECM

causing increased deformation and compaction of the ECM between the cells [4], [5]. We would

like to estimate the interaction of the multicellular system by linking the latent space models of the

individual cells (derived in the previous section) through the ECM.

Consider K reduced order latent space models of a single cell spreading on an elastic

substrate. The kth cell is represented by:

dzA
~~A*.zk+Hk"(dj); zk(O)=z"0

d (dt" ) Dk (d k, d;'*CMu) (87)

dstf'" - K k F0
stffECM d k

z

Here matrix A* is the same for each cell because each cell is undergoing the same

phenotype (i.e cell spreading interactions on an elastic substrate). However the internal mechanics

(i.e. cell polarity) will differ depending on the location and local environment of the cell. Therefore

the polarity equation H, (d'01) and initial conditions zk(0)=zk'O are specific for each cell.

CellK cell I Cell 1 Cell K

112 +ell 2+

Figure 19: Conceptual diagram showing how multi-cell system will be estimated using superposition of the

influence of multiple linear single cell models through a shared ECM.
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4.6.1Modifications from section 2.3

First, we isolate the ECM forces of individual cell models by using projection matrix PFO

as described in equation(84):

kzO -P p'Z

0
PF# *T

0

-

We link the ECM dynamics of each individual cell in the following manner:

(I -- PF# ap PF#kmap F#F

z*k =p k
FO- FOb Fb

(88)

(89)

-k,emergent k +(I a). t

=(I- F# napJ )#k I +ap map # 90)

K

=(I-' PF+IPnap PF# kFO

Where a mapping function matrix (P ), derived from the simulated training data) is used

to constrain the focal adhesion forces of connected membrane and ECM nodes to be equal and

opposite.

Substituting equation (87)into equation (90) we may write:

2 k,emergant - (*Zk + H k (d',,, (91)
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In matrix form (for components k = 1,...,K) we may write:

A *

I + ,map ) P, A*

(I +map) PFA*

I

I + P"ap ) Ek>A

(I + PaP ) PJO

(I + Pm,) PF#A*

A*

(I + 1map F# A*

1 + Pmap ) ' ,
I

S+ P'tap ) 'EP

(I+a p F# A

-- (I + 1 p a, O A

A *

(I + Pmap )P Eq

-- I + P,,, PF#

I

Substituting equation (35) into equation(92):

1,emergant A

2,emergan (I+Pj) P, A*

_Kemergant mI+Pap )I A*

(I+ map )PFA*

A

(I+Pmap FA*

(I+mp )PF#A* I

A (I+P )PjA* P

A L F#

S .P emergani

I P z 2
emergant

p ZKemerganiiTz'

I

(I+P, P,

I+ 'map, PF#

(I +P,,pPPO

I

+map ~F#

(93)
-- (I + PmaPF# H (dp'

-- (I+P,,a, P H2(d 2

--- H, (dp~

#- pseudo inverse

Equation (93) represents the K coupled dynamic equations that we will use to predict the

behaviors of the larger multi-cell system.
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4.6.2 Model Evaluation and Analysis for 2 Cells

Since we approximate the (originally nonlinear) multi-cell ECM environment by

superposition individual (linear) single-cell/ECM dynamics, we do not expect the predicted

trajectories to be exact to that of the original nonlinear simulation (with same initial conditions).

However the matrix-mediated mechanical interaction leading to emergent behavior are reproduced

may be reproduced.

A key finding in Guo et al. showed that the ECM within the central gap between two

interacting cells was significantly deformed compared to areas on the periphery of the central gap,

which remained static. This indicated directed matrix-mediated force transmission in between cells

[3]. Similarly this phenomena can be reproduced within the multi-cell spreading model presented.

Figure 20 shows a contour plot of the of ECM nodes for the latent variable model and original

simulation. The larger red arrows indicate velocity has reached a threshold over 1.6nm/s with highest

speeds directly underneath the cell (at 1 Onm/s). This value of 1.6 nm/s is consistent with deformation

velocity experiments between 2 cells outlined in Guo et al[3]. As can be seen, ECM node speeds

are only significant within the central gap as compared to the surrounding ECM where the velocities

are zero. Here we also show that the latent variable model is capable of reproducing this phenomena

which is present within the original simulation.
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Figure 20: Contour plot of the of ECM nodes for the latent variable model and original simulation. The larger

red arrows indicate velocity has reached a threshold over 2nm/s with highest speeds directly underneath the

cell (at 1 Onm/s). The latent variable model is capable of reproducing this phenomena which is present within

the original simulation

Using, the latent variable model we may also reveal more pronounced deformations

(indicated by higher ECM node velocities) when the cells are spaced closer together. Figure 21

shows a contour plots of cells spaced at lOum and 30 urn at 20 minute and 40 minute time points.

As can be seen, the ECM node velocity between the cells increase as the as the gap between the cells

decrease. Figure 22 summarizes the average velocity of ECM node s in-between cells (red) and areas

on the periphery (blue) for lOum spacing and 3Oum spacing. As expected, the ECM node velocities

increase in between the cells for smaller gap sizes indicating increased mechanical interaction as

closer distances.
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Figure 21: Contour plots of cells spaced at 1 Oum and 30 um at 20 minute and 40 minute time points.
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between gap
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****P : 0.0001
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Figure 22: The average velocity of ECM node s in-between cells (red) and areas on the periphery (blue) for

lOum spacing and 3Oum spacing.

We also analyzed cell spreading within the gap by measuring/analyzing the changing gap

size (or distance between cell's protrusions within the gap). Figure 23 shows the changing gap size

normalized by the original gap size over time. As can be seen the cells spread more extensively

towards each other when closer together which is consistent with the increase in non-dispersed force

transmission between cells that are closer together.
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Figure 23: Changing gap size (or distance between
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Using the latent variable approach, the computation time from the original simulation is

decreased significantly. Table 4 summarizes the computation times for 20 latent variable model and

100 latent variable model for 2 cells compared to the original simulation computation time.

20 LV model 100LV model Real Simulation

Computation time 2 minutes 20 minutes 10 hours

Table 4: Computation times for 20 latent variable model and 100 latent variable model for 2 cells compared

to the original simulation computation time
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4.6.3 Model Evaluation and Analysis for 10 Cells

Extending the aforementioned approach to 10 cells, we see that the variation in ECM node

velocity in between cells with respect to gap size is similar to the 2-cell case. As can be seen by the

contour plot (of ten cells placed at random initial locations) cells can interact with multiple cells

within its vicinity. However, at a distance of about 40um inter-cell interactions are attenuated.

Interestingly, this attenuation distance is consistent with recent observations of mechanical

interaction between cells crawling on a 2D substrate which showed an interaction length of the order

of 30 um[6]. Figure 24 summarizes the average velocity of ECM nodes in-between cells for 5um

spacing, 10-20um spacing and 40-50um spacing. Note that the ECM node velocities near cells in the

upper right were not included in the analysis since they are affected by the ECM boundary. As within

the 2-cell case ECM node velocity decreases in between cells as gap size increases. However the

overall ECM node speeds are higher which is expected since each cell is interacting with more than

one cell.

Time=20Omin

1 V *A
A

4 46

b~4 4' "

41 4

VA 
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, , .

Figure 24: Contour plot of ECM node velocities of ten cells placed at random initial locations on the ECM.
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Figure 25: Average velocity of ECM nodes in-between cells for 5um spacing, 10-20um spacing and 40-50um

spacing
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4.6.4 Extension to 3-D Cells Embedded in a Fibrous matrix

In three dimensions, large shape changes of the cell imply very pronounced deformations of

the surrounding matrix. Thus, the phenomena of cells embedded in a 3-D matrix is more pronounced

and crucially different from those observed on 2D substrates[10].

A key finding in Fernandez et al. showed that that multiple cells embedded inside a 3-

Dimensional collagen gel could spontaneously contract the entire gel volume via collective

contractile activity, an important mechanism behind tissue formation. Furthermore, local

deformations of a single cell embedded within the gel were insufficient to produce significant

contraction of the gel[10].

Similarly this phenomena can be reproduced for cells embedded within a 3-Dimenstional

ECM as shown in figure 25. The simulations shown in figure 26compare compaction and

densification of the ECM in between two cells for the original simulation(green cells) and the linear

superposition approach using 100 latent variables (blue cells). As can be seen the latent variable

superposition approach reproduces contraction of the gel boundary which is also present within the

original simulation. In addition we have reduced computation time to 20 minutes using the

superposition approach (same as for the 2-D case). In Figure 27 we further show that 1 cell produces

smaller and more local deformations than 2-cells embedded in a 3-D ECM. This indicates that the

mechanism of compaction is dependent on the number and spacing (i.e. density) of cells within the

gel. Figure 28 show quantification of the 1 cell vs. 2-cell gel compaction using thickens of the ECM

boundary at specific distances along the axial (x) direction as a metric. As can be seen, 2-cell model

ECM boundary of the 2-cell model compacts contracts more and also the contraction is more global

along the axial direction. The maximum contraction of the 1 cell model is 90% whereas the maxim

contraction of the 1-cell model is 67%.

80



Application of Approach to 3-Dimensional Distributed Parameter Cell-Matrix Model

100um

Figure 26: Biophysical model for the study of cells embedded in a 3-D matrix
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Figure 27: Simulation shows compaction and densification of the ECM in between the two cells for the

original simulation (green cells) and the linear superposition approach using 100 latent variables (blue cells).
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Figure 28: Simulation shows thatthat 1 cell produces smaller and more local deformations than 2-cells

embedded in a 3-D ECM.

83

V



Application of Approach to 3-Dimensional Distributed Parameter Cell-Matrix Model

1.1

(A

U

CA
CU

0)
E

0.
C

a,

E

.)

E

S0.9
E
S0.8
Cc
CL
ch 0.7

a 0.6-D
C
5., 0.5

.4

0.3

0.2

0.1

0
40 80

axial distance along length of cylinder(um)

length 48

Figure 29: Quantification of the 1 cell (blue) vs. 2-cell (yellow) gel compaction using thickness of the ECM

boundary at specific distances along the axial (x) direction as a metric

84

1 CX91
- 2cells

60



Conclusion

5. Conclusion

5.1 Contributions of This Work

This thesis has developed a methodology for the linearization and subsequent superposition

of single-cell models to explain the emergent behavior among multiple cells. Contributions were

made in the 3 major areas: Theoretical, Computational and System Integration, and Biological.

5.1.1 Theoretical Contribution

The nonlinear dynamics describing single-cell/ECM interactions were modeled as

linearized subsystems in a more complex framework describing multi-cell interactions. This was

achieved by the following:

1. Recasting nonlinear (single-cell) dynamics to higher dimensional space by augmenting the

original (single-cell) system with auxiliary variables (that is, output variables on all the

nonlinear elements) derived from bond graph representation. This also created a more

complete description of the nonlinear dynamics.

2. Transforming the augmented state equations (describing single-cell) to a reduced-order

linear representation by projecting the augmented state equations onto a basis of

eigenvectors derived from simulated data set. This allowed for the evolution of the states

to be described within a lower dimensional linear manifold.

The resulting reduced order latent space model was capable of reproducing nonlinear

dynamics (including cell polarity and cell-matrix interactions). Furthermore the linearized

structure of individual models facilitated their integration to describe multi-cell behaviors.

5.1.2 Computational and System Integration Contribution

The prediction of a more complex multi-cell mechanical system using the aforementioned

linearized subsystems was achieved by the following:

85



Conclusion

1. Isolating matrix dynamics within the linearized (single-cell) models describing individual

cells using linear projection

2. Linking matrix dynamics of individual cell models using linear superposition to

approximate a multi-cell environment.

With these combined methodologies, we created a comprehensive framework to facilitate

the study systems of interacting nonlinear agents, which would otherwise be prohibitively complex

to compute.

5.1.3 Biological Contribution

Using the proposed methodologies, we were able to reproduce intercellular mechanical

interactions consistent with published experimental observations for the following cell induced

emergent mechanical changes within ECM:

1. Long-range non-dispersed force transmission between cells through measurement of

increased deformation velocity between cells. Non-dispersed force transmission is a

crucial mechanism for the initiation and maintenance of long-scale multi-cell linear

patterns [11].

2. Global contraction of gel volume via collective cell- contractile activity (as opposed to

local deformations of single cell embedded within the gel)]. Cell collective contractile

activity is an important mechanism behind tissue formation[1O].

Furthermore, our analysis proved to be consistent with observations of mechanical

interaction between cells on a 2D substrate which an interactions showed attenuated interactions

length of the after 30um. We have introduced a new set of computational tools for modeling

mechanical interactions between cells and the extracellular matrix. Furthermore, through our study

of intermediate emergent behaviors arising within the matrix we can advance our understanding

of biomechanical signaling mechanisms during tissue formation and multi-cellular patterning.
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5.2 Limitations of Approach

A key limitation within our approach is that in order to reproduce biologically relevant

phenomena, one must begin with a biophysical model that accurately represents a subcomponent

of the phenomena being studied in order to create relevant simulation dataset. However in the

future, simulation data can be supplemented with experimental data in order to create a more

accurate dataset. Related to the creation of a dataset, another limitation is the computations of

covariance matrices and subsequent eigen-decomposition for the purpose of obtaining an

orthogonal basis on which to project augmented variables. For large datasets (either containing too

many nodes describing the cell and ECM or too many time samples) these computations may

become time consuming or intractable. However, methods of down sampling followed by

interpolation of final trajectory could alleviate this issue.

A key limitation within the theoretical framework is the inability to incorporate emergent

interactions involving cell to cell mechanical contact in addition to cell/matrix interactions. This

is because the causal relationships within the representative bond graph could not be resolved,

since both the bidirectional energy exchange through contact with the ECM and the adjacent cell

would have to be considered. However, if it was desired to study cell to cell mechanical contact in

the absence of ECM, the proposed approach would still be valid. This type of approach may be

relevant in the study of close-packed collective systems such as confinement-induced collective

migration characterized by cell jamming in pathological situations such as asthma and cancer[40].

In addition, the theoretical framework may be limited the to the representation of

extracellular matrices where small strains behave within the linear elastic regime[41]. This it is

due to the linear superposition assumption for combining the ECM dynamics for individual cells.

Furthermore, with the current mathematical formulation, we are unable to reproduce

degradation of the ECM through secretion of MMP. ECM degradation would be necessary to

reproduce sustained movement and migration of the cells particularly in 3-D embedded

matrices[42]. Since ECM degradation continuously changes the fiber connectivity through ECM

remodeling, we would need to develop a methodology to update the grid structure describing the

ECM field within our formulation. However ECM degradation may not be necessary to model gel

compaction since whereas isolated cells migrate in a random manner, a higher density cluster of

cells remains stationary when contracting the surrounding gel [10].
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A large assumption we made within our approach was that the cell's internal adaptive

response to mechanical cues could be modeled as the change in cell polarity due to mechanical

cues. Cells change their internal state through a complex process of mechanotransduction and

intracellular signaling[43]. Future work should incorporate these more complex mechanisms to for

more accurate cell represntations.

Future Directions

5.2.1 Inclusion of More than one Phenotype to describe Model of Single
cell

In the current model formulation, we assume only one phenotype is expressed through

single-cell ECM interactions. This is in order to ensure that the model represents a time invariant

system. In reality, the cells exhibits a wide range of dynamic phenotypes including spreading,

migration, and differentiation during matrix-mediated emergent behaviors[4]. These dynamics

cannot be explained by one reduced order latent variable model. Therefore it would be necessary

to create a specific set of latent variables for each dynamic phenotype of an individual cell. In

addition, rules would need to be developed to transition between the latent variables describing a

specific phenotype. These rules should be based on the underlying subcellular mechanisms

(potentially found through experimentation) since it is undesirable to ad-hoc rules.

Figure 30: Diagram representing switching between different latent variable models describing multiple

phenotypes and individual cell
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5.2.2 Modeling Emergence using Pairwise Cell-Cell Mechanical

interactions as Building Blocks

The current model assumes that the conditions (i.e. local ECM stiffness) experienced by a

single cell in isolation is sufficient to produce the necessary responses for collective behaviors.

However, an isolated cell cannot be exposed to the same local stiffness as in the case when more

than one cell is present. Therefore, if 2-cell interactions where considered to be the initial

subsystem for integration into a larger more complex system, more accurate and global behaviors

could be reproduced. However, incorporation of 2 cells would create a larger dataset which may

lead to the creation of large matrices that are difficult to handle computationally (as described in

the limitations section). Furthermore, more complex nonlinear mechanisms would arise between

two interacting cells which would require a larger number of latent variables to accurately

represent the more complicated dynamics.

5.2.3 Inclusion of Experimental Data to Inform Model

In preliminary experiments (see appendix B) GFP tagged plasma membrane HUVEC were

used to detect cell morphology and observe lamellipodial formation of 2 cells separated by 10-

1 00um. Preliminary analysis measured polarity by calculating the principal axis of elongation

along of the cell contour and the cell's movement direction between time frames. With future

experiments, polarity metric data could be integrated into the current model in order to tune the

polarity direction with respect to ECM properties and cell location. However, future experiments

should consider a more relevant experimental set-up where intercellular signaling has been

eliminated as a variable within the experiment in order to examine the mechanical interactions

between the cells.
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A. MATLAB Codes

A.1 Data Preprocessing

clear all; close all
tic
%%
Cc = le-3;
Ccort = le-3;
Ce = Cc;
%% Initialize Variables

%%cell state variables
%%velocities
cortlnodevx = []; cortlnodevy =[; cortlnodevz = [1;

celllnodevx = [] ; celllnodevy = [] ; celllnodevz = []

%%positions
celllnodex = []; celllnodey = [ ; celllnode_z = []

%%forces
FEnodex = [1; FEnodey = []; FEnodez =
FLnodex = []; FLnodey = [1; FLnodez =
FTnodex = []; FTnodey = [; FTnodez = [];

Ftract_x_node = []; Ftractynode = [1; Ftract_z_node = [];

FL-x = [] ; F_L_y = [] ; FL-z = [];

F_cortx = [] ; Fcorty = [] ; Fcortz = [;

bondn node = []; %dAM node =[];

%%polarity
Polarx = [I; Polary = []; Polarz =
dsmax x = [] ; ds_maxy = [] ; dsmaxz = []

%% ECM state variables

ECMnodex = []; ECMnodey = []; ECMnode_z =

ECMnodevx = []; ECMnode_vy = []; ECMnode vz = ;

FEECM_x_node = [I; FEECM z_node= []; FEECM_ynode= [];
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FtractECM_x_node = []; FtractECM_z_node=[]; FtractECMynode=[1;
FD_x_node = []; FD_y_node = [1; FD_z_node =

T= [];
N_mem = 189;%%number of membrane nodes
%%Cell /ECM attachements
iscellattached = [1;
gridindexmemnode = {;

cellinode_x_attached =[;
celllnode-y_attached =[;
cellinode z attached =[H;

x_closestECM = [];
y_closestECM = [;
z_closestECM = [];

for i = 1:N mem+1
grid indexmemnode{i} = zeros(1,3000);

end
%%
startRow = 3;

%% Import Files(Al)
TT = 1:3000;

% TT([[10:10:100]]) = [1;

for time = TT
%% Filopodia Coordinates

% filenamel = strcat('C:\Users\Michaelle\Dropbox
(MIT)\MIT\Graduate\2.THG Research\data for
PLS\oldData2\Cell_1_',num2str(time),'.000000_s.txt' );
% filenamel = strcat('C:\Users\Michaelle\Dropbox (MIT)\MIT\Graduate\2.THG
Research\Postprocessnew\Output2-
Jan142017\Cell 1 ',num2str(time),'.000000_s.sav' );

filenamel = strcat('C:\Users\Michaelle\Dropbox
(MIT)\MIT\Graduate\2.THG Research\PLS code for collective cell
migration2\Outputl2April22017cell24\Data\Cell_1_',num2str(time),'.000000_s
.sav' );

N mem = 189;%%number of membrane nodes
[Px,Py,Pz] = importfilel(filenamel, 1, 1);
[dex,dey,dez] = importfilel(filenamel, 2, 2);
[imem, nodex, node_y,nodez,nodevx, node_vy,nodevz,FLx,

FLy,FLz, FEx, FE_y,FE_z, Ftractx,Ftracty, Ftractz,n_b] =
importfile6b(filenamel, 3, Nmem+2); %%node #, xyz positions, xyz FE
forces,xyz Ftract forces

% filename2 = strcat('C:\Users\Michaelle\Dropbox
(MIT)\MIT\Graduate\2.THG Research\Postprocessnew\Output2-
Janl42017\Cortical 1 ',num2str(time),'.000000_s.sav' );

filename2 = strcat('C:\Users\Michaelle\Dropbox
(MIT)\MIT\Graduate\2.THG Research\PLS code for collective cell
migration2\Outputl2April22017cell24\Data\Cortical_1_',num2str(time), '.0000
00_s.sav' );
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[icort,nodetvx, nodetvy,nodetvz,FTx, FTy,FT_z] =

importfile6a(filename2, 1, Nmem);

% filename3 = strcat('C:\Users\Michaelle\Dropbox
(MIT)\MIT\Graduate\2.THG Research\Postprocessnew\Output2-
Janl42017\ECMfiber_ ',num2str(time),'.000000_s.sav' );

filename3 = strcat('C:\Users\Michaelle\Dropbox (MIT)\MIT\Graduate\2.THG
Research\PLS code for collective cell
migration2\Outputl2April22017cell24\Data\ECMfiber_',num2str(time),'.00000
0_s.sav' );

N_CL = 6741;%6236; %1646; %%number of CL nodes
N_ECM = importfile2(filename3,1,1);
N_CL = 1949;%importfile2(filename3,1,1);
[ii_ECMUM,i_ECMM,ECMCLx, ECMCL_y, ECMCL_z,ECMCLvx, ECMCLvy,

ECMCL_vz,FEEx,FEE_y,FEE z,FEtractx,FEtracty,FEtractz,FD-x,FD y,FD_z
= importfile6c(filename3, 2, NCL+1); %% xyz positions, xyz FCL
forces,con. VEGF at each CL, integrity at each CL

%%velocities
cortlnodevxt = [];cortlnode_vyt = [];cortlnodevzt = [];
celllnodevxt = [];celllnodevyt = [1;celll_nodevzt = [];

%%positions
celllnodext = [];celllnodeyt = [];celllnode zt = []

%%forces
FLnodext = [];FLnodeyt = [];FLnodezt = [];
FTnodext = [];FTnodeyt = [];FTnodezt = [];
FEnodext = [];FEnodeyt = [];FEnode_zt = [];
Ftractxnodet = []; Ftract-ynodet= [];Ftractznodet = [];
bondnnodet = [;

%%ECM state variables
ECMnodext = [];ECMnodeyt = [];ECMnodezt = [];
ECMnode vxt = [];ECMnode vyt = [];ECMnodevzt = [];
FEtractxnodet = []; FEtractynodet= []; FEtractznodet = [];
FEE_x_nodet = []; FEE_ynodet = []; FEE_z_nodet = [];
FDxnodet = F]; FDynodet = []; FDznodet = [];

indexunmapped = [; index-mapped = [];
indexmemnode = [];

parfor i = 1:N mem
celllnodext = [celllnodext,nodex(i)];
celllnodeyt = [celll_node_yt,nodey(i)];
celllnodezt = [celll_nodezt,nodez(i)];

celllnodevxt = [celllnodevxt,nodevx(i)];
celllnodevyt = [celll nodevyt,node_vy(i)];
celllnode vzt = [celll node vzt,node vz(i)];

cortlnodevxt = [cortlnodevxt,nodetvx(i)];
cortlnode vyt = [cortlnode vyt,nodetvy(i)];
cortlnodevzt = [cortlnodevzt,nodetvz(i)];

FLnodext = [FLnodext ,FLx(i)];
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FLnodeyt = [FL nodeyt,FL_y(i)];
FLnodezt = [FLnodezt,FLz(i)];

FTnodext = [FTnodext ,FTx(i)];
FTnodeyt = [FT nodeyt,FT_y(i)];
FTnodezt = [FTnodezt,FTz(i)];

FEnodext = [FEnodext ,FEx(i)];
FEnodeyt = [FE nodeyt,FE_y(i)];
FEnodezt = [FEnodezt,FEz(i)];

Ftract xnodet = [Ftract xnodet,Ftract x(i)];
Ftract_ynodet = [Ftract_ynodet,Ftracty(i)];
Ftractznodet = [Ftractznodet,Ftractz(i)];

bondnnodet = [bondnnodet,nb(i)];
indexmemnode = [indexmemnode,imem];

end
%%Cell attachements
i_cellattach{time} = find(bondnnodet > 0);
iscellattachedt = zeros(l,length(imem));
iscellattachedt(i-cell-attach{time}) = 1;

parfor i = 1:NCL
indexunmapped = [index unmapped, i_ECMUM (i)];
index_mapped = [index_mapped,iECMM(i)];

ECMnodext = [ECMnodext,ECMCL_x(i)];
ECMnodeyt = [ECMnode_yt,ECMCL_y(i)];
ECMnodezt = [ECMnodezt,ECMCLz(i)];

ECM node vxt = [ECM node vxt,ECMCL vx(i)];
ECMnodevyt = [ECMnodevyt,ECMCL vy(i)];
ECMnodevzt = [ECMnodevzt,ECMCLvz(i)];

FEE_x_nodet = [FEE_x_nodet ,FEEx(i)];
FEEynodet = [FEE_y_nodet ,FEE_y(i)];
FEE_z_nodet = [FEE_z_nodet ,FEEz(i)];

FEtract xnodet = [FEtract xnodet,FEtract x(i)];
FEtractynodet = [FEtractynodet,FEtract_y(i)];
FEtractznodet = [FEtractznodet,FEtractz(i)];

FDxnodet = [FDxnodet,FDx(i)];
FDynodet = [FD_ynodet,FDy(i)];
FDznodet = [FDznodet,FDz(i)];

end
%%ECM crosslink w/ nonzero traction force
mag2_Ftract = FEtractxnodet.*FEtractxnodet +

FEtractynodet.*FEtractynodet + FEtractznodet.*FEtractznodet;
j_ECMnzTractF = find(mag2_Ftract);
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ECMnodexttract = ECMnode xt(jECMnzTractF);
ECM-nodeyt_tract = ECM_nodeyt(jECMnzTractF);
ECMnodezttract = ECMnode zt(jECMnzTractF);

%%calculate closest distance between attached membrance node and
ECM CL

%%node
cell1_nodextattached = zeros(1,Nmem) ;
cell1_nodeyt attached = zeros(1,Nmem) ;
celllnodeztattached = zeros(1,Nmem) ;

x_closestECMt = zeros(1,Nmem) ;
y_closestECMt = zeros(1,Nmem) ;
z_closestECMt = zeros(l,Nmem);

for i = 1:length(i cellattach{time})
i_attached = icellattach{time}(i);
cellinodextattached(i attached) =

cellinode xt(i attached);
cellinodeyt attached(iattached) =

cellinode_yt(iattached);
cell1_nodeztattached(iattached) =

celllnodezt(iattached);

dx =
celll node xt attached(i attached).*ones(size(ECM node xt tract)) -
ECMnodexttract;

dy =
cellinode_ytattached(iattached).*ones(size(ECMnodeyttract)) -
ECM-nodeyttract;

dz =
celllnodeztattached(iattached).*ones(size(ECMnodezttract)) -
ECM node zt tract;

CLmemnodedistance = sqrt(dx.*dx + dy.*dy + dz.*dz);
[m_d,gridindex j] = min(CLmemnodedistance);
%% ith membrane node address(on ECM grid) = index of closest

ECM CL node
grid indexmemnode-t = jECM-nzTractF(grid index_j);

x_closestECMt(iattached) = ECMnodexttract(grid index_j);
y-closestECMt(iattached) = ECM-nodeyt_tract(grid index_j);
z_closestECMt(iattached) = ECMnodezttract(grid index_j);

grid indexmemnode{i attached} (time) = grid indexmemnodet;
end

celllnode_x_attached
=[celll_node_x_attached;celllnodextattached];

celllnode-y_attached
= [celll_node-y-attached;celllnode_ytattached];

celllnode_z_attached
= [celli-node z attached;celll node zt attached];

x_closestECM = [x_closestECM;xclosestECMt];
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y_closestECM = [yclosestECM;yclosestECMt];
z_closestECM = [zclosestECM;zclosestECMt];

Polarx = [Polarx;Px];

Polary = [Polary;Py];
Polarz = [Polarz;Pz];

dsmax x = [dsmaxx;dex];

dsmax-y = [dsmax_y;dey];
dsmax z = [dsmaxz;dez];

cell1_nodex = [celllnodex;celll_nodext];
cellinode_y = [cellinode_y;celll_nodeyt];
cellinodez = [cellinodez;celllnodezt];

cell _node vx = [celll node vx;celllnode vxt];
cellinode_vy = [cellinode_vy;celllnode_vyt];
cellinodevz = [celll_nodevz;celllnodevzt];

cortinodevx = [cortinodevx;cortlnodevxt];
cortinode_vy = [cortinodevy;cortlnode_vyt];
cortinodevz = [cortinodevz;cortlnodevzt];

FEnodex = [FEnodex;FEnodext];

FEnodey = [FEnodey;FEnode_yt];
FEnodez = [FEnodez;FEnodezt];

FLnodex = [FLnodex;FLnodext];

FLnodey = [FLnode_y;FLnode_yt];
FLnodez = [FLnodez;FLnodezt];

FT node x = [FT node x;FT node xt];

FTnodey = [FTnode_y;FT_nodeyt];
FTnodez = [FTnodez;FTnodezt];

bondnnode = [bondnnode;bondnnodet];

Ftract x node = [Ftract x node;Ftract xnodet];
Ftract_y_node = [Ftract_y_node;Ftractynodet];
Ftract_z_node = [Ftract_z_node;Ftractznodet];

FtractECM_x_node = [FtractECM_x_node;FEtractxnodet];
FtractECM_y_node = [FtractECM_y_node; FEtractynodet];
FtractECM_z_node = [FtractECM_z_node;FEtractznodet];

FD_x_node = [FD_x_node;FDxnodet];
FD_ynode = [FD_y_node;FD_ynodet];
FD_z_node = [FD_z_node;FDznodet];

FEECM x node = [FEECM x node;FEE x nodet];
FEECM_y_node = [FEECM_y_node;FEE_y_nodet];
FEECM_z_node = [FEECM_z_node;FEE_z_nodet];
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ECMnodex = [ECMnodex;ECMnodext];
ECM-nodey = [ECMnode_y;ECM-nodeyt];
ECMnodez = [ECMnodez;ECMnodezt];

ECMnodevx = [ECMnodevx;ECMnodevxt];
ECM-node-vy = [ECMnode_vy;ECMnode_vyt];
ECMnodevz = [ECMnodevz;ECMnodevzt];

T = [T;time];

%%which membrance nodes are attached
iscellattached = [iscellattached;iscellattached_t];

end

F_Eerrorx = Ce.* ECMnodevx - (FtractECM_x_node + FEECM_x_node);

FEerrory = Ce.* ECMnodevy - (FtractECMy_node + FEECMy_node);

F_Eerrorz = Ce.* ECMnodevz - (FtractECM_z_node + FEECM_z_node);

sumFE = FtractECM_z_node + FEECM_z_node + FEerrorz;

figure (1)
plot(sumFE, Ce.* ECM node vz)

save('Cell_f_dxec24','FtractECM_x_node','FtractECM_ynode','FtractECM_z_no
de',...

'FEECM_x_node','FEECM_y-node','FEECMz_node','ECMnodevx','ECMnode_vy',.

'ECMnodevz','F_Eerrorx','F_Eerrory','F_Eerrorz','-v7.3')
save('Cellxec24','ECMnode_x','ECM node_y','ECMnode_z','-v7.3')

save ('Cell_f_dxe44', 'FtractECM_x_node', 'FtractECM-y_node', 'FtractECM_z_nod
e' ,...

'FEECM_x_node', 'FEECM_y node', 'FEECMznode', 'ECMnodevx' ,' ECM-nodevy',.

%6 'ECM node vz,'F Eerrorx,'F Eerrory','FEerrorz','-v7.3')
% save('Cellxe44','ECMnode_x','ECM node_y','ECMnode_z','-v7.3')

%Find cell node attachements

F_errorx = (Ccort + Cc) .* celll_nodevx - (Ftract_x_node + FEnodex +
FLnodex - FTnodex + Ccort.*cortlnodevx);

F_errory = (Ccort + Cc) .* cellinodevy - (Ftracty_node + FE_nodey +
FLnodey - FTnodey + Ccort.*cortlnode_vy);
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F_errorz = (Ccort + Cc).* celllnodevz - (Ftract_z_node + FEnodez +
FLnodez - FTnodez + Ccort.*cortlnodevz);

save('Cell_f_dxc24','Ftract_x_node','Ftract-ynode','Ftract_z_node','FEno
dex','FEnode-y','FEnodez','FLnodex','FLnode_y','FL nodez','FTnode

_x','FTnode y','FT nodez',...

'cortinodevx','cortlnode_vy','cortlnodevz','celll_nodevx','celll_nod
e-vy','celll_node-vz','F errorx','FIerrory','F-errorz','-v7.3')
save('Cell_xc24','celllnode_x','celll_node_y','celll_node_z','-v7.3')

save('Cell_f dx44','Ftract_x node','Ftract_y_node','Ftract z_node','FE nod
e x','FEnodey','FEnodez','FLnodex','FL nodey','FLnodez','FTnode_
x','FTnode_y','FTnodez',...

'cortinodevx','cortlnode_vy','cortlnodevz','celllnodevx','celllnod
e_vy','celllnode vz','F errorx','F errory','Ferrorz','-v7.3')
% save('Cell-x44','celll-node-x','celllnodey','celllnode z','-v7.3')

save('CellECMinterfacec24','i_cellattach','grid indexmemnode','-v7.3')

save('Polarityc24', 'Polarx', 'Polary', 'Polarz','-v7.3')

save('higheststiffc24', 'dsmax_x', 'dsmax-y', 'dsmax_z','-v7.3')

save('indexandECMnuml2c24', 'index-unmapped','index mapped','NECM','-
v7.3')

A.2 Orthogonal Transformations

clear all
close all

Cc = le-3;
Ccort = le-3;
Ce = Cc;

tt = [1;

% load Cell_f_dx2
% load Cellx2

f_dxl = matfile('Cell_f_dx22');
xxl = matfile('Cellx22');

f dx2 = matfile('Cell f dx44');
xx2 = matfile('Cell x44');

time = 1:3000;
T = length(time);
dt = 1;
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celllnode =

[[xxl.celllnodex;xx2.celll_nodex], [xxl.celllnode_y;xx2.celllnode_y],[
xxl.celll node z;xx2.celll node z]];
cellinode v =
[[f_dxl.celllnodevx;fdx2.celllnodevx], [fdxl.celllnode_vy;f_dx2.cell
1_node_vy], [fdxl.celllnodevz;fdx2.celllnodevz]];
Ftractnode =
[[f_dxl.Ftract_x_node;fdx2.Ftract_x_node],[fdxl.Ftract-y_node;fdx2.Ftra
ct_y_node], [f_dxl.Ftract_z_node;fdx2.Ftract_z_node]];
FE node =
[[f_dxl.FEnodex;fdx2.FEnode_x],[fdxl.FEnode_y;fdx2.FE_node_y],[f_dx
1.FEnodez;fdx2.FEnode_z]];
FLnode =
[[f_dxl.FLnodex;fdx2.FLnode_x],I[f_dxl.FLnode_y;f dx2.FL_node_y],[f_dx
1.FLnodez;fdx2.FLnode_z]];
FT node =
[[fdxl.FTnodex;fdx2.FTnode_x],[fdxl.FTnode_y;fdx2.FT_node_y],[f_dx
1.FTnode_z;fdx2.FTnode_z]];
F_cort =
[Ccort.*[fdxl.cortl_nodevx;fdx2.cortlnodevx],Ccort.*[fdxl.cortlnode

_vy;fdx2.cortlnode_vy],Ccort.*[fdxl.cortinodevz;fdx2.cortlnodevz]]

F_error =

[[f_dxl.Ferrorx;fdx2.Ferrorx],[fdxl.Ferrory;f_dx2.Ferrory],[f_dxl.F_
errorz;fdx2.Ferrorz]];

sumFF = Ftractnode+ FEnode + FLnode- FTnode+ Fcort + Ferror;
F_error2cl = (Ccort + Cc).*[celllnodev(1,:);diff(celllnode(1:3000,:))]-
sumFF(1:3000, :);
F_error2c2 = (Ccort +
Cc).*[celll node v(1+3000,:);diff(celll node(3000+1:end,:))]-
sumFF(1+3000:6000,:);
F_error2 = [Ferror2cl;Ferror2c2]

% load Cell f dxe2
% load Cellxe2

f dxel = matfile(Cell f dxe22');
xxel = matfile('Cellxe22d);

fdxe2 = matfile('Cellfdxe44);
xxe2 = matfile('Celldxe44);

ECM node =
[[xxel.ECMnodex;xxe2.ECMnodex], [xxel.ECMnode_y;xxe2.ECMnode_y], [xxel
.ECMnode_z;xxe2.ECMnode_z]];
ECMnodev =

[[fdxel.ECMnodevx;fdxe2.ECMnodevx],[fdxel.ECMnodevy;fdxe2.ECMno
de_vy],[f_dxel.ECMnodevz;fdxe2.ECMnodevz]];
FtractECMnode=
[[f dxel.FtractECM x node;f dxe2.FtractECM-x-node], [f-dxel.FtractECM_y_nod
e;fdxe2.FtractECM_y node], [f_dxel.FtractECM_z_node;fdxe2.FtractECM_z_nod
e]];
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FEECMnode =

[[f _dxel.FEECM_x_node;fdxe2.FEECM_x_node], [fdxel.FEECM_y_node;fdxe2.FEE

CM_y_node], [fdxel.FEECM_z_node;fdxe2.FEECM_z_node]];
F_Eerror =
[[f_dxel.FEerrorx;fdxe2.FEerrorx], [fdxel.FEerrory;f_dxe2.FEerrory],[

f_dxel.F_Eerrorz;f_dxe2.F_Eerrorz]];

sumFFe = FtractECMnode+ FEECMnode + FEerror;
% FFerror2 = Ce.*[ECMnodev(1,:);diff(ECMnode)]- sumFFe;

FF error2cl = (Ccort + Cc).*[ECM node v(1,:);diff(ECM node(1:3000,:))]-

sumFFe(1:3000, :);
FFerror2c2 = (Ccort +

Cc).*[ECMnodev(1+3000,:);diff(ECMnode(3000+1:end,:))]-
sumFFe(3000+1:6000,:);
FFerror2 = [FFerror2cl;FFerror2c2];

%% intergrate with Data (xdot = dxdt)

% Y(:,1) =
celllnode(1,:);%[celll_nodex(1,:),cellnode y(1,:)

% Ye(:,1) = ECMnode(1,:);%

% Y(:,1+3000) =

celll_node(1+3000,:);%[celllnodex(1,:),celll_node-y

% Ye(:,1+3000) = ECMnode(1+3000,:);%

%Yl(:,1) = zeros(size(celllnode(1,:)));
%Y2(:,1) =Y(:,1);

% Yl(:,1+3000) = zeros(size(celllnode(1+3000,:)));
%Y2(:,1+3000) =Y(:,1+3000);

%Yel(:,1) = zeros(size(Ye(:,1)));
%Ye2(:,1) = Ye(:,1);

,celllnodez(1,:)]

(1,:),celll_nodez(1,

Yel (: ,1+3000)
Ye2 (:,1+3000)

= zeros(size(Ye(:
= Ye(:,1+3000);

,1+3000)));

for i = 2:T

ti =time(i-1);
yi-cl = Y(:,i-1);
yic2 = Y(:,i-1+3000);

yil-cl = Yl(:,i-1);

yi2_cl = Y2(:,i-1);

yil-c2 = Yl(:,i-1+3000);
yi2_c2 = Y2(:,i-1+3000);

yeicl = Ye(:,i-1);
yeic2 = Ye(:,i-1+3000);
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% yeilcl = Yel(:,i-1);
% yei2_cl = Ye2(:,i-1);

%yeilc2 = Yel(:,i-1+3000);
% yei2c2 = Ye2(:,i-1+3000);

% sumFl_cl = Ftractnode(i-1,:);
% sumFlc2 = Ftractnode(i-1+3000,:);

% sumF2_cl = FEnode(i-1,:) + FLnode(i-1,:) - FTnode(i-i,:)...
+ F cort(i-i,:) + F error(i-i,:) +F error2(i-i,:);

% % sumF_cl = sumFl_ci+sumF2_ci;

% sumF2 c2 = FE node(i-1+3000,:) + FL node(i-1+3000,:) - FT node(i-
1+3000,:) ...

+ F cort(i-1+3000,:) + F error(i-i+3000,:) +F error2(i-i+3000,:);
% % sumFc2 = sumFlc2+sumF2_c2;

% sumFel c = FtractECM node(i-1,:);
% sumFel_c2 = FtractECMnode(i-1+3000,:);

% sumFe2_c2 =FEECMnode(i-,:) + FEerror(i-,:) + FFerror2(i-,:);

% sumFe_cl = sumFel_ci+sumFe2_ci;

% sumFe2_c2 =FEECMnode(i-1+3000,:) + FEerror(i-1+3000,:) +
FFerror2(i-i+3000,:);

% sumFec2 = sumFelc2+sumFe2_c2;

% dYdtl cl(:,i) = (1/(Ccort + Cc)).*sumFi ci;
% dYdt2 cl(:,i) = (1/(Ccort + Cc)).*sumF2 ci;
%dYdt-ci(:,i) = dYdti-ci(:,1) + dYdt2_ci(:,i);

% dYdtl_c2(:,i) = (1/(Ccort + Cc)).*sumFl_c2;
% dYdt2_c2(:,i) = (1/(Ccort + Cc)).*sumF2_c2;
% % dYdt c2(:,) = dYdtl c2(:,) + dYdt2_c2(:,i);

% dYedtl c(:,i) = (1/( Ce)).*sumFel c;
% dYedt2_c(:,1) = (1/( Ce)).*sumFe2 c;
% dYedt c(:,1) = dYedtlc2(:,i) + dYedt2_c(:,i);

% dYedtl c2(:,1) = (1/( Ce)).*sumFel c2;
% dYedt2_c2(:,1) = (1/( Ce)).*sumFe2_c2;
% IdYedt_c2(:,) = dYedt_c2(:,) + dYedt2_c2(:,);

% Yd(:,i) = yil c + dt*dYdt. c*(:,l);
% Y2(:,i) = yi2 cd 2 + dt*dYdt2(c/ (:, );
% Y dt c2(:,i) =+ Y2d 2 )t_
%

% Yl(:,i+3000) yl-c2 + dt*dYdtlc2(:,);
% Y2(:,i+3000) _yi2c2 + dt*dYdt2c2(:,);

% Y(:,i+3000) =Yl(:,i+3000) + Y2(:,i+3000);
%
% Yei(:,i) = yeii_ci + dt*dYedti_ci(:,i);
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% Ye2(:,i) = yei2_cl + dt*dYedt2_cl(:,l);
% Ye(:,i) = Yel(:,i) + Ye2(:,i);
%
% Yel(:,i+3000) = yeil c2 + dt*dYedtlc2(:,l);
% Ye2(:,i+3000) =yei2_c2 + dt*dYedt2_C2(:,1);
% Ye(:,i+3000) =Yel(:,i+3000) + Ye2(:,i+3000);
%6 tt = [tt;ti];

% end
%
% celllnodeFA = Yl';
% celll_nodealpha = Y2';
% save('splitxl_13_FLPn','celllnodeFA','celllnodealpha','-v7.3')

% ECMnodeFA = Yel';
% ECMnodealpha = Ye2';
% save('split_xel_13_FLPn','ECMnodeFA','ECMnodealpha','-v7.3')

N_mem = size(celll_node,2)./3;
N_CL = size(ECMnode,2)./3;
% load split_x
% load splitxe
%%
% figure(l)
% plot(Yel(1:1000:end,1)+Ye2(1:1000:end,1),'o')
% hold on
% plot(ECMnode(1,1:1000:end))

% figure(2)

plot(Yl(100,3001:6000)'+Y2(100,3001:6000)',celllnode(3001:6000,100),'o')
% hold on
% plot(celll_node(3001:6000,100),celllnode(3001:6000,100),'r')
% %
% figure(3)
% plot(Y(1:Nmem,2555)',celllnode(2555,1:Nmem),'o')
% hold on
% plot(celllnode(2555,1:Nmem),celllnode(2555,1:Nmem),'r')
% %%
% figure(4)

% plot(Ye(l:NCL,2555)',ECM-node(2555,1:NCL),'o')
% hold on
% plot(ECMnode(2555,1:NCL),ECMnode(2555,1:NCL),'r')
% %
%% Form A matrix
% N mem = size(xx.celllnodex,2);
% N CL = size(xxe.ECM node x,2);
% %%
% %%node ix;
% % Aeta = zeros(3*Nmem, (3*Nmem)*6);
% % for i = 1:Nmem
% % for j = 0:5
% % Aeta(i,i + j*(3*Nmem)) = 1;
% % end
% % end
% %
% % %%node iy;
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% % for i = 1:Nmem
% t for j = 0:5
% % Aeta((i + N mem), (i + Nmem) + j*(3*Nmem)) = 1;

end
% % end

% % %%node iz;
% % for i = 1:Nmem

% % for j = 0:5
% % A_eta((i + 2*Nmem), (i + 2*N-mem) + j*(3*N mem)) = 1;

end
% % end
% % %%
A_eta = sparse([eye(3*N__mem,3*Nmem), eye(3*Nmem,3*Nmem)])
A_etal = sparse([eye(3*N mem,3*Nmem)])
A_eta2 = sparse([eye(3*N-mem,3*Nmem)])
% spy(A eta)
% Aetae = sparse([eye(3*NCL,3*NCL), eye(3*NCL,3*NCL)])
A etael = sparse([eye(3*N CL,3*N CL)])
A_etae2 = sparse([eye(3*NCL,3*NCL)])

% spy(A etae)
A_etatot = sparse([Aetal,zeros(3*Nmem,3*Nmem +
6*NCL);zeros(3*Nmem,3*Nmem),A_eta2,zeros(3*Nmem,6*NCL);zeros(3*NCL,6
*Nmem),Aetael,zeros(3*NCL,3*NCL);zeros(3*NCL,6*Nmem+3*NCL),Aetae2]
);%sparse([eye(3*Nmem+3*NCL,3*Nmem),
eye(3*Nmem+3*NCL,3*Nmem),eye(3*N CL+3*Nmem,3*NCL),
eye(3*NCL+3*Nmem,3*NCL)]);
%% form eta
% eta = (1/(Ccort + Cc)).*[Ftractnode,FEnode+FLnode-
FTnode+Fcort+Ferror+Ferror2];
etal = (1/(Ccort + Cc)).*[Ftractnode];
eta2 = (1/(Ccort + Cc)).*[FEnode-
FTnode+Fcort+Ferror+Ferror2];%+(1/(Ccort + Cc)).*FLnode;

% eta = eta./lOe-10;
etal = etal./lOe-10;
eta2 = eta2./lOe-10;

% etae = (1/Ce).*[FtractECM node,FEECM node+FEerror+FF error2];
etael = (1/Ce).*[FtractECMnode];
etae2 = (1/Ce).*[FEECMnode+FEerror+FFerror2];

% etae = etae./lOe-10;
etael = etael./lOe-10;
etae2 = etae2./lOe-10;

% n eta = size(eta,2);
n_etal = size(etal,2);
n_eta2 = size(eta2,2);

% netae = size(etae,2);
n_etael = size(etael,2);
n_etae2 = size(etae2,2);
n etatot =size( [etal,eta2,etael,etae2] ,2); %size( [eta,etae],2);
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% clear Ftractnode FEnode FTnode Fcort Ferror FtractECMnode

FEECMnode FEerror
%% intergrate with Data using A (xdot = A*eta)
% % Y(:,l) = celll node(l,:)./lOe-
10;%[celllnodex(l,:),celll nodey(l,:),celllnodez(l,:)]
% % Ye(:,l) = ECMnode(l,:)./lOe-
10;%[ECMnodex(l,:),ECMnodey(l,:),ECMnodez(l,:) I

% Yl(:,1)

% Y2(:,1)

% Yel(:,1)

% Ye2(:,1)

=celllnodeFA(1,:)./lOe-10; %zeros(size(celll_node(1,:)));
= celll_nodealpha(1,:)./1Oe-10;

= ECMnodeFA(1,:)./lOe-10;
= ECM node alpha(1,:)./1Oe-10;

% Ytot(:,1) =[Yl(:,1);Y2(:,1);Yel(:,1);Ye2(:,1)]; %[Y(:,1);Ye(:,1)];

% % for i = 2:T

% % ti = time(i-1);
% % % yi = abs(Y(:,i-1));
% % % yei = Ye(:,i-1);
% % yyi =Ytot(:,i-1); %yi;yei];

% % % sumF = A eta*eta(i-l,:)';
FLnode(i-l,:) - FTnode(i-l,:) +
% % % sumFe = A etae*etae(i-1,:)

%Ftractnode(i-l,:)+ FEnode(i-l,:) +
F_cort(i-1,:) + Ferror(i-l,:);
';

% % etatot(i-l,:) = [etal(i-l,:),eta2(i-l,:),etael(i-l,:),etae2(i-

1,:)]';
% % dYdttot(:,l) = A_etatot*etatot(i-l,:)';

% % % dYdt(:,l) = (1/(Ccort + Cc)).*sumF;
% % % dYedt(:,l) = sumFe;

% % % Y(:,i) = abs(yi) + dt*dYdt(:,l);

% % % Ye(:,i) = yei + dt*dYedt(:,l);
% % Ytot(:,i) =yyi + dt*dYdttot(:,l);

% % tt = [tt;ti];

% * end

% % % plot(Ye(l:NCL,2555).*10e-10, ECMnode(2555,1:NCL))

% % % plot(Y2(3*Nmem+NCL+1:3*Nmem+2*NCL,2555).*10e-10,
ECM node(2555,NCL+1:2*NCL))
% % %%
% % % figure(l)
% % % plot(Ye(1:1000:end,:),'o')
% % % hold on
% % % plot(ECMnode(l:end-1,1:1000:end))

% % figure(2)
% % plot(Ytot(1:3*Nmem,1:100:2000)'.*10e-
10,celllnodeFA(1:100:2000,:),'o')
% % hold on
% % plot(celll_nodeFA,celllnodeFA,'r')

% % figure(2)
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% % plot(Ye',ECMnode,'o')
% % hold on
% % plot(ECMnode,ECMnode,'r')
%% PCA Analysis
xxprime = matfile('split xl_13_FLPn');
xxeprime = matfile('split-xel_13_FLPn');

x = [xxprime.celllnodeFA(1:end-1,:),xxprime.celllnode_alpha(l:end-l,:),
xxeprime.ECMnodeFA(l:end-l,:), xxeprime.ECMnodealpha(l:end-l,:)]./lOe-
10;%celll_node(1:end-1,:);

n_x_FA = size(xxprime.celll _nodeFA(l:end-l,:),2);
n_x-alpha = size(xxprime.celll_nodealpha(l:end-l, :) ,2);
n xeFA = size(xxeprime.ECMnodeFA(l:end-l,:),2);
n_xealpha = size(xxeprime.ECMnodealpha(l:end-l, :) ,2);

n_xphi = size (ECMnode (1: end-1, :) ,2);

clear celll_node ECMnode
n_x = size(x,2);

% % x dot = [celll node v(l:end-l,:),ECM node v(1:end-l,:)]./lOe-10;

clear celllnodev ECMnode_v

% % eta dot = diff(etall)./dt;
eta dotl = diff(etal,1,1)./dt;

etadot2 = diff(eta2,1,1)./dt;

% % etaedot = diff(etae,1,1)./dt;
etaedotl = diff(etael,1,1)./dt;
etaedot2 = diff(etael,1,1)./dt;
% % [etal(i-l,:),eta2(i-l,:),etael(i-l,:),etae2(i-l,:)]
x_star = sparse([x,etal(1:end-1,:),eta2(1:end-1,:),etael(1:end-
1,:),etae2(1:end-l,:)]);
%6 %

% clear etal etael eta2 etae2 x

% [N, ncol PCA] = size(x star);
% [xstarO, mu, sigma] = zscore(xstar);
% x_starO = xstaro.*repmat(sigma', [1, size(xstarO,1)])';
% % % % Cxx =(1/N)* xstar'*xstar;
% % % % save('covarXX2_3000','Cxx','-v7.3')
% tic
% CxxO =(1/N)* (xstar0')*xstarO;
% save('covarXX100_3000_splitl_13FLP','Cxx0','-v7.3')
% comptimel = toc;

% % % % % %%

% m_covX = matfile('covarXX100_3000_splitl_13FLP.mat');
% % % load covarXX20_3000_split12

% % % % %I

% tic
% [Vpca,Dtot] = eigs(mcovX.CxxO,100)
% comptime2 = toc;
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% %%
% save('EVDCxxescalelOO_splitl3_FLP','Vpca','Dtot','-v7.3');
% % % % % % %%
% % % % % % % load EVDCxxO
% % % % % % % load EVDCxxe2
% % % % % % load EVDCxxescale12
% % load EVDCxxescale20_splitl2_FLP

% mPCA = matfile('EVDCxxescale1iOsplit13_FLP.mat');
% [lambdatot,sorti] = sort(diag(abs(mPCA.Dtot)),'descend');
% Dtot = diag(lambdatot);
% Vpca = mPCA.Vpca;
% Vpca = Vpca(:,sorti);
% % m = rank(Dtot);
% % figure(3)
% % bar(log(lambdatot))
% % title('Eigenvalues of Covariance Matrix');
% % ylabel('log \lambda i')

% % % % % % % %%
% % % k = sum(lambdatot)./trace(mcovX.CxxO);%sum(lambdatot)./trace(CxxO);
% % % save('k20 split13_FLP','k')
% % % % % % % %%
% tic
% parfor i = 1:size(xstarO,l)

Zpca(i,:) = Vpca'*x-starO(i,:)';
% end
% % % % % % % %%
% eedot = [eta dotl,eta dot2,etae dotl,etae dot2];

% parfor i = 1:size(eedot,2)
K(:,i) = regress(eedot(:,i), Zpca);

% end

% % clear eta dot etae dot
% % % % % % % % % % %%
% % save('regress coeffesplit-10OLVscaleOl3_FLP','K');
% % comptime3 =toc;

% load regress_coeffesplit-10OLVscaleO13_FLP
% % % % % % % % % % %%
% % % etadotpca =Zpca*K;
% % %%
% % % figure(4)
% % % plot(eta-dotpca(1:500:end),eedot(1:500:end),'o')
% % %%
% % % clear eedot eta dotpca
% % % % %%
% Vx = Vpca (1:n_x,:);
% V_eta = Vpca(n-x+l:nx+netatot,:);
% A = (Vx'*Aetatot*Veta+Veta'*K');

% B = V x'*Aetatot*mu(nx+l:n x+netatot)';
% lambdaA = eig(A);

% % % figure(5)
% % % c = -pi:.Ol:pi;
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% % % cX = cos(c);
% % % cy = -sin(c);

% % % line(cx, cy, 'color', 'k');
% % % hold on
% % % plot(cx,zeros(size(cy)),'k--')
% % % hold on
% % % plot(zeros(size(cx)),cy,'k--')
% % % hold on
% % % title('Eigenvalues State of State Transition Matrix A')

plot(complex(lambdaA),'o','color','r','markersize',5,'linewidth',l);

% % % % % clear Vx Veta Aetatot

% % % % % % %%
% I_x_FA = sparse(zeros(nx+netatot,nx+netatot));
% I_x_FA(l:n_x_FA,l:n_x_FA) = eye(n_x_FA,n_x_FA);

% I_x_alpha = sparse(zeros(nx+netatot,nx+netatot));
% I_x alpha (n_x_FA+l:n_x_FA+n_x_alpha,n_x_FA+1:n_x_FA+n_x-alpha) =

eye(n-x-alpha,n_x_alpha);

% IxeFA = sparse((zeros(nx+netatot,nx+netatot)));

% IxeFA (n_x_FA+n-x-alpha+1:n_x_FA+nx_alpha+n-xeFA

, n_x_FA+n_x alpha+l:n_x_FA+n-x-alpha+nxeFA ) = eye(n xeFA,n_xeFA);

% Ixealpha = sparse(zeros(nx+netatot,nx+netatot));
% I xealpha
(n_x_FA+n_x alpha+nxeFA+l:n_x_FA+n-x-alpha+nxeFA+nxealpha, ...

% n_x_FA+n_x_alpha+n-xeFA+l:n_x_FA+n_x alpha+nxeFA+n-xealpha ) =

eye(nxealpha,n_xealpha);

% IetaFA = sparse(zeros(nx+netatot,nx+netatot));
% I_etaFA(nx+l:n_x+n_etal,nx+l:nx+n_etal) = eye(netal,netal);

% I eta alpha = sparse(zeros(nx+netatot,nx+netatot));
% I eta alpha
(nx+n_etal+l:n_x+netal+n_eta2,n_x+netal+l:n_x+n_etal+n_eta2) =

eye(neta2,neta2);

% I_etaeFA = sparse((zeros(nx+netatot,nx+netatot)));
% I_etaeFA

(nx+n_etal+n_eta2+1:n_x+netal+n_eta2+netael,n_x+netal+neta2+1:n x+n e
tal+neta2+netael ) = eye(netael,netael);

% Ietaealpha = sparse(zeros(nx+netatot,nx+netatot));
% Ietaealpha
(n x+n etal+n eta2+n etael+l:n x+n etal+n eta2+n etael+n etae2, ....
% n_x+netal+neta2+netael+l:nx+netal+neta2+netael+netae2 ) =

eye(netae2,netae2);

% % % % % % II = Ix _FA + I x alpha + I xeFA + Ixe alpha + I etaFA +
I_etaalpha + IetaeFA + Ietaealpha;
% % % % % % % spy(II)

% % % % % % I xphi = zeros(n x+n etatot,n x+n etatot);
% % % % % % Ixphi(nxa+l:nx,nxa+1:n_x) = eye(nxphi,nxphi);

106



Appendix A

% % % % % % I_etaalpha = zeros(n x+netatot,nx+netatot);

% % % % % % I_etaalpha(n-x+1:nx+neta,nx+l:nx+neta) 
=

eye(neta,neta);

% % % % % % I etaphi = zeros(nx+netatot,nx+netatot);

Ietaphi(nx+neta+l:n x+n eta+n_etae,n_x+neta+1:n_x+neta+netae) 
=

eye(netae,netae);

% % % % % % I_alpha = I_xalpha + I-etaalpha;
% % % % % % Iphi = Ixphi + Ietaphi;

% P_x_FA= Vpca'*I-xFA*Vpca;
% P_x_alpha = Vpca'*I x alpha*Vpca;
% P xe FA = Vpca'*I xeFA*Vpca;

% P xe alpha = Vpca'*I_xe_alpha*Vpca;
% P_etaFA = Vpca'*IetaFA*Vpca;
% P eta alpha = Vpca'*I_etaalpha*Vpca;
% P_etaeFA = Vpca'*IetaeFA*Vpca;

% P_etaealpha = Vpca'*Ietae-alpha*Vpca;

% % % %%
% tic
% Zhat(:,1) = Zpca(1+3000,:)';
% T = 3000;
% for i = 2:T-1

% ti =time(i-1);
zi= Zhat(:,i-1);

% % etahat(:,i-1) = Veta*zi;

% % etadothat(:,i-1) = KI*zi;

% % zFAi = P xFA*zi;
% % z alphai = P x alpha*zi;
% % zeFA = PxeFA*zi;
% % ze_alpha = Pxe_alpha*zi;

% % zetaFA = PetaFA*zi;
% % zeta-alpha = Petaalpha*zi;

% % zetaeFA = PetaeFA*zi ;

% % zetaealpha = P-etae-alpha*zi;

% dZdt(:,l) = A*zi + B + V x'*((l/(Ccort +

Cc)).*[zeros(n_x_FA,1);FLnode(i-
1+3000,:)';zeros(nxeFA+n xealpha,l)]./lOe-10);%V 

x'*(A eta*etahat(:,i-

1)) + Veta'*etadothat(:,i-l);%
% Zhat(:,i) = zi + dt*dZdt(:,1);

% tt =[tt;ti];

% end
% comptme3 = toc;

% %%
% figure(6)
% plot(Zhat(:,1:10:end),Zpca(1+3000:10:T-1+3000,:)','o')
% hold on
% plot(Zpca(l:T-1,:)',Zpca(l:T-1,:)')

% xhatO = (Vpca*Zhat);

% xhat = (Vpca*Zhat + repmat(mu', [1, size(xstar0(1:T-1,:),1))).*10e-10;

x_starl = xstar.*10e-10;
x starl = x starl';
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% % %%
% % figure(7)
% % % plot(xhat(1,1:2999))
% % % hold on
% % % plot(xstarl(1:2999,1),'o')

% % % plot(xhat(1:3*Nmem,2555))
% % % hold on
% % % plot(xstarl(2555,1:3*Nnmem),'o')
% % % plot(xhat(1:3*Nimem,1:10:2999),xstarl(1:10:2999,1:3*Nmem)','o')

plot(xhat(3*N imem+2*N CL+1:3*N mem+3*N CL,1:10:2999),x starl(1:10:2999,3*N

_mem+2*NCL+1:3*Nmem+3*NCL)', 'o')

% % plot(xhat(:,1:100:2999),xstarl(3000+1:100:3000+2999,:)','o')

% % xhat = xhat';

% % x_starl = xstarl';
% % xl_cell = xhat(l:n_x_FA,:) + xhat(n_x_FA+l:n x_FA+n_x_alpha,:);
x1_cell =full( xstarl(1:n_x_FA,:) +
x_starl(n_x_FA+l:n_x_FA+n_x_alpha,:));
x1_cell = xlcell';
xlECM = full(xstarl(n_x_FA+n_x_alpha+l:n_x_FA+n_x-alpha+nxeFA,:) +
x_starl(n_x_FA+n_x-alpha+nxeFA+l:n_x_FA+n-x-alpha+nxeFA+nxealpha,:))

;%xhat(:, n_x_FA+n_xIalpha+l:n_x_FA+n xalpha+nxeFA) +
xhat(:,n_x_FA+n x alpha+n xeFA+l:n_x_FA+n-x-alpha+nxeFA+nxealpha)
xl_ECM = x1_ECM';
vl_ECM = diff(xlECM);

A.3 Polarity Control

clear all
close all

mD = matfile('highest_stiff_22');
m _P = matfile('Polarity22');
kk = (1/60); %%s-l
Pvhat = [1;
Pvhat(l,:) = [inP.Polarx(l,l) ;mP.Polary(l,l);mP.Polarz(1,1)]';
P_vO = mP.Polarx(1,1) ;m_P.Polary(1,1);rmP.Polarz(1,1)] ';

for t = 1:3000-1

P x = mP.Polarx(t,1) ;
P-y = mP.Polary(t,l) ;
P_z = mP.Polarz(t,l) ;

P_v(t,:) = [P_x;Py;P_z]';

P-vr(t,:) = round(P-v(t,:),l,'significant');

d x = m_D.dsmaxx(t,l) ;
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d_y = m D.dsmax_y(t,l) ;
d_z = mD.dsmaxz(t,l) ;

d-v(t,:) = [d-x;d y;dz] ';

d-vn(t,:) =dv(t,:)./norm(d-v(t,:));

d-vnr(t,:) = round(d-vn(t,:),3,'significant');
Pvhatr(t,:) = round(Pvhat(t,:),3,'significant');

ang-dv(t) = atan2d(norm(cross(P vO,d-vn(t,:))),dot(P_vo,d-vn(t,:)));
angdv(t)=wrapTo360(angdv(t));
ang-dvr(t)=round(angdv(t));

dPv(t,:)= (Pvhat(t,:)*(Pvhat(t,:)'*d-vn(t,:)) -
d_vn(t,:)*(Pvhat(t,:)'*Pvhat(t,:))) ;

Pvhat(t+l,:) = Pvhat(t,:) + kk.*dPv(t,:);
Pvhat(t+l,:) = Pvhat(t+1,:)./norm(Pvhat(t+l,:));

end
figure(1)
plot(Pv,Pvhat(l:end-l,:))

% % save('Controllerrealdat', 'd_v','P-v','d-vn','ang-dv','ang_dr')
% % load Controllerrealdat
%% Regress dmaxstiff
m_M = matfile('Modelled_100_land24_FLP');
% mdim = matfile('dimensionsmodelled20_13_FLP');

% load Modelled_10_FLP2_1
load dimensionsmodelled20_13_FLP

% N mem = m dim.N mem;
Vpca = mM.Vpca;

mmP = matfile('IandP land24_100');

P_phi = (mmP.PetaeFA + mmP.Petae-alpha);%Pphi = Vpca'*Iphi*Vpca;

P_alpha= (eye(size(P-phi)) - Pphi);%Palpha = Vpca'*Ialpha*Vpca;

T = 2999;

x_starO = mM.xstarO;

for i = 1:T
Zpca(i,:) = Vpca'*x staro(i,:)';

end

Zphi = Pphi*Zpca';

sumx =zeros(3, size(xstaro,2));
sumx(l,1:N_mem) =(l/Nmem).*ones(1,N_mem);
sumx(2,N_mem+1:2*Nmem) = (1/Nmem) .*ones(1,N_mem);
sumx(3,2*Nmem+1:3*N mem) = (1/Nmem).*ones(1,N_mem);
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Vc = sumx*Vpca;

Zc = (V c'*V c)*Zpca';

% dvn = dvn(1:end-l,:);

[d_vO, mud, sigmad] = zscore(dvn);

[ZpcaO, muZ, sigmaZ] = zscore(Zpca);

% angdvr = angdvr(1:end-1);

% [ang_dvrO, mu, sigma] = zscore(ang_dvr);

% [Kd,Kdint,r,rint,stats] = regress(ang-dvrO',
[ones(size(Zphi,2),1),Zpca0] ); %regress(d v(:,i),

[ones(size(Zphi,2),1),Zphi',Zc'] ); %regress(d-v(:,i),

for i = 1:size(dvn,2)

[Zphi',Zc']

[Kd(:, i) , Kdint,

[ones (size (Zphi, 2)
[ones(size(Zphi,2)

statsl(:,i) =

end

r, rint, stats]
,1) , Zphi' , Zc']
,1) , Zphi' , Zc']
stats';

=regress(d vn(:,i),
); %regress(dv(:,i),
); %regress(dv(:,i), [Zphi',Zc'1

(d_v')*[Zphi',Zc'];

[Zphi',Zc']'*[Zphi',Zc'];
YY*inv(XX);

% ang_dvrpca
% ang_dvrpca
repmat(mu',

= Kd'*[ones(size(Zphi,2),1)
= ang_dvrpca.*repmat(sigma'
[1, size(angdvrpca,2)]);

Zpcao] ';
[1, size(angdvrpca,2)]) +

d_vpca = Kd'*[ones(size(Zphi,2),1),Zphi',Zc']';

% dvpca = dvpca.*repmat(sigmad',
size(dvpca,2)]);
d-vpca = d_vpca';

figure(2)

% plot(ang_dvr',ang_dvrpca,'o')
% hold on
% plot(ang-dvr',angdvr','--')

[1, size(d_vpca,2)]) + repmat(mud',
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plot (dvpca, d_vn, ' o' )
hold on
plot(dvn,d_vn, '--')

kk = (1/60); %%sA1

PvhatZ(1,:) =Pv(1,:);
for t = 1:3000-1

P x = mP.Polarx(t,l) ;
P-y = mP.Polary(t,1) ;
P z = mP.Polarz(t,l) ;

%6 P_v(t,:) = [Px;P-y;Pz]';

d x = mD.ds maxx(t,1);
d_y = m_D.ds_max_y(t,l)
d_z = mD.dsmaxz(t,1)

d_v(t, :) = [d_x;d_y;d_ z ';

dvpca(t,:) = dvpca(t,:)./norm(d-vpca(t,:));

dPv(t,:)= (PvhatZ(t,:)*(PvhatZ(t,:)'*dvpca(t,:)) -
d-vpca(t,:)*(PvhatZ(t,:)'*PvhatZ(t,:)))

PvhatZ(t+1,:) = PvhatZ(t,:) + kk.*dPv(t,:);
PvhatZ(t+1,:) = PvhatZ(t+l,:)./norm(PvhatZ(t+l,:));

end
PvhatZr = round(PvhatZ(:,:),l,'significant');

figure(3)
plot(Pv,PvhatZ(1:end-1,:),'o')

% mangle =matfile('Potrude33new');
m_angle = matfile('Potrude22new'); %matfile('Potrude33');

P vO =P v(1,:);

for t = 1:3000-1

anghat(t) =
atan2d(norm(cross(P_vO,PvhatZr(t,:))),dot(P_vO,PvhatZr(t,:)));

anghat(t)=wrapTo360(anghat(t));
anghatd(t)=round(anghat(t));
anghatdnew(t)=round(anghatd(t),1,'significant');

end

k_max = find(anghatd > max(mangle.angd));
anghatd(kmax) = max(m-angle.angd);

[b,bint,r,rint,stats] = regress(anghatd',
[ones(size(anghatd')),mangle.angd(:,1:end-1)'] );
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figure (4)
plot(anghat,'o')
hold on
plot(anghatd,'r-')
hold on
plot(mangle.angd(:,l:end-1),'go')

figure(5)
plot(m -angle.angd(:,l:end-1),anghatd,'o')
angdest = anghatd;

save('Potrudeland24est_1_10OLV2','angdest','Kd,'P-vO','PvhatZr','P v','P_
vr' , '-v7. 3');

A.4 2-Cell Superposition Approach

clear all
close all

Cc = le-3;
Ccort = le-3;
Ce = Cc;
% N_mem = 189;

load dimensionsmodelled20_13_FLP
load CellECMinterfacec24

T = 2000;
f_dxl = matfile('Cell_f_dx22');
xxl = matfile('Cellx22');

f dx2 = matfile('Cell f dxc24');
xx2 = matfile('Cellxc24');

% celllnode =

[[xxl.celllnodex;xx2.celll_nodex;xx3.celll_node_x, [xxl.celll_node y;xx
2.celllnodey;xx3.celllnode_y], [xxl.celllnodez;xx2.celllnodez;xx3.ce
111 node z];
% cellinode v =

[[fdxl.celllnodevx;fdx2.celllnodevx;fdx3.celllnodevx], [fdxl.cell
1_node_vy;fdx2.cell1_node_vy;fdx3.celllnode_vy], [fdxl.celllnodevz;f_
dx2.celllnodevz;fdx3.celllnodevz]];
% Ftractnode =
[[fdxl.Ftract_x_node;fdx2.Ftract_x_node;fdx3.Ftract_x_node], [fdxl.Ftra
ct_y_node;fdx2.Ftract-y-node;fdx3.Ftract_y_node], [fdxl.Ftract_z_node;f_
dx2.Ftract_z_node;fdx3.Ftract_z_node]];
% FEnode =

[[f_dxl.FEnodex;f_dx2.FEnodex;f_dx3.FEnode_x] , [fdxl.FEnode_y;f_dx2.
FEnode_y;fdx3.FE_node_y], [f_dxl.FEnodez;fdx2.FEnodez;f_dx3.FEnode_
z]];

112



Appendix A

FL node =

[ [ f _dxl. FLnode_x; f _dx2. FLnode_x],[ f _dxl. FL node_y; f _dx2. FLnodey],[ f _dx
1.FLnodez;fdx2.FLnode_z]];
% FT node =
[[fdxl.FTnode_x;fdx2.FTnode_x;fdx3.FTnodex],[fdxl.FT node_y;fdx2.

FTnodey;f dx3.FT_node_y], [f_dxl.FTnodez;fdx2.FTnodez;fdx3.FTnode_
z] ;
% F cort =

[Ccort.*[fdxl.cortlnodevx;fdx2.cortlnodevx;fdx3.cortlnodevx],Ccor
t.*[fdxl.cortlnodevy;f dx2.cortlnode_vy;f_dx3.cortlnode_vy],Ccort.*[f

_dxl.cortlnodevz;fdx2.cortlnodevz;fdx3.cortlnodevz]];
% Ferror =
[[fdxl.Ferrorx;fdx2.Ferrorx;fdx3.Ferrorx],[fdxl.Ferrory;f_dx2.Fer
rory;f_dx3.F-errory,[f_dxl.Ferrorz;fdx2.Ferrorz;fdx3.Ferrorz]];

% sumFF = Ftractnode+ FEnode + FLnode- FTnode+ Fcort + Ferror;
% Ferror2cl = (Ccort +
Cc).*[celllnodev(1,:);diff(celllnode(1:3000,:))]- sumFF(1:3000,:);
% Ferror2c2 = (Ccort +
Cc).*[celllnodev(1+3000,:);diff(celll_node(3000+1:6000,:))]-
sumFF(1+3000:6000,:);
% Ferror2c3 = (Ccort +
Cc).*[celll_nodev(1+2*3000,:);diff(celll_node(2*3000+1:end,:))]-
sumFF(1+2*3000:6000+3000,:);
% F_error2 = [F_error2cl;Ferror2c2;Ferror2c3];

% f dxel = matfile('Cell f dxe22');
% xxel = matfile('Cellxe22');

% f_dxe2 = matfile('Cell_f_dxc24');
% xxe2 = matfile('Cellxc24');

% ECMnode =

[[xxel.ECMnodex;xxe2.ECMnodex;xxe3.ECMnode_x], [xxel.ECMnode_y;xxe2.E
CMnode y;xxe3.ECM_node_y], [xxel.ECMnodez;xxe2.ECMnodez;xxe3.ECMnode_
z]];
% ECMnode_v =

[[f _dxel.ECMnodevx;fdxe2.ECMnodevx;fdxe3.ECMnodevx],[fdxel.ECMno
de_vy;f_dxe2.ECMnodevy;f dxe3.ECM nodevy], [fdxel.ECMnode_vz;fdxe2.EC
M node vz;f dxe3.ECM node vz]];
% FtractECMnode=
[[f _dxel.FtractECM_x_node;fdxe2.FtractECM_x_node;fdxe3.FtractECM_x_node]
,[f _dxel.FtractECMy_node;f _dxe2.FtractECM_ynode;f _dxe3.FtractECM_y_node]
,[fdxel.FtractECM_z_node;fdxe2.FtractECM_z_node;fdxe3.FtractECM_z_node]
1;
% FEECMnode =

[f _dxel. FEECM_x_node; f_dxe2. FEECM_x_node; f_dxe3. FEECM_x_node] , [fdxel.FEE
CMy_node;f_dxe2.FEECM_y_node;f_dxe3.FEECM_y_node] , [fdxel.FEECM_z_node;f_
dxe2.FEECM_z_node;fdxe3.FEECM_z_node]);
% FEerror =
[[f_dxel.FEerrorx;fdxe2.FEerrorx;fdxe3.FEerrorx], [fdxel.FEerrory;f_
dxe2.FEerrory;f_dxe3.FEerrory], [fdxel.FEerrorz;fdxe2.FEerrorz;fdxe3
.FEerrorz]];

% sumFFe = FtractECMnode+ FEECMnode + FEerror;
% % FFerror2 = Ce.*[ECMnodev(1,:);diff(ECMnode)]- sumFFe;
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% FFerror2cl = (Ccort + Cc).*[ECMnodev(l,:);diff(ECMnode(1:3000,:))]-
sumFFe(1:3000,:);
% FFerror2c2 = (Ccort +
Cc).*[ECMnodev(1+3000,:);diff(ECMnode(3000+1:6000,:))]-
sumFFe(3000+1:6000,:);
% FFerror2c3 = (Ccort +
Cc) .*[ECMnodev(1+2*3000,:);diff(ECMnode(2*3000+1:end,:))]-
sumFFe(2*3000+1:6000+3000,:);
% FFerror2 = [FFerror2cl;FFerror2c2;FFerror2c3];

m Model = matfile('Modelled 100_land24_FLP.mat');
% xstar = mModel.xstarl;
% [x,eta(1:end-l,:),etae(l:end-l,:)]
% etja = [Ftractnode,FEnode+FLnode-FTnode+Fcort+Ferror+Ferror2];
% etae = [FtractECMnode,FEECMnode+FEerror+FFerror2];
% tic
% parfor time = 1:T-1
% Iphitochil = sparse(zeros(n x+n etatot,n x+n etatot));
% Iphitochi2 = sparse(zeros(nx+netatot,nx+netatot));
% % I_chitochi = zeros(nx+netatot,nx+netatot);
% for i = 1:length(icellattach{time}) %%name/index of attached mem
node
%W i_attached = icellattach{time}(i);
% ii = grid indexmemnode{iattached}(time);
%6 I-phitochil(iattached,n_x_FA+n_x_alpha + ii) = 1;

I-phitochi2(nx+iattached,n x+netal+neta2 + ii) = 1;
% % I_chitochi(nx+iattached,nx+iattached) = 1;
% end
% IIchi-phil{time} = sparse(Iphitochil);
% II_chiphi2{time} = sparse(Iphitochi2);
% % IIchi-chi{time} = sparse(Ichitochi);
% % Chi-phil(time,:) =II_chiphil{time}*x_star(time,:)';
% I Chijphi2(time,:) =IIchi-phi2{time}*xstar(time,:)';
% % Chichi(time,:) =IIchi-chi{time}*x-star(time,:)';
I end
% comptime = toc;
% save('Projectionsc24','IIchiphil', 'IIchi-phi2', '-v7.3')

% mProfj = matfile('Projectionsc24.mat');
m_Profj = matfile('Projections24L.mat');

% I_x_FA = sparse(zeros(nx+netatot,n_x+netatot));
% I_x_FA(l:n_x_FA,l:n_x_FA) = eye(n_x_FA,n_x_FA);

% I_xalpha = sparse(zeros(n x+n etatot,n x+n etatot));
% I_xalpha (n_x_FA+l:n_x_FA+n_x_alpha,n_x_FA+l:n_x_FA+n_x_alpha) =
eye(n-x-alpha,n_x_alpha);

% IxeFA = sparse((zeros(nx+netatot,nx+netatot)));
% IxeFA (n_x_FA+n-x_alpha+1:n_x_FA+n_x_alpha+n-xeFA
,n_x_FA+n_x-alpha+l:n_x_FA+n-x-alpha+nxeFA ) = eye(nxeFA,n_xeFA);

% I_xealpha = sparse(zeros(nx+netatot,nx+netatot));
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% I xe alpha
(n_x_FA+n_x_alpha+n-xeFA+1:n_x_FA+n-x alpha+n_xeFA+nxealpha, ....

% n_x_FA+n-x-alpha+nxeFA+l:n x_FA+n_x alpha+nxeFA+n-xe-alpha ) =

eye(nxealpha,n_xe_alpha);

% IetaFA = sparse(zeros(nx+netatot,nx+netatot));
% IetaFA(nx+1:n_x+netal,n_x+l:n_x+n__etal) = eye(netal,n_etal);

% Ietaalpha = sparse(zeros(nx+netatot,nx+netatot));
% Ietaalpha
(nx+netal+l:n x+netal+n_eta2,n_x+n_etal+l:n x+n etal+neta2) =

eye(neta2,neta2);

% I_etaeFA = sparse((zeros(nx+netatot,nx+netatot)));
% I_etaeFA
(nx+n_etal+n_eta2+1:n_x+n_etal+n_eta2+n_etael,n_x+n_etal+n_eta2+1:n x+n e

tal+neta2+netael ) = eye(netael,netael);

% Ietae-alpha = sparse(zeros(nx+netatot,nx+netatot));
% Ietae alpha
(nx+netal+neta2+netael+l:nx+netal+neta2+netael+netae2, ....
% n_x+netal+neta2+netael+l:nx+netal+neta2+n etael+netae2 ) =

eye(netae2,netae2);

% xFA = x star*I xFA;

% plot(-(Ce/(Cc + Ccort)).*Chiphil(:,l:n-x),xFA(1:999,1:n-x),'o')
% hold on
% plot(xFA(1:999,1:n-x),x_FA(1:999,1:n-x))

% plot(-(Ce/(Cc +
Ccort)).*Chi-phil(50,icell attach{50}),xFA(50,icellattach{50}),'o')
% hold on
% plot(xFA(50,icellattach{50}),xFA(50,icellattach{50}))

% % plot(-(Ce/(Cc + Ccort)).*Chi-phi2(500,n x+i cellattach{500}),
etaFA(500,n x + i cellattach{500}),'o')
% % hold on
% % plot(etaFA(500,nx+icellattach{500}),etaFA(500,nx +
i_cellattach{500}))
% % load Modelled_10
Vpca = mModel.Vpca;
V_x = Vpca(l:nx,:);

clear Vpca
mmP = matfile('IandPland24_100.mat');
tt = [1;
time = 1:2000;
T = 2000;
dt = 1;

Zhat(:,l) = mModel.Zpca(l,:)';
IIchiphi2 = mProfj.IIchiphi2;
IIchiphil = mProfj.II_chiphil;
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Pphi = (mmP.P_xeFA + mmP.PetaeFA + mmP.P_xe_alpha+
mmP.Petae_alpha);
Palpha = (eye(size(Pphi)) - Pphi);
tic
for i = 2:T-1

ti = time(i-1);
zi = Zhat(:,i-1);

z_alphai = mmP.P_x_alpha*zi;
%6 zeFA = mmP.PxeFA*zi;

zealpha = mmP.Pxealpha*zi;
zetaalpha = mmP.Petaalpha*zi;

z_alpha = Palpha*zi;
zetaeFA = mmP.PetaeFA*zi
zetaealpha = mmP.Petae alpha*zi;

zphi = Pphi*zi;%zetaeFA + zeFA + ze_alpha+ zetae-alpha;
H1 = ((mModel.Vpca)'*(-(Ce/(Cc +

Ccort)).*II-chiphil{ti})*m_Model.Vpca);
H2 = ((mModel.Vpca)'*(-(Ce/(Cc +

Ccort)).*II chiphi2{ti})*mModel.Vpca);
z_FAi = Hl*zphi;%mmP.P_x_FA*zi;
zetaFA = H2*zphi;%%mmP.PetaFA*zi;

etahat(:,i-1) = V eta*zi;
%6 etadothat(:,i-1) = K'*zi;

dZdt(:,l) = mModel.A*Palpha*zi +mModel.A*(H2+eye(100,100))*zphi ...
+ mModel.B + V_x'*((1/(Ccort + Cc)).*[zeros(n_x_FA,1);FLnode(i-

1,:)';zeros(nxeFA+nxealpha,l)]./le-10);%A*zi;%V x'*(A eta*etahat(:,i-
1)) + Vetal*etadothat(:,i-1);

Zhat(:,i) = zi + dt*dZdt(:,l);
tt =[tt;ti];

HH1(:,:,i) = H1;

HH2(:,:,i) = H2;

end
save('Hmapcelllland24_100','HH1','HH2','-v7.3')
comptime2 = toc;

A.5 10-Cell Superposition Approach

clear all
close all

Cc = le-3;
Ccort = le-3;
Ce = Cc;
% N mem = 189;

load dimensions modelled20_13_FLP
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% load CellECMinterfacec24

T = 2000;
% f dxi = matfile('Cell f dx22');
% xxi = matfile('Cellx22');

% fdx2 = matfile('Cell_f_dxc24');
% xx2 = matfile('Cellxc24');

% cellinode =

[[xxi.cellinodex;xx2.celll_nodex;xx3.celllnodex], [xxi.cellinode_y;xx
2.cellinodey;xx3.cellinode_y], [xxl.cellinodez;xx2.cellil_nodez;xx3.ce
l1inode_z]];
% celllnode v =

[[fdxi.celll_nodevx;fdx2.celll_nodevx;fdx3.cellinodevx], [fdxl.cell
1_node_vy;fdx2.celllnode_vy;fdx3.ceilinodevy], [fdxi.celllnodevz;f_
dx2.celli node vz;f dx3.cell1_node vz]];
% Ftractnode =
[[f_dxi. Ftract_x_node; f_dx2. Ftract_x_node; f_dx3. Ftract_x_node] , [f_dxl. Ftra
ct-y_node;f _dx2.Ftract-y-node;fdx3.Ftract_y_node], [fdxi.Ftract_z_node;f_
dx2.Ftract_z_node;fdx3.Ftract_z_node]];
% FEnode =
[[f_dxi.FEnodex;f_dx2.FEnodex;f_dx3.FEnodex], [f_dxl.FE nodey;f_dx2.
FEnodey;f dx3.FE_node_y], [f_dx.FEnodez;f_dx2.FEnodez;f_dx3.FEnode_
Z]]

% FLnode =
[ [f_dxl. FLnodex; f_dx2. FLnode_x, [f_dxi. FL nodey; f_dx2. FL nodey] ,[f_dx
1.FLnodez;f_dx2.FLnode_z)];
% FTnode =

[[fdxi.FTnodex;fdx2.FTnodex;fdx3.FTnodex],[fdxi.FT nodey;fdx2.
FTnode_y;fdx3.FT_node_y], [f_dx.FTnodez;fdx2.FTnodez;fdx3.FTnode_
z];
% Fcort =
[Ccort.*[fdxi.cortinodevx;fdx2.cortinodevx;fdx3.cortlnodevx],Ccor
t.*[f dxl.cortlnode_vy;fdx2.cortinodevy;f_dx3.cortlnode_vy],Ccort.*[f

_dxi.cortinodevz;f_dx2.cortlnodevz;fdx3.cortlnodevz]];
% Ferror =
[[fdxi.Ferrorx;fdx2.Ferrorx;fdx3.Ferrorx],[fdxl.Ferrory;f_dx2.Fer
rory;f_dx3.F-errory],[f_dx.Ferrorz;fdx2.Ferrorz;fdx3.Ferrorz]];

% sumFF = Ftractnode+ FEnode + FLnode- FTnode+ Fcort + Ferror;
% Ferror2cl = (Ccort +
Cc).*[cellinodev(l,:);diff(celllnode(1:3000,:))]- sumFF(1:3000,:);
% Ferror2c2 = (Ccort +
Cc).*[celllnodev(1+3000,:);diff(celllnode(3000+1:6000,:))]-
sumFF(1+3000:6000,:);
% Ferror2c3 = (Ccort +
Cc).*[celll_nodev(1+2*3000,:);diff(celllnode(2*3000+1:end,:))]-
sumFF(1+2*3000:6000+3000,:);
% Ferror2 = [Ferror2ci;Ferror2c2;Ferror2c3];

% fdxel = matfile('Cell_f_dxe22');
% xxel = matfile('Cell_xe22');

% f_dxe2 = matfile('Cell_f_dxc24');
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% xxe2 = matfile('Cellxc24');

% ECMnode =

[[xxel.ECMnodex;xxe2.ECMnodex;xxe3.ECMnode_xl, [xxel.ECMnode_y;xxe2.E
CMnodey;xxe3.ECM node_yJ, [xxel.ECMnodez;xxe2.ECMnodez;xxe3.ECMnode_
z]];
% ECMnode_v =

[[f_dxel.ECMnodevx;fdxe2.ECMnodevx;fdxe3.ECMnodevx],[fdxel.ECMno
de_vy;f_dxe2.ECMnode_vy;f_dxe3.ECM nodevy], [fdxel.ECMnodevz;f_dxe2.EC
M node vz;f dxe3.ECM node vz]];
% FtractECM node=
[[f_dxel.FtractECM_x_node;fdxe2.FtractECM_x_node;fdxe3.FtractECM_x_node]
,[fdxel.FtractECM_y-node; f_dxe2.FtractECM_y_node; f_dxe3.FtractECM_y_node]
,[fdxel.FtractECM_z_node;fdxe2.FtractECM_z_node;fdxe3.FtractECM_z_node]
1;
% FEECMnode =
[[f_dxel.FEECM_x_node;fdxe2.FEECM_x_node;fdxe3.FEECM_x_node], [fdxel.FEE
CM_y_node;fdxe2.FEECM_y_node;f_dxe3.FEECM_y_node], [f_dxel.FEECM_z_node;f_
dxe2.FEECM_z_node;fdxe3.FEECM_z_node]];
% FEerror =
[[f_dxel.FEerrorx;fdxe2.FEerrorx;fdxe3.FEerrorx],[fdxel.FEerrory;f_
dxe2.FEerrory;f_dxe3.FEerrory], [fdxel.FEerrorz;fdxe2.FEerrorz;fdxe3
.FEerrorz]];

% sumFFe = FtractECM node+ FEECM node + FEerror;
% % FFerror2 = Ce.*[ECMnodev(1,:);diff(ECMnode)]- sumFFe;

% FFerror2cl = (Ccort + Cc).*[ECMnodev(1,:);diff(ECMnode(1:3000,:))]-
sumFFe(1:3000,:);
% FFerror2c2 = (Ccort +
Cc).*[ECMnodev(1+3000,:);diff(ECMnode(3000+1:6000,:))]-
sumFFe(3000+1:6000,:);
% FFerror2c3 = (Ccort +
Cc).*[ECMnodev(1+2*3000,:);diff(ECMnode(2*3000+1:end,:))]-
sumFFe(2*3000+1:6000+3000,:);
% FFerror2 = [FFerror2cl;FFerror2c2;FFerror2c3];

load FLnode_10cells
m_Model = matfile('Modelled_100_10cellsFLP.mat');
% x_star = mModel.xstarl;
% [x,eta(l:end-1,:),etae(1:end-1,:)]
% etja = [Ftractnode,FEnode+FLnode-FTnode+Fcort+Ferror+Ferror2];
% etae = [FtractECM_node,FEECMnode+FEerror+FFerror2];
% tic
% parfor time = 1:T-1
% Iphitochil = sparse(zeros(nx+netatot,nx+netatot));
% Iphitochi2 = sparse(zeros(nx+netatot,nx+netatot));
% % I_chitochi = zeros(nx+netatot,nx+netatot);
% for i = 1:length(i cellattach{time}) %%name/index of attached mem
node

i_attached = icellattach{time}(i);
ii = gridIindex memnode{i_attached}(time);

% I_phitochil(iattached,n_x_FA+n_x-alpha + ii) = 1;
I_phitochi2(nx+iattached,nx+netal+neta2 + ii) =1;

% % I chitochi(nx+i attached,nx+iattached) = 1;
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% end
% IIchi-phil{time} = sparse(Iphitochil);
% II_chi_phi2{time} = sparse(Iphitochi2);
%% IIchi-chi{time} = sparse(I_chitochi);
% % Chi-phil(time,:) =IIchijphil{time}*xstar(time,:)';
% % Chi-phi2(time,:) =IIchi-phi2{time}*xstar(time,:)';
% % Chichi(time,:) =IIchi-chi{time}*xstar(time,:)';
% end
% comptime = toc;
% save('Projectionsc24','IIchiphil','IIchi-phi2','-v7.3')

% m_Profj = matfile('Projectionsc24.mat');
m_Profj = matfile(I'Projections24L.mat');

% I_x_FA = sparse(zeros(nx+netatot,nx+netatot));
% I_x_FA(1:n_x_FA,1:n_x_FA) = eye(n_x_FA,n_x_FA);

% I_xalpha = sparse(zeros(nx+netatot,nx+netatot));
% I_xalpha (n_x_FA+:n_x_FA+n_x_alpha,n_x_FA+l:n_x_FA+n_x-alpha) =

eye(n-x-alpha,n_x_alpha);

% IxeFA = sparse((zeros(nx+netatot,nx+netatot)));
% IxeFA (n_x_FA+n-x-alpha+l:n_x_FA+n_x_alpha+n-xeFA
,n_x_FA+n_xalpha+l:n_x_FA+n-x-alpha+nxeFA ) = eye(nxeFA,n_xeFA);

% I_xealpha = sparse(zeros(nx+netatot,nx+netatot));
% I_xealpha
(n_x_FA+n_x alpha+nxeFA+l:n_x_FA+n-x-alpha+nxeFA+nxealpha, ....
% -n_x_FA+n_x_alpha+n-xeFA+l:n_x_FA+n_x alpha+nxeFA+n-xe-alpha ) =
eye(nxealpha,n-xealpha);

% IetaFA = sparse(zeros(nx+netatot,nx+netatot));
% IetaFA(nx+l:n_x+n_etal,n_x+l:n_x+n_etal) = eye(n_etal,n_etal);

% Ietaalpha = sparse(zeros(nx+netatot,nx+netatot));
% Ietaalpha
(nx+netal+l:n_x+n_etal+n_eta2,n_x+n_etal+1:n_x+netal+neta2) =
eye(neta2,neta2);

% I_etaeFA = sparse((zeros(nx+netatot,nx+netatot)));
% I_etaeFA
(n x+n etal+n eta2+1:n x+n etal+n eta2+n etael,n x+n etal+n eta2+1:n x+n e
tal+neta2+netael ) = eye(netael,netael);

% Ietaealpha = sparse(zeros(nx+netatot,nx+netatot));
% Ietaealpha
(nx+netal+neta2+netael+l:nx+netal+neta2+netael+netae2, ...
% n_x+netal+neta2+netael+l:nx+netal+neta2+netael+netae2 ) =

eye(netae2,netae2);

% xFA = xstar*I_x_FA;

% plot(-(Ce/(Cc + Ccort)).*Chiphil(:,l:n-x),xFA(1:999,1:n-x),'o')
% hold on
% plot(xFA(1:999,1:n-x),xFA(1:999,1:n-x))
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% plot(-(Ce/(Cc +
Ccort)).*Chi-phil(50,icell attach{50}),xFA(50,icellattach{50}),'o')
% hold on
% plot(x_FA(50,icellattach{50}),xFA(50,icellattach{50}))

% % plot(-(Ce/(Cc + Ccort)).*Chiphi2(500,nx+icellattach{500}),
etaFA(500,nx + icellattach{500}),'o')
% % hold on
% % plot(etaFA(500,nx+icellattach{500}),etaFA(500,nx +
i_cellattach{500}))
% % load Modelled_10
Vpca = mModel.Vpca;
V_x = Vpca(l:nx,:);

clear Vpca
mmP = matfile('IandP land24_100.mat');
tt = [];
time = 1:2000;
T = 2000;

dt = 1;

Zhat(:,l) = mModel.Zpca(l,:)';
IIchiphi2 = mProfj.II_chiphi2;
IIchiphil = mProfj.II_chiphil;
Pphi = (mmP.PxeFA + mmP.PetaeFA + mmP.P_xe_alpha+
mmP.Petae_alpha);
Palpha = (eye(size(Pphi)) - Pphi);
tic
for i = 2:T-1

ti = time(i-1);
zi = Zhat(:,i-1);

% z_alphai = mmP.P_x_alpha*zi;
% zeFA = mmP.PxeFA*zi;
% zealpha = mmP.Pxe_alpha*zi;
% zetaalpha = mmP.Petaalpha*zi;

z_alpha = Palpha*zi;
% zetaeFA = mmP.PetaeFA*zi
% zetaealpha = mmP.Petae alpha*zi;

zphi = Pphi*zi;%zetaeFA + zeFA + ze_alpha+ zetae-alpha;
H1 = ((mModel.Vpca)'*(-(Ce/(Cc +

Ccort)).*II-chiphil{ti})*mModel.Vpca);
H2 = ((mModel.Vpca)'*(-(Ce/(Cc +

Ccort)).*II chiphi2{ti})*mModel.Vpca);
z_FAi = H1l*zphi;%mmP.P_x_FA*zi;
zetaFA = H2*zphi;%%mmP.PetaFA*zi;

etahat(:,i-1) = V eta*zi;
etadothat(:,i-1) = K'*zi;

dZdt(:,l) = mModel.A*Palpha*zi +mModel.A*(H2+eye(100,100))*zphi ...
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+ mModel.B + V_x'*((1/(Ccort + Cc)).*[zeros(n_x_FA,1);FLnode(i-
1,:)';zeros(nxeFA+nxe__alpha,1)]./lOe-10);%A*zi;%V x'*(A eta*etahat(:,i-
1)) + Vetal*etadothat(:,i-1);

Zhat(:,i) = zi + dt*dZdt(:,1);
tt = [tt;ti];

HH1(:,:,i) = Hl;

HH2(:,:,i) = H2;

end
save('Hmap-celll_10cells_100','HH1','HH2','-v7.3
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B. Experiments in the Context of the Biophysical
Model being Studied

B.1 Set up and Protocol

GFP tagged plasma membrane HUVEC was used to detect in cell morphology and observe

lamellipodial formation of 2 cells separated by 10-100um. Perti dishes were coated with 20:1

PDMS crosslinker ratio to obtain stiffness of~800kPa stiffness. IOug/ml of fibronectin was coated

on top and left overnight. The next day, GFP tagged plasma membrane HUVEC were seeded at

5000 cells in a 52mm diameter dish (-3 cells/mm^2). Imaging was done at 16X magnitude for an

hour and a half.

B.2 Experimental Evaluation

The spreading (in between the cell gap) and migration towards each other analyzed by

examining the minimum distance between the two cells and the centroid distance between the

cells. As can be seen in figure 17, the analysis verified that the cells migrate and extend towards

each other.
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Figure 31: Minimum distance between the two cells and the centroid distance between the cells.

As seen in figure 28, cell directionality and polarity was analyzed by examining the

principal axis of elongation along the cell contour (blue arrow) and the cell's movement direction

between time frames (yellow). The average(green) of the two arrow was used as an indication of

cell directionality. Although for some samples the cells seemed be directed towards each other,

results were somewhat inconsistent and more data further experiments are necessary.
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0 min 42 min
Sample 2:

0 min 17 min

65min

37min

Figure 32: Cell directionality and polarity analysis. Principal axis of elongation along the cell contour (blue

arrow) and the cell's movement direction between time frames (yellow). The average (green).
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