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Abstract

One of the most fundamental questions in developmental biology and tissue engineering is
how cells organize to form complex structures characterized by tissues, organs and whole
organisms. The coordination of cells to form complex structures is facilitated by their
communication via the surrounding gel (or extracellular matrix) where they live. In addition to
answering questions in development, studying how cells communicate and coordinate over
distance via the extracellular matrix (ECM) can give insight into pathological situations such as
cancer metastasis, and wound healing. Although the exchange of molecular and biochemical
signals is a key mechanism in cell to cell communication, cells can also communicate
biomechanically through the ECM. Modeling mechanical interactions between cells and the ECM
can advance understanding of biomechanical signaling during tissue formation.

Observation of the mechanisms for mechanical interaction between contractile cells within
an extracellular matrix has resulted in detailed models that can describe single-cell migration and
spreading on (and within) various of substrates. By incorporating sub-cellular behaviors (such as
focal adhesion dynamics, cytoskeleton remodeling, actin motor activity and remodeling of the
surrounding fibrous matrix), these models can integrate both the purely mechanical interaction
within the surrounding matrix as well as the internal adaptive response to mechanical cues from
the surrounding matrix. As a result, a vast amount of simulation data can be created from analyzing
single-cell/matrix interactions numerically. In addition, numerous cell types and environmental
conditions may be represented by varying multiple parameters within the model. However,
complex and extensive mechanisms involved in emergent behavior of multiple interacting cells
and surrounding matrix may become intractable due to mathematical and computational
complexity.

This thesis will address how we can exploit simulation data describing the nonlinear
dynamics of single-cell/matrix behavior to create a reduced-order linear state equation in latent
variable space. Furthermore, in order to predict multi-cell emergent behavior, the reduced-order
linear models of single cells are used as components in a comprehensive framework based on
linear superposition of mutually shared matrix dynamics.

The linear latent state equation describing the nonlinear dynamics of a single-cell and
surrounding matrix is created in three steps. First, using Bond Graph Theory, a set of independent
state equations(derived from the bond graph) may be augmented by adding equations using
auxiliary variables necessary to “sufficiently inform” the nonlinear dynamics. This creates an
augmented state space where a linear description of the nonlinear system can be found. Second,
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the augmented (auxiliary and state) variables are simulated for various initial conditions. Using
the resulting simulated data, we perform Principal Component Analysis in order to approximate a
lower dimensional linear manifold within the augmented space. Third, we transform the
augmented state equation to latent space representation by orthogonal projection onto the basis
defined within the lower dimensional linear manifold. While the resultant latent state equation is
linear, complex nonlinearities are embedded in the compact model, leading to precise and global
linearization of nonlinear dynamics.

Using the linear representation of single-cell/matrix dynamics we may perform linear
operations such as projection, to isolate matrix dynamics of individual cells, and superposition, to
combine matrix dynamics of individual cells and approximate a multi-cell matrix environment.
Using these linear operations, we can effectively link single-cell models to predict multi-cell
emergent behaviors. The hypothesis to prove (drawn from experimental evidence) is that multiple
cells can effectively interact by transmitting force to neighboring cells through the shared matrix
environment.

In this thesis, I consider two models describing the nonlinear dynamics of single-cel/ECM
mechanics. The first model is a 1-D lumped parameter model created to explore the aspects of cell
sensing over an elastic ECM. Although it is possible to reproduce bio-mechanical interactive
behaviors, polarity is not considered within the 1-Dmodel. The second model is a highly detailed
biophysical distributed parameter system describing cell/ECM mechanics based on previous works
and can accurately reproduce experimental observations.

Thesis Supervisor: H. Harry Asada

Title: Ford Professor Mechanical Engineering
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Introduction

1. Introduction

1.1 Biological Context for the Model

1.1.1 Cell-Cell Mechanical Interaction within an Extracellular Matrix
Environment can drive Emergent Behavior

Biomechanical interaction between cells is a fundamental mechanism during the processes
of development, cancer metastasis, and wound healing. For all these processes, cells must
communicate over distance through the protein gel (extracellular matrix) in which they live[1]-
[6]. It is known that there is a complex interplay between both biochemical and biomechanical
signals to mediate the interaction among cells and matrix components [4], [7], [51], [53]. These
interactions ultimately lead to coordinated movement of cells to produce more complex structures
but are still not completely understood[5].

Remarkably Guo et al. revealed that mechanical force alone transmitted through the
extracellular matrix (ECM), with the attenuation of diffusive factors secreted by cells, can initiate
long-range traction forces to create cell migration and patterning[3]. This evidence suggests that
matrix-mediated mechanical communication is critical for robust cell-cell interactions and pattern
formation. Therefore, examining the mechanical aspect of intercellular communication through
the ECM can give much insight into multi-cell emergent behaviors leading tissue formation and
development [1], [8], [9]. Although the mechanisms driving multi-cell patterning and coordinated
cell organization are still poorly understood, a wide range of likely mechanisms have been
observed and inferred through experiments[3]-[6], [8]-[10]. Based on these inferences,

mathematical and computational models may be created[1], [4], [5], [11]-[13].

1.1.2 Emergent Changes in ECM through Cooperative Mechanical
Interaction of Cells

To better understand how mechanical cell-cell communication via the ECM can coordinate
the self-organization of cells to form complex structures, some mechanisms to consider are the
intermediate emergent behaviors arising within the matrix itself. The extracellular matrix(ECM)
serves as the medium in which biochemical and molecular signals can be transmitted between cells

to promote collective response[6], [54]. However, in general, these signals are short-lived and
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move over short distances depending on molecular size[5]. Mechanical signals, in the form of
tissue strains and stresses[1], [8], [9] [3], [14], can not only mediate short-range, mechanical cell-
cell communication[6], but also act over long distances and integrate mechanical information over
the whole tissue[3], [10].

Specifically Winer et al. showed that fibroblasts and human mesenchymal stem cells on
fibrin deform the substrate by several microns up to five cell lengths away from their plasma
membrane leading to long distance cell-cell communication [8]. Furthermore, Guo et al. observed
long-range non-dispersed (i.e., confined in the central region connecting two cells) force
transmission within collagen/matrigel mixtures though measurement of increased deformation
velocity between cells. Non-dispersed force transmission is a crucial mechanism for the initiation
and maintenance of long-scale multi-cell linear patterns[3]. Finally, Fernandez et. al showed that
cells (osteoblasts and fibroblasts) embedded inside a 3-Dimensional collagen gel could
spontaneously contract the entire gel volume via collective contractile activity, an important
mechanism behind tissue formation. Furthermore, the authors showed that this behavior is
dependent on the number and spacing (i.e. density) of cells within the gel [10]. These findings
suggest that cell induced emergent mechanical changes within ECM are a critical step in further
emergence leading to tissue formation[3], [6], [10].

This thesis will show that it is possible to predict the aforementioned intermediate emergent
behaviors arising within the matrix using a comprehensive framework that integrates multiple
linearized models describing single-cell/ECM mechanics. The key construct behind the approach
is the superposition of mechanical forces propagated within the ECM by each individual cell
model. Under the correct mathematical formulation we can show that the aforementioned construct
is sufficient to reproduce:

1) Experimentally observed long-range non-dispersed force transmission between cells

through measurement of increased deformation velocity between cells [3].

2) Experimentally observed global contraction of gel volume via collective cell-
contractile activity (as opposed to local deformations of single cell embedded within
the gel)[10].

Through our study of intermediate emergent behaviors arising within the matrix we can

advance our understanding of biomechanical signaling mechanisms during tissue formation and

multi-cellular patterning.
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The cell induced emergent mechanical changes within the ECM described above suggest
that individual cells interact mechanically through integration of the complicated strain fields
propagating within the ECM network[10]. Therefore in our model, we consider the superposition
of individual subsystems (describing single cell-ECM interactions) to these elucidate interactive
behaviors. To this end we must construct the individual subsystems in such a way to facilitate

superposition.

1.1.3 Fundamental Components of Single-Cell Matrix Interaction

As mentioned in the previous section, it is desired to model the integration of the
complicated strain fields (induced by individual cells) propagating within the ECM network in
order to reproduce emergent matrix behaviors. Therefore we first model then superpose individual
subsystems (describing single cell-ECM interactions).

Let us consider the basic building block: an individual cell’s interactions with the
surrounding matrix environment. Experimental evidence suggests that cellular traction forces
produce local strains in the matrix, which can affect the motility of nearby cells [6] . Thus along
with the ability of the extracellular matrix to transmit stresses, cells can also internally modulate
their state in response to mechanical input[6], [10]. The key concept is that cell-matrix interactions
are fed back to the cell, which influences cell polarity, contractility, stiffness and strength of focal
adhesions [14]-[16]. Specifically, Lo et al., observed experimentally that local change in substrate
tension of 3T3 fibroblasts (on flexible polyacrylamide sheets coated with type I collagen) caused
the cell to change its anterior-posterior polarization, and moved towards the stiffer local
gradient[15].

These findings suggest that, when modeling single-cell/matrix mechanics it is important to
consider the complex interplay between purely mechanical phenomena (resulting from crosstalk
between cell contractility and matrix mechanics) and the cell’s internal adaptive response
(resulting from external mechanical cues). Therefore, we propose to model the individual
components (describing single cell interactions) within our more complex modeling framework
by using cell polarity to connect the cell’s internal adaptive response to bi-directional cell-matrix
mechanical interaction. Here, cell polarity is defined as asymmetry in cell shape, distinguishing
the anterior-posterior regions of the cell. Given the strain characteristics of the surrounding matrix

(influenced by bi-directional cell/matrix mechanical interactions), the cell modifies its polarity
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Figure 1: Block diagram showing the connection between purely mechanical phenomena (resulting from
crosstalk between cell contractility and matrix mechanics) and the cell’s internal adaptive response within the

model.

which in turn changes the protrusion of pseudopodia and lamellipodia. This initiates formation of
new adhesions, and the release of old adhesions on the ECM substrate, and development of
traction[15]-[17]. As the ECM substrate, and development of traction[15]-[17]. As previously
discussed, the traction forces propagated throughout the surrounding matrix. In order to predict the
more complex collective behavior involved in emergent matrix interactions, our model superposes

the propagation these forces for each individual cell.

1.2 Challenges of Modeling Matrix-Mediated Mechanical
Interactions at the Population Scale

Current computational models that are based on mechanistic understanding at the single-
cell and sub-cellular scale can be used to study interaction between two or three cells with
sufficient detail[11]-[13]. Based on first principles, these computational models can predict
dynamic behaviors of cell-ECM interactions. However, the number of cells capable of being
modeled is limited by mathematical and computational complexity required to describe the sub-
cellular mechanisms involved.

Traditionally, agent based modeling is used to study emergent phenomena because it can

predict the adaptive behavior of individual components as a result of underlying rules [4]-[6], [18].
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However, when simulating large populations, current agent-based models often require abstraction
of details at the single-cell and sub-cellular scale in order to limit mathematical and computational
complexity. In addition, describing the interactions between agents are often determined somewhat
heuristically [18]. In the context of representing mechanical cell-cell communication via the ECM,
Rehnart et al. used a 2-Dimesional hybrid cellular Potts and finite element model to reproduce
observed single cell behavior, pairwise cell interactions and collective cell behavior[6]. However
abstractions were necessary to keep the simulation tractable. These included isotropic and linear
elasticity assumptions of the ECM and exclusion of cell-substrate adhesion from the model. As a
result, nonlinear strain stiffening mechanisms could not be sufficiently modeled and the model
contradicted several important experimental observations[6]. Furthermore in order to increase
efficiency, Rehnart et al. modeled the ECM as a finite element model instead of a more realistic
discrete fibrous network[6]. The fibrous nature of the extracellular matrix (ECM), and the presence
of cross-linked fibers is critical for transmission large scale of forces [1], [9] and therefore a key
component in model cell to cell mechanical interactions. As can be deduced, these simplifications
may put limitations to the translational potential in clinical settings [19].

It is therefore necessary to develop a methodology that can take advantage of the modular
architecture in agent-based models while retaining sufficient mechanistic detail with reduced
complexity. In addition, we would like to develop a method that facilitates the integration of
individual subsystems to represent complex collective behaviors. To this end, we have proposed a
linearized agent-based framework comprised of linearized components based on previously
simulated data obtained from detailed single-cell mechanistic computational models. The
linearized formulation of each agent allows for the superposition of multiple agents to simulate
multi-cell interactions. Using this method, computational expense and time are decreased

significantly and sufficient mechanistic detail is retained in the simulation.

1.3 Prior Work on Representing Large Scale Dynamical Systems
via Low-dimensional Projection and Feature Extraction of
Simulated data

Previous works on model order reduction of nonlinear dynamic systems develop multi-
variate statistical methods that employ order reduction via low-dimensional projection and feature

extraction of simulated data[20]-[25]. Generally, these methods have applications in structural
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dynamics, fluid mechanics, damage detection, and multibody systems. Within these applications,
a very fine scale description is necessary compared to the size of the structure, and the finite
element discretization of the underlying partial differential equations leads to large, potentially
highly nonlinear (therefore requiring a fine discretization in time), numerical problem[23].

Within these previous methods, “snapshots” of the state are generated during preliminary
simulations of the partial differential equations. These “snapshots” are collected in a matrix(X)
and the Singular Value Decomposition of X is computed. Assuming that the first £ singular values
are ‘‘large” with respect to the succeeding ones, X can be approximated by means of orthogonal
projection of original states onto the k the left-singular vectors of X [22]. Using the results it is
possible to re-write and approximate of the state and output equations of the original system within
a lower dimensional space.

However, contrary to the proposed approach described in this thesis, the resulting reduced-
order equations described in these works remain nonlinear and therefore would not work for our
proposed linear superposition approach. This signifies that the reduced-order computation is still
dependent on the original system order and nonlinearities contained within the original system.
Furthermore, in previous works the original mechanistic system used to simulate data is treated as
a “black box” and consequently the selected simulated variables lack physical meaning and are
insufficient to describe dynamics if the dynamics lie within a nonlinear manifold [20], [22].
Although the reduced order equations may be linearized using Taylor series expansion, the

resulting linearization produces a less accurate model that the proposed approach[26].

1.4 Contributions of this Thesis

The main objective of this thesis is predict emergent behaviors involving matrix-mediated
mechanical interaction between populations of cells on an elastic matrix substrate. From the above
discussion, it is clear that the proposed work can give insight not only to the study and control on
interacting cells but also the general approach may be applied to systems of interacting nonlinear
agents, which would otherwise be prohibitively complex to compute.

In the following chapters we will describe the multiphase approach to prediction of multi-

cell systems:
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Phase 1: Creation of Linear Latent State Equation Describing the Single-cell/matrix

dynamics by:

a. Use of Bond Graph theory to augment the original independent state equations by adding
auxiliary variables necessary to “sufficiently inform[26]” the nonlinear dynamics.

b. Creation of dataset through simulation of auxiliary and state variables for various initial
conditions and application of Principal Component Analysis in order to approximate a
lower dimensional linear manifold within the augmented space

c. Transformation of the augmented state equation to a latent space representation by

orthogonal projection onto the basis defined within the lower dimensional linear manifold

Phase II: Linking single-cell models to predict multi-cell emergent behavior by:

a. Use of linear projection, to isolate matrix dynamics of individual cells in latent space
b. Use of linear superposition to combine matrix dynamics of individual cells and

approximate a multi-cell environment
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Phase I:

Nonlinear Biophysical System
of Single-cell Dynamics

_|_

Bond Graph
Representation

Recast nonlinear equation in higher
dimensional state space using
auxiliary variables

Augmented Representation
of Nonlinear System

Simulation of State and
Auxiliary Variables

Data Matrix Containing
Simulated Variables

Y

Principal Component
Analysis

Basis of Eigenvectors Derived from
Data Covariance Matrix

Orthogonal Projection of State and
Auxiliary Variables onto Basis of
Eigenvectors

Reduced-o;’der Linear
Representation of Biophysical System

Figure 2: The approach consists of a two-phase system of first creating a reduced order linear model of a

single cell. We first augment the system to a higher dimensional space and then use latent analysis to

transform to the system to a linear latent space where we can truncate to lower order.
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Phase ll:

Reduced-Order Linear Representation Reduced-Order Linear Representation
of Cell 1 of Cell K

Isolation of ECM variables

Isolation of ECM variables
through linear projection

through linear projection

Latent Space Representation + + Latent Space Representation
of Cell 1 ECM Dynamics of Cell K ECM Dynamics

Superposition of individual cell
ECM dynamics

Estimate of Multi-Cell ECM
Dynamics

Multi-Cell ECM dynamics feed back into individual cell models
Figure 3: The approach consists of a two-phase system of second of which is linking single-cell models to

predict multi-cell emergent behavior. First we isolate the matrix dynamics of each model representing single

cell matrix mechanics. Then we superpose the ECM dynamics in order to create a estimate of the multi-

cellular matrix environment.
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In Chapter 2, the general methodology and underlying assumptions are discussed. Chapter
3 applies the approach to a 1-Dimensional lumped parameter case study capable of reproducing
bio-mechanical interactive behaviors. In Chapter 4, applies the approach to a highly detailed
biophysical distributed parameter system describing cel/ECM mechanics[13]. In chapters 2 and
3, the general approach is modified or extended as needed for each model. Chapter 5 is a discussion
and preliminary analysis for extension of the approach to a fully 3-D biophysical distributed

parameter system in which the cell is embedded within a 3-D fibrous matrix.
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2. Methodology, Theory and Computation

2.1 Definition of Nonlinear System using Bond Graph Theory

2.1.1 Problem Statement

Consider nonlinear lumped or distributed (finite mode) parameter dynamical system

described by state equation:

%:g(x)eRnxl (1)

Where x represents the nx [ state variable vector. We wish to use Bond Graphs to:

1. Graphically represent the bi-directional exchange of energy through the dynamical system

2. Identify energy storage and dissipation elements and how they connect
In addition we wish to use Bond Graph Theory to show the following:

1. That the equations describing the class of systems capable of being characterized by bond
graphs may be written as a linear combination of nonlinear terms. These nonlinear terms
represent effort and flow within the system.

2. That through augmentation of the system to include nonlinear effort and flow variable

dynamics, we can effectively compensate for the nonlinear dynamics within the system

2.1.2 Bond Graph Representation

Bond graphs are used to describe lumped/distributed parameter multi-energy domain
systems ranging from mechanical, electrical and hydraulic but can also seamlessly incorporate
chemical, thermodynamic or biophysical domains within the same representation[27]-[29]. Bond
graphs can even be used to describe biochemical networks[30], [31]. Because of these
characteristics, it is the natural choice to represent the aforementioned biophysical system

describing cell/ECM mechanics.
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element j+1 element n, elenevit n, +1 element ny + j

e € € e ..
J+l n g+l +)
}R %\ f,N /;j
1] 3 S
jl' :

element 1 element n, +n,

element |

Figure 4: General Diagram of Bond Graph
Consider the bond graph shown in Fig. 4. Modeling elements (e.g. masses, springs, and

dampers) representing energy storage and dissipation in the system are connected through lines,

termed power bonds.

Two variables (e, I ) (termed power variables) are associated with each bond, the product

of which represents power flowing through the bond. In the mechanical domain, variables (e, 3 )

represent the force (or effort) and velocity (or flow) respectively. The arrow of each bond
represents assumed direction of positive energy flow.

One key feature of the bond is causality, which is represented by a vertical bar placed on
one end of the bond. Causality explains which of the power variables are dependent and which are
independent. Furthermore, causality analysis allows us to find causal relationships among all the
elements and obtain a computable procedure for determining state transitions.

The 1’s and 0’s in the Bond Graph (termed junctions) represents Kirchhoff’s Voltage Law
(sum of efforts equals zero), and to Kirchhoff’s Current Law (sum of flows equals zero)
respectively. Using the generalized graph in figure 4 we may write the equations represented by

the junctions as:

iff =0 "riﬁ e, =
J=l J=ng +l (2)
eI:eJ (j:Z,...,no) fl:fj (j:n0+],“_’n0+nl)

Similarly we may write equations for the elements characterized by constitutive laws that

are functions of the original state variables (x):
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e, = CDM x)
fi=,, (x)

3)

2.1.3 Deriving State Equations using Bond Graphs

The first step to derive the state equations, is to list all of the governing equations for the

bond graph. The table below, summarizes the relationship between bonds and their governing

equations:
Bond w/ Governing equation
Causality
Vodeling Selement, | 7,0)=0",, (e(x) =@, (x(1)
Element
[->element, e,(1)=0/,,(/(x))=.,(x(r))
I 2
0 Junction f,=0
—[ 0« =
1 e =e, (j=2,..0my)
(ny total # of bonds surrounding 0 junction)
. v d
1 Junction IRDE ,z:;ej =0
0 e =e (j=2,...,n1)
(n, total # of bonds surrounding 1 junction)

Table 1: Summary of relationship between bonds and their governing equations
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The governing equations for the general graph given in figure 4 are the following:

0 junction equations :

for j=1,...,n,
)

1> f,=0
J=1

2. e =e

1=
1 junction equations

forjzn0 +1,...,n,+n

dx
o+ $:>Z=g(X)
3. Z e, =0
/=n0+1
4 fi=f

constitutive equations from elements
for j=1,...n +n,
e/ = q)e,j (x)

f./ = CDf,j (x) J (4)

Here we use causality to isolate the dependent effort/flow variable within each junction
equation. If we substitute the constitutive equations (describing the effort and flow variables) into
the junction equations we can algebraically manipulate the equations to regain equation(1).

Consequently, the equations in (4) will provide the appropriate state equations governing
the dynamics of the original system. It is important to note that manipulations depends on the
causality and nature of modeling elements (i.e. dissipative or energy storage) of the system. An
example of these manipulations can be seen when the approach is applied to the 3-Deimstional

system in Chapter 4.
Expanding equation (1) to reveal each individual state Variablex,-(i =1,...,n) in state

variable vectorx ¢ R™' :
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—ﬁ_

r TIr. —_
dt’ w” cas w]nn r:

dx, . A
_Z — wifl wi'n,] : :g(x) (5)

dx wnl ver cee wnnn

nxny, . . . «1 . J
Here, W, e R" " is a weight matrix and 77 eR"" is a vector (termed auxiliary vector)

containing effort and flow variables represented by their constitutive laws. Essentially we have

[

written the rate of change of each state variable (——jas a linear combination of the effort and flow

da
variables represented by their constitutive laws (<D ()0, (x)) . This follows from the junction

equations where the effort and flow variables are linearly superposed. It should be noted that 7; is
only a subset of the constitutive equations since some were used during algebraic manipulation to
isolate the state variables.

Equation (5) reveals a linear representation of the system with respect to auxiliary variable

vector 7;. Furthermore we augment the system by explicitly writing the dynamics of 7as:

_dizw n

dt 7 ©)
FCL)

dt ’

Since the auxiliary variables represent nonlinear output of the constitutive laws, there
dynamics comprise a different nonlinear structure than that of the original state variable dynamics.
Therefore, adding the dynamics to the original state equations provides a richer and more complete

description of the nonlinear system. Here we do not explicitly differentiate 7, but only
acknowledge that it will be some nonlinear function u (x,5) of the original state and the auxiliary

variables. Equation (6) shows that by augmenting the system we may decouple the dynamics into
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linear and nonlinear parts. Writing the equations in this way we explicitly describe and account for

the nonlinear dynamics within the system.

2.2 Linear Reduced Order Latent Representation using Simulated
Data

2.2.1Problem Statement

Consider the augmented system given by equation(6). We wish to create a reduced order

representation of the augmented system in latent variable space denoted by equation:

W) Az e R™ (7)
dt

Here, m<<n . In order to create the reduced-order latent variable model, we must find

R(?H—n” )xm

the appropriate transformation matrix ¥ € that will allow the dynamics to evolve on a

lower dimensional linear manifold. 7 may be derived from the principal components (or

eigenvectors) of data covariance matrix:

1
Co=7X'X )
N-t,

Where X is a collection of simulated time samples of variables X and 7; for £ =1,...,¢ '+ and

N different initial conditions.

2.2.2 Basis of Eigenvectors Derived from Data Covariance Matrix

Let us define an augmented variable vector as:

~ X _ (n+n,7)><l
= =R 9
X L)} € ©)

As previously mentioned we create a data matrix X from simulated data from variables X

and 17 :
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X - :: c RN"/X(’I”‘”) (10)

_x(’f,N )T 7ty )T_

We perform Eigen-decomposition on the covariance matrix:

C, = —l—XTX ~VAVT ¢ R("*"n)*("*"q)
N-t,
Vel o (n o nyxm
V= v eR" " =V eR™V eR” (11)
n

m—# of eigenvectors afier truncation

Where V' is a matrix consisting of m eigenvectors corresponding to the m largest

eigenvalues in eigenvalue matrix A. The number of eigenvectors kept (m) can either be
determined through analysis of variance, cross-validation or examination of unexplained output
variance[32]. In the case of cell/matrix model being studied we can also determine m based on the
magnitude of certain dynamics within the approximated system.

Through orthogonal projection, we may derive the latent space representation of the

augmented state variable vector X :

x(?] =V, x(t)+V,"n(r)eR™ (12)

(1)

We can also approximate the original augmented variable vector (and consequently X

and 77 ) using latent variable ( z ):
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[x(t)}*vz<t>:>x<r)zvxz(r>;n(r>zv,,zv) (13)
7))

1)

2.2.3 Calculation of Linear State Equation in Reduced-Order Latent

Variable Space
Differentiating(6):
j—j(r)=VxT%+ V,,Til—? (14)
Substituting equation (5) into equation(14):
Ly (W) v, oL (15)

We now substitute the approximate of 7found using latent variable -, given by equation(12)

dz

RV (W, V), = (16)

dt
Since the dynamics of 7] is nonlinear (as shown in equation(6)) we wish to approximate

dn. using latent variable z . This is in order to linearize the nonlinear dynamics with respect to the
dt

latent representation of the state and auxiliary variables. It is important to note that if we attempted

to linearize 47 with respect to d_xusing a fixed Jacobian, the resulting structure would be

dt dt
collinear and add no new information to the system. Furthermore, if auxiliary variables consisted
of linear constitutive laws, the equations would also be collinecar and therefore redundant.
Consequently, it is necessary to include only nonlinear constitutive laws within the auxiliary
variables and that furthermore linearize with respect to the state and auxiliary variables as opposed
to linearizing the Jacobian. We therefore apply principal component regression (or PCR). PCR
allows for the regression of a specified output on the latent variables z € R™' . Using ordinary
least squares we can obtain a vector of estimated regression coefficients (equal to the number of

latent variables). Let the output data matrix be defined as:
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v=l 2y ow ooy, JeRT 17)

(170 )T |

where 1 = %

And the latent variable matrix be defined as:

Z-= D e RYY (18)

_z(tf,N )T_

Here we have estimated i_nnumerically from simulated time samples of 7; using the
!

backward Euler approximation:

n(t)~ (19)
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For the jth column in data matrix Y we consider each sample individually:

= 9,0 =K 2() =1y, eeesl oty ysee ) (20)

y,

Y (’f‘N )T |

Where K, eR"™ is the vector of regression coefficients. The ordinary least squares
estimate of K is found by:

K, =argmin fz (v,(1)~ K ,z(1))* (21)

1=ty

Finally we write:

Y~ZK ,
: e, (22)
K=K K K,'|eR
Using these results we approximate %i as:
t
dn -
— =) =K-z(1) (23)

Substituting equation (23) into (16) we obtain:
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2(t)=(V,"W,V, +V,'K)z(¢) (24)

A

Examining (24) we have effectively represented the augmented system in(6) in latent

variable space.

2.3 Linking Individual Reduced Order Models through the
Dynamics of Shared Variables

2.3.1Problem Statement

Let us now consider that the previously described dynamical system is a component of a
larger (more complex) nonlinear system where multiple components are connected through a
shared field (¢ ). Each individual component influences the dynamics of the field state. In the
context of biophysical system being studied, each component represents the dynamics of single-
cel/ECM interaction. In the larger more complex system, multiple cells interact through as shared
ECM environment. Therefore the field represents the ECM.

We wish to predict the behavior of the larger more complex nonlinear system by linking
the linear latent space models of the individual components through the field. The linearity of the
dynamics of individual components facilitates the integration to from a more complex system since
we may employ linear systems analysis. This will be accomplished by obtaining an estimate the
nonlinear dynamics of the shared (multi-component) field based on influence of each individual

component.

We have made several assumptions:

1. Each component has the same 4 matrix (in equation(24)) but starts at different
initial conditions. In the context of the biophysical model being studied, this means that
each cell (component) expresses the same phenotype. Under this assumption, the kith
component may be defined by:

()= (V,"W,V, +V,'K) z* (1)

A

K (0) — k0 (25).
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Figure 5: Conceptual diagram showing how the more complex nonlinear system will be estimated using

superposition of the influence of multiple linear components through a shared field.

Where we have used the linear latent space model to describe the dynamics of the
component.

2. Components are not directly connected, and can only influence each other through the
shared field. This means that the field is the only means of energy exchange between
components. In the context of the biophysical model being studied we further restrict to
purely mechanical energy exchange between components and the shared ECM. Although
multiple energy domains exist for the system, examining the mechanical aspect could be
sufficient to describe critical behaviors[3].

3. The change in field state by each individual component it sufficiently small between time
points. In the context of biophysical system being studied this means that the strain of the
cell on the ECM is below 5%. (i.e. large deformations do not occur quickly between time

points.)

Under these assumptions, we may find an estimate of the shared (multi-component) field
through linear superposition of the dynamic influence of each individual component on the field.
Although, the estimation may not be exact, it will be valid if it can reproduce the specified
behaviors and interactions characterized in the complex nonlinear system.

Let us rearrange the augmented variables defined in X (equation(26)) into two distinct

groups that represent field variables (¢ ) and component variables (& ). For the kth component:

k k

k k
f-‘f = |:x jl ¢ mutation |:a } . R(n-{-nv )xl (26)
n
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Here, o' € R™*' is the group of state and auxiliary variables correSponding to component k
. In the case of the biophysical model being studied, this corresponds to the position and velocities

of the cell and the internal elastic forces and damping forces of the cell. 4¢ ¢ r™*'is the group of

state and auxiliary variables corresponding to the field with respect to an isolated component/field
system. In the case of the biophysical model being studied, this corresponds to the deformations,
traction forces and viscoelastic forces of the ECM considering interaction with a single, isolated

cell.

2.3.2 Isolation of Shared Variables Dynamics

The first step in linking the linear latent space models of the individual components is to

isolate the field variables (¢") in latent space. First we isolate these variables in the original

(augmented) space:

a_| @[] 0| [T O)at] |0 0 | 27
Tl e [Tl T 0 0)lgt[T]0 L, || g @D

Using the previously derived orthogonal projection we may write the latent space

representation as a sum of the latent representations of the component and field separately:

\ , ak , Ofk vT FO ; In o 0 ak . 0 0 ak
"=y =V +V =y +V
L e )

0

| Dnn, 0 T 0
=V 0VZ(t)+V 0 1 VZ(I)

(28)

ngxny

v

k 13
a 2

Were we have substituted for the approximate the original augmented variable vector

defined in equation(13). We deﬁnefz and ([ —1;) as projection matrices to isolate the field

components in latent space:
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k k

z* =z, +2,

z;f:P'ﬁzk

k

2 =(1-p)7 (29)

0 0 I 0
— T . — T naXna
P=V [0 7 }V,(I—};)_V [ ; O}V

n¢><n¢
2.3.3 Superposition of Shared Variables of Shared Variable Dynamics

Using the above definition, we may link the field dynamics of each individual component
in the following manner:
-k ko o-k
z'=(I-P))z" +zZ
’ ( ) AL o)
2y =52
Z-k,€mergem:Z-k+zz-;:(1_P¢)Z-k+Z-;+zZ-€ (31)

=k L=k

-emergent

In the above equations we have modified dynamics of component & by essentially replacing

the individual influence of the field (z';) by the estimate of the shared field defined by:

K
- enel £
5 :;z¢ (32)

Note that the model of the individual component (equation(25)) must be sufficiently trained
to be robust to the emergent dynamics.
Substituting equation (25) into equation (31) we may write:
Z-k,emergant ~ AZk +Z};(AZ;) (33)
Lk

In matrix form (for components £ = / -K ) we may write:
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r - 1,emergant 7 .
z 4 P4 - PA
- 2,emergant .
3 |Ba 4 PA
—Z-K,emergant ])¢A P¢A A
By definition:
B 1,emergant ] M1
z I P P¢ z
z 2,emergant N 1)¢ 1 P¢ Z2
_ZK,emergam | P¢ P;) Vi LZK |

Substituting equation (35) into equation(34):

Z-l,emergant 7 A })¢A P¢A I I)¢
an,emergant N ])¢A A P¢A Rﬁ /
Z-,K,emergam‘ })¢A 1)¢A tte A 1)¢ [;ﬁ

#— pseudo inverse

(34)
(35)
1)¢ # Zl,emergam
})¢ Z2,emergam
: (36)
[ ZK,emerganl

Equation (36) represents the K coupled dynamic equations that can be used to predict the

behaviors of the larger (more complex) nonlinear system.
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3. Application of Approach to 1-Dimensional Lumped
Parameter Cell-Matrix Mode

3.1 Definition of 1-D Cell Motility Model on a 1-D Elastic Substrate

For proof of concept, we begin with a 1-D simple lumped parameter model of interacting
cell/ECM behavior. Although quite simple, it is still possible to reproduce bio-mechanical interactive
behaviors. The general structure is modified from the 1-D cell motility model given in [33] . The
cell is treated as a viscoelastic deformable body [34]interacting with a 1-D deformable ECM[35].
The cell body consists of two masses (which represent the leading edge and trailing edge of the cell)
connected through a spring and damper (which represents the viscoelastic nature of the cell). The
ECM is made up of springs connected through multiple nodes.

The cell can attach to the ECM at the leading and trailing edge through the multiple nodes
present within the ECM. To move forward, the current cell attachments must be broken and the
cell can “grab” and attach to the closest ECM nodes. Depending on the node attachments the ECM
stiffness parameters of the sections behind the trailing edge, between the leading and trailing edges,
and in front of the leading edge will change. These parameters are nonlinear functions that change
depending on the position of the ECM node attachments. Consequently the equilibrium position of

the leading and trailing edge are adjusted to compensate for the changing ECM stiffness’s.

Furthermore there is a constant stiffness ( q,@ ) associated with the ECM node attachments of

the leading and trailing edges.
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Figure 6: A) overview of the mechanical structure of 1-D lumped parameter cell migration model B) Bond
graph corresponding to the 1-D lumped parameter system. Bond graph representing cell dynamics (green

junctions) is linked to the bond graph representation

3.2 Bond Graph Representation

Consider the bond graph shown in Fig. 6b which describes the 1-D lumped parameter
cel/ECM dynamics. The elements (masses, springs, and dampers) representing the system are
connected through lines, termed power bonds. The two variables are associated with each bond,
the product of which represents power flowing through the bond. In the mechanical domain,
variables represent the force and velocity respectively. The 1°s and 0’s  describe two types of
junctions. The former represents the mechanical domain equivalent to Kirchhoff’s Voltage Law,
while the latter represents the mechanical domain equivalent to Kirchhoff’s Current Law.

The bond graph representing cell dynamics (green junctions) is linked to the bond graph
representing ECM dynamics (grey junctions) through the elastic elements representing cell to ECM
node attachments (red elements). Spring elements connecting adjacent nodes within the ECM (blue
elements) are functions of the number of nodes within the sections behind the trailing edge , between

the leading and trailing edges , and in front of the leading edge and are also functions of the
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corresponding stiffness parameters within each section.  The state variables within the system are
given by the vector:

T

J € Rﬂx’“

x= [x[ead »Xerait? Plead s Perait* XEcm 1y XEcm 20 X aECH 2 Xacett 7% n 9 Xmy 3o Xy

(37)

Xaecm = XEcm1 ~ XEcm2
Xacett = Xiead ~ *erait

AP . . . s . .
Where eat® Yt Yaans Xunns ¥aoe Yoot ape positions corresponding to the leading edge,

trailing edge and corresponding ECM node attachments as described in Fig. 1. Variables Pras gnd

p.'m

" represent the momentum of the leading and trailing edge and X, 3 X, yony X (~,, =total#

"N ECcM

of nodes within ECM) represent the position of each node within the ECM.

3.3 Deriving State Equations using Bond Graphs

Using the bond graph we may write the dynamic equations of the system as a combination
of the state variables(x's) and the effort and flow variables(e's, f 's) associated with the (linear

and nonlinear) constitutive laws of the elements described within the bond graph.

it"’“ = ‘f-mril deCMl = fECMl
dt dt
dp dx
l;:m =€ e\ECM - eECMl - eBlmﬂ ;‘;ﬂ“ = fzcmz
(38)
% = -f;tad ‘aﬂCM = fECMl - fECM"\
dt dt
dp,,
f-_ €Ecm2 + €iecm ~ Cou d:r = fmd - frrail
- p .
Loom 1_? Jori=[1,..,N,]
., = N, i=[N,...,N +N
dt :fn,- = f-uzc.u' Nz +f£cm for’—[ |y 1+ z]
i—-(N +N) .
Foons | 1= fori=[N +N_,..,N +N,+N ]

N,,=N+N +N,
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Equation (38) describes the state variable dynamics as a linear combination of effort and

flow variables. Rewriting the system in matrix form:

dx
X W, (39)

Where W, € R™" is a constant weight matrix and represents the auxiliary variables are
defined by:

n=L/f, :msnﬂm 3.3 Cpaairs S Ecans S ECM?29

] c Rn" x1 (40)

eECMl’eECMNeAECM’-f;:I’f;zZ’“" L

It has been shown that augmenting the state variables with auxiliary variables (1) derived

from the system dynamics is necessary for depicting the nonlinear system dynamics behavior as a

whole[26] . The augmented state vector may be defined as:

X £x1
i=( JeR" (41)
1

The augmented variable vector is termed sufficiently informing in that it in can completely
reproduce the nonlinear dynamics of the system. Here we propose that an approximate linear

variation can be found within the augmented data.

3.4 Linear Reduced Order Latent Representation using Simulated
Data

3.4.1 Modifications from section 2.2

Although the variables described in the augmented vector given by (41) are sufficient to
inform the dynamics of isolated single-cell/ECM, additional variables are added for the multi-cell
ECM case. This is in order to track the cell’s leading and trailing edge location with respect to it’s
ECM. Furthermore we must ensure that the ECM variables are consistent among the individual

models. Consequently, we record the index of the ECM node currently attached to the leading and

trailing cell edges ( Luugslyay )- Specifying these indices will further create an address for the cell

on the ECM. The original ECM state variables Xz X5 in (37) (wWhich represent the positions of

the attached ECM nodes) are defined as follows:
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Xeean = Xpodei,,,
Jeemn = Xoae,,, i NOde iy, is attached to leading edge (iy,.; # i)

Seern = Frmdm,m, (42)

Xpema =X

Trrait

Seems =%, pif nodei,, is attached to leading edge (i, # i..,)
Seemr = F;,m,,

We also include the forces ¢, (i = W, ECM) of all the ECM the nodes comprising the

ECM. We redefine auxiliary variables to include the additional aforementioned variables.

.
- nn‘xi
n, —[fnl, PRI ,enl,e,h,...,e"‘\__w} eR
T nz,x]
Xy = [ff-:(,‘Ml’fﬁ'(Mz!eEmneE(Mz ’eAECM] eR (43)
_ d(l.’ead) d(lrrarl) Rn,hxl
.= dt 4 dr 3 Jirait 9 J tead s €celt Y€ airair | €

Note that 1, contains only variables associated with the cell dynamics and 1), contains
only variables associated with the ECM. Following from (42)we may write a relationship between
N,and ;.

2,=M,7, (44)

Where N]Wis an, xn, binary membership matrix. If the leading edge of the cell is attached

the ECM node the elements at the 1st and 3rd and 5th rows and column are 1. If the trailing edge
of the cell is attached the ECM node the elements at the 2nd and 4th, rows and column are 1 and
Sht row are -1. All other elements representing unattached ECM nodes are 0.

Augmenting equation (3) with the additional variables we may write:

il'ead
irrmf
g - . (45)
= =L, W I }
dt enl [ =2 1 . Mgev “MNecw z"
i w,’ ﬂ¢
it
11*
L e |
d!‘

dt
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The augmented state vector may be re-defined as:

n

(*=n, +n,. (46)

n.=2+n +Rpp M. =2+0 +n.,

Since all the variables contained in equation (41) are included in the new set of variables
the new set is still sufficient to describe the single-cell/ECM behavior. We conduct simulations of
the nonlinear switching model of the single-cel/ECM dynamics described using a diverse set of
initial conditions. With these simulations, a large number of aforementioned variables equation (46)

are sampled. A data matrix is formed by arranging these samples in the following manner:

47)

X" e RV

We use the covariance of the data matrix in (47) to transform the variables specified in (46)

into latent space as previously outlined in section 2.2.2. and 2.2.3 to obtain equation.

3.4.2 Model Evaluation and Analysis

As can be seen in figure 7, there is good agreement between the trajectories of the real cell

compared to the reduced order latent variable model. The total mean squared error MSE =.02.
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Time

T . ARG SR R
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lginalsimainrion Latent Variable Model

(7Lv)

Figure 7: Trajectories of the real cell compared to the reduced order latent variable model
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3.5 Linking Individual Reduced Order Models through the

Dynamics of Shared Variables

3.5.1Modifications from section 2.3

First, we isolate variables in latent space:

N
Zs
. ¥ W * p— n
i(r)=v{’i}-v{ t‘,"}ww .
1 ! e
7
[ |
1, | [0 ] 0
0 X 0
VW[ |+VvIW] D evTw| e
1, 0 0
0 X 0
10 | 10| _i]¢_
— W* On xH
_ n n & R(n,.ﬂt“. }xln“.
0”,’.)(",’. Ifl,:' an,,
Further simplification gives:
] o _ )
Zs Mx¢“¢
: T N, ool 0 Tw
z(1)=V'WM,_| " [+V'W +VIWC,
N, 0 ‘
Z¢ Mxéflsé
_ﬂM 0 =

44

(48)

(49)



Application of Approach to 1-Dimensional Distributed Parameter Cell-Matrix Model

Where we substitute equation(44) and NI,;r is defined as:

In'h xn,h 0".‘“ Xl’ll¢ 0".‘“ )(n,w On“u Knl‘l‘. Oﬂrh Xi’lzé 0”"11 anw
0 0 0 0 0 0
nwxn,h .l‘!;ux}?z¢ Hrﬂxﬂ,w ”de"'lu "z¢x"z¢ ."i’1¢>(ﬂ',,',ﬁ
0 0 0 0 0 0
Mg *Pig P ™My Png Ping Fpg XMy Ay XM yy Ping Mg e
M, = eR (50)
“ 0 0 0 I 0 0
ﬂ“t! Xn‘.“ n,h xn‘w n‘lﬂ and n%xnm n"'“ Xh‘xw I?n“ Xﬂm»
0 0 0 0 0 0
le’xﬂ‘h nwxnu "mx”ﬂo nwxn‘h H;w ",w "léx"’w
0 0 0 0 0 0
L n,_,éxn'h HU¢XHI¢ H,?éxﬂ,w n%xn.h n%xnw n,wxn,u |
Furthermore ¢ e r “**" is defined as:
Onrh Knrh 0}‘1 )(!'i'zé On Xﬂr’¢ Onnu anu 0"‘1« X.ﬂ'l¢ 0”‘1‘: >(n’;‘w
0 0 M 0 0
nwxn% My XMy xé ”;r,sxnrk. On’wxn‘m nuxnw
0 0 0 0 0 0
n, . XA, n, xXn n. . xn, n, . xn, n, xn n, ., XA,
g " M gt g " Mg ng " MNa ne " xp ng "'y ey
=10 0 0 0 0 0 =R™EED
M"“ Xl’l"u n"lu XHIQ "“Il Xr.!",’ n‘h anlu n"ll Xﬂz¢ ”lrh Xﬂrw
0 0 0 0 0
r."],“xn,'“l ”r¢x"x¢ nmxnw nzo!xnn“ nwxn” xé
0 0 0 0 0 0
L ﬂ,m XH"G nq¢XR1¢ ﬂ”&Xﬂn‘ nr,¢ Xﬂ‘h nuwxnz‘d fi',,w xn% ]
Let us define the variables related to the ECM, cell and interface as:
0
0
2,=V'W (52)
0
0
[T

45



Application of Approach to 1-Dimensional Distributed Parameter Cell-Matrix Model

n, M
0 Xy
—0 = |n = (W )V
2,=V'W| [=VTWM,| "’ [=VTWM,_ |\ 7/ "= |z (53)
1, . v,.
0 X N
_0 - _ﬂqﬁJ
0 o
X 0
2, =viw| |=viwc| =VTWC(VTW)# z,
¢ 0 0 ‘
s
0 LM (54)
Then substituting equation(49):
— — p—il #
z(t)=(VTstaV* )i+VTV\C(VTW) I,+1, (55)
Finally we may write:
ey ‘= . el #
i(t):(VTWMaV)Az(t)+(V"WC(VrW) +I)i¢ (56)

Equation (56) provides the state equations where the latent variables associated with ECM
dynamics as an additive term.

Using the modified framework in equation we propose to replace the ECM dynamics of the

- emergant

individual isolated cells (i¢(t)) with an emergent state variable (Z, (t ) ) that represents the

multi-cell environment. In order to this, a second key assumption is necessary. Mainly, it must
possible to estimate the multi-cell ECM environment and corresponding ECM states by superposing
ECM dynamics of multiple isolated single-cell ECM models. Although, the estimation may not be
exact, it will be valid if it can reproduce the specified emergent behavior which as previously

mentioned is the cells moving forward towards each other.
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The ECM variables of individual single agent models are added to create the combined ECM
environment influenced by multiple cells. The state equation given by equation specified for each

individual (j) agent is:
= . p— —— #
7 — (VTWMaV )Az(t) +(VTWC(VTW) + I)i;’""g"m (57)

The individual ECM are supposed to create an estimate of the combined ECM environment

influenced by multiple cells:

2
z]"" = 2, (58)
Jj=1
7z, =P -z
Where ¢/ ¢ 7
P, =V WM,V (59)

3.5.2 Model Evaluation and Analysis

The position trajectories of the original nonlinear simulation (green) and the linear
superposition estimation (red) are shown in figure 8. As can be seen, approximation of the ECM
using linear superposition leads to the production of the correct emergent behavior (i.e. the two cells
move towards each other). These results suggest that it is possible to reproduce the general required

motion to indicate emergent behavior.
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Time

.3 *_

v Original simulation Latent Variable Model
(7LV)

Figure 8: Python simulation of position trajectories of the original nonlinear simulation (green) and the linear

state equation where variables are estimated using superposition (red).

48



Application of Approach to 3-Dimensional Distributed Parameter Cell-Matrix Model

4. Application of Approach to 3-Dimensional
Distributed Parameter Cell-Matrix Model

4.1 Definition of Nonlinear Distributed Parameter Model of 3-D Cell
Spreading on a 2.5D Elastic Substrate

Consider the 3-D distributed parameter cell model shown in figure 9. The full biophysical
model simulates cell migration and spreading on an elastic substrate and incorporates focal adhesion
dynamics, cytoskeleton and nucleus remodeling, actin motor activity, and lamellipodia
protrusion[11], [13]. The inner and outer membrane of the cell is divided into a triangular mesh
consisting of 200 nodes. The ECM is a complex fibrous network that is divided into2000 nodes. It
measures 2um thick and 60um in diameter. The ECM fibers are modeled after Collagen Type 1. The
bulk stiffness of the substrate is estimated to be S5kPa.

The cell membrane deforms and gains traction as the nodes distributed over the outer
membrane bond to nodes on the ECM surface, and form focal adhesions. The ECM deforms due to

the cell and can also influence the cell dynamics because the cell’s anterior-posterior polarization

(or cell’s polarity) is changed based on the direction of local maximum stiffness in the
ECM[36]. Consequently, the cell continuously updates its lamellipodial protrusions in order to

reflect the cell’s polarity change to local maximum stiffness direction.

The dynamical system to be linearized is a set of nonlinear differential equations that describe

the deformation of the cell outer membrane and ECM substrate.

4.2 Bond Graph Representation

In order to create a bond graph describing the deformations of the outer cell membrane we
must consider the 3-D position of each node on the outer membrane and each node within the ECM

substrate:
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mv@mﬁfﬂr
: ? \ Vj\}k J

Figure 9: Nonlinear Distributed Parameter Model of 3-D Cell Spreading on a 2.5D Elastic Substrate. The

membrane of the cell is divided into a triangular mesh consisting of 200 nodes. The ECM is a complex
(x“ :(x;‘,...,xgm)"' ER3'(20°)"])
X =(x0y.7)
(5 = (o) R
x =[x\.y,.z ]

Furthermore, we must identify the modeling elements (e.g. masses, springs, and dampers)

(60)

representing energy storage and dissipation in the system and their connectivity. Let us examine the
forces interacting on a membrane node and ECM node shown in figure 10.
Each membrane node is acted upon by five forces. It should be noted that the inertia of the

node is not considered. Therefore the node is a point mass. These forces are summarized in Table 2:
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Equation Modeling Element
Force
dx¢ Linear Damper
. . . 3 . c
Frictional Dissipative Force Fp=0, dt
. . F' =@, ( x") Nonlinear Spring
Cortical Tension Force '
. FF =0, (x‘ ) Nonlinear Spring
Elastic Energy Force £ ’
F¢ =® x¢, x¢ Nonlinear Spring
Focal Adhesion Force 4 e ( )
o . [constant Source
Lamellipodium Force F = 0

Table 2: Summary of forces acting at a single (massless) membrane node

Each ECM is acted upon by 3 forces. The constitutive equations for these forces are
summarized in Table 3:

Free Body Diagram
/

;" c
FA

Free Body Diagram
T e
Fg ‘

K ST NSNS
2 1\‘ Rt i ad !
NN Y
N NV B o A
PRA\/ N2 DB
A R AL e
SANAN =l
N L AT R VR KN
A VA 9 A

Figure 10: Forces interacting on a single membrane node and ECM node single node
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Equation Modeling Element
Force
. FF=d, (xe ) Nonlinear Spring
Elastic Energy Force £

Fe, =@ x5, x¢ Nonlinear Spring
Focal Adhesion Force Fa FAe ( )

dx* J Linear Damping

Frictional Dissipative Force Fj, = D, ( i

Table 3: Summary of forces acting at a single (massless) ECM node

Membrane nodes can bond to the ECM nodes through focal adhesions. When the focal
adhesion forces of the bonded membrane ECM node pair are equal and opposite. Therefore the ith

membrane node bonded to the jth ECM node:

r4; = —Fpy; (When bonded) (61)
However, if the bond between the ith membrane node bonded to the jz2 ECM node is ruptured
the focal adhesion force automatically switches to zero:

F(’

FA,i

=0
(when ruptured) (62)

e —
FAj —

This adds another source of nonlinearity to the system.
The forces described in the above tables are 3-Dimensional and involve nonlinear
kinematics to represent each spring modeling element. An accurate bond graph describing the node

requires the use of and modified bond graph representation used for multiple dimensions[37].
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Figure 11: Simplified Conceptual Bond Graph of Cell ECM Interface

However for simplicity let us consider the simplified conceptual Bond Graph structure in figure 11

which contains the bonds and causality necessary to derive the governing equations.

Here, R, =C.+C,, and R =C, represent the linear damping elements for the membrane
node and ECM node respectively. The focal adhesion bond is shown as with a multiport capacitive
element C=n, -k, (termed C-Field). C-fields are multi-port generalizations of the basic scalar
elements, and can be used in order to model complex multi-dimensional systems[28], [38], [39].

4.3 Deriving Equations from Bond Graphs

From above the bond graph may list the governing equations:
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1 junction equations

fori=1,...,200
x°
(C.+C,,) dtl +Fp,+Fp +F +F =0
fori=1,...,2000
d C
d ]':“I€T:A1-i_1:“e _0

constitutive equations from nonlinear elements

F,=®,, (xc,xe)

FA

F; =], (xc)

. constant
-
F' =@, (x)

FA

F =, (x) (63)

E

F., =0, (x”,xe)

From causality, the damping linear damping forces are dependent on the other forces:

Therefore we may write for the ith membrane node and ith ECM node:

O L (B by Eg )
= FAT YT LTy
dt (CC +C,) (64)
dx’
(5]
The state equation describing the 3-Dimensional position of the 72, = 200 and the Y, =

2000 nodes are given by:
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F;A,]
FFCA.n__
FE
dx_f l c
dt FE-”....
dx 1 1 1 1 i 7
=l (Cc + Cr:urr ) (Cl: * Ccan) (C(‘ + Ccer! ) Ce Ce :
dr | _ . .. v - .. Fe
dx* i : . ¥ . g T,
T' 1 1 1 1 1 || fe
t e —— — d— Li
‘| €+ Com) €+ Cor) @) G Al
W’l
o Fiu.
d | :
&
* Fams
Fi
Fene | (65)

Equation (65) reveals a linear representation of the system with respect auxiliary variable
vector 7;. Furthermore we augment the system by explicitly writing the dynamics of 7as previously

explained in section 2.1.2. For clarity we re-write equation(6):

?:WW .ﬂERm] (n=3'nmem +3'n5CM)

dtr] (66)
an :H ’ RH'TXI

dt (x 7?) -

4.4 Incorporation of Cell Polarity

As previously discussed in section 4.1, the cell continuously updates its lamellipodial

protrusions in order to reflect its polarity change to local maximum stiffness direction. As shown in

figure 12, depending on the polarity direction (d ot ) the cell membrane is split into a leading and

trailing edge. The lamellipodial protrusion force (Ff) of all membrane nodes at the trailing edge is

set to zero. Depending the distance of the membrane node from the elastic substrate, the

lamellipodial protrusion force at the leading edge can be nonzero.

55



Application of Approach to 3-Dimensional Distributed Parameter Cell-Matrix Model

F:Lc.i =0

Nodes in the trailing edge
have zero Lamellipodial
protrusion force

F;, ¢O\

Nodes in the leading edge
have nonzero Lamellipodial
protrusion force

Figure 12: Polarization direction determines the leading edge of the cell and lamellipodial protrusion force
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We wish to represent the dependency of lamellipodial protrusion force on the cell polarity

direction within the state equations given in equation(65). First we re-write equation (65) to isolate

the lamellipodial protrusion forces at each node:

ooalk

&

2 n
i

(Ce+ Coont) (Ce + Coon) (Ce +Ceon)
1 1 b
(Ce+ Coom) (Ce+Ceon) (Ce+Coo)

ol

“l'\|_.

al-

o=

97Tl

~ 0

.m{s‘;: -k 51

direction vector(d st © R>! ) , we have created a membership function matrix M, eR" .

Next, we define Uas:

0

£,

1 . .
u=——| eR“H:F;={
(CC + CCOF‘f ) "

trailing edge
leading edge

[ e
FFA‘I
¢
FFA‘n._

FE1

FEm..

Fe

o
0

e
FFA.I

e
FFA.nm

Fg,

e
L FE‘"D{'N’ P

e

1

+
(CC + Ccorf)

Fe

Li

¢
F Lan,

(67)

(68)

In order to relate the lamellopodial protrusion force at each node to the global polarity
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0 0 0 O
0 0 0O
1 0 O
0 1 0
M, =i o i i i|eRWOS (69)
1 0 1
0 1
0 0 0 0
0 0 0 0]

pol

V d . xd
The jith column of m ,, corresponds the j degree polarity angle 8, , = arctan [lf"_”“)_]
pol

d

pol0 :

(rounded to the nearest integer degree). Therefore, there are 360 columns in the matrix. Each element

in the jth column of the m ,, takes a 1 or 0 value depending on whether ¢, has a zero or nonzero

value. We re-write Uas;:

d_.xd
u(dpo,) = ——I—Mpo, : ,arctan |p010—’m[ -F,
(Cc + Ccort) dpolO ’ dpol (70)
F, = const
If the polarity direction is pre-determined we may write:

dx .

"‘c;;: W” n +ll(dp0/)

i’ (71)

n '
——=H{(x,

Equation (71) describes open-loop augmented state equations since the polarity is shown as
an independent input to the system. However as previously mentioned a cell’s polarity is changed
based on the direction of local maximum stiffness in the ECM. In order to mathematically represent

this relationship, we use an equation modified from [36]:
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= K(dpal x(dmaxst,ﬁ’h.CM X dpo, )) (72)

Here d™,; cn is a 3 dimensional vector representing the direction of local maximum

stiffness in the ECM and a nonlinear function of the auxiliary and state variables of the system:

dmaxsttﬁ,ECM =0, (xa 77) eR™ (73)

In equation (73) we do not specify the relationship explicitly but only acknowledge that it
will be some nonlinear function of the original state and the auxiliary variables. Therefore  we

may write the closed loop augmented state equations as:

dt "
dn _ .
. —H( ,77) (74)
d do *
(dtpl)=x(dpo,x((Dd(x,n )xd,m,))

4.5 Linear Reduced Order Latent Representation using Simulated
Data

4.5.1 Modifications from section 2.2

For the given system, the augmented state vector modified from (9) is:
P {x } e R(n+nﬂ)xl (75)

Where we have eliminated the lamellipodial protrusion force from the definition of the

auxiliary variable vector:
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e (Cc +Ccort) Ffl

c
FL,n

0 (76)

In order to create a reduced order representation of the augmented system in latent

variable space, we calculate the transformation " as shown in equation (11)in section 2.2.2. Here,

V" is derived using the data covariance matrix of simulated time samples of Xand 77 for = L.t .

and N different initial conditions:

X* _ :: - IRN-!f><(n+rl,,) (77)
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Using V" we can find the latent space representation as in(12). Differentiating we again

obtain:

& dx dn
G _yer &y dn
a T a " & 78
Substituting equation 4.7:
& * * * * dn*
E=er(“¢, 7 +"(df"”))+V"T—dT (79)

As previously discussed in section 2.2.2 we can estimate an approximate of 77 using latent

variables and substitute into equation(79):

A0
% Kok * * (80)
%sz T(wnKIZ+“(dP<>Z))+K7 Ta;’it

As explained in 2.2.3, we can approximate ‘2_77 using PCR:
t

%:ﬁ*(t)=K*-z(t) (81)
Substituting:
dz *]' * * *T *
—=V (W d V'K -
dt x ( n nz+u( pol))+ l Z(t) (82)

*T * * *T * *T
=(TW VK )2 (0 V. ()
We have left Uexplicit in the equation(82), as we will use the exact equations given in (70)

and (72) to drive the reduced order latent variable system. However, the nonlinear relationship

described in (73) will be estimated using PCR. In order to do this, let us rearrange the augmented
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variables defined in X into two distinct groups that represent field variables (¢) and component

variables (, ) as discussed section 2.3.2:

X= {x} = {a} e R
n] L9

. T
a =[x, FF,E, | (83)
T
¢:|:x 9FE’FFA1|
Since, as previously stated, the direction of maximum ECM stiffness depends the cell

1 Myrem

location x,,,,, =——

mem =1

x; and the stresses (or Forces) within the field, we will regress only the

latent variable representation associated with these variables to onto d" . s :

Z;
ymax _ Fe
d:lijf,ECM =K, { ]

Zx(
Zpy = PFa z
2, =P,z
o , * (84)
B=V"e 1 d
My ~Npcn Py npepg

* Jn xn 0 *
Px -V T 1 R piem > Pmem V
center nmem 0 0

= matrix of ones

mmmmmm

Where coefficient matrix K, can be may be estimated by the least squares method. We may

now write the reduced order latent space equations as:
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“Plant”
_______ “Controller” i"'“""' - - - ":
d i 1 i({) i
w1y + z(r) | z,(1)

,[ P H, (d!“”) I |
- ) :
p . :
] 1 * 1
= D{dsd™ o 50 E E A E
S -7y N | [ T —— SRR, e AP | o

L T e |

! 2 (t) P !

dm( (’) ! ) xco:fe i

A 1 K, . i

1 i

- DN |

“Sensor”
Figure 13: Block Diagram of the reduced order latent space represented in (85)

T * * d (o] ]
@:s(V;HWqVq +V." ) (O)+V, ——— 1 ., arctan |pm—’”—~ -F,
dt . " (C +, cort ) polo dpm'

Hy ) &5
d(d,,) 2 7, Zp
pol Fe e
dt = K{dpo.’ X [Ka' |:Z :|X dpm' }} = Kd |:Z }(d,ﬂm’ dpo! ) - dpm‘ [dpuf Kd |:Z

(d ol drﬁfnu)

Were we have rewritten input polarity dynamics as using triple product expansion. Under the
assumptions stated in 2.3.1 we can link the above system. Figure 13 shows the block diagram of the

equations in (85). From the basic structure we may identify pseudo plant (A matrix), controller

(polarity equation) and sensor (direction of maximum stiffness equation) blocks.

4.5.2 Model Evaluation and Analysis

In order to evaluate the model, calculated the latent space trajectory and compared with the

original simulation.

As can be seen in figure 14there is good agreement between the deformations of the real cell

compared to the reduced order latent variable model. Figure 15 shows the mean squared error as a

function of latent variable dimension (m):
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t-1
AM:l/Z(e,Te,) (86)
tf =0

Where €; is the residual error between the linear state transitions and the original nonlinear

simulation at time #. As can be seen, as the number of latent variables increase the mean squared
error decreases significantly. At 100 latent variables, the mean square error is MSE =5x107".
However, since the cell deforms around 1x107'° per time step the mean squatted error for 10 latent

variables is still sufficiently low.

64



Application of Approach to 3-Dimensional Distributed Parameter Cell-Matrix Model

Time(min)
10 —
20 ——
30 —
40 —
V

Original simulation Latent Variable Model
(100LV)

Figure 14: Comparison of cell morphologies over time between the original simulation (green) and the latent

variable simulation using 100 latent variables(blue).
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Figure 15: Mean squared error as a function of latent variable dimension (1)
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The main distinction between the number of latent variables considered and the resulting
model is that as more latent variables are included, higher order dynamics may be described. This
means that with 10 latent variables the model can capture the average lower frequency deformations
of the cell and ECM, but does not capture fast fluctuations displayed in the original simulation.
However if 100 latent variables are included within the model, these fluctuation may be reproduced.

Figures 16 and 17 show the eigenvalues for the 4" matrix (which corresponds to open loop
poles of the system) of the 10 latent variable and 100 latent variable model. As can be seen in figure
16 the majority poles for the 10 latent variable model reveal more damped frequencies. However
when 100 latent variables are used within the model, the imaginary component of complex pole pairs

are larger, indicating higher frequencies within the model.
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Figure 16: Eigenvalues for the matrix (which corresponds to open loop poles of the system) of the 10 latent

variable model. The majority poles are near the real axis indicating lower frequencies.
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Figure 17: Eigenvalues for the

variable model. The imaginary component of complex pole pairs are larger, indicating higher frequencies within

the model.
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Since the majority of the dynamics within the reduced order latent space model have been
represented linearly, the computation time from the original simulation is decreased significantly.
Figure 18 show the computation time a function of latent variable dimension (m). This is compared

to the original simulation which took seven hours to compute the same number of time points.
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Figure 18: Computation time a function of latent variable dimension (m). This is compared to the original

simulation which too seven hours to compute the same number of time points
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4.6 Linking Individual Reduced Order Models through the
Dynamics of Shared Variables

Now let us consider the case of multiple cells interacting on an elastic substrate. As
mentioned previously, experimental findings showed that cells transmit forces through the ECM
causing increased deformation and compaction of the ECM between the cells [4], [5]. We would
like to estimate the interaction of the multicellular system by linking the latent space models of the
individual cells (derived in the previous section) through the ECM.

Consider K reduced order latent space models of a single cell spreading on an elastic

substrate. The kzh cell is represented by:

dz* .
@ A2 (AL, )y 2 (0)=2"
d dka
L) b g ®
dt
zl:
d.\mn;;:irm = Kj z?

%

Here matrix 4  is the same for each cell because each cell is undergoing the same
phenotype (i.e cell spreading interactions on an elastic substrate). However the internal mechanics

(i.e. cell polarity) will differ depending on the location and local environment of the cell. Therefore

k

the polarity equation H* (d* ) and initial conditions z* (0) =z*° are specific for each cell.
q u pol

Cell K

£F z ‘ +’" 2 + h

Influence of Cell £ on ECAM Inflaence of Cell 2 on BCM Influerice of Cell Ko ECM

Shared Field State(ECN)

Figure 19: Conceptual diagram showing how multi-cell system will be estimated using superposition of the

influence of multiple linear single cell models through a shared ECM.
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4.6.1Modifications from section 2.3
First, we isolate the ECM forces of individual cell models by using projection matrix Py

as described in equation(84):

kK _ k
2y =Pz

0 0 (88)
*T £ 3
B =V {0 1 }V

ng-NECM

ny—Rpep <N

We link the ECM dynamics of each individual cell in the following manner:

.k Lk k .k
2 :(I*PW_PWPPW)Z +ZF¢ +PmapZF¢

(89)

Tk k
Zpg =PF¢Z,,¢

map

Z-k,emergent — Z-k +([ +P ) sz,p
Lk

=(1-P, =P, Py )2 + 25+ P2, +(1+Pmap)-;zﬁ¢ (90)

K
:([_PF¢ _PmapPF¢)ék +(1+P’"0P).;Z-;;¢

Where a mapping function matrix ( me ), derived from the simulated training data) is used

to constrain the focal adhesion forces of connected membrane and ECM nodes to be equal and

opposite.

Substituting equation (87)into equation (90) we may write:

shomn o (45t 2 () (1 P ) Py 3 (4750 1 (0L on

Lk
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In matrix form (for components k£ = /,...,K ) we may write:

Ctemerean 1 [ A (14 P, ) Pryd” o (14B,,)Pud |[ 5 ]
gremersent | | (1+P,, ) Poyd’ A o (1+P,, )P4 || 2
| zemersant | (I+Pmap)PF¢A* (1+P,,)Pu4" - A __zK_ o)
T (1+P,,)P, (1+8,,)P., || H.(d.,
. (1+2,,)P., I (I+Pmap)PF¢ H(d},)
(1+Pmap)P,¢ (1+P,,)P, - I | HK(d,’;,)
Substitutihg equation (35) into equation(92):
lemergant A (1+P, ) Poyd” o (I+P,, ) B A | ; By - B[z e
gremersen | | (1+B,,, ) Py’ vy o (T4 B )Py || Py T oo By | | g2emersom
3K emergant (I+Pmap)Pl,¢A* (1+Pmap)P g .. g PF¢ P1~‘¢ I K emergant
I (1+P,, )Py (1+P,,) Py || Hi(d))
R N L L LTS ©3)
(1+P)Pey (I+P,)Bry - I HE(dY,)

#— pseudo inverse

Equation (93) represents the K coupled dynamic equations that we will use to predict the

behaviors of the larger multi-cell system.

72



Application of Approach to 3-Dimensional Distributed Parameter Cell-Matrix Model

4.6.2 Model Evaluation and Analysis for 2 Cells

Since we approximate the (originally nonlinear) multi-cell ECM environment by
superposition individual (linear) single-cel/ECM dynamics, we do not expect the predicted
trajectories to be exact to that of the original nonlinear simulation (with same initial conditions).
However the matrix-mediated mechanical interaction leading to emergent behavior are reproduced
may be reproduced.

A key finding in Guo et al. showed that the ECM within the central gap between two
interacting cells was significantly deformed compared to areas on the periphery of the central gap,
which remained static. This indicated directed matrix-mediated force transmission in between cells
[3]. Similarly this phenomena can be reproduced within the multi-cell spreading model presented.
Figure 20 shows a contour plot of the of ECM nodes for the latent variable model and original
simulation. The larger red arrows indicate velocity has reached a threshold over 1.6nm/s with highest
speeds directly underneath the cell (at 10nm/s). This value of 1.6 nm/s is consistent with deformation
velocity experiments between 2 cells outlined in Guo et al[3]. As can be seen, ECM node speeds
are only significant within the central gap as compared to the surrounding ECM where the velocities
are zero. Here we also show that the latent variable model is capable of reproducing this phenomena

which is present within the original simulation.
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Figure 20: Contour plot of the of ECM nodes for the latent variable model and original simulation. The larger
red arrows indicate velocity has reached a threshold over 2nm/s with highest speeds directly underneath the
cell (at 10nm/s). The latent variable model is capable of reproducing this phenomena which is present within

the original simulation

Using, the latent variable model we may also reveal more pronounced deformations
(indicated by higher ECM node velocities) when the cells are spaced closer together. Figure 21
shows a contour plots of cells spaced at 10um and 30 um at 20 minute and 40 minute time points.
As can be seen, the ECM node velocity between the cells increase as the as the gap between the cells
decrease. Figure 22 summarizes the average velocity of ECM node s in-between cells (red) and areas
on the periphery (blue) for 10um spacing and 30um spacing. As expected, the ECM node velocities
increase in between the cells for smaller gap sizes indicating increased mechanical interaction as

closer distances.
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Figure 21: Contour plots of cells spaced at 10um and 30 um at 20 minute and 40 minute time points.
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Figure 22: The average velocity of ECM node s in-between cells (red) and areas on the periphery (blue) for

10um spacing and 30um spacing.

We also analyzed cell spreading within the gap by measuring/analyzing the changing gap
size (or distance between cell’s protrusions within the gap). Figure 23 shows the changing gap size
normalized by the original gap size over time. As can be seen the cells spread more extensively
towards each other when closer together which is consistent with the increase in non-dispersed force

transmission between cells that are closer together.
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Figure 23: Changing gap size (or distance between cell’s protrusions) normalized by the original gap size

over time.

Using the latent variable approach, the computation time from the original simulation is
decreased significantly. Table 4 summarizes the computation times for 20 latent variable model and

100 latent variable model for 2 cells compared to the original simulation computation time.

20 LV model 100LYV model Real Simulation

Computation time 2 minutes 20 minutes 10 hours

Table 4: Computation times for 20 latent variable model and 100 latent variable model for 2 cells compared

to the original simulation computation time
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4.6.3 Model Evaluation and Analysis for 10 Cells

Extending the aforementioned approach to 10 cells, we see that the variation in ECM node
velocity in between cells with respect to gap size is similar to the 2-cell case. As can be seen by the
contour plot (of ten cells placed at random initial locations) cells can interact with multiple cells
within its vicinity. However, at a distance of about 40um inter-cell interactions are attenuated.
Interestingly, this attenuation distance is consistent with recent observations of mechanical
interaction between cells crawling on a 2D substrate which showed an interaction length of the order
of 30 um[6]. Figure 24 summarizes the average velocity of ECM nodes in-between cells for 5um
spacing, 10-20um spacing and 40-50um spacing. Note that the ECM node velocities near cells in the
upper right were not included in the analysis since they are affected by the ECM boundary. As within
the 2-cell case ECM node velocity decreases in between cells as gap size increases. However the
overall ECM node speeds are higher which is expected since each cell is interacting with more than

one cell.
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Figure 24: Contour plot of ECM node velocities of ten cells placed at random initial locations on the ECM.
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Figure 25: Average velocity of ECM nodes in-between cells for Sum spacing, 10-20um spacing and 40-50um

spacing
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4.6.4 Extension to 3-D Cells Embedded in a Fibrous matrix

In three dimensions, large shape changes of the cell imply very pronounced deformations of
the surrounding matrix. Thus, the phenomena of cells embedded in a 3-D matrix is more pronounced
and crucially different from those observed on 2D substrates[10].

A key finding in Fernandez et al. showed that that multiple cells embedded inside a 3-
Dimensional collagen gel could spontaneously contract the entire gel volume via collective
contractile activity, an important mechanism behind tissue formation. Furthermore, local
deformations of a single cell embedded within the gel were insufficient to produce significant
contraction of the gel[10].

Similarly this phenomena can be reproduced for cells embedded within a 3-Dimenstional
ECM as shown in figure 25. The simulations shown in figure 26compare compaction and
densification of the ECM in between two cells for the original simulation(green cells) and the linear
superposition approach using 100 latent variables (blue cells). As can be seen the latent variable
superposition approach reproduces contraction of the gel boundary which is also present within the
original simulation. In addition we have reduced computation time to 20 minutes using the
superposition approach (same as for the 2-D case). In Figure 27 we further show that 1 cell produces
smaller and more local deformations than 2-cells embedded in a 3-D ECM. This indicates that the
mechanism of compaction is dependent on the number and spacing (i.e. density) of cells within the
gel. Figure 28 show quantification of the 1 cell vs. 2-cell gel compaction using thickens of the ECM
boundary at specific distances along the axial (x) direction as a metric. As can be seen, 2-cell model
ECM boundary of the 2-cell model compacts contracts more and also the contraction is more global
along the axial direction. The maximum contraction of the 1 cell model is 90% whereas the maxim

contraction of the 1-cell model is 67%.
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Figure 26: Biophysical model for the study of cells embedded in a 3-D matrix
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Figure 27: Simulation shows compaction and densification of the ECM in between the two cells for the

original simulation (green cells) and the linear superposition approach using 100 latent variables (blue cells).
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Figure 28: Simulation shows thatthat 1 cell produces smaller and more local deformations than 2-cells

embedded in a 3-D ECM.
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Figure 29: Quantification of the 1 cell (blue) vs. 2-cell (yellow) gel compaction using thickness of the ECM

boundary at specific distances along the axial (x) direction as a metric

84



Conclusion

5. Conclusion

5.1 Contributions of This Work

This thesis has developed a methodology for the linearization and subsequent superposition
of single-cell models to explain the emergent behavior among multiple cells. Contributions were

made in the 3 major areas: Theoretical, Computational and System Integration, and Biological.

5.1.1 Theoretical Contribution

The nonlinear dynamics describing single-cel/ECM interactions were modeled as
linearized subsystems in a more complex framework describing multi-cell interactions. This was

achieved by the following:

1. Recasting nonlinear (single-cell) dynamics to higher dimensional space by augmenting the
original (single-cell) system with auxiliary variables (that is, output variables on all the
nonlinear elements) derived from bond graph representation. This also created a more
complete description of the nonlinear dynamics.

2. Transforming the augmented state equations (describing single-cell) to a reduced-order
linear representation by projecting the augmented state equations onto a basis of
eigenvectors derived from simulated data set. This allowed for the evolution of the states

to be described within a lower dimensional linear manifold.

The resulting reduced order latent space model was capable of reproducing nonlinear
dynamics (including cell polarity and cell-matrix interactions). Furthermore the linearized

structure of individual models facilitated their integration to describe multi-cell behaviors.

5.1.2 Computational and System Integration Contribution

The prediction of a more complex multi-cell mechanical system using the aforementioned

linearized subsystems was achieved by the following:
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1. Isolating matrix dynamics within the linearized (single-cell) models describing individual
cells using linear projection
2. Linking matrix dynamics of individual cell models using linear superposition to

approximate a multi-cell environment.

With these combined methodologies, we created a comprehensive framework to facilitate
the study systems of interacting nonlinear agents, which would otherwise be prohibitively complex
to compute.

5.1.3 Biological Contribution

Using the proposed methodologies, we were able to reproduce intercellular mechanical
interactions consistent with published experimental observations for the following cell induced

emergent mechanical changes within ECM.:

1. Long-range non-dispersed force transmission between cells through measurement of
increased deformation velocity between cells. Non-dispersed force transmission is a
crucial mechanism for the initiation and maintenance of long-scale multi-cell linear
patterns [11].

2. Global contraction of gel volume via collective cell- contractile activity (as opposed to
local deformations of single cell embedded within the gel)]. Cell collective contractile

activity is an important mechanism behind tissue formation[10].

Furthermore, our analysis proved to be consistent with observations of mechanical
interaction between cells on a 2D substrate which an interactions showed attenuated interactions
length of the after 30um. We have introduced a new set of computational tools for modeling
mechanical interactions between cells and the extracellular matrix. Furthermore, through our study
of intermediate emergent behaviors arising within the matrix we can advance our understanding

of biomechanical signaling mechanisms during tissue formation and multi-cellular patterning.
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5.2 Limitations of Approach

A key limitation within our approach is that in order to reproduce biologically relevant
phenomena, one must begin with a biophysical model that accurately represents a subcomponent
of the phenomena being studied in order to create relevant simulation dataset. However in the
future, simulation data can be supplemented with experimental data in order to create a more
accurate dataset. Related to the creation of a dataset, another limitation is the computations of
covariance matrices and subsequent eigen-decomposition for the purpose of obtaining an
orthogonal basis on which to project augmented variables. For large datasets (either containing too
many nodes describing the cell and ECM or too many time samples) these computations may
become time consuming or intractable. However, methods of down sampling followed by
interpolation of final trajectory could alleviate this issue.

A key limitation within the theoretical framework is the inability to incorporate emergent
interactions involving cell to cell mechanical contact in addition to cell/matrix interactions. This
is because the causal relationships within the representative bond graph could not be resolved,
since both the bidirectional energy exchange through contact with the ECM and the adjacent cell
would have to be considered. However, if it was desired to study cell to cell mechanical contact in
the absence of ECM, the proposed approach would still be valid. This type of approach may be
relevant in the study of close-packed collective systems such as confinement-induced collective
migration characterized by cell jamming in pathological situations such as asthma and cancer[40].

In addition, the theoretical framework may be limited the to the representation of
extracellular matrices where small strains behave within the linear elastic regime[41]. This it is
due to the linear superposition assumption for combining the ECM dynamics for individual cells.

Furthermore, with the current mathematical formulation, we are unable to reproduce
degradation of the ECM through secretion of MMP. ECM degradation would be necessary to
reproduce sustained movement and migration of the cells particularly in 3-D embedded
matrices[42]. Since ECM degradation continuously changes the fiber connectivity through ECM
remodeling, we would need to develop a methodology to update the grid structure describing the
ECM field within our formulation. However ECM degradation may not be necessary to model gel
compaction since whereas isolated cells migrate in a random manner, a higher density cluster of

cells remains stationary when contracting the surrounding gel [10].
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A large assumption we made within our approach was that the cell’s internal adaptive
response to mechanical cues could be modeled as the change in cell polarity due to mechanical
cues. Cells change their internal state through a complex process of mechanotransduction and
intracellular signaling[43]. Future work should incorporate these more complex mechanisms to for

more accurate cell represntations.

Future Directions

5.2.1 Inclusion of More than one Phenotype to describe Model of Single
cell

In the current model formulation, we assume only one phenotype is expressed through
single-cell ECM interactions. This is in order to ensure that the model represents a time invariant
system. In reality, the cells exhibits a wide range of dynamic phenotypes including spreading,
migration, and differentiation during matrix-mediated emergent behaviors[4]. These dynamics
cannot be explained by one reduced order latent variable model. Therefore it would be necessary
to create a specific set of latent variables for each dynamic phenotype of an individual cell. In
addition, rules would need to be developed to transition between the latent variables describing a
specific phenotype. These rules should be based on the underlying subcellular mechanisms

(potentially found through experimentation) since it is undesirable to ad-hoc rules.

Phenotype 1

) Phenbtyhe 3

Figure 30: Diagram representing switching between different latent variable models describing multiple

phenotypes and individual cell
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5.2.2 Modeling Emergence using Pairwise Cell-Cell Mechanical
interactions as Building Blocks

The current model assumes that the conditions (i.e. local ECM stitfness) experienced by a
single cell in isolation is sufficient to produce the necessary responses for collective behaviors.
However, an isolated cell cannot be exposed to the same local stiffness as in the case when more
than one cell is present. Therefore, if 2-cell interactions where considered to be the initial
subsystem for integration into a larger more complex system, more accurate and global behaviors
could be reproduced. However, incorporation of 2 cells would create a larger dataset which may
lead to the creation of large matrices that are difficult to handle computationally (as described in
the limitations section). Furthermore, more complex nonlinear mechanisms would arise between
two interacting cells which would require a larger number of latent variables to accurately

represent the more complicated dynamics.

5.2.3 Inclusion of Experimental Data to Inform Model

In preliminary experiments (see appendix B) GFP tagged plasma membrane HUVEC were
used to detect cell morphology and observe lamellipodial formation of 2 cells separated by 10-
100um. Preliminary analysis measured polarity by calculating the principal axis of elongation
along of the cell contour and the cell’s movement direction between time frames. With future
experiments, polarity metric data could be integrated into the current model in order to tune the
polarity direction with respect to ECM properties and cell location. However, future experiments
should consider a more relevant experimental set-up where intercellular signaling has been
eliminated as a variable within the experiment in order to examine the mechanical interactions

between the cells.

89



Appendix A

A. MATLAB Codes

A.1 Data Preprocessing

clear all; close all

tic

%%

Cc = le-3;
Ccort = le-3;
Ce = Cc;

%% Initialize Variables

%$%cell state wvariables

%¥%velocities

cortl node _vx = []; cortl node vy = []; cortl node vz = [];
celll node_vx = []l; celll_node vy = []; celll node vz = [];
$%positions

celll node x = []; celll node y = []; celll node z = [];
$%forces

FE_node x
FL node_x
FT_node_x

[1; FE node y
[1; FL node y
[1; FT _node vy

[1; FE_node_z
[1; FL_node z
[1; FT node z

[1;
[1;
[1;

Ftract_x node = []; Ftract y node = []; Ftract z node = [];
F_L_X = [} ‘ F_L_Y = [] ; F L z = [] 1
F_cort_x = []; F cort_y = []; F cort_z = [];

bondn node = []; %d_AM node =[] ;

¥%¥polarity
Polarx = []; Polary = []; Polarz = [];
ds max x = []; ds_max y = []; ds max z = [];

%% ECM state variables

ECM node x = []; ECM node y = []; ECM node z = [];
ECM node_vx = []; ECM node vy = []; ECM node vz = [];
FEECM_x node = []; FEECM z node=[]; FEECM y node=][];
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FtractECM x node = []; FtractECM z node=[]; FtractECM_y_node=[];

FD x node = []; FD_y node = []; FD_z node = [];
%%
T = [1;

N mem = 189;%%number of membrane nodes
%$%Cell /ECM attachements

is cell attached = [];
grid_index_memnode = {};

celll node x attached =[];
celll node y attached =[];
celll node z attached =[];

x_closestECM [1:;
y_closestECM (1
z closestECM = [];

for i = 1:N_mem+1
grid index memnode{i} = zeros(1,3000);
end
%%
startRow = 3;

%% Import Files(Al)
TT = 1:3000;
% TT([[10:10:100]]) = I[];

for time = TT

$% Filopodia Coordinates
% filenamel = strcat('C:\Users\Michaelle\Dropbox
(MIT)\MIT\Graduate\2.THG Research\data for
PLS\old Data2\Cell 1 ', num2str(time),'.000000_s.txt' };
% filenamel = strcat('C:\Users\Michaelle\Dropbox (MIT)\MIT\Graduate\2.THG
Research\Postprocess_new\Outputz—
Janl142017\Cell 1 ', num2str(time),'.000000_s.sav' );

filenamel = strcat('C:\Users\Michaelle\Dropbox
(MIT) \MIT\Graduate\2.THG Research\PLS code for collective cell
migration2\Outputl2April22017cell24\Data\Cell_1_', num2str(time),'.000000_s
.sav' );

N mem = 189;%%number of membrane nodes

[Px,Py,Pz] = importfilel(filenamel, 1, 1);

[dex,dey,dez] = importfilel(filenamel, 2, 2);

[i mem, node x, node y,node_z,nocde vx, node_vy,node vz, FL_x,
FL y,FL z, FE x, FE y,FE_z, Ftract_x,Ftract_y, Ftract_z,n b] =
importfileéb(filenamel, 3, N mem+2); %%node #, xyz positions, Xyz FE
forces,xyz Ftract forces

% filename2 = strcat('C:\Users\Michaelle\Dropbox
(MIT) \MIT\Graduate\2.THG Research\Postprocess new\Output2-
Janl42017\Cortical 1 ',num2str(time),'.000000_s.sav' );

filename2 = strcat('C:\Users\Michaelle\Dropbox
(MIT) \MIT\Graduate\2.THG Research\PLS code for collective cell
migration2\Outputl2April22017cell24\Data\Cortical 1_', num2str(time),'.0000
00 s.sav' );
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[i_cort,nodet_vx, nodet_vy,nodet vz,FT x, FT y,FT z] =
importfile6a(filename2, 1, N mem);

% filename3 = strcat('C:\Users\Michaelle\Dropbox
(MIT) \MIT\Graduate\2.THG Research\Postprocess new\Output2-
Janl42017\ECM_fiber_‘,numZStr(time),'.000000_s.sav' ) ;

filename3 = strcat('C:\Users\Michaelle\Dropbox (MIT)\MIT\Graduate\2.THG
Research\PLS code for collective cell

migration2\Outputl2April22017cell24\Data\ECM fiber ', num2str (time),'.00000
0_s.sav' );
% N CL = 6741;%6236; %1646; %%number of CL nodes

N ECM = importfile2(filename3,1,1);

N CL = 1949;%importfile2(filename3,1,1);

[i_ ECM UM,i ECM M,ECMCL_x, ECMCL_y, ECMCL_z,ECMCL_vx, ECMCL vy,
ECMCL_vz,FEE x,FEE y,FEE_z, FEtract_x,FEtract_ y,FEtract z,FD x,FD y,FD z ]
= importfileéc(filename3, 2, N CL+1); %% xyz positions, xyz FCL
forces,con. VEGF at each CL, integrity at each CL

$%velocities

cortl_node_vxt = [];cortl node vyt = [];cortl node vzt = [];

celll node_vxt = [];celll node vyt = [];celll node vzt = [];
$%positions

celll node_xt = [];celll node yt = [];celll_node_zt = [];
%%forces

FL_node_xt = [];FL node yt = [];FL node zt = [];

FT_node_xt = [];FT_node yt = [];FT_node zt = [];

FE_node_xt = [];FE_node yt = [];FE_node zt = [];

Ftract_xnodet = []; Ftract_ynodet= [];Ftract_ znodet
bondn_nodet = [];

L]

$%ECM state variables

ECM_node_xt = [];ECM node yt = [];ECM node zt = [];

ECM node vxt = [];ECM node vyt = [];ECM node vzt = [];
FEtract_xnodet = []; FEtract_ynodet= []; FEtract_znodet = [];
FEE_x nodet = []; FEE y nodet = []; FEE z nodet = [];
FD_xnodet = []; FD ynodet = []; FD znodet = [];

index unmapped = []; index mapped = [];

[1;

index mem_ node

parfor i = 1:N _mem
celll node_xt
celll node vyt
celll node_zt

[celll node_ xt,node_x(i)];
[celll node yt,node y(i)];
[celll node zt,node_z(i)];

celll node vxt = [celll node vxt,node vx(i)];
celll node vyt = [celll node vyt,node vy (i)];
celll node vzt = [celll node vzt,node vz (i)];
cortl node vxt = [cortl_node vxt,nodet_vx(i)];
cortl node vyt = [cortl node vyt,nodet vy (i)];
cortl node_ vzt = [cortl node vzt,nodet vz (i)];

FL _node_xt = [FL_node xt ,FL_x(i)];
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FL node_yt = [FL node yt,FL_y(i)l;
FL_node_zt = [FL node zt,FL z(i)];
FT node xt = [FT node xt ,FT x(i)];
FT node_yt = [FT node yt,FT y(i)];
FT node_zt = [FT_node zt,FT_z(i)];

FE node xt = [FE node xt ,FE_x(i)];

FE node yt = [FE node yt,FE y(i)];
FE node zt = [FE node zt,FE z(i)];
Ftract xnodet = [Ftract xnodet,Ftract x(i)];

Ftract_ynodet
Ftract_znodet

[Ftract ynodet,Ftract y(i)];
[Ftract znodet,Ftract z(i)];

bondn nodet = [bondn nodet,n b(i)];
index mem_node = [index mem _node,i mem] ;

end

%$%Cell attachements

i _cell attach{time} = find(bondn nodet > 0);
is_cell attached t = zeros(l, length(i mem)) ;
is cell attached t(i cell attach{time}) = 1;

parfor i = 1:N_CL
index unmapped = [index unmapped,i ECM UM(i)];
index mapped = [index mapped,i ECM M(i)];

ECM_node_ xt
ECM_node_yt
ECM _node_zt

[ECM node xt,ECMCL x(i)];
[ECM node yt,ECMCL y(i)];
[ECM_node zt,ECMCL_z(i)];

ECM_node_vxt
ECM_node_vyt
ECM_node vzt

[ECM_node_ vxt,ECMCL_wvx(i)];
[ECM_node vyt,ECMCL vy (i)];
[ECM_node vzt,ECMCL vz (i)];

FEE_x nodet = [FEE x nodet ,FEE x(i)];
FEE _y nodet = [FEE_y nodet ,FEE_y(i)];
FEE_z nodet = [FEE_z nodet ,FEE_z(i)];

FEtract_ xnodet
FEtract_ynodet
FEtract_znodet

[FEtract_xnodet, FEtract x(i)];
[FEtract_ynodet, FEtract_y(i)];
[FEtract znodet,FEtract z(i)];

FD_xnodet = [FD xnodet,FD x(i)];
FD ynodet = [FD _ynodet,FD y(i)];
FD_znodet = [FD_znodet,FD =z (i)];

end

%$%ECM crosslink w/ nonzero traction force

mag2 Ftract = FEtract xnodet.*FEtract_xnodet +
FEtract_ynodet.*FEtract_ynodet + FEtract_znodet.*FEtract_ znodet;

j_ECM nzTractF = find(mag2_ Ftract);
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ECM_node xt tract = ECM_node xt(j ECM nzTractF);
ECM node_yt tract ECM node yt(j_ ECM nzTractF) ;
ECM_node_ zt tract ECM node zt (j_ECM nzTractF) ;

%%calculate closest distance between attached membrance node and
ECM CL
%$%node
celll node_xt attached = zeros(1l,N mem) ;
celll node_ yt attached zeros (1,N_mem) ;
celll node =zt attached zeros(1,N_mem) ;

zeros (1,N _mem) ;
zeros (1,N_mem) ;
zeros (1,N_mem) ;

x_closestECMt
y_closestECMt
z_closestECMt

for i = 1:length(i cell attach{time})

i_attached = i _cell attach{time} (i);

celll node xt attached(i attached) =
celll node_xt (i_attached) ;

celll node yt_ attached(i_attached)
celll node vyt (i_attached) ;

celll node_ zt_attached(i_attached)
celll node_zt(i_attached);

dx =
celll node xt_ attached(i_attached) .*ones (size (ECM node xt tract)) -
ECM_node_xt_ tract;

dy =
celll node_yt_attached(i_attached) .*ones(size (ECM_node yt tract)) -
ECM_node_yt tract;

dz =
celll node zt attached(i_attached) .*ones(size (ECM node zt tract)) -
ECM_node_zt_ tract;

CL_memnode_distance = sgrt(dx.*dx + dy.*dy + dz.*dz);

[m_d,grid _index j] = min(CL memnode distance) ;

%% ith membrane node address(on ECM grid) = index of closest
ECM CL node

grid_index memnode_t = j_ECM nzTractF(grid index j);

X _closestECMt (i_attached)
y_closestECMt (i_attached)
z_closestECMt (i_attached)

ECM_node xt_tract(grid_index j);
ECM_node_yt tract (grid index j);
ECM_node zt tract(grid_index_ j);

grid_index_memnode{i_attached} (time) = grid_index_memnode t;
end

celll node x attached

=[celll_node_x_attached;celll node xt attached];
celll node_y attached

=[celll node y attached;celll node yt attached];
celll node_ z attached

=[celll node_z_attached;celll node_zt attached];

X _closestECM = [x closestECM;x closestECMt] ;
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y_closestECM
z_closestECM

[y _closestECM;y closestECMt] ;
[z closestECM;z_closestECMt] ;

Polarx = [Polarx;Px];
Polary = [Polary;Pyl];
Polarz = [Polarz;Pz];

ds_max_x [ds_max_ x;dex];
ds max_y [ds_max_vy;dey];
ds max_z = [ds_max_z;dez];

celll node_ x
celll node_ y
celll node_ =z

[celll node x;celll node_ xt];
[celll node y;celll node_yt];
[celll node_z;celll node_zt];

celll node vx = [celll node vx;celll node vxt];
celll node vy = [celll node vy;celll node vyt];
celll node vz = [celll node vz;celll node_vzt];
cortl node vx = {cortl_node_vx;cortlinode_vxt];
cortl node vy = [cortl node vy;cortl node_ vyt];
cortl node vz = [cortl node vz;cortl node vzt];

FE _node_x

[FE_node_x;FE node xt];

FE node_y = [FE_node y;FE node yt];
FE node z = [FE node_ z;FE node_zt];
FL node_x = [FL_node_x;FL node_xt];
FL node y = [FL node_ y;FL node yt];
FL node z = [FL node_ z;FL node zt];

FT_node_ x
FT node y
FT node_z

[FT node x;FT node xt];
[FT node_ y;FT node_vytl];
[FT_node z;FT node_ zt];

bondn node = [bondn node;bondn nodet] ;

Ftract_x node [Ftract_x node;Ftract_xnodet];
Ftract_y node [Ftract_y node;Ftract_ynodet] ;
Ftract_z_node = [Ftract_z_node;Ftract_znodet];

FtractECM_x_ node
FtractECM_y node
FtractECM_z node

[FtractECM_x node;FEtract_ xnodet];
[FtractECM_y node; FEtract_ ynodet] ;
[FtractECM_z_ ncode;FEtract_znodet];

FD_x node = [FD_x node;FD_xnodet] ;
FD_y node = [FD_y_node;FD_ynodet];
FD_z_node = [FD_z_node;FD_znodet];

FEECM_x node [FEECM_x_node;FEE_x_nodet] ;
FEECM_y node [FEECM_y_node;FEE_y_ nodet] ;
FEECM_z node = [FEECM_z node;FEE_z nodet];
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ECM _node_x = [ECM_node x;ECM node xt];
ECM node_y [ECM_node_y;ECM_node_vyt] ;
ECM node =z [ECM_node_ z;ECM node zt];

ECM _node_ vx
ECM _node_vy
ECM_node vz

[ECM_node vx;ECM node vxt];
[ECM_node_vy;ECM _node vytl];
[ECM_node vz;ECM node vzt];

T = [T;time] ;

$%¥which membrance nodes are attached

is_cell attached = [is_cell attached;is cell attached t];
end
%%
F_Eerrorx = Ce.* ECM node vx - (FtractECM x node + FEECM_x node) ;
F_Eerrory = Ce.* ECM node vy - (FtractECM y node + FEECM y node) ;
F_Eerrorz = Ce.* ECM node vz - (FtractECM z node + FEECM z node) ;

sumFE = FtractECM_z node + FEECM_z node + F_Eerrorz;

figure (1)

plot (sumFE, Ce.* ECM node vz)

%%

save ('Cell_f dxec24', 'FtractECM_x node', 'FtractECM_y node', 'FtractECM_z_ no
de'; ..«

'FEECM_x_node', 'FEECM y node', 'FEECM_z node', 'ECM_node_vx', 'ECM _node vy', .

'ECM_node_vz','F _Eerrorx',6'F_Eerrory', 'F_Eerrorz',6 '-v7.3")
save('Cell_xec24', 'ECM_node x',6 'ECM node y', 'ECM node z',6 '-v7.3"')
%
save('Cell_f dxe44',6 'FtractECM x node', 'FtractECM y node', 'FtractECM_z nod
B Soera
%

'"FEECM_x node', 'FEECM_y node', 'FEECM_z node', 'ECM node_vx', 'ECM node vy', .
% 'ECM_node_vz', 'F_Eerrorx', 'F_Eerrory', 'F_Eerrorz',6 '-v7.3"')
% save('Cell_xe44',6 'ECM node x', 'ECM_node_y', 'ECM _node_z',6 '-v7.3"')

%Find cell node attachements

%%

F_errorx = (Ccort + Cc).* celll node vx - (Ftract x node + FE node x +
FL node_x - FT node x + Ccort.*cortl node vx);

F_errory = (Ccort + Cc).* celll node vy - (Ftract y node + FE node y +
FL node_y - FT node y + Ccort.*cortl node vy);
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F errorz = (Ccort + Cc).* celll node vz - (Ftract_z node + FE_node_z +
FL node z - FT node_z + Ccort.*cortl node_vz);
%%

save('Cell f dxc24', 'Ftract x node', 'Ftract_y node', 'Ftract_z_node', 'FE_no
de x','FE node_y','FE node_z','FL node x', 'FL_node_y','FL_node_z', 'FT_node
_x','FT_node_y','FT_node_z', ...

'cortl node vx', 'cortl node vy', 'cortl node vz',6 'celll node_vx', 'celll nod

e vy','celll_node_vz','F_errorx','F errory','F errorz','-v7.3')
save('Cell_xc24','celll node_x', 'celll node_y','celll node_z', '-v7.3')
%

save ('Cell f dx44','Ftract _x node', 'Ftract_y node', 'Ftract_z_node', 'FE_nod
e x','FE_node_y','FE node_z', 'FL_node_x', 'FL_node_y', 'FL_node_z', 'FT_node_
x','FT _node_y','FT _node z',...

%
'cortl node vx', 'cortl node vy','cortl node vz', 'celll node_vx', 'celll nod
e vy','celll node vz','F_errorx','F errory','F_errorz',6'-v7.3')
% save('Cell x44', 'celll node x', 'celll _node_y', 'celll node_z', '-v7.3')
%%
save('Cell ECM_ interfacec24','i_cell_attach', 'grid_index_memnode', '-v7.3"')
save ('Polarityc24', 'Polarx', 'Polary', 'Polarz','-v7.3'")
save ('highest stiff c24', 'ds_max_x', 'ds_max y', 'ds_max z',6 '-v7.3')
save ('index and ECMnuml2c24', 'index_ unmapped', 'index mapped', 'N_ECM', '-
v7.3")

A.2 Orthogonal Transformations

clear all
close all

%%

Cc = le-3;
Ccort = le-3;
Ce = Cc;

tt = [];

%%

% load Cell f dx2
% load Cell x2

f dxl = matfile('Cell_f dx22');
xx1l = matfile('Cell_x22');

f dx2 = matfile('Cell £ dx44');
xx2 = matfile('Cell x44');

time = 1:3000;

T = length(time) ;
dt = 1;

%%
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celll node =

[[xx1.celll_node x;xx2.celll node x], [xxl.celll node y;xx2.celll node vy], [
xx1l.celll node z;xx2.celll node zl];

celll node v =

[[£_dx1.celll node vx;f dx2.celll node vx], [f dxl.celll node vy;f dx2.cell
1l node_vyl, [f_dxl.celll node vz;f dx2.celll node vzl]];

Ftract_node =

[[f_dx1.Ftract_x node;f dx2.Ftract_x node], [f dxl.Ftract y node;f dx2.Ftra
ct_y nodel, [f_dxl.Ftract_z node;f dx2.Ftract_ z node]];

FE node =

[[f_dx1.FE node x;f dx2.FE node x], [f dx1.FE node y;f dx2.FE node yl, [f dx
1.FE_node_z;f dx2.FE node z]];

FL_node =

[[f_dx1.FL node_x;f dx2.FL _node x], [f dx1.FL node y;f dx2.FL node y], [f_dx
1.FL node_z;f dx2.FL node z]];

FT node =

[[£_ dx1.FT node x;f dx2.FT node x], [f dx1.FT node y;f dx2.FT node yl], [f dx
1.FT node_z;f dx2.FT node_z]];

F cort =

[Ccort.*[f dxl.cortl node vx;f dx2.cortl node vx],Ccort.*[f dxl.cortl ncde
_vy;f_dx2.cortl node_vyl],Ccort.*[f _dxl.cortl node vz;f dx2.cortl node vz]]
F_error =

[[£_ dx1.F _errorx;f dx2.F errorx], [f dx1.F errory;f dx2.F erroryl, [f dx1.F_
errorz;f dx2.F_errorz]];

sumFF = Ftract node+ FE node + FL node- FT node+ F_cort + F_error;
F_error2cl = (Ccort + Cc).*[celll node v(1,:);diff(celll node(1:3000,:))]-
SumFF (1:3000, :) ;

F error2c2 = (Ccort +

Cc) .*[celll node v(1+3000,:);diff (celll node(3000+1l:end, :))]-

SUmFF (1+3000:6000, :) ;

F_error2 = [F _error2cl;F error2c2];

%

% load Cell f dxe2
% load Cell xe2

f dxel = matfile('Cell f dxe22');
xxel = matfile('Cell xe22');

f dxe2 = matfile('Cell_f dxe44');
xxe2 = matfile('Cell xe44');

ECM_node =

[ [xxel.ECM node_x;xxe2.ECM node x], [xxel.ECM node y;xxe2.ECM node y], [xxel
.ECM _node_ z;xxe2.ECM node z]];

ECM node v =

[[£f_dxel.ECM node vx;f dxe2.ECM node vx], [f dxel.ECM node vy;f dxe2.ECM no
de vyl, [f dxel.ECM node vz;f dxe2.ECM node vz]];

FtractECM_node=

[[£_dxel.FtractECM x node;f dxe2.FtractECM x node], [f dxel.FtractECM_y nod
e;f dxe2.FtractECM y node], [f dxel.FtractECM z node;f dxe2.FtractECM z nod
ell;
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FEECM_node =

[[f dxel.FEECM x node;f dxe2.FEECM_x_node], [f_dxel.FEECM y node;f dxe2.FEE
CM_y nodel, [f_dxel.FEECM_z_node;f_ dxe2.FEECM_z_node]];

F_Eerror =

[[f_dxel.F_Eerrorx;f_dxe2.F_Eerrorx], [f_dxel.F_Eerrory;f dxe2.F Eerrory], [
f dxel.F Eerrorz;f dxe2.F_Eerrorzl];

sumFFe = FtractECM node+ FEECM_node + F_Eerror;
% FF_error2 = Ce.*[ECM _node_v(1l,:);diff (ECM_node)]- sumFFe;

FF_error2cl = (Ccort + Cc).*[ECM_node v(1l,:);diff (ECM_node (1:3000,:))]-
sumFFe (1:3000, :) ;

FF _error2c2 = (Ccort +

Cc) .* [ECM_node_v(1+3000, :) ;diff (ECM_node (3000+1:end, :))]-

sumFFe (3000+1:6000, :) ;

FF_error2 = [FF_error2cl;FF error2c2];

%%

$% intergrate with Data (xdot = dxdt)

% Yil:,1) =

celll node(1,:);%[celll_node_x(1,:),celll node_y(1l,:),celll node_z(1,:)] ;
% Ye(:,1) = ECM node(l,:);%

%

% Y(:,1+43000) =

celll node(1+3000,:);%[celll_node_x(1,:),celll node y(1,:),celll node_z(1,
91

% Ye(:,1+3000) = ECM node(1+3000,:);%

¥1{:, 1)
W2 i, d)

zeros (size(celll node(1l,:)));
Y1) ;

Y1(:,1+3000)
Y2(:,1+3000)

zeros (size(celll node (1+3000,:)));
Y(:,1+3000);

Yel(:,1) zeros (size(Ye(:,1)));
Ye2(:,1) = Ye(:,1);

Yel(:,1+3000)
Ye2(:,1+3000)

zeros (size(Ye(:,1+3000)));
Ye(:,1+3000);

for 1 = 2T
ti = time(i-1);
yi. @Y = Y a=1};
yi c2 = Y(:,i-1+3000);

Al el = 81§z pasil)y
yi2 ek = ¥2 (i p3120)5

yil_c2 = Y1(:,1-143000);
yi2_c2 = ¥2(:,i-1+43000);

yei_cl = Ye(:,i-1);
yei c2 = Ye(:,1-1+43000);

O d° O O o P O O° OO o I O° O O O O° I O A O A d° I° O of o d° o
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yveil: el = ¥el (=451} ;

yedi2 el = Ye2(s,i=1);

veil c2 = Yel(:,i-1+3000);

yei2 c2 = Ye2(:,1-1+3000);

sumFl_cl = Ftract_node(i-1,:);
sumFl_c2 = Ftract_node(i-1+3000,:);

sumF2_cl = FE_node(i-1,:) + FL node(i-1,:) - FT node(i-1,:)...
+ F_cort(i-1,:) + F error(i-1,:) +F_error2(i-1,:};
% sumF_cl = sumFl_cl+sumF2_cl;

sumF2_c2 = FE_node(i-1+3000,:) + FL node(i-1+3000,:) - FT node(i-

+3000,:)...
+ F_cort(i-1+3000,:) + F_error(i-1+3000,:) +F error2(i-1+3000,:);
% sumF_c2 = sumFl_c2+sumF2 c2;

sumFel cl
sumFel c2

FtractECM node(i-1,:);
FtractECM_ncde (1-1+3000, :);

sumFe2 cl =FEECM node(i-1,:) + F_Eerror(i-1,:) + FF _error2(i-1,:);
sumFe_cl = sumFel cl+sumFe2 cl;

sumFe2_c2 =FEECM node(i-1+3000,:) + F_Eerror(i-1+3000,:) +
F error2(i-1+3000, :);

sumFe_c2 = sumFel c2+sumFe2 c2;
%
dydtl cl(:,1) = (1/(Ccort + Cc)).*sumFl cl;
dydt2 cl(:,1) = (1/(Ccort + Cc)).*sumF2_cl;
dydt _cl1(:,1) = d¥ydtl ci(:,1) + d¥dt2 cl(:,1);
%

dydtl_c2(:,1)
dydt2 c2(:,1)
% dydt c2(:,1)

(1/(Ccort + Cc)).*sumFl_c2;
(1/(Ccort + Cc)).*sumF2 c2;
dydtl c2(:,1) + dydt2 c2(:,1);

dyedtl el (:,1) (1/( Ce)) .*sumFel cl;
dY¥edt2 c1(:,1) (1/( Ce)).*sumFe2 cl;
dY¥edt cl(:,1) = dY¥edtl c1(:,1) + dYedt2 cl1(:,1);

d¥edtl. ie2/: ;1) (1/( Cce)).*sumFel c2;
dYedt2 c2(:,1) = (1/( Ce)).*sumFe2 c2;

% dYedt _c2(:,1) = dYedtl c2(:,1) + dYedt2 c2(:,1);
Y1(:,i) = yil el + dt*dvdel cl(:,1);
¥2(:,1) = yi2 cl + dt*dydt2 cl(:,1);

Y(:,1) = Y1(:,1i) + ¥Y2(:,1);

¥Y1(:,i+3000) = yil_c2 + dt*detl_cE(:,l);
¥2(:,i+3000) = yi2 c2 + dt*dydt2 c2(:,1);
¥Y(:,i+43000) = ¥1(:,1i+43000) + ¥Y2(:,i+3000);

o o o o I O o N I I I O O I O O N I O O o AN N O O A O o O° M A O O O O O° G A N I I O I P N I I O N O AN N I I N o o

Yel(:,1i) = yeil ¢l + dt*dYedtl cl(:,1);
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mem = size(celll node,2)./3;
CL = size(ECM node,2)./3;

% load split_x

% load split_xe

%%

% Ye2(:,1i) = yei2 cl1 + dt*dYedt2 cl(:,1);

% Ye(:,1i) = Yel(:,i) + Ye2(:,i);

%

% Yel(:,i+3000) = yeil c2 + dt*dYedtl c2(:,1);

% Ye2(:,1+3000) = yei2 c2 + dt*dYedt2 c2(:,1);

% Ye(:,1+43000) = Yel(:,i+3000) + Ye2(:,i+3000);

% tt = L[ebreily

% end

%

% celll node FA = Y1';

% celll node_alpha = Y2';

% save('split x1 13 FLPn', 'celll node FA', 'celll_node_alpha', '-v7.3"')
%

% ECM node_ FA = Yel';

% ECM node_alpha = Ye2';

% save('split xel 13 FLPn', 'ECM node_FA', 'ECM_node_alpha', '-v7.3"')
%%

%

N

N

figure (1)
plot(Yel(1:1000:end, 1) +Ye2(1:1000:end, 1), 'o0")
hold on

plot (ECM _node(1,1:1000:end))

figure(2)

lot(Y¥Y1(100,3001:6000)'+Y2(100,3001:6000)"',celll node(3001:6000,100), 'o")
hold on

plot(celll node(3001:6000,100),celll _node(3001:6000,100), 'r')
%

figure (3)

plot (¥ (1:N_mem,2555)"',celll node(2555,1:N _mem)}, 'o"')

hold on

plot (celll node(2555,1:N _mem),celll node(2555,1:N_mem),'r')
%%

figure (4)

plot (Ye(1l:N_CL,2555)',ECM_node (2555,1:N_CL), 'o"')

hold on

plot (ECM_node (2555,1:N_CL) ,ECM_node (2555,1:N_CL), 'r')

%
% Form A matrix

N mem = size(xx.celll node x,2);

o A J° O O O° O o OF O° O° O°F O O° O° O° OF O° O° O A OF O o O ST AN O N K o I of

N CL = size(xxe.ECM node x,2);

%%

$%node ix;

% A eta = zeros(3*N_mem, (3*N_mem)*6);
% for i = 1:N_mem

% for j = 0:5

% A eta(i,i + j*(3*N_mem)) = 1;
% end

% end

%

% %$%node iy;
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for i = 1:N_mem
for j = 0:5
A eta((i + N.mem), (i + N mem) + j*(3*N mem)) = 1;
end
end

¥%node iz;
for i = 1:N_mem
for j = 0:5
A eta((i + 2*N _mem), (i + 2*N _mem) + j*(3*N mem)) = 1;
end
end
%%
A _eta = sparse([eye(3*N _mem,3*N mem), eye(3*N mem,3*N mem)]) ;
A _etal = sparse([eye(3*N _mem,3*N mem)]) ;
A_eta2 = sparse([eye(3*N _mem,3*N mem)]) ;
% spy(A_eta)
% A _etae = sparse([eye(3*N_CL,3*N_CL), eye(3*N CL,3*N CL)]) ;
A etael = sparse([eye(3*N_CL,3*N CL)]) ;
A _etae2 = sparse([eye(3*N CL,3*N _CL)]) ;
% spy (A _etae)
A _etatot = sparse([A _etal, zeros (3*N mem,3*N mem +
6*N_CL) ;zeros (3*N_mem, 3*N_mem) ,A_eta2, zeros (3*N_mem, 6*N_CL) ; zeros (3*N CL,6
*N_mem) ,A_etael, zeros(3*N_CL,3*N_CL) ;zeros (3*N_CL,6*N _mem+3*N CL) ,A etae2]
) ;$sparse( [eye (3*N_mem+3*N CL,3*N_mem) ,
eye (3*N_mem+3*N_CL,3*N_mem),eye (3*N_CL+3*N_mem, 3*N_CL),
eye (3*N_CL+3*N_mem,3*N _CL)]);
%% form eta

AN o o o I O° o° O° I of o of of
% o o d° O O O G° O° of O° o o

% eta = (1/(Ccort + Cc)).*[Ftract node, FE node+FL node-
FT_node+F_cort+F _error+F_error2] ;

etal = (1/(Ccort + Cc)).*[Ftract node];

eta2 = (1/(Ccort + Cc)).*[FE node-

FT node+F_cort+F_error+F_error2] ;%+(1/(Ccort + Cc)).*FL node;

% eta = eta./10e-10;

etal = etal./l1l0e-10;

eta2 = eta2./10e-10;

% etae = (1/Ce).*[FtractECM _node, FEECM node+F Eerror+FF error2] ;
etael = (1/Ce).*[FtractECM node] ;

etae2 = (1/Ce).* [FEECM_node+F Eerror+FF error2];

% etae = etae./10e-10;
etael = etael./1l0e-10;
etae2 = etae2./10e-10;

% n_eta = size(eta,2);
n _etal = size(etal,?2);
n_eta2 = size(eta2,2);

% n_etae = size(etae,2);

n_etael = size(etael, 2);

n_etae2 = size(etae2,2);

n_etatot =size([etal,eta2,etael,etae2],2); %size([eta,etae],h2);
%
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% clear Ftract_node FE node FT node F _cort F_error FtractECM_node
FEECM_node F_Eerror

%% intergrate with Data using A (xdot = A*eta)

% % Y(:,1) = celll node(l,:)./10e-
10;%[celll_node_x(1,:),celll node_y(1,:),celll node z{(1l,:)] ;:
% % Ye(:,1) = ECM node(l,:)./10e-

10;% [ECM_node_x(1,:),ECM node y(1,:),ECM node_z(1,:) 1 ;

Y1(:,1) =celll node FA(l,:)./10e-10; %zeros(size(celll node(l,:)));
¥Y2(:,1) = celll _node alpha(l,:)./10e-10;

Yel(:,1) = ECM _node FA(1l,:)./10e-10;
Ye2(:,1) = ECM node alpha(l,:)./10e-10;

Ytot(:,1) =([Y1(:,1);Y¥2(:,1);Yel(:,1);Ye2(:,1)]; %[¥Y(:,1);Ye(:,1)];

for 1 = 2:+T
ti = time(i-1);
% vi = abs(Y(:,1i-1));
% yei = Yedl:,1-1);
yyi =Y¥tot(:,i-1); %yi;yeil;

N O P 9% G O O° AP G0 O o OF O o o° o
0 O O IO I P O G0 G O° O A° O° o of of

% sumF = A eta*eta(i-1,:)'; %Ftract_node(i-1,:)+ FE_node(i-1,:) +
FL_node(i-1,:) - FT node(i-1,:) + F_cort(i-1,:) + F _error(i-1,:);
% % % sumFe = A_etae*etae(i-1,:)';
% %
% % etatot (i-1,:) = [etal(i-1,:),eta2(i-1,:),etael(i-1,:),etae2(i-
L, #)d v
% % dydttot(:,1) = A_etatot*etatot(i-1,:)';
% %
% % % dydt(:,1) = (1/(Ccort + Cc)) .*sumF;
$ % % dYedt (:,1) = sumFe;
$ %
$ % % Y(:,1i) = abs(yi) + dt*dydt(:,1);
$ % % Ye(:,i) = yei + dt*dYedt(:,1);
% % Yeot(:;1) =yvi -+ dt*d¥dttot({:,1);
% %
% % tE = [tt;eil;
% % end
$ % %
% % % plot(Ye(1l:N _CL,2555).*10e-10, ECM node (2555,1:N_CL))
$ % % plot(Y2(3*N_mem+N_CL+1:3*N_mem+2*N_CL, 2555) .*10e-10,

ECM node (2555,N_CL+1:2*N_CL))

% % %%

$ % % figure(l)
$ % % plot(Ye(1:1000:end,:),'0o")
% % % hold on
$ % % plot (ECM node(l:end-1,1:1000:end))
¥ %%

$ % figure(2)
% % plot(Ytot(1l:3*N mem,1:100:2000) '.*10e-
10,celll node FA(1:100:2000,:),'0c")

% % hold on

% % plot(celll node FA,celll node FA,'r')
%
%
%

% figure(2)
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% % plot(Ye',ECM node, 'o')

% % hold on

% % plot (ECM_node,ECM node, 'r')

%% PCA Analysis

xxprime = matfile('split x1 13 FLPn');
xxeprime = matfile('split_xel 13 FLPn');

%%

X = [xxprime.celll node FA(l:end-1,:),xxprime.celll node_alpha(l:end-1, :),
xxeprime.ECM_node_FA(l:end-1,:), xxeprime.ECM node alpha(l:end-1,:)]./1l0e-
10;%celll node(l:end-1,:);

¥ %%

n x_FA = size(xxprime.celll node FA(l:end-1,:),2);

n_x alpha = size(xxprime.celll node alpha(l:end-1,:),2);

n_xe FA = size(xxeprime.ECM node FA(l:end-1,:),2);

n_xe alpha = size(xxeprime.ECM node alpha(l:end-1,:),2);

%

n_xphi = size(ECM node(l:end-1,:),2);

% %

clear celll _node ECM_node

n x = size(x,2);

5 %

% % x_dot = [celll node v(l:end-1,:),ECM node v(l:end-1,:)]./10e-10;

% %

clear celll node_v ECM node v

% %

% % eta_dot = diff(eta,1,1)./dt;

eta dotl = diff (etal,1l,1)./dt;

eta dot2 = diff(eta2,1,1)./dt;

%

% % etae _dot = diff(etae,1,1)./dt;

etae_dotl = diff(etael,1,1)./dt;

etae dot2 = diff(etael,1,1)./dt;

% % [etal(i-1,:),eta2(i-1,:),etael(i-1,:),etae2(i-1,:)]

X star = sparse([x,etal(l:end-1,:),eta2(l:end-1,:),etael(l:end-
1,:),etae2(l:end-1,:)]);

% %

% clear etal etael eta2 etae2 x

$ % %

% [N, ncol_PCA] = size(x star);

% [x_star0, mu, sigma] = zscore(x_star);

% x_star0 = x_star0.*repmat(sigma', [1, size(x staro0,1)])';
$ % % % Cxx =(1/N)* x_star'*x star;

% % % % save('covarXX2_3000','Cxx','-v7.3")

¥ tic

% Cxx0 =(1/N)* (x star0')*x star0;

%¥ save('covarXX100_3000_splitl 13FLP', 'Cxx0','-v7.3'")
% comptimel = toc;

$ % % % %

% % % %5 % %%

%%

% m_covX = matfile('covarXX100_3000_splitl_13FLP.mat');
% % % % % load covarXX20_ 3000 _splitl2

$ % % % %%

F %5 %5 % % %

% Eie

% [Vpca,Dtot] = eigs(m_covX.Cxx0,100) ;

% comptime2 = toc;
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%%
save ('EVD_Cxxe_ scalel00 splitl3 FLP', 'Vpca', 'Dtot','-v7.3');
¥ % % % % %%

% % % % % % load EVD_Cxx0

% % % % % % load EVD_Cxxe2

% % % % % load EVD_Cxxe_scalel2

% load EVD_Cxxe_ scale20_splitl2_ FLP
%

mPCA = matfile('EVD Cxxe_scalel00_splitl3_FLP.mat');
[lambdatot, sorti] = sort(diag(abs(mPCA.Dtot)), 'descend') ;
Dtot = diag(lambdatot) ;

Vpca = mPCA.Vpca;

Vpca = Vpcal:,sorti);

m = rank (Dtot) ;

figure (3)

bar (log(lambdatot) )

title('Eigenvalues of Covariance Matrix');

vlabel ('log \lambda i')

$ % % % %% %

¥ % % % %%

k = sum(lambdatot)./trace(m covX.Cxx0) ;%sum(lambdatot) ./trace (Cxx0) ;
save ('k20_splitl3_FLP', 'k')

$ % % % %%

o o o o o o A° o° of
d° o o o

o

tieg
parfor i = l:size(x_star0,1)
Zpcali;:) = Vpea!*x staro (i, :)Y;
end
$ % % %% % %%
eedot = [eta dotl,eta dot2,etae_dotl,etae_dot2];
¥ % %% Y%
parfor i = 1l:size(eedot,2)
K(:,1) = regress(eedot(:,1i), Zpca);
nd
$ % %% % %%
clear eta_dot etae_dot
$ % % F %Y Y Y OEY
save ('regress coeffesplit-100LV_scale0l1l3_FLP', 'K');
comptime3 =toc;
$ % % %5 %% %%
oad regress coeffesplit-100LV_scale0l3_ FLP
% % % %% % % %%
% eta dotpca =Zpca*kK;
%%
% figure(4)
% plot(eta dotpca(l:500:end),eedot(1:500:end), 'o')
%%
% clear eedot eta_dotpca
% % %%
' X = Vpca(l:n x,:);
_eta = Vpca(n_x+1:n_x+n_etatot, :);
(V_x'*A etatot*V_eta+V_eta'*K');

H o o o o o of (D

I oe

V_x'*A etatot*mu(n_x+1:n_x+n_etatot)';
ambda A = eig(A);
%%
figure(5)

e

= -pi:;.01:pi;

O I O N N K I N K K I O N I I I A I I A A I I O I o I O° A AC o O O° O o I° O I O O I I I IR I I d° I O o I I d° o o o of

0 o0 a0 L e D < < 90 O of o o dP O oP

of o o
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$ % % cx = cos(c);

¥ % % cy = -sin(c);

¥ % %

% % % line(cx, cy, 'color', 'k');

% % % hold on

% % % plot(cx,zeros(size(cy)), 'k--")

% % % hold on

% % % plot(zeros(size(cx)),cy, 'k--")

¥ % % hold on

% % % title('Eigenvalues State of State Transition Matrix A')

$ % %

plot (complex(lambda A),'o','color','r', 'markersize',5, 'linewidth',1);
5 % % %% Y%

% % % % % clear V_x V_eta A etatot

T %55 %5 %%

% I_x FA = sparse(zeros(n_x+n etatot,n x+n etatot));

% I_x FA(l:n x FA,l1:n x FA) = eye(n x FA,n x FA);

%

% I_x_alpha = sparse(zeros(n_x+n_etatot,n x+n etatot));

% I_x alpha (n_x FA+l:n x FA+n x alpha,n _x FA+l:n x FA+n_x_alpha) =

eye(n_x alpha,n x alpha) ;

%

% I_xe_FA = sparse((zeros(n_x+n_etatot,n x+n_etatot)));

% I xe FA (n_x FA+n x alpha+l:n_x FA+n x alpha+n xe FA

n x FA+n x alpha+l:n x FA+n x alpha+n xe FA ) = eye(n_xe FA,n xe FA);

%

% I_xe_alpha = sparse(zeros(n _x+n_etatot,n x+n etatot));

% I_xe_alpha

(n_x FA+n x alpha+n xe FA+l:n x FA+n _x alpha+n xe FA+n xe alpha, ...

% n_x_FA+n_x_alpha+n_xe FA+l:n x FA+n x alpha+n xe FA+n xe alpha ) =
eye(n_xe_alpha,n_xe_alpha);
%
%
%
%
%

I eta FA = sparse(zeros(n x+n _etatot,n x+n etatot));
I eta FA(n x+1:n_x+n_etal,n _x+l:n_x+n_etal) = eye(n_etal,n etal);

I eta_alpha = sparse(zeros(n_x+n_etatot,n x+n etatot));
% I _eta_alpha
(n_x+n_etal+l:n x+n_etal+n_eta2,n x+n etal+l:n x+n etal+n_eta2) =
eye(n_eta2,n_eta2);
%
¥ I_etae FA = sparse((zeros(n_x+n_etatot,n_x+n_etatot)));
% I _etae FA
(n_x+n_etal+n_eta2+1l:n x+n_etal+n etal2+n_etael,n x+n etal+n_eta2+l:n x+n e

tal+n eta2+n etael ) = eye(n_etael,n etael);
%
% I_etae_alpha = sparse(zeros(n _x+n_etatot,n x+n_etatot));

% I_etae_alpha
(n_x+n_etal+n_eta2+n_etael+l:n x+n_etal+n eta2+n_etael+n_etae2, ...

% n_x+n_etal+n eta2+n_etael+l:n_x+n_etal+n_eta2+n_etael+n_etae2 ) =
eye (n_etae2,n etae2);

5% % %%

% % % % % % II = I x FA + I x alpha + I_xe FA + I _xe alpha + I_eta_ FA +
I eta alpha + I_etae FA + I _etae alpha;

¥ % % % % % % spy(II)

% % % % % % I_xphi = zeros(n_x+n_etatot,n x+n_etatot) ;

% % % % % % I xphi(n xa+l:n x,n xa+l:n_x) = eye(n xphi,n xphi);

5% %5 %% %
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$ % % % % % I _etaalpha = zeros(an+n_etatot,n_x+n_etatot);
$ % % % %% I_etaalpha(n_x+l:nAx+n_eta,n_x+l:n_x+n_eta) =
eye(n_eta,n_eta);
%% % %%
$ % % % % % I_etaphi = zeros (n_x+n_etatot,n_x+n_etatot);
$ % % % %%
I_etaphi(n_x+n_eta+l:n_x+n_eta+n#etae,n_x+n_eta+1:n_x+n_eta+n_etae) =
eye (n_etae,n_etae);

$ % % %%

$ % % % % I alpha = I_xalpha + I _etaalpha;

$ % % % % I phi = I_xphi + I etaphi;

$ % %% %

P x FA= Vpca'*I_x FA*Vpca;

P_x_alpha = Vpca'*I_x_ alpha*Vpca;
P Xxe FA = Vpca'*I_xe_ FA*Vpca;
P_xe_alpha = Vpca'*I_xe_alpha*Vpca;
P_eta FA = Vpca'*I_eta FA*Vpca;
P eta_alpha = Vpca'*I eta_alpha*Vpca;
P _etae FA = Vpca'*I_etae_ FA*Vpca;
P etae_alpha = Vpca'*I etae_alpha*Vpca;
¥ % % ¥ % %%
% % %%
tic
Zhat (:,1) = Zpca(l+3000,:)"';
T = 3000;
for i = 2:T-1
ti = time(i-1);
zi = Zhat(:,i-1};
etahat (:,i-1) = V_eta*zi;
eta dothat(:,i-1) = K'*zi;
z FAi = P_x_FA*zi;
z alphai = P_x_alpha*zi;
ze FA = P_xe FA*zi;
ze_alpha = P xe alpha*zi;
zeta FA = P_eta FA*zi;
zeta_alpha = P _eta_alpha*zi;
zetae_ FA = P etae FA*zi ;
zetae_alpha = P _etae_alpha*zi;

ﬁ*&d‘dﬂdﬁ#*d«“d@#dﬂd@#n\“d@’##*’o\°d¢°n\°d°dP¢\°dP#dePn\‘deP
90 o0 o P d° o o° o o o

dzdt (:,1) = A*zi + B + V_x'*((1/(Ccort +

Cc)) .*[zeros(n_x FA,1);FL_node(i-
1+3000,:}';zeros(n_xe)FA+n_xe_alpha,1)]./lOe—lO);%VLx'*(A_eta*etahat(:,i-
1)) + V_eta'*eta dothat(:,i-1);%

% Zhat (:,1i) = =zi + dt*dzdt(:,1);

% tt = [tt;ti];

% end

% comptme3 = toc;

% %%

% figure(6)

% plot(Zhat(:,l:lO:end),cha(l+3000:lO:T-1+3000,:)','o')
% hold on

% plot(cha(l:T—l,:}',cha(l:T—l,:)‘)

%%

% xhat0 = (Vpca*Zhat);

% xhat = (Vpca*Zhat + repmat(mu', (1, size(x_starO(l:T-l,:),l)])).*lOe—lO;
x_starl = x_star.*10e-10;

X _starl = xﬂstarl';
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% % %%

% % figure(7)

% % % plot(xhat(1,1:2999))

% % % hold on

$ % % plot(x_starl(1:2999,1}),'o")

% % %

% % % plot(xhat(1:3*N_mem, 2555) )

%$ % % hold on

% % % plot(x starl(2555,1:3*N mem), 'o"')
% % % plot(xhat(1:3*N_mem,1:10:2999),x starl(1:10:2999,1:3*N mem) ', 'o"')
% %

plot (xhat (3*N_mem+2*N_CL+1:3*N mem+3*N CL,1:10:2999),x starl(1:10:2999,3*N
mem+2*N_CL+1:3*N _mem+3*N CL)','o')

%

% plot(xhat(:,1:100:2999),x starl(3000+1:100:3000+2999,:)"','0")

¥ %
% xhat = xhat';
$ x_starl = x_starl';
% x1 cell = xhat(l:n x FA,:) + xhat(n x FA+l:n x FA+n x alpha, :);
x1 cell =full( x_starl(l:n x FA,:) +
X_starl(n_x FA+l:n x FA+n x alpha,:));
x1 cell = x1_cell';
x1_ECM = full(x_starl(n_x FA+n_x alpha+l:n_x FA+n x_alpha+n xe FA,:) +
x_starl(n_x_FA+n x alpha+n xe FA+l:n x FA+n x alpha+n xe FA+n xe alpha, :))
;%xhat(:,n_x FA+n_x alpha+l:n x FA+n x alpha+n xe FA) +
xhat(:,n_x FA+n x alpha+n xe FA+l:n_x FA+n x alpha+n xe FA+n xe alpha) ;
x1_ECM = x1 ECM';
vl _ECM = diff (x1 ECM) ;

o0 o° o o of of |

A.3 Polarity Control

clear all
close all

%

= matfile('highest stiff 22');
P = matfile('Polarity22');

kk = (1/60); %%s™-1

Pvhat = [];

3 3 o¢

D
P

Pvhat(1l,:) = [ m_P.Polarx(l,1) ;m P.Polary(l,1);m P.Polarz(1l,1)]"';
P v0 = [ m_P.Polarx(1l,1) ;m P.Polary(l,1);m P.Polarz(l,1)]"';
%%

for £t = 1:3000-1

P x = m_P.Polarx(t,1) ;

P y = m_P.Polary(t,1l) ;

P z = m_P.Polarz(t,1) ;

P v(t,:) = [P x;P y;P 2]';

P vrilt,s) = round{k v(t, 1)1, significant” );

d x = m_D.ds_max_x(t,1) ;
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d y = m_D.ds_max_y(t,1) ;
d z = m_D.ds_max_z(t,1) ;
d v(t,:) = [d x;d y:d z]';
d vn(t,:) = d v(t,:)./norm(d_v(t,:));
% d vnr(t,:) = round(d_vn(t,:),3, 'significant');
% Pvhatr(t,:) = round(Pvhat(t,:),3, 'significant');
% ang dv(t) = atan2d(norm(cross(P_v0,d vn(t,:))),dot(P_v0,d _vn(t,:)));
% ang_dv (t) =wrapTo360(ang_dv(t));
% ang dvr (t)=round(ang_dv(t));
dpv(t,:)= (Pvhat(t,:)*(Pvhat(t,:)'*d vn(t,:)) -
d vn(t,:)* (Pvhat (t,:)'*Pvhat(t,:))) ;
Pvhat (t+1,:) = Pvhat(t,:) + kk.*dPv(t,:);
Pvhat (t+1,:) = Pvhat(t+l,:)./norm(Pvhat (t+1,:));
end
figure (1)
plot (P v,Pvhat(l:end-1,:))
%
% % save('Controller realdat',K 'd v','P_v','d vn',6 'ang_dv', 'ang dvr')

$ % load Controller realdat

%% Regress d maxstiff

m_M = matfile('Modelled 100_land24_ FLP');

$ m dim = matfile('dimensions_modelled20_13_FLP') ;

% load Modelled 10 _FLP2_ 1
load dimensions_modelled20_13_FLP

%$ N mem = m_dim.N_mem;

Vpca = m_M.Vpca;

%%

mm_P = matfile('IandP_land24_100');

%%

P phi = (mm_P.P _etae FA + mm_P.P_etae_alpha);%P_phi = Vpca'*I_phi*Vpca;
P alpha= (eye(size(P_phi)) - P _phi) ;%P alpha = Vpca'*I_alpha*Vpca;

%%

T = 289997

¥ _star0 = m_M.x_ star0;

for 1 =& 1T
Zpca(i,:) = Vpca'*x star0(i,:)';
end

Zphi = P_phi*Zpca’';

sumx =zeros (3, size(x star0,2));

sumx (1,1:N mem) =(1/N_mem).*ones(1l,N_mem) ;
sumx (2,N mem+1:2*N mem) = (1/N _mem).*ones(1l,N _mem) ;
sumx (3,2*N _mem+1:3*N_mem) = (1/N_mem) .*ones(1l,N_mem) ;
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V_c¢ = sumx*Vpca;

Zc = (V_c'*V _c)*Zpca';

$ d vn = d vn(l:end-1,:);

[d vO, mud, sigmad] = zscore(d wvn);
[Zpca0, muZ, sigmaZ] = zscore(Zpca) ;

% ang_dvr = ang dvr(l:end-1);

% %

% [ang _dvr0, mu, sigmal = zscore(ang dvr) ;

%%

% [Kd,Kdint,r,rint,stats] = regress(ang dvr0',
[ones (size (Zphi,2),1),Zpcal]l ); %regress(d v(:,i),
[ones (size (Zphi,2),1),2Zphi',Zc'] ); %regress(d v(:,i), [Zphi',Zc'] );

for i = 1l:size(d _vn,2)

[Kd(:,1),Kdint,r,rint, stats] =regress(d vn(:,1i),

[ones (size(Zphi,2),1),2Zphi',Zc'] ); %regress(d v(:,i),

[ones (size(2phi,2),1),2phi',2c'] ); %regress(d v(:,i), [Zphi',6 Zc'] );
statsl(:,1i) = stats';

end

¥ YY¥Y = ({d v')*[Zphi', 2¢c"];

% XX= [Zphi',Zc']'*[Zphi',2c'];
$ Kd = YY*inv (XX);
%%

% ang dvrpca = Kd'*[ones(size(Zphi,2),1),Zpcall"’;

% ang dvrpca = ang_dvrpca.*repmat (sigma', [1, size(ang_dvrpca,2)]) +
repmat (mu', [1, size(ang dvrpca,2)]);
%

d vpca = Kd'*[ones(size(Zphi,2),1),Zphi',Zc']"';

% d vpca = d_vpca.*repmat (sigmad', [1, size(d_vpca,2)]) + repmat(mud', [1,
size(d_vpca,2)]);
d vpca = d_vpca';

%%
figure(2)

% plot(ang_dvr',ang dvrpca, 'o')

% hold on
% plot(ang_dvr',ang dvr',6'--"')
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plot(d vpca,d vn, 'o')
hold on
plot(d vn,d vn,'--")
%%

kk = (1/60); %%s”-1

PvhatZ(1l,:) = P_v(1,:);
for t = 1:3000=-1

% P_x = m_P.Polarx(t,1) ;:

% P_y = m_P.Polary(t,1l) ;

% P z = m_P.Polarz(t,1) ;

% P v(t,:) = [Px;P y;P _z]";

% d x = m_D.ds max _x(t,1) ;

% d y = m_D.ds_max_y(t,1) ;

% d z = m_ D.ds max_z(t,1) ;

% d v(t,:) = [d_x;d y:d z]"';
d vpcal(t,:) = d vpcal(t,:)./norm(d _vpcal(t,:));
dpv(t,:)= (PvhatZ(t,:)*(Pvhatz(t,:)'*d vpcalt,:)) -

d vpca(t,:)*(PvhatZ(t,:)'*Pvhatz(t,:))) ;
PvhatZ (t+1,:) = PvhatzZ(t,:) + kk.*dPv(t,:);
PvhatZ(t+1l,:) = PvhatZ(t+1l,:)./norm(PvhatZ(t+1,:));

end

PvhatZr = round(PvhatZ(:,:),1l, 'significant');

figure(3)

plot (P_v,PvhatZ(l:end-1,:),'o")

%%

% m_angle =matfile('Potrude33new');
m_angle = matfile('Potrude22new'); %matfile('Potrude33');

P v0 =P_v(1,:);
for t = 1:3000-1

anghat (t) =
atan2d (norm(cross(P_v0,PvhatZr(t,:))),dot(P_v0,PvhatZr(t, :

anghat (t) =wrapTo360 (anghat (t)) ;

anghatd (t) =round (anghat (t) ) ;

anghatdnew (t) =round (anghatd(t) , 1, 'significant');

end

k_max = find(anghatd > max(m_angle.angd)) ;

anghatd (k_max) = max(m_angle.angd) ;

%

[b,bint, r,rint, stats] = regress(anghatd',

[ones (size (anghatd')),m _angle.angd(:,l:end-1)"'] );
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figure(4)

plot (anghat, 'o"')

hold on

plot (anghatd, 'r-"')

hold on

plot (m_angle.angd(:,l:end-1), 'go')

figure (5)

plot (m_angle.angd(:,l:end-1),anghatd, 'o')
angdest = anghatd;

%%

save ('Potrudeland24est_1_100LV2', 'angdest', 'Kd',6 'P_v0', 'PvhatZr',6'P_v',6 'P_
srek N awF a3 ) 5

A.4 2-Cell Superposition Approach

clear all

close all

%%

Cc = le-3;

Ccort = le-3;

Ce = Cc;

% N mem = 189;

%%

%%

load dimensions modelled20_13_ FLP
load Cell ECM_interfacec24

%%

T = 2000;

f dxl = matfile('Cell f dx22');
xx1 = matfile('Cell_x22"');

f dx2 = matfile('Cell f dxc24');

xx2 = matfile('Cell_xc24');

%%

% celll node =

[[xx1.celll node x;xx2.celll node x;xx3.celll node_x], [xxl.celll node_y;xx
2.celll node y;xx3.celll node y], [xx1l.celll node_z;xx2.celll node_z;xx3.ce
111 node_zl];

% celll node v =

[[£_dx1l.celll node vx;f dx2.celll node_vx;f dx3.celll node vx], [f_dxl.cell
1 node vy;f dx2.celll node vy;f dx3.celll node vyl, [£_dxl.celll node_vz;f_
dx2.celll node vz;f dx3.celll node vz]];

% Ftract_node =

[[f dxl.Ftract_x node;f dx2.Ftract x node;f dx3.Ftract_x node], [f_dxl.Ftra
ct_y node;f dx2.Ftract_y node;f dx3.Ftract_y node], [f_dxl.Ftract_z node;f_
dx2.Ftract_z_node;f dx3.Ftract_z_ nodel];

% FE_node =

[[f dx1.FE _node x;f dx2.FE node x;f dx3.FE_node_x], [f_dx1.FE_node_y;f_ dx2.
FE node _y;f dx3.FE node yl, [f dx1.FE node_z;f dx2.FE _node_z;f_ dx3.FE_node_
z]];
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FL _node =

[[f_dx1.FL node x;f_dx2.FL node _x], [f_dxl.FL_node_y;f dx2.FL_node_y], [f_dx
1.FL node_z;f dx2.FL _node_z]];

% FT _node =

[[f dx1.FT_node_x;f_dx2.FT_node_x;f_dx3.FT_node_x], [f_dx1.FT node y;f dx2.
FT_node y;f dx3.FT node_yl, [f_dx1.FT_node_z;f dx2.FT_node_z;f dx3.FT_node_
z]];

% F_cort =

[Ccort.*[f dxl.cortl node vx;f_dx2.cortl_node vx;f dx3.cortl node_vx], Ccor
t.*[f dxl.cortl _node_vy;f_dx2.cortl node_vy;f_dx3.cortl_node vyl Ceort.*[£
_dxl. cortl_node vez;f dx2.cortl_ node - vz;f dx3.cortl_node vz]],

$ F _error =

[[f dx1.F_errorx;f dx2.F errorx;f_dx3.F_errorx], [f_dx1.F errory;f dx2.F_er
rory;f dx3.F erroryl, [f_dxl.F_errorz;f_dx2.F_errorz;f dx3.F_errorz]];

%

% sumFF = Ftract node+ FE node + FL_node- FT node+ F_cort + F_error;

$ F error2cl = (Ccort +

Cc).*[celll node v(1,:);diff(celll node(1:3000,:))]- sumFF(1:3000,:);

% F_error2c2 = (Ccort +

Cc).*[celll node v(1+3000,:);diff (celll node(3000+1:6000,:))]-

sumFF (1+3000:6000, :) ;

% F_error2c3 = (Ccort +

Cc) .*[celll node v (1+2*3000,:);diff (celll_node(2*3000+1l:end, :))]-

SumFF (1+2*3000:6000+3000, :) ;

% F _error2 = [F_error2cl;F_error2c2;F_error2c3];

f dxel = matfile('Cell £ dxe22');
xxel = matfile('Cell_xe22');

f dxe2 = matfile('Cell_f_ dxc24');
xxe2 = matfile('Cell_xc24');

o0 of of o° I o o o

ECM_node =

[ [xxel.ECM node x;xxe2.ECM node x;xxe3.ECM_node_x], [xxel.ECM node_y;xxe2.E

CM node_y;xxe3.ECM_node_y], [xxel.ECM node_z;xxe2.ECM_node_z;xxe3.ECM_node_
z]l1;

% ECM _node v =

[[f dxel.ECM node_vx;f_dxe2.ECM node vx;f_ dxe3.ECM node vx], [f_dxel.ECM_no

de vy;f dxe2.ECM_node_vy;f_ dxe3.ECM node_vyl, [f_dxel.ECM node_vz;f_ dxe2.EC

M node vz;f_dxe3.ECM node_vz]];

% FtractECM_node=

[[f_dxel.FtractECM x node;f_ dxe2.FtractECM_x_node;f_ dxe3.FtractECM_x node]
, [f_dxel.FtractECM_y node;f_dxe2.FtractECM_y node;f_ dxe3.FtractECM_y_ node]
, [£_dxel.FtractECM_z_node;f dxe2.FtractECM_z_node;f_ dxe3.FtractECM_z_node]
1;

% FEECM _node =

[[f_dxel.FEECM _x node;f dxe2.FEECM_x_node;f_ dxe3.FEECM_x node], [f_dxel.FEE
CM_y node;f dxe2.FEECM_y_node;f dxe3.FEECM_y node], [f_dxel.FEECM_z_node;f_

dxe2.FEECM_z node;f_ dxe3.FEECM z node]];

% F_Eerror =

[[£_ “dxel. F_Eerrorx;f dxe2.F_Eerrorx;f_ dxe3.F_Eerrorx], [f_dxel.F_Eerrory;f_

dxe2.F Eerrory,f dxe3.F Eerrory],[f dxel. F_Eerrorz;f dxe2.F Eerrorz;f dxe3
.F_Eerrorz]];

%

% sumFFe = FtractECM node+ FEECM node + F_Eerror;

% % FF_error2 = Ce.*[ECM_node_v(1,:);diff (ECM_node)]- sumFFe;
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%

% FF_error2cl = (Ccort + Cc).*[ECM node v(1l,:);diff (ECM node(1:3000,:))]-
sumFFe (1:3000, :) ;

% FF_error2c2 = (Ccort +

Cc) .* [ECM_node_v(1+3000, :) ;diff (ECM_node (3000+1:6000,:))] -
sumFFe (3000+1:6000, :) ;

% FF_error2c3 = (Ccort +

Cc) .* [ECM_node_v(1+2*3000,:) ;diff (ECM node (2*3000+1:end, :})] -
sumFFe (2*¥3000+1:6000+3000, :) ;

% FF_error2 = [FF_error2cl;FF_error2c2;FF _error2c3];

%

%%

m_Model = matfile('Modelled _100_land24 FLP.mat');

% X_star = m_Model.x starl;

% [x,eta(l:end-1,:),etae(l:end-1, :)]

% etja = [Ftract_node,FE_node+FL node-FT node+F cort+F error+F error2];
% etae = [FtractECM_node, FEECM node+F Eerror+FF error2];

% tic

% parfor time = 1:T-1

% I phitochil = sparse(zeros(n x+n etatot,n x+n etatot));
% I phitochi2 = sparse(zeros(n_x+n_etatot,n x+n_etatot));
% % I _chitochi = zeros(n_x+n_etatot,n x+n_etatot);

% for i = 1:length(i cell attach{time}) $%name/index of attached mem
node

% i_attached = i cell attach{time} (i);

% ii = grid_index_memnode{i attached} (time) ;

% I_phitochil(i_attached,n x FA+n x alpha + ii) = 1;
% I _phitochi2(n_x+i_attached,n x+n etal+n_eta2 + ii) = 1;
% % I chitochi(n_x+i_attached,n x+i_attached) = 1;

% end

$ II_chi phil{time} = sparse(I phitochil);

% II_chi_phi2{time} = sparse(I phitochi2);

$ % II chi chi{time} = sparse(I chitochi) ;

% % Chi_phil(time,:) =II chi phil{time}*x star(time,:)';

% % Chi_phi2(time,:) =II chi phi2{time}*x star(time,:)';

% % Chi_chi(time,:) =II_chi_chi{time}*x star(time,:)"';

% end

% comptime = toc;

% save('Projectionsc24','II _chi phil','II_chi phi2','-v7.3")
% m_Profj = matfile('Projectionsc24.mat');

m_Profj = matfile('Projections24L.mat');

%%
% I_x FA = sparse(zeros(n_x+n etatot,n x+n etatot));
$ I_x FA(l:n x FA,1:n x FA) = eye(n x FA,n x FA);

% I_x_alpha = sparse(zeros(n_x+n_etatot,n x+n etatot));

% I_x_alpha (n_x FA+l:n_x FA+n _x alpha,n x FA+l:n x FA+n x alpha) =
eye(n_x alpha,n x alpha);

%

¥ I_xe FA = sparse((zeros(n x+n_etatot,n x+n etatot)));

% I_xe FA (n_x FA+n_x alpha+l:n _x FA+n x_alpha+n_xe FA
,_x_FA+n_x_alpha+l:n_x FA+n x alpha+n xe FA ) = eye(n xe FA,n xe FA);

% I_xe_alpha = sparse(zeros(n x+n_etatot,n x+n etatot));
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% I _xe_alpha
(n_x_FA+n_x_alpha+n_xe_FA+l:n_x FA+n_x alpha+n_xe FA+n_xe_alpha,...

% n_x_FA+n_x_alpha+n_xeAFA+l:n_x_FA+n_x_alpha+n_xe_FA+n_xe_alpha 1 =
eye(n xe alpha,n_xe_alpha);

$ I_eta FA = sparse(zeros(n_x+n_etatot,n x+n_etatot));

%$ I _eta FA(n_x+1l:n_x+n_etal,n x+l:n_x+n_etal) = eye(n_etal,n_etal);
%

%

I_eta_alpha = sparse(zeros(n_x+n_etatot,n_x+n_etatot));
% I_eta_alpha
(n_x+n_etal+l:n_x+n_etal+n_eta2,n_x+n_etal+l:n_x+n_etal+n eta2) =
eye(n_eta2,n_eta2);
%
% I etae FA = sparse((zeros(n_x+n_etatot,n x+n_etatot)));
% I_etae_ FA
(n_x+n _etal+n eta2+l:n_x+n_etal+n eta2+n_etael,n x+n_etal+n_eta2+l:n x+n_e

tal+n eta2+n etael ) = eye(n_etael,n_etael);
%
% I_etae alpha = sparse(zeros(n_x+n_etatot,n_x+n_etatot));

% I_etae alpha
(n_x+n_etal+n_eta2+n_etael+l:n x+n_etal+n eta2+n_etael+n_etaez, ...

% n_x+n_etal+n_eta2+n_etael+l:n x+n_etal+n_eta2+n_etael+n_etae2 ) =
eye(n _etae2,n_etae2);

% X FA = x star*I_x_FA;

%%

% plot(-(Ce/(Cc + Ccort)).*Chi phil(:,1:n _x),x_FA(1:999,1:n _x),'o")
% hold on

% plot(x FA(1:999,1:n_x),x FA(1:999,1:n X))

%%

% plot(-(Ce/(Cc +

Ccort)) .*Chi_phil(50,i_cell_attach{50}),x FA(50,i_cell_attach{50}),'o")
% hold on

$ plot(x FA(50,i cell attach{50}),x_FA(50,i_cell_attach{50}))

%%

%

% % plot(-(Ce/(Cc + Ccort)).*Chi_phi2(500,n_x+i_cell_attach{500}),
eta FA(500,n_x + i_cell_attach{500}),'o")

% % hold on

% % plot(eta FA(500,n x+i_cell_attach{500}),eta FA(500,n_x +
i_cell attach{500}))

$ % load Modelled 10

Vpca = m_Model.Vpca;

V x = Vpca(l:n x,:);

clear Vpca
mm_P = matfile('IandP_land24_100.mat');

tt = [];

time = 1:2000;

T = 2000;

d & d;

Zhat (:,1) = m_Model.Zpca(l,:)"';

II chi phi2 = m_Profj.II chi phi2;
II chi phil = m Profj.II_chi_phil;
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Pphi = (mm_P.P xe FA + mm P.P etae FA + mm P.P xe alpha+
mm_P.P etae_alpha); _
Palpha = (eye(size(Pphi)) - Pphi);
s el
Fo¥ 1. = Z2yT-1
ti = time(i-1);
zi = Zhat(:,1i-1);

z alphai = mm _P.P x alpha*zi;

ze FA = mm_P.P_xe FA*zi;

ze _alpha = mm_P.P xe alpha*zi;
zeta_alpha = mm _P.P_eta_alpha*zi;

d® o o o

z alpha = Palpha*zi;
zetae FA = mm_P.P etae FA*zi ;
zetae_alpha = mm_P.P_etae_alpha*zi;
zphi = Pphi*zi;%zetae FA + ze FA + ze_alpha+ zetae_alpha;
H1 = ((m_Model.Vpca)'*(-(Ce/(Cc +
Ccort)) .*II chi phil{ti})*m_Model.Vpca) ;
H2 = ((m_Model.Vpca)'*(-(Ce/(Cc +
Ccort)).*II chi phi2{ti})*m Model.Vpca) ;
z FAi = Hl*zphi;%mm P.P_x FA*zi;
zeta FA = H2*zphi;%%mm P.P eta FA*zi;

o0 of

% etahat (:,i-1) = V_eta*zi;
% eta_dothat (:,i-1) = K'*zi;
dZdt(:,1) = m Model.A*Palpha*zi +m Model.A* (H2+eye (100,100)) *zphi
+ m Model.B + V x'*((1/(Ccort + Cc)).*[zeros(n x FA,1l);FL node(i-
1,:)';zeros(n_xe_FA+n_xe_alpha,1l)]./10e-10);%A*zi;%V_x'* (A _eta*etahat(:,i-
1)) + V_eta'*eta_dothat(:,i-1);
Zhat(:,1) = zi + dt*dzdt(:,1);

bt = [Etaei];

HH1(:,:,1) Hil;
HH2(:,:,1) = H2;

end
save ('Hmap_celll land24 100', 'HH1',6 'HH2', '-v7.3")
comptime2 = toc;

A.5 10-Cell Superposition Approach

clear all

close all

%%

Cc = le-3;

Ccort = le-3;

Ce = Cc¢;

% N mem = 189;

%%

%%

load dimensions modelled20_ 13 FLP
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$ load Cell ECM interfacec24

%
T = 2000;
$ f dx1 = matfile('Cell_f_dx22');

$ xx1 = matfile('Cell x22');

$ £ dx2 = matfile('Cell_f dxc24');
% xx2 = matfile('Cell_xc24');

%%

% celll node =

[[xx1.celll node x;xx2.celll node x;xx3.celll_node_x], [xxl.celll node y;xx
2.celll node y;xx3.celll node_yl, [xx1l.celll node_z;xx2.celll node_z;xx3.ce
111 _node_z]];

% celll node v =

[[f dxl.celll node vx;f dx2.celll_node_vx;f dx3.celll node vx], [f_dxl.cell
1 node vy;f dx2.celll node vy;f_dx3.celll_node_vyl], [f_dxl.celll node vz;f_
dx2.celll node vz;f dx3.celll node_vz]];

% Ftract_node =

[[£ _dxl.Ftract_x node;f_dx2.Ftract_x node;f_ dx3.Ftract_x node], [f_dxl.Ftra
ct_y node;f dx2.Ftract_y node;f_dx3.Ftract_y node], [f_dxl.Ftract_z_node;f_
dx2.Ftract z node;f_ dx3.Ftract_z_node]];

% FE node =

[[f dx1.FE node x;f_dx2.FE node x;f dx3.FE_node_x], [f_dx1.FE node_ y;f_ dx2.
FE node_ y;f dx3.FE_node_yl, [f_dx1.FE_node_z;f_dx2.FE node_z;f_ dx3.FE_node_
z]1;

% FL_node =

[[£ dx1.FL node_x;f_dx2.FL_node x], [f_dxl.FL_node_y;f dx2.FL_node_yl, [£_dx
1.FL_node_z;f dx2.FL_node_z]];

% FT_node =

[[f dx1.FT node_x;f dx2.FT_node_x;f dx3.FT_node_x], [f_dx1.FT _node_y;f dx2.
FT _node y;f dx3.FT node_yl, [f_dx1.FT_node_z;f dx2.FT_node_z;f dx3.FT_node_
zl1;

% F_cort =

[Ccort.* [£_dxl.cortl_node vx;f_dx2.cortl node_vx;f_ dx3.cortl_node_vx], Ccor
t.*[f dxl.cortl_node vy;f_dx2.cortl_node_vy;f_dx3.cortl_node_vy],Ccort.* [f
_dxl.cortl node vz;f dx2.cortl node vz;f dx3.cortl_node vz]];

% F_error =

[[f dx1.F errorx;f dx2.F errorx;f dx3.F errorx], [f_dxl.F_errory;f dx2.F_er
rory;f_dx3.F erroryl, [f_dxl.F_errorz;f_dx2.F_errorz;f_dx3.F errorz]];

%

% sumFF = Ftract node+ FE node + FL_node- FT_node+ F_cort + F_error;
¥ F_error2cl = (Ccort +

Cc).*[celll node v(1,:);diff(celll node(1:3000,:))]- sumFF(1:3000, :) ;
% F_error2c2 = (Ccort +

Cc).*[celll node v (1+3000,:);diff(celll node(3000+1:6000,:))]-

sumFF (1+3000:6000, :) ;

% F error2c3 = (Ccort +

Cc) .*[celll node v (1+2*3000,:);diff(celll_node(2*3000+1l:end, :))]-
sumFF (1+2*3000:6000+3000, :) ;

% F error2 = [F_error2cl;F error2c2;F_error2c3];

$ f dxel = matfile('Cell f dxe22');
% xxel = matfile('Cell xe22');
%
%

f dxe2 = matfile('Cell f dxc24');
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% xxe2 = matfile('Cell xc24');

%

%

% ECM node =
[[xxel.ECM_node_x;xxe2.ECM node x;xxe3.ECM node_ x], [xxel.ECM node_y;xxe2.E
CM_node_y;xxe3.ECM node_ yl, [xxel.ECM node z;xxe2.ECM node_ z;xxe3.ECM node_
z]];

% ECM node v =

[[f_dxel.ECM_node_ vx;f dxe2.ECM node vx;f dxe3.ECM_node_vx], [f_dxel.ECM_no
de vy;f dxe2.ECM node vy;f dxe3.ECM node vyl], [f dxel.ECM node vz;f dxe2.EC
M node_vz;f dxe3.ECM node vz]];

% FtractECM_nodes=
[[f_dxel.FtractECM_x node;f dxe2.FtractECM_x node;f dxe3.FtractECM x_node]
. [f_dxel.FtractECM y node;f dxe2.FtractECM y node;f_dxe3.FtractECM_y_node]
, [f_dxel.FtractECM z node;f dxe2.FtractECM z node;f dxe3.FtractECM_z_node]
1

% FEECM_node =

[[f_dxel.FEECM_x node;f dxe2.FEECM_x node;f dxe3.FEECM_x node], [f_dxel.FEE
CM_y node;f dxe2.FEECM y node;f dxe3.FEECM y nodel], [f_dxel.FEECM_z_node;f_
dxe2 .FEECM_z node;f dxe3.FEECM_z node]];

% F_Eerror =

[[£ dxel.F Eerrorx;f dxe2.F Eerrorx;f dxe3.F Eerrorx], [f dxel.F Eerrory;f
dxe2.F_Eerrory;f dxe3.F Eerroryl, [E dxel.F Eerrorz;f dxe2.F _Eerrorz;f dxe3l
.F_Eerrorzl];

%

% sumFFe = FtractECM node+ FEECM node + F_Eerror;

% % FF_error2 = Ce.*[ECM node v(1l,:);diff (ECM_node)]- sumFFe;
%

% FF_error2cl = (Ccort + Cc).*[ECM node v (1, :);diff (ECM node(1:3000,:))]-
sumFFe (1:3000, :) ;

% FF_error2c2 = (Ccort +

Cc) .* [ECM_node v (143000, :) ;diff (ECM_node (3000+1:6000,:))]-
sumFFe (3000+1:6000, :) ;

% FF_error2c3 = (Ccort +

Cc) .* [ECM_node v (1+2*3000, :);diff (ECM node (2*3000+1:end, :))]-
sumFFe (2*3000+1:6000+3000, :) ;

% FF_error2 = [FF_error2cl;FF _error2c2;FF_error2c3];

%

%%

load FLnode_ 10cells
m_Model = matfile('Modelled 100_10cells FLP.mat');
% X _star = m_Model.x starl;
% [x,eta(l:end-1,:),etae(l:end-1,:)]
% etja = [Ftract _node,FE node+FL node-FT_node+F_ cort+F_error+F_error2];
% etae = [FtractECM node, FEECM node+F Eerror+FF error2] ;
% tic
% parfor time = 1:T-1
% I phitochil = sparse(zeros(n x+n_etatot,n x+n_etatot));
% I_phitochi2 = sparse(zeros(n_x+n_etatot,n_x+n_etatot));
% % I _chitochi = zeros(n_x+n_etatot,n_x+n_etatot);
% for i = l:length(i_cell attach{time}) $%name/index of attached mem
node
i_attached = i_cell attach{time} (i);
ii = grid_index memnode{i_attached} (time) ;
I phitochil(i_attached,n_x FA+n x alpha + ii) = 1;
I phitochi2(n_x+i_attached,n_x+n_etal+n_eta2 + ii) = 1;
% I chitochi(n_x+i attached,n x+i_attached) = 1;

o o° o of o°
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end

II chi phil{time} sparse (I _phitochil) ;

II chi phi2{time} sparse (I_phitochi2);
II chi_chi{time} = sparse(I_chitochi);

o o° O Of O O° O o I o
o0 o o of

Chi phil(time,:) =II chi phil{time}*x star(time,:)';
Chi phi2(time,:) =II chi phi2{time}*x star(time,:)';
Chi_chi(time,:) =II_chi_chi{time}*x star(time,:)"';
end
comptime = toc;
save ('Projectionsc24','II_chi phil','II_chi_phi2', '-v7.3")
% m_Profj = matfile('Projectionsc24.mat');

m_Profj = matfile('Projections24L.mat');

%%
% I_x FA = sparse(zeros(n_x+n_etatot,n x+n_etatot));
$ I x FA(l:n x FA,1:n x FA) = eye(n_x FA,n x FA);

$ I_x alpha = sparse(zeros(n_x+n_etatot,n_x+n_etatot));

$ I_x alpha (n_x FA+l:n x FA+n x alpha,n _x FA+l:n_x FA+n_x_alpha) =
eye(n_x alpha,n _x alpha);

%

% I xe FA = sparse((zeros(n_x+n_etatot,n_x+n_etatot)));

$ I xe FA (n_x FA+n x alpha+l:n_x FA+n_x_alpha+n_xe_ FA

,1_x FA+n x alpha+l:n x FA+n x alpha+n xe FA ) = eye(n _xe FA,n xe_ FA);

% I_xe alpha = sparse(zeros(n x+n_etatot,n_x+n etatot));

% I_xe_alpha

(n_ x FA+n x_alpha+n xe FA+l:n_x_ FA+n_x alpha+n_xe_ FA+n_xe_alpha, ...

% n_x FA+n _x_alpha+n xe FA+l:n x FA+n x_ alpha+n xe FA+n xe_alpha ) =
eye(n_xe_alpha,n xe_alpha);

% I_eta FA = sparse(zeros(n_x+n_etatot,n_x+n etatot));

$ I eta FA(n x+1:n_x+n_etal,n x+1:n_x+n_etal) = eye(n_etal,n_etal);
%

% I _eta alpha = sparse(zeros(n x+n_etatot,n x+n_etatot));

% I _eta alpha

(n_x+n _etal+l:n_x+n_etal+n_eta2,n_x+n_etal+l:n x+n_etal+n eta2) =
eye(n_eta2,n_eta2);

%

% I_etae FA = sparse((zeros(n_x+n_etatot,n_ x+n_etatot)));

% I_etae_ FA

(n x+n_etal+n_eta2+1l:n_x+n_etal+n eta2+n_etael,n x+n_etal+n_eta2+l:n_x+n_e

tal+n_eta2+n etael ) = eye(n_etael,n etael);
%
% I etae _alpha = sparse(zeros(n_x+n etatot,n_x+n_etatot));

% I_etae_alpha

(n_x+n_etal+n eta2+n etael+l:n_x+n etal+n eta2+n etael+n_etae2, ...

% n _x+n_etal+n eta2+n_etael+l:n_x+n_etal+n_eta2+n_etael+n_etae2 ) =
eye(n _etae2,n _etae2);

% x_FA = x_star*I_x FA;

%%
% plot(-(Ce/(Cc + Ccort)).*Chi phil(:,1:n x),x FA(1:999,1:n x),'o")
% hold on

% plot(x FA(1:999,1:n x),x FA(1:999,1:n x))
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%%

% plot(-(Ce/(Cc +

Ccort)) .*Chi phil(50,i cell attach{50}),x FA(50,1i cell attach{50}),'o')
% hold on

% plot(x_FA(50,1i cell attach{50}),x FA(50,i cell attach{s50}))

%%

%

% % plot(-(Ce/(Cc + Ccort)).*Chi phi2(500,n x+i cell attach{500}),
eta_FA(500,n_x + i_cell_attach{500}),'oc")

% % hold on

% % plot(eta FA(500,n x+i cell attach{500}),eta FA(500,n x +

i cell attach{500}))

% % load Modelled 10

Vpca = m_Model.Vpca;

V_x = Vpca(l:n x,:);

clear Vpca
mm_P = matfile('IandP_land24 100.mat');

te = []:

time = 1:2000;

T = 2000;

dt = 1

Zhat(:,1) = m_Model.Zpca(l,:)';

IT chi phi2 = m_Profj.II_chi phi2;
II_chi phil = m_Profj.II chi phil;
Pphi = (mm_P.P_xe FA + mm P.P etae FA + mm P.P xe alpha+
mm_P.P etae alpha) ;
Palpha = (eye(size(Pphi)) - Pphi);
tic
for i = 2:T-1
ti time(i-1);
o Zhat (:,1-1);

z_alphai = mm_P.P_x_alpha*zi;

ze FA = mm_P.P xe FA*zi;
ze_alpha = mm_P.P_xe alpha*zi;
zeta _alpha = mm_P.P _eta_alpha*zi;

df o o o

z_alpha = Palpha*zi;
% zetae FA = mm_P.P etae FA*zi ;
% zetae _alpha = mm_P.P etae_alpha*zi;
zphi = Pphi*zi;%zetae FA + ze FA + ze_alpha+ zetae_alpha;
Hl = ((m _Model.Vpca)'*(-(Ce/(Cc +
Ccort)) .*II chi phil{ti})*m Model.Vpca) ;
H2 = ((m_Model.Vpca)'* (- (Ce/(Cc +
Ccort)).*II chi phi2{ti})*m Model.Vpca) ;
z_FAi = Hl*zphi;%mm_P.P_x FA*zi;
zeta FA = H2+*zphi;%%mm_P.P _eta FA*zi;

% etahat(:,i-1) = V_eta*zi;
% eta dothat(:,i-1) = K'*zi;
dzdt(:,1) = m_Model.A*Palpha*zi +m_ Model.A* (H2+eye (100,100)) *zphi
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+ m_Model.B + V x'*((1/(Ccort + Cc)).*[zeros(n_x FA,1l);FL node (i-
1,:)';zeros(n _xe FA+n xe alpha,1)]./10e-10);%A*zi;%$V_x'* (A _eta*etahat(:,1i-
1)) + V_eta'*eta dothat(:,i-1);

Zhat (:,i) = =zi + dt*dzdt(:,1);
tt = [tt;til;

HH1(:,:,1i) = H1;

HH2(:,:,1i) = H2;

end
save ('Hmap_celll 10cells 100','HH1',6 'HH2', '-v7.3
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B. Experiments in the Context of the Biophysical
Model being Studied

B.1 Set up and Protocol

GFP tagged plasma membrane HUVEC was used to detect in cell morphology and observe
lamellipodial formation of 2 cells separated by 10-100um. Perti dishes were coated with 20:1
PDMS crosslinker ratio to obtain stiffness of ~800kPa stiffness. 10ug/ml of fibronectin was coated
on top and left overnight. The next day, GFP tagged plasma membrane HUVEC were seeded at
5000 cells in a 52mm diameter dish (~3 cells/mm”2). Imaging was done at 16X magnitude for an

hour and a half.

B.2 Experimental Evaluation

The spreading (in between the cell gap) and migration towards each other analyzed by
examining the minimum distance between the two cells and the centroid distance between the
cells. As can be seen in figure 17, the analysis verified that the cells migrate and extend towards

each other.
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minimum distance between cells
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Figure 31: Minimum distance between the two cells and the centroid distance between the cells.

As seen in figure 28, cell directionality and polarity was analyzed by examining the
principal axis of elongation along the cell contour (blue arrow) and the cell’s movement direction
between time frames (yellow). The average(green) of the two arrow was used as an indication of
cell directionality. Although for some samples the cells seemed be directed towards each other,

results were somewhat inconsistent and more data further experiments are necessary.
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cell boundary — cell boundary
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Figure 32: Cell directionality and polarity analysis. Principal axis of elongation along the cell contour (blue

arrow) and the cell’s movement direction between time frames (yellow). The average (green).
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