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Abstract

The long-time evolution and eventual dissipation mechanisms of internal waves in a
stratified fluid are of fundamental geophysical importance. While much progress in
recent years has been made on two-dimensional nonlinear internal wave evolution, the
effects of three-dimensional variations are still poorly understood. In this thesis, we
propose asymptotic models for the weakly nonlinear three-dimensional evolution of
three types of internal wave disturbances: beam-like wavepackets, equally modulated
wavepackets, and thin beams. Our models assess the combined effects of nonlinearity,
three-dimensional modulations, viscosity, and background rotation to determine the
roles that they play in wave evolution and instability.

Our results indicate that internal waves with three-dimensional variations behave
in very different ways than their two-dimensional counterparts. Most notably, in all
three types of waves we consider, three-dimensional variations are necessary in trig-
gering the nonlinear transfer of energy from waves to a large-scale time-mean flow via
the action of Reynolds stresses. Furthermore, we show that two distinct mechanisms
of mean flow generation exist, and each may result in wave breakdown. The first is an
inviscid purely modulation-induced mean flow which can trigger the so-called modu-
lational instability. The second is a combined viscosity and modulation-driven mean
flow that establishes a resonant wave-mean flow interaction known as streaming. The
relative importance of these two mean flow mechanisms and associated instabilities
thus depends on the specific nature of the modulations and the importance of vis-
cous dissipation. For instance, we show that beam-like waves, where modulations
are weaker in the direction along constant phase lines, exhibit the coexistence of
both types of mean flow. The robust nature of the induced mean flow indicates that
three-dimensional variations may be of utmost importance in determining the fate of
internal waves, both in the field and in the laboratory.

Thesis Supervisor: Triantaphyllos R. Akylas
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

Density stratified fluids support gravity waves called internal waves and their prop-

agation and eventual dissipation are of fundamental geophysical importance. They

underly the distribution of energy and momentum in the oceans and atmosphere as

these dissipating waves are thought to contribute to mixing and maintaining of ocean

stratification (Wunsch & Ferrari, 2004), as well as momentum transport and large

scale winds (Plumb, 1977). In fact, it is estimated that as much as one terawatt of

energy is dissipated by internal wave activity generated by tide-topography interac-

tions in the deep ocean (Garrett, 2003). However, despite a great deal of progress

over the recent years (see the forthcoming review by Dauxois et al., 2018), there re-

main many open questions regarding the long time evolution of internal waves and

the mechanisms by which they undergo instability. Various nonlinear mechanisms

have been proposed but it remains unclear which, if any, are dominant and under

what circumstances.

For example, much work thus far has focused on the triadic resonance instability

for monochromatic waves, which includes the well-known parametric subharmonic

instability (PSI). This class of instabilities involves resonant energy transfer to small

scale subharmonic disturbances (Staquet & Sommeria, 2002; Bourget et al., 2013, and

others) and has been linked to oceanic mixing (MacKinnon et al., 2013). However,
recent work suggests that PSI may not be ubiquitous in all contexts and that there

exist flow configurations that preclude PSI. Specifically, if waves are not uniformly

periodic but rather locally confined, finite width effects can suppress PSI altogether

(Sutherland, 2013; Bourget et al., 2014; Karimi & Akylas, 2014). Therefore, this

motivates the consideration of other types of instability mechanisms that may be

dominant for locally confined waves.

For internal wave systems, locally confined waves hold special prominence. An
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Figure 1-1: Laboratory image from Mowbray & Rarity (1967) of the four internal
wave beams generated by a horizontal oscillating cylinder (coming out of the plane
of the page) located at the center of the image. The four beams correspond to the
four arms that radiate away from the center, forming a pattern that is known as the
St. Andrew's Cross. The beam inclination angle to the horizontal, 0, is set by the
frequency of oscillation of the source and given via the linear dispersion relation. The
dark vertical bar is an visual artifact arising from the mechanical linkage used to
oscillate the cylinder. The velocity field is nonzero only within the arms of the cross
and the broadening of the beams farther from the wave source is a result of viscous
dissipation.

important consequence of the natural anisotropy of a density stratified fluid is that
internal waves can manifest in the form of locally confined beams, as observed in the
seminal experiments by Mowbray & Rarity (1967) (see figure 1-1). Comprised of a su-
perposition of plane waves with general wavenumber spectrum but a single temporal
frequency, internal wave beams have many unique properties whose physical conse-
quences have only recently come to light (e.g. Tabaei & Akylas, 2003). Importantly,
beams are not merely theoretical or laboratory constructs. They are fundamental
in geophysical contexts as they are formed readily in nature through the interaction
of the tides with topography (Bell, 1975; Garrett & Kunze, 2007; Cole et al., 2009;
Echeverri & Peacock, 2010).

Thus far, much of the previous literature has focused on analyzing the behav-
ior of two-dimensional internal waves. Models governing two-dimensional internal
waves, with flow variations solely in a vertical plane, are simpler and computation-
ally cheaper. However, recent experimental findings indicate that three-dimensional
beams have the potential to exhibit many new types of phenomena (Bordes et al.,
2012; Grisouard et al., 2013). Importantly, three-dimensional variations appear to
catalyze an induced large-scale time-mean flow. However, much of the underlying
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physics behind this three-dimensional instability mechanism is still unknown.

In this thesis, we present a theoretical study on locally confined three-dimensional

internal waves. We consider various types of waves, ranging from beams to wavepack-

ets, and show not only that three-dimensional variations are crucial in the generation

of a large-scale mean flow, but also that the beam-like nature of an internal wave

holds important consequences in its eventual fate.

1.1 Background

In order to provide proper context to this work, it is useful to discuss recent work on

three-dimensional internal waves, followed by background on wave-mean flow inter-

actions, which underly the evolution of three-dimensional internal waves.

1.1.1 Two-dimensional versus three-dimensional internal waves

Beginning with Mowbray & Rarity (1967), most experimental studies in the literature

have focused on confined flows that are largely two-dimensional in nature. Accord-

ingly, most of the theoretical work has followed suit in analyzing these two-dimensional

flows. In these systems, a key nonlinear pathway to wave instability that has been the

subject of much attention is PSI, as previously mentioned, where energy from the pri-

mary wave is transfered to subharmonic perturbations leads to dramatic breakdown

of the primary wave.

The key role of three-dimensional variations in nonlinear internal wave evolution

has thus gone largely unnoticed until only recently. When Bordes et al. (2012) ex-

perimentally forced an internal wave beam using a locally confined wave generator

in a tank large enough to permit three-dimensional flow variations, they surprisingly

found no PSI. Rather, they found that the internal wave beam generated a jet-like,
horizontal, circulating mean flow that grew almost linearly in time. Using a prelim-

inary analysis, they showed that a necessary condition for their observed mean flow

is the presence of three-dimensional variations and dissipation. In another labora-

tory experiment, Grisouard et al. (2013) studied the reflection of an internal wave

beam beam off a flat slope. They surprisingly found that the reflected beam was

severely attenuated as compared to linear theory and attributed this to a large-scale

mean flow that was induced in the reflection region. Using computations compar-

ing two-dimensional with three-dimensional models, they were able to conclude that

three-dimensional variations and dissipation were necessary to produce the mean flow

13



that they observed. Finally, it is worthwhile to note that both King et al. (2009) and

Grisouard & Biihler (2012) had observed that internal waves generated by oscillatory

three-dimensional tidal flow over topography drove a circulating horizontal mean flow

in the presence of dissipation. However, as these two studies involved more complex

geometries and flow-topography interactions, no direct conclusions could be drawn

regarding the fundamental conditions that favor mean flow generation.

Of the work mentioned thus far, we have still not obtained a complete picture of

the necessary and sufficient conditions that give rise to the wave-mean flow interac-

tion. However, inspired by these novel results, Kataoka & Akylas (2015), hereafter

referred to as KA, used a weakly nonlinear theory to model these experimental obser-

vations. By considering a thin, locally confined, modulated wave beam, KA derived

fully coupled evolution equations for the wave-mean flow interaction. They were able

to capture the mechanisms of mean flow generation, the feedback of the mean flow

onto the waves, and confirm that indeed, three-dimensional variations are necessary.

Surprisingly, they found that there were two types of mean flow generation mecha-

nisms. One mechanism, known as streaming, relies on viscosity and is the cause of

the growing mean flow. This was exactly in accordance with the conclusions drawn

by Bordes et al. (2012) and Grisouard et al. (2013). The unexpected second mech-

anism only relied on three-dimensional modulations and not at all on dissipation.

Both types of mean flow generation mechanisms, the purely modulated-induced and

streaming, are each well-known in their own contexts; however, to find them coexist-

ing in a single physical system was a novel discovery. As these two types of mean flow

generation mechanisms will be crucial to the later discussion, we now aim to clarify

the distinction between the two.

1.1.2 Modulation-induced mean flow

Familiar example of modulation-induced mean flows can be found in systems that are

governed by nonlinear Schr6dinger-like equations. The nonlinear Schr6dinger equa-

tion, which describes the envelope amplitude evolution of a nearly monochromatic,

weakly nonlinear and dispersive wavepacket, features a nonlinear term proportional

to JA1 2A, where A is the slowly varying wave envelope amplitude. In general, this

nonlinear term may represent both the Stokes correction to the frequency of a purely

sinusoidal wave (modulations in time) as well as possible feedback of a wave-induced

mean flow component. This type of nonlinear interaction relies on modulations of a

periodic or uniform state and importantly, does not depend on the presence of fluid
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dissipation.

As internal plane waves in a uniform stratification are exact nonlinear states,
the Stokes correction to the frequency is identically zero. Thus, the nonlinear term

arises solely from the feedback of an induced mean flow (ii Oc IA 12), which is trig-

gered by spatial modulations of a uniform wave. For internal wave systems, these

modulation-induced mean flows can have various consequences depending on the scal-

ings and specific system of interest. One benign possibility, occurring in the case of

freely propagating internal wavepackets with three-dimensional equally strong mod-

ulations in all directions (Shrira, 1981; Bretherton, 1969; Tabaei & Akylas, 2007),

is that the mean flow is simply a uniformly bounded O(A2 ) correction to the wave

velocity field, similar to the Stokes drift of periodic deep water waves. In other

systems, another more spectacular possibility is for a resonant interaction between

the modulation-induced mean flow and the waves, leading to non-uniformly bounded

mean flow evolution. For instance, freely propagating 'flat' wavepackets, where mod-

ulations are stronger in the vertical than horizontal direction, can couple resonantly

to a modulation-induced mean flow via a 'long-wave-short-wave' interaction (Suther-

land, 2001; Tabaei & Akylas, 2007). This strong interaction arises from the fact that

such 'flat' modulations are compatible with low-frequency internal waves. Grimshaw

(1977) also finds that a 'long-wave-short-wave' interaction is possible for modulated

waves in a confined stratified channel (i.e. a constant depth ocean with rigid lids).

Third and finally, it is also possible for the modulation-induced mean flow to trigger

a modulational instability. As was first shown for nonlinear deep water Stokes waves

(see Yuen & Lake, 1980), the modulational instability (i.e. Benjamin-Feir instability)

arises from an interaction between a carrier wave and its sidebands. Specifically for

internal waves, this destabilizing interaction is often mediated through the induced

mean flow. For instance, 'flat' wavepackets in the weakly nonlinear limit are always

modulationally unstable (Tabaei & Akylas, 2007).

1.1.3 Streaming

In contrast to modulation-induced mean flows, the second type of mean flow genera-

tion mechanism is streaming, which is most uniquely characterized by its dependence

on fluid dissipation. As pointed out by Lighthill (1978), attenuated internal gravity

wave beams generate a mean horizontal force that can resonantly drive a slowly vary-

ing time-mean flow. This force arises from nonuniform Reynolds stresses in a region

occupied by attenuated waves. Because of the similarity of this mean flow genera-
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tion mechanism with that of attenuated acoustic waves, this is known as streaming

(see Riley, 2001, for a review). A typical feature of streaming is its association with
vortical motions, i.e. motions that are governed by transport of vorticity or poten-

tial vorticity (PV). Specifically, McIntyre & Norton (1990) point out that it is only

the irreversible transport of vorticity or PV that leads to streaming, i.e. through the

action of viscous wave dissipation or wave breaking.

1.2 Motivation and outline of current work

It appears that three-dimensional effects and the resulting transfer of energy from

waves to a large-scale mean flow play a much more important role in internal wave evo-

lution than previously thought. However, the context in which this three-dimensional

mean flow instability occurs remains unclear. Aside from the case of the thin beam, as

discussed in KA, it remains unclear whether other systems also exhibit such behavior.

Is is possible to characterize the settings in which this three-dimensional mean flow

leads to wave breakdown and settings in which it does not? How do the two types

of mean flow generation mechanisms come about? Does the presence of background

rotation in geophysical settings affect the wave-mean interaction? These are the key

questions that we will seek to address.

In Chapter 2, we study the evolution of locally confined three-dimensional mod-

ulated beam-like wavepackets. This type of internal wave disturbance is ubiquitous

in laboratory settings and is a convenient and simple model to obtain theoretical in-

sights into three-dimensional wave evolution. In 2.1-2.3, we use a weakly nonlinear

asymptotic model to predict the coupled evolution of these wavepackets and their

induced mean flows. We discuss the effects of background rotation in 2.4 and we

then use this model to study their stability in 2.5. By comparing against a recent

experiment, we show in 2.6 that our results can be used to predict physical phe-

nomena and are not solely of theoretical merit. Overall, we find that the coexistence

of the purely modulation-induced mean flow and streaming is central to the evolution

of beam-like disturbances. Thus, this three-dimensional wave-mean flow interaction

may be relevant for both geophysical and laboratory internal waves. In Chapter 3, we
clarify and elaborate on the peculiar features that distinguish beam-like disturbances

from non-beam-like disturbances. In 3.1, we consider wavepackets that are equally
modulated rather than beam-like. In 3.2, we revisit the thin beam model of KA and

examine the added effects of background rotation. Finally, Chapter 4 summarizes the

major findings of this thesis.
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Chapter 2

Three-dimensional beam-like internal

wavepackets

As a result of modern interest in internal waves and the many unanswered funda-

mental questions regarding their evolution and eventual fate, laboratory experiments

have played a crucial role in our current understanding. Classically, a simple method

of generating beams in the laboratory is to oscillate a fixed body, such as a long

cylinder, to produce four beams that emanate from the body forming a cross-like

structure known as St. Andrew's Cross (Mowbray & Rarity, 1967). In this case, the

thin beams generated have general profile, usually with no more than two crests (see

Clark & Sutherland, 2010, for a more recent experimental study). However, with this

method, it is difficult to control the wave profile and waves radiate in four directions

rather than just one, introducing complications from reflections, intersections, etc.

In the past decade, new methods of wave generation have overcome these setbacks

by instead using a stack of offset oscillating plates (figure 2-1a) that allow precise

control over the wave profile and direction (see Gostiaux et al., 2007; Mercier et al.,
2010, and references therein). This development has allowed for the study of beams

with nearly monochromatic profile in order to analyze wave instability in a controlled

manner (Bordes et al., 2012; Bourget et al., 2013; Grisouard et al., 2013; Maurer et al.,

2016). To our knowledge, all experiments performed in the literature to study three-

dimensional internal wave beams have used nearly monochromatic profiles (e.g. figure

2-1b taken from Bordes et al. 2012). Therefore, we focus our attention on theoreti-

cally modeling weakly nonlinear beams with locally confined nearly monochromatic

profile, hereafter referred to as wavepacket-beams. Not only are these types of waves

physically relevant, they also allow us to bridge the gap between idealized sinusoidal

disturbances and thin beams with general profile.
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Figure 2-1: (a) Schematic of a modern wave generator reproduced from Mercier et al.
(2010), showing the oscillating stacked plates on the left, and the generated wave
beam propagating to the right and downwards. Dashed arrows indicate the velocity
field. (b) Experimentally obtained horizontal velocity field of an internal wave beam
reported from Bordes et al. (2012) that was generated using a similar setup as is
depicted in (a). Gravity is in the negative z-direction and the black bar on the left
corresponds to the vertical extent of the wave generator. The beam emanates from
the wave generator and propagates to the right. Viscosity attenuates the beam, as
can be seen from the decrease in wave amplitude as it propagates. Here, the locally
confined nearly monochromatic profile (with three carrier wavelengths) of the wave
beam is evident.

We are interested in the propagation of internal waves in a stratified liquid such
as Earth's oceans and so we make the standard Boussinesq approximation of the
Navier-Stokes equations (Lighthill, 1978; Sutherland, 2010) as density variations in
the ocean arising from temperature, salinity, and pressure variations only amount to
a few percent. For a density stratified fluid, waves are supported through the bulk
as a result of buoyancy and gravitational restoring forces. Given the background
equilibrium density stratification p(y), where y is the vertical coordinate pointing
antiparallel to gravity, the angular frequency at which a vertically displaced parcel of
fluid oscillates about its equilibrium position is known as the Brunt-Vdishlh frequency
or buoyancy frequency and denoted N, where

N2(y) = g-d (2.1)
pidy

for a Boussinesq fluid. In the oceans, typical values of N range between 10-2 S-1
in the strongly stratified upper ocean (thermocline) to 10-4 s- 1 in the weakly and
smoothly stratified abyss (Talley, 2011), which lies roughly between 1000 km below
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the surface to the ocean floor and is where much internal wave generation occurs

through interactions of the tide with topography (Garrett, 2003). In this thesis, we

focus on waves that propagate with vertical length scales much smaller than the

length scales on which the buoyancy frequency varies. Thus, we assume a constant

buoyancy frequency, in alignment with most laboratory experiments.

As the presence of Coriolis forces modifies the dispersion relation of internal waves

and thus the rate of energy propagation, background rotation is an important con-

sideration for wave evolution and stability. For example, in the case of PSI, back-

ground rotation can reinforce the ability of subharmonic perturbations to destabilize

wavepackets, especially close to the critical latitude (Karimi, 2015). In the case of the

wave-mean flow interaction, the effects of rotation are currently unknown. Thus, we

seek to include it in our model. To do so, we make the traditional f-plane assumption

by taking background rotation to be constant everywhere. Because f, the Coriolis

parameter equal to twice the local background rotation rate, varies monotonically

between zero at the equator to 10-4 s- at the poles as a result of Earth's curva-

ture, the ratio f/N can lie anywhere between zero to values greater than one. As is

well-known, internal waves are evanescent in regions where f/N > 1 and may only

propagate in regions where f/N < 1. To be as general as possible, we consider the

case of f/N = 0(1) < 1 to account for strong Coriolis forces. We also discuss the

results of weak rotation (f/N < 1) and no rotation (f = 0).

It is important to note that we ignore the possibility of PSI in this study. From a

purely theoretical perceptive, monochromatic and nearly monochromatic disturbances

are highly susceptible to PSI, which include wavepacket-beams and the associated

scalings used in this thesis. However, laboratory experiments (e.g. Bordes et al., 2012)

have sometimes reported the surprising lack of PSI for beams of nearly monochro-

matic nature, which suggest that PSI may not always occur. Based on results in the

literature, it is known that finite width effects arising from the locally confined profile

of the beams can suppress PSI. To be more quantitative, Karimi & Akylas (2014)

give a criterion (equation 5.14) regarding the minimum number of carrier wavelengths

required for PSI to develop in a weakly nonlinear nearly monochromatic beam that

is a function of beam inclination and amplitude, among other factors. For the ex-

perimental values of Bordes et al. (2012), whose beams only contained three carrier

wavelengths, the minimum number predicted by Karimi & Akylas (2014) is 6.2. This

then confirms the lack of PSI that was observed. Therefore, based on these observa-

tions and theory, we conclude that it is permissible (and still physically relevant) to

ignore PSI in this study.
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2.1 Governing equations and preliminaries

We consider an incompressible and unbounded uniformly stratified Boussinesq fluid

rotating at a constant rate about the vertical (y-) axis. To work in nondimensional

variables, we employ 1/N as a characteristic time scale, where N is the constant buoy-

ancy frequency, and L as a characteristic length scale, here taken to be the carrier

wavelength. In terms of the velocity field u and the excess density and excess pres-

sure fields, p and p respectively, from a hydrostatic background, the nondimensional

governing equations are given by

V - u = 0 (2.2a)

Dp
U -j = 0 (2.2b)

Dt
Du

+f XU =-V P-pj +VV 2 u + F. (2.2c)

Here, D/Dt a_= /at + u - V is the material derivative, j is a unit vector pointing

antiparallel to gravity, f = fj is the constant Coriolis frequency equal to twice the

background rotation rate, F is an applied force, and v is the inverse Reynolds number

given by v =_/poNL 2, where p is the viscosity and po a characteristic density.

The dispersion relation of plane internal gravity waves in the inviscid limit is given

by

w2 = sin2 6+ f 2 cos 2 6, (2.3)

where w is the wave frequency scaled by N and 0 is the inclination angle of the

wavevector to the vertical. We note that this reduces to the dispersion relation for

a non-rotating system by taking f -+ 0 and f appears as a lower cutoff frequency

for propagating waves. We first consider the case of strong rotation where f = 0(1).

Remarks will be later made for the case of weak and no rotation.

From the dispersion relation, the unique anisotropy of these systems is readily ap-

parent, as the wave frequency depends only on the inclination angle of the wavevector,

and not on its magnitude. Additionally, sinusoidal plane waves are exact nonlinear

solutions of the primitive equations. As a result, a more general class of exact non-

linear solutions may be constructed via a superposition of plane waves, provided that

all wavevectors are aligned in the same direction (and thus all individual components

have a constant w and 0) (Tabaei & Akylas, 2003). As previously remarked, this gen-

eral class of exact nonlinear solutions are called uniform beams. To be more precise,

we will work in a rotated coordinate system ( , 7, z) with the rj-direction inclined at
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an angle 0 with the vertical and z-direction aligned with the horizontal. Therefore,
the uniform beam solution, with u = (u, v, w) along ( , ri, z), can be expressed as

(u, v, w) = 1,0, if cO)U(77)e--t + c.c., (2.4a)

i sin 0
p = - U(i)eiw t + c.c., (2.4b)

(1- f 2) cl .
P- sin 0 cos 0 U d' --wt + c.c., (2.4c)

where U(rI) is a general wave profile. We will refer to these ((, i, z) coordinates as

the along-beam, cross-beam, and transverse directions, respectively. From (2.4), it

follows that the uniform wavepacket-beam can be expressed by taking,

U( ) = A(r)e", (2.5)

where A is a slowly varying function of 7 that describes the envelope and 1 is the

carrier wavenumber. At this point, it is possible to clarify what is meant by a beam-

like disturbance. As is evident from (2.4), uniform beams are uniform in the along-

beam direction (independent of ). Therefore, in our consideration of modulated

waves, we will consider a wave disturbance 'beam-like' if modulations in the along-

beam are weaker than modulations in the across-beam direction (see Figure 2-2).

This thus distinguishes beam-like disturbances from other types of disturbances, such

as the equally modulated wavepacket, where modulations are equally strong in all

directions, and flat wavepackets, where modulations in the horizontal are weaker

than the vertical.

Just as vorticity plays a key role in the evolution of many classes of non-stratified

non-rotating flows, the potential vorticity (PV) is the analogous quantity in stratified

and/or rotating flows and is obtained by projecting the vorticity onto the gradient

of a relevant thermodynamic tracer, V). In doing so, the transport of PV becomes

the sole prognostic for a wide class of vortical motions that are linearly decoupled

from gravity waves which carry no PV (Miller, 1995). For incompressible uniformly

stratified Boussinesq fluid, the relevant fluid tracer is simply the density field. As can

readily be derived from (2.2) the PV, denoted q, satisfies the evolution equation,

Dq = V [vV 2 u x (j - Vp)], (2.6)Dt
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where

q - (V X U+ f) - (j - Vp). (2.7)

First, we note from (2.7) that in the linear limit, q reduces to the vertical vortic-

ity. While q includes a constant term, f, as a result of background rotation, this

constant plays no role in dynamics and is called the planetary PV. Second, in the

absence of viscosity, q is a materially conserved quantity. With viscosity, this is no

longer true. However, we may instead write (2.6) in integral form via the divergence

theorem and show that q remains a globally conserved quantity. Third and most im-

portantly, as can readily verified using (2.4), nonlinear plane internal gravity waves

carry no PV other than the planetary PV. On the other hand, many slowly evolving

(non-wave-like) large-scale vortical motions (e.g. geostrophic or quasi-geostrophic) are

entirely governed by PV evolution (Mnller, 1995). These flows (which exclude fast

motions such as gravity waves) are characterized as being approximately 'balanced'

flows (McIntyre & Norton, 1990), as the entire flow field can be uniquely determined

simply by inverting the PV. As we will later show, the induced mean flow generated

by modulated internal wave beams exactly corresponds to these vortical motions.

To summarize, in the linear limit, propagating waves and vortical motions (mean

flows) that carry PV represent two normal modes that are entirely decoupled. In the

presence of nonlinearities, where in general, modes may be coupled, uniform beams

are still decoupled from vortical modes due to their peculiar nature as exact nonlin-

ear solutions. It is only through the addition of modulations to a uniform beam that

nonlinearity acts to couple waves with vortical modes. As an example to emphasize

this crucial role of modulations for internal wave dynamics, it is worthwhile to note

that Lelong & Riley (1991) previously analyzed the interaction between uniform si-

nusoidal waves (with discrete wavenumbers) and vortical modes. However, as they

do not consider modulated waves (with a narrow-band spectrum), they reach the

lackluster conclusion that the vortical mode does not participate in energy exchange

with the waves!

2.2 Scalings

To study the evolution of a modulated wavepacket-beam, we first make a key assump-

tion that modulations in the transverse (z-) direction vary over a length scale much

larger than L. Thus, we employ a stretched coordinate,

Z=Ez, O<E<1, (2.8)
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to describe these transverse variations. We assume, without loss of generality, that

the applied forcing lies in the ((, r) plane. Accordingly, the forcing F = (F, H) in

( , 77) is assumed to depend on the stretched coordinate, Z, and be locally confined

in the - and rj-directions as to act as a model for a wave source. Specifically, we

express F and H as

F = a { (, 7, Z)e-'wot + c.c. , H = a{H( ,,,Z)e-iWOt +c.c.}, (2.9)

where F and H are 0(1) and a is a small (a < 1) parameter controlling the amplitude

of forcing that will later be related to E. The forcing frequency, wo, thus specifies the

angle of inclination, 0, of the wave beam.

We now focus our attention onto the far-field ( , t >> 1) evolution of a wavepacket-

beam driven by a time-harmonic line force with nearly monochromatic profile and

weak transverse variations (2.9). Accordingly, we assume an 0(1) carrier wavenumber,
1, in the q-direction and a slowly varying envelope. We will also allow for weak

variations in the along-beam direction, and we seek a theory in the distinguished

limit where the effects of dispersion in the transverse and along-beam directions,
nonlinearity, and viscosity formally have equal weight and operate on the same slow

time scale. In order to deduce the appropriate scalings for this distinguished limit,
we assume that (kx, ky, kz) < 1 are characteristic wavenumbers corresponding to the

modulations in ((, r, z), respectively. Expanding (2.3), we obtain that the modulated

wave frequency can be approximated as

2 2 ( 2) kx+ ( 1 f 2 2) COS2 2( 1 f2) sin cos kx kyW -dW 0  1-f sinvcosU--+iJ ot/yz -(l ncsu 1

2k2 . .. (2.10)

where wo = sin2 6 + f 2 cos2 6. Thus, to balance dispersive effects in the along-beam

and transverse, we take the scale of along-beam modulations to be O(E-2). It then

follows that the time scale over which these weak dispersive effects act is O(E-2).

Accordingly, we employ the stretched coordinates

X = E 2 , T = E2t, (2.11)

to describe these modulations. For viscous dissipation to act over an O(E-2) length

scale, we scale the viscosity
V = 32 , (2.12)
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following Lighthill (1978). While the viscosity is in essence a free parameter that

we may control, we will show that the most interesting physics occurs on this scale.

We will later remark on the effects of weaker or stronger viscosity. As an aside, it is

important to note that other modulation scalings are indeed possible. We examine in

Chapter 3 some of these other cases and we will see that behavior may qualitatively

change.

For internal wave beams, (2.10) suggests that linear dispersive effects as a result

of the modulations in 1 are a higher order effect relative to dispersion in and z.

Therefore, based on the scalings we have chosen thus far for the other coordinates, the

scale of q-modulations (i.e. the width of the envelope) will only affect the nonlinear

beam-mean flow coupling and not the linear evolution of the beam. In order to set

this scale and proceed with the analysis, we note that in KA, a thin beam of 0(1)

width, under the same modulations as discussed, induces a mean flow that extends

over an 0(EI) width in the cross-beam direction. Thus, we choose the envelope to

vary with the stretched coordinate

Y = Eq, (2.13)

implying that modulations in the cross-beam are comparable to transverse modula-

tions.

Finally, all that remains is to link the forcing amplitude, a, to the modulation

scale, E, such that nonlinear effects (i.e. the evolution of the mean flow) balances

with dispersive effects when T = 0(1). ERom (2.4), we expect the scalings of the

modulated beam flow field to be similar to that of an O(a) uniform beam flow field,

namely

(u,wp,p) = O(a), v = O(ae), (2.14)

where the scaling for v follows from the incompressibility condition (2.2a). As it

turns out, the appropriate forcing amplitude for the desired balance between weak

nonlinearity and dispersion is

a = e. (2.15)

Under these scalings, the appropriate expansions for our flow fields into primary
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Figure 2-2: Schematic of an internal wavepacket-beam, indicating the coordinate sys-

tem ( , ij, z) corresponding to the along-beam, cross-beam, and transverse directions,
respectively, the constant rotation rate about the vertical, Q = f/2, and the beam

inclination angle, 0, given by the forcing frequency, wo. Dotted lines correspond to

the constant phase lines of the sinusoidal carrier, while the bounding solid line corre-

sponds to the finite extent of the slowly varying envelope.

harmonic and mean components are

U = E{Uei + C.C.}I + E2U +...(2.16a)

v = E2 1Veio + c.c.} + E 2 V +..., (2.16b)

w = E{Weio + c.c.} + e2W ... , (2.16c)

p = E{Re'k + c.c.} + E2 +..., (2.16d)

p = e{Pe" + c.c.} I+ EP +..., (2.16e)

where 1=7 - wot and all primary harmonic and mean flow amplitudes (U, U, etc.)

are 0(1) functions of (X, Y, Z, T). Finally, in the far field, the forcing components F

and H are approximated as

F - 2E26(X){f(Y, Z)e1j+ c.c.}, ft 2E26(X){h(Y, Z)ee"n + c.c.}, (2.17)

where we assume f and g are locally confined in Y. As a result, we expect the

generated disturbance to vanish far from the region of forcing, i.e. as Y -* +oo.

One might expect that in addition to a mean flow, higher order harmonics (e.g. o
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e-2iWot, etc.) may also be generated via nonlinear interactions. However, it can be

shown that the effect of the mean flow dominates over effects of higher order harmonics

on the primary wave. Although we do not explicitly show this here, details are given in

Kataoka & Akylas (2013) and Kataoka & Akylas (2015) for the case of the thin beam,

and similar reasoning follows for our wavepacket-beam. We note that experimental

observations (e.g. Bordes et al., 2012; Grisouard et al., 2013) have also confirmed

that the mean dominates over higher harmonics for these three-dimensional internal

waves.

2.3 Derivation of wave-mean evolution equations

Inserting these scalings and expansions (2.16) into the governing equations (2.2), we

group terms and begin by considering those that contribute to the primary harmonic

(Oc edwot). We may first obtain expressions that diagnostically relate all flow fields

to the along-beam wave amplitude U. Directly from (2.2a), (2.2b), and the 'q- and

z-components of (2.2c), we obtain to leading order,

V co UZ, (2.18a)

W = U, (2.18b)

isin 0
R = s U, (2.18c)

1 -f2
P = sin 0cos 0 U, (2.18d)

where next order corrections are O(E). We note that the form of these diagnostic

relations exactly corresponds to the uniform wavepacket beam solution (2.4).

With a little algebra and making use of (2.18) in the a-momentum equation (2.2c),
we obtain at leading order an evolution equation for U given by

- 1 -f 2  [u -otO __#E

U +ilVU + fsin 0Cos0 Ux - i 20 Uzz + 2 U = 6(X)f. (2.19)

Here,
f 2 cos 2 ) (2.20)

is an effective viscosity due to added dissipative effects from background rotation. We

will see that this effective viscosity persists throughout this thesis as one of the effects
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of 0(1) background rotation. In assessing the physics of this evolution equation, we

first confirm that our scalings result in a leading order balance between nonlinearity,
dispersion, and viscosity. Going term by term from the left, the second term cor-

responds to the nonlinear feedback of the wave-induced mean flow onto the waves,
which is felt through the action of the cross-beam mean flow component, V, that is

as of yet undetermined. The third term arises from along-beam modulations and re-

sults in propagation at a velocity given by the group velocity. The fourth term arises

from transverse modulations and results in Schr6dinger-like dispersion. The fifth and

final term on the left hand side corresponds to the effect of viscous dissipation that

thus far simply results in an exponential decay in the wave amplitude. We note that

as expected for modulated beams, the waves are not linearly affected by cross-beam

modulations as (2.19) has no Y-dependence.

Turning to the mean flow terms, we obtain directly from (2.2) diagnostic equations

that relate all mean flow fields to V:

U = cot6 V, (2.21a)

Wz = -Vy, (2.21b)

Rz = -f cot 0 Vy, (2.21c)

Pz = f csc 0 V, (2.21d)

where all next order corrections are O(e). We immediately see from (2.21a) that the

mean flow is purely horizontal to leading order. All that remains now is to find an

evolution equation for V to obtain a closed system with (2.19). While it is possible

to proceed, with considerable algebra, directly from (2.2), we instead appeal to PV

evolution (2.6) and (2.7) as we anticipate that the mean flow response is governed by

the mean PV.

Making use of our scalings and expansions, q can be expressed in terms of its

primary harmonic and mean components as

q = f + E3{Qei(1-wot) + c.c.} + e3 Q + ... , (2.22)

where the 0(1) amplitudes Q and Q are functions of (X, Y, Z, T). The first term on

the right hand side, representing the constant planetary vorticity, has been explicitly

separated from Q since as a constant, it plays no further role in PV evolution. From
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(2.6), we find that the primary harmonic is diagnostically given by

il3f sin0 cos0 + 0(E), (2.23)
Q =-0 2 U+Oe,(.3

while the mean PV evolves according to

Q- = 23sinO0 + f2 2 )(U*U)z + O(E). (2.24)
0

This brings out the role of nonlinearity, three-dimensional variations, and viscosity in

the production of mean PV. Finally, it remains to relate Q to the mean flow field to

obtain a closed set of evolution equations with (2.19). To do so, we make use of (2.7)
to express Q in terms of the flow velocities,

- = 1 - - 2IsinOG
sin V - W2Wy) -- W (U*U)z + O(E). (2.25)sin 0 0WO

Combining (2.25) with (2.24) and (2.21), it follows that the evolution of V can be

written as

a z [Vz + W2VYY - sin2 (U*U)zz 1 sin (U*U)zz. (2.26)
OT 0W Wo UZ. (.6

Together, (2.19) and (2.26) form a closed system of evolution equations for U and V
describing the interaction between nonlinear three-dimensional modulated wavepacket-

beams and their induced mean flows.

From the nonlinear terms in (2.26), we see that there are two mechanisms of mean

flow production: an inviscid purely modulation-induced term appearing on the left

hand side, as well as a viscous term appearing on the right hand side. First, let us

consider the dynamics in the inviscid limit (0 -+ 0). In this case, mean flow only arises

from the purely modulation-induced mechanism. The right hand side of (2.26) is zero

and (2.26) can be trivially integrated in time for a given initial condition. Thus, the

mean flow is governed by a Poisson equation, does not evolve separately from the
waves, and remains asymptotically bounded barring any modulational instabilities.
Given the wave field at any given instant in time, the mean flow can be diagnostically
determined from (2.26) and in this sense, the mean flow is 'slaved' to the waves in the
inviscid limit. Next, let us consider the effect of nonzero viscosity. In this case, (2.26)
does not reduce to a Poisson equation as it cannot be trivially integrated. Rather,
the nonlinear source term on the left hand side proportional to 3 triggers resonant
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mean flow growth, i.e. streaming. Regardless of the presence of viscous dissipation,
transverse modulations are essential as they produce nonuniform Reynolds stresses

which result in both mechanisms of mean flow generation.

We confirm that the mean flow is a 'balanced' flow in the sense of McIntyre &

Norton (1990), as it is possible to invert a given PV field and obtain the velocity field

at any time via (2.23) and (2.18) for the primary harmonic and via (2.25) and (2.21)

for the mean flow. According to (2.25), the modulation-induced mean flow arises from

the material conservation of PV under inviscid flow conditions. Streaming arises from

the irreversible production of mean PV from viscous wave attenuation, as pointed out

by McIntyre & Norton (1990). While the beam equation (2.19) for wavepacket-beams

resembles that of thin beams (KA, equation 3.9), the mean flow equation (2.26) is

significantly different from that of the thin beam (KA, equation 4.13). Nonetheless,
for the wavepacket-beam, both mean flow generation mechanisms persist and operate

on the same time scale.

2.4 Effects of background rotation

Remarkably, the effect of 0(1) background rotation on the evolution equations is

minimal, appearing only in the coefficients. One effect, as we have already noted,
is an increased effective viscosity resulting from the combined action of molecular

viscosity and rotation. While this increases the effective viscous dissipation acting

on the beam, it also enhances streaming. In order to assess the effects of rotation

on the linear dispersive terms of (2.19), we note that we may eliminate 0 using the

dispersion relation. Thus, (2.19) can be equivalently written as

f2 2) i _ , 2 3 1E2
UW ilVU+ U - 2 U + 2 U = 6(X)f. (2.27)

VWJg 0JLX 2w01

Therefore, for a fixed forcing frequency wo, as is the case of tidal forcing, increasing

background rotation monotonically reduces the rate of propagation in the along-beam

direction, i.e. the group velocity, as the beam becomes more horizontal. However,
given a fixed wo, rotation does not affect dispersion in the z-direction. To obtain

a more complete picture of the effects of rotation, we now consider the case of no

rotation and weak rotation.

29



2.4.1 Case of no rotation

It is possible to follow a similar analysis for the evolution of a modulated wavepacket-

beam with no background rotation. In this case, the linear dispersion relation is

simply given by

W2 = sin2 o, (2.28)

while the uniform beam velocity field, still an exact nonlinear state, is now given by

(u, v, w) = (1, 0, 0) U(r,)e"it + c.c. (2.29)

We now quote the end result of the analysis. As it turns out, taking f = 0 in (2.19)

and (2.26) recovers the evolution equations in the absence of rotation, although the

scalings for the various flow fields, and thus the diagnostic relations between U, V,
and the other flow components, do not reduce so conveniently.

To rigorously demonstrate this, we may start again from first principles assuming

a modulated wavepacket-beam with O(E) modulations in z and forced with frequency

wo = sin0. Via (2.10) with f = 0, we see that the scales for i-modulations and slow

time T remain unchanged as before in order to capture the leading order effects of

dispersion. For nonlinearity to act on the same time scale as dispersion, such that

the mean flow evolves over the slow time variable, the flow expansions in terms of

primary harmonic and mean components must now be taken as,

u = e{UeiO + c.c.} + E2U +..., (2.30a)

V = 53{Ve o + c.c.} + E2V +..., (2.30b)

w = E2{Wei+ c.c.} + E 2 W +..., (2.30c)

p = E{Re' + c.c.} + E4W +..., (2.30d)

p = E{peio + c.c.} + E37 +..., (2.30e)

where # = 1, - sin 0 t. Note that the differences from the rotating system lie in the

scalings for V, W, R, and P, which are now all asymptotically smaller than those for

the case of strong rotation. In the cross-beam direction, the mean flow component

turns out to be larger than the wave component. Previously, in the case of strong

rotation, an 0(e) excess mean pressure was necessary to balance the Coriolis force

acting on the induced mean flow, i.e. a quasi-geostrophic flow. In the absence of

rotation and Coriolis forces, the excess mean pressure field, as well as the excess

density field, must now be rescaled accordingly. Taking these modified scalings into
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account, we may once again derive coupled evolution equations for U and V which

exactly correspond to (2.19) and (2.26) for f = 0. All other flow fields can still be

obtained diagnostically and the mean flow remains horizontal at leading order.

2.4.2 Case of weak rotation

Here, we consider the effects of weak rotation, where f < 1, and once again take

the distinguished limit. For weak rotation to act on the Q(E2) time scale of weak

dispersion, we see from (2.10) that we must take f = O(e). By rescaling,

f -+ ef, (2.31)

and making use of (2.10), the linear dispersion relation for sinusoidal waves can thus

be approximated as

w ~ sin o 2cos2 6W ~n sin 0 + E2 ..O . (2.32)
2 sin 0

As it turns out, the desired balance of weak rotation, dispersion, nonlinearity, and

viscosity occurs for a O(e) amplitude wavepacket-beam as before. However, it is

necessary to introduce new scalings for the flow field expansions, namely,

u = e{Ueio + c.c.} + E2 U + ... , (2.33a)

v = E3 {Ve o + c.c.} + E2V +..., (2.33b)

w = e 2{WeiO + c.c.} + e2W +..., (2.33c)

p = e{Re'O + c.c.} + e3R +..., (2.33d)

p = e{Peio + c.c.} + E2 P +..., (2.33e)

where 1 =i-sin 0 t in view of (2.32). In the case of weak rotation, we see as expected

that the scalings of the mean excess pressure and density fields lie between those for

strong rotation and no rotation. Inserting these scalings into our governing equations

and following a similar analysis as before, we obtain that the wave amplitude is

governed by

- cos 0 coto 1 312 .f 2 cos 2 0
UT+i1VU+ Ux-i Uzz +-U+i U=6(X)f, (2.34)

I L 21 J 2 2 sin 0

while the mean flow amplitude is governed by

9 (Vzz + sin2 0 Vyy - 2lsin6(U*U)zz] = 21l3 sinO(U*U)zz. (2.35)
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Thus, the effect of rotation is simply a O(E2) frequency shift that can be eliminated

from the equations (2.34) and (2.35) via the substitution

U -+ Uexp-if 2 C T), (2.36)
2 sin 0

exactly reducing them to the evolution equations in the absence of background rota-

tion. All other flow components can be diagnostically obtained from U and V and

not surprisingly, we observe that the mean flow is horizontal to leading order, as

_U = V-cot 6 + Q(E2)

To summarize, we have conduced a systematic analysis of the effects of rotation on

the wave-mean flow interaction by considering strong, weak, and no rotation. Even in

the case of strong rotation, we find that rotation plays a minimal role in the reduced

equations, merely adjusting the coefficients. It is important to emphasize that while

the coupled evolution equations (2.19) and (2.26) governing U and V are relatively

insensitive to rotation, the other flow fields are affected in both scalings and form,

although they may still be diagnostically obtained from U and V.

2.5 Inviscid stability analysis

The wavepacket-beam-mean flow interaction equations derived above highlight the

coexistence of two nonlinear mechanisms for mean flow generation, one inviscid and

one viscous in nature. Whereas the effect of streaming is resonant mean flow growth,

the effect of the inviscid modulation-induced mean flow is not immediately obvious.

Here, based on our model, we study the effect of the inviscid mean flow and determine

whether it can trigger wave instability. To do so, we examine stability of free uniform

wavepacket-beams to three-dimensional perturbations in the inviscid limit ( = 0).

In order to study the stability of both progressive and standing wavepacket-beams,

we first generalize the results of the previous section to multiple wavepackets with

varying carrier wavenumbers but constant frequency. We now also return to the case

of f = 0(1). Because much of the analysis is similar, we simply provide the key

differences and state the ensuing results.

2.5.1 Generalization to multiple wavepackets

To describe the far field evolution of multiple modulated wavepackets, we first in-

troduce multiple 0(1) carrier wavenumbers 1j indexed by j, and rewrite the forcing
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component F in the far field as

(2.37)F -+ 2E2 6(X) {fj (Y, Z)eii'7 + c.c.},

where f3 is the forcing amplitude of the component with carrier wavenumber 1j. As

fH, the forcing component in the q-direction, only contributes a higher order effect,
we may ignore it. Next, the primary harmonic-mean expansion, taking into account

multiple wavepacket-beams, is rewritten as

U= {U-E yeij + c.c.} + E2U+..., (2.38a)

V = E 2  {Vj e"5 + C.C.}I + E2V +.,(2.38b)

W El f {Wjei7i + c.c.} -+ E 2W -.. ,(2.38c)
j

(2.38d)

(2.38e)

where qOj = ljq - wot. Inserting these expansions, we obtain that each wavepacket-

beam amplitude Uj evolves according to

- 1 -_f2 . cot 0
UjT + iljVU 3 + - sin 0 cos 0 Ujx-itUjzzl

WOlj 21 i I
+ 2&U3 = 6(X)f ,

2
(2.39)

and mean flow V evolves according to

S[ - 2 sin2 o U 2 E sin2 2 (u
8T Vz+WVy - EU_ 13 (U*U z.

J J

(2.40)

Thus, the interaction between multiple wavepacket-beams is solely mediated through

the mean flow, which includes contributions from each wavepacket-beam.

2.5.2 Derivation of eigenvalue problem

Based on these evolution equations, we may now derive the eigenvalue problem gov-

erning the stability of free uniform wavepacket-beams in the inviscid limit. First, we

normalize our equations such that the dependence on 6 and f is scaled out. Intro-
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ducing the changes of variable,

U =s U, (2.41a)

(I _ f 2 ) sin0 cos 0( b
X = WOX (2.41b)

(Y, Z) = cos6 1-f (woY, Z), (2.41c)
2w 0

the coupled system in normalized form is given by

U3T + ilVUj + U - i U 2 = 0, (2.42a)
9j j

V22 + Vk = i3 l(UU &)2 2 , (2.42b)

subject to boundary conditions,

(U, V) - 0 (Y -+ oc), (2.43)

as we expect locally confined evolution from locally confined waves.

We wish to examine the linear stability of a base state composed of a superpo-

sition of uniform wavepacket-beams, = f(Y), to infinitesimal along-beam and

transverse perturbations. As our base state depends on Y only, we superpose pertur-

bations in the form of normal modes in X, Z, and T such that our flow field can be

expanded as

Ui = U (Y) + fj+(Y)ei(k+mz-) -Y i(kmz-a), (244a)

V = T(Y)ei(kx+mz2-T) + c.c. (2.44b)

Here, k and m are given real wavenumbers, - is an undetermined, possibly complex

frequency, and ij+, ftj_, and W are undetermined mode shapes. Substituting into

(2.42a) and linearizing with respect to the perturbations, it turns out that we may

derive a single eigenvalue equation. First, it is possible to express ftj+ and ftj- in
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terms of U as follows:

1,Q-B-
lU.

fj+k m2 v, (2.45a)

or *

- k 2 v. (2.45b)

Making use of (2.44) and (2.45) in (2.42b), we obtain a single eigenvalue problem for

U(Y) with eigenvalue o as,

Tn- )M !312' (2.46)Ugg-m2k 2 m UB

subject to boundary conditions

u-+O ( -+too). (2.47)

Therefore, given uniform wavepacket-beam profiles, U (Y), and associated 1j, it re-

mains to solve for a, where the existence of o 2 < 0 implies instability.

2.5.3 Progressive beams

For a single progressive wavepacket-beam, our base state consists of a single uniform

wavepacket-beam U (Y) and wavenumber 1. The eigenvalue problem thus reduces to

- m2 _ 2m4 4 I 2U. (2.48)

Multiplying this equation by T*, integrating in Y over the domain (-o0, oc), and

making use of (2.47), it follows that

f (UI2 + m2L) d 2m -
0 1 U M2 d = - 2 - = A. (2.49)

-020 df ~17

Therefore, A must be real and positive for any given wave profile. Solving for o in

terms of A, we obtain
k 22 1

a = - m _ + - (2.50)1 + j4
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and in light of (2.49), we conclude that o is purely real for any given profile. There-

fore, we conclude that weakly nonlinear progressive wavepacket-beams are stable to

infinitesimal three-dimensional perturbations.

2.5.4 Standing beams

A standing wavepacket-beam is comprised of two progressive wavepacket-beams with

carrier wavenumbers given by 1I = -l 2 -l and corresponding uniform beam profiles

B 2B =JB. Thus, the eigenvalue problem for a standing wavepacket-beam

reduces to

Tfk - mv = -A B 12, (2.51)

where

A - 2m4{ M4 + .4 (2.52)

Once again, by integrating (2.51) against T* and making use of the boundary condition

(2.47), we may show that

U (I 2 + m2 I2) dY = A j UB 12I2 d . (2.53)

Therefore, A must be real and positive for any given wave profile U'. Solving for o

in terms of A, it follows that if the condition

1 k 2  1 412
- < -- < -+ (2.54)

12 M4 12 A

is satisfied, then 0 2 < 0, implying instability. As A must be real and positive, then

for any finite A, there always exists a finite window of perturbation wavenumbers

k and m that result in instability. Therefore, we may conclude that the standing

wavepacket-beam is unstable to three-dimensional perturbations. Importantly, both

along-beam and transverse perturbation are necessary.

2.5.5 General stability remarks

Thus far, we have been able to make analytic progress in determining the stabil-

ity of single progressive wavepacket-beams and standing wavepacket-beams. In gen-

eral, the stability of multiple wavepacket-beams with different envelopes and carrier

wavenumbers must be determined by solving the corresponding eigenvalue problem
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numerically.

As the stability of progressive and standing wavepacket-beams is independent

of background rotation, it is possible to compare these results against the inviscid

modulational stability of thin beams as considered in Kataoka & Akylas (2013) and

Kataoka & Akylas (2016). Both studies discuss, among other problems, the stability

of weakly nonlinear three-dimensional thin beams of 0(1) cross-beam width and gen-

eral profile. These thin beams were subject to the same along-beam and transverse

modulations as considered here for the wavepacket-beam. We note that it was neces-

sary to numerically solve the eigenvalue problem in the case of the thin beam, while

we were able to make analytic progress here in the case of the wavepacket-beam. For

both wavepacket-beams and thin beams, standing waves are unstable. Additionally,

we showed that unstable eigenvalues for the standing wavepacket-beam arise only for

a finite range of k/M 2 , a result that resembles that for standing thin beams (Kataoka

& Akylas, 2013, figure 7).

We showed in 2.5.3 that single progressive wavepacket-beams are always stable.

On the other hand, progressive thin beams, comprised of a spectrum of wavenumbers

of the same sign, can be either stable or unstable depending on the specific wave profile

and amplitude (Kataoka & Akylas, 2013). The difference between the behavior of the

thin beam and wavepacket-beam can be rationalized in two ways. First, the weakly

nonlinear analysis of the wavepacket-beam in the distinguished limit requires a beam

amplitude of O(e), while the thin beam analysis requires a higher amplitude, O(e1/ 2 ).

Therefore, it is possible that differing wave amplitudes results in the differing stability

properties of thin beams and wavepacket-beams. Second, the wavenumber spectrum

of progressive wavepacket-beams is sharply peaked about a single carrier wavenumber,

whereas the thin beam features a general spectrum of wavenumbers. Although we do

not rigorously prove this here, it appears that base states consisting of two or more

progressive wavepacket-beams with varying carrier frequencies are typically unstable.

As a special case, when two progressive waves have the same envelope with carrier

frequencies 11 = -12, i.e. the standing beam, instability is guaranteed.

2.6 Comparison with Bordes et al. (2012)

We now directly compare our wavepacket-beam model (without background rota-

tion) with the laboratory experiment by Bordes et al. (2012). Previously, the results

of the same laboratory experiment was utilized by KA as a validation of their three-

dimensional thin beam model. However, while the thin beam model was successful

37



in predicting the overall qualitative nature of the jet-like mean flow, amongst other

features, it was less successful in reaching quantitative agreement. Largely, this was

because the scaling assumptions for a thin beam were poorly met by the experimen-

tal parameters. Specifically, the wave generator of Bordes et al. (2012) had nearly

monochromatic profile, with carrier wavelength L = 3.8 cm, fixed vertical height

3L, and transverse width 3.7L. Given the ratio of vertical to lateral extent of the

forcing is about 0.8, the experimental setup much better satisfies the scalings of our

wavepacket-beam analysis, as the transverse length scale is on the order of the cross-

beam envelope width.

First, we nondimensionalize the experimental parameters of Bordes et al. (2012),

where N = 0.85 s-1 and L = 3.8 cm are the (inverse) time scale and length scale,

respectively, and wo = 0.26. We select e so that the transverse width of the wave

generator is normalized to unity (in terms of Z). Using (2.8) and (2.12), this specifies

6 = 0.27 and f - 0.011. The evolution equations (2.19) and (2.26) for f = 0 are

solved numerically from an initially quiescent fluid at T = 0 using pseudo-spectral

discretization in Y E [-4, 4] and Z E [-4, 4] using 256 x 128 Fourier modes, a third-

order upwind finite difference scheme in X E [0, 1] with AX = 0.001, and fourth-order

Runge-Kutta time marching with AT = 0.008. In our numerical implementation,

rather than employing the forcing function f(Y, Z) in the momentum equations, we

instead enforced a boundary condition specifying the wave profile at X = 0 in order

to mimic the action of the wavemaker. With 1 = 27r, we approximate the rectangular

wavemaker by using the boundary (wavemaker) profile

U(X = 0) = Ao{ tanh [5(Z + 0.5)] - tanh [5(Z - 0.5)] tanh [15(Y + 0.41)]

- tanh [15(Y - 0.41)]}, (2.55)

where AO = 0.06 so that the maximum wave x-velocity matches the maximum ex-

perimental value of 1 mm s-1. It is worthwhile to note that the wavepacket-beam

evolution equations are computationally much less expensive than the thin beam

evolution equations of KA.

In figure 2-3, we show the experimental results from Bordes et al. (2012) which

plot the observed x-velocity of the wave field and mean flow field. In figure 2-4, we

show the exactly analogous plots of the wave and mean flow fields as predicted by our

evolution equations. We see excellent agreement between the observed and predicted

flow fields. For the same flow system, it is also now possible to compare our results

with the theoretical predictions made by KA using a thin beam model (see figure 2 in
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KA) rather than a wavepacket-beam model. While the evolution of the wave beam is

largely unchanged between the two theories, the mean flow in the wavepacket-beam

model agrees much better with the experimental observations than that from the

thin beam model. Most noticeably, the wavepacket-beam generates a mean flow that

extends farther from the wavemaker, rather than the strongly localized mean flow

generated by the thin mean. Furthermore, the wavepacket-beam equations predict

that the mean flow grows at a slower rate, reaching comparable amplitudes to the

experiment at t = 323 s rather than t = 96 s for the thin beam. Note that Bordes

et al. (2012) do not the report the time after the wavemaker is turned on at which

their data was collected.

2.7 Summary and conclusions

We have proposed a model that describes the evolution of three-dimensionally mod-

ulated beam-like wavepackets, where modulations are weaker in the along-beam di-

rection, i.e. along lines of constant phase. Our model incorporates the combined

effects of weak nonlinearity, dispersion, viscosity, and background rotation and our

fully coupled evolution equations, (2.19) and (2.26), capture both the evolution of the

wave-induced mean flow as well as the feedback of the mean flow on the waves.

Our model has revealed a great deal of physics regarding the evolution and even-

tual fate of internal wave beams. First and foremost, three-dimensional variations

trigger behavior that is entirely different from two-dimensional systems, i.e. the gen-

eration of a large-scale time mean flow. More specifically, there are two unique mech-

anisms of mean flow generation, one inviscid and purely-modulation induced and

another relying on viscous dissipation (streaming). Both mechanisms can lead to

dramatic beam breakdown, the former via modulational instability ( 2.5) and the

latter via resonant mean flow growth. Both mechanisms coexist, suggesting that

our model is relevant to both laboratory settings, where viscosity is unavoidably im-

portant, and geophysical settings, where viscosity is relatively less important and

modulational instability must be taken into consideration.

In the presence of background rotation, the mean PV emerges as the signature

of the mean flow, which corresponds to a purely horizontal zero-frequency mode of

motion. The mean PV thus generalizes the role of vertical vorticity in non-rotating

systems. However, we have shown that background rotation does not significantly

affect the dynamics of the wave-mean interaction. Therefore, the results we have

presented here can be generally applied to both laboratory and geophysical settings.
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Figure 2-3: Reproduced from Bordes et al. (2012), plots show the experimentally
measured x-component of the velocity field. Note that the experiment uses z for
the vertical and y for the transverse coordinate, while we use the reverse convention.
(a) and (b) show vertical and horizontal slices, respectively, of the primary harmonic
(wave) field, while (c) and (d) are of the mean flow. The dashed line in (a) indicates
the location of the field of view where (b) and (d) are taken, while the dashed line in(b) indicates the field of view of (a) and (c). The black bar indicates the location of
the wavemaker. Contours in (c) and (d) correspond to contours of the wave envelope
amplitude.
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Figure 2-4: Theoretically predicted wave field and mean flow obtained using our
wavepacket-beam model by solving (2.19) and (2.26). Plots here are exactly analogous
to the plots in figure 2-3, showing the dimensional x-component of the velocity field (in
mm/s) at T = 20 (dimensional t = 323 s). The black bar indicates the approximate
location where the boundary condition (2.55) is applied to simulate a wavemaker.
Contours in the bottom plots are of the wave envelope amplitude. Note that our model
assumes that forcing is directly in the along-beam direction, whereas the experimental
wavemaker forces in the horizontal. Nonetheless, we see excellent agreement with the
results of Bordes et al. (2012).
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Regarding the former, we have compared our model against experimental observations

and we find excellent agreement.

Thus far, we have discussed many of the novel behaviors exhibited by internal

wave beams with three-dimensional variations. In the next Chapter, we turn our

attention to what makes these behaviors also unique to beam-like disturbances. To

do so, we discuss the evolution of equally modulated wavepackets, which exhibit

fundamentally different behavior, and thin beams, which share many of the same

features as wavepacket-beams.
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Chapter 3

Beam-like versus non-beam-like waves

In the previous chapter, we focused on three-dimensionally modulated wavepacket-

beams. In this chapter, we now explore the key role of modulations in giving rise to

varying types of behavior. Previous studies have focused on horizontal and transverse

modulations, e.g. in Sutherland (2001) and Tabaei & Akylas (2007) as discussed in

Chapter 1. There, we have already tasted the dramatic effects that differing types

of modulations can have on wave behavior, as the flat wavepacket undergoes a 'long-

wave-short-wave' resonant interaction that is distinct from the types of wave-mean

interactions considered in this thesis.

Thus far, we have seen that transverse modulations are necessary to the generation

of a mean flow. However, the roles of along-beam and cross-beam modulations in

conjunction with transverse modulations are as of yet unclear. Therefore, we now

step away from the wavepacket-beam and consider two other types of internal wave

disturbances. In doing so, we show that beam-like internal waves form a general class

of internal wave disturbances that exhibit unique properties.

The first system we consider is the three-dimensional equally modulated wavepacket.

As compared to the wavepacket-beam, the equally modulated wavepacket features

stronger modulations in the along-beam direction. In the inviscid limit, this system

has received quite a bit of attention, e.g. in Bretherton (1969) and Shrira (1981) for

weakly nonlinear waves, in Grimshaw (1977) for waves in a finite depth ocean, and

most recently in Tabaei & Akylas (2007) for finite amplitude waves. However, no

study to our knowledge has included fluid dissipation. Here, we consider a viscous

(as well as strongly rotating) system and we will show that the strength of viscosity

plays a key role in the dynamics of modulated waves.

The second system we consider is the thin beam. As compared to the wavepacket-

beam, the thin beam features a locally confined 0(1) cross-beam width, i.e. stronger
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modulations in the cross-beam direction, as well as general profile rather than nearly

monochromatic profile. In the case of no background rotation, this is exactly the sys-

tem studied by KA in first demonstrating the effects of three-dimensional variations.

Here, we extend their analysis by including background rotation.

3.1 Three-dimensional equally modulated wavepack-

ets

Our analysis begins from the governing equations (2.2) and uses the same ((, r, z)

coordinate system as before. Here, we ignore forcing for simplicity's sake and consider

the free propagation of an equally modulated wavepacket. Note that if included,

forcing would appear similarly in the reduced equations as in Chapter 2. We also

assume strong rotation, f = 0(1), but just as in Chapter 2, we find that rotation

plays an insignificant role and that the derived evolution equations reduce to the case

of no rotation by taking f = 0.

We consider a locally confined wavepacket that is weakly modulated in all direc-

tions, with carrier wavenumber I and frequency wo, thus setting the angle of incli-

nation, 0, via the linear dispersion relation (2.3). To describe the modulations, we

employ the envelope variables

(X, Y, Z) = E($, , z), (3.1)

where 0 < E < 1 is a small parameter that controls the scale of the modulations.

Under these definitions, transverse and cross-beam modulations are of the same scale

as in the wavepacket-beam studied in Chapter 2. Now, the only difference is that

along-beam modulations are stronger (see figure 3-1 for a schematic).

We again seek a theory in the distinguished limit where leading order nonlinear

and dispersive effects balance on the same time scale. Via (2.10), the slow time

variable over which leading order dispersive effects act is

T = et. (3.2)

Next, for weak nonlinearity to act on an O(E1) time scale, it turns out that the proper
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Figure 3-1: Schematic of a three-dimensional equally modulated wavepacket. Dot-
ted lines correspond to the constant phase lines of the sinusoidal carrier, while the
bounding solid line corresponds to the finite extent of the slowly varying envelope.
As compared to the wavepacket-beam, modulations in the along-beam (i-) direction
are stronger.

scalings for the flow field primary harmonic and mean components are as follows:

u = e{Ue'O + c.c.} + E2 U +...., (3.3a)

V = E 2 fVe i + c.c.} + E2V +..., (3.3b)

(3.3c)

(3.3d)

(3.3e)

where 1 =rq - wot and all primary harmonic and mean flow amplitudes (U, U, etc.)

are functions of (X, Y, Z, T). We assume that v < 1, but we will specify the scaling

of v in relation to E later.

Inserting (3.1), (3.2), and (3.3) into our governing equations (2.2), we may once

again obtain diagnostic expressions relating all primary harmonic components to the
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along-beam wave amplitude, U. These relations, correct to O(e), are

i f COS 0
V = -Uxf- UZ, (3.4a)

Swi

W =U, (3.4b)

isin 0
R = -- U, (3.4c)

1-f 2

P sin 6 cos 0 U. (3.4d)
W1

From the mean components, we likewise obtain diagnostic relations between all mean

fields and the cross-beam mean velocity component, V, correct to O(e), as

U= cotoV, (3.5a)

Wz -Vy -Vx coto (3.5b)

z= -f coto Vy + fVx, (3.5c)

Pz = f csc 9 V. (3.5d)

Finally, it remains to obtain equations that govern the evolution of U and V. At this

point, it becomes necessary to specify the strength of viscous dissipation, as it will

be crucial for the physical implications of the derived evolution equations.

3.1.1 Case of v = O(E2)

First, we consider the case when v = /3&2, as in Chapter 2, where 13 is an 0(1)
coefficient. Making use of this scaling, the evolution of U is then given by

(1- f2 ) sin6 cos9
U + W01 Ux = 0. (3.6)

We see that viscous effects do not affect evolution over an O(e- 1) time scale. This is

not surprising given the proposed scalings and the fact that the viscous attenuation

length scale for internal waves is 0(v- 1) (Lighthill, 1978).

In order to obtain an evolution equation for V, we make use of PV evolution as

we expect that the mean flow is governed by the mean PV. We find that q can be
expanded as

q = f + ElfeO + C.C.} + E4; +...,(3.7)

where Q and Q are 0(1) functions of (X, Y, Z, T). Making use of the definition of PV
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(2.7), we find that Q can be expressed in terms of the velocity field as

z = 1 Vzz + w2Vyy + (+f 2 _W 2xx + 2(1 - f 2 ) sin cos o VxyQZ sin 0 60
2l sinO

- (U*U)z. (3.8)
wo

Finally, the PV evolution equation (2.6) gives us that

QT = 0, (3.9)

to leading order and assuming no mean flow at T = 0, combining (3.9) with (3.8)

yields an equation for V in terms of U as

Vzz + w2VyY + (1 + f 2 _ 2)VXX +2(1 -f 2 ) sin 0 cos 0 Vxy

21 sin2 0
= (U*U)zz. (3.10)

wo

Thus, equations (3.6) and (3.10) form a system of equations governing the leading

order evolution of the waves and mean flow, respectively.

The most important consequence of these isotropic modulations, immediately seen

from (3.6), is that the waves evolve linearly for t = O(E-1), simply propagating in the

along-beam direction at the group velocity c9 = (1 - f 2) sin 6 cos 6/wol. Therefore,
while there exists an induced mean flow as described by (3.10), there is no feedback

from the mean flow onto the waves. This precludes any possibility of wave instabil-

ity over this slow time scale. From the mean flow equations, we observe only the

existence of the modulation-induced mean flow and no streaming at leading order.

While transverse variations are a necessary condition for mean flow generation, this

modulation-induced mean exists only in the vicinity of the waves. Taking the limit

of no rotation, these equations are equivalent to the expressions derived by Shrira

(1981) and Tabaei & Akylas (2007).

One might wonder about the evolution of the equally modulated wavepacket on a

longer time scale, specifically when t = O(E-2), which happens to be the crucial time

scale for the wavepacket-beam. By rewriting (3.6) in a reference frame moving with

the group velocity, e.g. defining T = X - cgT, (3.6) reduces to U, = 0. This suggests

that nonlinearity may affect the waves over a longer time scale than O(E-1). While we

do not explicitly perform this calculation here, we note that indeed, nonlinear feedback

from the induced mean flow arises when t = O(E-2), suggesting that modulational
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instability is possible. Over this longer time scale, the wavepacket is also attenuated

by viscosity. However, via (3.10), streaming always remains as a higher order mean

flow correction as compared to the purely modulation-induced mean flow.

3.1.2 Case of v O(e)

Next, we consider the case when v = OE, where 3 is again 0(1). Under these flow

conditions, the evolution of U is now given by

(1 -f2 ) sin 6cosOU/3E /2
UT + Ux + U 0, (3.11)

W01 2_

where 3 E is the effective viscosity defined in (2.20). We find that q is now expanded

as

q = f + 62Je0 + C.C.} + E3 +...,(3.12)

where Q and Q are 0(1) functions of (X, Y, Z, T). Making use of (2.6), we find that

the mean PV is governed by

- 2E 13ESin
QT = (U*U)z + O(E) (3.13)

and combined with (3.8), which defines the PV in terms of the velocity field, we

obtain an evolution equation for V as

+ [zz + W 2Vyy - (1 + f2  w2)Vxx + 2(1- f 2 ) sin 6 cos 6 Vxy

2 lsin2 o (U*)zz - 23sin 2 0(U*U)zz. (3.14)
WO WO

Compared to the previous case when v = o(E2), larger viscosity has dramatic effects.

First, we observe from (3.11) that the leading order wave evolution remains linear.

However, rather than simply translating at the group velocity, the wavepacket am-

plitude now undergoes exponential decay as a result of viscosity. This implies that

no further dynamics are possible on longer time scales as the wavepacket will have

been severely attenuated. Second, we observe from (3.14) that now, both modulation-

induced mean flow and streaming arise at leading order in the mean flow equation

and that they both rely on three-dimensional variations. However, just as before, no

coupling to the waves is permitted and so no instability is possible.
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3.1.3 Summary and conclusions

In the preceding analysis, we have shown that while three-dimensional equally modu-

lated wavepackets share some similarities with three-dimensional wavepacket-beams,
they exhibit qualitatively different behavior. For both systems, transverse modula-

tions are necessary for mean flow generation.

However, for equally modulated wavepackets, it is not possible for modulation-

induced mean flow and streaming to coexist and lead to wave instability. First,
regardless of the strength of viscous dissipation, wavepacket evolution is linear over a

time scale of O(E-1), thus precluding instability. Second, for V = 0(E2 ) and smaller,

we note that it is possible for nonlinear mean flow feedback onto the waves, and thus

modulational instability, to exist when t = O(E-2). However, streaming will always

be negligible at leading order. Third and finally, for v = O(E), it is possible for

modulation-induced mean flow and streaming to coexist, but neither can cause wave

instability as the wavepacket propagates linearly and viscosity causes exponential

decay of the wave amplitude over an 0(,-1) time scale.

From this analysis, we draw two major conclusions. First, the relative scales

of along-beam modulations and transverse modulations determine whether a distur-

bance behaves like the wavepacket-beam or like the equally modulated wavepacket.

Along-beam modulations dictate the strength of the group velocity effect, i.e. the rate

of energy propagation, whereas transverse modulations are crucial to the effects of

nonlinearity which drives energy transfer from waves to the mean flow. For beam-like

waves, such as the wavepacket-beam, with weaker modulations in the along-beam

direction, the effects of dispersion balance nonlinearity, whereas for non-beam-like

waves, such as the equally modulated wavepacket, the effect of dispersion dominates

over nonlinearity.

Second, if streaming is to be a leading order effect, then waves must be attenuated

on the same time scale as they propagate according to the group velocity. In the

equally modulated wavepacket, where along-beam modulations are O(E-1), viscosity

must be taken to be O(e) for streaming to be a leading order effect. In the case of

the wavepacket-beam of Chapter 2, where along-beam modulations are of O(E-2),

viscosity must be accordingly taken to be 0(E 2).
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3.2 Three-dimensional thin beams

While we have just emphasized the role that along-beam modulations play (relative

to transverse modulations) and hence the beam-like or non-beam-like nature of the

waves, we have not yet considered the role of the cross-beam width and profile. Thus

far, we have considered waves that feature locally confined nearly monochromatic

cross-beam profile, with an envelope scale of O(E 1 ). However, as noted in the in-

troduction, uniform beams with any general cross-beam profile are exact nonlinear

solutions. Therefore, it is possible to consider the dynamics of a thin beam, which has

locally confined general profile of 0(1) width. While the following analysis is more

involved than that of the wavepacket-beam, we observe that the two systems share

many of the same novel properties.

The thin beam system was considered by KA in the absence of background rota-

tion. Our analysis here extends their model by considering background rotation. This

allows us to view all the systems considered in this thesis in the same light. Impor-

tantly, it also allows us to determine the applicability and relevance of the model to

geophysical contexts. Many field observations (Gerkema et al., 2004; Cole et al., 2009;

Johnston et al., 2011) have suggested that the beams generated by tide-topography

interactions are in fact thin beams with locally confined profile and cross-beam width

of only one or two wavelengths. Therefore, in nature, thin beams are likely to be the

most relevant class of internal wave disturbances, as opposed to nearly monochro-

matic waves. We first focus on the case of f = 0(1), and we later make comments

on the case of f = 0(E).

3.2.1 Scalings and inner flow

First, it is necessary to clarify the characteristic length scale, L, used to arrive at the

nondimensional governing equations (2.2). In Chapter 2 and 3.1 where waves had

nearly monochromatic profile, we chose the wavelength of the carrier wave in order

to establish a theory governing the evolution of the slowly varying envelope. For thin

beams of locally confined 0(1) width and general profile that varies on an 0(1) length

scale, there is no separation of scales between carrier and slowly varying envelope.

Therefore, for the thin beam, we choose the width of the beam as a characteristic

length scale.

In our analysis of a modulated thin beam, we again seek to establish a theory in the

distinguished limit, where the effects of rotation, weak nonlinearity, weak dispersion,
and weak viscosity balance. To begin, we assume modulations in the transverse
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Figure 3-2: Schematic of a thin beam with general profile, where the bounding solid

ellipse corresponds to the locally confined nature of the waves.

direction are described by the stretched coordinate,

Z=ez (0<e<1). (3.15)

This brings transverse modulations for all systems considered in this thesis to be of

the same order. Via the linear dispersion relation, in order to to balance along-beam

and transverse dispersion, it is necessary to take the scales

X = E 2 , T= E 2t, (3.16)

to describe along-beam modulations and slow time respectively. Turning to viscous

dissipation, and in consideration of our conclusions from 3.1, it turns out that for

viscosity to attenuate the waves over a time scale of O(E-2), we must take

V = p62, (3.17)

where 3 is an 0(1) coefficient. We note that thus far, this analysis is identical to

that for the wavepacket-beam in Chapter 2, and that for the thin beam under no

background rotation (KA).

Next, it remains to link the forcing amplitude to the modulation scale, hence
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balancing weak nonlinearity with dispersion and viscous dissipation. It turns out that

for weak nonlinearity to act such that the induced mean flow evolves when T = 0(1),
it is necessary to take the amplitude of forcing, and thus the beam amplitude, to be

O(EI/2). Accordingly, in the far field where the forcing in the along-beam direction

appears as a delta function, the forcing is taken to be

F - 2E 5/26(X){f(, Z)e-iot + c.c.}, H -+ 2E 5/ 2 6(X){h(7, Z)e-i"'O + c.c.}.
(3.18)

At this point, we note that the scalings have differed from those in Chapter 2, although

they remain identical to those in KA. Finally, to describe the wave-mean interaction

under the presence of background rotation, we expand the the flow field as follows:

u = E1/ 2 {Ue-iwot + c.c.} + E 2 U + . . . , (3.19a)

V = E3/21-e-iwol + c.c.} + E2V" (X, Z, T) + E3V +..., (3.19b)

w = 6l/2 {We- wo' + c.c.} + c2W +I..., (3.19c)

p - E1/ 2 {Re-wot + c.c.} + E2R +..., (3.19d)

p = E1/2{Pe-iwot + c.c.} + EP,(X, Z, T) + 82T+..., (3.19e)

where all primary harmonic and mean amplitudes, unless otherwise specified, are

functions of (X, 7, Z, T). Importantly, V,, and P, are independent of 'q, implying

that they are constant in the cross-beam direction. Looking ahead, the presence of

these constant flow components will later necessitate a matched-asymptotics proce-

dure to fully determine the wave-mean flow dynamics. This will be necessary because

these constant flow components extend far away from the vicinity of the locally con-

fined waves and therefore cannot satisfy boundary conditions, implying that we will

need to rescale the flow field far away from the beam (I9| >> 1). Thus, the scalings

(3.19) only apply to the inner flow in the vicinity of the beam where 77 = 0(1). Later,
we will discuss scalings for the outer flow where 1,j > 1. At this point, we note that

our analysis has diverged from that of the thin beam with no background rotation as

a result of the scalings (3.19).

Now, we may deduce the dynamics of the wave-mean interaction in the near

vicinity of the beam. Inserting (3.19) into our governing equations and gathering

terms that contribute to the evolution of the primary harmonic yields diagnostic
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relations between all primary harmonic flow fields and U, namely

_ fCos6PV = -j f WOs 0 Uz d?7', (3.20a)

W = ifcos U (3.20b)

R= - f sin -U, (3.20c)

P -( f2) sin 0 cos 0 U dr/, (3.20d)
WO j

to leading order. Making use of these relations, we obtain at leading order an evolution

equation for U as

(1-f 2 ) sincot c 2 Id
UT + VOU7 + i Wdsin 0 cos t Ux dO' + 2Uzz dr dr/

E Un = 6(X)f, (3.21)
2

where #E is the effective viscosity given by (2.20). As expected, the evolution of the

waves for a thin beam is similar to that of the wavepacket-beam (2.19) and in fact,
(3.21) reduces to (2.19) if a monochromatic cross-beam profile is assumed. This is

because the width of the cross-beam profile plays no role in the leading order linear

evolution of slowly modulated internal waves, as can be seen from (2.10). From (3.21),
we also note that strong rotation again plays a minor role in wave evolution. As we

showed in 2.4, for a fixed forcing frequency, rotation only affects the coefficients in

front of the group velocity effect of along-beam modulations and viscosity, and does

not affect transverse dispersion.

Similarly to the wavepacket-beam, feedback of the induced mean flow onto the

waves is felt though the cross-beam mean flow component. In light of the results

from 3.1, we note that it is precisely because of the beam-like nature of these waves

that nonlinearity affects wave evolution at leading order. For the case of the equally

modulated wavepacket, an example of a non-beam-like wave disturbance, nonlinearity

does not affect wave evolution at leading order. One key difference that can be seen

here between the wavepacket-beam and the thin beam is that for the thin beam, the

induced mean feedback component, V, is constant in the cross-beam direction and

thus extends far away from the beam itself.

Gathering the mean components, we may first diagnostically relate all flow fields
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to V, and W as follows:

U = cot V" + fsO{J(U*, f U dr') + c.c.}, (3.22a)
0

V =-JWz d', (3.22b)

R = f cot 0 W + f Cot iJ(U*, f' U d') + c.c.}, (3.22c)
WO

P= -f sin0W - cos 0 R, (3.22d)

Pz = f csc OVV (3.22e)

where J(A, B) AnBz - BAz stands for the Jacobian. Here, of all the systems stud-

ied in this thesis, a feature unique to only the thin beam with strong rotation is that

mean flow is non-hydrostatic. Via (3.22a), we see that a non-horizontal component of

the mean flow arises in the vicinity of the waves that is the result of nonlinearity and

strong rotation. At this point, we observe a complication that arises in the thin beam

that does not arise in the wavepacket-beam. In addition to V, being undetermined,
we were not able to eliminate W via diagnostic relations as we were able to for the

wavepacket-beam.

Anticipating that the mean flow response will be governed by the evolution of

mean PV, we now turn to PV evolution. It turns out that the PV field may be

expanded into primary harmonic and mean components as

q = f + E5/2 -Qeiwot + c.c.} + E2 + (3.23)

where Q and Q are 0(1) functions of (X, 17, Z, T). Via (2.6), the primary harmonic

component of the PV can be expressed in terms of U as

Q = f sinOo 2 sU + O(E), (3.24)

while the evolution of the mean PV is given by,

QT + VCQ = -0 sin 0 W
s 0 f 2 cos 2 0

si jiJ(U,*,, U) + i 2 J(U,*,, f" U dn') + c.c. . (3.25)

Just as in the wavepacket-beam, we see that mean PV is produced by nonlinear,
viscous effects. In order to obtain a single evolution equation for W, we use (2.7) to

54



write Q in terms of the velocity field as

si = 0 WT - sin 0 iJ(U*, U) - if 2 cot2 O 9J(U*, f U d') + c.c. . (3.26)
sin9 6 08

Inserting (3.26) into (3.25), it is now possible to derive a single equation coupling the

evolution of W and U, although we do not explicitly write it here due to its length.

This equation is analogous to equation (3.10) in KA.

To summarize, we have thus far derived two evolution equations. The first, (3.21),
is an evolution equation coupling U to the induced mean flow V,. The second, the

one mentioned in the previous paragraph but not explicitly stated, is an evolution

equation coupling W to U. At this point, we must still relate the unknown V, back

to U or W in order to obtain a closed system. To this end, it is now useful to examine

the boundary conditions which our system must satisfy.

3.2.2 Outer flow and asymptotic matching

As we have assumed forcing that is locally confined in r1, we expect our solution to

satisfy the boundary condition

(u, pp) -> 0 (rj -+ oo). (3.27)

Examining our primary harmonic flow field (3.20), this implies that U must satisfy

U dy" dq' - 0 (q -- too). (3.28)

However, turning to the mean flow components, we may deduce that they cannot

possibly satisfy these boundary conditions. First and foremost, Vz is constant in the

cross-beam direction and (3.22a) implies that U does not vanish either. In addition,
from (3.26), Q ~ W., implying that even if Q vanishes at infinity, W may instead go

to constant non-zero values. In fact, we may explicitly calculate the values of W at

infinity by integrating (3.25) and (3.26) over the cross-beam domain. This gives us

that

W = 2sin 2 0 f (U*U,), + 3EU,*U, dq . (3.29)
77-+-00 0

Note that this expression will be later useful in the asymptotic matching procedure.

At this point, it is clear that our inner flow scalings and solution are not uniformly

valid and we must rescale our flow field far away from the beam. There, we must solve
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an outer flow equation whose solution must then be smoothly joined to the inner flow

solution.

In order to determine the appropriate scalings for the outer flow (|u| > 1), let us

denote the values of W far away from the beam as

W(XI , Z, T) -+ W o(X, Z, T) (171> 1) (3.30)

Via (3.22), it follows that for jIT > 1, the other mean flow components scale as the

following:

V," ~ z I (3.31a)

U ~ cot o VC. (3.31b)

Thus, (3.31a) implies that far from the vicinity of the beam, the asymptotic expansion

for v in (3.19) breaks down, as the higher order mean flow component V becomes com-

parable to V, when q = O(E-'). Next, (3.31b) implies that the mean flow far from

the beam is horizontal to leading order. Therefore, far away from the beam, where

the wave amplitude has vanished, the flow field consists of only mean components

and scales as

U ~ &(cot O0, VOI W .) + O(E7)}. (3.32)

Based on these scaling arguments and in order for the inner solution to smoothly join

to the outer solution, this immediately suggests an outer flow where the flow field is

scaled as

U = E2 (2, V W) = p = eP, (3.33)

and all fields are functions of (X, Y, Z, T) where

Y = E77, (3.34)

is a stretched cross-beam coordinate. Inserting this rescaled flow field into our gov-

erning equations, we may now solve for the outer flow field. First, we obtain that

Wz = -y, O = cot6 V, (3.35)

and eliminating all variables in favor of V, it turns out that the outer flow is governed
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by a single equation, which to leading order, is

-- + wfVYY) = 0. (3.36)

This equation must now be solved subject to the boundary condition

(U, V, W) -+ (cot OVOO, VO IW 00) (Y -+ 0 ), (3.37)

in order to join smoothly with the inner flow, as well as the general boundary condition

(3.27) that the flow must vanish as Y - too. We note that (3.36) exactly corresponds

to a statement about the material conservation of PV in the outer flow. This can be

easily verified by inserting the scalings (3.33) into the equations governing PV, (2.6)

and (2.7).

We now solve for the outer flow. Assuming that there is no mean flow at T = 0,
(3.36) can be trivially integrated in time and the resulting Laplace equation may be

solved by taking Fourier transforms. The resulting solution for the outer flow velocity

field is

(cot , 1, -. ) f Zeimze-mY/wo dm + c.c. (Y > 0)
(U, V, W) = Cto ,1W (3.38)

(cot 0,1, +) fo VooeimzemY/wo dm + c.c. (Y < 0)

where

w eo = Ij V o -im z d Z , (3 .3 9 )
27 c

denotes the Fourier transform in Z. Here, we observe two properties of the outer

flow. First, via (3.35), it is a purely horizontal flow. Second, it has no time evolution

of its own and is 'slaved' to the inner flow via Vac, which manifests as a boundary

(matching) condition in the cross-beam direction.

Note that (3.38) has only made use of the cross-beam matching condition from

(3.40) and automatically satisfies the along-beam matching condition. Now, imposing

the matching condition in the transverse direction, we obtain that

w oc= w
W 00 Y=Ok

= j oeimz dm + c.c. (3.40)

1 -
= O - I
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Figure 3-3: Geometry of the inner and outer flows for the three-dimensional modu-
lated thin beam system. Locally confined extent of the beam is indicated by the solid
black ellipse and has 0(1) cross-beam width. In the inner flow, where y = 0(1), the
induced mean flow (solid red arrow) extends far from the waves. This inner mean
flow is predominately horizontal, except for a small non-hydrostatic component in the
vicinity of the waves that arises from strong background rotation. In the outer flow,
where 71 = O(e'), the induced mean flow (blue dotted arrows) is horizontal, slaved
to the inner flow, and decays to zero at infinity.

where

= j i sgn(m)lV0 eimz dm (3.41)

denotes the Hilbert transform in Z. Finally, as we have already obtained an equation
relating W O0 to U in (3.29), we can now use the matching condition (3.40) to relate
VO0 to U, thereby closing our system of evolution equations. Combining (3.40) with
(3.29), we arrive at the final evolution equation that relates VO0 with U as

W O sin2' + .,o* UTIo

=1 K 0) I (U*Us - EUrUd]

This equation and (3.21) form a coupled system of evolution equations that describe
the wave-mean interaction.

As can be seen from the coupled evolution equations (3.21) and (3.42), the dynam-
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ics of thin beams share many similar properties with the dynamics of wavepacket-

beams discussed in Chapter 2. First, three-dimensional modulations are necessary

in triggering an induced mean flow through the action of Reynold stresses. Second,
two types of mean flow generation mechanisms exist and operate on the same slow

time scale: an inviscid purely modulation-induced mechanism as well as a viscous

mechanism that results in streaming and resonant mean flow growth. Importantly,
the mean flow feeds back into the waves via nonlinearity at leading order, similarly

to the wavepacket-beam and in contrast to the equally modulated wavepacket.

As streaming results in obvious wave distortion, it remains to comment on the

effect of the inviscid modulation-induced mean flow on beam stability. To do so, we

note that just as in the case of the wavepacket-beam, rotation affects the wave-mean

dynamics of thin beams only in the coefficients of the resulting equations and not their

form. Therefore, we conclude that the same stability results of Kataoka & Akylas

(2013) and Kataoka & Akylas (2016), which were obtained in the non-rotating system,
also apply to the rotating system. Specifically, it is possible for the modulation-

induced mean flow to trigger a modulational instability for both progressive waves

and standing waves, depending on wave amplitude and the exact wave profile. Thus,
both types of mean flows are capable of dramatically distorting thin beams in rotating

systems, just as in the case of the wavepacket-beam.

3.2.3 Case of weak rotation

For completeness, we may deduce the effect of weak rotation by following a similar

analysis with f = O(e). Rescaling f -+ ef and employing the same modulation scales

as before, the modified inner flow primary-mean expansion scalings for a thin beam

under weak background rotation are taken to be

U = e1/ 2{Ue-i"wo + c.c.} + E2 U +..., (3.43a)

v = e 5/ 2 {Ve wot + c.c.} + e2V (X, Z, T) + E3V +..., (3.43b)

w = E3/ 2 {We-iwol + c.c. + E2W ... , (3.43c)

p = E1/2 {Re-i't + c.c.} + e3 R +..., (3.43d)

p = 61/2{pe-iwot + c.c.} + e2P (X, Z, T) + E3 P+..., (3.43e)
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Following a very similar inner/outer flow analysis as before, we obtain coupled equa-

tions in the inner flow governing the along-beam wave amplitude as

UT+Vo0 U, +icos[0 Ux dfq' + 2 0 Uzz du1d'] 2Unp

f 2 cos 2 0
+i in . U = 6 (X). (3.44)

and the cross-beam mean flow as

_ _ Z _ '0  (U *U') + /U ?*U , d 7. (3.45)

Just as in the case of the wavepacket-beam, weak background rotation only affects

wave evolution and not the mean flow, and amounts solely to a small frequency shift

in the waves.

3.2.4 Summary and conclusions

In this section, we have discussed the dynamics of three-dimensional modulated thin

beams in a rotating stratified fluid. For both thin beams and wavepacket-beams,

three-dimensional modulations and nonlinearity trigger an induced mean flow. For

both systems, modulation-induced mean flow and streaming coexist and and may each

result in wave instability and breakdown. This latter point is the key distinguishing

feature for beam-like waves as compared to the equally modulated wavepacket.

For multiple reasons, the analysis of the thin beam is much more difficult than

that of the wavepacket-beam, both theoretically and computationally. First, in the

thin beam, as the mean flow extends far away from the vicinity of beam, we see that

a matched-asymptotics procedure is necessary. In the wavepacket-beam, no such

matching between an inner and outer flow is necessary as the mean flow extends over

the same cross-beam width as the waves. Second, while (3.21) and (3.42) capture the

weakly nonlinear dynamics of the thin beam, including the feedback of the induced

mean flow, they are not sufficient to obtain the full flow field. We must additionally

solve the evolution equation that governs W given by (3.25) and (3.26). In the

wavepacket-beam, this was not necessary as the two coupled evolution equations

(2.19) and (2.26) are sufficient to determine the entire flow field.

Finally, it is worthwhile to note a few differences between the thin beam and the

wavepacket-beam. First, the wavepacket-beam can be considered more unstable to
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three-dimensional modulations. This is because an O(E) amplitude wavepacket-beam

generates the same O(E2) mean flow as an O(EI/2) thin beam. In both cases, the

induced mean flow extends over an O(E-) cross-beam width. Thus, while the cross-

beam width and profile do not qualitatively affect the induced mean flow phenomena,
they play a important role in the strength of the mean flow relative to the waves.

Second, we note that if background rotation is strong, the mean flow in the vicinity of

the thin beam includes a non-hydrostatic component, in contrast to all other systems

considered in this thesis where the mean flow is purely hydrostatic.
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Chapter 4

Concluding remarks

We have studied various internal wave systems in an effort to understand the role

of three-dimensional variations in nonlinear wave evolution. For all the systems con-

sidered, we have shown that three-dimensional variations are crucial in triggering

the transfer of energy from waves to an induced mean flow via Reynolds stresses.

Two-dimensional models fail to capture these physically relevant dynamics. More

specifically, there are two distinct mechanisms by which these mean flows are gener-

ated. One derives purely from three-dimensional modulations of a uniform state and

is an inviscid mechanism. The other relies on both three-dimensional modulations

and viscosity, resulting in a phenomena known as streaming where the mean flow

grows resonantly. Our derived evolution equations capture these unique features of

three-dimensional internal waves and indicate that large-scale induced mean flows

may be central to internal wave dynamics.

However, no matter the novelty of these induced mean flows, their mere existence

is only a part of the story. We originally sought to understand how these induced

mean flows in turn affect wave evolution. Could they could help predict eventual wave

dissipation? It is to this end that we drew the distinction between beam-like distur-

bances, i.e. the wavepacket-beam and thin beam, and non-beam-like disturbances, of

which we chose the equally modulated wavepacket as an example. We observe that

beam-like waves have the unique property that modulation-induced mean flow and

streaming coexist and each may independently lead to wave instability. This is not

the case for the equally modulated wavepacket, where nonlinear effects turn out to

be negligible at leading order. Therefore, for beam-like waves, wave instability via

induced mean flows may be central to their evolution. As a result of the coexistence

of modulation-induced mean flows and streaming, our results for modulated wave

beams may be applicable in both geophysical and laboratory settings. In geophysical
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contexts, where waves propagate nearly inviscidly, modulational instability may be

an important factor leading to wave breakdown. In the laboratory, where viscosity

plays a much larger role, streaming may instead emerge as the dominant phenomena.

A few other key results must also be stressed. First, three-dimensional variations

trigger the transfer of energy from waves to a balanced mean flow that is associated

with the mean PV. While the modulation-induced mean flow is associated with the

material conversation of PV, streaming arises via irreversible transport of PV via

viscous dissipation. Second, in order for streaming to arise as a leading order effect,

waves must be attenuated on the same order as the group velocity effect (see 3).

Third and finally, background rotation plays a minor role in the wave-mean inter-

action, at most affecting the coefficients of the various terms in derived evolution

equations. This has been demonstrated by considering both strong, f = 0(1), and

weak, f < 1, rotation.

While this thesis sheds light on the role of induced mean flows as an important

pathway for internal wave instability, we have ignored the effects of the other major

pathway, namely the triadic resonance instability (e.g. PSI). Which of the two path-

ways is dominant and in what circumstances? These important questions remain

unanswered and are fundamental in our understanding of internal wave dynamics

both in nature and in the laboratory.
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