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Abstract

Characterizing the piston ring behavior is inherently associated with the oil consumption, friction,
wear and blow-by in internal combustion engines. This behavior varies along the ring’s circumference and
determining these variations is of utmost importance for developing ring-packs achieving desired
performances in terms of sealing and conformability. This study based on straight beam model was
already developed but does not consider the lubrication sub-models, the tip gap effects and the
characterization of the ring free shape based on any final closed shape. In this work, three numerical
curved beam based models were developed to study the performance of the piston ring-pack.

The conformability model was developed to characterize the behavior of the ring within the
engine. In this model, the curved beam model is adopted with considering ring-bore and ring-groove
interactions. This interactions include asperity and lubrication forces. Besides, gas forces are included to
the model along with the inertia and initial ring tangential load. In this model we also allow for bore,
groove upper and lower flanks thermal distortion. We also take into account the thermal expansion effect
of the ring and the temperature gradient from inner diameter (ID) to outer diameter (OD) effects. The
piston secondary motion and the variation of oil viscosity on the liner with its temperature in addition to
the existence of fuel and the different hydrodynamic cases (Partially and fully flooded cases) are
considered as well. This model revealed the ring position relative to the groove depending on the friction,
inertia and gas pressures. It also characterizes the effect of non-uniform oil distribution on the liner and
groove flanks. Finally, the ring gap position within a distorted bore also reveals the sealing performance
of the ring.

Using the curved beam model we also developed a module determining the twist calculation
under fix ID or OD constraint. The static twist is an experimental characterization of the ring during which
the user taps on the ring till there is a minimum clearance between the ring lowest point and the lower
plate all over the ring’s circumference but without any force contact.

Our last model includes four sub-models that relate the ring free shape, its final shape when
subjected to a constant radial pressure (this final shape is called ovality) and the force distribution in
circular bore. Knowing one of these distribution, this model determines the other two. This tool is useful
in the sense that the characterization of the ring is carried out by measuring its ovality which is more
accurate than measuring its free shape or force distribution in circular bore. Thus, having a model that
takes the ovality as an input is more convenient and useful based on the experiments carried out to
characterize the ring.
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1. Introduction

1.1. Background and Motivation

1.1.1. Piston ring pack system

The piston ring pack system which is the study subject of our work is composed of the piston
and the three piston rings (Figure 1.1).

Piston
>
g_%z —
- @ Compression ring (top ring)
Lubricant Qil -
@ Scraper ring (284 ring)
“Conrod
@ 01l control ring (OCR)

Figure 1.1 — Overview of the Power Cylinder System (PCS)

The main function of the piston is to transmit the mechanical work done by the ignited gas fuel

mixture on the combustion chamber to the crankshaft. The piston presents some geometrical features

that are related to its functions and shown in Figure 1.2.
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Groove

Draining hole
Pin

Piston skirt

Figure 1.2 — Overview of the piston geometry

The piston presents three grooves on its side to insert the piston rings. The 3™ groove generally
contains draining holes in order to let oil and gas flow to the crankcase. The piston skirt is located below
the grooves and 90 degrees on both side of the pin. This surface is in contact with the cylinder liner and

its function is to maintain the lateral forces and guide the piston in the cylinder.

Each piston ring has a specific function. The compression ring or the top ring primary function is
to prevent gas leakage from the combustion chamber through the piston-liner clearance. The 3 ring or
oil control ring (OCR) controls the amount of lubrication oil that is supplied to the ring pack. Oil supply to
the piston skirt is large and the function of the OCR is to let only a thin film of oil left on the liner such that
a proper lubrication of the top two rings is maintained with a reasonable oil consumption. The second
ring, also called scraper ring, has a hybrid function related to oil lubrication and gas pressure since it limits
the rise of pressure in the region above the OCR and stops the excessive amount of lubricant that passed

the OCR.

The nomenclature of the piston ring pack is shown on a section view of piston, cylinder and ring

pack in Figure 1.3.
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Top land — Piston Piston groove

~ Top ring

20d ]and —

2nd ring

)

3dland —

~2mm <« QOil Control Ring

r

Cylinder liner —
4+—— Skart chamfer

Piston skirt \f(

Figure 1.3 — Nomenclature of the piston ring pack

The piston outer surfaces between the chamfers are called piston land. Cylinder-land clearances
vary by design to control gas pressure in different regions of the ring pack. The top of the piston skirt can
present a cut or a chamfer whose functions are to retain oil to lubricate the piston skirt during the up
stroke and to limit the build-up pressure in the oil below the OCR. The chamfer could be a square cut ora

diagonal one.

The three piston rings have different designs based on their functions. The compression ring
generally present a rectangular cross section. Its running face has a microscopic parabolic profile in order
to favor generation of hydrodynamic pressure for lubrication purposes. Other features can be added such
as static twist in order to push the ring against the top groove lower flank and make sure the ring prevents
gas leakage when its upper surface is exposed to high gas pressure. This positive static twist can be
achieved by creating a cut at the upper ID. This lets the top ring contact the lower groove flank at the ID
first and due to the rising pressure in the cylinder and the smaller one at in the second land region, the
ring is pushed towards the groove lower flank preventing high pressure gas from leaking towards the

second land and lower cylinder regions. The second ring presented in Figure 1.3 is a Napier ring which is

16



a common design for second rings. The hook acts like an oil reservoir to prevent oil flowing on the piston
3" land from returning to the liner and hence prevent it from evaporating. To assemble the top two rings
within the cylinder, we close them from their free shapes modifying their curvature and torsion which
increases their internal energy and provide them with an expansion radial force and static twist. This helps
the top two rings to be conform to the liner and groove interfaces. The OCR or 3™ ring present a distinct
design from the top two rings. The OCR presented in figure 1.3 is a two piece OCR and has two components:
a metallic ring and a coiled spring located in the inner diameter of the metallic ring. This particular design
ensures maximum flexibility of the OCR so that it maintains contact with the cylinder independently from
its deformation. The top two rings rely on the ring elastic force created when closing them in the cylinder
to provide a radial contact pressure sealing the ring-liner interface. However the OCR does not generate
enough elastic force when closed since it has a thin section which is why a coiled spring is placed at its
inner diameter. The OCR maintains contact with the liner by only two thin portions of its outer diameter.
They present a flat profile parallel to the liner. This property helps increase the contact pressure and limits
the hydrodynamic pressure generation, which helps control the oil film thickness supplied to the top two

rings and thus limits oil consumption.

1.1.2. Energy efficiency in internal combustion engines

New engines design is driven by three major factors: fuel economy, pollutant emission and
customer satisfaction. To fulfill these requirements, more developed technologies and tools are needed
for all aspects of engines including lubrication oil, fuel and engine components. The piston ring-pack
performance is inherently related to the friction, blow-by gas and oil consumption. Therefore, a detailed
understanding of the piston ring-pack behavior is of utmost importance in order to develop internal

combustion engines with better performance.

Blow-by gas refers to the undesired gas leakage from the combustion chamber to the crankcase.
Therefore, sine unburned working charge may flow from the combustion towards the crankcase and
hence do not contribute to the work production. Besides, this leakage will reduce the in-cylinder pressure
and hence decrease the engine power. Blow-by gas flow is determined by the ring-liner and ring-groove

conformability and is a major factor of the piston ring pack performance.

A major source of pollutant emissions is the engine oil consumption. Partially burned and
unburned oil in the exhaust gases contribute directly to the generation of hydrocarbon and particle

emissions. In addition, exhaust treatment devices performance are altered by the chemical compounds
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existing in oil additives and hence reduce their efficiency. In order to understand oil consumption, we
should characterize oil transport from lower region to the combustion chamber. Qil flow between the
ring’s gaps, along the liner and along the piston are three major oil paths. Qil transport along the liner is
mainly determined by the rind pack lubrication and ring-liner conformability, while oil transport along the
piston is mainly controlled by the ring-groove conformability and gas pressures. The study of ring
conformability can help to understand the oil transport phenomenon and to investigate new strategies to

reduce the oil consumption.

Piston ring friction accounts for 25% of the power loss in power cylinder systems [1] and reducing
it is among engine manufacturers priorities based on its impact on the total engine mechanical losses.
Since ring-liner and ring-groove frictions are largely determined by the ring-liner and ring-groove
lubrication and the relative clearances, a study of the lubrication performance of piston ring pack based
on the ring conformability needs to be carried out. Besides, gas pressure effect influence ring

conformability with the groove and liner and thus should also be thoroughly studied.

Ring-liner friction is generated due to the sliding contact between the piston ring and the cylinder

liner. This force is of opposite direction to the ring motion and created energy losses.

Figure 1.4 — lllustration of the compromise between frication reduction and oil consumption

The friction force Fy is the product of the normal load of the ring-liner contact and the friction

coefficient f. (1.1).

Fy = 201f.F,
(1.1)
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The ring tension F; for a ring with a standard deign is the tangential load required to close its gap
and is statistically equivalent to a uniform radial pressure distribution. Since the integration of the ring
tension of the ring circumference is equal to 2[1F;, the radial force per unit length f,. is given by (1.2)

where R is the radius of the closed ring.

Fy
fr"E

(1.2)

Based on equation (1.1), friction can be reduced by either reducing the friction coefficient in
order to keep the same radial load, or by reducing the ring tension and thus the radial load. It is usually
easier to reduce the ring tension than the friction coefficient by changing the coiled spring in the case of
the OCR or modifying the free shape of the ring for the top two ones. Reducing the friction coefficient for
ring-liner interaction is carried out by choosing the surface material, designing the ring profile and liner
surface roughness and adjusting the lubrication oil properties such as its viscosity [2]. The interaction force
between the piston ring and the liner is characteristic of sliding contact which is represented by Stribeck
[3], [4] curve presented in Figure 1.5. This curves shows the variation of the friction coefficient as a
function of dimensionless number combining the oil viscosity u, the sliding speed V, the bore radius R
and the ring tension F;. This number defines the different lubrication regimes. The friction coefficient
reaches a minimal value at the interface between the mixed lubrication case and the hydrodynamic

lubrication one.
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Figure 1.5 — Stribeck curve of a sliding contact

As we can see a compromise has to be made between tension reduction in order to reduce friction
and sealing performances of the ring. As presented in Figure 1.4, reducing ring tension will decrease the
radial force pushing the ring against the cylinder and thus will result in a thicker oil film (the dashed lines
show the reduce tension case). This shows the negative impact of reducing OCR tension on oil
consumption by allowing a larger amount of oil passing through [5]. Although the width of the OCR lands
can be reduced in order to maintain the magnitude of the contact pressure, the main argument is still
valid and tension reduction reduces the force maintaining the ring in contact with the cylinder affecting

its sealing performance.

Another source of losing ring-liner conformability is bore distortion under thermal and mechanical
loads which affects oil consumption. The cylinder is deformed due to stresses from the engine block
assembly and gradients of temperature created by heat transfer from combustion chamber to coolant.
These deformation, though they are small compared to the bore radius. The latter is generally of
order 80 mm. The 0™ order bore distortion which corresponds to the thermal expansion has a magnitude
of order 100 um . The second order results from the difference in the liner temperature in the

circumferential direction depending on the cooling chamber position and is on the order of 10 um. The
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mechanical stresses from the engine block assembly cause the 3™ and 4" order bore distortion which are
on the order of 1 um. These local deformations are able to affect the ring-liner clearance significantly

Bore distortion deforms the initial circular shape into a deformed one with multiple lobes around the

circumference (Figure 1.6).

Distorted bore (magnified x400) Contact for?e distribution
between ring and liner
/"r:r:\\

Nominal

/ |:7' |‘||
L\ ~J
L /
N / |
=3 J
\‘ & J
X >\/’
A A
N >
Distorted f\f e —;.74
bore contact I_oss of
contact

Figure 1.6 — Bore distortion and its effect on the contact between the ring and the liner

A ring with a relative high stiffness and / or small tension might not be able to adapt to these local

changes of geometry and thus lose contact. As a consequence, the sealing performance of the ring for oil

and gas is also hampered. For instance, a difference in the ring-liner clearance between the down and up

strokes can result in oil up-scraping (Figure 1.7).
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Figure 1.7 — Ring-liner conformability and oil up-scraping

This scenario can happen for top rings during the intake and compression strokes. If the bore
distortion is large enough to cause the second ring to lose contact with the liner as presented in Figure
1.6, then during the intake stroke, oil can connect to the liner at the location of the second ring and a thick
oil film is able to pass the ring to the upper region. The compression ring will have a similar liner clearance
as the second ring and therefore it will also allow this oil film to slide over to the top land during the intake
stroke. However during the compression stroke, the increasing gas pressure in the top ring groove will
make the top ring conform to the distorted bore. Therefore the thick oil film that was left on the liner
during the intake stroke will be scraped and flow to the top land. Thereafter, during the combustion stroke
or even before, oil will be consumed either by being evaporated or throw off in the combustion chamber.
Thus, the difference of conformability between the intake and compression stroke can also contribute to

oil consumption.
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Ring-groove conformability can also affect oil consumption (figure 1.8). During the down stroke,
the OCR scrapes oil lubricating the piston skirt. This oil will accumulate below the OCR. In the initial phase
of the down stroke, inertia and friction holds the ring against the upper flank of the piston groove creating
a channel of a height in the order of 50 um between the groove lower flank and the ring which lets oil

flow since oil pressure below the ring is higher than the pressure inside the groove.

1: Before midstroke (intake/exhaust) 2: After midstroke (intake/exhaust)
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Figure 1.8 — Ring-groove conformability and oil pumping

The direction of inertia is reversed during the second half of the down stroke and oil is squeezed
by the ring on the lower flank of the groove. Therefore, a fraction of the oil is transferred to the groove
region behind the ring. After being repeated at every engine cycle, oil accumulates in the groove and once
the amount of oil in that region is large enough, it can flow to the upper flank of the groove due to the

inertia force and hence oil can flow to the third land through the ring-groove interface.

Finally, the piston is free to rotate around the pin connecting the piston to the connecting rode
and to move laterally due to the radial clearance between the piston skirt and the cylinder liner. Tilt and

lateral displacement constitute the piston secondary motion. Piston tilt cannot be neglected when
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modeling piston rings since tilted piston grooves force the ring to tilt and twist. As shown in Figure 1.9,

the piston tilt is denoted by f8,, and the piston lateral displacement by y,,.

apisisny )

Anti-thrust side

Figure 1.9 — Piston secondary motion and ring relative position

A positive piston tilt corresponds to an upward movement of the thrust side and a downward
movement of the anti-thrust side. Positive lateral motion means that the piston is moving towards the
thrust side. This lateral motion is due to the reaction of the tilted connecting rod to both the action of
inertia and gas pressure on the piston. The piston tilt is due to the axial motion of the center of the skirt

contact and variation of the skirt friction. Piston secondary motion was studied by Bai [6,7].

Piston secondary motion is important in modeling oil transport around the ring pack system.
Lateral displacement modifies the clearance between the piston lands and the liner, thus modifying the

gas pressure. Inertial force and gas pressure push the piston ring to conform to the groove geometry

forcing them to twist as shown in Figure 1.10.

Anti-Thrust side Thrust side & |
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Figure 1.10 — Piston tilt and ring relative position
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Ring twist affects the oil film thickness left on the liner and this is more significant for the OCR,
since it can result in a loss of contact of one of the OCR lands. Piston tilts varies in the engine cycle. Initially,
during the down-stroke, ring twist forces the OCR to twist negatively such that the lower land-liner
clearance is larger than the upper land-liner clearance which makes oil accumulate between the two lands.
Later in the down-stroke, the direction of the OCR twist is reversed and inertial force may drive the oil to
the liner. This phenomenon is called bridging and in this case it happens between the OCR two lands. In
this scenario, the amount of oil accumulated is released to the liner. During the upstroke, the OCR moves
back to the initial position that we described since ring twist changes its direction and the oil is scraped

from the liner and can flow to the piston as demonstrated in Figure 1.11.

Figure 1.11 — OCR twist and oil transport

A great deal of efforts has been made to investigate the piston ring pack performance. In
particular, numerical simulation has played a central role in modeling the different engine components
along with the oil lubrication and gas pressure in order to better understand the behavior of the whole
system. Numerical methods include static analysis that refers to the study of the static interaction
between a ring and the power cylinder system including the liner, the groove, the lubrication oil and gases.

In the following sections, the existing modeling works and their limitations are reviewed.

1.2. Static analysis

Ring design include two categories: material and geometry designs. Geometry design for top two
rings relies on three key elements, namely ring free shape, its cross-section and its running surface profile
and these elements determine the interaction of the ring with the liner as well as with the piston groove

[8,9].

Considering only dry contact and oil lubrication, the ring-liner interaction is determined by the

ring geometry and the bore shape. Due to the thermal expansion and cylinder head bolting, the bore is
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not perfectly circular and is subject to distortions. At the same time, ring geometry is rarely found as
designed initially, mainly because of the plastic deformation during the manufacturing stages. Thereby, it

is crucial in practice to know the contact force based on the ring geometry and bore shape.

There are multiple analytical works on ring bore conformability. Timoshenko and Lessell [10]
presented a solution for a circular ring conforming to a circular bore, where they developed a formula for
a variable wall thickness of a rectangular cross-section ring in order to achieve a uniform contact pressure
on a circular bore. Sun [11] modeled the ring as a curved beam with in-plane elastic, gas and thermal loads
at a steady state within a distorted bore. The identification of the bore distortion as a potential source of
oil consumption [12], [13], [14] triggered several studies. An analytical criterion to compute the maximum
admissible bore distortion was carried out by Mueller [15]. Dunaevsky used a similar analytical approach
and statistical treatment of bore distortion in order to determine different bore distortion limits [16]-[20].
Later on, Tomanik suggested a new conformability criterion based on experimental measurement of ring
conformability limits [21], [22]. Using ANSYS, Ma et al. [23] developed different independent models (gap
model, cable model and thermal liner model) to study ring-liner conformability and also the effect of

thermal stress.

Most of these models rely on the small displacement assumption. However, the ring shape change
significantly when the ring is closed from it free shape into the bore and hence that assumption is no
longer valid and would cause notable errors. Besides, all the existing models were developed for ring with
symmetric cross-section, while rings could also be designed to have asymmetric cross-section in practice.
This asymmetry will affect the ring behavior since it will introduce liner and angular displacement in all

directions, which will affect ring-bore and ring-groove interactions.

Finite element methods have been used to model the structural behavior of the ring and its
interaction with the cylinder [24]-[27]. However most of the existing structural model are based on
straight beam model which has some limitations as the discontinuity of physical properties at the nodes
of the finite element grid such as the curvature in addition to the large number of elements needed to

reach sufficient accuracy which hamper the computation cost of these models.

It is of utmost importance for ring manufacturers to have an analytical tool that determines the
required ring free shape which will provide the desired ring-bore and ring-groove conformability and the
required interactions. Besides, taking into account thermal moment, piston secondary motion, gas

pressures and the different lubrication cases is of practical interest since it models the ring within engine
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working conditions. Prescott et al. [28] has developed an analytical solution for the free shape of a ring
with constant rectangular cross-section that will give a uniform ring-bore contact pressure. That solution
is quoted as the basis of piston ring design. However, that tool does not determine the ring free shape for

any arbitrary contact pressure distribution.

In order to control oil transport more efficiently, compression rings are generally designed to have
static twist angles once inserted into the piston and cylinder. This is accomplished by designing
asymmetric cross-section. It is of practical interest for ring designers to have an analytical tool that
determines the ring static twist based on its design which will facilitate the iterative design process needed
to obtain the desired static twist. Few published studies on the ring static twist calculation are available.
Dunaevsky et al. [17], [19], [29] have developed models that can be used in order to calculate the ring
static twist. However, the boundary conditions used within these models do not really correspond to the

engine applications.

1.3. Thesis scope

As presented in the previous section piston rings have been studied extensively in order to
characterize their performance in terms of conformability which plays a critical role in determining oil
consumption, gas blow by and friction. Yet no complete ring design tool based on curved beam model has
been developed yet. A straight beam based ring design tool was developed by Liu [30] based on the static
analysis presented in his thesis. However this modeling does not include oil lubrication, variable gas
pressure in the circumference direction and non-zero gap effects. Additionally, no model, whether based
on curved or straight beam, determines the ring free shape and the force distribution in radial bore based
on ring ovality or any final ring shape given any arbitrary radial force distribution. Moreover, conversions
among ring’s free shape, its ovality and the force distribution in radial bore have not been done yet and
will be useful for ring designer in order to facilitate the design process and minimize the number of

iterations required to obtain the desired ring properties.

Conformability should also be studied with the ability of modelling working engine conditions
including the different lubrication cases, the gas pressure effect along with the groove and bore distortion
and thermal moment effect. Besides, non-zero ring gap and variable oil distributions and gas pressures
along the circumference should be modeled since these conditions can be encountered in working engine

conditions.
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As proven by Baelden [31], curved beam model resolved several issues existing in the straight
beam model such as discontinuities of quantities of bending moment and curvature, and the singular
behavior of the ring gap that can be studied with a higher degree of confidence. Hence, developing a static
twist under fixed ID/OD constraint based on curved beam model is essential to conceive a complete ring
design tool based solely on that modelling that allows us to reach a better accuracy with less computation

cost than the straight beam model.

This thesis work is focusing on the top two rings but the methodology and the RDT developed can

be extended to study the OCR.

Our model relies on a multi-scale meshing which is able to solve the ring structural deformation
of the piston ring using a coarse mesh but considers the different interactions with the liner and piston
on a finer contact grid. This method allows efficient coupling of structural deformation of the ring and
contact forces at the ring-liner and ring-groove interfaces which occur at different length scales. As a result,
contact and gas forces can be simulated taking into account relevant factors such as bore distortion or

piston tilt.

In chapter 2 of this work, the ring geometry and the equations for its analysis based on the curved
beam finite element is presented. We also present the modeling of closing the ring from its free shape to
final radial one to simulate the process of introducing it inside the cylinder. At the end of that chapter we
present the final matrix form equation modeling the ring’s analysis that has to be solved in order to

determine its conformability with the liner and piston and the different force distributions.

The conformability analysis is detailed in chapter 3. Contact and lubrication models for the ring-
liner and ring groove interfaces are presented first. Piston secondary motion and the thermal moment
resulting from the radial temperature gradient between the ID and OD are also studied to be included in
our modelling. Finally, sample results are presented in order to show some of the key results obtained
with the simulations carried out with our model such as the effect of the gap position with a distorted
bore on the ring-liner conformability and the bending moment resulting from radial temperature gradient.
Furthermore, the effect of local oil accumulation on liner and the ring-groove conformability are discussed

as well.

The fourth chapter is devoted to the static twist under fixed ID/OD constraint modeling in which

we extend the curved beam model in order to simulate the axial tapping force carried out in the
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experimental set-up in order to determine the ring static twist. The effect of the ring’s symmetry along

with sample results are presented.

In chapter 5, we present the four models developed to relate the ring’s free shape, its ovality and
force distribution in radial bore, which defines a complete tool that relates in any desired order these
three ring’s characterizations. A theoretical validation of these four models is presented by recovering the
radial force distribution used first as an input and then recovered after being processed through all the
four models. A validation of the model using ovality measurement is also presented and limitation of the

results is also discussed.

Finally a summary of the thesis main results and tool developed can be found in chapter 6. A list

of additions and area of possible improvement that would best complement this thesis work is given.
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2. Curved beam finite element model of piston rings

Given their dimensions, piston rings can be considered as metallic beams. The size of their cross
section is small compared to their radius. For instance a typical ring for a passenger car engine has a radius
of around 40 mm and a cross section of a height around 1.5 mm and a radial width around 3 mm. This
gives a ratio of cross section typical size by the radius below 0.1. Hence one can uses beam theory in order
to characterize ring structural behavior. Timoshenko’s book on materials strength [32] provides a

complete treatment and overview of beam theory.

Like bore distortions, ring’s deformations are of the order of 100 um and its length scale as
mentioned previously is in the order of tens of millimeters which is determined by bore diameter primarily
and bore distortion and piston tilt. However, ring-liner and ring-groove contact forces depend on the
clearances which are within sub-micron level and the on boundary conditions like fuel-lube interaction
and bridging which include length scales around 100 um and even lower. Therefore the classic straight
beam description is not able to respect the local force generation and provide an accurate description of
the structural deformation physics. For instance for the given orders of magnitude, straight beam based
finite element method needs to reduce the grid size below 1 mm in order to provide enough accurate
prediction of ring-liner contact force. However, for this element size, the beam element is likely to not
give an accurate description of the ring structural response since the ration between the length scale of

cross-section sizes and the beam one is not small anymore and thus the beam theory is not valid anymore.

To address this problem and to couple ring deformations and its contact interaction with the
piston and cylinder despite their different length scales, a dual grid curved beam finite element method
was developed by Baelden [31] first and then used by Y. Liu [33] to successfully assemble a multi-scale-
length ring pack model that provides an accurate description of a cycle model and all the relevant

mechanisms taking part in it within a reasonable computation cost.

This curved beam finite element method takes advantage of the dual grid used for the ring’s
deformations and the contact force based on the typical length scales they rely on. Ring structural
deformations are solved with sufficient accuracy using a coarse structural mesh and local interactions are
studied based on a much finer grid. Therefore thanks to this separation this method is able to address the

problem mentioned above by handling different length scales at the same time.
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The derivation of the finite element equations for the different rings was developed in Baelden
[31] and Y. Liu [33] works. We present here the calculation details for the sake of clarity and to have a

more complete work and comprehensible model.

2.1. Review of ring differential geometry

Inside the engine, the piston ring is subject to in-plane and out of plane deformations along with
its twist. These deformations result in bending and twisting moments which are proportional to changes
of curvature and torsion of the ring’s neutral axis. In this section we present a brief review of ring
differential geometry in order to understand the development of curved beam finite element. For further

details, Pressley [34] presented a more complete treatment of differential geometry of space curves.

Since the ring’s neutral axis is expected to bend and twist in three dimensions, it should be treated
as a 3D curve. Three different frames that will be used in the remaining parts of this work are introduced.
below.

Principal frame

€z € e
Y e €rx €

Cylindrical frame

- ér
- % €a,€xx1 €
Natural frame =

Figure 2.1 — Ring principle frame, Natural frame and Cylindrical frame

Based on the notation used in Figure 2.1, the cylindrical frame is attached to the piston liner. e,
is in the bore radius direction and pointing outward, e, is in the axial direction and pointing upwards and
eg is directed along the circumferential direction. The natural frame is attached to the ring neutral axis
and contains the normal unit vector e, the binormal unit one e, and the tangent unit vector e;. The
definition and calculation of these three vectors is presented below. @, is the orientation of the ring
natural frame. The principal frame is defined by the two principle axes e,; and e,,, that lie in the plane of
the ring cross section and by the tangent unit vector e, which is perpendicular to the plane of the ring
cross section. The principal frame is defined by three mutually perpendicular axes within a body about

which the moment of inertia is maximum and the product of inertia of each pair of the three axes is zero.
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This means that bending moments that are normal to a principal plane result in deformation of the beam

neutral axis in that principal plane.
Any 3D curve C can be described in cylindrical coordinates by:
C(0):r(@) =p(Oe, +2z(B)e, (8, <6 <0,)
(2.1)

As shown in Figure 2.2, in (2.1), r refers to the position vector representing the curve, 8 to the
polar angle, p to the radial distance and z to the axial coordinate. Figure 2.2 also shows the natural frame

of the curve C.

Figure 2.2 — Cylindrical and natural frames for a space curve

The curve unit tangent vector e, is equal to the unit vector of the derivative of the position vector
r(0) with respect to 8 (2.2). For the rest of this thesis, the prime sign is used to refer to a derivation with

respect to the polar angle 6.

() pe.tpegt+ze,

IF'@I ~ Jp2 +p2 + 27

(2.2)

e, () = |

The unit normal vector e,, is equal to the unit vector of the second derivative of the position

vector r(6) with respect to 8 (2.3).
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The binormal vector ey, is normal to both e; and e, and forms a right hand coordinate system with

them. It is equal to the cross product of e, and e, (2.4).
ep(8) = €,(0) x e,(6)
(2.4)

The tangent of the angle a,, is equal to the ratio of the axial component of the normal vector to
its radial one (2.5).
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(2.5)

The plane formed by the tangent and normal vectors e, and e,, is called the osculating plane or
plane of curvature of the curve C. Locally, C can be approximated by a planar curve which is contained in
the osculating plane. The coordinates of a space curve can be recovered from its curvature k and torsion
7. Curvature and torsion are measures of the local radius of curvature and twist of the curve respectively.

The curvature is related to the differential variation of the unit tangent vector e, (2.6).

s e
(2.6)

The variable s here refers to the arc length of the curve C. Using the parametric expression of the

position vector and the chain rule, the arc length of a differential element of C can be expressed as in

equation (2.7).
ds(8) = |Ir'(D|d6 =/ p? + p'? + 2z'%d6

(2.7)
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The curvature represents the rate at which the tangent vector e, is rotated towards the normal
one as one moves along the curve C. It measures how much the curve is curved locally. A large curvature

corresponds to an arc with a small radius of curvature.

Using equations (2.2), (2.3), (2.6) and (2.7), we can express the curvature as follows:

i xrll Jlpz = 2p'2' 2 + [(p" — p)z' — p'z"12 + [p(p — p'') + 2p"?]?
I

3
[pZ + pIZ + ZIZ]E
(2.8)

For planar curve, the axial coordinate z and its derivatives can be removed from (2.8) to obtain

the expression of the curvature in polar coordinates (2.9).

II|

_|p*+2p"” —pp
k= 3
(p? +p"?)2
(2.9)

Besides curvature, space curves are twisted which make them leave the osculating plane. Torsion
is a measure of the rate at which the space curve twist which is the rotation rate of the binormal vector

along the curve C. It is calculated from the differential variation of the unit normal vector e, (2.10).

deb _
ds = —T€,
(2.10)

Using equations (2.3), (2.4), (2.7) and (2.10), we can express the torsion as follows:

B (T' X T'”).T’”

[l xr'||?

_ lpz" = 2p'21[p® — 3p"] + [3p" — pll(p" — p)2z' — p'2"] + 2P[p(p — p") + 2p"?]
[pz" = 2p'2')? + [(p" — p)z’ — p'z"]* + [p(p — p") + 2p"?]?

(2.11)

The ring neutral axis is determined by the position vector r which can be written as a function of

the nominal ring radius R, the radial displacement y and the axial displacement z (2.12).

r={R+y)e, + ze,
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(2.12)

The general expressions of curvature (2.8) and torsion (2.11) for space curves in cylindrical
coordinates are non-liner and depend on relative large number of variables (coordinates and their
derivatives). However we can seek to obtain simpler relations using some relevant approximations. Under
the action of ring tension, gas pressure and inertia, piston rings deform to adapt to the groove and cylinder
geometry once they are assembled inside the engine. Hence, ring neutral axis displacements in the axial
and radial directions are of the same order of piston and cylinder deformations and piston displacement.
For typical passenger car engines, the bore radius in around 40 mm and the bore distortion is on the order
of 100 um. The piston land/groove deformation and piston secondary motion in radial direction do not
generally constrain the rind displacement. The piston land and groove deformation in axial direction are
on the order of 10 um. The piston displacement due to secondary motion in axial direction is on the order
of 100 um. Therefore, both axial and radial directions are expected to be much smaller than the ring
nominal radius. Due to ring stiffness, ring radial and axial displacement cannot change too rapidly. Hence
we can assume that the derivatives of the axial and radial displacements of the ring neutral axis are taken
of the same order as the axial and radial displacements respectively. This leads to the called small

displacement assumption (2.13):

y yl yl/

AN AN 3!

R R R

Z ! ZII << 1

R R R
(2.13)

Using this assumption, simplified expressions of the curvature (2.14) and the torsion (2.15) can be

obtained from the general ones (2.8) and (2.11) respectively:
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The small displacement assumption (2.13) can also be applied to simplify the expression (2.5) of

the orientation of the neutral frame (2.16):

(2.16)

The small displacement assumption is valid provided the rings are already assembled into the
engine. However, this assumption is violated for the top two rings when closing them from their free
shape to the nominal radius circular one since their radial displacement is on the order of several

millimeters. Hence y cannot be considered much smaller than the nominal radius R.

2.2. Spline interpolation of ring geometry with Hermite polynomials

The first step in developing the curved beam finite element is discretizing the ring neutral axis
geometry. The ring neutral axis is a continuous curve which is free to take any shape when it is deformed.
Using spline interpolation, we can discretize it into a number of finite elements. Using carefully chosen
shape functions, in order to obtain enough accuracy of the ring neutral axis geometry, this latter is
interpolated from the nodal values of displacements and their derivatives. An example of spline

interpolation of the ring radial displacement is presented in Figure 2.3.
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Figure 2.3 — Spline interpolation of ring radial displacement
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In the right picture of Figure 2.3, the ring radial deformation (solid line) is approximated by a linear
function (dotted line) which matches the actual deformation at node 1 and 2 located at the polar angles
6 = 0°and 8 = 90° respectively (2.17).

ym =y +n(yz — y1)

(2.17)

The interpolating function (2.17) is expressed as a function of the isoparametric variable 77 defined

in equation (2.18).

_ 0
n= 6,
(2.18)

In the last equation, 6, is the angular length of a ring element. The isoparametric variable
definition makes n vary linearly fromn = 0 at node 1 ton = 1 at node 2. We can see the interpolation

function (2.17) as a sum of two first order polynomials (2.19).

vy = A —my; + 1y, = Ny, + Noy,
(2.19)

In this equation, N; and N, are the shape functions of the ring element associated with the nodal
displacements y; and y,. (2.19) corresponds to a first order Hermitian interpolation of the ring radial
displacement. The ring can be divided into several elements with each element associated with its own
interpolation function defined by the displacements and the derivatives at its two nodes. When these
functions are assembled together, we can recover the deformation of the ring around the entire
circumference. By using first order Hermite polynomials, the continuity of the radial displacement at the
nodes is guaranteed. Using (2.17) we can see that by definition y(0) = y; and y(1) = y,. Higher order
Hermite polynomials can be used if we want to guarantee the continuity of the derivatives of the
interpolated functions. Using higher orders leads to higher interpolation accuracy but also to more nodal

displacements.

To be interpolated, the ring deformation can be broken down into three components: the radial

and axial displacements of the neutral axis and the orientation of the cross section (Figure 2.4).
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Figure 2.4 — Ring deformation: neutral axis displacement and cross section orientation

Baelden [31] developed the Hermite polynomial shape functions that we will use in the curved
beam finite element method to interpolate the three components of the ring deformation. The radial and
axial displacement of the ring neutral axis are interpolated using 5" order Hermite polynomial spline in
order to guarantee the continuity of these displacements up to their second derivative. Hence the
continuity of the curvature, which is the key variable for bending, follows. To carry out 5™ order
interpolation of the ring geometry deformation, nodal displacements must include the displacement, its

first and second derivatives (Figure 2.5).
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Figure 2.5 — Spline interpolation of ring radial displacement
T
y(m) = Zg=1 Nk(n)uyk where {uy} = {uyl "'uye} = {uyuyih vy YZ"}T

(2.20)
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z(M) = Xp=1 Ne(Mug, where (u,} = {uyy o uze}” = {21,21, 21, 25, 25, 23}
(2.21)

The 5% order interpolation uses six shape functions (Nj,)¥Z$. The calculation details related to the

determination of these shape functions can be found in Baelden thesis [29]. The resulting expressions are

listed below.

N, =1—10n3 + 155* — 6n°
(2.22)

N, = 6,(n — 6n° + 8n* — 31°)

(2.23)
2 5
n® 3 3 n
N; = 93(—2——5773 +§TI4 —7)
(2.24)

N, = 1013 — 15n* + 6n°
(2.25)

N5 = 6.(—4n> + Tn* — 3n°)

(2.26)
3 5
—g2_ a1
Ne =6°(5 —n" + )
(2.27)

The first and second order derivatives of the displacement within each element can be calculated

by deriving the shape functions and their expression are listed below.

6
Yo = ) Nty
k=1

(2.28)
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6
Y = ) Ny
k=1

(2.29)

6
ZOEDWHOI
k=1

(2.30)

6
ZOESWHO T
k=1

(2.31)

Since the twisting moment is proportional to the derivative of the twist angle, a 3 order

polynomial interpolation is sufficient and requires only ring twist and its first derivative at the nodes (2.32).
(1) = =1 N (M tiar where {ug} = {Ugy . Uga}" = {@r1, @71, @ra, 27237
(2.32)
The fours shape functions derived by Baelden [29] are listed below.

Ny =1-3n%+2n3

(2.33)
Naz = 6.(n — 2n* + %)
(2.34)
Ngz = 3n* - 29°

(2.35)

Ngs = 6.(—n* +1n°)
(2.36)

The first order derivative of the twist angle within each element can be calculated by deriving the

shape functions (2.37).
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4
@) = ) Nige 0Dt
k=1

(2.37)

This discretization of the ring deformation leads to 8 degrees of freedom per node: 3 for radial
displacements, 3 for axial displacements and 2 for twist. All nodal displacements are assembled in one

displacement vector (2.38).

wd = O Yo Vie s ZkZi0 Zit s Qi g 3T

(2.38)

2.3. Euler-Lagrange equations for ring’s analysis

Baelden [31] derived the finite element equations of the piston ring model using Hamilton’s
principle. The Lagrangian L of any system is defined as the combination of its kinetic energy T, its strain

energy U and the work of external forces applied on it W (2.39).
L=T+W-U
{2.39)

The Euler-Lagrange equations are obtained using the Hamilton’s principle (2.40).

9 (aL)_a_L= 0fori={1..n}

a 6_ul 6ui
(2.40)

The variable u; represents the i*" nodal displacement of the discretized ring and u, the nodal
speed. Each of them is a degree of freedom that defines the state of the system. Hamilton’s principle can
be applied to each element of the piston ring. First the kinetic energy, strain energy and work of external

of forces applied on the ring must be calculated.

The motion of the ring cross section can be divided in three parts: the translations in the radial
and axial directions and the rotation around the ring neutral axis. The ring neutral axis displacements
(¥, z, ) are measured in the reference frame of the piston. The zero displacement position corresponds

to a ring centered in the piston groove and contacting a perfectly round cylinder. The kinetic energy of
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the ring element is calculated by integrating the kinetic energy of cross sections along the ring neutral axis

(2.42).
1
dr® = Ep[A(sz +2%) + I,d,?|ds
(2.41)
(e) 1t 22 4 52 ;2
=g ! p[AG? + 2%) + I,d,*|ds

(2.42)

The notation e is used to refer to the ring element, for instance T(€) represents the kinetic energy
of the ring element. The integration is carried out over the length of the ring element L,. The density of
the ring material is p, I, is the polar moment of inertia of the cross section and A refers to the cross

section area.

Strain energy is stored in the ring structure due to its deformation and is derived using the ring’s

bending and twisting moments along the curvature change and twist angle.

Principal frame

€

€g)€xxi €f

Natural frame P

Figure 2.6 — Ring principle frame, Natural frame and Cylindrical frame

The curvature of the ring neutral axis falls in the plane fromed by the vectors e, and e,, and aligns

n
with the vector e,. In section 2.1, we proved that (2.16) a,, = — z?. Therefore, we can derive the following

expressions for the curvature corresponding to the radial and axial displacements.

r
Kyy = Kk cos(a — ap) = Kk cos (a’ + ?)
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(2.43)

Z/I
K,, = ksin(a — a,) = ksin (a + F)
(2.44)

The bending moment along the e,, direction is proportional to the curvature change in the e,,,
direction (2.45) and the bending moment in the e, is proportional to the curvature change in the e,,

direction (2.46). The ring twist angle contains two components (2.47): the torsion of the ring neutral axis

T and the rotation of the ring section per unit length % (an, — @) as proved in Baelden thesis [29].

M,, = EIZZ(KJ/J/ - KLVJ’O)
(2.45)
Myy = Elyy (Kzz — Kzz20)

(2.46)

d
Mg =GJ, [T+

% (an - a)

(2.47)

The strain energy of the ring element contains three components (2.54): the strain energy related
to in plane bending (2.49), to out of plane bending (2.51) and to torsion (2.53). Each component is the
integration of the corresponding contribution to the strain energy of the cross sections along the ring

neutral axis (2.48), (2.50) and (2.52).

1

2 Ely;(Kyy — "yyO)zds

1
dUz(g) = EMZZ(Kyy - Kyyo)ds =
(2.48)
1 Le 2
Ul = Efo El,(Kkyy — Kyyo) ds
(2.49)

dU(e)=l (kpy — K )ds=lE1 (Kzz — Kzz0)2ds
yy D TYyyNTzz zz0 2 yy\Rzz 220
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(2.50)

@ _ 1" 2
Uyy =Ej; Elyy(’czz""czzo) ds

(2.51)
@ 1 d 1 d 2
dUB =§M9 |:T+£(an—a):|dszzcjt [T+%(an_a)] ds
(2.52)

Le d 2
Uée)=—f GJ, [r+——(an—a)] ds
o ds

N =

(2.53)
U@ =ul + vl +uf®
(2.54)

In order to complete the calculation of the piston ring Lagrangian, we need to compute the work
of external forces. During engine operation, the ring is subject to the action of external forces making it
deform and move with the piston groove. Ring tension forces the ring against the cylinder liner. Depending
on the lubrication conditions, the liner apply a normal force and a friction one on the ring. Acceleration or
deceleration of the piston pushes the ring against the upper or lower flank of the piston groove and
another force contact is created between the ring and the groove. Pressurized piston grooves and lands
result in axial and radial forces acting on the ring. Cross section resulting radial force f,., axial force f, and
twisting moment mg shown in Figure 2.7 must be calculated to take into account all external forces. The
calculation and resulting expressions of these forces will be derived in the next chapters. The quantities

, [ and mg are forces and moment per unit length respectively.
r ]z 6
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Cross section resultants

e
~
—

[ ..
Liner
contact

Groove contact

Figure 2.7 — External forces on ring cross section

The work of external forces is obtained by multiplying the cross section external forces with the

corresponding displacements and integrating over the length of the ring element (2.55).

Le
we = J. (fry + f,z + mea)ds
0

(2.55)

Applying (2.39) and (2.40) to the ring element, we obtain its Lagrangian (2.56) and its Euler-
Lagrange equations (2.57):

L@ =T 4w _yle

(2.56)

a foLe aLte _ -

E( rm ) B e Ofori={1..n}
(2.57)

The variable u; represents the i degree of freedom of the system composed by the two nodes of
the ring element and when assembled in one vector, form the displacements and their derivatives at those

nodes (2.58). Subscripts 1 and 2 refer to the first and second node of the element respectively.

e) s ! rn I " ' ! rn I 1) I
ul® = {uy, o a6} = L,y 01,210,210, 21, @1, @1, Y2, Y2, V2 0 22, 22, 23, @, A3}

(2.58)
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(2.57) gives a matrix equation in u(®). When all the elements’ matrices are assembled, we obtain
a matrix equation to solve in order to obtain all the degrees of freedom of the ring (8 per node) and thus

the full characterization of the ring state.

2.4. Ring gap closing

The simplified expressions of the curvature and torsion of the ring neutral axis (2.14) and (2.15)
respectively are only valid under the assumption of small displacements. As mentioned previously, this
assumption is violated when top two rings are closed from their free shape to the nominal bore radius
radial state. During this process, the ring neutral axis is a planar curve and its axial displacement is zero
but the radial displacement is in the order of several millimeters and cannot be assumed small. Therefore,

we need to use the general expression of a planar curve (2.9) to calculate the curvature (2.59).
2 2
_ |72 + 2rf2 — rpsrfy]

3
(fs +172)?

Kfs

(2.59)

In this equation, 7y, is the radial coordinate of each point of the ring, defined as the distance
between that point and the center of the circle adjacent to the ring free shape at the point located at its

back with a radius equal to the nominal bore radius (Figure 2.8).

Principal frame

€y.€;

€22

Cylindrical frame

Natural frame

Figure 2.8 — Ring free shape and radial coordinate system

The calculation of the curvature change directly from the free shape state to the final state once

the ring is subject to all the external forces inside the engine will be very complicated and non-linear. In
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order to simplify this calculation, we divide the process modeling into two parts: we close the ring from
its free shape to the nominal radius circular state without twist (intermediate state), and then we model
the curvature change with respect to the intermediate state introduced. For the second part, we can take

advantage of the small displacement assumption.

Figure 2.9 — Intermediate state and required preload

The left plot of Figure 2.9 shows the ring free shape (red line) and its close round shape (blue line,
assuming there is no gap between the ring tips). The right plot demonstrates the required preload to close
the ring from its free shape to its round shape. These preload will be considered later as initial forces in
our model. Depending on the ring cross section symmetry, these preload can only be in the radial direction

or they can include axial forces and twisting moments.

We apply Euler-Lagrange equations to determine the required preload to close the ring from its
free shape to its round one. As demonstrated in Figure 2.8, due to the asymmetry of the ring’s cross
section, the principal and cylindrical frames do not align at the ring free state and the orientation angle
@, is called principal angle. Using Figure 2.6 and Figure 2.8 representing the different frames, we can
derive the relation relating the ring cross section twist, the principal angle and the orientation angle of

the natural frame (2.60).
a =a-—a,
(2.60)

The curvature and torsion at the free state are determined as below.
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Kyyo = Krs cos(ay)
(2.61)
Kzz0 = Kfs sin(ap)

(2.62)

Apo = 0
(2.65)

Once the ring is closed at its nominal radius, the assumption of small displacement in both radial

and axial directions is valid and (2.14) and (2.16) can be used.

(2.16)

The curvature and torsion at the final state are calculated as follows using (2.14) and (2.15).

1 + 1 ZII
Kyy = kcos(@ — ay) = (———y J )cos(a+—>

R R? R
(2.66)
1 + " Z/I
K,z = ksin(a —a,) = (E + %) sin (a + ?)
(2.67)
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7' +23
TR

(2.68)

Therefore, at the final state the three components of the strain energy (2.49), (2.51) and (2.53)

can be expressed as below.

2
1 (le 2 LElL, (*((1 y+y" z"
Uz(g) = EJ EIZZ(Kyy - Kyyo) ds = eTZZ.f <(E -7 )cos (a + F) — Kfs cos(ap) dn
0 0

(2.69)
(e) 1 Le L.EI 1 1 y + y” Z” 2
e . .
Uy = EL ELyy(Kyp — Kzz0)?ds = —Z_Wfo ((E - —R—Z) sin (a + F) — Kps sm(ap)> dn
(2.70)
@ 1k d S LGl (7 —Ra'\
Ug =§f0 GJ, r—l—%(an—a) ds = > fo 72 dn
(2.71)

v@ =yl + Ul + Ul
(2.54)

As introduced in section 2.2, the ring displacements can be interpolated using Hermite

polynomials and the nodal displacements at the two nodes for each element as rewritten below.
() = Ty Ny where {uy} = {tyy 11y} = (1 ¥4 91, v2. 72 32"V
(2.20)
z(n) = Xf=1 Ne(Mug where {u,} = {Uy .. uze} = {21,21, 2, 25,25, 2}
(2.21)
ar (M) = Xk=1 Nare (M utgie where {ug} = {Ugs - Uaa}" = {@ry, 071, a2, 272}

(2.32)
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Each ring element has two nodes and therefore 16 nodal displacements, 8 degree of freedoms

per node. The displacement vector for an element is rewritten below.
—_ — 14 " ! r 14 ! n I n r
ul® = {uy, w6} = o yu 01 21,20, 21, 0, @1, Y2, V2, Y2 0 22, 22, 27, 0, @ )
(2.58)

To select the appropriate shape function corresponding to the k™ nodal displacement within a

ring element, we use the mapping function given below.
k, =1{1,2,3,9,10,11]
(2.72)
k, = [4,5,6,12,13,14]
(2.73)
ko, =(7,8,15,16]
(2.74)
k — m(k)
[1,2,3,4,5,6,7,89,10,11,12,13,14,15,16} — [1,2,3,1,2,3,1,2,4,5,6,4,5,6,3,4]
(2.75)

Using this mapping function, (2.20), (2.21) and (2.32) can be rewritten in a more compact form as

follows.
YO = ) Ny,
key

(2.76)

201) = ) Nomiep (D,
kz

(2.77)
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ar(n) = Z Nm(ka) (n)uka
Ka

(2.78)

In order to apply the Hamilton’s principle to the particular expressions of the strain energy

components derived in (2.69), (2.70) and (2.71), we compute the derivatives of those quantities with

respect to the different nodal displacements and their derivatives as presented in (2.79), (2.80) and (2.81).

(e)

U@ oulY au,y
= +

auky auky auky

II

cos (a + -

=-L EIZZf (reyy = Kyyo)_‘—B—(Nm(ky) t err;(ky)) dn

ZII
sin|a +
R 14
Ely, J (2 = KZZO)—(— (Nm(ky) + Nm(ky)) dn
(2.79)

(e)
u® auy Uy,  ouy
= +
aukz aukz aukz aukz

+ z'"\ N,,
=1L EIZZf (ryy — ;cyyo)[ +7 y ]sin(a+ﬁ)—m—(kEl dn

=

(kz) dn

1 1 y+y” 2"\ Nk '(z' —Ra)N
+LeEIny; (K — Kz20) [E - T] cos (a + F) mR dn + L.GJ, fo RZ

(2.80)

au®© au® au) auld
= +
ouy,  Ouy,  Ouy, Ouy,

1 Loy+yr| z" Nc,tm(ka)
= LeElsz (Kyy - Kyyo) [—E + R2 ]Sm (a + F)_R— dn
+ Z” N'
+L.ElL,y, f (Kzz — Kzz0) [ Y y ] cos (a n _}_{) ar;(ka) dn

(z' —Ra')( Ngmk )>
+ L.GJ f - =) dn
e t o RZ R

(2.81)

R
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We obtain the required load to close the ring gap without any out of plane bending nor twist by

substituting (2.79), (2.80) and (2.81) into Euler-Lagrange equation which gives the following initial load

components.

(e)
(e) - ?U_ | .
initial,ky ou y=0,y =0,y =0
k oy
Y z=0,z2'=0,z""=0
a=ap,a'=0

1

= ket ’Z‘*f (% - KfS)ﬁR(Zapl(Nm(ky) + Vi) dn

0
~LeBlyy fy (= kps) o (W) + N ) €
(2.82)

© aue
Finitiaik, = u. ly=0y'=0y"=0
k, PPN
z=0,2"=0,z""=0
a=ap,a'=0

1/1 cos(ap)sin(ap) ,. 1 1/1 sin(ay)cos(ap) . 1
= —L.El,, fo (E - Kfs)—pRz———me(kz)dn + LeEIyy fo (E - Kfs) —'pRz—LNm(kz)dn

(2.83)

au®
initialks — 3y ly=0y'=0y""=0
ko oty
z=0,2"=0,2""=0
a=ap,a’'=0

F(e)

1/1 cos(ap)sin(ap) ,,/ 1/1 sin(ap)cos(ap) ,,;
= —LEl,, fo (E - Kfs) —pRz_pNam(ka)dn + LEL, fo (E - Kfs) _—pkfz'p_Nam(ka)dn
(2.84)

Once we derived these required forces to close the ring to its nominal radius, we can solve the
ring deformations starting from this intermediate state by applying these required loads as preloads or

initial forces {Finitiar}-

2.5. Derivation of stiffness and load matrices

Very similarly to the study conducted by Baelden [31] on twin land oil control ring, in this section

we will develop the stiffness and load finite element matrices for the top two rings. We do not focus on
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the mass matrix here since our study is carried out for the static case. Once we apply the initial load
derived in the latter section, the ring gap is closed without out of plane bending nor twist. This state in
which the ring has a round shape with its nominal radius, will be referred to as initial state with preload
Finitiar for the following analyses.as stated before, once the ring gap is closed, small displacement
assumption is valid and can be used to compute the curvature and torsion of the ring neutral axis.

cos(atp) 1
o =T TR

(2.85)
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z
R

Ay = —

(2.93)

When we calculate the curvature change along the e,, direction, we will see that there will be a
term a — a, which equals the ring twist a, defined previously. Since the difference between a and a,, is

constant and equal to the principal angle a,, their derivatives with respect to 8 are the same.

Combining the expression of the three components of the strain energy (2.49), (2.51) and (2.53)
with the expression derived above for the different curvatures, torsion and the natural frame orientation

angle we obtain the following expressions for the different components of the strain energy for the final

state.

2
1 flLe LeEl, (/1 y+y" 1
(e) _ 2, _ Leblgzz .
U, —zfo EIZZ(Kyy—KyyO) ds = > J; ((-—————RZ )—— dn

 LeEly,

2R4f Z(Nm(k)+ r’rll(k))uk dn

keky,

(2.94)

1l LElLy, (‘fa—a, z"\°
UJ(/‘;/):E‘[) Elyy(Kzz — Kzz0)°ds = ezyyfo ( R p+—R—2> dn

2
L El, "
T 2R J Z N, m(k) Uk +R Z NamioUe dn
kekg

(2.95)

2 2
1 (Le d L,G], (*(z' —Ra'’
(e) _ = . _ e t
p —Zfo G]t<r+—ds(an a)) ds > f()( 72 >dr)
2

__LeG]t d
T R4 (k)uk R Nam(k)uk n

kEk, kEkg

(2.96)
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v =ul+ul) +u®
(2.54)

Since the strain energy corresponding to the ring element is a bilinear form of the nodal

displacements and their derivatives, we can write it in a matrix form (2.97).
1 T
U®© = -}y K]y
2

(2.97)

[K]1® is called the stiffness matrix and its terms (2.98) are determined by comparing the matrix

for of the strain energy (2.97) to its developed expression (2.94), (2.95), (2.96) and (2.54).

rLeEIzz 1 1" 7] P \
—RE (Nma) + Ny ) (Nmgjy + Niwy )1t for {i,j} €k,
R2 f (E Neam@Nam(jy + GJeNgm(iyNam(j)dn for {i,j} € ky
K.(.e) = 7
L} ! 1 PR
R“f (ELyyNaoy NGy + GleNm(yNincjp)dn for{i,j} €k,
R—e3 f (ELyNpiyNam(jy = GleNmaiyNmcpy)dn for (i,j) € k, X kg or (i,)) € kg X k,
0
\0 otherwise /
(2.98)

The following expression (2.99) gives the work of external forces as a function of the nodal

displacements and their derivatives.

T
W(e) = L j fr Z Nm(k)uk + fz Z Nm(k)uk + mg Z Nam(k)uk dT) = {u}(e) {F}(e)
kEk,y kek, kEkgy

(2.99)

The load vector terms {2.100) are equal to the integration of the product between the shape

functions and the cross section resulting forces.
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r rle

\
frNm@wds  fori€k,
0

Le

F@ = 9 fzNm@wds  fori€k,
0

"

ext,i

Le

\Jo

meNgmids forie k“)

(2.100)
The finite element equation of motion (2.101) is given by the Euler-Lagrange equation

[K1903® = (F,.:}© — (Finiiai}@

(2.101)
2.6. Assembly of finite element matrices
In order to obtain the finite element equations for the complete ring, we have to assemble the

stiffness matrices and the load vectors corresponding to the different elements. The same process is used

for conventional finite element models. Below, we give an example of two ring elements matrix assembly.

Node 2

Element (2) Element (1)

Node 3 Node 1

Figure 2.10 — Example of finite element matrix assembly for a two elements ring mesh

In this example, the ring mesh has two elements and three nodes. Element (1) and element (2)
share node (2). The displacement vector corresponding to element (1) is given by (2.102) and the one

corresponding to element (2) by (2.103).

1) [, @ (1) (1)
{u}® = {u1 TR, Th ol
— I n ] n r " [} 11} T
= {1, YY1 21,21, 21, 01, @1, Y2, Y2, Y2 1 22, 22, 22 )0, 2}

(2.102)
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{u}(Z) = {ul y Uy 7y ey Ugs , Uqg }
= {}’2;}’5; }’é’; ZZ; Zé: Zé’l aZ: aé' Y3'y:li' yé,’Z3'Zé'Zé,, a3' aé}T
(2.103)

The two elements stiffness matrices are given below (2.104). the exponent (k) refers to the
element k and the index | refers to node i. as proven in the latter section, for each element we have a

stiffness matrix that we can write into 4 sub-matrices form.

(2.104)

K]® = [Kz(? Kzs]
K23 K33

(2.105)

K, is the sub-matrix containing the terms of the stiffness matrix related to the displacement of
node 1. In the ring finite element model developed in this section and that will be used in the
conformability analysis (Part 3 of this thesis) and the free shape, force distribution and ovality analysis
(Part 5 of this thesis), each node has 8 degrees of freedom. Therefore the stiffness matrix is of dimension

[16x16] and the submatrices like K, is an [8x8] matrix. Hence, the half ring has 24 nodal displacements

for its 3 nodes. The global stiffness matrix [K] is obtained by assembling [K]D and [K]® (2.106).

K11 K1z 0
[K] = | K1, Kz(;) + Kz(? K>3
0 K>3 K33
(2.106)

When we assemble the element matrices, we sum the contributions of both elements to the
stiffness in node (2). The same process is used to assemble the global vector load. The finite element
equations can be written using the global matrices (2.107) where {u} (2.108) is the global displacement
vector obtained as the assembly of the different nodal displacement vectors. In (2.108), n is the total

number of nodes for the whole ring.

[K1{u} = {Fext} — {Fintiiat}
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(2.107)
T
{fu} = {ugl), ...,uél),ugz), ...,uéz), ...,ugn_l), ...,ugn_l),ugn), ...,uén)}

(2.108)

(2.107) is a non-linear system in {u} to solve since {F,,;} depends non-linearly on {u}. We use

Newton-Raphson algorithm to solve that system.

2.7. Conclusion

The dual grid curved beam finite element model developed by Baelden [31] for the twin land oil
control ring is mostly applicable to the top two rings except an additional step closing the ring. The finite
element method is well adapted to the mechanics of the piston rings which are thin curved structures
experiencing small deformation inside the engine. The key issue is the necessity to couple ring
deformation to contact interaction with piston and liner although structural deformation and contact
forces are on different length scales. The method of separation of structural mesh and contact grid using

the element shape functions is efficient in solving this problem.

However, unlike TLOCR, the top two rings at their free state present free shapes which have
several millimeters displacement with respect to the nominal bore radius. Therefore, the small
displacement assumption required for Baelden’s model to hold is no longer valid. To address this problem,
an intermediate state is considered in which the single piece ring is closed at its nominal radius with a
preload. Starting from this intermediate state as the initial one, we can conduct the single piece static
analysis based on the finite element model developed in sections 2.5 and 2.6. indeed, the small
displacement assumption is valid in this case since each point’s displacement, when the ring deforms from
the centered position in the piston groove and contacting a perfectly round cylinder with a nominal radius,

is small compared to the bore radius.

The curved beam finite element method developed in sections 2.5 and 2.6 and summarized in
(2.107) provide a numerical framework for the study of the ring conformability studied in part 3. This
framework will be extended for the study of the ring static twist in part 4 by considering more degrees of
freedom per node since we add the tapping force related unknowns. In order to maintain a close system,

we will also add more equations based on the ID or OD clearances constraint. Besides, the framework
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developed in this section will also be used in part 5 to derive the force distribution in radial final shape

and the ovality, both from ring’s free shape, by considering the appropriate external forces in each case.
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3. Conformability analysis

In this chapter we apply the curved beam finite element model presented in the previous section
to study the ring conformability with the groove and the liner. We also used the method introduced to
handle large displacement when closing the ring starting from its free shape to its nominal radius. As
proved in L. Liu works [26], [27] and [30] and in Y. Liu thesis [33], many useful analyses can be carried out
without including ring’s dynamics. This study includes contact force distribution relations, ring interaction
with a distorted bore and ring interaction with gas pressures. We also include in our work the effect of oil
lubrication on the groove flanks and liner, the non-zero gap effect and the modeling of the thermal

moment introduced by the temperature gradient between the ring’s ID and OD.

In this chapter, a comprehensive analytical tool based on the curved beam finite element model
is developed. it evaluates the ring-liner and ring-groove conformability under different boundary
conditions and studies the relation between local contact behavior and global structural deformation and
stress distributions. The advantage of the model is that it enables the study of the force generation
mechanisms along the ring circumference depending on the local lubrication conditions, the local thermal
effects, the bore distortion and the ring gap effect with the own length scale related to these conditions
and at the same time gives accurate results for the ring structural response with enough flexibility and

low computation cost compared to the dynamic study.

The derivation of the ring-liner and ring-groove contact forces for the different boundary
conditions to be used in the finite element equations was developed in Y. Liu [33] work. We present here
the calculation details for the sake of clarity and to have a more complete work and comprehensible
model. We also explain the methods we opted to in order to consider the thermal moment effect and the

existence of ring gap.

In engine cycles, the piston rings have different forces applied. Besides inertia, when assembled
into piston, the top two rings are closed from their free shape and as described in the previous section,
the change of curvature and torsion of their neutral axes create internal stress which is considered in our
model as initial force. Pressured gas flows around the ring pack system and contributes to pressure force
in both radial and axial directions. The liner provides dry or hydrodynamic contact force in the radial

direction and friction force in the axial one. The ring-groove interaction includes dry contact force, oil
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pressure force due to squeezing and also gas pressure force if gas flows through the ring-groove clearance.

Figure 3.1 represents all the forces acting on the ring.

Gas pressure

Groove Interaction |

Initial Force
Liner contact

Inertia

T

Groove Interaction

Figure 3.1 — Forces acting on ring

The resultant forces include three components: the radial force, the axial one and the twisting
moment. These components are used to compute the external load vector in the governing equations
derived in the previous section for the finite element curved beam model. Figure 3.2 shows the coordinate

system that we uses and which determines the signs of the different components of the resultant forces.

Cross section resultants

f2

Mg

C_k

Figure 3.2 — Resultant forces and coordinate system
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3.1. Ring-liner sub-model

Ring-liner interaction includes dry-contact force, hydrodynamic force from the oil film between
the ring and the liner and gas pressure force. The ring-liner interaction sub-model is based on the curved
beam finite element model and thus is able to include global as well as local processes. Piston rings
conform to the distorted bore and groove due to tangential load and gas pressure which results in the
contact pressure distribution. Thus, we obtain a local force generation depending on oil supply. In reality,
circumferential gas flow causes local oil accumulation on piston lands which creates local oil supply to the
top two rings via bridging [42], [44], [45]. Besides, in the direct injection engine, fuel may be sprayed

sporadically to the liner, which affects the ring-liner interaction by changing the local oil film viscosity.

Pul Gas pressure

Liner contact P hyi
~{ Initial i

g ! ‘

Figure 3.3 — Ring-liner interaction

Figure 3.3 shows the radial forces involved in the ring-liner interaction. They include the gas
pressures which changes in time and in the circumferential direction. Gas inside the ring groove pushes
the ring toward the liner and gas from the piston upper and lower lands pushes it inwards. The force and
moments per unit length created by the gas pressure in the radial direction and to be used in the finite
element curved beam model are given below. For the rest of this thesis, the pressure acting in the regions
above the minimum point (defined as the point on the ring running surface that is closest to the liner) is
assumed to be the piston upper land pressure B, and the pressure below the minimum point is assumed
to the piston lower land pressure Py, as shown in Figure 3.3. The location of the minimum point shifts
with ring twist and is called dynamic minimum point, z,. The minimum point when ring is in free state is

called original minimum point, rbn.

f;’,gas = Pi(hui + hh‘) - Pu(huo - ZU) - Pd(hlo + ZO)
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(3.1)
1 1 1 1
My gas = _Epihii + Epihlzi + 'Z—Pu(hlzw - Zg) - Epd(hlzo - Z(%)

(3.2)

Besides we also have to consider the initial radial force which was derived in the previous section.
For the top two rings, this force comes from the rings’ strain energy created after closing them from their
free shape. Once they are closed and assembled inside the cylinder, the rings expands and are pushed
toward the liner. Equation (2.82) provides the expression of that force as reminded below.
© B gue
initialky = Gy ly=0'=05""=0

Y z=0,z'=0z""=0
a=apa’'=0

11 cos?(ay) .,
= _LeElzz J;) (E - Kfs) ——Ri—— (Nm(ky) + Nm(ky)) dT]

sin?(ap)

—LoEly [} (% - xfs) T (Nm(ky) + N,’,’l(ky)) dn
(2.82)

Finally, we have to consider the contact force between the liner and the ring. This force includes
two different contact models. One of them is the dry contact force which is computed using the
Greenwoods-Tripp model and the other one is hydrodynamic pressure which can be calculated using the
correlations determined by Chen, Y. Liu and Li etc [35] [36]. For the hydrodynamic lubrication model we

also differentiate between the fully flooded the partially flooded conditions.

3.1.1. Ring-liner dry-contact

The radial reference position is such the ring is in contact with the non-distorted cylinder. For this
configuration, the distance between the centroid of the ring cross section and the nominal bore is y.. The
ring’s profile is considered as parabolic and the running surface of the ring is estimated as barrel shape

with the following expression:
Vparrel = Qo + a1(z —rbn) + a,)(z — rbn)?

(3.3)
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Figure 3.4 — Ring profile

The ring-liner minimum point is defined as the point on the ring running surface which is the
closest to the liner. When the ring is in free state with no twist, the axial location of the minimum point is
rbn. The barrel drop of the ring profile has a magnitude of the order of 100 um. The radial position of

ring’s running surface point using the reference introduced above is y = y. — Yparrei-

Ring twist will move its running surface to a new position. Since the ring twist around is centroid

is characterize by @,, the new position after the rotation is determined by the following equation:

[y’] _ [cos(ar) —sin(ar)] [y]
z' z

sin(a,) cos(a,)

(3.4)

h(z)

b PR

------------------

Figure 3.5 — Ring-liner relative position
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As shown in Figure 3.5, we note the ring’s radial displacement relative to its reference position by
v, and the radial displacement of the cylinder from its nominal position due to bore distortion by y,. The

local clearance between the ring and liner is therefore given by:
hz)=yp =Y +Ye =Y =Yp— Yr + Ybarres + &2
(3.5)

The asperity contact used in this thesis, for the ring-liner contact as well as the ring-groove one,
is derived from Greenwood and Tripp work on rough surfaces contact [37]. More precisely we will use the

simplified formulation derived by Hu [38].

h
0 ~>0
Fe = mZ h
Pk<ﬂ——) —<Q
a g
(3.6)

P. is the asperity contact pressure, h is the local ring-liner clearance (ring-groove clearance when
used in section 3.1.2) and o the standard deviation of the liner roughness (groove flank roughness when
used in section 3.1.2). Q is the threshold that determines the clearance under which the asperity contact
is generated. A typical value for this threshold is 4. The correlation constant P, depends on the properties

of the ring and the liner material (groove flank materials when used in section 3.1.2).

b 2KA
KT w2 L1= v2
E, E;
(3.7)

E;, E,, v, and v,. are the Young’s modulus and Poisson ratio of the liner (of the groove flanks when

used in section 3.1.2) and the ring respectively. K, A and z are universal constants determined by Hu [38].
K =1198x107% A = 44068 x 10™° and z = 6.804
(3.8)

Finally, we obtain the force and moment per unit length corresponding to the ring-liner dry
contact by integrating the local pressure and the corresponding local moment along the ring-liner contact

region CR that satisfies the dry contact force existence and by substituting the ring-liner clearance in (3.6).
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The axial component of the force contact is obtained using a proportional relation with the radial one. A

typical value for the friction coefficient f, is around 0.1.

-+ +a,z"\*
ful zf _P, <Q__Yb Yr T Ybarrel r > dz'
CR Op

(3.9)
fz,cL = Sign(v)fcch

(3.10)

. Vb = Yr + Ybarret + @r2'\’ i
mey, = sign(V) foferye + [ Py (Q - : aarre - ) ar (Ve — Ybarrer) +2'1dz
CR »

(3.11)

V represents the ring sliding speed. sign(V) = 1is V is positive and —1 if it is negative. The
negative sign in f,; is conform to the coordinate system adopted since the liner contact force acts on the

ring inwards.

3.1.2. Hydrodynamic lubrication models

The piston-ring sliding generates hydrodynamic pressure within the oil film covering the liner. This
pressure can be estimated based on Reynolds equation. Classic lubrication models estimate the
hydrodynamic pressure without considering the surface roughness, although this assumption may give
biased estimations. The top two rings have profiles which could help generate hydrodynamic pressure.
However, their oil supply is mostly determined by the oil control ring. When the supplied oil has a
thickness to the level of the surface roughness, we expect the oil film thickness between the top two rings
and the liner to also be at the same level. Therefore, our model should consider the roughness geometry

effect since it is a significant factor in determining the hydrodynamic pressure generated.

Different mechanisms determine the oil supply to the top two rings. The oil film thickness on the
liner in most of the areas traveled by the top two rings is controlled by the oil control ring. In this case,
the oil supply is partially flooded and the deterministic correlations of the top two rings can be used to
determine the hydrodynamic pressure and the shear stress (Section 3.1.2.2). However, bridging can
increase the amount of oil by bringing it from the piston lands to the liner. Based on the timing and the

location of the bridging, this accumulated amount of oil may counter the top two rings and interact with
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them. This situation corresponds to the fully flooded case and the correlations presented in Section 3.1.2.1
can be used to evaluate the hydrodynamic pressure and shear stress between the top two rings and the

liner.

3.1.2.1. Partially flooded case

For the partially flooded boundary conditions, we use the deterministic model that gives the
hydrodynamic pressure between the top two rings and the liner and developed by Chen [35]. Surface
roughness as well as ring profile are taken into consideration in this model. It uses the oil film thickness
fed into the ring. Chen has also developed a correlation relating the hydrodynamic pressure, the minimum
clearance between the corresponding ring and the liner and the OCR ring-liner clearance. The shear stress

related to the hydrodynamic pressure is also given below.

p _ hocr “ uv p hprof ~Hocr
hydro — (#V)O (ap 0,0CR)

hprof Op
(3.12)
K
. :FO(HV) hocr !
hydro hprof hprof
(3.13)

Py ocr and Kocg are coefficients from the OCR deterministic correlation [39], ¢ and V represent
oil dynamic viscosity and ring sliding speed respectively. (uV), corresponds to the reference value of uV

used in the simulation. hgcp is the OCR-liner clearance and hy,,.,f is the minimum clearance between the

K
. . - . . . h P
top two rings and liner. The filling effect is taken into account via the term (lloi) . Since the rate of
prof

filling effect varies depending on the oil supply, K,, and K is not a constant and we correlate it using first

order approximation as a linear function of % The ring profile effect is modeled by the term a,,. This
14

term is constant for a given liner finish and a ring profile. F is a friction coefficient.
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Figure 3.6 — Ring clearances for partially flooded case

In this case, the radial and axial forces as well as the moment per unit length to be used in the
finite element curved beam model for the external force are given by the following equations, where r;,

is the ring width in the axial direction.

fr,hydro = _Phydrorw
(3.14)
ﬁz,hydra = —ThydroTw
(3.15)
Mpydro = _fr.hydrozo + fz,hydrayc = Phydrorwzo — Thydro™wYc
(3.16)

The negative signs are conform to the coordinate system adopted and z, here refers to the
minimum ring-liner clearance point axial location considering ring’s profile and its twist (As represented

in Figure 3.5).

3.1.2.2. Fully flooded case

Oil supply to the top two rings does not always come solely from the oil film left by the oil control
ring. In some cases, around the top or bottom dead centers of the liner, bridging may occur and this brings
additional amount of oil from the piston to the liner. This extra oil bypasses the oil control ring and
encounters directly the top two rings. Therefore, the boundary condition of the top two rings changes to
fully flooded. Bridging brings an additional amount of oil with a thickness of the order of 10 um which

exceeds the correlating range of the partially flooded condition. Besides, the large oil film thickness
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implies that the surface roughness does not have significant effect anymore. Therefore, we can determine

the hydrodynamic force using Reynolds equation for a given ring profile and a smooth liner.

=
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h = hy + ax?
Figure 3.7 — Ring and liner geometry

Oil supply is sufficient in this case at the leading edge x; which is an input to our model. The
trailing edge which corresponds to the end of the wetting area is referenced as x,. At that point we apply
the boundary condition g—z lx, = 0. x, depends on the leading edge length x; and the ring-liner minimum

clearance hy. The ambient pressure is the atmospheric one. The boundary gas pressure effect is not
included here since we already considered it in (3.1) and (3.2). We also assume that oil squeezing effect

is negligible and thus we can used the steady state Reynolds equation which can be written as:

dP  6uU
o~ he)

(3.17)
where we used the boundary condition Z_Z |z, = 0.

2

Applying ambient pressure boundary condition, we obtain:

—dx = ——(h—h(xy))dx =0

*2 dP fxz 6ul
—x, dX

(3.18)

This gives us the following relation relating x,and x;:
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[
- p)
h(xz) = le Zx

—X1 ﬁ

(3.19)

The radial hydrodynamic force per unit length in this case is equal to f; hyaro = fx; P dx. Doing
’ A1

an integration by part we obtain:

*2 dP X2 6ul
frinyaro = f_hxadx =J_ xF(h—h(xz)) dx

(3.20)

Solving (3.19) and (3.20) numerically with h = hy + ax?, Li has developed a correlation that gives

an explicit expression of f;. ,4r0 as a function the ring-liner minimum clearance h, and the leading edge

length x,.

10g1o(ax12/h0)+d> ’

12#[/ 1 + tanh ( e
fr,hydro = ahy ¢ 2

(3.21)
a is the ring profile shape factor that appears in the expression h = hy + ax? for the ring profile

and b, ¢, d and e are universal constants.
Considering oil as a Newtonian fluid, we determine the corresponding shear stress and the

moment per unit length to be included in our finite element curved beam model.

fenyaro = f U = Jaretan | | Sx, | +arctan| |2
z,hydro — A X = \/E(; arctan hO X arctan ho Xq

(3.22)

Mhydro = —fr,hydrozo + fz,hydrOYC

(3.23)
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3.2. Ring-groove sub-model

Ring-groove interaction includes the asperity contact force, oil pressure force due to squeezing,
hydrostatic force and gas pressure force. We assume that there is a uniform oil layer on both groove flanks.
This assumption let us obtain a qualitatively accurate estimation of the acting force from oil squeezing

effect.

3.2.1. Ring-groove geometry

Due to piston tilting, the piston groove moves axially and is also tilted as shown in Figure 3.8. Since
the piston tilt angle f,, is small (~0.1°), we can use small displacement assumption and approximate the
tilted angle of the groove and its axial displacement by first order interpolations which results in linear

form of B,.

Pin axis o ; Titled groove position ;
8, B®) -
\ o
Zg |
Anti-thrust 8 P Thrust side
side i

Figure 3.8 — Groove displacement within a tilted piston

The rotation of the groove located at the polar angle 8 can be approximated by the following

expression, where 8 = 0 is set at the thrust side.

B = cos(6)p,

(3.24)
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Always using the small displacement assumption, the groove axial displacement can be calculated

as follows:
zg = (Rcos(8) — of f)B,
(3.25)

of f represents the piston offset (it is positive when the pin axis is moved towards the thrust side)

and R is the ring radius. Our model also considers the thermal deformation of the piston groove.

Figure 3.9 — Piston groove thermal deformation

The axial displacements of the upper and lower groove flanks due to thermal distortion are zg,,
and z,,; respectively. They are measured at the radial location of the ring cross section centroid C. B4, and

Bg1 are the groove tilt angles due to thermal distortion.

The clearances between the ring and the groove flanks at the radial location y is calculated by
considering ring displacement, piston tilt and piston thermal distortion. The reference point is the radial
location of the cross section centroid C. h is the axial clearance between the ring and the groove flank.

The ring-groove upper flank clearance is calculated as follows:

h
hgu(y) = '?g+zg +Zgu_zr+y(ﬂ+ﬁgu_ar)
(3.26)

The ring-groove lower flank clearance is determined by the following expression:
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h
hgl()’) =?g_zg — Zg +Zr+}’(ar_B_ﬁgl)

(3.27)
3.2.2. Ring-groove dry contact
As for the ring-liner interaction, the ring-groove dry contact is modeled using the simplified

formulation of the Greenwood and Tripp pressure contact formula (3.6) by integrating it over the contact

area as shown in Figure 3.10.

CG Y

v

I yl Ll yZ PI

Figure 3.10 — Ring-groove (lower flank) contact area

By noting the ring-groove upper flank clearance at the centroid hg,,, and using the equation

(3.26), we derive the following expression for hg,; and we express hg,, () at any radial location y using

-—

hg
hguo——2~+zgu +z4— 2z

(3.28)
hgu(J’) = hguo + y(B + Bgu — @r)
(3.29)

Using this formula for the local clearance in equation (3.6) and integrating it over the ring-groove
upper flank contact area, we obtain the following expressions for the axial contact force and moment per
unit length associated with this contact interaction. In that expression and for the correlation constant Py,
we consider the surface roughness standard deviation, the Yong’s modulus and Poisson ration

corresponding to the groove flahks. Considering the ring upper flank angle ag, as shown in Figure 3.11,
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we also obtain the radial component of the ring-groove dry force where we assumed small magnitude for

gy-

A gu

r—lT-lllllIIIlllIlllIllIllll.llllll'lll]llllll
4 ,;
my |

.
¢,

agl

Figure 3.11 — Groove upper and lower flank angles

fyz _Pk [.Q_ _ h_guﬂ + Y(B +Bgu - ar)]zdy

Og

f c,gu
Vi

_ Pyay [(Q B _h_2)2+1 B (Q _ﬁ)zﬂ]
(z + 1)(ar —~ ' — ﬁgu) Jg Ig

(3.30)

frou= _agufc,gu

(3.31)

hgu() +y(ﬁ+ﬁgu_ar) zydy

Yz
Megu = aguhuifc.gu + f —Py [-Q -

Y1 %

g
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= agy hyife gu + Q-—— hguo — h1)(Z + 1) + hgyo — Q
fobleon S 1)(z+2)(ar—ﬁ—ﬁgu)2{ ) (o =h)EH D fo =05

RA\ZH
— (Q - a_2> [(hguo —h2)(z + 1) + hgyo — Qog]}
g

(3.32)

y, is the left end of the contact area whose value may be negative if it is at the left side of the
centroid C and y, is the right end of the contact area and its value may also be negative if it is at the left
side of the centroid C. h; and h, are the local clearances at those two points. The negative sign inside the
integrals in (3.30) and (3.32) implies that the direction of the force is downward. Besides, the negative
sign in the radial force, so that the result is positive since f; 4, is negative, is coherent with the coordinate

system chosen since that force is acting outwards and thus must be positive.

Similarly, we obtain the following expressions for the forces and the moment per unit length

acting on the ring from the groove lower flank.

h.g
hgw? - Zgl - Zg + z,

(3.33)

hgl(y) = hglO +y(a,— B — ﬂgl)

(3.34)
f —fsz ﬂ_hglo'*'}’(“r_ﬁ—ﬁgu)zd
cgl — . K Ug y
_ Pyay (Q_Q)Z-H ~ (Q B ﬂ>z+1]
(z+ 1)(“1’ -p- iggu) Og Og
(3.35)

fr,gu = aglfc,gl

(3.36)

hgio + -B- ’
_ glo )’(ar B Bgu) yd

y
Og

Y2
Megu = aglhlifc,gl + f Py [Q
Y1
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P h z+1
= agihiifegq + (z+ Iz + 2)‘::9 “ 5 g )z [(Q = 0'_;) [(hgio — h2)(z + 1) + hgio — Q]
T gu

hl z+1
- (n - U—g) [(hgio — h1)(z + 1) + hygyo — nag]}

(3.37)

3.2.3. Oil squeezing and ring-groove hydrostatic force

No experimental data about the oil film thickness on the groove flanks is available. However, as
suggested by Tian [40], provided it is assumed that the oil film thickness is on the order of a few microns.
The oil flow between the ring and the groove flanks has Reynolds number on the order of one and the
angle between the ring and the groove is on the order of 0.01 rad. Therefore we can apply the Reynolds
equation. Tian also pointed out that the ring’s moving away from the groove starts from a certain point
and then gradually extends to the entire part of the ring. Thus, the possibility of suction or negative

pressure is negligible.

Y1:Ya C

Figure 3.12 — Ring groove lubrication

As shown in Figure 3.12, considering the lower flank first, y; and y, are the two end points of the
ring-lower groove interacting region and y, and y},, are the two end points where ring touches the oil film
on the groove lower flank. The squeezing pressure in the oil film can be determined using Reynolds

equation.

1 i(h3 aPail) _0oh
12uqy Ay ay at
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(3.38)

P,;; is the pressure in the oil film due to squeezing and y,; is the oil dynamic viscosity. In the
. - . . . . an .
general case, since the possibility of suction or negative pressure is negligible, the term P set equal to

zero when its value is greater than zero. In our study since we consider the static case this derivative is
taken equal to zero. We keep this term in the following equations just for the sake of generalities toward

dynamic studies. Integrating (3.38) gives the following equation.

0Py 1

% - (1200 ) +¢1)

(3.39)

With

Yoh
J0) = | Srdy

(3.40)

b
Pg—Pi—12p0y |, ]—g) dy
bd
I 7

(3.41)

Integrating (3.39) by parts gives us the squeezing force and the corresponding moment per unit

length for the ring groove

bp dy = Py( ) b( )aP"”d
foil,gl:f 0itdy = Pa(Yp — Va ~j Y —Ya y
a a dy

Y~y (¥) by —y,
= Py(Yp — Ya) — 12001 _h‘;_dy _ le - 2 gy
a a
(3.42)
b 2 2 b
Pa(yb —vi) 1 OP,;,
Moitgt = f Poilyd)’ = ——Z_a) _ EI ()’ _ ya)z a;t dy
a a

_Pab =y g, fy 0 -¥®) o« f"yz — v
- ol

2 Yoo T

h3 2 dy

a
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(3.43)

The ring-groove interacting area is not always the same as the ring-oil contact area. Thus, gas will
fill in the space between the ring and the oil film generating hydrostatic pressure force. The corresponding

force and moment per unit length are given below:

fhydro—static,gl = o —YOP + (2 — ¥p)Py

(3.44)

1
Mpydaro-static,gl = 2 [(y(% - Y12)Pi + (}’22 - yg)Pd]
(3.45)

Considering groove lower flank angles, we obtain the following components corresponding to the
axial force and the additional moment term per unit length.
fzoil,gl = (foil,gl + fhydro—static,gl)agl

(3.46)

Myoit gl = (foil,gl + fhydro—static,gl)hliagl
(3.47)

Similarly, we obtain the following expressions for the forces and moment per unit length acting
on the ring from the groove upper flank. y; and y, are the two end points of the ring-upper groove
interacting region and y, and y,, are the two end points where ring touches the oil film on the groove

upper flank. The expression of J(y) is still the same.

b
Py — P — 12p01 [, ],(l—g)d)’
1 =
bdy
R
(3.48)
b b aPoil
foil,gu = _f Poidy = =PB,(Yb — Ya) +f O =) 3 dy
a a y

y(y—Ya)](J’)dy_l_leby_yady

=—P,(yp —Ya) + 12.uoilf h3 h3

a a
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(3.49)

b P(yb-vd) 1 aP,
b — L
Moit,gu = — L Pouydy = ———— i) , +3 ] & — Ya)? ;l y
p y — b 2 —
(yb2 &y on f O Z;)J(y) dy+ & f ya oy,

(3.50)

fhydro—static,gu ==a —Yy)P - ()’2 - yb)Pu

(3.51)

Mpydro-static,gu = —% (02 —yDP + (v3 — yi)P.]
(3.52)
froivgu = —(foitgu + frydro-static,gu)%gu
(3.53)

Myoil,gu = (fozl gu T fhydro static gu)h i%gu

(3.54)

3.2.4. Ring-groove gas pressure force

When the ring-groove clearance is larger than the oil film thickness on the groove, gas will flow
driven by pressure difference. As studied by Tian [40], this gas flow through the ring-groove clearance can
be treated as laminar flow. In reality. Convection and unsteady effects can be significant when the ring is
in transition, especially when it flutters. Since dynamic study and detailed characterization of the gas flow
through the ring-groove clearance is beyond the scope of this work, we limit the description of the gas

flow to be qualitatively accurate and we rely on an analytical solution to a from a fast engineering model.
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Figure 3.13 — Ring groove gas flow

The groove-ring channel is represented in Figure 3.13. We approximate the gas flow through the
ring-groove clearance as a fully-developed, quasi-steady and locally-parallel flow. Due to the very small

viscosity of gas, we neglect the pumping and squeezing effect due to the ring-groove relative motion.

For Poiseuille flow, the local velocity is given by:

d

1 dP,gs '
u(y,z)-:ﬂ d!;z z(z — h:(y))

(3.55)
h.(y) = h(y) — hoiy
(3.56)

The gas pressure satisfies the following equation using the Reynolds one and the quasi-steady

assumption:

d 2 dPyas) _ 0
dy dy

(3.57)

Integrating this equation with the boundary conditions P(y,) = P; and P(y,) = P, gives the

following relation for the lower groove flank:

dPyas _ Py —P;
dy %3 y2 dy
¢Jy, hg
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(3.58)

The axial force and moment per unit length at each cross section can be expressed as follows:

Y2

Y2
fgaz,gl =f Pgasdy =Py(Vp — Ya) — O -y gas
V1 Y1
(3.59)
Y2 Y
Pa\yp — 172
Mgas,gl = Pgasydy ( ) ) Ef ( ) gas
V1 Y1
(3.60)

Substituting (3.58) into (3.59) and (3.60), we obtain the following forms for the force and moment:

2 v
vz [ h3y1 dy fyzyz Y dy
fgazgt = jyl Fyasdy = PiW + Py fyz dy
V1 hg Y1
(3.61)

¥2 y yl Y2 }’2 y
f Y1 c dy 1 f]ﬁ h3 dy

Y2
=| P,ydy==P -
mgas,gl b, gasy y 2 3’2_‘_11 2 d VZZX
» h3 v h3
(3.62)

Considering groove lower flank angles, we obtain the following components corresponding to the

axial force and the additional moment term per unit length.
fzgas,gl = fgaz,glagl
(3.63)
Mzgas,gl = fgaz,glhliagl
(3.64)

Similarly, we obtain the following expressions for the forces and moment per unit length acting

on the ring from the groove upper flank.
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fyzy—3J’1 dy J-YZ YZ y dy

— Y1 hc _ —C
fgazgu = —Pi yzd_y u J'yz dy
Y1 h_g Y1 E?
(3.65)
2 2 2
Y -V Y2 .VZ - y
I 5 -[yl h3 dy 1 Iyl dy
‘m.gas,gu ) 2 i yzd_y 2 u Vs dy
i h3 » h2
(3.66)
fzgas,gu = _fgaz,guagu
(3.67)

Mzgas,gu = fgaz,guhuiagu
(3.68)

In addition to gas flow the ring-groove channel, gas pressure also exists beyond the groove
wetting region and thus generates force and moment on the ring. Besides, some types of top two rings
present a cut on the back of the ring and this also creates axial force. In the ring-liner sub-model, we
considered only the radial gas force, while in this sub-model it is the éxial one that will be considered. Gas
pressure in the land-liner clearance provides both axial and radial force on the ring. The axial contribution

is included in the expression that we will develop soon.

L

Figure 3.14 — Pressure gas acting on the ring in the axial direction
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As shown in Figure 3.14, the axial force and corresponding moment per unit length generated by

the gas pressure in ring-liner and ring-groove clearance can be calculated as follows:

fzgas = _Pu(yc +ay; — qu) + Pd(Yc +a; — Lfl) = Pi(ay; — ay;)

(3.69)
1 1
ngas = __Pu(yc + qu - aui)(yc + Aui — qu) + _Pd(YC + Lfl - ali)(}’c + ap; — Lfl)
2 2

1
+§Pi(au‘ + ayi)(a; — ayi)
(3.70)

3.3. Thermal moment

In general, during engine operation, the temperature increase of the ring is higher at ring ID than
at ring OD, creating a temperature gradient in the radial direction. This temperature difference tends to
decease the curvature of the ring. Piston rings producing tip contact concentration under thermal stresses
was first studied by Mierbach [41] and his results were used by L. Liu [30]. In that model, the effect of
thermal stresses on ring shape was considered equivalent to the effect that would result from applying a
bending moment on the ring tip in the axial direction. That explains the high contact pressure and thus
the heavy wear that usually occurs around the ring tips. In our study, we compared that modeling to the
introduction of the thermal effect along the whole ring, since the temperature gradient between the ID
and OD exists all around the ring and not only at the tip. That comparison is given in the results part, under
section 3.4.2. To do so, we modified the curvature of the ring appropriately so that we consider the
thermal effect before modeling the ring’s conformability within the piston, which is different from L. Liu

[30] model where he considered the thermal moment as an external force acting only at the ring tips.

As presented in section 2.3, the bending moment along the e,, direction is proportional to the

curvature change in the e,,, direction (2.45).

My, = Ely;(Kyy = Kyyo)

(2.45)
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Therefore we modify the ring’s free shape curvature k,,,, which is an input to our model by
subtracting the term corresponding to the thermal moment effect which gives us the following new ring

curvature to consider:

Lo = Koo = M,
0 — Ryyo
yy E [zz

(3.71)

M, is the thermal moment caused by the non-uniform temperature change in the radial direction.
For a ring with a rectangular cross-section as shown in Figure 3.15, the thermal moment can be expressed

by the following equation:

2

Vi
M, = faya'AT(y)Ebdy
2

(3.72)

AT(y) represents the temperature change at the radial location y compared to the design

temperature at that location. « is the ring thermal expansion coefficient and E the ring Young’s modulus.

oD

D

b

[=]
o 4--—=fecadaa

|

Figure 3.15 — Rectangular ring-cross section dimensions

A linear temperature distribution is assumed along the ring radial direction in our work and the

resultant thermal moment is given by the following relation:

1
M, = EazEbaZ (AT,p — ATpp)

{3.73)

ATy and AT are the temperature changes at the ring ID and OD respectively.
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Figure 3.16 — Ring-cross section dimensions

We have all the necessary equations (3.71) and (3.73) to model the thermal moment effect,
except that these results are for rectangular cross section rings. For more general geometries as the one
presented in Figure 3.16, we still apply the equations (3.71) and (3.73) where we make the approximation

of substituting a and b by the following expressions:
a = arm + max(ali, aui)
(3.74)
b = hy;+ ayi0r + hyi + @;;0rp
(3.75)

All the geometric variables are presented in Figure 3.16. 6,;, and 6,., are the ring lower and upper
flank angles respectively and are assumed to be small enough to apply the first order approximation in

equation (3.75).

3.4. Sample results

We use the conformability model to study the effects of different features. We analyze the effect
of the gap location inside distorted bore in terms of the ring-liner conformability. This will give us an idea
on one of the reasons behind increasing the ring-liner clearance knowing that ring rotation is generally
very limited in working engine conditions. In addition, we compare the results of our modeling of the
thermal moment, where we modify the ring free shape curvature, and the modeling of the thermal effect
by applying a bending moment on the ring tips in the axial direction, which was introduced by Mierbach

[41] and used by L. Liu [30]. Besides, we study the effect of introducing local oil distributions on liner and
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groove flanks and their effect on the ring deformation. Finally, we look at the ring groove conformability
depending on the gas pressure force and the friction one when they have opposite directions. The
magnitude of these two forces determine the equilibrium position of the ring within the groove: either

stable on the lower or upper flank.

3.4.1. Gap location effect inside distorted bore

When the bore experiences thermal and mechanical stresses, it distorts to a non-circular shape
with local minimum and maximum radial distances with its initial nominal center. It is customary to
describe the geometry of a distorted bore with a discrete Fourier series used to interpolate the

deformation of sections of the cylinder perpendicular to the cylinder axis as presented by equation (3.76).

yp(8) = Ay + Z A sin[k(6 + ¢p)]
k=1

(3.76)

yp, represents the radial displacement of the distorted cylinder from the nominal cylinder, k is the
order of distortion and Ay and ¢, are the magnitude and phase of distortion of order k respectively. A
cylinder distortion of order 0 corresponds to a change of radius that is uniform along the cylinder
circumference due to the expansion of the cylinder when the engine block is heated under operation. The
1%t order distortion gives eccentricity to the cylinder (displacement of its axis). The 2™ order quantifies
the ovality of the distorted cylinder. A 3 order distortion has three lobes of deformation equally spaced
around the circumference, the 4™ order has four and so on. For engines with 4 in-line cylinders for instance,
the outside of the block is cooler than the center resulting in the 2™ and 3 order thermal distortions.
When the 4 bolts surrounding the cylinder are tightened to assemble the engine block, it results in
mechanical deformations corresponding 4™ order distortion. Fourier series provides a convenient way of
separating different contributions of the shape of the distorted bore. These distortions can be obtained
from thermal-mechanical finite element simulations of the engine block whose boundary conditions take
into account the fastening of the engine block and the heat contribution from combustion and cooling of
the block. Most sever conditions for bore distortion are obtained for open-deck engines under high load
and high speed conditions. Generally, cylinder deformation occurs at distortion orders between 0 and 4.
Higher order distortions get closer to the liner roughness scale and the limit of precision of the finite

element simulation is reached.
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In our simulation, we model a diesel engine with a nominal bore radius equal to 95.25 mm. We
use a ring with a rectangular cross section of dimensions 4mm x 2 mm and a parabolic profile at the
running face. The ring has a free shape designed to have uniform pressure distribution at a round shape
with a ring tension of 25.4N.The cylinder and ring are chosen in stainless steel. We consider no oil on the
groove flanks and an incoming uniform oil film on the liner with a thickness equal to 5a;, = 1.5 um, where
ay, is the liner surface roughness standard deviation. The oil viscosity as a function of the liner temperature
considered uniform and equal to 150° C is given by our sponsor from Shell. We consider a liner speed
equal to 10 ms ™~ and directed upward with a zero acceleration. Based on the notation used in Figure 3.3
we take P, = 96200 Pa, P; = 96200 Pa and P; = 90670 Pa. We consider bore distortion up to 4™
order: the 0 order amplitude is of order of 100 um, the second one of order of 20 um, the third one of

10 um and the fourth one of 1 um.

Based on the location of the ring gap with respect to the cylinder, the ring liner clearance presents
different profiles. We refer to the angular position for the ring gap within a fix coordinate system with
respect to the cylinder directed from thrust side (0°) to thrust side (360°). Using that coordinate system,
in Figure 3.17 we plot the radial distance of the distorted bore and the two ring tips (the left side
corresponds to the tip that one observes at the left when located at the bore center and directed towards
the ring gap and respectively for the right side) with respect to the nominal non distorted bore radius.
When the gap is located in the vicinity of a cylinder point with a local maximum radial coordinate, the ring
is well conform to the liner as we can see in Figure 3.17 and in Figure 3.18 and 3.19 for a gap location at
the angles 165° and 201° respectively with ring-liner clearances less than 1.5 um and 3 pm respectively.

For the radial plots we use a magnification coefficient of 1500 for the bore distortion and ring deformation.
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Figure 3.17 — Ring tips radial coordinates for different ring gap locations
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Figure 3.18 — Ring and bore in radial coordinate for a gap located at 165°
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Figure 3.19 — Ring and bore in radial coordinate for a gap located at 201°

On the other hand, when the ring gap is located in the vicinity of a cylinder point with a local
minimum radial coordinate, the ring presents a high clearance with the cylinder since its stiffness does
not let it conform well with the local curvature of the cylinder as we can see in Figure 17 and in Figure
3.20, 3.21 and 3.22 for a gap location at the angles 90°, 98° and 118° respectively with maximum ring-
liner clearances around 20 um. For the radial plots we use a magnification coefficient of 1500 for the bore
distortion and ring deformation. These clearances compared to the oil film thickness considered of 1.5 um
show very limited oil control performances and a major reason of oil consumption increase. Since ring
rotation along the circumferential direction is limited, its insertion within the cylinder should be done
carefully so that its gap is in the vicinity of a cylinder point with a local maximum radial coordinate or even
with a global maximum since bore distortion can be estimated in advance, within a certain error, based

on its thermal and mechanical deformations causing these distortions.

89




Radial force distribution

— — — Not distorted Bore
—— Magnified distorted Bore 150;m

Gap location:90 deg 270

Figure 3.20 — Ring and bore in radial coordinate for a gap located at 90°
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Figure 3.21 — Ring and bore in radial coordinate for a gap located at 98°
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Figure 3.22 — Ring and bore in radial coordinate for a gap located at 118°

For the rest of this section 3, all graphs presenting variables as a function of the circumferential
direction are given with respect to a coordinate system defined based on the ring: angles 0° and 360°
correspond to the ring tips and 180° corresponds to the ring back. The ring gap static position also affects
the radial force distribution. When the ring is not well conform to the liner, we have larger regions of no-
contact. Therefore in these regions, the ring running face is submitted to the gas pressure (the highest
among the upper and lower one) which is the same as the gas pressure in the inner groove region which
is noted by P;. Therefore the overall radial force in these regions is zero. However the average radial force
along the ring circumference is almost the same for all the cases corresponding to different ring gap
locations and is around the theoretical constant pressure needed to close the ring gap. Therefore larger
no-contact regions mean higher radial force peaks to have the same average value. Thus, for gap location
where the ring-liner clearance is high, apart from the oil control issues mentioned previously, we have
high local contact forces and thus wear problems. This is confirmed by Figures 3.23 and 3.24 where we
plotted the radial force and local stress distributions (at upper/lower ID/OD points for each cross section)
respectively for the static position obtained when the ring gap is located at 98° (higher clearance and thus
higher radial force and higher local stresses) and 201° (lower clearance and thus lower radial force and

lower local stresses).
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Figure 3.24 — Stress distribution comparison for a gap located at 98° and 201°
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In this section we compare the results obtained with our modeling of the thermal moment
introduced in section 3.3, where we modify the free shape curvature as expressed by equation (3.71), and

the modeling used by L. Liu [30] where the thermal moment effect is only introduced at the ring tips.

In our simulation, we model the same diesel engine considered in section 3.4.1 with the exact
same conditions. The ring gap location is taken equal to 192° so that the ring liner clearance is less than
the oil film thickness (1.5 um) along almost the whole ring circumference, which guarantees the ring liner
contact and creates the radial temperature gradient. We present the results obtained with the two models
for a uniform radial ring temperature gradient equal to 15°C and compare them to the results obtained

without radial temperature gradient.

Figure 3.25 shows the ring liner clearance obtained with two models. Close to the ring tips the
two models give the same results which proofs the equivalence between modifying the ring free shape
curvature based on the thermal moment and introducing it as an external load. However the old model
only consider the thermal moment effect close to the ring tips. This is a good approximation provided that
the ring is well conform to the liner along its whole circumferential direction apart from the tips regions.
However when the ring liner clearance is high enough at any point along the ring circumference, the old
model is likely to give biased results as we can see in Figure 3.25 around the local maximum clearance
reached between angles 180° and 270°. In fact the radial temperature gradient exists all around the ring
especially when its clearance with the liner is small enough to have lubrication or dry contact with the
liner, which is the case here. Thus, thermal moment effect has to be considered along the whole
circumference direction and in particular in the region around the local maximum clearance occurring
between 180° and 270°. Indeed the old model gives exactly the same solution obtained without
temperature gradient while our model takes into account the thermal bending moment and gives a lower
clearance with the liner. It is true that the difference between the two models in this case is small enough
and could be neglected but in some extreme cases where we have high bore distortions and large ring-
liner clearances in points far from the ring tips, the thermal moment effect can be significant in those
regions and the results obtained with the old model will not be accurate. Besides, computationally our
model is slightly more advantageous since we do not have to evaluate the external thermal load at each
iteration of the Newton-Raphson algorithm but we just change the free shape curvature and the initial

loads accordingly before iterating.
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Figure 3.25 — Ring-liner clearance with and without radial temperature gradient

We also verify the results obtained for the radial force distribution given in Figure 3.26. As
expected, since the thermal moment results in a ring expansion decreasing the ring liner clearance, we
obtain higher radial force in regions where the clearance has been affected the most which corresponds
to points close to the ring tips. Figure 3.27 gives the stress distributions obtained at the upper/lower ID/OD
points of each cross section with the temperature gradient using our new model and without the
temperature gradient and as for the radial force distribution we verify that we have higher stresses (in

absolute values) when we have a non-zero temperature gradient. The difference between the two

stresses correspond to the thermal stress.
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Figure 3.26 — Radial force distribution with and without radial temperature gradient
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Figure 3.27 — Stress distributions with and without radial temperature gradient

In the rest of this section we keep using the same parameters mentioned previously except for
the ring free shape that is no longer designed to have uniform pressure distribution at a round shape with
a ring tension of 25.4N but instead we use the TC design developed by Mahle and studied by Tomanik

[47]. The corresponding free shape and curvature are given in Figure 3.28.
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Figure 3.28 — TC ring free shape and curvature
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As we can see this ring is designed to have the highest curvature at the tips and a decreasing radial
coordinate when we are close to them. This is intended to make the ring-clearance higher at the tips and
thus decrease the wear effect which is maximum in general at these location. Besides, when experiencing
radial temperature gradient, this design is intended to give the ring a shape close to the circular one once
inserted in the cylinder. Using the same distorted bore as in Section 3.4.1 and the previous part of this
section, we verify the performance of this design by looking at the ring-liner clearance and radial force for
different temperature gradients. We also simulate the same ring with the same parameters but without
bore distortion. For the distorted bore the ring gap is located at the angle 98° as we can see in Figure 3.32
where the bore distortion and ring deformation are magnified with a coefficient of 3000. This coefficient
has also been used for the rest of radial plots given in this section. For that ring tip location the clearances,
and thus the forces generated, at the two ring tips are almost the same. Figure 3.29 show the radial force
at the ring tip for different radial temperature gradient for the two simulations. As we can see, the TC ring
does well prevent high force generation at the ring tips when it is inside the distorted bore up to high
temperature gradients, around 50°C since its gap is well located in the vicinity of a cylinder point with a
local minimum radial coordinate (here it is a global one) making the clearance at the gap even higher than
what is obtained thanks to the ring design as explained in Section 3.4.1. However, then the ring is inserted
in a non-distorted bore, the force generation at the tips increased significantly even for temperature
gradients of the order of 8°C. This shows that the TC design is well suited to prevent high force generation
at the tips, provided it is coupled with bore distortion effects as we can see from Figures 3.30 and 3.31

showing the radial plots of the ring without temperature gradient for the two cases.

’é‘ 20000

> * Non-distorted bore|

< o Distorted bore

Q

= 15000 |

m x

=

=

m x

£ 10000 |

-aa x

Q

9 x

S 5000( . 0

E x

h ] x

(0] x

e Qe eaoe & S = : -
0 20 40 60 80

Radial temperature gradient (Celsius)
Figure 3.29 — Temperature gradient influence on radial force at the ring tip for the TC design
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Figure 3.31 — Radial plot of the TC ring within distorted bore and without temperature gradient
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Figure 3.32 — Radial plot of the ring within distorted bore and with a temperature gradient equal to 30°C

Nevertheless, we should keep in mind that we are using relatively large cylinder and ring making
the thermal effect more significant than what we should obtain for smaller engines. Figure 3.33 gives the
ring-liner clearance at the tip for the same temperature gradients considered in Figure 3.29 for the two
simulations. We can see that the clearance decreases less fast within the distorted bore which is coherent

with the observations made for the force generation.
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Figure 3.33 — Temperature gradient influence on ring-liner clearance at the tip for the TC design
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For the non-distorted bore, the clearance without temperature gradient is already small
compared to the length scale of the relative ring-liner clearance generating the contact force. Thus even
for small temperature gradient, the force generated at the tips is already high. Figure 3.30 and 3.34 give
the radial plot of the ring without bore distortion for a zero temperature gradient and a gradient of 6°C
respectively. In Figure 3.34, we see that the tip orientation has already changed unlike the behavior

observed in Figure 3.32 for a higher temperature gradient (30°C) but with a distorted bore.
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—Bore
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Figure 3.34 — Radial plot of the TC ring within non-distorted bore and with a temperature gradient equal

to 6°C

Figure 3.35 gives the ring-liner clearance and radial force along the ring circumference for a non-
distorted bore with temperature gradients equal to 0°C, 4°C and 6°C, while Figure 3.36 gives the same
plots for a distorted bore with temperature gradients equal to 0°C, 30°C and 6°C. We observe that the
non-contact region only exists for the distorted bore case and shrinks when the radial temperature
gradient increases till vanishing for a gradient around 50°C, while this non-contact region is inexistent for
the non-distorted bore case. The TC design prevents well high force generation at the tips when submitted
to radial temperature gradients provided the gap is located in the vicinity of a cylinder point with a local
minimum radial coordinate. Otherwise the force generation is likely to start even with relatively low

temperature gradient, especially for large piston rings.
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Figure 3.35 — Ring-liner clearance and radial force for the TC ring within non-distorted bore for different

temperature gradients
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Figure 3.36 — Ring-liner clearance and radial force for the TC ring within distorted bore for different

temperature gradients

3.4.3. Local oil distribution

In this section we study the effect of variable oil distributions on the liner and/or groove flanks
with local peaks. As we will see, the effect of these distributions varies depending on the location of the

peaks with respect to the ring gap position.

In the simulations run for this section 3.4.3, we model a diesel engine with a nominal bore radius
equal to 95.25 mm. We use a ring with a rectangular cross section of dimensions 4mm x 2 mm and a

parabolic profile at the running face. The ring has a free shape designed to have uniform pressure
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distribution at a round shape with a ring tension of 25.4N. The cylinder and ring are chosen in stainless
steel. We consider a liner and groove surface roughness standard deviations equal to g, = 0.3 um. The
oil viscosity as a function of the liner temperature considered uniform and equal to 150° C is given by our
sponsor from Shell. We consider a liner speed equal to 10 ms~! and directed upward with a zero
acceleration. Based on the notation used in Figure 3.3 we take P, = 1.1 Bar, P; = 1.1 Bar and P; =

1 Bar. We consider a circular bore with no distortions.

3.4.3.1. Local oil distribution on liner

We compare the ring-liner clearance and radial force for different variable oil distributions on the
liner with a uniform one of a thickness equal to 0.54 ym. The variable oil distributions are Gaussian
functions with a plateau value equal to 0.54 ym and a maximum value of 0.84 um as shown in Figure 3.37.
The difference between these oil distributions is the location of the peak. As mentioned earlier the angle

0° corresponds to the ring gap location.
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Figure 3.37 — Variable oil distributions on the liner
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180° (right)

As we can see from Figure 3.38, the increase in the ring-liner clearance due to the variable oil
distribution is independent of the location of the oil distribution peak. However the radial force
distribution does depend on that location. If the peak is not at the ring gap, we have a certain fluctuation
in the force distribution around the peak as we can see in the center and right graphs of Figure 3.39 and
the force is not changed around the ring tips compared to the uniform oil film thickness case. For these
two cases, we obtain a higher force at the exact location of the oil peak since we have a higher
hydrodynamic force due to the larger oil film thickness but then we reach lower values around it since the
average force along the circumferential direction has to be the same as in the uniform ail film thickness
case. When the oil peak is located at the ring tips, the ring-liner clearance changes from reaching a
minimum value at the tips to a maximum one as we can see in the left graph of Figure 3.38. For the uniform
oil film thickness, the radial force increase close to the tips is governed by the dry contact one. Therefore,
when we have an oil thickness peak at the ring gap, the radial force will become more dominated by the
hydrodynamic one than by the dry contact one. Given the oil film thickness, the final radial force presents
a lower value at the ring tips when it is dominated by the hydrodynamic force. As a conclusion, the oil
distribution with a peak at the ring gap gives a smoother radial force distribution and prevents reaching
high values at the ring tips. This is advantageous for the wear effect that is usually more significant at the
tips than in other regions along the ring circumference. However, since the ring gap is non-zero, this peak

oil distribution will increase oil consumption.

The curved beam model is useful in the sense that it relates the global and local behavior of the
ring while depending on different length scales. As we have seen in section 3.4.1, our static model
determines the ring structural response under the effect of bore distortion, which represents the global
behavior. The local behavior is determined by the response of the ring to different local contact boundary

conditions such as bridging and lube-fuel interaction. In this part, we will focus on the ring response to
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bore distortion and local oil accumulation on the liner which affects the global and local behavior of the

ring respectively.

In the simulations run for the rest of this section 3.4.3.1, we model an engine with a nominal bore
radius equal to 82.51 mm. We use a ring with a rectangular cross section of dimensions 3 mm x 1.5 mm
and a parabolic profile at the running face. The cylinder and ring are chosen in stainless steel. We consider
a liner surface roughness standard deviation equal to a,, = 0.07 um. The oil viscosity as a function of the
liner temperature considered uniform and equal to 150° C is given by our sponsor from Shell. Based on
the notation used in Figure 3.3 we take P, = 1.1 Bar, P; = 1.1 Bar and P; = 1 Bar. We consider bore
distortions up to 4*" order with a 0" order distortion of magnitude equal to 80 um, a 2" order one equal
to 10 um and a 4" one equal to 2 um. Local oil accumulation on the liner can happen around the bottom
dead center during the intake and expansion strokes and around the top dead center during the
compression and exhaust strokes and may result in bridging. Inertial and viscous forces bring oil from the
piston to the liner causing this local oil accumulation and its range varies from sub-millimeters to tens of

millimeters [42] [43] [44] [45].

In our case we consider a local oil accumulation centered at 90° away from the thrust side which
coincides with the ring gap and with a width of 20°. Outside of this accumulation region, oil thickness if

fixed to the value of: 20, = 0.14 um as plotted in Figure 3.40.
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Figure 3.40 — Local oil accumulation on the liner for partially flooded case

We vary the oil film thicknesses at the peak and change the liner velocity correspondingly so that

to have the same local Reynolds number within the oil accumulation region. Therefore we can determine
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the change in the liner force and in the ring-liner clearance depending on the oil film thickness at the peak.
We plot the difference between the maximum and minimum of the force distribution within the region
where we have the oil accumulation and the maximum ring liner clearance obtained within that region as
function of the difference between the oil film thickness in the accumulation region and the rest of the
liner. The difference between the force values is divided by the average of the ring-liner force which is
constant here since the gas pressure in the inner region is the same in all the simulation and thus this
average value only depends on the ring stiffness, its free shape and the liner surface roughness standard
deviation which are all maintained the same. Besides the difference between the oil film thicknesses and
the maximum ring-liner clearance are also made non dimension by dividing them with respect to the liner
surface roughness standard deviations. Figure 3.41 and 3.42 show the difference considered for the liner
force that is introduced by the local oil accumulation corresponding to Figure 3.40 and the ring liner
clearance obtained respectively. These results represent a partially flooded case. The tradeoff is first
arbitrary and defined as a ratio between the oil film thickness and the liner surface roughness standard
deviation above which we reach the fully flooded boundary condition. In our simulations we fixed at 10
first. Figure 3.43 shows the liner force distribution and the ring liner clearance obtained for fully flooded
boundary condition within the oil accumulation region corresponding to Figure 3.44. In this case, the
hydrodynamic pressure generation ability of the ring increases compared to the partially flooded case and
thus results in a higher ring-liner clearance at the oil peak location. The region where we have the increase
in the ring-liner clearance around 90° corresponds to the bridging area. As for the partially flooded case,
the discontinuous oil supply generates a discontinuous liner force distribution. Since the dry contact force
and hydrodynamic one are very sensitive to the ring-liner clearance at small oil film thickness, we obtain
large spikes around the boundary of the bridging area. Because of the stiffness, the ring neutral axis
cannot change rapidly. While the ring is able to conform to the bore when we have partially flooded
boundary condition, around the bridging area we obtain a narrow range where the ring loses contact with
the liner in the fully flooded case. The effect of bridging and local oil accumulation in general stays locally
and does not affect significantly the ring neutral axis deformation or the liner force distribution outside

the oil accumulation region.
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Figures 3.45 and 3.46 shows the results obtained for the different oil film thicknesses at the peak.

We distinguish three regions. The first one is for small peaks where 3—’1 < 1 where Ah is the oil film
P

thickness difference between the peak and the rest of the oil film. In this region the resulting force

distribution does not depend considerably on the oil film thickness difference. The effect of oil

: . Ah . : :
accumulation only emerges starting from == = 1. We observe that the difference introduced for the liner
p

force depends linearly on the oil film thickness difference provided ? is not big enough. Beyond a certain
r

Ah . . . .
value (a—) we start losing the linear dependency. At the same time, beyond that same value we obtain
Pl

force distributions those maximum exceed those obtained in the fully flooded case. Therefore we

conclude that our tradeoff to distinguish the partially and fully flooded boundary conditions was over

estimated. The more appropriate tradeoff should be hm“’;ﬂ = 3 and since hy,;, = 20, we obtain
P

Rmax = 5 instead of the 10 chosen arbitrarily at the beginning. Beyond that critical value ofi—h we reach
P

the fully flooded boundary condition and the effect of the oil accumulation is independent of the oil film

thickness as we can see in Figure 3.45 for? = 8and 10.
P
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In the same manner as for the liner force difference, we also obtain a comparable behavior for

. N . . Ah . .
the maximum ring-liner clearance at the oil peak location. For —< 1, the resulting maximum clearance
P

. Ah . . .
does not vary much with Ah. Fora— = 1, we obtain again a linear dependence.
P

When characterizing the effect of oil accumulation we tried to use non-dimensional variables. The
force difference one takes into account the ring tension. The maximum clearance and the oil film thickness
difference consider the liner surface roughness standard deviation. The results obtained still depend on
the ring stiffness (cross section and Young’s modulus) as well as on its free shape. It is also affected by the
bore diameter, its distortions and the gas pressure considered. Further analyses are needed if one wants

to generalize the effect of these variables on the results that we obtained.

3.4.3.2. Local oil distribution on groove flanks

In section we look at the effect of having a variable oil film thickness on the lower groove flank.
Given the pressure values which are coherent with those encountered in most of working engine
conditions, the ring is well conform to the groove lower flank. Therefore we study the effect of introducing
an oil distribution within the groove clearance with that flank. We run simulations for different oil
distributions on the liner: uniform one with a thickness equal to 0.54 um and distributions as Gaussian
functions with a plateau value equal to 0.54 um and a maximum value of 0.84 um at different locations
of the ring. For each of these distributions of oil on the liner, we consider oil distributions on the groove
flank as Gaussian functions with a plateau value equal to 0 um and a maximum value of 0.72 um and
compare the results obtained with no oil on the groove flank. The maximum value of 0.72 um for the oil
film thickness was chosen based on the minimum value of ring groove clearance obtained with no oil on

the groove flank which is equal to 0.7 um.

The oil distribution on the groove affected the ring neutral axis lift and the axial force. The ring
radial coordinates and forces were not affected. Besides these modifications did not depend on the oil
distribution on the liner. This is mainly due to the ring cross section geometry which is rectangular.
Therefore we will present the results obtained for the uniform oil distribution on the liner and the
conclusions drawn are still valid for the other oil distributions on the liner since in this section we would

like to focus on the effect of variable oil distribution on the groove flanks.
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Figure 3.47 gives the ring neutral axis lift for the three different locations of the oil peak: at 0°,
90° and 180° from the left to the right respectively. We see that the squeezing effect due to the pressure
difference is more significant when the oil peak is not located at the gap since the oil peak magnitude
considered is the same for the three different cases but the change in ring natural axis lift is more
important when the peak is located at the gap. This is due to the free ring tip boundary condition which
makes the ring less stiff at the gap than in other locations. The effect on the ring neutral axis once the oil

peak is not located at the ring gap is the same wherever that peak is.
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Figure 3.47 — Ring neutral axis lift for variable oil distributions on the groove flank with peaks at 0° (left),

90° (center) and 180° (right)

3.4.4. Ring-groove conformability

In this section we look at the effect of the gas pressure and friction forces to determine the ring
groove conformability in terms of the axial location of the static position of the ring with respect to the
groove flanks. In our simulations, we model the same diesel engine considered previously with a nominal
bore radius equal to 95.25mm . We use a ring with a rectangular cross section of dimensions
4mm x 2 mm and a parabolic profile at the running face. The ring has a free shape designed to have
uniform pressure distribution at a round shape with a ring tension of 25.4N. The cylinder and ring are
chosen in stainless steel. We consider no oil on the groove flanks and an incoming uniform oil film on the
liner with a thickness equal to 2.50;, = 0.75 um, where g, is the liner surface roughness standard
deviation. The oil viscosity as a function of the liner temperature considered uniform and equal to 150° C
is given by our sponsor from Shell. Based on the notation used in Figure 3.3 we take B, = 96200 Pa, P; =

96200 Pa and P; = 9500 Pa. We consider a circular bore with no distortions.

First of all, we consider a liner speed equal to 10 ms~?! and directed downwards with a zero
acceleration. In this case the gas pressure force is directed downward and the friction force from the liner
is upward. For these numerical values we obtain a stable position where the ring is conform to the groove

lower flank as presented in Figure 3.48 and 3.49. However when we increase the liner speed to a value of
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25 ms~! and always directed downwards with a zero acceleration and with the same pressure values, we
obtain a stable position where the ring is conform to the groove upper flank as presented in Figure 3.50
and 3.51. In both cases the ring axial stable position is governed by the gas pressure and friction forces:
in the first simulation the gas pressure one is dominant and in the second one it is the friction one that

has a more significant effect.
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Figure 3.48 — Ring neutral axis lift for a 10 ms* downward liner speed

48.76 48.84
g€ €
2 48.74 =48.82
g 8
g ]
348'72 g 488
8 =)
$ 487 © 48.78
& g
=) =
48.68 48.76
0 90 180 270 360 0 90 180 270 360
Circumferential Direction (degree) Circumferential Direction (degree)
1.32 1.24
E £
2 13 =122
8 8
g o
1,28 8 12
© o
8 =)
5126 o 1.18
2 &
- o |
1.24 1.16
0 90 180 270 360 0 90 180 270 360
Circumferential Direction (degree) Circumferential Direction (degree)

Figure 3.49 — Upper/lower ID/OC clearances for a 10 ms™ downward liner speed
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Figure 3.51 — Upper/lower ID/OC clearances for a 25 ms™ downward liner speed

Considering the same ring and bore as in the previous simulation, we consider different gas
pressure configurations using the dynamic model developed by Y. Liu [33] for the compression ring (top
ring). We keep the same lubrication conditions. We look at the static state for different crank angles. In

this case, besides the gas and friction force, we also consider the inertial one since the piston has a non-
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zero acceleration. The piston slides up and down in the cylinder. Its reciprocating motion is translated in

rotation of the crank through the connecting rod as shown in Figure 3.52.

—e

CA

Figure 3.52 — Piston kinematics

z, is the axial position of the piston, CA the crank angle, R¢ the crank radius and Lqp the
connecting rod length. Based on the geometry of the crank rod mechanism, the piston position can be

expressed based on the crank angle as follows:

zp = R cos(CA) + J(L%R — R%sin?(CA)

(3.77)
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The speed and acceleration of the piston in steady state operation can be computed by
considering the first and second derivative with respect to time of equation (3.77) respectively. The
angular velocity of the crank is given by equation (3.78). We can relate it to the engine speed expressed

in rotation of the crank per minute RPM as shown in equation (3.79).

_ dCcA
©=

(3.78)

2mRPM
w=——
60

(3.79)

The expressions of the piston velocity and acceleration are given by equations (3.80) and (3.81)

respectively.

R2sin(CA) cos(CA
V, = | —R¢sin(CA) — —= (€4) cos(E4)

\/L%R — R%sin?2(CA)

(3.80)

Ay = w?| =R, cos(CA) - RE[cos?(CA)-sin?(CA)]  REcos?(CA)sin?(CA)

3
,fLZCR_RtZZ sin?(CA) ( fLZCR—RgsinZ(cA)>
(3.81)

For our simulations we choose a crank radius equal to R = 40 mm and a connecting rod length

Lcg = 140 mm. The results are for an 2000 RPM.

In the common engine working conditions, the upper region gas pressure P, as defined in Figure
3.3. is always higher than the lower region one P,. This is confirmed for all the crank angles by the
simulation results obtained from the dynamic model. Therefore the gas pressure force is always directed
downwards pushing the ring towards the groove lower flank. Figure 3.53 shows the piston velocity and
acceleration variation with respect to the crank angle over one engine revolution. An engine cycle
corresponds to two engine revolutions. We can see that for a crank angle between 0° and around 80°

(and thus between 360° and around 440°), the inertial and friction force are directed upwards, both
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opposite to the gas pressure force. Therefore in this region the ring can lose its conformability with the
groove lower flank. In our study we look at the smallest value of Py, noted (Py)., that makes this happen.
We consider that the ring loses its conformability with the minimum of the ring-groove lower flank
clearance is equalt to 50, = 1.5 um. For a crank angle between around 80° and 180° (and thus between
around 440° and 540°), the inertial force is directed downwards and the friction upwards. Given the
parameters of our simulation, and mainly the oil properties, its film thickness and the engine architecture,
even for the first crank angle (as integer) that gives the smallest non-zero acceleration and almost the
highest value of the piston velocity and with P; = (Py)max = P, the static case of the ring gives a
conformability with the lower groove flank. Therefore, for this range of crank angles, the ring cannot lose
its static conformability with the lower groove flank. For a crank angle between 180° and around 280°
(and thus between 540° and around 640°), both friction and inertia are directed downwards and thus the
ring will conform to the groove lower flank. Finally for a crank angle between around 280° and 360° (and
thus between around 640° and 720°), the inertial force is directed upwards and the friction downward.
As stated previously, given the parameters of our simulation the inertia effect is more significant than the
friction one and thus for this range of crank angles we can look at the smallest value of P; that makes the

ring lose its conformability.
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where P, and P, are the upper groove region and lower groove region gas pressures respectively

obtained from the dynamic simulation, and (Py), is the critical lower groove region gas pressure that

makes the ring lose its conformability with the lower flank for different crank angles within the intervals
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where this phenomenon can happen as explained above. The critical lower groove region gas pressure
represent the pressure above which the ring will have a minimum clearance with the groove lower flank
that is higher than the threshold that we fixed (30,). This gives us an idea about the regions where the
ring is susceptible to lose its conformability with the groove lower flank in the engine working conditions
simulated here. We see that among all the crank angles considered, only the interval [10°; 70°] contains
a lower region pressure that is higher than the critical value and thus the ring is likely to lose its
conformability. This corresponds to the first half of the intake stoke where the gas pressure is getting
more and more homogenous around the ring making P, and P, close enough while both the inertia and
friction forces are directed upwards which explains the results obtained for that region. However for the
interval [360°; 430°] that contains the second part of the engine cycle where the inertia and friction force
are upwards, we see that the rings does not lose its conformability. Indeed, this corresponds to the first
half of the expansion (or combustion) stroke. Therefore the pressure difference P, — Py is high since the
gas pressure needs a longer period of time to get homogenous compared to the intake stroke and thus,

even with a friction and inertia forces directed upward, the pressure difference is high enough to maintain

the ring-lower groove conformability. This is confirmed by the ratio E”P_—Pd close to 1 that we obtained for

u

that region. Besides, the critical pressure (P). is determined mainly by the difference P, — (Py), that
gives a global axial force directed upwards. Therefore this difference is the same for the crank angles

within the interval [0°; 70°] and [360°; 430°] but since P, is bigger in the second one and since Figure

3.54 shows the ratio Eu‘;ﬂ

u

, this quantity is smaller for crank angles within the interval [360°; 430°]

(does not exceed 0.1 in the plot given in the middle) than within the first one (almost always bigger than
0.1 except for 70° in the plot given on the right). This same analysis is valid when we compare the results
obtained for the intervals [280° 360°] (analogous to the interval [360°430°]) and [640°; 720°]
(analogous to the interval [0° 70°]). For the interval [280° 360°] during the second half of the
compression stroke, the gas pressure is getting higher in the groove upper region faster than the increase

of the gas pressure in the lower one, therefore the ring does not lose its conformability with the groove

Pu=(Pa)c

u

[360°; 430°]. Concerning crank angles within [280°; 360°] during the second half of the exhaust stroke,

lower flank. Besides this explains the small values obtained for the ratio as for the interval

Py —P
4 smaller

only inertia is directed upwards and the gas pressure is getting more homogenous making

u

and W higher but not enough to make the ring lose its conformability with the groove lower flank.

u

This trend is kept till we reach the intake stroke (note the same ratios obtained for crank angles equal to
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0° and 360°) during which both inertia and friction are directed upwards with a more homogenous gas
pressure, making the ring more likely to lose its conformability with the groove lower flank as explained
above. This analysis gives an idea about the gas pressure that needs to be maintained in the lower groove
region during the engine cycle so that the ring does not lose its conformability and oil does not move
around the ring to the groove inner region which promotes its flow to the crown land (or 2™ land if we

considered the second ring) and thus is very likely to contribute to oil consumption.

3.5. Conclusion

In this chapter, the ring statics model based on the curved beam finite element method developed
in the previous section was used along with ring-liner contact, ring-groove contact and thermal moment
models. This is a comprehensive tool to analyze ring structural response and to study ring-liner and ring-
groove conformability. Based on the boundary conditions, this tool is also able to help understand some

local processes and its effect on the ring-liner and ring-groove interaction.

The results obtained prove that the curved beam finite element method is able to give a
reasonable prediction of ring structural response. The thermal moment model that we used is more
general than L. Liu [30] solution in the sense that it takes into account the thermal bending moment all
along the ring and not only at the tips which can be significant when we have high bore distortions and
thus large ring-liner clearance at points far from the tips. The gap location of the ring within the distorted
bore also affects its conformability leading to significant difference for the ring-liner clearances. Hence
this structural response affects the oil consumption and sealing performances. Furthermore this tool is
able to determine the threshold between the different lubrication boundary conditions and the ring
conformability and its interaction with the liner when it encounters some local oil accumulation or when
bridging happens. In a more general sense, this curved beam finite element method links the global and
local behaviors and the interaction between them. The trend of the ring-liner and ring-groove contact
behavior is mainly determined by the global structural response while the local process makes a difference
to the oil supply and contact behavior locally. As shown in the experiments [42] [43], oil film thickness on
the liner varies along the circumferential direction and local oil accumulation is observed. As a result, both
of them need to be included to study ring-liner interaction. We also gives a study of the ring-groove
conformability that is determined by the gas pressure, the friction and the inertial forces. The results show
that the ring is susceptible to lose its conformability with the groove lower flank during the first half of

the intake stroke. The study also shows the condition that can be imposed on the pressure within the
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groove lower region for each crank angle so that the ring conforms well to the groove. Otherwise oil is
very likely to flow around the ring to the groove inner region and then to piston upper parts and hence

increase its consumption. Besides this will hamper the sealing performance of the ring pack system.
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4. Static twist under fixed ID/OD constraint

To control gas or oil transport more effectively, top two rings are often designed to have static
twist angles after being inserted into the piston and cylinder. This is accomplished by making the ring
cross-section asymmetric. The static twist is used in the 2D ring dynamics model [40] that assumes the
static twist value is obtained under no external moment. In practice, the static twist is measured by
minimizing the external moment as described later. To calculate the static twist, we adapt Liu’s method
[25] that applies constraints that level the axial position of ring ID or OD depending on the direction of the

static twist.

To model the static twist under fixed ID/OD constraint, we use the closing ring method, modify
the curved beam finite element model introduced in chapter 2 and consider the appropriate external
loads. We also compare the results obtained by our model with the existing straight beam based ring

design tool developed by L. Liu.

4.1. Experiments description

To determine the static twist under fixed ID/OD constraint, the ring is first closed such that it has
a zero gap. Then, it is introduced within a circular band on a flat plate and the user taps gradually on the
ring till it reaches a stable static position. The tapping along the circumferential direction is carried out so
that the ring reaches the minimum clearance with the lower plate but without generation of any contact

force between them.

Ideally the band would be perfectly circular and the ring gap is zero. However, these two
conditions could not be satisfied and our model is able to consider these conditions by introducing band
distortion and a non-gap. Besides, the tapping process is never carried out such that there is no contact
force between the ring and the lower plate. In Section 4.4, we will consider these non-ideal cases where
the clearance is lower than the one giving a zero force contact when we compare our results with those

given by the straight beam based ring design tool.
4.2. Ring symmetry

As introduced in chapter 2, ring cross section can be asymmetric as presented in figure 4.1. In that
case the principal frame does not align with the natural one creating a non-zero principal angle. When
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closing the ring to a circular shape and maintaining it in that configuration, we are actually applying a
radial load on the outer diameter surface of the ring. Because of the mass distribution within the
asymmetric cross section, this radial load create a local twist moment. Since we are dealing with
continuum solid body, the twist of each cross section will create an internal stress with the adjacent cross
section and make it twist in the same direction. Thus by moving from each of the ring tips toward the ring
back (the opposite point to the tips), we have an increasing total twist moment at each cross section
resulting from the internal stress effect plus the radial load applied. This results in an increasing absolute
value of the static twist angle which reaches it maximum at the ring back. This explains the numerical and

experimental results that we observe for the static twist under fixed ID/OD constraint.

Princpal frami

Natural frame

Figure 4.1 — Ring principle frame, Natural frame and Cylindrical frame

The sign of the static twist depends on the ring cross section and mass distribution. Two types of
second rings are shown in Figure 4.2. The left one is called the scraper ring and the right one the Napier
ring. For the second ring, static twist is generally introduced by cutting off the ring material at the one of
the internal diameter corners. If the ring has a negative principal angle, its static twist will also be negative.
In that case we have a fix OD constraint. This is the case when the lower internal diameter corner is cut-
off. If the ring has a positive principal angle, its static twist will also be positive. In that case we have a fix

ID constraint. This is the case when the upper internal diameter corner is cut-off.

7

"

Figure 4.2 — Second ring designs
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4.3. Adaptation of curved beam finite element model

In order to adapt the curved beam finite element model for the static twist problem, we keep the
modeling of the ring within the piston and cylinder but only consider dry contact forces introduced in
section 3.1.1 for the ring-liner contact which models the ring-band contact and in section 3.2.2 for the
ring-groove contact which models the ring-lower plate contact. The ring-upper flank groove contact force
will always be zero since we impose the fix ID/OD constraint which makes the ring in contact with the
lower flank groove and adopt a groove clearance bigger than the ring’s diagonals which ensures that there

is no force generation with the upper groove flank whatever the static twist angle is.

If the ring has a positive principal angle, we apply a fix ID constraint. This means that the lower
internal corner will have the smallest possible clearance with the lower plate, modeled as the groove
lower flank, but without the generation of any force contact. Based on the simplified formulation of the
greenwood and Tripp pressure contact formula (3.6) this means that the clearance should be equal to
Qo, where g, = 0.4 um the standard deviation of the lower plate roughness and ( is the threshold that
determines the clearance under which the asperity contact is generated. A typical value for this threshold
is 4. If the ring has a negative principal angle, then we apply a fix OD constraint and it is the lower external
corner that will have the smallest possible clearance with the lower plate without the generation of any

force contact.
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hgt

Figure 4.3 — Groove and ring-cross section dimensions

Figure 4.3 shows the groove and ring-cross section dimensions that will be used to determine the
constraint equations to model the fix ID/Od conditions. These equations will be solved along with Euler-
Lagrange equations introduced in section 2.3. Db and Drg are respectively the bore and groove root

diameter. hgi is the groove inner axial height.

If the radial axis is noted as the y axis and the axial one as the z axis, the principal angle is given
by the following equation

21
atan (1—%)
W = yr zr

¢ 2

(4.1)
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Where I, and I,, are respectively the moments of inertia out of and in plane and 1y, is the

product of inertia. Their definitions are given below.

L, :f z%dA
A
(4.2)
Iy :f y*dA
A
(4.3)
1y, =f yzdA
A
(4.4)

The fix ID or fix OD constraint is solely determined by the ring cross section based on the principal
angle sign. If that angle is positive then we have a fix ID constraint and the corresponding equation is the

following one:

gcl .
7+z—all a, = Qo

(4.5)

_9_22_ is the ring groove clearance at the centroid location when the groove is located at the midpoint

of the groove axial clearance. The axial displacement z is defined appropriately to this choice. Therefore

gcl is given by the following equation:

., (Pb Drg . o .
gcl = hgi + (7 - - arm) (agu + agl) — (hui + 6,,aui + hli + 8,,ali)

(4.6)

If the ring principal angle is negative then we have a fix OD constraint and the corresponding

equation is the following one:

gcl
—2—+z+aloar = Qop
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(4.7)

The tapping force is modeled as an unknown. In order to keep the same smoothness as the other
variables, we interpolate it using 5" order Hermite polynomial spline. Therefore we add three additional
unknowns per node. In order to have a close system, we need to have three equations apart from the
Euler-Lagrange ones. Hence, as we do for the axial and radial displacement, we interpolate the angles
using the 5" order Hermite polynomial spline so that the constraint (4.5) or (4.7) gives three additional
equations involving z and a, their first derivatives and the second ones. Hence we give up the 3" order

interpolation adopted in section 2 modeling for the angles.

Using the isoparametric variable 7 define in (2.18) and the shape functions (N)KZ$ defined in

(2.22)-(2.27), the fifth order interpolations for an element give:

YD) = Tfmr Ne(uye where {uy} = {ty; .ttye} = 1,710,985, 72,v2"Y

(4.8)

z(n) = Ty Ne(Mugy where {u} = {Uyy o uze}” = {21, 21,21, 22,23, 23}
(4.9)

ar-(n) = 22=1 Ny (mMugy where {ug} = {ug; - uae}T ={a, a1, a1, az, @, azu}T

(4.10)

F) = Sos Ne(mugi where {ugt = {upy wuge) = U flL £ f f3, £377
(4.11)

Each ring element has two nodes and therefore 24 nodal variables, 12 degree of freedoms per

node. The variable vector for an element is rewritten below.
e) _ ’ 17 /.7 ’ I ’ 1 7 " ’ " r [ 17
ul® = {uy, ., uzs} = D y1 1 202020 e, 00 L L L Y2 Y2, Y2 22,22, 25, 0, a0, fo, o, f2 }
(4.12)

To select the appropriate shape function corresponding to the k™ nodal displacement within a

ring element, we use the mapping function given below.

ky, = [1,2,3,13,14,15]

124



(4.13)
k, = [4,56,16,17,18]
(4.14)
ko =17,8,9,19,20,21]
(4.15)
ks =[10,11,12,22,23,24]
(4.16)

k — m(k)
[1,2,3,4,5,6,7,89,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]
— [1,2,3,1,2,3,1,2,3,1,2,3,4,5,6,4,5,6,4,5,6,4,5,6]
(4.17)

Using this mapping function, (4.8), (4.9), (4.10) and (4.11) can be rewritten in a more compact

form as follows.
y(m) = Z Non(k,) (Mteie,
ky
(4.18)

201) = ) Ny (D,
k2

(4.19)

@) = ) Nomgi (Mt
K

(4.20)

FO =) Nongioy Dt
kf
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(4.21)

By modeling the closing ring process as we carried it out in section 2.4, the Euler-Lagrange
equations become:

au@  aw@ .
oun = aug, ~ Finitiavai fori={1..n}

(4.22)

Le
w = f (fry+ frz+ fz+ma)ds
0

(4.23)

v =u +ul) +ul

(4.24)

(e) 1 Le 2 LeEIyy 1 1 y + y” i z" . ?
Uyy = EJ;) EI_’yy(KZZ — KZZO) ds = TJ;) E — R2 sin| a + F - KfS Sm(ap) dT)
(4.25)

1 (lLe d 2 L,GJ, (Y {z' — Ra'\*
(e) eblt -
= — —_— —_ == d
Ug ZIO GJ; (r + Is (ay a')) ds > fo ( 72 ) n
(4.26)

e _ 1 be 2 LeElL, (*((1 y+y" z" ’
U,s = —Z-J; El(Kyy — Kyyo) ds = > fo R eos\at &) = cos(a,) | dn
(4.27)

F _ v

. PR— ——-—l =0 I= Il=
initial,di audi );:0,2’,:82/”:8
a=apa’=0

(4.28)

The axial force f, in (4.23) includes only the ring-band and ring-lower plate dry contact forces .The

variable uy; represents the dit" displacement degree of freedom of the system composed by the two
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nodes of the ring element and when assembled in one vector, form the displacements and their
derivatives at those nodes (4.29). Thus di € k,, U k, U k,. Subscripts 1 and 2 refer to the first and second

node of the element respectively.

(e) _ _ oot v ; o 1o ’
Ug = {ugr, - Ua16} = (V1. YY1 21,20, 21, @1, @1, Y2, V2, V2 1 22, 22, Z2 L0, Ay}
{(4.29)

These equations along with the constraint one (4.5) or (4.7) and their first and second derivatives

gives a close system of 24 unknowns and 24 equations per element.
z'—alia' =0
(4.30)
z"—alia" =0
(4.31)
z' +aloa’"=0
(4.32)
z" —aloa"" =0
(4.33)

In analogy with section 2.5, we develop the stiffness matrix, load vector and initial force. The load
vector in this case does not only include external forces components but also the constant term in the

constrain equations 94.5) or (4.7).
alg = ali * (a, = 0) — alo = (a, < 0)

(4.34)
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(L.El,, (! N ..
o fo (Nm@o) + Niniy) (Vi + Ny )l for {Lj} € ky
Le (1 / / L
Ff (ElyyNam(Nam() + GleNem(iyNamy)dn for i} € ke
0
Le 1 Iz 113 ’ 4 i k
R* ), (ELyyNin(yNmgjy + GJeNiuiy Ny )l for tij} € ks

L 1 " , , L. ..
= R_e3]0 (ELyNpniyNam(jy = GleNm@yNmiy )dn for (i, ) € ky X kg or (i,)) € kg X k; {
Le
—-Lej Nom(yNm(jds for (i,)) € ky X kf
0

L, . . -
R_Zf (ElyyNinyNam(sy = CleNmyNm(p)dn for () € ky X kg or (i,]) € kg X ks
(4]

1 for (i,j) € kg X k;
—alg for (i.)) € ky X kg
Lo otherwise /
(4.35)

Le N
frNm(ds forice ky
0
Le
f.ZNm(l)dS fOTi € kZ
F& ={7 >
ext,l Le
tham(i)dS fOT' [ € ka
0
gcl .
ngp—T fOTLEkf)
(4.36)

1

1 cos?(ay) "
_LeEIzzf (_ﬁ - 'Cfs) _——RZ—(Nm(i) + Nm(i))dn
0
11 sin?(a,) " .
—LeElyy fo (7= rs) =R W + N ) for i € ky

1.1 cos(ay, ) sin(a
—LeElzzf (2= ) (ap) sin(ay)
0

(e) — i
F2 . = 1.1 sin(a,, ) cos(a }
initial,i +LeE1ny (1_2__ Kfs) ( p%z (ap) N,',{(i)d" fori€k,
0
11 cos(a )sin(a) ,
"‘EE’ZZJ (7= 1s) gz Ny
0
1,1 sin(ay) cos(ay,) :
0
0 fori€ ks
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(4.37)

The finite element equation to solve (4.38) is given by:

[K](e){u}(e) = {Fext}(e) - {Finitial}(e)
(4.38)

The assembly of the finite element matrices is carried out as explained is section 2.6 to end up
with global matrices and unknown vector {u} (4.40) as the assembly of the different nodal unknown

vectors. n is the total number of nodes for the whole ring.

[K{u} = {Fexe} — (Fintiiat}

(4.39)

~ T
{u} = {ugl),...,uglz),ugz),...,ugzz), ul” D uln ) ...,ugg)}

(4.40)

The tapping force is assumed to be applied on the cross section centroid without any offset which
explains the expression adopted for the external work (4.23) where the tapping force do not contribute
to the twist moment term. This is an ideal case but at least minimizes the external twist moment and gives
stable results for the two different cases regarding the principal angle sign. In fact, when modelling the
tapping force as being applied on the ring external upper corner, it gives oscillatory static twist for positive
principle angle rings as shown in Figure 4.4. and when applied on the ring internal upper corner, it gives
oscillatory static twist for negative principle rings as presented in Figure 4.5. Indeed for these cases, the
tapping force is introducing a static moment in the opposite direction to the moment introduced by the
radia! force which by itself defines a stable static position for the ring angular displacement. Thus the extra
moment introduced by the tapping force is altering that equilibrium which makes the static twist oscillate

in order to balance the different moment components.
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Figure 4.4 — Ring cross section with positive principal angle and the corresponding twist angle - tapping

force as being applied on the ring external upper corner
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Figure 4.5 — Ring cross section with negative principal angle and the corresponding twist angle - tapping

force as being applied on the ring internal upper corner
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4.4. Sample results

In this section we compare the results obtained with our model to those given by the existing

straight beam model. For all the cases we observe that the absolute value of the static twist is lower for

our model. This shows an advantage of adopting the curved beam model compared to the straight beam

one since it solves for a stability position with a lower static twist and thus a lower twist moment which is

the intuition behind the static twist under fixed ID/OD constraint experiment. In fact the users try to figure

out the stability position of the ring when it is closed to a circular shape with the minimum possible static

twist. This explains the gradually increasing tapping force adopted in order to minimize the clearance with

the lower stage but without introducing any force contact with it or any additional twist moment.
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Figure 4.6 — Ring cross section with a 0.5 x 0.5 mm cut off on the internal upper corner of a 2 x 4 mm ring

and the corresponding twist angle
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Figure 4.7 — Ring cross section with a 0.2 x 0.2 mm cut off on the internal upper corner of a 2 x 4 mm ring

and the corresponding twist angle
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Figure 4.8 — Ring cross section with a 0.2 x 0.2 mm cut off on the internal lower corner of a 2 x 4 mm ring

and the corresponding twist angle

Figures 4.6 and 4.7 show that the bigger the cut off engineered on the ring, the larger the absolute

value of the static twist angle is. In fact for a larger cut off, the local twist moment distribution along the
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axial axis introduced by the radial force is bigger since the mass distribution varies in a wider range.

Therefore the resulting static twist angle is bigger in absolute value.

Figures 4.7 and 4.8 show the almost symmetric results for the symmetric cut offs realized on the
ring. The small discrepancy in the symmetry for the results obtained for the twist angle is due to the fact
that the ring of Figure 4.7 with a positive twist and a minimum clearance at the internal lower corner is
not symmetric to the case where the ring if Figure 4.8 with a negative twist and a minimum clearance at
the external lower corner. Indeed, the centroid radial position is the same for these two rings but since
the minimum clearance constraint is once applied on the internal lower corner and once on the external
one, the twist angles needed won’t be the opposite of each other because the distance between each of

these points where we have the constraint and the centroid is not the same.
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Figure 4.9 — Ring cross section with a cut off along the upper flank of a 2 x 4 mm ring and the

corresponding twist angle
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Figure 4.10 — Ring cross section with a cut off along the lower flank of a 2 x 4 mm ring and the

corresponding twist angle

Figures 4.9 and 4.10 show the results obtained for rings with non-zero upper or lower flank angles.
Again these two cases are not exactly symmetric since the radial distance between the centroid and the
lower corner points where we have the constraint in each case is not the same: ali for the case of Figure
4.9 is different from alo of the ring in Figure 4.10. Therefore equations (4.5) and (4.7) are not equivalent

for opposite a,- and hence we don’t obtain perfectly opposite static twist angles.

4.5. Conclusion

We extended the curved beam model based on nodal displacements to determine the static twist
under fixed ID/OD by simulating the axial taping force carried out in the experimental set-up. Translating
the clearance constraint into equations and considering the tapping force as a variable we end up with a
close system whose solution gives the static twist. A physical understanding of the generation of the static
twist from the radial pressure was given and a study of the ring’s asymmetry effect along with sample
results were presented. Besides, developing a static twist under fixed ID/OD constraint based on curved
beam model is essential to conceive a complete ring design tool based solely on that modelling that allows
us to reach a better accuracy with less computation cost than the straight beam model as proven by

Baelden [31].
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This tool is of practical interest for ring designers to have an analytical tool that determines the
ring static twist based on its design which will facilitate the iterative design process needed to obtain the
desired static twist. In order to control oil and gas transport, compression rings are generally designed to
have non-zero static twist. For instance, this feature makes the ring push against the top groove lower
flank and make sure the ring prevents gas leakage when its upper surface is exposed to high gas pressure.
This positive static twist as shown in the sample results can be achieved by creating a cut at the upper ID.

The amplitude of the static twist can be tuned base on the dimensions of the cut off.

Our model is also able to consider non-zero gaps at the closed shape. This feature did not
influence the results obtained for the geometries considered and more complicated cross section designs
could be considered to investigate more the effect of non-zero gap. Furthermore, as stated previously,
our framework is able to model the tapping force at other locations than on the centroid and also to
impose smaller clearances constraint. These cases could also be considered in the future to model other
experimental scenarios different from the ideal one. Finally our model can be extended further to include

the tip lapping case.
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5. Free shape, force distribution in circular bore and ovality

In this last section, we present the four sub-models developed to relate the ring free shape, its
final shape when subjected to a constant radial pressure (this final shape is called ovality) and the force
distribution in circular bore. To do so, we relate the free shape to each of the other two variables
reciprocally. Knowing one of these distributions and combining the appropriate sub-models, one can
determine the other two as explained in Figure 5.1.

Curvature and Curved beam
bending moment based model for
based differential Euler-Lagrange
equation solving equation applied
for closed circular to radial
o shape displacement
Force distribution > - .
. . & ~ Free shape = Ovality
in circular bore Curvature and

Conformability
module with
groove and liner
dry contact forces
only

bending moment
based differential
equation solving
for any arbitrary
closed shape

Figure 5.1 — Free shape, force distribution in circular bore and ovality sub-modals representation

Knowing the ring free shape and the constant radial pressure applied on it, we determine its
ovality by considering the curved beam model and the Euler-Lagrange equation for radial displacement.
By simulating the ring inside the groove and the cylinder with dry contact via the conformability module
introduced in Chapter 3, we recover the force distribution in circular bore. Finally we developed a general
framework that lets us recover the free shape from any final shape given a certain force distribution. In
particular, this lets us determine the free shape from the force distribution in circular bore and also from
the ovality and hence we have all the tools to relate the ring free shape, its ovality and force distribution
in circular bore.

For the conformability module used to recover the force distribution from the free shape, we deal
with the ring closing process as explained in section 2.4 since small displacement assumption is not valid.
For the other 3 sub-models, that assumption is still violated so we use the general expression of the
curvature for planar curve (2.9) applied to the free shape and the closed one instead of the simplified one
(2.14).

Measuring the ovality is more accurate than doing so for the free shape or force distribution in
circular bore. Thus, the tool we developed is useful in the sense that having a model that takes the ovality
as an input is more convenient and useful based on the experiments carried out to characterize the ring.
We validated our sub-models by recovering two theoretical force distributions provided by Mahle using
the four modellings we have. Mahle also provided us with experimental measurement of the ovality but
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we were not able to recover the corresponding theoretical force distributions. Nevertheless, we
investigated the reason behind it and gave an initial explanation.

5.1. Determining ring’s force distribution in circular bore using its free shape

Determining the ring force distribution in circular bore using its free shape is simply carried out
using the conformability module introduced in section 3 by considering only dry contact forces from the
groove and the liner. We carry out the same modeling for the ring closing process as explained in section
2.4 by considering some initial force vector. Therefore we end up with the (2.107) finite element matrix
equation to solve:

[K}{u} = {Fexe} — {Fintiiat}

(2.107)

Finitiar is determined based on the ring free shape as stated in equations (2.82)-(2.84). Fey,
contains the terms corresponding to the ring-liner and ring-groove dry contact forces and is assembled
from the load vectors {2.100) coming from the different elements. The stiffness matrix K is also an
assembly of the element based ones (2.98).

(L.El,, (* ., . )
— 4ZZ f (Nmi) + Nongiy) (NinG) + Nomgjy ) for {i,j} € k,
R? f (ElyyNam@Nam(y + GleName Nam())dn for{i,j} € kq
(e) _
K =qL L .
R4 (Elyy m(L)Nm(]) + Gthm(l)Nm(]))dT] fO'r {l,]} € kz
R—e3 f (ELyNpyNam(jy = GleNmaiyNimcy)dn for (i,)) € k, X kg or (i,)) € kg X k
0
\0 otherwise
(2.98)
r rLe \
frNm@wds  fori€k,
0
Le
F&. =3 | fiNmwds foriek,;
0
Le

MeNogmnds fori € k,
\Jo J

(2.100)

137



5.2. Determining ring’s free shape using its force distribution in circular bore

The ring free shape is a key characterization of the ring. In practice designers need to determine
the geometry of the ring free shape that will produces the desired ring tension and force distribution once
the ring is closed to the bore diameter. This process relies mainly on internal proprietary formula and
experimental results. The following modeling lets us recover the ring free shape from known force
distribution along the ring circumference in circular bore.

To compute the ring free shape we determine first its curvature. To do so we use the bending
moment equation (2.45) along the axial direction which is proportional to the curvature change in the
radial one. We keep using the same notations introduced in Section 2.

Mzz = EIZZ(KLV}’ - K}’yo)
(2.45)

Kyy is the ovality curvature corresponding the curvature of the closed ring while ky,, is the free

: ; o 1
shape curvature. Since the final shape is a circular one, k., = =

The bending moment is calculated from the force distribution starting from the ring gap 8 = 0
which is a free end without any internal or external stress. The integral expression of the local bending
moment based on the radial force distribution for a closed circular shape is given by the following
expression. A more general expression for any arbitrary closed shape will be given in section 5.4.

)
M,, = j P(a) R?sin(6 — a) da
0

(5.1)

4 ')B'W o

Figure 5.2 — Bending moment and radial force distribution
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P(a) is the contact pressure distribution applied on the ring when it is closed to the circular shape.
R is the ring nominal radius and a is the angle swiping from 0 to 6.

Using equation (2.9) for planar curve, we can express the ring free shape curvature (5.2).

3 rfzs + er'§ - rfsrf';
Kyyo =

(2 +172)?
(5.2)

rrs = R+ yy
(5.3)

7y is the radius of the ring free shape. When the ring is closed from its free shape to the round
one, the element ds of the ring changes its angular position from 65 to 6,5 as shown in Figure 5.3.
Therefore, the curvature change calculation needs to be carried out on a specified ring differential
element ds instead of an angular position 6. Since the closed shape is a circular one (2.45) can be re-

written as follows and based on the arc length coordinate s instead of 8:

MR — s
(s) = 1 Mzz( In )
FyyolS) =5 El,
(5.4)

The arc length coordinate is chosen such that s = 0 at the back of the ring. To obtain an arc length

coordinate based differential system, we should relate ds to df8 which is done by simplifying (2.7) for a

ds = /rfzs + r/2do

(5.5)

planar curve to obtain:

By combining (5.1), (5.2), (5.4) and (5.5) along with the boundary conditions specified below (5.6)-

(5.11), we solve the ring free shape numerically.
6(s =0) = 180°
(5.6)
r7s(s =0)=R
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dr'fs _ _
T (s=0)=0
(5.8)
dé 1
E (S = 0) = —
(5.9)
dT'fS _ _
s (s=0)=0
(5.10)
drfs RMZZ(S )
wlas|e=0="5
(5.11)

The ring free shape curvature can be computed directly by combining only (5.1) and (5.4) without
solving any differential equation which gives more accurate results than evaluating the curvature from
the solution obtained for the ring free shape 7y, based on (5.2). This is of utmost importance since when
using the free shape as input to any of our models, either to determine the force distribution in circular
bore or the ovality, all we need to use is the curvature which appears in the resulting Euler-Lagrange
equation in each case (that term is inserted in the initial load vector in our conformability module that we
use to determine the force distribution in circular bore) and once we know the curvature we don’t need

to use neither the ring free shape 7y, nor its first or second derivatives.

5.3. Determining ring’s ovality using its free shape
Given a certain ring design, by applying a certain constant pressure on it we can make its gap
closed. The final shape obtained afterwards is called ovality. We also use this name to design the final

shape obtained after applying a constant radial pressure on the ring whether the gap is perfectly closed

or not, but by specifying its value in the latter case.
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To determine the ovality from the free shape, we can use solve the Euler-Lagrange equation since
we are looking at the final static state of the ring. Therefore the finite element curved beam model can

be used.

In this case, we only have the strain energy related to in plane bending that we derived in section

() @ _ 1" 2
v =y = Ef El,,(kyy — Kyyo) ds
0

(5.12)

Ky, is the ovality curvature corresponding the curvature of the closed ring while ky,q is the free
shape curvature that we have as input. Below is the expression of the ovality curvature where R is the
ring nominal radius and y the radial displacement. We use equation (2.9) for planar curves.

Ry +2y7 - R+
- 3
[(R+y)? +y"%]2

Kyy

(5.13)

The work of external contains only the constant radial force.

Le

Le
we® = f froyds = fi f yds
0 0

(5.14)

We use 5" order spline interpolation for radial displacement as introduced in section 2.

T 1 1 ! 4
y(m) = Z£=1 Nk(n)uyk where {uy} = {uyl ---uy6} =L yuyih Yy e i

(2.20)

6
y'(m) = Z N (Muyk
k=1

(2.28)

6
y'(m) = z N¢' (muyy
k=1
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(2.29)
Using the Hamilton’s principle, we obtain the Euler-Lagrange equations for each ring element.

L@ =y _yl)

{5.15)

aL(e) _ .

Wyi =0fori = {1 6}
(5.16)

The variable u; represents the i" degree of freedom of the system composed by the two nodes of
the ring element and when assembled in one vector, form the radial displacements and their derivatives

at those nodes (5.17). Subscripts 1 and 2 refer to the first and second node of the element respectively.
u? = Uy, o tiye} = 0, V1,91 Y2, V5, V8
(5.17)

Combining (5.12), (5.14), (5.15) and (5.16), we obtain the following equations to solve for each

ring element:

1 Ok dx Ok Le
LeElzzf (Kyy - K}'yO)( a;y N; + a;:y Ni’ + 0}1)2] Ni”) dn = Lefovf Nidn
0 0
(5.18)
OKyy Okyy Oxyy :
Kyy, 3y 9y and 17 are expressed using (5.13) and (2.20), (2.28) and (2.29) so that we end up

(e)

with an equation in terms of u,,

= {uyl, e uy6} to solve.

In order to obtain the finite element equations for the complete ring, we assemble the terms
obtained in (5.18) for the different ring elements as explained in section 2.6 for the vector assembly. The
two extreme nodes corresponding to the ring tips belong to only one element. Thus, the equations for
their radial displacements and their first two derivatives are simply in the form of (5.18) applied to the
corresponding elements. Any other node belongs to two elements. Therefore the equation satisfied by
the radial displacement and its two first derivatives for these nodes are the sum of two equations in the
form of (5.18) applied to the two elements to which belongs the node. We end up with a non-linear system

that we solve using Newton-Raphson algorithm.
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5.4. Determining ring’s free shape using its ovality

Determining the ring free shape from its ovality is a generalization of the process described in
section 5.2 where we determined the ring free shape from the force distribution in circular bore. In this
section, we derive the equation to be solved in order to determine the free shape from any closed shape

with any pressure distribution applied to it.

To compute the ring free shape, we determine first its curvature using the bending moment
equation (2.45) along the axial direction. The difference with the circular shape is in the integral expression

of the local bending moment (Figure 5.3).

M, = Elzz(Kyy - Kyyo)

(2.45)

2]
M,, = f P(@) 0y (@) f (1o (@), @, 6)da
0

(5.19)
f(ov(@), @, 6) =

|(rgw (@) cos(@) = 7oy (@) 5in(a))75(8) cos(8) + (r5v(@) sin(@) + 10 () c05(@) )1 (8) sin(B) — 1w ()15 (@)
V (155(@) cos(@) — 1, (@) sin(a))? + (15, (a) sina) + 7o, () cos(a))?

(5.20)

We can check that equation (5.19) is consistent with (5.1) since for a final circular shape, 7, (a) =
T,,(8) = R and thus f (1, (@), a,0) = R|sin(60 — a)|.Since0 <8 <mand0 < a < Owehave 0 <0 —
a < m and thus f(r,,(a),a,0) = R sin(@ — a). Therefore (5.19) is reduced to (5.1).

Ky, is the ovality curvature corresponding the curvature of the closed ring. We expressed as in

(5.13), where R is the ring nominal radius and y the radial displacement. We use equation (2.9) for planar
curves.

_(R+y)+2y?—R+y)y'
- 3
[(R+y)*+y]2

Kyy

(5.13)

143



The ring free shape curvature equations (5.2) and (5.4), arc length coordinate based differential

equation (5.5) and boundary conditions (5.6)-(5.11) are still valid.

Figure 5.3 — Bending moment and radial force distribution for any arbitrary closed shape

The ring free shape curvature can be computed directly by combining only (5.19) and (5.4) without
solving any differential equation to obtain more accurate results than using r ¢, based on (5.2). As stated

before, this is useful since when we will use the free shape results as input to another sub-model, all we

need is its curvature.

5.5. Validation of the four models

In this section we present a theoretical validation of the four models based on data provided by
Mahle. We have two different data sets for the same ring of rectangular cross section with a radial width
equal to 4 mm and an axial one equal to 2 mm. The nominal radius is of 45.625 mm. Each data set
corresponds to a certain pressure distribution and therefore to a specific ovality and free shape. Tomanik
presented a theoretical study and experimental procedure to characterize the free shape and ovality of
these two ring types [47]. We call these data sets by the Usual and the TC one, using the same
nomenclature given to the rings. The linear force distribution (force per ring axial width) for each of them
is plotted in Figure 5.4. When closed, the gap clearance for the Usual case is equal to 0.48 mm, while it is

0.4 mm for the TC one.
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Figure 5.4 — Theoretical linear radial force distribution for usual and TC cases

In order to validate theoretically the four models introduced previously, we start with these force
distribution to compute the corresponding free shapes and then the ovalities using sections 5.2 and 5.3
models respectively. Then using sections 5.4 and 5.1 respectively we recover the free shapes and force
distributions. Based on Figure 5.1 this is equivalent to going from left to right and then in the opposite

direction.

As stated in sections 5.2 and 5.4, at any time we compute the ring free shape we keep the
curvature computed from the relation based on the bending moment and not from the expression based
on the radial coordinates of the ring free shape which involves first and second derivatives. We will also

compare the free shape and its curvature computed from the force distribution and from the ovality.

All our models rely on the usual representation for the free shapes and ovality. It means that the
radial coordinates are computed as the distance between the ring points and the center of the circle
adjacent to the ring back with a radius equal to the ring nominal radius. This representation is illustrated
in Figure 5.5. Mahle data sets are available in the centralized representation where the radial coordinates
are defined as the distance between the ring points and center of the circle passing through the ring back

and the tips as presented in Figure 5.6.
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Figure 5.6 — Free shape centralized representation (Figure provided by Mahle)

Figure 5.7 show the ovality obtained from the theoretical pressure distribution for the usual case

in radial coordinates and its comparison with the measured one using the centralized representation.

Figure 5.8 provides the same results for the TC case. In the sub model computing the ovality from the free

shape, we use 16 elements.
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Figure 5.7 — Ovality obtained from theoretical force distribution compared to the measured one in

centralized representation (Usual case)
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Figure 5.8 — Ovality obtained from theoretical force distribution compared to the measured one in

centralized representation (TC case)

Figures 5.9 and 5.10 show the results obtained for the free shapes in the usual representation at

two different steps: when computed from the theoretical force distribution and when determined from

the ovality computed by our models. We notice that our models are consistent since they recover the

same free shape for each case. We obtained a maximum relative error between the two free shapes of

0.6% for the two cases.
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Figure 5.9 — Comparison of free shape obtained from theoretical force distribution and from computed

ovality in usual representation (usual case)
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Figure 5.10 — Comparison of free shape obtained from theoretical force distribution and from computed

ovality in usual representation (TC case)

In figures 5.11 and 5.12, we compare three different free shape curvatures. The dashed green one
corresponds to the free shape curvature obtained from the theoretical force distribution using equation
(5.4). The blue curve is the free shape curvature computed from the momentum equation (2.45) applied
to the ovality computed in our model. Finally, the dashed red curve shows the free shape curvature
computed using equation (5.2) after solving for the ring free shape radial coordinates using the ovality
computed in our model. Again our models are consistent and provide the same results for the curvature
for both the usual and the TC cases. For the usual case, we obtain a maximum relative error of 0.02% for
the curvature computed from the momentum equation and an error of 0.07% for the one computed using

the free shape radial coordinates. For the TC case, we obtain a maximum relative error of 0.03% for the
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curvature computed from the momentum equation and an error of 0.08% for the one computed using

the free shape radial coordinates.
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Figure 5.11 — Free shape curvature comparison (Usual case)
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Figure 5.12 — Free shape curvature comparison (TC case)
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Finally we use our last sub model of section 5.1 to retrieve the force distribution in closed circular
shape using the free shape curvature computed from the ovality that we determined. We use the free
shape curvature determined using the momentum equation (2.45) based on the ovality (curvature in blue
curve in Figures 5.11 and 5.12). The results are presented in Figures 5.13 and 5.14. In the last sub model
computing the force distribution from the free shape, we use 16 elements and 1000 points per element

for the force evaluations.
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Figure 5.13 — Force distribution comparison (Usual case)
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Figure 5.14 — Force distribution comparison (TC case)

As explained in section 5.1 the force distribution is taken as the force applied from the liner on
the ring. The contact model adopted, the roughness of the liner and its material related properties explain
the small differences we observe in the two force distributions since the provided one is a theoretical one

and independent from the source applying it on the ring.

As a conclusion our four sub models are consistent all together and able to recover the inputs we
provide them with by determining any two variables from the third one among the ring free shape, its
ovality and the force distribution in closed circular shape. However, our models showed some limits when
we tried to validate them with experimental measurements. More details are provided in the following
section along with some explanations regarding the discrepancies observed which are not only related to

our models but also to the measurement deviations.
5.6. Validation of the model using ovality measurement

Besides the theoretical force distribution, Mahle provided us with measured ovality for the usual
and the TC cases that has been used in Tomanik’s work [47]. In this section we will present the results

obtained from our model using these experimental data sets. The first sub part will be devoted to the

description of the data processing procedure and the second one contains the results obtained.
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5.6.1. Ovality data processing

The ovality measurement is carried out using a stylus-based equipment. We carry out the data
processing by approximating the measures with the 5" order polynomial shape functions introduced in
the curved beam model (2.22)-(2.27). Therefore the radial displacement will have the (2.20) interpolation

form for each element.

T ! " 1 n
y() = L8-1 Ne(uy where {uy} = {uyq . uye} = . v1, 915 y2, 52 32"

(2.20)

We carry out the interpolation using the least square method. Ny refers to the number of data
points, and N to the number of nodes consider in the interpolation. If we note the measures by r =
i=Ng __ i=

[(ri)f]:“l] for the radial displacement and by (1;);,-,¢ = (Gi)f;llvd for the circumferential direction, the

least square method minimizes S given by (5.14) with respect to (y;, ¥,y ﬁz’l", where the y(;)

corresponds to the approximation of r; using the function y(n) at the element to which belongs the i"

point.

Ng
S= Zi=1(ri —y@)*
(5.14)

If we note yno4es the vector containing the radial displacements and their first and second
derivative at the nodes (5.15), the least square method reduces to solve the matrix equation (5.16) derived

by setting the derivatives of S with respect to the elements of ¥, o4es t0 zeros.

Vi
Ynodes = | Y ,il
Vi

i=1.N
(5.15)

X" X. Ynoges = X" .1
(5.16)

X is an N4 by 3N block matrix based on the evaluation of the different shape functions (2.22)-

(2.27) at the measurement locations. By imposing the continuity of the third derivatives at the nodes
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belonging to two elements (i.e. all nodes except the two corresponding to the ring tips), we obtain a matrix
relation between the vectors d2y and y,,im, where the matrix C is N — 2 by 2N + 2 and depends on the

angular length of the elements.

d2y = [}’i”]i=2...N—1

(5.17)

1 o

[ V1
V1

1

V1
V2

)
Yprim =
YN-1

!

YN-1
YN

YN

"

L VN

(5.18)
d2y = C.Yprim
(5.19)

Combining (5.16) and (5.19) we end up with a matrix equation relating ¥,,im and r (5.20), where

Aisan N4 by 2N + 2 matrix computed from blocks from X and C.
AT.A.yprim =AT.r
(5.20)

In conclusion, we solve for y,,.;, using (5.20) then for d2y using (5.19) which lets us completely

determine V,,,4es- Therefore we obtain our fitted ovality using the shape functions. The measured and
fitted ovality for the two cases are plotted in Figures 5.15 and 5.16. The average difference between the

measures and their fit is in the order of 10~ %m.
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Figure 5.15 — Fitted measured ovality in centralized representation (Usual case)
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Figure 5.16 — Fitted measured ovality in centralized representation (TC case)

Once we have our fitted data in the centralized representation, we convert it to the usual one and
use our models of section 5.4 and 5.1 to recover the ring free shape and the force distribution for the

closed circular shape. The corresponding results are presented in the following section.

5.6.2. Results

After using the sub model corresponding to section 5.4 we obtain the ring free shape and its
curvature. Figures 5.17 and 5.18 present the results for the usual case while Figures 5.19 and 5.20 show
the outputs for the TC case. We conclude that we are still able to recover the right free shape even when
using the ovality measures. The maximum relative error has slightly increased compared to the free shape
computed from the theoretical ovality as done in section 5.5 in the theoretical validation of the model

since if goes from 0.6% to 0.7%.
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Figure 5.17 — Comparison of free shape obtained from theoretical force distribution and from measured

ovality in usual representation (usual case)
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Figure 5.18 — Comparison of free shape obtained from theoretical force distribution and from measured

ovality in radial plots (usual case)
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Figure 5.19 — Comparison of free shape obtained from theoretical force distribution and from measured

ovality in usual representation (TC case)
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Figure 5.20 — Comparison of free shape obtained from theoretical force distribution and from measured

ovality in radial plots (TC case)

The following graphs Figure 5.21 and 5.22 show the results obtained for the free shape curvatures.
We observe that the difference between the free shape curvature obtained from the theoretical force
distribution used in section 5.5 and the curvatures computed from the measured ovality is well more
significant than the difference observed in the free shape. Indeed the maximum relative error goes from
0.02% to 0.46% for the usual case regarding the curvature computed from the momentum equation and

from 0.03% to 0.49 % for the TC case.
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Figure 5.22 — Free shape curvature comparison for measured ovality (TC case)

We explain these discrepancies by two factors. First, the fitted ovality and the one obtained in
section 5.5 from the theoretical force distribution that lets us recover the right curvature and thus the
force distribution, are off by +8um for the usual case and +9 um for the TC one as we can see in Figure
2.23 and 2.24. This is well coherent with the radial distances deviation reported by Mahle. The modes
observed in these differences correspond to low frequencies while the white noise filtered by our least
square method present high frequencies as we observed in Figures 5.15 and 5.16. We also notice that the
white noise present comparable amplitudes to the modes corresponding to the differences observed
between the fitted ovality and the one giving the right free shape and force distribution. We also verified
our data fitting, by adding the difference between the ovality measurement and its fit, to the ovality
computed from the theoretical force distribution (the ovality that gives back the right free shape and force
distribution) and then processing that artificial ovality by fitting it and using it as an input to our model.

For both cases (Usual and TC) we were able to recover the exact free shape and force distribution.
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Figure 5.23 — Comparison of fitted measured ovality and ovality that recovers the right free shape and

force distribution in usual representation (usual case)
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Figure 5.24 — Comparison of fitted measured ovality and ovality that recovers the right free shape and

force distribution in usual representation (TC case)

The second reason that may explain the discrepancies observed is that even if the fitted ovality is
still a good approximation within the deviation observed, its first and second derivatives should also be
comparable to those of the right ovality. Indeed the free shape curvature depends directly for the ovality
curvature based on the momentum equation (2.45) and the ovality curvature is a function of the radial
displacement and its first and second derivatives (equation 5.13). Figures 5.25 and 5.26 confirm the fact
that even though the first derivative of the fitted ovality seems to be a fairly good approximation of the

exact one, its second derivative present a more significant deviation from the ideal second derivative

distribution, both for the usual and the TC case.
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Figure 5.25 — Comparison of 1* and 2" derivatives of fitted measured ovality and ovality that recovers the

right free shape and force distribution in usual representation (usual case)
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Figure 5.26 — Comparison of 1* and 2™ derivatives of fitted measured ovality and ovality that recovers the

right free shape and force distribution in usual representation (TC case)

Finally, using the curvatures computed from the fitted ovality we determine the force distribution
in closed circular shape. Figures 5.27 and 5.28 show the results obtained. We used 16 elements and 1000
points per element for the forces evaluations. We tried different combination of these numbers and run

our models even with 256 elements but it did not improve the results.
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Figure 5.27 — Force distribution recovered from measured ovality comparison (usual case)
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Figure 5.28 — Force distribution recovered from measured ovality comparison (TC case)

We increased the liner roughness from 0.3 um to 3 and 10 um (which are not an acceptable
values for typical cylinders) in order to smoothen the force distribution. The results obtained are plotted
in Figures 5.29 and 5.30. Both values of roughness gave better results for the two cases. For the TC one,
the roughness of 3 um gives the best results since it smoothens the force distribution enough to be close
to the theoretical one but without losing the characteristic variations like the peaks around 30° and 330°.

However, for the usual case the best results were obtained for a roughness of 10 um. This approach could
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be generalized provided we determine a process that gives the best liner roughness to consider for any

arbitrary ring without knowing the theoretical force distribution.

— Recovered force distribution —— Recovered force distribution

- = = Theoretical force distribution - - - Theoretical force distribution
2 Force distritubion comparison usual case = Force distritubion comparison usual case
?., 1000 ?, 1000
g g
i 2
5 500 5 500
& £
il -
(=)} o
L c
x O - r O

0 90 180 270 360 0 90 180 270 360
Circumferential Direction (degree) Circumferential Direction (degree)

Figure 5.29 — Force distribution recovered from measured ovality comparison for a liner roughness of 3

(left curve) and 10 um (right curve) for the usual case
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Figure 5.30 — Force distribution recovered from measured ovality comparison for a liner roughness of 3

(left curve) and 10 um (right curve) for the TC case

Last, we tried some heuristic approaches like fitting the data with only one polynomial for the
whole ring instead of one polynomial for each element. The order of the polynomial was determined
heuristically and we opted for an 8" order polynomial for the usual case. The curvatures and force
distribution obtained from that fitted ovality are given in Figure 5.31 and in Figures 5.32 and 5.33
respectively and we can see that it gives much better results than those _obtained with the least square

method applied with our 3™ order polynomial shape functions. We also notice that tuning the liner
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roughness value lets us improve the results but without reaching the exact force distribution. However
we have no guarantee that this 1 polynomial fit approach is general for any ring design, while the curved
beam model and the 3™ order polynomials used rely on the definition of the curvature that depends on
the 1% and 2" derivatives of the radial displacement, which explains the necessity of using at least 3"

order polynomials as stated in section 2.
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Figure 5.31 — Free shape curvature comparison for fitted measured ovality with one 8" order polynomial

for the whole ring (usual case)
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Figure 5.32 — Force distribution recovered from fitted measured ovality with one 8" order polynomial for

the whole ring with a liner roughness of 0.3 (left curve) and 3 um (right curve) for the usual case
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Figure 5.33 — Force distribution recovered from fitted measured ovality with one 8" order polynomial for

the whole ring with a liner roughness of 10 (left curve) and 50 wm (right curve) for the usual case

As we can see in Figures 5.21 and 5.22 and in Figures 5.25 and 5.26 (even in Figure 5.29 and 5.30),
the free shape 2™ order derivatives and curvature mismatches occur mainly close to the tips (and hence
for the force distribution too). Therefore we tried to remove some of the results obtained close to the
ring gap and extrapolate those values based on the neighboring points. This improved the results as we
can see in Figure 5.34 and Figure 5.35 but determining the criteria defining which points to remove and
which extrapolation technique to use in order to generalize this approach was not studied. For the two
cases presented below, we remove the curvature values between 0° and 30° and between 330° and
360° and use the extrapolation based on the neighboring points. For the fit using the least square method
based on 3™ order polynomial shape functions (Figure 5.34) we used a linear extrapolation and a liner
roughness of 10 um. Compared to the results obtained from the same fit and liner roughness without
extrapolation (Figure 5.29 right graph), we improved significantly the force distribution recovered. On the
other hand, for the fit using one 8™ order polynomial for the whole ring (Figure 5.35) we used a cubic
extrapolation and a liner roughness of 0.3 um and again we observe a net improvement in the recovered
force distribution compared to the output obtained from the same fit and liner roughness without

extrapolation (Figure 5.32 left graph).
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Figure 5.34 — Extrapolated curvature and force distribution comparison from fitted measured ovality with

the least square method based on 3™ order polynomial shape functions (usual case)
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Figure 5.35 — Extrapolated curvature and force distribution comparison from fitted measured ovality with

one 8" order polynomial for the whole ring (usual case)

5.7. Conclusion

We have developed a set of consistent models to relate the force distribution in closed circular
shape, the free shape and the ovality in a way that lets us recover any two of these three distributions by
just knowing the third one. The sub-model taking the ovality as input recovers the other two distributions

for any closed shape. These models were validated theoretically by proving their consistency.

We tried to apply these models to measured ovality by looking for the ring free shape and force
distribution. Fitting the measurement with a least square model based on the 3™ order polynomial shape

functions used in our curved beam model lets us recover the ring free shapes properly for the two sets of
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data (Usual and TC). However the free shape curvature that depends on the first and second derivative of
the free shape radial coordinates was not close enough to the exact one that recovers the proper force
distribution. Some heuristic approaches based on a single higher order polynomial fit for the whole ring
ovality, or on tuning the liner roughness or on removing some of the curvature values computed close to
ring gap and using extrapolation were carried out. These techniques showed overall satisfactory results
by considerably improving the force distribution recovered. However no theoretical or at least

deterministic framework to generalize any of these approaches for any arbitrary ring was developed.

As shown previously the ovality measurement deviations provided by Mahle explain well the
difference obtained between the fitted ovality and the theoretical one. This difference is large enough to
make our model unable to recover the force distribution. Apart from other fitting techniques for the
measured ovality, a statistical treatment for repeated measures carried on the same ring or a better
experimental measurement process could be considered too. Besides, measurement related sources of
error could be investigated further by considering more advanced and probably automated measurement
techniques in the future like laser based ones to minimize human introduced deviations. Finally we may
also consider the influence of the friction when closing the ring. Indeed, computing the ring free shape
based on the momentum equations (5.19) and (5.20) assumes that the force applied on the ring is locally
normal as shown in Figure 5.3. Considering some friction models, even simple ones based on constant

friction coefficient, could give us an idea on the influence of the force tangential component on our results.
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6. Conclusion

To investigate the ring structure response, we developed a complete ring design tool based on
curved beam finite element method presented in Chapter 2 that relates the global and local behaviors of
the ring. The conformability analysis relies on the multi-scale meshing to solve the ring structural
deformation using a coarse mesh but considering the different interactions with the liner and piston on a
finer contact grid. As proven by the results presented, this method allows efficient coupling of structural
deformation of the ring and contact forces at the ring-liner and ring-groove interfaces which occur at
different length scales. Hence, we are able to relate the global and local behavior of the ring that are
affected by bore distortion, temperature distribution and gas pressure and by gap location and local
contact change with different boundary conditions such as birding respectively. The curved beam finite
element method was also extended to study the static twist under fixed ID/OD constraint and also used
to relate the ring’s free shape, its ovality and the force distribution in radial bore by determining any two
of these variables from the third one. This is the first tool, whether based on curved or straight beam

model, which is able to give this characterization.

6.1. Summary and main findings

The conformability model presented in Chapter 3 characterizes the ring statics behavior inside
the piston by considering gas pressure, dry and hydrodynamic ring-liner and ring-groove contacts along
with the thermal moment. We used that tool to understand some local processes and its effect on the
ring-liner and ring-groove conformability. In particular we looked at the effect of the radial temperature
gradient and showed that our model generalizes the existing one by considering the bending moment
along the whole ring and not restricting it at the tips. Relating the global and local behaviors of the ring,
we analyzes the effect of the ring gap location within a distorted bore on the ring-liner conformability.
This structural response affects the oil consumption and the sealing performance of the ring pack system.
Ring structural response also depends on local oil distribution on the liner and the groove flanks. In
particular we studied the effect of the oil peak location on the liner with respect to the ring gap. Although
having that peak at the ring gap makes the radial force smoother and thus limits the wearing effect, it
increases oil consumption. We also used that tool to quantify the threshold that should be used to
distinguish between the two lubrication boundary conditions. The same analysis characterizes the ring

response to local oil accumulation or bridging. Besides we carried out a study of the ring-groove
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conformability by looking at the condition that should be satisfied by the gas pressures in order to
maintain the ring-groove lower flank conformability based on the friction and the inertial forces applied
on the ring during the engine cycle, mainly for the first half of the intake stroke. This analysis gives a
quantifiable condition that ensures the ring conformability with the groove lower flank, thus preventing
oil from flowing around the ring to the groove inner region and then to piston upper parts increasing its

consumption.

In Chapter 4, we extended the curved beam model based on nodal displacements to determine
the static twist under fixed ID/OD by simulating the axial taping force carried out in the experimental set-
up. We also gave a physical understanding of the generation of the static twist from the radial pressure
based on the internal stress created by the twist of each cross section on the adjacent one resulting in an
increasing total twist angle from the ring tips to the ring back. A study of the ring’s asymmetry effect along
with sample results was also presented. This tool helps design the ring to obtain the desired static twist
in order to control oil and gas transport. Indeed, non-zero static twist makes the ring push against the top
groove lower flank and make sure the ring prevents gas leakage when its upper surface is exposed to high
gas pressure. The amplitude of the static twist can be tuned base on the dimensions of the cut off

engineered at the upper ID.

Finally, in Chapter 5 we present the four models developed to relate the ring’s free shape, its
ovality and force distribution in radial bore, which defines a complete tool that relates in any desired order
these three ring’s characterizations. The sub-model computing the free shape and force distribution using
the ovality can consider any closed shape. A theoretical validation of these four models is presented by
recovering the radial force distribution used first as an input and then recovered after being processed
through all the four models. We also recovered the free shapes of two different rings using ovality
measurement fitted with a least square method based on the shape functions used in our curved beam
model. However the computed free shape curvature was not close enough to the exact one to recover
the right force distribution in radial bore. Some heuristic approaches based on a single higher order
polynomial fit for the whole ring ovality, or on tuning the liner roughness or on removing some of the

curvature values computed close to ring gap and using extrapolation gave better results.

6.2. Future work

The ring conformability is crucial for the ring pack performances in terms of gas sealing and oil

consumption. We used our model to analyze ring structural responses to different global and local
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conditions. Further analyzes based on dimensionless number need to be carried out in order to relate
these behaviors in a more general frame work. For instance, the results presented in section 3.4.3.1 could
be improved by looking at the effect of the ring stiffness (cross section and Young’s modulus), its free
shape, the bore diameter, its distortions and the gas pressures on the results obtained. Moreover our
model could be extended to quantify the amount of oil that is scraped because of bridging and determine
the effective parameters that determine it. Besides, the ring-groove conformability given in section 3.4.3.2
can also be extended to investigate other factors that affect the results like the ring free shape, the bore
diameter, its distortions and the RPM considered. In addition the whole conformability model could be
upgraded by modelling the ring tips overlapping. This upgrading can also be applied to the static twist
under fixed ID/OD constraint model. Furthermore, that framework can be used to investigate further the
effect of applying a tapping force at other locations than on the centroid and the effect of imposing smaller

clearances constraint. These enables modelling other experimental scenarios different from the ideal one.

Finally, for the free shape, ovality and force distribution in radial bore model, the ovality
measurement deviations explain well the difference obtained between the fitted ovality and the
theoretical one. This difference is large enough to make our model unable to recover the right force
distribution. A theoretical or at least deterministic framework to generalize any of the heuristic
approaches that we tired would be of utmost usefulness. Besides, a statistical treatment for repeated
measures carried on the same ring or a better experimental measurement process could be considered
too in order to minimize the measurement related sources of error. Finally, friction could also be
considered when computing the ring free shape to have an idea on the influence of the force tangential

component on the results obtained.
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