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Abstract

In this paper, we study the relation between an anomaly-free n+1D topological order, which are often 
called n+1D topological order in physics literature, and its nD gapped boundary phases. We argue that 
the n+1D bulk anomaly-free topological order for a given nD gapped boundary phase is unique. This 
uniqueness defines the notion of the “bulk” for a given gapped boundary phase. In this paper, we show that 
the n+1D “bulk” phase is given by the “center” of the nD boundary phase. In other words, the geometric 
notion of the “bulk” corresponds precisely to the algebraic notion of the “center”. We achieve this by first 
introducing the notion of a morphism between two (potentially anomalous) topological orders of the same 
dimension, then proving that the notion of the “bulk” satisfies the same universal property as that of the 
“center” of an algebra in mathematics, i.e. “bulk = center”. The entire argument does not require us to 
know the precise mathematical description of a (potentially anomalous) topological order. This result leads 
to concrete physical predictions.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Topological orders have attracted a lot of attention in recent years among condensed matter 
physicists because it is a new kind of order beyond Landau’s symmetry breaking theory (see 
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reviews [42,38]). There are a lot of attempts at defining the notion of a topological order at the 
physics level of rigor [10,43]. A mathematically rigorous definition is still out of reach.

An n+1D (spacetime dimension) topological order is called anomaly-free if it can be realized 
by an n+1D lattice model; and is called anomalous if otherwise [28]. In this work, we are only 
interested in n+1D anomaly-free topological orders that allow gapped nD boundaries, which 
are in general not unique. If the n+1D bulk phase is not trivial, then the boundary phases are 
anomalous nD topological orders. In this work, when we refer to both anomaly-free and anoma-
lous topological orders, we use the term a potentially anomalous topological order, or simply 
a topological order. The main goal of this paper is to give a precise description of the relation 
between an anomaly-free n+1D topological order and its gapped nD boundary phases.

When an anomaly-free 2+1D topological order admits gapped boundaries, it is completely 
determined by its topological excitations (see a review [24]). The 1+1D gapped boundary phases 
are also determined by its topological excitations. The topological excitations on gapped 1+1D 
boundaries were first studied in the 2+1D toric code model [23] by Bravyi and Kitaev in [8]. 
It was later generalized to Levin–Wen models [36] with gapped boundaries in [25], where the 
topological excitations on the boundary of such a lattice model were shown to form a unitary 
fusion category C, and those in the bulk form a unitary modular tensor category which is given 
by the Drinfeld center Z(C) of C (see also [33]). But these works did not address the uniqueness 
of the bulk phase for a given boundary. In [16], it was shown model-independently that among 
all possible bulk phases associated to the same boundary phase C, the Drinfeld center Z(C) is 
the universal one (a terminal object). One way to complete the proof of the uniqueness of the 
bulk is to view the gapped boundary as a consequence of anyon condensation [4] of a given 
bulk theory D to the trivial phase. This idea leads to a classification of gapped boundaries for 
abelian 2+1D topological theories [20,41,35,5]. This result, together with results in [16], implies 
the uniqueness of the bulk for abelian 2+1D topological theories. The proof for general 2+1D 
topological orders appeared in the mathematical theory of anyon condensation developed in [26], 
in which it was shown that such a condensation is determined by a Lagrangian algebra A in D, 
and C is monoidally equivalent to the category DA of A-modules in D. Moreover, we have 
Z(DA) � D. This completes the proof of the bulk-boundary relation in 2+1D, which says that 
the 2+1D bulk phase D for a given 1+1D boundary C is unique, and is given by the Drinfeld 
center of C, i.e. bulk = center for simplicity.

Does this bulk-boundary relation (i.e. bulk = center) hold in higher dimensions? In this work, 
we propose that the answer is yes, and provide a formal proof of this relation under some natural 
assumptions. There are three key steps in this formal proof:

1. For any given nD potentially anomalous topological order Cn, we assume that there is a 
unique anomaly-free n+1D topological order, denoted by Zn(Cn), such that Cn can be re-
alized as a gapped boundary of Zn(Cn) (called unique-bulk hypothesis, see Sec. 2). We 
will refer to Zn(Cn) as the bulk of Cn. Moreover, by restricting the n+1D topological or-
der Zn(Cn) to a 1-codimensional subspace, we obtain an nD topological order, denoted 
by Pn(Zn(Cn)). We assume that Pn(Zn(Cn)) contains all topological excitations in Zn(Cn)

(a consequence of the self-detection hypothesis, see Sec. 2).
2. Although we do not know how to define a topological order rigorously, assuming the ex-

istence of such a definition and using the notion of the bulk, we can define the notion of a 
morphism between two topological orders of the same dimension (see Sec. 4). In particular, 
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we show that there is a canonical morphism ρ : Pn(Zn(Cn)) � Cn → Cn, where � denotes 
the stacking of two topological orders of the same dimension.

3. We show that the pair (Pn(Zn(Cn)), ρ), satisfies the universal property of the center of an 
algebra in mathematics (see Theorem 5.1). This implies that bulk = center.

This result is independent of how we describe the boundary/bulk phase mathematically. It is a 
non-trivial result that leads to concrete physical predictions (see Remark 5.4).

We denote n+1D topological orders by An+1, Bn+1, Cn+1, Dn+1, etc. If the spacetime di-
mension n+1 is clear from the context, we abbreviate Cn+1 as C. We denote the trivial n+1D 
topological order by 1n+1. In physics, the trivial topological order 1n+1 corresponds to the equiv-
alence class of the product states [10].

This paper is written for working condensed matter physicists, especially for those working 
in the field of topological phases of matters. In order to convey the simply idea, we try to keep 
the categorical language to the minimum. In particular, we collect all mathematically technical 
parts in Remarks and Examples. The main text should be readable to those who do not have any 
extra background in category theory beyond those basics that have already been widely used in 
condensed matter physics (see [24]).

Acknowledgments: X-G.W is supported by NSF Grant No. DMR-1506475 and NSFC 
11274192. HZ is supported by NSFC under Grant No. 11131008.

2. Basics of topological orders

In this section, we recall some basic facts about topological orders, state our key assumptions 
and set our notations.

A potentially anomalous nD topological order Cn can always be realized as a gapped boundary 
of an anomaly-free n+1D topological order En+1 [28]. In physics, it is generally believed that the 
bulk anomaly-free topological order En+1 is uniquely determined by its gapped boundary phase 
Cn. One way to see this is to note that there is no preferred length scale. In order to define the 
boundary phase Cn, we need define the equivalence class of quantum states by allowing proper 
deformation of the state in an arbitrary large neighborhood of the boundary (without closing the 
gap). As a consequence, En+1 should be unique (see [28] for details). This uniqueness is the key 
assumption of this paper. We highlight it here.

Unique-bulk hypothesis: for any given nD potentially anomalous topological order Cn, there 
is a unique anomaly-free n+1D topological order, denoted by Zn(Cn), such that Cn can be 
realized as a gapped boundary of Zn(Cn).

We denote En+1 by Zn(Cn) and refer to it as the bulk of Cn. It is clear that Zn(1n) = 1n+1. In this 
work, we often use the following picture:

to illustrate the geometric relation between the boundary phase Cn and the bulk phase Zn(Cn). 
More precisely, the n+1D bulk phase Zn(Cn) (defined on an open n-disk as the space manifold) 
is depicted by an open interval and the nD boundary phase Cn (on an open n−1-disk) is depicted 
by one of the end point of the open interval.
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Remark 2.1. We want to remark that the notion of n+1D phase of matter is a local concept which 
is defined only on an open n-disk (as the space manifold). Similarly, the boundary phase is also 
a local concept. Strictly speaking, the boundary phase should be defined on a neighborhood of 
the boundary in the bulk. Namely, the space manifold for the boundary phase is [0, ε) × Dn−1, 
where Dn−1 is an open n−1-disk. For example, when n = 2, the bulk 2+1D phase, defined on an 
open 2-disk, can be described by a unitary modular tensor category together with a central charge 
c ∈ R. Its 1+1D boundary (together with an open neighborhood in the bulk) can support a few 
different boundary phases, each of which lives on an open 1-disk as the space manifold. Different 
boundary phases are separated by higher codimensional defects [25,9]. A boundary phase can be 
transformed to another boundary phase via a pure boundary phase transition without altering the 
bulk phase [39].

It is well-known that topological excitations in an anomaly-free 2+1D topological order C3
are all particle-like (of codimension 2), and they form a unitary modular tensor category, still 
denoted by C3 (see for example [24]). The only 1-codimensional defect (or domain wall) in C3
is the trivial one. By restricting to the trivial 1-codimensional domain wall, all the particles have 
to fuse along the wall. No braiding structure remains on the wall. Therefore, restricting C3 to the 
trivial 1-codimensional domain wall, we obtain a 1+1D topological order, denoted by P2(C3), 
which is given by the same unitary fusion category as C3 but forgetting its braiding structure. We 
would like to generalize this fact to all dimensions under the following assumption:

Self-detection hypothesis: all topological excitations in an anomaly-free topological order 
Cn+1 should be able to detect themselves via double braidings [28,29].

As a consequence, Cn+1 can not contain any non-trivial topological excitations (or defects) of 
codimension 1 because two is the smallest codimension for an excitation to be braided with 
another excitation. Therefore, by restricting the topological order Cn+1 to the trivial excitation of 
codimension 1 (i.e. the trivial domain wall), we obtain an nD topological order Pn(Cn+1). In this 
restricting process, we do not lose any non-trivial topological excitations, nor any information of 
the fusion among them in n spatial dimensions, but only forget the information of their fusion in 
the n+1th direction, which further encodes the braidings among excitations of codimension 2. 
Moreover, by double folding the anomaly-free topological order Cn+1, we create a double layered 
system Cn+1 � Cn+1 with a gapped boundary phase Pn(Cn+1) (i.e. Eq. (2.5)), where � is the 
stacking operation explained below and Cn+1 is the time reverse of Cn+1 (because the orientation 
or the normal (or the time) direction of one of the two layers is flipped).

One can stack an nD potentially anomalous topological order An on the top of the another one 
Bn without introducing any coupling between the two layers as shown in (2.1). This operation is 
denoted by �. More precisely, the dashed box, when viewed from far away, can be viewed as a 
single nD topological order An �Bn with a single (but two-layer) bulk phase Zn(An) �Zn(Bn).

= (2.1)
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This stacking operation is completely symmetric. It does not matter if we put An on the top or 
the bottom of Bn because there is no coupling between them. The resulting new phase is the 
same, i.e.

An �Bn =Bn �An. (2.2)

Clearly, we have 1n � An = An. Since the bulk is unique, we should also have the following 
identity:

Zn(An �Bn) = Zn(An) � Zn(Bn).

More generally, we can glue An with Bn by a potentially anomalous n+1D phase Cn+1 to 
obtain a new nD topological order, denoted by An �

Cn+1
Bn, as shown in (2.3). More precisely, 

the dashed box, when viewed from far away, can be viewed as a single nD topological order 
An �

Cn+1
Bn, which has a single bulk phase given by A′

n �
Zn+1(Cn+1)

B′
n.1 It is clear that � =

�1n+1
. This operation �Cn+1

is not symmetric in general.2

= (2.3)

A gapped domain wall (or a wall) Mn between two anomaly-free3 n+1D topological orders 
Cn+1 and Dn+1 is itself a potentially anomalous nD topological order. Moreover, we have

Zn(Mn) = Cn+1 �Dn+1, (2.4)

where Dn+1 is the time reverse of Dn+1. As a special case, we have

Zn(Pn(Cn+1)) = Cn+1 � Cn+1. (2.5)

An nD topological order An can be viewed as a wall between Zn(An) and 1n+1.
A wall Mn between Cn+1 and Dn+1 can be fused with a wall Nn between Dn+1 and En+1 to 

obtain a wall Mn �
Dn+1

Nn between Cn+1 and En+1. This fusion operation of walls is clearly 
associative, i.e. for a wall On between En+1 and Fn+1,

(Mn �
Dn+1

Nn) �
En+1

On =Mn �
Dn+1

(Nn �
En+1

On). (2.6)

For simplicity, we denote the two sides of Eq. (2.6) by M �D N �
E O in the rest of this paper. 

We have the following identities:

1 In (2.3), note that A′
n+1 �= Zn(An) and B′

n+1 �= Zn(Bn). Actually, by the uniqueness of the bulk, as a generalization 
of Eq. (2.5), we have Zn(An) = Cn+1 �

Zn+1(Cn+1)
A′

n+1.
2 But we can rotate the left picture in (2.3) around a horizontal line pass through the middle point of Cn+1 by 180 

degrees. We obtain the same boundary phase An �
Cn+1

Bn = Bn �
Cn+1

An, where Cn+1 is the mirror reflection of 
Cn+1 along the same line and is not equivalent to Cn+1 in general. This also explains Eq. (2.2) because 1n+1 = 1n+1.

3 A more general notion of a (potentially anomalous) gapped domain wall between two potentially anomalous topo-
logical orders can be introduced (see [29, Sec. 6.1]). But we do not need it in this work.
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Fig. 1. Mn is an invertible domain wall between two anomaly-free n+1D topological orders Cn+1 and Dn+1, and Nn

is its inverse. The “×” in these pictures represents a non-trivial topological excitation in the Cn+1-phase. Note that 
the non-trivialness requires “×” to be at least 2-codimensional. These pictures depict a process of the excitation “×” 
tunneling through the Mn wall. In particular, the second “�” is obtained by annihilating Nn with the Mn on the right 
side of Nn . Similarly, there is a tunneling process from Dn+1 to Cn+1, which is inverse to it. This gives a way to identify 
the Cn+1-phase with the Dn+1-phase.

Pn(Dn+1) �
Dn+1

Nn =Nn =Nn �
En+1

Pn(En+1). (2.7)

A gapped domain wall Mn between two anomaly-free Cn+1 and Dn+1 is called invertible if 
there is a gapped domain wall Nn between Dn+1 and Cn+1 such that

Mn �
Dn+1

Nn = Pn(Cn+1), Nn �
Cn+1

Mn = Pn(Dn+1). (2.8)

Such an invertible domain wall Mn provides a way to identify Cn+1 with Dn+1 as depicted in 
Fig. 1.

Remark 2.2. Gapped domain walls between topological orders in arbitrary dimensions have not 
been extensively studied (see some discussion in [29]). They are relatively well understood in 
2+1D (see [26,16,15,34,21,1,22]) and in 1+1D (see [29]).

3. The universal property of the center of an algebra

In this section, we recall the universal property of the center of an ordinary algebra.

An algebra A over a field k is a triple (A, A ⊗ A 
m−→ A, k

ιA−→ A), where m is the multiplica-
tion map and ιA is the unit of A. We also denote ιA(1) = 1A. Its center Z(A) is defined to be the 
subalgebra:

Z(A) = {z ∈ A | az = za, ∀a ∈ A}.
This definition is, however, very limited and not useful to us at all. A better definition of the 
center of an algebra is given by its universal property (see for example [18], [37, Section 6.1.4]) 
which is applicable to many other types of algebras.

More precisely, let m : Z(A) ⊗ A → A be the multiplication map, i.e. m(z ⊗ a) = za for z ∈
Z(A) and a ∈ A. Note that m defines a unital action on A, i.e. m(1Z(A) ⊗ a) = a. Equivalently, 
we have the following commutative diagram:

Z(A) ⊗ A

m

idA

ιZ(A)⊗idA

(3.1)
k ⊗ A = A A .
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Moreover, m is an algebra homomorphism, i.e. m(z ⊗ a)m(z′ ⊗ a′) = m(zz′ ⊗ aa′) for z, z′ ∈
Z(A) and a, a′ ∈ A.

The pair (Z(A), m) satisfies the following universal property:

• Given another pair (X, X ⊗ A 
f−→ A) where X is an algebra, f is a unital action and an 

algebra homomorphism, there is a unique algebra homomorphism f : X → Z(A) such that 
m ◦ (f ⊗ idA) = f , or diagrammatically, we have the following commutative diagram:

Z(A) ⊗ A

m

X ⊗ A
f

f ⊗idA

A .

(3.2)

Indeed, if f : X ⊗ A → A is a unital action and an algebra homomorphism, then

f (x ⊗ 1A)a = f (x ⊗ 1A)f (1X ⊗ a) = f (x ⊗ a) = f (1X ⊗ a)f (x ⊗ 1A) = af (x ⊗ 1A)

for all a ∈ A, where the first and the last equalities hold because f is a unital action, the second 
and the third equalities hold because f is an algebra homomorphism. Therefore, the assignment 
x �→ f (x ⊗ 1A) defines an algebra homomorphism f : X → Z(A) rendering (3.2) commutative. 
By restricting the diagram to the subset X ⊗ 1A ⊂ X ⊗ A, we see that f is the unique map 
making the diagram commutative. This shows that the pair (Z(A), m) satisfies the universal 
property. Note that in the special case (X, f ) = (Z(A), m), we have f = idZ(A).

On the other hand, suppose (Y, g) is another such a pair satisfying this universal property. 
Then g induces an algebra homomorphism g : Y → Z(A). Since (Y, g) also satisfies the univer-
sal property, the map m : Z(A) ⊗A → A also induces an algebra homomorphism m : Z(A) → Y . 
Then g ◦ m has to be the identity map idZ(A) by the uniqueness in the universal property. Sim-
ilarly, m ◦ g = idY . Namely, g and m are inverse to each other, hence identify Y with Z(A). 
Therefore, the universal property determines (Z(A), m) uniquely up to canonical isomorphism, 
hence provides an alternative approach to define the notion of center.

Remark 3.1. The center Z(A) of an ordinary algebra A is always a subalgebra. Thus the data 
m in the pair (Z(A), m) is redundant. However, this is not the case for other types of algebras 
naturally arising in mathematics. One should keep in mind that the center of an algebra is a pair 
rather merely an algebra.

In mathematical language, the collection of algebras over k form a symmetric monoidal cat-
egory Alg. Roughly speaking, an algebra A is referred to as an object of Alg. An algebra 
homomorphism f : A → B is referred to as a morphism between the objects A and B . Two 
morphisms f : A → B and g : B → C can be composed to give a new morphism g ◦ f : A → C. 
One has an identity morphism idA : A → A for every object A. Moreover, there is a binary oper-
ation ⊗ on Alg which carries a pair of objects A, B to their tensor product A ⊗ B . This binary 
operation is symmetric, i.e. A ⊗B = B ⊗A, and unital, i.e. there is a distinguished object k such 
that k ⊗A = A for all A. This symmetric monoidal category Alg satisfies an additional property: 
there exists a unique morphism ιA : k → A for every object A. These are all the data that we have 
used to state the universal property of the center of an algebra. Once given such a symmetric 
monoidal category no matter how crazy the objects are, one is able to write down the universal 
property and define the notion of center.
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The collection of nD topological orders almost form a symmetric monoidal category. For 
example, there is a symmetric binary operation � (recall Eq. (2.2)) that carries a pair of nD 
topological orders An, Bn to An �Bn, and there is a distinguished nD topological order 1n such 
that 1n � An = An for all An. Once we know what is a morphism between two nD topological 
orders, we can define the center of an nD topological orders by applying the universal property. 
This is the subject of the next two sections.

4. A morphism between two topological orders

Although we do not have a rigorous definition of topological order, we may treat it as a black 
box and use it to give a physical definition of a morphism between two topological orders.

A morphism f : Cn →Dn between two nD topological orders Cn and Dn is a gapped domain 
wall fn, viewed as an nD topological order, between two n+1D anomaly-free topological orders 
Zn(Cn) and Zn(Dn) such that fn �

Zn(Cn) Cn =Dn.
The geometric idealization of the physical configuration associated to this morphism can be 

depicted as follows:

(4.1)

The equality fn �
Zn(Cn) Cn =Dn means that this configuration is identical to the following one:

This definition is quite unconventional in either physics or mathematics. We would like to ex-
plain the intuition behind this concept. In mathematics, a morphism between two mathematical 
objects, such as groups, rings and algebras, are often required to preserve the internal structures 
of the objects. In our case, the internal structures of a topological order should include the fusing-
braiding structures of the topological excitations. In order to preserve the internal structures, we 
realize the notion of a morphism f : Cn → Dn between two nD topological orders Cn and Dn by 
a physical process of “screening” Cn from outside. More precisely, we glue a new nD topological 
order fn to Cn by an n+1D glue Zn(Cn) such that fn �

Zn(Cn) Cn = Dn. Note that a topological 
excitation in Cn is automatically a topological excitation in fn �

Zn(Cn) Cn =Dn. In this way, the 
morphism f supplies a map from the set of the topological excitations in Cn to that in Dn. Intu-
itively, it is reasonable that this process of “screening” from outside should preserve the internal 
structures of Cn. When n = 2, we explain in Example 4.5 that this notion of a morphism exactly 
coincides with that of a unitary monoidal functor between two unitary fusion categories, which 
describe two 2d topological orders.

Remark 4.1. An analog of such a morphism in mathematics is an algebra homomorphism φ :
A → B between two matrix algebras A and B . Actually, φ always factors as A 

1C⊗idA−−−−−→ C ⊗A �
B where C is another matrix algebra. Indeed, if A is the algebra of p × p-matrices and B is the 
algebra of q × q-matrices, then the existence of an algebra homomorphism φ : A → B implies 
p divides q and C is the algebra of q

p
× q

p
-matrices. A miracle happens here is that an algebra 

homomorphism φ is encoded by an algebra C. This phenomenon becomes highly nontrivial in 
categorical settings (see Example 4.5).
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Remark 4.2. Strictly speaking, we can not say that an nD topological order is equal to another 
unless we specify how they are identified. Such an identification can be realized by the choice of 
an invertible n−1D domain wall as we did in [29, Def. 4.3]. In order to convey the simple idea, 
however, we would like to use the equality “=” for simplicity.

Two morphisms f : Cn → Dn and g : Dn → En can be composed to get a new morphism 
g ◦ f : Cn → En which is defined by the following gapped domain wall between Zn(Cn) and 
Zn(En):

(g ◦ f )n := gn �
Zn(Dn) fn.

The physical configuration associated to this composed morphism is depicted as follows:

Note that this composition law is associative by Eq. (2.6). That is, h ◦ (g ◦ f ) = (h ◦ g) ◦ f

for any morphisms f : Cn → Dn, g : Dn → En and h : En → Fn. Moreover, the trivial domain 
wall Pn(Zn(Cn)) between Zn(Cn) and Zn(Cn) defines the identity morphism idCn

: Cn → Cn

by Eq. (2.7). That is, f ◦ idCn
= f for any morphism f : Cn → Dn and idCn

◦ g = g for any 
morphism g : En → Cn. A morphism f : Cn → Dn is an isomorphism (i.e. there is a morphism 
g : Dn → Cn such that g ◦ f = idCn

and f ◦ g = idDn
) if and only if fn is an invertible domain 

wall (see Eq. (2.8)).

Remark 4.3. A morphism between two many body systems (not necessarily topological) of the 
same dimension can be introduced in a similar way (see [29, Sec. A.3]). The composition law 
is, however, not associative in general. For this reason, the result of this work does not apply to 
non-topological theories.

Example 4.4. We give a few more examples of morphisms that will be used later. Let Cn be an 
nD topological order.

1. There is a unique morphism ιCn
: 1n → Cn from 1n to Cn which is defined by the obvious 

gapped domain wall Cn between 1n+1 and Zn(Cn) as depicted below.

(4.2)

Note that Cn �1n+1
1n = Cn.

2. There is a morphism ρ : Pn(Zn(Cn)) � Cn → Cn defined by the gapped domain wall 
Pn(Zn(Cn)) � Pn(Zn(Cn)) between Zn(Cn) � Zn(Cn) � Zn(Cn) and Zn(Cn) as depicted in 
the following picture:

(4.3)
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Note that we have
(
Pn(Zn(Cn)) � Pn(Zn(Cn))

)
�
Zn(Cn) �Zn(Cn) �Zn(Cn)

(
Pn(Zn(Cn)) � Cn

) = Cn.

To summarize, the collection of nD topological orders form a symmetric monoidal category 
TOn: an object is an nD topological order Cn, a morphism f : Cn → Dn between two objects 
Cn, Dn is a gapped domain wall fn between Zn(Cn) and Zn(Dn) as defined above, and there is a 
symmetric binary operation � on TOn. Moreover, there exists a unique morphism ιCn

: 1n → Cn

for every object Cn as we have seen in Example 4.4. These data suffice to define the universal 
property of the center in TOn. Before proceeding on, we would like to take a look at the special 
case n = 2.

Example 4.5. A 2D topological order C2 is described mathematically by a unitary fusion cate-
gory, and its bulk Z2(C2) is given by the Drinfeld center of C2 (see [25,26]). In particular, the 
trivial 2D topological order 12 is described by the category of finite-dimensional Hilbert spaces 
H. Moreover, P2(Z2(C2)) is the underlying unitary fusion category of Z2(C2) by forgetting the 
braiding structure. The stacking operation � corresponds to Deligne tensor product and, more 
generally, the operation �

Z2(C2)
is the relative tensor product (see [1, Sec. 5.2]). By definition, 

the Deligne tensor product C2 �D2 of two unitary fusion categories C2, D2 is also a unitary fu-
sion category with the monoidal structure (c �d) ⊗ (c′ �d ′) := (c ⊗ c′) � (d ⊗d ′) for c, c′ ∈ C2

and d, d ′ ∈ D2.
The result from [30, Sec. 3.2] then states that a morphism between two 2D topological orders 

is nothing but an (isomorphisms class of) monoidal functor. More explicitly, if f : C2 → D2

is a unitary monoidal functor between two unitary fusion categories C2 and D2, then the cor-
responding unitary fusion category f2 is given by the category of C2-D2-bimodule functors 
FunC2|D2(D2, D2). Namely, there is a canonical monoidal equivalence:

FunC2|D2(D2,D2) �
Z2(C2)

C2 �D2.

Conversely, one recovers f from f2 as the monoidal functor C2

1f2 �
Z2(C2)idC2−−−−−−−−−→ f2 �

Z2(C2)
C2 �

D2. Note that the identity morphism idC2 : C2 → C2 is precisely the identity monoidal functor. 
Moreover, there exists a unique monoidal functor ιC2 : H → C2, the one that carries the tensor 
unit C of H to the tensor unit 1C2 of C2.

In summary, the symmetric monoidal category TO2 is described as follows. An object is a 
unitary fusion category. A morphism is an (isomorphism class of) monoidal functor. The sym-
metric binary operation � is Deligne tensor product, and there is a distinguished object H such 
that H � C2 � C2 for all objects C2 in TO2.

5. bulk = center

In this section, we prove that the bulk satisfies the universal property of the center.

Let Cn be an nD topological order and let Zn(Cn) be its bulk. First, we observe that the 
morphism ρ : Pn(Zn(Cn)) �Cn → Cn from Example 4.4 is a unital action. That is, the following 
diagram is commutative:



72 L. Kong et al. / Nuclear Physics B 922 (2017) 62–76
Pn(Zn(Cn)) � Cn

ρ

1n � Cn = Cn

ιPn(Zn(Cn)) �idCn

idCn Cn .

Indeed, this follows from the following two realizations of the same physical configuration:

= ,

where the left hand side depicts the morphism ρ ◦ (ιPn(Zn(Cn)) � idCn
) and the right hand side 

depicts the identity morphism idCn
.

Now we are ready to state and prove the main result of this paper.

Theorem 5.1. The pair (Pn(Zn(Cn)), ρ) satisfies the universal property of the center. More pre-
cisely, if (Xn, f ) is another pair, where Xn is an nD topological order and f :Xn � Cn → Cn is 
a morphism and a unital action, then there exists a unique morphism f :Xn → Pn(Zn(Cn)) such 
that the following diagram

Pn(Zn(Cn)) � Cn

ρ

Xn � Cn

f �idCn

f
Cn

(5.1)

is commutative.

Proof. Since f : Xn � Cn → Cn is a unital action, f ◦ (ιXn
� idCn

) = idCn
. The physical con-

figuration associated to this equality is depicted as follows:

= ,

(5.2)

which implies that

fn �
Zn(Xn) Xn = Pn(Zn(Cn)) (5.3)

as gapped domain walls between Zn(Cn) and Zn(Cn). Now we regard fn as a gapped domain 
wall between Zn(Xn) and Zn(Cn) �Zn(Cn). According to the definition of a morphism, Eq. (5.3)
says that fn defines a morphism f :Xn → Pn(Zn(Cn)).
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Such defined f makes the diagram (5.1) commutative. This follows from the following two 
realizations of the same physical configuration:

= ,

(5.4)

where the left hand side depicts the morphism ρ ◦ (f � idCn
) and the right hand side depicts the 

morphism f .
The uniqueness of f also follows from above equality. More precisely, if g : Xn →

Pn(Zn(Cn)) is another morphism making the diagram (5.1) commutative, then the equality (5.4), 
with the fn on the left hand side replaced by gn, holds. This new identity immediately implies 
that gn = fn, i.e. g = f . �

Note that the universal property determines the pair (Pn(Zn(Cn)), ρ) up to canonical isomor-
phism. That is, if (Yn, γ ) is another pair satisfying the universal property of the center, then the 
morphism γ : Yn → Pn(Zn(Cn)) induced by γ is inverse to the morphism ρ : Pn(Zn(Cn)) → Yn

induced by ρ hence identifies Yn with Pn(Zn(Cn)). In another word, the pair (Pn(Zn(Cn)), ρ) is 
determined by the universal property without ambiguity. Under the terminology of mathematics, 
the pair (Pn(Zn(Cn)), ρ) is the center of the nD topological order Cn.

Recall that the nD topological order Pn(Zn(Cn)) can be obtained by double folding the n+1D 
topological order Zn(Cn). To recover Zn(Cn) from Pn(Zn(Cn)), it suffices to reverse the double 
folding process, i.e. to split Zn(Pn(Zn(Cn))). This is possible if we use the additional data ρ, 
because ρn is an invertible domain wall between Zn(Pn(Zn(Cn))) and Zn(Cn) � Zn(Cn) hence 
identifies them (recall the discussions associated to Fig. 1). Namely, ρ provides a splitting of 
Zn(Pn(Zn(Cn))) thus recovers Zn(Cn). This shows that the pair (Pn(Zn(Cn)), ρ) contains the 
same information as Zn(Cn).

We reach the conclusion “bulk = center”. This result is independent of how we describe the 
boundary phase and the bulk phase mathematically.

Example 5.2. Let us proceed on Example 4.5. The morphism ρ : P2(Z2(C2)) �C2 → C2 is given 
by the monoidal functor

P2(Z2(C2)) � C2 →(P2(Z2(C2)) � P2(Z2(C2)))

�
Z2(C2) �Z2(C2) �Z2(C2)

(P2(Z2(C2)) � C2) � C2,

or equivalently, by the composed functor P2(Z2(C2)) � C2 → C2 � C2
⊗−→ C2. It is clear that ρ

is a unital action, i.e. ρ(1P2(Z2(C2)) � a) � a for a ∈ C2.
Let f : X2 � C2 → C2 be a monoidal functor which is also a unital action. In particular, 

f is equipped with natural isomorphisms f (x � a) ⊗ f (y � b) � f ((x ⊗ y) � (a ⊗ b)) and 
f (1X2 � a) � a. Then there is a monoidal functor f : X2 → C2 defined by x �→ f (x � 1C2). 
Note that the object f (x � 1C ) in C2 is naturally equipped with a half-braiding
2



74 L. Kong et al. / Nuclear Physics B 922 (2017) 62–76
f (x � 1C2) ⊗ a � f (x � 1C2) ⊗ f (1X2 � a) � f (x � a) � f (1X2 � a) ⊗ f (x � 1C2)

� a ⊗ f (x � 1C2).

In other words, f defines a monoidal functor from X2 to P2(Z2(C2)). Moreover, the following 
diagram

P2(Z2(C2)) � C2

ρ

X2 � C2
f

f �idC2

C2

is commutative. The uniqueness of f is also easy to see. This shows that the pair (P2(Z2(C2)), ρ)

satisfies the universal property of the center.
Recall that P2(Z2(C2)) is obtained from Z2(C2) by forgetting the braiding structure. As we 

have argued, one can use ρ to recover Z2(C2) from P2(Z2(C2)). Indeed, by the universal prop-

erty of the center, the composed monoidal functor μ : P2(Z2(C2)) � P2(Z2(C2)) � C2
id �ρ−−−→

P2(Z2(C2)) � C2
ρ−→ C2 determines a monoidal functor μ : P2(Z2(C2)) � P2(Z2(C2)) →

P2(Z2(C2)). The uniqueness of μ forces it to be the obvious one, the tensor product functor 
⊗, and the monoidalness of μ supplies a natural isomorphism μ(a � b) ⊗ μ(c � d) � μ((a ⊗
c) � (b ⊗ d)) for a, b, c, d ∈ P2(Z2(C2)). Then the forgotten braiding structure on P2(Z2(C2))

can be recovered by the following natural isomorphisms b ⊗ c � μ(1 � b) ⊗ μ(c � 1) �
μ((1 ⊗ c) � (b ⊗ 1)) � μ(c � b) � c ⊗ b.

Example 5.3. The only anomaly-free 1+1D topological order is the trivial one 12, which is 
described by the category of finite-dimensional Hilbert spaces H. It was explained in [29, Ex-
ample 2.25] that the only 1D topological orders can be described by a pair (H, u), where u
is an object of H. Moreover, the stacking operation is given by (H, u) � (H, v) = (H, u ⊗ v). 
Note that Z1(H, u) = H, P1(Z1(H, u)) = 11 = (H, C) and ρ : P1(Z1(H, u)) � (H, u) → (H, u)

is the identity morphism of (H, u). That is, both of Z1(H, u) and (P1(Z1(H, u)), ρ) are triv-
ial. By definition, a morphism (H, u) → (H, u′) is a 1D topological order (H, v) such that 
(H, v) � (H, u) = (H, u′); this is equivalent to a functor H → H that carries u to u′ (and car-
ries C to v). The pair (P1(Z1(H, u)), ρ) satisfies the universal property of the center trivially: 
if X1 � (H, u) → (H, u) is a morphism then X1 = (H, C) which is identical to P1(Z1(H, u)). 
This “bulk = center” relation still holds even if we include unstable 1+1D phases, which occur 
naturally in dimensional reduction processes (see [29, Example 3.7, 6.4] and also [1, Sec. 5.2]).

Remark 5.4. Theorem 5.1 is a non-trivial result, which gives concrete physical predictions. 
For example, in the 3+1D Walker–Wang model [40] built on a unitary premodular tensor 
1-category C, which can be viewed as a monoidal 2-category, Theorem 5.1 implies that the topo-
logical excitations in the 3+1D bulk shall form the braided monoidal 2-category [19,12] given 
by the monoidal center of the monoidal 2-category C constructed by Baez and Neuchl [3]. We 
believe that Walker–Wang’s construction can be generalized to 3+1D lattice models based on a 
generic unitary fusion 2-category C [29], and the bulk excitations in this conjectural model should 
form a unitary braided fusion 2-category given by the monoidal center of C. Moreover, “bulk =
center” provides a serious constraint to the precise mathematical formulation of topological or-
ders in all dimensions. It led us to propose in [29] a categorical description of the topological 
excitations in potentially anomalous topological orders in all dimensions.
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Remark 5.5. It was explained in [29] that “bulk = center” discussed in this work is only the first 
layer of the complete boundary-bulk relation, which can be summarized as the functoriality of 
the center. For 2+1D topological orders with gapped boundaries, this functoriality of Drinfeld 
center of unitary fusion categories was proved rigorously in [30].

Remark 5.6. Our main result also sheds lights on a similar boundary-bulk duality (i.e. open-
closed duality) in 2D rational CFT’s [13,27,11,7]. It will also be interesting to study its relation 
to some results in factorization algebras (see [37,14,2,17,6,1]).

Before we conclude this paper, we would like to give another important remark, which has 
already led to some new results [31,44,32].

Remark 5.7. If an n+1D anomaly-free topological order has a topologically protected gapless 
nD boundary phase and if the unique-bulk hypothesis still holds, then it is easy to see that our 
proof also works for the gapless boundary case. Therefore, the gapped bulk phase associated to a 
gapless boundary phase should also be given by the center of the boundary phase. In particular, in 
2+1D quantum Hall systems, this result suggests that there should be a mathematical description 
of the 1+1D gapless edge modes such that its center gives the modular tensor category C that 
describes the 2+1D bulk phase. In [31], it was shown that there is an enriched monoidal category 
C� (enriched by boundary CFT’s) such that its Drinfeld center is exactly C. In [32], we showed 
that such enriched monoidal categories give a mathematical description of the gapless boundary 
phases of 2+1D topological orders. Such a mathematical description also provides a way to 
extend the Reshetikhin–Turaev 2+1D TQFT down to points [44].
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