
MIT Open Access Articles

The Hierarchical Repeat Sales Model for Granular 
Commercial Real Estate and Residential Price Indices

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Francke, Marc K., and van de Minne, Alex. “The Hierarchical Repeat Sales Model for 
Granular Commercial Real Estate and Residential Price Indices.” The Journal of Real Estate 
Finance and Economics 55, 4 (August 2017): 511–532 © 2017 Springer Science+Business Media, 
LLC

As Published: http://dx.doi.org/10.1007/s11146-017-9632-1

Publisher: Springer US

Persistent URL: http://hdl.handle.net/1721.1/111842

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/111842


Journal of Real Estate Finance and Economics manuscript No.
(will be inserted by the editor)

The Hierarchical Repeat Sales Model for Granular
Commercial Real Estate and Residential Price Indices

Marc K. Francke · Alex van de Minne

Received: date / Accepted: date

Abstract This paper concerns the estimation of granular property price indices in
commercial real estate and residential markets. We specify and apply a repeat sales
model with multiple stochastic log price trends having a hierarchical additive struc-
ture: One common log price trend and cluster specific log price trends in deviation
from the common trend. Moreover, we assume that the error terms potentially have a
heavy tailed (t) distribution to effectively deal with outliers. We apply the hierarchi-
cal repeat sales model on commercial properties in the Philadelphia/Baltimore region
and on residential properties in a small part of Amsterdam. The results show that
the hierarchical repeat sales model provides reliable indices on a very detailed level
based on a small number of observations. The estimated degrees of freedom for the
t-distribution is small, largely rejecting the commonly made assumption of normality
of the error term.

Keywords Commercial real estate · Residential real estate · Property Price Indices ·
Thin markets · Bayesian inference · Kalman filter · State space models

1 Introduction

Real estate is the largest single class of investment in the world and the biggest source
of household wealth in most industrialized countries. Estimating the risk and return
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of real estate is therefore important for underwriters, investors, policy makers and
households alike.

Increasing attention has been paid to track real estate market movements on a de-
tailed level (Constantinescu and Francke, 2013). Granular indices give a better repre-
sentation of the space and asset market the properties are traded in and are thus more
informative. Also, having more granular indices enables tradable derivatives based
on these indices (Bokhari and Geltner, 2012; Deng and Quigley, 2008). Estimating
granular indices is challenging, because real properties are infrequently traded and
are – especially in the case of commercial real estate or single-family housing – very
heterogeneous (Deng et al, 2012, 2014). Geltner and Ling (2006) discuss the general
trade-off that arises because of this: more granular indices are more useful, but ceteris
paribus also more noisy, so less reliable and as a consequence, less useful.

In order to address this trade-off, we introduce a Hierarchical Repeat Sales Model
(HRS). The HRS is a repeat sales model with multiple stochastic log price trends hav-
ing a hierarchical additive structure: one common log price trend and cluster specific
log price trends in deviation from the common trend. Both the number of clusters and
the number of entries within a cluster are flexible. For example, consider the clusters
property type and region. The log price trend for property type A in region B is the
sum of the common log price trend, the property type A log price trend and the region
B log price trend. The specification of the stochastic trends is flexible, for example
a local linear trend model for the common trend and random walks for the cluster
specific trends. The stochastic trends replace the commonly used fixed coefficients of
time dummy variables.

The HRS basically consists of two sets of equations. The first equation is the
measurement equation which relates the individual property log returns to changes in
log price levels. The second set of equations is the transition equation which specifies
the structure of the common and cluster trends. The hierarchical trend structure has
successfully been applied in hedonic price models, see Francke and De Vos (2000),
and Francke and Vos (2004), but has never been applied in repeat sales models. The
HRS can be interpreted as a generalization of the structural time series repeat sales
model (Francke, 2010), in which only a common stochastic trend has been specified.

In order to demonstrate the strength of the hierarchical repeat sales model, we ap-
ply it in two different markets. The first application is commercial real estate (office,
retail, industrial and multi-family) in the Philadelphia/Baltimore region in the United
States, and the second application is owner-occupied housing (single-family housing
and apartments) in a small area in Amsterdam in the Netherlands. We are able to
estimate reliable quarterly price indices over a period of 15 years using less than 100
transaction pairs per index on average, about 3 transactions per quarter.

As a robustness check we also estimate our main model on (sub)markets with
plenty of observations in itself first; multi-family in Manhattan (New York) and Los
Angeles. Subsequently we (uniformly) sample without replacement 25% of the data,
which makes the data scarce again. Our results show that omitting 75% of the data
does not affect our indices considerably.

In this paper we make multiple contributions to the field of index construction.
Firstly, we imply a hierarchical trend structure to the repeat sales model. The main
benefit of using a hierarchical structure is that an aggregate dataset can be used to
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estimate indices on a more granular level, and thus use more information efficiently.
Hierarchical trends have so far not been applied in repeat sales models, because the
estimation is technically much more challenging compared to hedonic price models.

Secondly, we show that it is more appropriate to assume a t-distribution for the
error term, instead of the more generally used normal distribution. This holds in spe-
cific for small samples, as is the focus in our application. The estimated degrees of
freedom of the t-distribution are mostly between 2.5 and 3, very clearly rejecting the
normal distribution, and the model fits the data better by a large margin.

Thirdly, our results reveal that – indeed – there are large differences between the
different real estate markets, even though (spatially) they are relatively close by. For
example, Baltimore had consistently more price appreciation during our analyzed
period than Philadelphia. Also, the results from Amsterdam show that single-family
homes had a higher risk-return profile compared to apartments, which is consistent
with earlier findings.

Finally, to the best our knowledge, this paper is the first real estate application
which is estimated using a Markov Chained Monte Carlo algorithm. In our case we
used Gibbs sampling.

The remainder of this paper is structured as follows. Section 2 gives the evolution
of repeat sales models in markets with small number of observations and our pro-
posed methodology. Section 3 first provides the data and some descriptive statistics.
Next the results of the models are presented. Finally Section 4 concludes.

2 Model specification and estimation

2.1 The Repeat Sales Model in Small Samples

The existing literature on real estate index construction has been developed initially
around the hedonic (Rosen, 1974) and the repeat sales methodology (Bailey et al,
1963). The main benefit of the repeat sales over the hedonic model, is that the first
is less affected by specification errors1 and characteristics that are not observed in
the data. This issue is exacerbated in markets with heterogeneous goods, such as
commercial real estate or single-family housing.2 On a negative side, only selling
prices of properties sold more than once are included in a repeat sales model: all
single-sales are left out. The issue that (repeat) sales are a non-random selection of
the entire property stock (sample selection bias) is addressed by Gatzlaff and Haurin
(1997), Hwang and Quigley (2004), and Chinloy et al (2013). In this article, however,
we do not address the problem of sample selection bias.

1 Although one important implicit assumption in the repeat sales model is that the characteristics and
their impact on prices do not change over time. This assumption is obviously not correct for the age of
the property (Harding et al, 2007). In the repeat sales model the effect of age is embedded into the models
estimates of the price levels, see Cannaday et al (2005).

2 For example, in an earlier version of this research we also fitted a hedonic price model with hierar-
chical trends on data for commercial real estate (including single sales), using characteristics like structure
size, land size and age of the structure. The model contained property type and location specific cluster
trends. The root mean squared errors for the different analyzed regions were in the range of 0.5 to 0.6.
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The hedonic price model with time dummy variables (pooled regression) is given
by

pit = µit +Xitβ +Zitγ + εit , (1)

where pit is the log transaction price of property i, i = 1, . . . ,nt at time t, t = 1, . . . ,T ,
Xit are observed characteristics and Zit are unobserved characteristics, with corre-
sponding parameters β and γ . µt is a time varying constant, capturing the log price
movement over time. The error term εit is typically assumed to be independently
normally distributed with mean zero and variance σ2

ε .
Under the assumptions that both the observed and unobserved variables X and Z

do not change over time, we can take ‘first differences’ for pairs of sales. The repeat
sales model is now provided by

p̃i = pit − pis = µt −µs + εit − εis = ∆ µs+1 + · · ·+∆ µt + εit − εis, (2)

where s represents the time of buy (as opposed to time of sale t, with s < t), and
µ1 = 0 for identification. Please note that we follow the broad strand of literature by
assuming pair fixed effects, instead of a property fixed effects, leading to zero corre-
lation between pairs of sales of the same property. Traditionally, the specification of
the time effect is simply a dummy variable approach with fixed parameters µt .

Eq. (2) can alternatively be expressed as(
pis
pit

)
=

(
µs
µt

)
+

(
1
1

)
δi +

(
εis
εit

)
, (3)

where δi is a pair fixed effect.3 Conditional on δi, the estimate of µt is the average
selling price at time t. This means that the estimate of µt does not depend on pre-
ceding and subsequent periods. However, the estimate of µt is sensitive to transaction
price noise, in particular in small samples when the number of transactions per period
is low. This happens, for example, with local price indices, short time periods, and/or
in case of severe outliers, when the transaction price differs from its true market
value by a large amount. The resulting price indices may then become very volatile
(Francke, 2010).

Multiple approaches have been proposed in order circumvent volatile indices in
small samples. One method is to ‘simply’ smooth the estimated index µ̂t ex post.
Examples can be found in Cleveland (1979) and Clapp (2004), who both use a form
of the local polynomial regression to smooth the index. The main drawback of this
two-step procedure is that it does not take into account the uncertainty in the esti-
mates of µt . One can also replace the dummy variables by a deterministic trend, like
cubic or piecewise linear splines. Thorsnes and Reifel (2007) for example, use the
Fourier form approach, to estimate a hedonic model. Bokhari and Geltner (2012) use
a two-stage data frequency conversion procedure in a repeat sales model, by first esti-
mating lower-frequency indices (using the Case and Shiller methodology) staggered
in time, and then applying a generalized inverse estimator to convert from lower to

3 Please note that when we take the difference of the bottom and the top row of Eq. (3), the pair fixed
effect δi cancels out, so we loose one observation for one unknown parameter. Estimation results for µt
based on Eq. (2) and Eq. (3) will therefore be identical.
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higher frequency return series. Recently authors have also created ‘artificial pairs’
(thus increasing the number of observations) by matching transactions based on their
hedonic characteristics, see for example McMillen (2012); Guo et al (2014).

Goetzmann (1992) introduced into the real estate literature what is perhaps the
major approach to date for addressing small-sample problems in property price in-
dices, namely, the use of Bayesian inference within repeat sales regression models.
Goetzmann (1992) specifies the prior distribution for the periodic returns in Eq. (2)
to be normally distributed, ∆ µt ∼ N(κ,σ2

η), implying a random walk with drift for
the log price index µt : µt+1 = µt +κ +ηt . The variance parameters of the model (the
signal σ2

η and noise σ2
ε ) are estimated in a first step and ‘plugged in’ to the second

step of the Bayesian procedure, which can lead to biased estimates of the variances.4

Francke (2010) generalized this model by assuming that the trend component
follows a local linear trend, and by providing the loglikelihood function ℓ(p̃;σ2

η ,σ2
ε )

to estimate the signal σ2
η and noise σ2

ε directly (for example by maximum likelihood),
avoiding the somewhat ad hoc twostep procedure proposed by Goetzmann (1992).
The local linear trend repeat sales model is given by

pit − pis = µt −µs + εit − εis, εit ∼ N(0,σ2
ε ), (4)

µt+1 = µt +κt +ηt , ηt ∼ N(0,σ2
η), (5)

κt+1 = κt +ζt , ϑt ∼ N(0,σ2
ζ ). (6)

Note that the local linear trend is very flexible and includes different specifications,
like random walk (σ2

ζ = 0 and κ1 = 0), random walk with drift (σ2
ζ = 0) (Goetz-

mann, 1992) and smoothed trend (σ2
η = 0), see Harvey (1989) for a description of the

different functional forms.
The local linear trend repeat sales model is an example of a structural time series

model. A structural time series model is a model in which the trend, error terms, plus
other relevant components, are modeled explicitly. In contrast to the dummy variable
approach, the structural time series model enables the prediction of the price level
based on preceding and subsequent information. This means that even for particular
time periods where no observations are available, an estimate of the price level can
be provided. State space models have also been successfully used to estimate hedonic
price indices, see Schwann (1998), Francke and De Vos (2000) and Francke and Vos
(2004). We built on the work of Goetzmann (1992) and Francke (2010) by estimating
the repeat sales model in a structural time series framework.

4 In matrix notation, Eq. (2) can alternatively be expressed as p̃ = X∆ µ + ε̃ , where X is a matrix with
row vectors Xi, having ones for the columns representing time s+1 up to t, and zeros elsewhere. The error
term is distributed as ε̃ ∼ N(0,Ω), where the variance-covariance matrix is Ω = 2σ2

ε I (or an alternative
specification depending on the time between sales). The prior for ∆ µ is provided by ∆ µ ∼ N(κ j,σ2

η I),
where j and I are a vector of ones and the identity matrix with appropriate dimensions. Conditional on
the variance parameters (σ2

η ,σ2
ε ), the posterior for ∆ µ is given by ∆ µ|(p̃,σ2

η ,σ2
ε ) ∼ N(m∗,W ∗), where

W ∗ = (X ′Ω−1X + 1
σ2

η
(I − 1

T−1 j j′))−1, and m∗ =W ∗X ′Ω−1 p̃.
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2.2 The Hierarchical Repeat Sales Model

A way to extend the repeat sales model is to imply a hierarchical trend structure.
The main benefit of using a hierarchical structure is that an aggregate dataset can
be used to estimate indices on a more granular level, and thus use more information
efficiently. This was done for the hedonic price model in Francke and De Vos (2000)
and Francke and Vos (2004). In this model µt represents a common trend, while we
add cluster specific trends. The Hierarchical Repeat Sales Model (HRS) is specified
by

λ j
t+1 = λ j

t + ς j
t , ς j

t ∼N(0,σ2
ς j In j), (7)

pit − pis = µt −µs +
k

∑
j=1

d j
i (λ

j
t −λ j

s )+ εit − εis, εit ∼N(0,σ2
ε ). (8)

The vectors of cluster trends λ j
t , j = 1, . . . ,k, are modeled as (random walk) devi-

ations from the common trend µt , where k is the number of clusters. The common
trend is specified as a local linear trend model, given by Eqs. (5)–(6).5 The number of
elements in cluster j is n j, so vector λ j

t has dimension n j. The selection row vector
d j

i has dimension n j and consists of zeros and a one to select the appropriate element
of cluster j for observation i. In j is an identity matrix with dimension n j. We impose
µ1 = λ j

l,1 = 0, j = 1, . . . ,k, l = 1, . . . ,n j for identification reasons. The total number
of different price trends that can be calculated from the HRS is Π k

j=1n j.

In our empirical application we will use two clusters, one for property types λ 1
t

and one for locations λ 2
t . For example, for the US market we have 4 property types

– Multi-family, Industrial, Office, and Retail – and 3 locations – Baltimore, Philadel-
phia and Rest. In total 4×3 = 12 price indices are calculated by HRS. The index for
offices (Off) in Philadelphia (Phi) can be calculated as the sum of the common trend,
an office specific trend and a Philadelphia specific trend, µt +λ 1

Phi,t +λ 2
Off,t .

The Hierarchical Repeat Sales (HRS) has multiple benefits over the structural
time series repeat sales model (STRS) by Francke (2010). First of all, it uses more
information for each trend, resulting in being able to estimate more reliable indices
in markets with even smaller numbers of observations. In the extreme, with no ob-
servations at all in a specific sub-market (combinations of elements from the cluster
trends), it is still possible to produce an index based on the common trend and the
trends for location and property type. Secondly, indices estimated by the HRS are
less likely to ‘break’. A break is defined as an index which ends prematurely, due to
missing data at the end (or start) of the sample. Even though the STRS can handle
missing observations for earlier time periods, no price level will be provided in the
final (initial) period(s) if corresponding data is missing.6

5 Alternative specifications are also possible.
6 Note that if there are no observations at all for any of the trends at the end of the sample, the HRS will

still ‘break’.
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2.3 More Flexible Specifications of the Hierarchical Repeat Sales Model

Note that the variance of ς j
t in Eq. (7) is assumed to be equal for all elements within

a cluster. Another assumption is that the variance of the noise term εit in Eq. (8)
does not vary over combinations of clusters. In this subsection we will relax both
assumptions: all elements are allowed to have their own variances.

Another generalization is that we replace the normality assumption of the error
term ε by a potentially heavy-tailed distribution, the t-distribution εit ∼ tν(0,σ2

ε ),
where ν is the degrees of freedom. The t-distribution has fatter tails compared to the
normal distribution, and can better deal with outliers. For large values of ν (ν → ∞)
the t-distribution coincides with the normal distribution. If ν = 2 the error distribution
collapses to a Cauchy distribution. Only for ν > 2 the second moment exists. The
degrees of freedom will be treated as a parameter to be estimated from the data.

Table 1 provides an overview of the different models that will be applied in the
empirical section. The local linear trend methodology as proposed by Francke (2010)
is denoted STRS. The Hierarchical Repeat Sales model is denoted HRS. The suffix
FE (VE) is added when all elements in vector ς j

t have the same (different) vari-
ance(s). The VEN model has in addition different variances of the error term εt for
combinations of clusters. For all models, except for the HRS FEn model, we assume
a t-distribution for the error term εt .

Table 1: Summary of the Models

Model Structural t-dist. Use all Element specific Element specific Equations
Time Series data variance of ς j

t variance of εt

STRS X X NA NA Eqs. (4)–(6)
HRS FEn X X Eqs. (5)–(8)
HRS FE X X X Eqs. (5)–(8)
HRS VE X X X X Eqs. (5)–(8)
HRS VEN X X X X X Eqs. (5)–(8)

2.4 Estimation

Hierarchical trends have not previously been applied to repeat sales models, mainly
because of the more complex estimation procedure compared to hedonic price models
with a hierarchical trend structure. In this section we provide two different estimation
methods for the hierarchical repeat sales model. The first is by using state space
methods (Kalman filter) and the second by Markov chain Monte Carlo techniques
(Gibbs sampling).

For the Kalman filter we cannot use the ‘first difference’ specification (8), because
the individual return data depend on the difference of the state vector in two moments
in time, with varying time spans. The Kalman filter assumes that the state vector is
a Markov chain. Therefore we have to use the alternative specification including pair
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or property fixed effects δ , such that the measurement equation does not depend on
preceding states,

pt = Dδ
t δ +µt +

k

∑
j=1

D jλ j
t + εt , εt ∼N(0,σ2

ε I), (9)

where Dδ
t is a selection matrix for the pair or property fixed effects, and the state

vector αt is defined by αt = (µt ,κt ,λ 1
t
′
, . . . ,λ k

t
′
)′, see Eqs. (5)–(7). Define ψ as the

vector of all variance parameters in the state and measurement equations.
The downside of this specification is that we have to deal with a (large amount)

of pair or property fixed effects δi. This can be done efficiently by the augmented
Kalman filter (De Jong, 1991). This filter gives estimates of the state vector αt condi-
tional on all information up to time t and ψ .7 Moreover, the augmented Kalman filter
produces the loglikelihood ℓ(p;ψ). The loglikelihood can be used to obtain maxim-
imum likelihood estimates of ψ or it can be used for Bayesian inference. Estimates
of the state vector conditional on the full sample and ψ are computed by the Kalman
smoother.

The standard (and augmented) Kalman filter assumes that the error terms in both
the measurement and transition equations are normally distributed. Shephard (1994)
and Durbin and Koopman (2012)[for details see Chapter 10.8.3] provide efficient
ways to estimate state space models with t-distributions for the error terms in the mea-
surement and transition equations. For example, if the error term in the measurement
equation εit has a t-distribution with ν(> 2) degrees of freedom and variance σ2

ε , then
it has the representation εit = (ν − 2)1/2ε∗it/c1/2

it , where 1/2cit ∼ Gamma(ν/2,ν/2)
and ε∗it ∼ N(0,σ2

ε ) are independent. Conditional on cit the model is linear Gaussian
and the standard (augemented) Kalman filter can be applied. Markov chain Monte
Carlo methods can be used to integrate c out. An identical procedure can be used for
t-distributed error terms in the transition equation.

In the second estimation method we don’t apply state space techniques, and use
directly the model formulated in ‘first differences’ given by Eqs. (5) – (8), avoiding
the inclusion of the property or paired fixed effects δ . The second estimation method
is full Bayesian inference, where non-informative priors are specified for all variance
parameters as σ−2 ∼Gamma(0.001;0.001). It is assumed that the degrees of freedom
ν in the t-distribution has an exponential distribution: ν ∼ Exp(1/3). Although a
full Bayesian analysis can be based on the loglikelihood function produced by the
Kalman filter and the specified prior distributions for the variance parameters and the
degrees of freedom, we used the program WinBUGS (Bayesian Analysis Using Gibbs
Sampling), see Lunn et al (2000). The main reason is the flexibility of the program:
It only requires the model specification (in the ‘first difference’ representation (8), so

7 The augmented Kalman filter requires first running the standard Kalman filter assuming δ = 0, and
subsequently rerunning a part of the Kalman filter for each column of matrix Dδ

t , where this column is
treated as observation vector (Durbin and Koopman, 2012, see Chapter 5.7). Note that in case of pair fixed
effects each column of Dδ

t has only 2 observations over the total time period, the rest has missing values, so
the computations are really fast. A computational restriction is that the augmented Kalman filter requires
taking the inverse of a symmetric matrix with dimension the number of pair or property fixed effects.
Estimation code has been written in Ox, using the package SsfPack (Koopman et al, 2008), allowing for a
maximum of 25,000 property or pair fixed effects.
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without the pair or property fixed effects) and the specification of the priors. Appendix
C provides an excerpt of the actual WinBUGS code used (Sturtz et al, 2005). All
presented estimation results are from WinBUGS.

3 Application

3.1 Data and Descriptive Statistics

The Kadaster (Dutch Land Registry Office) provided the transaction data of individ-
ual houses in the Netherlands. The Kadaster is the official institution responsible for
the registration of real estate properties. The Kadaster together with Statistics Nether-
lands construct an index based on the Sales Price Appraisal Ratio (SPAR) method
(Bourassa et al, 2006). Price indices are provided on a national level as well as on
regional (including Amsterdam) and house type levels. More details on the index
construction method and the database can be found in De Vries et al (2009). In this
research we limit ourselves to a small area in Amsterdam-West, consisting of only
five four-digit zip code areas. This area is of interest for us as it has a good mix of
single-family housing and apartments (whereas Amsterdam is usually dominated by
apartments). See Appendix A for more details on the exact location in Amsterdam.

Real Capital Analytics (RCA) provided us with repeat sales data of commercial
real estate for the Philadelphia/Baltimore region, as defined by RCA. The Philadel-
phia/Baltimore region consists of the entire Delaware Valley and Baltimore metro re-
gion. It thus spans parts of the states: Pennsylvania, Maryland, Delaware and New Jer-
sey.8 RCA publishes a repeat sales index on a quarterly basis for the entire Philadel-
phia/Baltimore region, based on the frequency conversion methodology described by
Bokhari and Geltner (2012).

In both cases, the total number of pairs is low: 915 pairs for our 5 zip codes
in Amsterdam-West and 795 pairs for the combined Philadelphia/Baltimore region,
between 2000 and the first quarter of 2016. Since we are interested in a quarterly
index, we end up with an average of 28 transactions per quarter in Amsterdam-West
and 24 transactions per quarter in Philadelphia/Baltimore. The resulting ‘standard’
Bailey et al (1963) repeat sales quarterly index for both regions is shown in Figure 1.

Both indices are very volatile (noisy) and other estimation techniques would prob-
ably fit the data better. Both indices show high price appreciation before the crisis,
followed by a subsequent price drop and subsequent recovery. The price drop in
Amsterdam is observed a few years after the start of the crisis. The most common
explanation is the high mortgage debt levels of Dutch households and subsequent
negative equity, which resulted in a big drop in transaction volume, but less in prices
(Genesove and Mayer, 1997).9

8 Examples of cities in this region (apart from Baltimore and Philadelphia) are: Columbia, Cherry Hill,
Exton, Jessup, Wilmington, Annapolis, Bensalem, Hanover, West Chester, Elkridge, King of Prussia and
Marlton.

9 The allowed max Loan-to-Value, has been over 100% for a long period of time in the Netherlands.
Combined with mortgage interest rate deductibility, this resulted in average LTVs at origination of over 1
(Brueckner, 1994) and a third of all households who are ‘under water’ as of 2013.



10 Marc K. Francke, Alex van de Minne

8
0

1
0
0

1
2
0

1
4
0

200001 200204 200407 200610 200901 201104 201307 201510

(a) Philadelphia/Baltimore

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

200001 200204 200407 200610 200901 201104 201307 201510

(b) Amsterdam West

Fig. 1: Bailey et al (1963) indices for both regions

In our research we are interested in even more granular indices. For example, it is
expected that the Philadelphia market is different (at least to a certain extent), than the
Baltimore market. Also, offices, retail, industrial and multi-family housing complexes
have their own demand and supply characteristics. The same goes for ‘the’ housing
market in Amsterdam-West. Housing in every zip code, and per property type (apart-
ment and single-family housing) can have a different price appreciation, volatility,
etc. Obviously, the number of pairs observed is even lower per sub-market. Table 2 –
3 give the number of pairs per sub-market for both Amsterdam and Philadelphia/Bal-
timore respectively.10

Table 2: Number of pairs in Amsterdam-West

Zip code Single-family Apartment Total

1063 61 95 156
1064 75 137 212
1065 27 37 64
1066 148 124 272
1068 5 206 211
Total 316 599 915

10 Note that we are mainly interested in the differences between Philadelphia and Baltimore for the
commercial indices. We ‘naively’ grouped all other cities into one ‘rest’ category. However, in reality, some
of the ‘rest’ cities might be considered to be part part of either Philadelphia or Baltimore. Examples are the
cities of Cherry Hill and Marlton who are in the agglomerate of Philadelphia. Still, the ‘best’ subdivision
of geographical areas is out of the scope of this paper and this way we keep sufficient observations in the
‘rest’ category.
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Table 3: Number of pairs Philadelphia/Baltimore

Metro Multi-family Industrial Office Retail Total

Baltimore 99 111 60 44 314
Philadelphia 77 88 122 45 332
Rest 37 44 42 26 149
Total 213 243 224 115 795

We end up with an average of only 90 pairs per market, or 3 transactions on aver-
age per quarter for both markets. However, note that the HRS uses information of the
entire region and all property types, but still produced the individual indices. In other
words, the number of pairs used by the HRS is still 795 for Philadelphia/Baltimore
and 915 for Amsterdam-West. This is inherently different from the ‘standard’ Bailey
et al (1963), Case and Shiller (1987) and ‘Bayesian’ Goetzmann (1992) and Francke
(2010) repeat sales methodologies.

3.2 Comparison of the Index Methodologies

In this Section the results of 5 different methodologies are compared, see Table 1 for
an overview. Figures 2 and 3 show the price indices for the different combinations of
location and property type in Philadelphia/Baltimore and Amsterdam-West respec-
tively. Note that we suppress the indices for the ‘rest’ area in Philadelphia/Baltimore
to conserve space, however the indices are available upon request. The indices of the
HRS FEn model for both Philadelphia/Baltimore and Amsterdam-West are presented
in Appendix B. Table 4 shows the estimation results of the variance parameters and
the degrees of freedom ν for different data sets and models. Table 5 provides some
descriptive statistics of the (log) returns of the indices: mean, absolute mean, standard
devation, autocorrelation and correlation between sub-indices.

For the Philadelphia/Baltimore region it is evident (Figure 2 and Table 4 and 5)
that the STRS model results in more smooth indices. The standard deviation of the
quarterly returns is 2.3% on average for the STRS model compared to 3.5% for the
HRS type models (see Table 5). An obvious reason for the smoothness in the STRS
indices is the following: unlike the HRS index, the STRS index is based only on
observations in the specific cluster. When very little data is available in a specific
cluster, the STRS model just interpolates (according to the local linear trend struc-
ture) for the periods without observations, resulting in relatively smooth indices. This
‘over-smoothing’ is not evident in Amsterdam-West. However, it is difficult to com-
pare the STRS models with the results from the HRS models, as so many indices
‘break’ using the first methodology. Finally, the timing of the STRS models seem off
at certain points in time. In both Philadelphia/Baltimore and Amsterdam-West, the
big downturn is a full year earlier than one would expect on average.

One issue with the HRS FE model is that the sub-indices seem have a very high
correlation, see Table 5. In Amsterdam-West, the correlation of the (log) index returns
is even close to 1. The reason for this behavior is that when subclusters have only a
few observations, the cluster indices from HRS FE model will closely follow the
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common trend. The correlation drops considerably when allowing for a more flexible
structure (VE and VEN models).

The HRS VE and VEN results reveal that in Philadelphia/Baltimore offices and
retail are the most volatile markets, and multi-family the least. Within Amsterdam-
West, the largest differences are between the zip codes and not so much between the
property types (single family versus apartments).

The estimates of the scale parameter σε for the individual STRS models coincide
largely with those of the HRS VEN model. This holds for both Philadelphia/Balti-
more and Amsterdam-West, see Figure 4. On average σ̂ε is larger in the Philadelphia
market (compared to Baltimore) and for offices and retail. There is a large difference
in noise between property types in Amsterdam-West. In all cases single family houses
have a larger σ̂ε compared to apartments. This is not surprising as single family hous-
ing is more heterogeneous than apartments in general.

Interestingly, the difference between trends from the model with a normal dis-
tribution for the error term in the measurement Equation (HRS FEn), and its t-
distributed counterpart (HRS FE), is quite large. For example, the Philadelphia of-
fice index ends at 120 (100) for the t-distributed (normally distributed) version. The
multi-family index in Baltimore ends at 200 (220) for the t-distributed (normally
distributed) version. In general the results clearly show that the errors in the mea-
surement equation follow a t-distribution. In almost all cases the estimated degrees
of freedom (ν) are between 2.5 and 3. Only in Amsterdam-West the error terms in
the STRS and HRS VEN models are somewhat closer to normality.

Finally note that the Deviation Information Criterion (DIC) (Spiegelhalter et al,
2002) is vastly superior for the HRS FE with a t-distribution over the normal dis-
tribution for both Philadelphia/Baltimore and Amsterdam-West. The DIC is lowest
for the HRS VEN model in Philadelphia/Baltimore and for the HRS VE model in
Amsterdam-West.11

3.3 Robustness

In this Section we will estimate our model (the HRS VEN) on large (sub)markets with
plenty of observations. Subsequently we (uniformly) sample without replacement
25% of the data, which makes the data scarce again. This random sampling is done
three times. The idea is to compare the different indices and assess to what extent
the indices based on the ‘scarce’ dataset follow the index on the full sample. We also
include the standard Bailey et al (1963) repeat sales index (using the full sample of
the submarket) for comparison.

More specifically, we are interested in a multi-family index for both Manhattan
(739 observations) and Los Angeles proper (1,388 observations) using - again - the
RCA data.12 The multi-family properties are placed in a property type cluster with
retail, industrial and offices for both indices. The location cluster for the Manhattan
index consists of the (other) New York City boroughs and the rest of the New York

11 As the STRS model is estimated over different subsamples we are not able to make a comparable DIC
statistic.

12 These submarkets are selected as they have the highest number of counts in the RCA data.
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Table 4: Estimation results from repeat sales models over different data samples

1. Philadelphia/Baltimore
STRS HRS FE HRS VE HRS VEN HRS FEn

DIC 798 773 753 968
ν 3.702a 2.647 2.583 3.162
σε 0.298a 0.266 0.259 0.292b 0.445
ση 0.058a 0.039 0.039 0.037 0.041
σζ 0.025a 0.021 0.021 0.020 0.021
σςLocation 0.035 0.050b 0.048b 0.031
σςProperty Type 0.027 0.047b 0.041b 0.031

2. Amsterdam-West
STRS HRS FE HRS VE HRS VEN HRS FEn

DIC -1,565 -1,598 -1,503 -1,300
ν 6.266a 2.709 2.722 5.741
σε 0.142a 0.071 0.070 0.133b 0.120
ση 0.042a 0.020 0.020 0.019 0.022
σζ 0.026a 0.015 0.015 0.015 0.016
σςLocation 0.010 0.023b 0.022b 0.013
σςProperty Type 0.012 0.017b 0.017b 0.014

STRS = Structural Time Series model, HRS = Hierarchical Repeat Sales model, FE = Fixed Variances within a
cluster, VE = Varying Variances within a cluster, VEN = both varying variances within a cluster and varying noise
per combination of clusters. Lower case n represents a model with a normal distribution for the error in the measure-
ment Equation. DIC stands for Deviance Information Criterion and ν are the estimated degrees of freedom in the
t-distribution.
a These are averages of the results for the STRS model over all the different subsets of data. See Figure 4 for the
individual estimates.
b These numbers represent the average of the estimates within the model. See Figure 4 for the individual estimates.

metro area (according to the RCA definition, which closely follows the official MSA
of New York). Inland Empire and Orange County are the other regions in the location
cluster for the LA index. The total number of observations, after adding the other
property types and locations, is 3,417 (4,724) for the New York index (Los Angeles
index).

Note that we did the sampling on the ‘full’ markets (all locations and property
types). This makes the underlying data of the different runs even more random. For
example, one of the New York runs only had 100 Manhattan multi-family observa-
tions, whereas in another run the number of observations for said submarket was
195. The exact number of observations, the descriptive statistics of these markets and
the estimation results (of the hyperparameters) are omitted for brevity (however are
available upon request). The resulting indices are displayed in Figure 5.

First, Figure 5 reinforces earlier findings in the field of structural times series in
that the HRS is less volatile and more positively autocorrelated than the ‘standard’
Bailey et al (1963) repeat sales index. Counterintuitive to prior expectation is that the
‘standard’ repeat sales index for Los Angeles is (a lot) more volatile than the New
York index, even though there are twice as many observations. This might be caused
differences in heterogeneity of the properties between the markets. More interestingly
however, is that omitting 75% of the data does not affect the index considerably.
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Table 5: (log) Return statistics

1. Philadelphia/Baltimore
STRS HRS FE HRS VE HRS VEN HRS FEn

mean 0.008 0.006 0.006 0.006 0.005
|mean| 0.020 0.027 0.033 0.030 0.024
sd.dev 0.023 0.032 0.040 0.036 0.029
ACF.1 0.674 0.557 0.458 0.485 0.635
ACF.6 0.110 0.129 0.073 0.116 0.106
Correlation 0.331 0.886 0.732 0.773 0.919

2. Amsterdam-West
STRS HRS FE HRS VE HRS VEN HRS FEn

mean 0.008 0.006 0.006 0.005 0.006
|mean| 0.014 0.015 0.017 0.015 0.016
sd.dev 0.016 0.018 0.020 0.018 0.018
ACF.1 0.565 0.331 0.259 0.417 0.479
ACF.6 -0.056 0.059 0.017 0.057 0.117
Correlation NAa 0.960 0.797 0.863 0.938

All numbers are based on the mean statistics per index. For example, in Philadelphia/Baltimore we estimate 12
indices per model. We first calculate the mean statistic per index. Subsequently, the number presented in the table is
the average of those means.
a Most indices in this group ‘break’, preventing us from calculating meaningful correlations.

Arguably, only the third run of the Los Angeles index goes a bit awry in the final year
or two.13

4 Conclusions

In this paper we focus on computing property price indices in small samples by hier-
archical repeat sales (HRS) models. The HRS model can be seen as an extension of
the structural time series repeat sales model (STRS) by Francke (2010). The STRS
model assumes one common trend for the total market, modeled by a local linear
trend model, whereas the HRS model assumes both a common trend, and cluster
trends in deviation from the common trend (modeled by random walks). The clusters
can for example represent locations and property types. Both the STRS and HRS
model specify the trends as a stochastic time series models, replacing fixed time
dummy variables in the original repeat sales model by Bailey et al (1963).

Another modification to commonly used versions of repeat sales models is that
we allow for a heavy-tailed error distribution to better deal with potential outliers in
the data. We specify the error term by a t-distribution with ν degrees of freedom. The
degrees of freedom is not set a priori, so will be estimated from the data.

We provide estimation methods that efficiently deal with the complex error struc-
ture induced by the stochastic trends and the t-distribution. The first estimation method

13 Although it is possible that future new pairs will revise the index to be more in line (Clapp and
Giaccotto, 1999; Deng and Quigley, 2008).
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Fig. 2: Price indices for the Philadelphia/Baltimore metro area

uses the augmented Kalman filter and the second by Markov chain Monte Carlo tech-
niques (Gibbs sampling).

We apply the hierarchical repeat sales model on two different markets: commer-
cial property in the Philadelphia/Baltimore region in the United States and residential
property in Amsterdam-West in the Netherlands. In both markets we have on average
about 30 transactions per quarter. Unlike the standard repeat sales model the STRS
model is able to produce reliable indices on the total market level. The HRS goes
a step further: it subdivides the market in sub-markets based on location and prop-
erty type, resulting in 10 (Amsterdam-West) and 12 (Philadelphia/Baltimore) sub-
indices. In specific, versions of the HRS model where the noise components have a
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Fig. 3: Price indices for Amsterdam-West

t-distribution, and the variance parameter of the cluster trend noise varies over the
different elements in the cluster, perform well. The estimated degrees of freedom are
small, rejecting the commonly made assumption of normality of the error terms.

For robustness we also estimate our main model on (sub)markets with approxi-
mately 1,000 observations each, namely multi-family properties in Manhattan (New
York) and in Los Angeles proper. The number of observations are plentiful and should
therefore result in reliable indices. The two clusters are - again - completed by (1)
other property types and (2) other (sub)locations within the metro area. Subsequently
we (uniformly) sample without replacement 25% of the data, and re-estimate the
model. This way we can assess how accurate our index methodology is in a scarce
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Fig. 4: Estimates of scale parameters in the different repeat sales models

data environment by comparing it to the ‘true’ index (volatility and mean returns-
wise for example). Our robustness check shows that omitting 75% of the data does
not affect our indices considerably.
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Appendix

A Map of Amsterdam West

In this research we use repeat sales data on a region in the west of Amsterdam for the zip codes: 1063,
1064, 1065, 1066 and 1068. Said zip codes are found in the red rectangular box in Figure 6 and falls under
a larger area called the ‘Westelijke Tuinsteden’. In the middle the Sloterplas (lake) is observed. As of 2013,
approximately 70,000 people populated these zip codes.

Most of the housing was built during the 1950s and 1960s as part of a bigger urban plan designed in
the 1930s, loosely following the ‘garden city’ principles. The Westelijke Tuinsteden is also known for the
big urban renewal program, executed between 1999 and 2015, when in total more than 10,000 dwellings
were demolished and approximately 25,000 new dwellings were constructed. For your orientation, zip
codes: 1011 and 1012 include the historic center of the city and zip codes: 1015 through 1018 include the
famous canals.

Fig. 6: Map of Amsterdam West
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B Indices for the HRS FEn model
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Fig. 7: HRS FE model with normal distribution

C Excerpt of the WinBUGS code for the HRS FE model

# ####################################################################
# MODEL
# ####################################################################
model{
f o r ( i i n 1 :N){
y . Var [ i ] ˜ d t (mu[ i ] , t au , d f )
mu[ i ] <− ( b e t a [ Index . S e l l [ i ] ] − b e t a [ Index . Buy [ i ] ] ) +
( a l p h a [AG[ i ] , Index . S e l l [ i ] ] − a l p h a [AG[ i ] , Index . Buy [ i ] ] ) +
( d e l t a [ PT [ i ] , Index . S e l l [ i ] ] − d e l t a [ PT [ i ] , Index . Buy [ i ] ] ) }

# ####################################################################
# TRENDS
# ####################################################################
f o r ( t i n 2 : Nt ){
b e t a [ t ] ˜ dnorm (mu . b e t a [ t ] , t a u . e t a )
mu . b e t a [ t ] <− b e t a [ t −1] + kappa [ t −1]
kappa [ t ] ˜ dnorm ( kappa [ t −1] , t a u . kappa )}

f o r ( p i n 1 : Na){
f o r ( t i n 2 : Nt ){ a l p h a [ p , t ] ˜ dnorm ( a l p h a [ p , t −1] , t a u . a l p h a )}}
f o r ( p i n 1 : Np){
f o r ( t i n 2 : Nt ){ d e l t a [ p , t ] ˜ dnorm ( d e l t a [ p , t −1] , t a u . d e l t a )}}

# ####################################################################
# PRIORS
# ####################################################################
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b e t a [ 1 ] <− 0
kappa [ 1 ] <− 0
f o r ( p i n 1 : Na){ a l p h a [ p , 1 ] <− 0}
f o r ( p i n 1 : Np){ d e l t a [ p , 1 ] <− 0}

t a u . a l p h a ˜ dlnorm ( 5 , 1 )
t a u . d e l t a ˜ dlnorm ( 5 , 1 )
t a u . e t a ˜ dgamma ( 0 . 0 0 1 , 0 . 0 0 1 )
t a u . kappa ˜ dgamma ( 0 . 0 0 1 , 0 . 0 0 1 )
t a u ˜ dgamma ( 0 . 1 , 0 . 1 )
d f ˜ dexp ( a d f )
a d f <− 1 / 3

# ####################################################################

Here N is the total number of observations, y.Var is the log price differences between buy and sell (pit −
pis). Na are the amount of location categories AG, N p are the amount of property type categories PT and
Nt are the number of periods. Index.Sell is the time period on a scale of 1, . . . , Nt on which the property
was sold and Index.Buy when the property was bought.


