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Abstract
Interactive visualizations are a popular medium used by scientists to explore, analyze and
generally make sense of their data. However, with the overwhelming amounts of data
that scientists collect from various instruments (e.g., telescopes, satellites, gene sequencers
and field sensors), they need ways of efficiently transforming their data into interactive
visualizations. Though a variety of visualization tools exist to help people make sense of
their data, these tools often rely on database management systems (or DBMSs) for data
processing and storage; and unfortunately, DBMSs fail to process the data fast enough to
support a fluid, interactive visualization experience.

This thesis blends optimization techniques from databases and methodology from HCI
and visualization in order to support interactive and iterative exploration of large datasets.
Our main goal is to reduce latency in visualization systems, i.e., the time these systems
spend responding to a user’s actions. We demonstrate through a comprehensive user study
that latency has a clear (negative) effect on users’ high-level analysis strategies, which be-
comes more pronounced as the latency is increased. Furthermore, we find that users are
more susceptible to the effects of system latency when they have existing domain knowl-
edge, a common scenario for data scientists. We then developed a visual exploration system
called Sculpin that utilizes a suite of optimizations to reduce system latency. Sculpin learns
user exploration patterns automatically, and exploits these patterns to pre-fetch data ahead
of users as they explore. We then combine data-prefetching with incremental data process-
ing (i.e., incremental materialization) and visualization-focused caching optimizations to
further boost performance. With all three of these techniques (pre-fetching, caching, and
pre-computation), Sculpin is able to: create visualizations 380% faster and respond to user
interactions 88% faster than existing visualization systems, while also using less than one
third of the space required by other systems to store materialized query results.

Thesis Supervisor: Michael Stonebraker
Title: Adjunct Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Context

The physical and biological sciences are becoming more data driven, often due to over-

whelming quantities of data collected from satellites, telescopes, sequencers, and other

sensors. In many discussions with scientists across a variety of specialties, we have found

that interactive visualizations are important tools for helping people make sense of massive

amounts of data. In particular, interactive visualizations are critical in the early stages of

data analysis, when a scientist is browsing a new dataset.

In this thesis, we focus on the specific case of exploratory browsing, where the user

explores her data at multiple levels of granularity, or zoom levels, through a pan-zoom

interface. We have found that scientists exhibit a specific search pattern during the ex-

ploratory browsing process. They start by exploring at coarse-grained zoom levels, looking

for regions of interest to analyze. When they find something interesting, they zoom into

this particular region, and analyze it in more detail. After thoroughly exploring a particular

region, they then zoom out and repeat this process with new regions of interest.

One common approach to addressing the issue of scalability (i.e., of visualizing larger

datasets) is by designing or augmenting visualization tools so they can connect directly

to a remote database management system (or DBMS). DBMSs are designed specifically

to support efficient data processing at scale. In this way, the visualization tool can leave

the task of processing the data to the DBMS by translating the user’s analyses into DBMS
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Figure 1-1: Typical architecture for an exploratory browsing system.

queries, and instead focus on efficiently rendering the query results from the DBMS. An

example of the architecture for a basic exploratory browsing system is provided in Figure 1-

1. The user interacts with a visualization tool running on a client machine (i.e., the user’s

laptop, on the right side of Figure 1-1), and the client is connected to a DBMS running on

a remote server (left side of Figure 1-1).

At the beginning of the exploratory browsing process, the user inputs a complex query

that she wants to execute and then visualize. For example, the query at the top of Fig-

ure 1-1 is applying a snow cover calculation to raw satellite imagery data collected from

the NASA Moderate Resolution Spectroradiometer (or MODIS). This calculation is called

the Normalized Difference Snow Index, or NDSI, because it computes the normalized dif-

ference between two separate wavelengths of light: visible red light (represented as b4 in

Figure 1-1), and near-infrared light (represented as b6 in Figure 1-1). The last line of the

query filters the snow cover results, such that only high NDSI values are returned. The

client-side visualization tool then sends the user’s query to the DBMS to be prepared for

visualization, which includes executing the query in the DBMS. We also refer to this data

preparation step as creating a visualization of the user’s query. After the user’s query has

been prepared for visualization, the user can then interact with a pan-zoom interface on the

client to explore the rendered results. As the user interacts with the client-side interface, the

visualization tool sends requests to the DBMS to retrieve the corresponding query results

needed to update the current visualization.

Unfortunately, DBMSs fail to process the data fast enough to support a fluid, interactive

visualization experience. This is because DBMS are not designed to provide query results
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at interactive speeds [48, 10]. Specifically, many of the operations involved in complex an-

alytics (e.g., linear algebra operations) involve processing most if not all of the underlying

input data. As such, complex analytical queries are nearly impossible for the DBMS to ex-

ecute at interactive speeds when applied to massive datasets [96]. Since many visualization

systems rely on DBMSs to scale up to larger datasets, their data processing speeds (and

thus their overall performance) are severely limited as a result. Therefore a central theme

of this thesis is to make visual exploration of massive datasets interactive, where we aim to

have the system respond to user interactions (e.g., pans and zooms) within 500ms.

1.2 Contributions

The main challenge in supporting interactivity lies in how visualization tools and DBMSs

interact. Specifically, the DBMS is oblivious to useful contextual information collected

by the visualization tool, and thus misses key opportunities for developing powerful per-

formance optimizations to reduce system latency. By ignoring how people interact with

visualizations, the DBMS loses valuable information about consistent interaction patterns

and behaviors that can be exploited to adapt its optimization strategies. We show that

by analyzing the design of the visualization interface and the user’s interactions with this

interface, along with applying various database optimizations that exploit this contextual

information, we are able to achieve significantly better performance.

We developed a modular layer of software that acts as an intermediary between the vi-

sualization tool and the DBMS. Within this intermediate layer, we gain access to the user’s

interaction history, collected through existing visualization tools. We use this interaction

data to develop models of user behavior, and then apply these models to develop context-

aware (or visualization-aware) database optimization techniques within our intermediate

layer. Within this software layer, we designed and implemented three key optimization

techniques: 1) prediction techniques to anticipate the user’s future interactions and pre-

fetch the corresponding data ahead of time; 2) incremental data processing techniques to

ensure that we only visualize the parts of the dataset that the user will ultimately explore;

and 3) new caching techniques to maximize utilization of available cache space across both
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the client and the server. In this way, we provide a re-usable software design that can be

applied to a variety of visualization tools and database management systems, while still

providing significant performance benefits.

When compared with existing systems, we can create visualizations from the user’s

query in a quarter of the time using incremental data processing; we can respond to user

interactions (e.g., pans and zooms) with this visualization in roughly half the time using

smarter caching techniques and predictive pre-fetching; and we only use a quarter of the

disk space required by other exploratory browsing systems to materialize the query results

needed to produce visualizations (also through incremental data processing).

In the remainder of this section, we outline the major contributions of this thesis, which

we divide into two parts: 1) we study how latency affects users’ high level search strategies

when exploring data using in pan-zoom interface (Chapter 2); and 2) we present our new

visualization system Sculpin (Chapter 3), and discuss three major techniques implemented

in Sculpin to reduce system latency (predictive pre-fetching (Chapter 4), visualization-

aware caching (Chapter 5), and incremental data processing (Chapter 5)).

1.2.1 Measuring the Effects of System Latency

In order to effectively minimize the effects of system latency, we must first understand how

latency actually influences the user as she visually explores her data. To do this, we con-

ducted a comprehensive user study, where we had over 800 participants explore a collage

of images using a tile-based visualization interface, similar to Google Maps. We explain

our user study and our results in detail in Chapter 2. In this study, users completed search

tasks under various latency and analysis conditions. Our results show that when latency is

introduced in the interface, users change their search strategies and even ignore regions of

the dataset that are too “costly” (or slow) to explore. Furthermore, we observed that latency

had a noticeable effect on participants in only certain analysis contexts, the most significant

being when the user already has domain knowledge that can help them better navigate the

underlying dataset. This particular analysis context represents a well-known scenario in the

real world, where data scientists are analyzing and exploring a dataset.
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1.2.2 Reducing the Effects of System Latency

We then focus our attention on developing optimization techniques to reduce overall system

latency, and thus reduce the negative impact of latency on exploration tasks. To do this,

we developed Sculpin, a general-purpose tool for exploratory browsing of large datasets.

Sculpin utilizes a client-server architecture, where the user interacts with a lightweight

client-side interface to browse datasets, and the data to be browsed is retrieved from a

DBMS running on a back-end server. We assume a detail-on-demand browsing paradigm,

and optimize the back-end support for this paradigm by inserting a separate middleware

layer in front of the DBMS. We discuss the Sculpin architecture in detail in Chapter 3.

Within Sculpin’s middleware layer, we have implemented three optimization techniques:

1. To make individual interactions (i.e., pans and zooms) fast, the middleware layer

predicts the user’s future interactions and fetches the corresponding data ahead of the

user as she explores a dataset. We consider two different mechanisms for prefetch-

ing: (a) learning what to fetch from the user’s recent movements, and (b) using data

characteristics (e.g., histograms) to find data similar to what the user has viewed in

the past. We incorporate these mechanisms into a single prediction engine that ad-

justs its prediction strategies over time, based on changes in the user’s behavior. We

discuss our prediction techniques in Chapter 4.

2. With more information about the user’s exploration behavior, we can also develop

specialized caching strategies to further improve performance. For example, we can

augment existing cache replacement policies (e.g., a least-recently used policy) to

take into account information about the user’s recent interactions (e.g., evict tiles cor-

responding to unlikely interaction sequences). We developed a suite of visualization-

aware caching strategies to efficiently manage materialized query results from the

DBMS. We discuss our caching techniques in Chapter 5.

3. Last, we aim to reduce the latency incurred when preparing the user’s query for vi-

sualization, which is dominated by the time required to execute this query in the

DBMS. We can simultaneously reduce both system latency and disk space consump-

tion by applying incremental query execution strategies to avoid processing the parts
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of the user’s DBMS query that will never be explored. We discuss our incremental

data processing techniques in Chapter 5.

Even though Sculpin includes three different optimization techniques to improve per-

formance, our prediction techniques act as an anchor to support all of these optimizations.

As such, we evaluated Sculpin through two separate user studies: 1) one study to assess

the viability of prediction as a suitable optimization technique for visualization use cases

(Chapter 4); and 2) a follow-up study to evaluate the performance of all of the optimization

techniques used in Sculpin (Chapter 5). To ensure that our user studies were a close ap-

proximation real-world use cases, we recruited scientists directly for both studies, and all

of our participants explored several real-world datasets as part of these studies.

In the first study, we found that our dynamic prefetching strategy provides: (1) signifi-

cant improvements in overall latency when compared with non-prefetching systems (430%

improvement); and (2) substantial improvements in both prediction accuracy (25% im-

provement) and latency (88% improvement) relative to existing prefetching techniques.

In the second study, we evaluated all three of our techniques. With our incremental

pre-computation techniques, we found that Sculpin was able to provide significant im-

provements in both the materialization latency (380% improvement), and disk space used

to store data tiles (370%). Furthermore, we found that our cache-optimization techniques

provided an additional 200ms (or 60%) reduction in response times, when used in conjunc-

tion with our other techniques. When these optimizations are combined, Sculpin provides

a 370% improvement over existing systems, while also supporting interactive exploration

of multidimensional data (average response time of 490ms or less).
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Chapter 2

The Effects of Latency on Visual Search

Strategies for Different Analysis Tasks

2.1 Introduction

A central tenet of designing interactive visualization systems is to make the system respon-

sive – that is, to reduce or remove latency in a system’s response to the user’s interactions.

Because interactions in a visualization system have been thought to be an externalization

of a user’s analysis process [79], disruption to the process due to system latency can sig-

nificantly impact the user’s ability to maintain “cognitive flow” [24, 36, 84, 18], thereby

reducing their analysis capabilities. In a recent paper by Liu and Heer, the authors find that

latency beyond 500ms can make a visualization appear unresponsive to the point of being

unusable by the users [62].

However, while there is a common belief that latency in visualization tools is disruptive,

there have been conflicting reports of the effects of latency in other domains. For example,

introducing latency can decrease the user’s performance in interaction tasks [65, 101], re-

duce a user’s sense of presence in a virtual environment [67], and affect a user’s behavior

with a computer system [62, 6]. On the other hand, Claypool found no effect of latency on

a player’s performance in real-time strategy (RTS) games [22, 89]. Similarly, Meehan et

al. found that while latency has an effect on a user’s search behavior on the web, the effect

is only observed when the latency is above a certain threshold (e.g., 1000ms) [6]. These

25



anecdotal but contradictory findings suggest that the effect of latency can depend on the

user’s task, the context, and the amount of latency.

While Liu and Heer have established that in using the brushing and linking technique in

a visualization requires latency of less than 500 milliseconds [62], little is known about how

latency can influence a user’s higher-level analysis goals. In this chapter, we explore the

effects of latency on visual search strategies for a range of analysis tasks. Complementary

to prior work, which focuses on the effect of latency on low-level interactions, our goal is to

examine how latency can affect a user’s strategies in different analysis tasks and scenarios.

Our hypothesis is that the effects of latency on user behavior will be different depending

on the analytic scenarios. As such, a major contribution of this chapter is to identify the

analysis scenarios where system latency has a clear effect on user behavior, and to define

the nature of these behavioral shifts.

To validate our hypothesis, we first conducted a literature survey and compiled a list of

8 common analysis scenarios. From these analysis scenarios, we conducted an 8 (analysis

scenario) x 5 (amount of latency) factorial design experiment to evaluate how latency af-

fects a user’s analysis strategy. Using a Google Maps-like interface, participants conducted

visual search tasks where they were instructed to locate two specific “target images” in a

collage of distracting images (see Figure 2-1). In this collage, the distractor (non-target)

images can be slow to appear—that is, there is a controlled latency to rendering these im-

ages. In our experiment, we systematically control the amount of latency of these distractor

images, and observe whether increasing the latency can cause a user to avoid the high la-

tency (i.e., slow rendering) regions of the collage while seeking the target images.

Our results show that, as expected, latency causes the users to avoid regions of the col-

lage that are slow to render. Furthermore, we find that the effect of latency is not universal

across all analysis scenarios. In some cases, latency can significantly alter the user’s be-

havior; but in other cases, the effect is less noticeable. These findings support our original

hypothesis. In addition, we analyzed the users’ analysis search paths under the different

analysis scenarios and latency conditions. We found five unique analysis strategies that

were utilized by participants, as well as clear differences in which strategies were chosen

for different analysis tasks and different latencies observed in the interface. These results
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together indicate that latency in a system can significantly alter a user’s search behavior.

Furthermore, the user’s experience level (novice vs. expert) and the nature of her expertise

(domain knowledge vs. interface and task knowledge) can alter the degree to which system

latency will have an effect. These results indicate that a specific class of users are likely

to be more susceptible to the effects of system latency in visualization tools: domain ex-

perts, such as data analysts and data scientists. Therefore, new optimization techniques are

needed for visualization tools, to mitigate or reduce the effects of system latency for this

class of expert users.

In summary, this chapter makes three primary contributions:

1. Grounded in a literature review of various analytical domains, we provide a descrip-

tion of 8 high-level analysis scenarios.

2. We describe the results of a comprehensive experiment that demonstrates the effects

latency across these scenarios.

3. Our results show that system latency has a clear effect on user’s search behavior,

and this effect becomes more pronounced as latency is increased. Furthermore, we

show that users with domain knowledge are more likely to be affected by latency, a

common scenario for expert users such as analysts and data scientists.

This chapter is outlined as follows. In Section 2.2, we discuss our literature review,

which describes 8 different types of analysis tasks. In Section 2.3, we provide the details

for our 8 x 5 factorial experiment, and we present experimental results per analysis task in

Section 2.4. We present results from a global statistical analysis of the experimental results

in Section 2.5, a global analysis of interaction trails in Section 2.6, and a discussion of our

results in Section 2.7. We summarize the outcomes for this chapter in Section 2.8.

2.2 Literature Review: Analysis Scenarios

In order to evaluate the effects of latency on various analytical tasks, we first conducted a

literature review to identify canonical analytical scenarios. We began with seminal work in

intelligence analysis by Heuer [42] and from there we branched to relevant works across

psychology, HCI, and VIS. Below we present a sample of 8 high-level analytical scenarios
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along with real-world examples.

2.2.1 Novice analysis

As a baseline condition, we first consider a scenario in which an analyst has little knowl-

edge of either the task or the domain. Early work in understanding cognitive models of

analysis identified that novice analysts tend to exhibit an initial problem-scoping phase,

followed by more detailed reasoning [95]. This work led to the hypothesis that poor perfor-

mance by novice analysts could be ascribed to failure to scope the problem, poor formation

of a conceptual model of the problem domain, or insufficient testing of hypotheses [95].

By developing a better understanding of novice problem-solving behavior under various

constraints, we may be able to identify specific error-prone behaviors that may limit the

novice’s ability [87], and in turn help novice analysts to avoid these behaviors by providing

better tools for conceptualizing and exploring the problem domain [12].

2.2.2 Analysis under time pressure

While a leisurely and substantial orientation phase may enable a novice analyst to develop

a thorough understanding of the problem, in real analytical environments one rarely has the

luxury of unlimited time. If pressured to make a decision quickly, it has been observed that

people tend to lock in on a single strategy and demonstrate decreased ability to effectively

evaluate alternative strategies [31]. Moreover, time constraints can cause people to revert to

a known strategy, even if these same people employ a more logical strategy when the time

constraint is removed [74]. We’ve learned that time pressure also has a predictable effect

on decision time in a visual search task. Specifically, the degree of urgency appears to

influence the threshold at which a detected signal triggers a response [82]. We incorporate

time constraints as a separate analysis scenario in our study.

2.2.3 Expert analysis

Though there are many systems designed to support analysis by novices, it is frequently

the case that the analyst brings with her some form of expertise. Making an important
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distinction in the context of negotiation, Professor Margaret Neale of Stanford noted that

"experience is feedback, expertise is strategic conceptualization" [70]. This strategic con-

ceptualization may be further broken down into technical expertise and domain-specific

background knowledge [68], and it has been observed that the influence of these two types

of expertise on search tasks is not identical [43]. We incorporate one analysis scenario for

the technical expertise case, and one scenario for the domain expertise case in our study.

Technical expertise

Technical expertise and competencies related to the task (rather than to a specific domain)

are employed in many analytical contexts. For example, a canine unit trained to detect

trace amounts of explosives is an effective partner in disrupting terrorist activities [34],

despite the fact that the dog has no understanding of the complex sociopolitical implications

of his task. In search tasks conducted by humans, facility with technical tools results in

measurable differences in query complexity, target selection, post-query browsing, and the

ultimate success rate relative to those with less advanced technical skills [105], regardless

of the familiarity with the domain.

Domain expertise

Domain expertise stems from a deep, sometimes tacit understanding of a specific topic or

discipline. It has been observed that domain experts search differently than people with

limited domain knowledge [104]. Specifically, this kind of expertise has been observed to

have a “honing” effect on search behavior: those with greater familiarity with a topic are

more efficient in seeking out relevant information [49] and have higher rates of success in

finding what they are looking for than non-experts. In studies of visual search in the con-

text of chess masters, there is strong evidence that it is a perceptual encoding advantage

stemming from their intimate knowledge of the domain, rather than a general perceptual

or memory superiority, that enables their superior performance[83]. This perceptual ad-

vantage manifests through an increased sensitivity to semantic changes in images within

their domain of expertise [103]. It does not, however, mitigate the effects of inattentional

blindness [29].
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2.2.4 Decision Making under Uncertainty

In many real-world analytical scenarios, particularly those involving streaming data, an an-

alyst must move forward with their analysis despite uncertainty in their current knowledge

of the domain. Of particular interest is the observation that decision-makers distinguish be-

tween three types of uncertainty [61]: inadequate understanding (i.e. making an incorrect

assumption), incomplete information (i.e. having a rough idea but not exact knowledge),

and undifferentiated alternatives (i.e. having a clear understanding of multiple paths, but

lacking a mechanism for determining which leads to pursue). The first case (inadequate

understanding) is outside of the control of our study, so we do not elaborate on it here.

We have incorporated the other two cases (incomplete information and undifferentiated

alternatives) as separate analysis scenarios within our study.

Analysis with incomplete information

Missing information is unavoidable in nearly all real-world analytic environments. In the

context of evaluating consumer products, it has been shown that many people have a ten-

dency to over-value categories of information that are present across all data points, intrin-

sically presuming the worst in missing values [52]. A similar effect has been observed in

participants asked to evaluate applicants for a hypothetical scholarship [54]. When avoid-

ing or ignoring missing information fails, individual differences in methods for coping with

missing information as well as the assumptions people make in trying to fill in the gaps can

have a significant impact on accuracy [30].

Analysis with undifferentiated alternatives

Having multiple valid, equally-plausible courses of action is perhaps one of the most ubiq-

uitous and frustrating manifestations of uncertainty. Experts must painstakingly weigh the

potential outcomes of regulatory and public policy decisions [11, 55], and laypersons may

experience similar tension in more personal decisions such as which house to buy [66] or

which course of cancer treatment to pursue [38]. In each of these cases, the absence of a

clear winner impels the decision-maker to find a useful heuristic, or otherwise to simply
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guess.

2.2.5 Opportunistic analysis

In some scenarios, the analyst is presented with a plurality of potential targets rather than

only a few. For example, consider the use of mobile dating applications such as Tindr [45].

When many viable opportunities present themselves simultaneously, an analyst may oppor-

tunistically “hop” from target to target, resulting in identifying nearby, potentially related

targets before branching out and exploring more distant regions of the dataset. We represent

this case as a unique analysis scenario in our study.

2.2.6 Analysis at scale

Of particular interest in many current applications in data science are the analytical strate-

gies employed in the context of big data [13]. When faced with a large amount of data,

an analyst may not have the time to examine all the data but will need to focus on spe-

cific areas. As a result, their information seeking behavior can be substantially different.

Therefore, we include analysis at scale as a separate analysis scenario in our study.

2.2.7 Summary

In this section, we identified 8 different analysis scenarios that people commonly encounter

in the real world. These scenarios can be grouped by the user’s expertise: analysis by

novice users; analysis by users with technical (i.e., task or interface) expertise; and analysis

by users with domain (i.e., data) expertise. In the novice case, we described three scenar-

ios: a novice exploring a new dataset (i.e., our base condition); a novice exploring under

time pressure; and a novice exploring a large-scale dataset. We describe one scenario for

technical expertise, where the user has knowledge of the search interface. We then discuss

four cases of domain expertise: complete domain knowledge (i.e., perfect information),

incomplete domain knowledge, undifferentiated alternatives (i.e., domain knowledge with

uncertainty), and opportunistic knowledge (i.e., knowledge gained directly through data

exploration). Each scenario was selected based on how users’ perceptions of the dataset
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and task may differ from the novice case. In the next section, we describe our experimen-

tal design, and how we measure differences in user behavior for each of these different

analysis scenarios.

2.3 Experiment

We know that latency can impact users’ experiences with visual analytics tools. At the

interaction level, users notice and even avoid specific interactions with high latency (e.g.,

brushing and linking with 500 milliseconds of latency introduced [62]). However, little

work has been done to evaluate how latency may affect a user’s decisions throughout her

entire analysis session. Specifically, we seek to better understand how latency impacts the

user’s choice of search strategy, or how she decides to navigate her dataset. However, given

that the effects of latency can vary widely based on the context of the analysis task, one

must study these effects within different contexts. Thus the goal of this study is to evaluate

how latency in visualization systems may impact a user’s high-level search strategies across

different types of data analysis tasks.

2.3.1 Hypotheses

In our study, users explore data in a tile-based format, where the data will be partitioned

into fixed-width tiles, similar to interfaces such as Google Maps. We frame our hypotheses

in the context of data regions, where a data region is a consecutive block of tiles: some

data regions will have tiles with high latency (i.e., will take several seconds to appear in

the visualization), and some regions will have low latency tiles (i.e., will appear almost

immediately).

Our hypotheses for this study are two-fold. First, we hypothesize that users prefer

to search through low-latency data regions over high-latency ones when latency is in-

troduced in the system, and have no preference when there is no latency. Second, we

hypothesize that the minimum latency threshold for which users will shift their behav-

ior will be different for analysis tasks where the user has expert information and where

the user has no information (i.e., a novice user).
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2.3.2 Participants

We ran our experiments using Amazon Mechanical Turk. 858 people participated, and

across all experiments 692 successfully completed the main task. Workers were paid up to

$2.27 for completing the study.

2.3.3 Experiment Setup

Our experiments were run using a between-subjects design. Each experiment had five

groups of roughly 20 participants, one per latency condition tested: 0, 2.5, 7, 10, and 14

seconds (all experiments evaluate using the same set of latency values). Each participant

completed their assigned experiment exactly once with the given delay condition. They also

provided consent through a digital consent form, completed a demographics questionnaire,

read the instructions for an image-based search task, completed said search task using a

browser-based visual exploration tool, and filled out a feedback survey about the task.

Workers were warned that anyone who went through the task too quickly (i.e., ignored

the instructions) or too slowly (i.e., took a long break during the task) would have their sub-

mission rejected, allowing us to filter out “Bad” datapoints. Furthermore, only participants

who successfully completed the task were considered in our evaluation.1

Visual Search Task

All of our experiments require participants to complete a visual search task: to explore a

grid of bird images (hereafter denoted a collage), and to locate one or more target images

within this collage that stand out from the rest. In this section, we explain how we designed

each collage, and how we created and inserted target images.

Layout: For all but one of our experiments, we created each collage as a grid of 20 images

by 20 images (400 total unique images), where each image was 500 pixels by 350 pixels

in size. The last experiment used a 200 by 200 grid of images (40,000 total images, where

1In the case of the large-scale exploration experiment, all results were reviewed manually to ensure that
only workers who made a best effort on the task were included in the evaluation.
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(a) The target image (a dinosaur) is featured in
the center of the viewport.

(b) Annotated target image used in the Oppor-
tunistic search condition.

Figure 2-1: A snapshot of the user study interface. Participants can pan within the viewport
window using the mouse.

duplicates are allowed). Each grid consists of a randomized sample from a collection of

1082 bird images. A separate sample of images was selected for each participant. The grid

layout is created before the participant starts the task. The exact layout and images used

for each experiment and participant were recorded. We refer to each image within the grid

as a tile.

Target Images: Each experiment includes two or more “target” images that are inserted

into the collage. We created two kinds of target images. One set of targets utilizes mul-

tiple copies of an image that is completely different from the rest of the collage: a shot

of a brown T-Rex dinosaur standing in a forest (shown in the center of Figure 2-1a). The

other kind of target images are augmented bird images that are already within the collage.

These target bird images were made to stand out from other images in the collage by adding

colorful circles to the corners of the images (example shown in Figure 2-1b) .

Interface

The study was run using a browser-based visual exploration interface. The main component

of the interface is a 700 pixel by 700 pixel viewport (see Figure 2-1a), which shows only a
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portion of the entire image collage to be visible at a time. A user of the interface can explore

various parts of the collage by panning to these regions within the viewport. Users can pan

in any direction using mouse drag interactions similar to that of Google Maps. No zooming

interactions are supported in the interface. As users pan to a new region in the collage, this

area first appears blank, showing a grey background. Then image tiles eventually appear

after the user finishes their panning interaction. Some amount of delay (0 seconds, up to 14

seconds depending on the latency condition of the experiment) is inserted before each new

tile appears. Whenever a user moves away from a region, any tiles that move outside of the

viewport are removed. Thus, if the user pans back to this location in the collage, they have

to wait for the tiles to re-appear2.

The interface also includes two function buttons called "FOUND" and "FINISH". When

a participant finds a copy of the target picture, they move the target picture to the center

of the viewport (i.e., visualization window), and click on the "FOUND" button. The web

page then pops out a window to confirm whether the participant did in fact find a target

image. When a target is found, the target image is clearly marked with blue text saying

"FOUND" after the confirmation, and a running total of "Targets found" is incremented by

one. Participants are able to leave the main task page for the user study at any time by

clicking the "FINISH" button. Once participants confirmed that they wanted to finish, they

were not allowed to interact with the collage anymore.

Evaluating Search Patterns

The primary objective of this study is to evaluate whether people change their search pat-

terns when faced with latency in the visualization interface. Specifically, we aim to measure

whether users bias their search behavior when we insert delays into the interface before

making images appear in the collage. Examples of how a person may shift their search

patterns may include favoring certain regions of the collage over others, or avoiding certain

interactions (e.g., panning left vs. right).

Our key evaluation is through the placement of our target images, and how we insert

2We note that a common optimization technique for systems like Google Maps is to cache recently visited
image tiles. We chose not to simulate any optimization techniques in our study, to ensure that the latencies
observed were consistent across participants and image tiles.
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Figure 2-2: A diagram representing a participant’s starting position (red circle), and the
positions of the low latency target (gold star) and the high latency target (black star).

Figure 2-3: Proportion of participants who found the low-latency target first for each ex-
perimental condition and latency case.

latency for new images in relation to these target images. In our experimental design, we

created two targets, which we will refer to as the low-latency (or fast) target and high-

latency (or slow) target. Figure 2-2 is a diagram of an example layout that was used for

one of our experimental conditions, showing the participant’s starting location within the

collage, and the positions of the low-latency and high-latency targets. Suppose that im-

ages along the path to the low-latency target load faster than images that are along the path

to the high-latency target, our hypothesis is that participants are more likely to find the

low-latency target before finding the high-latency target. This hypothesis stems from the

outcomes observed in previous work: people notice and become annoyed with delays in

visual exploration interfaces [46]. Given a decision of two directions to go in, and expe-

riencing delays along one of those directions, we assume that the user is more likely to

choose the direction of least resistance. In contrast, in an environment that is free of laten-
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cies towards both targets (i.e., has no noticeable latency), we expect that participants will

choose both directions with equal probability (i.e., 50% of the participants will choose the

low-latency target and the other 50% will choose the high-latency target).

However, it is possible that participants may be more likely to find a target within a

specific region of the collage, simply because they are used to scanning information in a

particular direction (e.g., scanning from top to bottom, and from left to right). To take this

into account in our study, we alternate which target position is the low-latency position, and

which target is the high-latency position. In this way, any effects that may be contributed

by positioning are distributed between the two targets.

Introducing Latency

A critical component to our experimental design is carefully controlling how, when, and

where latency is introduced as the user explores the collage. Each tile in the collage is

assigned a latency value that is used to determine the amount of time before the image in

the tile appears on the screen. A tile’s latency value is based on its relative position to the

low-latency and high-latency targets and the participant’s current (viewport) location in the

collage. We conducted a pilot study to determine suitable latency values, and found the that

a latency values ranging from 0 seconds to 14 seconds to be appropriate. Specifically, a tile

can have one of four possible latency values: 0 second, 0.75 seconds, 1.5 seconds and n

seconds. The value of n is set according to the experimental condition (in our experiments,

the possible values are 0 second, 2.5 seconds, 7 seconds, 10 seconds, or 14 seconds. See

Section 2.4 for more detail). A tile is assigned n seconds of latency if it is between the user’s

current location and the high-latency target, 0 seconds if it is between the user’s current

location and the low-latency target. For all other tiles, its latency value is determined based

on whether it is closer to the low-latency or high-latency target. If it is closer to the low-

latency target, it is assigned a latency value of 0.75 seconds, and 1.5 seconds otherwise3.

Because a tile’s latency value depends on the user’s location, its latency is updated after

every user interaction. In our experiment, we “insert” a delay for a particular image to

appear on the screen using the setTimeout function in Javascript. This function allows

3Note that when n = 0, all latencies are set to 0
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us to set a wait time in milliseconds before we render the image. Each image is given

its own separate setTimeout call, so that delays can be applied at the granularity of

individual images. This wait time is set with respect to the user’s current interaction, but is

not a blocking function. Therefore, the user is free to perform other panning interactions

while waiting for new images to appear.

Data Collection

As participants explore the collage, we record each of their interactions with the interface.

For each participant and experiment, we record the same set of information: 1) the initial

starting state and parameters for the collage and interface (grid layout, target positions,

participant starting position, latency values); 2) the beginning and end positions of each

drag interaction, along with their corresponding timestamps; 3) the timestamp and loca-

tion for every "FOUND" button click within the collage; 4) the timestamp, position, and

assigned delay value for each tile that was scheduled to appear in the collage; 5) the times-

tamp and position for each tile that was removed from the collage by panning away; and

6) the timestamp for the final "FINISH" button click. For each participant that successfully

completes the experiment, we compute whether they find the low-latency target first, or the

high-latency target first. Figure 2-3 Novice Search shows the percentages of the partici-

pants who found the low-latency vs. high-latency targets first under five latency conditions:

0 second, 2.5 seconds, 7 seconds, 10 seconds, and 14 seconds.

2.4 Experimental Conditions and Results

Based on our literature review of the common types of analysis scenarios, we conducted

a 8 (analysis scenario) x 5 (amount of latency) factorial design experiment to evaluate the

effect of latency on user’s analysis behavior. Across all 8 of the tested scenarios, we varied

the maximum latency: {0 seconds, 2.5 seconds, 7 seconds, 10 seconds, and 14 seconds.}

In the sections below, we introduce each of the 8 analysis scenarios, followed by the results

of how the different amounts of latency affect the users’ behaviors.
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2.4.1 Novice Search

This scenario is our “base” condition. Participants were asked to identify two copies of

the target dinosaur image within the 20x20 image collage. These copies correspond to one

low-latency target and one high-latency target in our experimental design. Two targets were

selected to ensure a clear and consistent pattern of latency across the collage. For example,

having a single low-latency target ensures that the participant only observes low latencies

when moving towards a specific region of the dataset. Participants’ starting positions within

the collage, as well as the positions of the targets, were kept the same across all participants.

Specifically, the starting position is set to be equal-distance apart from both the low-latency

and high-latency target.

Hypotheses: In this condition (i.e., analysis scenario), our goal is to evaluate whether

latency alone has any affect on how the participants chose to search the collage for the

dinosaur targets.

H1.1 Since the novice has no knowledge of where the two targets are, their initial search

will be influenced by the latency in that the higher the latency, the more likely they

will tend to start the search towards the low-latency target.

H1.2 Because the novice has no knowledge about where the targets are and no precon-

ceived strategy, their search paths will appear to be random.

Results: As expected, we found that roughly half of the participants who successfully

completed the 0 second latency case to find the low-latency target first (11 of 20 partici-

pants). Thus both targets were equally likely to be found first when there were no delays.

However, we also found that in the 2.5 second latency case, both target images were still

equally likely to be found first (12 of 22 participants found the low-latency target first).

Thus participants’ search strategies were unaffected by latency of length 2.5 seconds in

the interface. We noticed that higher latencies had a modest effect, the strongest being in

the 14 second latency case (16 of 21 participants). To evaluate further, we ran a one-way

ANOVA with latency being the independent variable, and number of people who find the

low-latency target first as the dependent variable. However we did not find a statistically

significant result (F(4,98) = 0.794, p = 0.532). In summary, we found that latency had little
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if no effect on participants’ search strategies.

2.4.2 Novice Search Under Time Pressure

In this experiment, we examine how latency affects a user’s search behavior when under

time pressure. The experimental setup of this condition is the same with the previous, ex-

cept that the tasks had a timer and were asked to find one of the two targets. The participants

were required to complete the task before the timer expires. We ran a pilot experiment to

measure the average amount of time it took for participants to successfully find one of the

two targets, and determined that 100 seconds was appropriate.

Hypothesis: We stipulate that this task is stressful and difficult to complete because we

are asking the participants to find one target within a time frame that makes it extremely

difficult search the entire collage.

H2 Due to the added time pressure, the participants are more likely to frantically and

randomly search for the targets. As a result, their search behavior will be significantly

influenced by latency.

Results: 12 of 21 participants successfully completed the task in the 0 second latency

case, 12 of 22 in the 2.5 second latency case, 7 of 21 in the 7 second case, 8 of 21 in

the 10 second case, and 9 of 21 in the 14 second case. We observed the general trend

of an increase in the fraction of participants that found the low-latency target first as the

latency increased, similar to our results from the Novice Search experiment. For latency

cases 10 and 14 seconds, all participants found the low-latency target first. We ran a one-

way ANOVA with latency as the independent variable, and number of people who find the

low-latency target first as the dependent variable. We observed weak significance in the

result (F(4,43) = 2.154, p <0.1). In summary, we found that high latency (i.e., latency of 10

seconds or more) has a stronger effect on participants who are time pressured, compared

to participants who are not time pressured, but low latency (i.e., 7 seconds or less) has no

effect.
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2.4.3 Analysis by a Technical Expert

In this experiment, we simulate the condition where the user has expert knowledge about

the tool itself by revealing that there are some actions that can lead to additional latency in

the system.

We do so by adding a note in the study saying: “some actions may be slower than oth-

ers in the interface.” To ensure that the participant is aware of this information, this note

is repeated in 3 places: 1) in the task instructions page, 2) as a popup that users had to see

before moving on to the task page, and 3) as a short note at the top of the task page.

Hypothesis: The goal of this experiment is to see if users deviate from the behavior we

observed in the Novice Search experiment when given information about the interface.

H3 With the additional information about latency in the system, the participant will be

more keenly aware of their actions, therefore they will be more likely to avoid search-

ing in places that cause high latency. In effect, the participants’ behavior will be

affected by the amount of latency.

Results: Ultimately, we found that knowing that some interactions may be slow (i.e., high-

latency) seemed to have no effect on participants. We attribute this to participants not

realizing that there was a pattern to the slow interactions, and thus that they could poten-

tially choose low-latency (i.e., faster) interactions. In the 0 second latency case, 11 of 20

participants found the low-latency target first, similar to the Novice experiment. We ob-

served only a modest increase as we varied latency, with the highest fraction of people

finding the low-latency target first in the 14 second case (16 of 23 participants). We ran a

one-way ANOVA with latency as the independent variable and number of people who find

the low-latency target first as the dependent variable, and found the result was not statisti-

cally significant (F(4,95) = 0.291, p = 0.883). What we can glean from this experiment is

that technical expertise is of limited use on its own: simply knowing that a certain effect

may occur in the interface will not tell you why it occurs, or what actions to take to prevent

the effect from happening. In summary, we found that being made aware of latency in the

system had little effect on participants, and similar to the Novice Search condition, latency
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had little to no effect on participants.

2.4.4 Analysis by a Domain Expert with Exact Information

The goal of this experiment is to simulate the case where a user may have extensive knowl-

edge about the dataset that helps them navigate the data more efficiently in a visual ex-

ploration interface. For example, knowledge of geography helps users significantly when

searching for things within geospatial datasets: users can avoid looking in the ocean when

searching for something on land, and can pan directly to countries they are familiar with in

a world map.

To recreate this condition for our experiment, we provided users with explicit knowl-

edge of the location of the target images. We modified the Novice Search setup by adding

a note to the study saying: “The target pictures are directly to the left and right of your

starting position.” This note was added in 3 places: 1) in the instructions (which included a

diagram to help demonstrate the target locations), 2) as a popup that users had to see before

moving on to the task, and 3) on the task page. The targets were placed directly to the left

and right of the participant’s starting location in the collage.

Hypothesis: In this case, participants have nearly perfect information about where two

targets are located in the collage.

H4 Because participants know exactly where to explore to find a target, we expect par-

ticipants to choose more direct or opportunistic search strategies (i.e., look in the

specific areas where targets should be found) over exhaustive ones (i.e., look at every

image in the collage). Furthermore, tiles along the path to the low-latency target will

appear faster than the high latency target, which the participant will see as soon as

they start the experiment. Therefore, we should see more participants choosing to

explore the part of the collage that appears first, which corresponds to finding the

low-latency target over the high-latency target.

Results: We continue to see a general trend that more people find the low-latency target first

as the delay length is increased4. 8 of 22 participants find the low-latency target first in the 0
4The data presented in the 14s case was collected from a second run of the experiment. The original data
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second case, up to 17 of 21 participants in the 14 second case. Thus, latency seems to have

a noticeable effect on participants’ strategies that becomes stronger as latency is increased.

To evaluate further, we ran a one-way ANOVA with latency as the independent variable and

number of people who find the low-latency target first as the dependent variable, and found

the result to be statistically significant (F(4,101) = 3.402, p <0.05). With a Tukey post-hoc

analysis with a 95% family-wise confidence interval, we found one latency pairing to be

statistically significant, 0s vs 14s (p <0.05), and one pairing with weak significance, 0s vs

7s (p <0.1).

2.4.5 Analysis with Incomplete Domain Knowledge

The goal of this experiment is to simulate the case where a user may have prior knowledge

about the dataset, but their knowledge has some uncertainty associated with it: the user

knows of the possible locations they may want to search, but they don’t know which loca-

tion is the “correct” one. To create this experiment, we updated the Novice Search design

by adding a note to the study saying there is only one target, and it is equally likely that

the target is either to the left or to the right of the participant’s starting location, similar

to the previous experiment. This note appeared in the same locations in the task website

as the previous experiment. The targets were placed directly to the left and right of the

participant’s starting location.

Hypothesis: In this experiment, participants have extensive information about the target

location (i.e., the target is either on the left, or the right). However the target only appears

to be on one side, so they must still choose which direction in which they want to search.

H5 Given the target location information, participants will be more likely to be influenced

by latency, and will heavily prefer to find the low-latency target first.

Results: The fraction of people who found the low-latency target first was similar in the

0 second latency case (8 of 20 participants) to the results observed for the Novice Search

experiment (11 of 20 participants). We also see a steady increase in the fraction of people

who found the low-latency target first when the latency was increased, with 19 of 21 par-

was omitted due to issues with the first experimental run.
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ticipants finding the low-latency target first in the 14 second case. To investigate, we ran a

one-way ANOVA with latency as the independent variable, and number of people who find

the low-latency target first as the dependent variable. We found the result to be statistically

significant (F(4,104) = 3.892, p <0.01). We ran a follow-up analysis using Tukey post-hoc

analysis with a 95% family-wise confidence interval, and found two pairs to be statistically

significant: 0s vs 10s (p <0.05) and 0s vs 14s (p <0.01). We found one pair with weak

significance: 0s vs 7s (p <0.1).

2.4.6 Analysis with Tacit Domain Knowledge

The goal of this experiment is to simulate the case where a user may have prior knowledge

about the dataset that helps them better navigate the data, but their knowledge is vague:

they know generally where they want to go, but not an exact location.

To simulate this condition in the experiment, we updated the Novice Search setup by

adding a note to the study saying there is only one target, and it is somewhere on the

left-hand side of the collage. This note appeared in the same location as the previous ex-

periment. The targets were placed in the top right and bottom left sides of the left half of

the collage.

Hypothesis: Participants will be able to eliminate half of the collage for the search, since

the target must be on the left-hand side. As such, our hypothesis is as follows:

H6 We expect participants to perform a more direct search towards the target. Given that

participants do not know the exact location, we expect for them to still be influenced

by latency in terms of the general direction of their search.

Results: In this experiment, the fraction of people who found the low-latency target first for

the 0 second case (10 of 21 participants) was similar to the results observed for the Novice

Search experiment (11 of 20 participants). However, we found a noticeable increase in the

fraction of people who found the low-latency target first when the delay was increased to 2.5

seconds (17 of 23). However, we do not see a a clear trend in the fraction of people finding

the low-latency target first as we vary latency beyond 2.5 seconds. In a one-way ANOVA,
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we did not find a significant F measure (F(4,104) = 0.2287, p = 0.379). In summary, we

found that even though participants could eliminate half of the collage during their search,

the search space was still to broad for participants to feel comfortable switching to a more

direct or opportunistic search strategy. As such, our results for this experiment are similar

to the results for Novice Search.

2.4.7 Opportunistic Search and Analysis

In our previous experiments, we found that people were unlikely to deviate from a struc-

tured search strategy given the layout of the collage (i.e., gridded layout), and the “needle

in a haystack” style search participants were asked to perform (except for the Analysis by

a Domain Expert and Analysis with Incomplete Domain Knowledge experiments). With

limited information about the dataset as a whole, participants were unwilling to deviate

from their basic strategies, which we interpreted as there being too much risk involved in

performing a random search over an unknown dataset. To design an experimental condi-

tion that simulated a dataset that provided more opportunities for exploration, we created

54 total targets in the collage (27 orange targets, and 27 purple targets), compared to the 2

targets used in previous experiments. The collage was divided into top and bottom halves.

The low-latency half had 21 orange targets and 6 purple targets spread across it, and 21

purple targets and 6 orange targets on the high-latency half. Participants were asked to

find 18 targets within the collage. Since so many targets were available on each half of the

collage, the goal behind the design was to lead the participant along one half of the collage

to find targets.

Given the abundance of targets in this case, image tiles were only given one of two

latencies: “fast” or “slow”, corresponding to the best (0 second) and worst (n seconds)

latency parameters, respectively. The low-latency half had no latency (0 sec), and the high-

latency half had uniform latency (0sec, 2.5sec, 7sec, 10sec, or 14sec, depending on n).

Rather than using dinosaurs, each target was a modified bird picture. Specifically, a bird

picture became a “target” picture by marking it with either orange circles or purple circles

in the corners. Low-latency targets are orange, and high-latency targets are purple, however
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no distinction is made between the different target colors in the experiment, so participants

were free to find and select targets of either color.

The starting position was along the left border, in the middle of the y axis of the col-

lage. One low-latency target and one high-latency target were partially visible within the

viewport window, so the user could see the colorful circles. However since longer latencies

are associated with the high-latency half of the collage, the high-latency target took longer

to load for the latency cases of 2.5 seconds or longer.

Hypothesis: In this experiment, a large number of targets are spread throughout the col-

lage, so participants have the ability to find a large number of targets within a small region

of the collage.

H7 Given that the low-latency half of the collage will appear before the high-latency half,

participants will be drawn to the visual cues associated with the low-latency targets.

With the abundance of targets, participants will consistently prefer to continue their

search on the low-latency half of the collage (i.e., participants will show a heavy

influence from latency).

Results: Given the large number of targets participants were asked to find, we had to

develop a new strategy for calculating whether participants found the low-latency targets

first. To do this, we computed the fraction of orange targets that were found by each

participant, and labeled the participant as having found the low-latency targets first if more

than 78% of the targets they found were orange targets (i.e., 14 or more orange targets

found). 78% was chosen to match the distribution of targets on each half of the collage:

21 of the 27 targets on the low-latency half of the collage were low-latency targets, and

21 of 27 targets on the high-latency half were high-latency targets. The experiment was

designed such that the only way participants could find this many low-latency targets was

by performing the vast majority of their exploration on the low-latency half of the collage.

We found that in the 0 second latency case, very few participants explored the low-

latency half first (2 of 22). Many participants in the 0 latency case had about half of their

targets found being low-latency targets (i.e., 8-11 of targets), often because they explored

both halves of the collage nearly equally. However, we see a clear increase in the fraction of
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people finding the low-latency targets first as we increase latency. In the 14 second latency

case, we see that 80% of participants who experienced these latencies chose to explore the

low-latency half of the collage (20 of 25), showing a clear preference for the half of the

collage with lower latencies, compared to the 0 second latency case.

We followed up our analysis with a one-way ANOVA using latency as the independent

variable, and number of people who found a high fraction of low-latency targets as the

dependent variable. We observed an F measure of F(4,109) = 8.385 (p <0.0001). In a

Tukey post-hoc analysis with 95% family-wise confidence interval, we found 4 statistically

significant latency pairings: 0s vs 2.5s (p <0.05), 0s vs 7s (p <0.05), 0s vs 10s (p <0.001),

0s vs 14s (p <0.0001). We also saw weak significance for the pair 2.5s vs 14s (p <0.1).

2.4.8 Analysis of Large Amounts of Data

The goal of this experiment is to simulate the condition where the underlying dataset is sim-

ply too large to explore everything in a single session, a case that is quickly becoming the

norm for visual data exploration. As such, this experiment is designed to make it extremely

difficult to successfully execute a full scan of the entire dataset. For this experiment, we

updated the Novice Search setup by making the grid size significantly larger: from 20 im-

ages by 20 images to 200 by 200 images, where repeats are allowed in the collage. Two

dinosaur target images are still inserted in the collage, similar to previous experiments. To

warn participants of the size of the collage, we added a note to the study that emphasized

the following points: 1) there are 40,000 images in the collage, 2) it is infeasible to scan

everything in a reasonable amount of time, and 3) they should be creative and try a differ-

ent approach. This note appeared in the same locations in the task website as the previous

experiment.

Hypothesis: The collage is too large for participants to successfully perform an exhaustive

search, especially without prior knowledge.

H8 Because the collage is nearly impossible to search exhaustively, participants will

adopt a random search strategy that will also be affected by latency (similar to the

Novice Search experiment).
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Results: We found that across all five latency cases, only four participants were able to

successfully complete the task (4 of 106). Given the low completion rate, and the massive

size of the collage, we could not rely on our original techniques for comparing participants.

Therefore, we took a different approach to analyzing the data. For participants that did not

find either target, we instead considered whether they performed over 78% of their panning

interactions on the low-latency half of the collage (i.e., on the same side as the low-latency

target). We chose this percentage to be consistent with our Opportunistic Search condition,

which also involves analyzing whether participants explore a particular half of the collage.

We found an increase in the fraction of people that explored the low-latency half of the

collage when delays were applied: from 7 of 21 participants in the 0 second case, compared

with 13 of 22 participants in the 14 seconds case (only a marginal increase was encountered

in the other latency cases).

We followed up on this analysis with a one-way ANOVA with latency as the indepen-

dent variable, and number of people who explore the low-latency half of the collage as

the dependent variable, however we did not find these results to be statistically significant

(F(4,104) = 0.859, p = 0.492). These results are consistent with our findings in the Novice

Search case (i.e., that latency has little effect on user behavior), which makes sense given

that this experiment is essentially the Novice Search condition on a massive collage.

2.4.9 Summary of Results

In total, we analyzed 8 separate analysis scenarios: Novice Search (Section 2.4.1), Novice

Search Under Time Pressure (Section 2.4.2), Analysis by a Technical Expert (Sec-

tion 2.4.3), Analysis by a Domain Expert (Section 2.4.4), Analysis with Incomplete Do-

main Knowledge (i.e., undifferentiated alternatives, Section 2.4.5), Analysis with Tacit

Domain Knowledge (Section 2.4.6), Opportunistic Search (Section 2.4.7), and Analy-

sis of Large Amounts of Data (Section 2.4.8). The following analysis scenarios did not

have significant results: Novice Search, Novice Search Under Time Pressure, Analysis

by a Technical Expert, Analysis with Tacit Domain Knowledge, and Analysis of Large

Amounts of Data. In four out of five of these experiments, participants had no information

48



about the locations of the targets. In the Tacit Domain Knowledge experiment, participants

only had vague knowledge about the locations of the targets. We found statistically signif-

icant results for the remaining three experiments: Analysis by a Domain Expert, Analysis

with Incomplete Domain Knowledge, and Opportunistic Search. In all three of these ex-

periments, participants had a considerable amount of information about the location of the

targets. Thus, participants seem to shift their behavior when given more information about

the dataset itself. We report results for a global analysis across all analysis scenarios in

Section 2.5, and discuss our statistical results in more detail in Section 2.7.

2.5 Statistical Analysis

Our main hypothesis is that people behave differently during visual search tasks when they

encounter latency in the interface, compared to when they search in a no-latency environ-

ment. To test this hypothesis, we designed our experiment to have high latency and low

latency regions in the collage. We asked participants to search for strategically placed tar-

get images within the collage (i.e., the low-latency and high-latency targets), and made

panning interactions towards these targets respond faster (i.e., lower latency) and slower

(i.e., higher latency), respectively. Thus, in the context of the experiment, our hypothesis

becomes that participants are more likely to find the low-latency target first (i.e., prefer to

search low-latency regions), rather than finding the high-latency target first (i.e., prefer to

search high-latency regions), when there is latency in the system. In the control condition

(i.e., no latency), we would expect the two targets to be found equally.

To evaluate how different perceptions and environmental conditions may affect partic-

ipants’ perceptions of latency, we also tested 7 different variations of our original experi-

ment. A secondary hypothesis is that certain environmental conditions affect the “potency”

of the latencies. In particular, we hypothesize that learning more information about the un-

derlying dataset, either beforehand (i.e., search with domain expertise) or as one explores

(i.e., opportunistic search), makes the user more susceptible to the effects of latency.

To evaluate our experimental results, we ran a two-way ANOVA to test for meaningful

differences between our independent variables: visualization condition (i.e., experimental
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condition) and latency. Seven out of eight experiments included the visualization condition

as a variable (the Exploring Large Amounts of Data experiment was omitted due to lack of

successful task completions). The latency variable included 5 values, one per latency case

measured (0, 2.5, 7, 10, and 14 seconds). Our dependent variable was the number of partic-

ipants who found the low-latency target first. We found statistically significant main effects

for both visualization condition (F(6,654) = 2.940, p <0.01 ) and latency (F(4,654)= 12.983,

p <0.0001 ). We did not find the interaction between the two variables to be statistically

significant (F(24,654) = 0.949, p = 0.533 ).

We performed a Tukey post-hoc analysis for visualization condition with 95% family-

wise confidence interval, and found two pairs of visualization conditions to be statistically

significant: “Domain Knowledge: Incomplete Information” vs. “Opportunistic Search” (p

<0.05) and “Novice Search Under Time Pressure” vs. “Opportunistic Search” (p <0.01).

We also performed a Tukey post-hoc analysis for latency with 95% family-wise confidence

interval, and found 5 latency pairs to be statistically significant: 0s vs 2.5s (p <0.05), 0s vs

7s (p <0.0001), 0s vs 10s (p <0.0001), 0s vs 14s (p <0.0001), and 2.5s vs 14s (p <0.01).

These results give us a general idea of whether visualization condition and latency im-

pact user behaviors, particularly in the case of latency: we see a clear distinction between

the no latency case (i.e., the 0 second case) and all other latency cases (2.5 seconds and

higher). However, we do not see a statistically meaningful difference between the major-

ity of visualization condition pairings, nor the latency pairings. Furthermore, we can see

in Figure 2-3 that latency seems to have only a minimal effect on user behavior for some

experiments (e.g., the Expert of Task experiment), for which we need to dig deeper beyond

the statistical analysis. Furthermore, relying strictly on p-values to assert patterns and sig-

nificance is known to be problematic [28]. Given our relatively small sample size (roughly

20 participants) for each condition and latency case, performing a pairwise statistical analy-

sis becomes more challenging. Therefore, we see this statistical analysis a starting point for

better understanding the effects of latency on user search behavior. We found that analyz-

ing the search patterns themselves provides more compelling evidence for how participants

apply one or more search strategies in the interface, and more importantly, how their strate-

gies change across experimental condition and worst-case latency value. Our results are
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discussed in Section 2.6.

2.6 Analysis of Interaction Trails

(a) Grid search (b) Impatient grid search (c) Perimeter search

(d) Direct search (e) Opportunistic/random (f) Switching

Figure 2-4: Examples of the five types of search strategies identified through the interaction
trails: grid search, impatient grid search, perimeter search, direct search, and opportunis-
tic/random search. Figure 2-4f is an example of how participants apply multiple strategies.

In our statistical analysis we found a meaningful difference in user preferences for

searching low-latency regions across different visualization conditions, as well as across

different worst-case latencies. However, this analysis is unable to tell us what those differ-

ences are, and why these differences matter. As such, we decided to inspect the analysis

trails of all 692 successful completions, as well as the 102 unsuccessful attempts from the

Analysis of Large Amounts of Data experiment (794 total). To perform this analysis, the

images were manually clustered by two independent classifiers according to visual similar-

ity of the search trace patterns. 5 high-level patterns emerged from the classification: grid

search, impatient grid search, perimeter search, direct search, and random (or opportunis-

tic) search. An example of each search strategy is provided in Figure 2-4.
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Grid search (Figure 2-4a) is distinguished by a back-and-forth scan that occurs across

the full width of the collage. With impatient grid search (Figure 2-4b), the participant

performs a grid search over a much smaller region of the collage. In perimeter search

(Fig 2-4c), the participant pans along the perimeter of the collage, gaining familiarity with

the boundaries and size of the collage, and looking for an opportune region for panning

inward. Direct search (Figure 2-4d) is distinguished by a (nearly) straight path towards

one of the targets. Unlike the other search strategies, Random search (Figure 2-4e) is

characterized by a seemingly haphazard search path.

We also found that some participants utilized multiple strategies while performing a

single search task (example in Figure 2-4f. We analyze these switches between strategies

in Section 2.6.2.

2.6.1 Strategies Across Conditions

Figure 2-5: Distribution of search strategies across conditions.

We found clear differences in how many people used each of the five strategy types

across experimental conditions, shown in Figure 2-5. We see that highly structured strate-

gies like grid and perimeter search dominate in the Novice Search and Expert of Task

experiments. In these experiments, the dimensions of the collage and exact location of the

targets are unknown to the participants. Thus participants must work with information that

they can glean from the collage itself to execute their search: the gridded structure of the

collage. However, when participants are under time pressure, we see a significant increase

in the fraction of participants that choose to utilize a random or direct search strategy. The
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fraction of participants that chose these strategies increased dramatically from the no la-

tency case (2 of 12 participants) to 7 seconds of latency and higher (6 of 9 participants

for the 14 seconds case). We also found that none of the participants switched strategies

part way through their search. This behavior is consistent with the outcomes observed in

prior work (see Section 2.2.2 for examples): people default to simple (and familiar) search

strategies when placed under time constraints, even when those same people would select

a more effective strategy with the time constraint removed. In the Opportunistic Search

experiment, we see a significant increase in the fraction of participants that choose an im-

patient grid search strategy. The fractions are highest for the 10 and 14 second latencies (7

of 22 participants, and 9 of 25 participants, respectively). 21 of 21 participants that chose

an impatient grid search restricted their search to the low-latency half of the collage only.

Thus latency had a clear effect on how participants executed this strategy, even in the 2.5

second case, where 3 of 3 participants only explored the low-latency half of the collage.

In the Domain Expert: Exact and Incomplete Information experiments, we see a high

proportion of people that select a direct search strategy. This is consistent with the ex-

perimental design, where participants know the locations of the targets in advance. These

results also speak to observations in past work on domain expertise: when people come to

the analysis with domain expertise, they tend to employ more efficient search strategies.

We find that in the Undifferentiated Alternatives experiment, participants revert back to

using structured search strategies, such as grid and perimeter search. We attribute this to

an insufficient amount of information about the location of the targets: searching half of

the grid was still too large of a space for participants to feel confident in choosing a more

efficient or more opportunistic search strategy.

2.6.2 Latency and Switching Strategies

Of the 794 completions analyzed, 107 participants utilized more than one distinct pattern in

their search trace (692 successful completions, and 102 unsuccessful from the Analysis of

Large Amounts of Data experiment). We analyzed which strategies were used initially by

participants (i.e. at the start of their search) as well as which strategies they switched to (see
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Figure 2-6: Distribution of strategy switches across conditions. Each row has a pair of
strategies “A-B”, where A is the initial strategy that was used (e.g., grid search), and B is the
final strategy that was used. For example, the third row represents a count of participants
that started the task using grid search, and then switched to a perimeter search. “Other”
refers to a strategy that is neither grid search nor perimeter search (e.g., direct search).

Fig. 2-6). In the Novice Search and Expert of Task experiments, we find that people tend to

start with a perimeter search, then switch to a grid search. In general, participants heavily

favored switching to a grid search across all latency cases (22 out of 25 total participants for

Novice Search, 16 of 18 for Expert of Task). In the Opportunistic search task, we see a

complete shift compared to Novice Search: people start with a perimeter or grid search (11

of 11 participants), but then switch to an alternative search strategy (10 of 11 participants).

This points to a shift in how participants interact with the data: initially, they attempt to

thoroughly explore the collage. However, when they see the abundance of targets, they

switch to a more efficient or opportunistic strategy. In the Domain Expert: Incomplete
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Information experiment, we found that people tend to start with perimeter search before

switching (6 of 7), and 4 of 7 participants switched to a grid search. We hypothesize

that these participants used the target location information to direct their search towards

a particular half of the collage (via perimeter search), then switched to a different search

strategy to find the target. In the Domain Expert: Exact Information experiment, we

saw yet another change in the distribution: people were split evenly between starting with

an alternative search strategy (7 of 14 participants) and starting with a perimeter search

(6 of 14). These results are consistent with more participants attempting a more efficient

strategy to find the target, compared to the Domain Knowledge: Incomplete Information

experiment. The majority of participants eventually switched to a grid search (9 of 14).

Thus participants try a more efficient search strategy first with an unsuccessful outcome,

and then switch to a more conservative strategy for the rest of the task. In the Analysis

of Large Amounts of Data experiment, we found that most participants started with an

alternative search strategy (9 of 13 participants), and then switched to perimeter search

(or attempted to). In the Novice Search experiment, participants relied on the size and

structure of the collage to perform a perimeter search or grid search. In this experiment,

participants are asked to perform the same task, but in an overwhelmingly large collage.

Given the high fraction of participants that choose a perimeter or grid search strategy in

similar experiments, we attribute these strategy shifts to participants becoming disoriented

in the collage, and seeking a collage boundary to reorient themselves. However, with a

massive collage of 40,000 images, many participants never reached the perimeter before

calling off the search.

2.7 Discussion

2.7.1 Comparing with Real-World Domain Experience

An important motivator for this work is its relevance to how domain experts explore data in

the real world. Our experimental design was influenced by our experiences from working

with earth scientists. We found that when we designed user study tasks that leveraged their
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existing experience, earth scientists (i.e., our domain experts) utilized similar search strate-

gies to our observations from Section 2.6. In our most prominent example, we recruited

earth scientists to search for mountain ranges in a satellite sensor dataset. When we asked

earth scientists at UC Santa Barbara and the University of Washington to search for visibly

snowy mountain ranges, they immediately panned to the Rocky mountains (i.e., mountains

near the west coast). When we asked earth scientists at MIT to perform the same task, they

immediately panned to the Appalachian mountains (i.e., mountains near the east coast).

The behavior of the earth scientists was very similar to what we observed for the direct

search pattern in our study on Amazon Mechanical Turk. Thus we have observed that real

domain experts exhibit similar behavior to the Turkers with simulated domain expertise in

our analysis scenarios. We plan to extend this work in the future by performing similar

studies with real domain experts and real-world data.

2.7.2 Effects of Delay Length on Performance

We found a general trend in the effects of latency on visual search tasks: the longer the

worst case latency (i.e., the delay case), the more likely it is that the user will prefer to

explore regions with lower latency. When latency was introduced in the interface, we

observed an increase in the number of people who identified target images in low-latency

data regions. This effect was most pronounced (and statistically significant) when users had

more domain knowledge (e.g., knew there were many target images, or knew the location

of the targets).

However, we also found that latencies of 2.5 seconds had little or no effect on partic-

ipants for five out of eight of our experiments. Furthermore, it was generally at the 14

second case where we observed statistically significant deviations in search behavior, when

compared to the 0 second case. These findings differ drastically from the outcomes of the

latency study by Liu and Heer [62], where they found that delays beyond 500 milliseconds

had a clear negative effect on participants, and delays beyond 1 second rendered the inter-

face “unusable” by the participants. We attribute the differences between our study and the

Liu and Heer study to two factors: 1) major differences in the implementation of delays in
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the interfaces, and 2) people’s expectations for the interfaces that were studied.

In the imMens system [63], participants cannot perform subsequent interactions with

the interface until existing interaction events have finished. Furthermore, every interaction

has an added delay of 500 millisenconds. In this scenario, even a short delay of 500 mil-

liseconds can be frustrating for participants, since every interaction is guaranteed to take

at least 500 milliseconds. However, this latency model is inconsistent with other popular

pan-zoom interfaces like Google Maps, which employ asynchronous loading of image tiles.

To provide a realistic exploration environment for participants, our interface design utilizes

asynchronous loading of image tiles, where each tile may be given one of four latency

values, from 0 seconds up to the worst case latency (2.5 to 14 seconds, see Section 2.3

for details). Furthermore, participants did not have to wait for all tiles to load before per-

forming their next interaction, and thus could continue to make progress on the task, even

when some image tiles took a long time to load. We believe this results in very different

usage patterns for the resulting interfaces, and ultimately to a weaker latency effect in the

asynchronous case.

Another possible factor is that users have different “expectations” for different inter-

faces. For example, many people are now accustomed to Google Maps and its latency

profile. Since the visualization used in our image search tasks shares similarities in the

rendering (i.e., using tiles that are loaded asynchronously) and the interaction design (i.e.

the use of dragging) with Google Maps, it is reasonable to assume that the participants had

expectations of the behavior of the system based on their experience with Google Maps. In

Google Maps, depending on network latency, image tiles can appear seconds or tens of sec-

onds after a user’s interaction. In contrast, the imMens system utilizes a coordinated view

visualization with four supported interaction types, including brushing and linking and se-

lection, and Liu and Heer found that inserting 500 millisecond delays had a significant

effect on participants. The difference between these two studies suggest that the interaction

designs may play an important factor on our perception and tolerance of latency.
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2.7.3 Effects of Explicit Knowledge of Latency

In the case of the Analysis by a Technical Expert experiment, we found that even though

participants were made aware that the latencies were associated with interactions, very few

participants noticed a pattern to the delays in the interface. Participants seemed to accept

that delays were simply a part of the interface, and failed to realize that they could control

whether the latencies were low or high by changing the direction of their panning interac-

tions. Unsurprisingly, we observed similar results to our Novice Search Experiment in this

case, where neither experiment had statistically significant results (see Section 2.4.9 for an

overview of all 8 experiments). This outcome is consistent with our design methodology,

as knowledge of the interface is orthogonal to knowledge of the underlying dataset. Fur-

thermore, we have observed that it is with knowledge of the data that participants choose to

deviate from structured search strategies (e.g., grid and perimeter search). This idea was re-

inforced through the results of the other experiments, where participants had expert domain

knowledge. The Opportunistic Search experiment was a clear example of this idea, where

participants had more information about the data that they could learn as they explored (i.e.,

more targets to find), and they were able adapt their search strategies accordingly.

This points to an intuitive cost model for search tasks that balances two factors: speed

and precision. When knowledge of the data is too uncertain (e.g., seemingly random),

people employ search strategies that favor precision over speed. Why focus on picking the

fastest (i.e., lowest latency) interactions, when one has no idea whether faster interactions

will actually lead to finishing the task faster? In a needle-in-a-haystack style search task,

overlooking a particular region could easily lead to failure. Furthermore, we found in our

experiments that eliminating half of the collage (i.e., going from finding 1 target in 400

images to 1 in 200 images) was still not precise enough for people to be persuaded to

favor speed over precision. However, when more precise information is provided about

the dataset (e.g., the location of the targets), we see a shift in participants’ behavior. They

make more decisions that favor speed (i.e., lower latency interactions) over efficiency (i.e.,

comprehensive search).

58



2.8 Summary

In this chapter, we evaluated the effect of latency in a visualization on the user’s behavior

in an image search task. In particular, we examined how the effect of latency differs in

8 analysis scenarios: (1) analysis by a novice analyst, (2) analysis under time pressure,

(3) analysis by an expert of the task, (4) analysis by an expert of the data, (5) analysis

with incomplete information about the data, (6) analysis by an expert with tacit Domain

knowledge, (7) opportunistic search and analysis, and (8) analysis of large amounts of

data. Through an 8 (analysis scenario) x 5 (amount of latency) factorial design study, we

show how latency affects users’ search behaviors in the context of other factors such as

task difficulty and familiarity with the data. Our findings show that latency does not af-

fect all scenarios the same way. In some cases, such as opportunistic search, latency can

significantly affect the user’s behavior. However, in other scenarios such as analysis by an

expert with tacit domain knowledge, the effect of latency is not noticeable. In addition,

our analysis of the user’s search paths reveals 5 different search strategies that people em-

ploy under different task and latency conditions. Furthermore, we found that participants

actively switch between different search strategies as latency in the system increases, such

as adopting a random strategy when under time pressure, or adopting a more direct search

strategy when knowledgeable of the underlying dataset.
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Chapter 3

The Sculpin System

3.1 Introduction

Through our analysis of system latency in the previous chapter, we suggested a relation-

ship between high latencies and shifts in people’s preferred search strategies. From these

behavioral shifts, we found that latency has a clear effect on how people choose to nav-

igate a visualization when performing search-based analysis tasks. This effect becomes

more pronounced when we have expert users with domain knowledge (i.e., knowledge of

the underlying dataset), such as data scientists. One common interaction pattern we have

observed from data scientists is that they analyze a small region within a larger dataset, and

then pan to a nearby region and repeat the same analysis. They initially aggregate or sam-

ple these regions when looking for a quick answer, and zoom into the data when an exact

answer is needed. Thus, we focus on supporting a detail-on-demand browsing paradigm,

where users can pan to different regions within a single dataset, and zoom into these regions

to see them in greater detail.

Following from the general latency analysis in the previous chapter, we studied how

latency impacts the performance of visualization tools designed for browsing massive

datasets (or exploratory browsing). A diagram of the standard exploratory browsing archi-

tecture is provided in Chapter 1 (Figure 1-1). Here, the user interacts with a visualization

tool running on a client machine (i.e., the user’s laptop), and the client is connected to a

DBMS running on a remote server. The user formulates a DBMS query to explore, then
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the query is sent to and executed on the DBMS, and the results are sent back to the client.

The client produces a visualization of these query results, and the user interacts with the

visualization through a detail-on-demand, or pan-zoom interface. The user can pan to var-

ious regions in the query results and zoom to see these regions in more or less detail. After

interacting with this visualization, the user can choose to write a new query to visually

explore a different facet of the underlying dataset. Thus the exploration process is not only

interactive but also iterative in nature, as the user continues to write queries and explore her

data.

A major challenge in exploratory browsing lies in reducing overall system latency.

While users want to be able to drill down into specific regions of a dataset, they also want

their actions within the browsing tool to be fluid and interactive. Even one second of delay

after a pan or zoom can be frustrating for users, hindering their analyses and distracting

them from what the data has to offer [72, 62]. Although modern database management sys-

tems (DBMS’s) allow users to perform complex scientific analyses over large datasets [81],

DBMS’s are not designed to respond to queries at interactive speeds [10, 48], resulting

in long interaction delays for browsing tools that must wait for answers from a backend

DBMS. Thus, new optimization techniques are needed to address the non-interactive per-

formance of modern DBMS’s, within the context of exploratory browsing.

We observe that there are two types of latency in exploratory visualization systems

that must be addressed. First, there are the “interaction latencies”, which are delays in a

system’s response to a user’s interactions during the exploration process (e.g., latency in a

panning or zooming interaction). Second, there are the “materialization latencies”, which

represent the amount of time it takes for the system to prepare the data for exploration,

including the time to execute the user’s DBMS query (see Figure 3-1). While there have

been a good number of exploratory browsing systems developed for reducing interaction

latencies (e.g., [9, 63, 17, 60, 76]), we have found no systems that adequately address the

issue of materialization latency.

Materialization latency is an important, but often overlooked part of data exploration.

In most systems that address interaction latency, the systems assume that data prepara-

tion, or query materialization, is an offline task that imposes no cost to the exploration
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Figure 3-1: Storage layout for caching materialized query results (or “cooked” data), from
left to right (raw input data is considered separately): 1) server disk, 2) server main memory,
and 3) client main memory. To reduce interaction latency, existing systems only cache
query results on the client [17, 63, 60, 76]. None of these systems consider materialization
latency.

process. However, this assumption is often not true. For example, in large data explo-

ration, exploratory systems that use precomputed data cubes such as imMens [63] and

NanoCubes [60] need to re-compute the data cubes if the user wishes to explore data di-

mensions that are not part of the data cubes. Similarly, sampling-based systems such as

BlinkDB [4] and Sample-and-Seek [25] would require building new samples if the user’s

inquiries significantly differ from the workloads used to build the initial stratified samples.

With progressive sampling [47, 23, 33], the user still has to wait for her queries to com-

plete to see accurate results. Even for systems that use predictive pre-fetching [17, 27, 26],

data preparation is needed for this technique to be effective. In effect, ignoring the cost of

materialization latency assumes a limited context of a user’s data exploration process.

3.1.1 Sculpin

In this thesis, we propose a new exploratory browsing system called Sculpin to support in-

teractive exploration of massive arrays. Sculpin takes into account both materialization la-

tency and interaction latency, and to the best of our knowledge, is the first to optimize across

the entire exploratory browsing architecture. To reduce the time and space spent materializ-

ing query results, Sculpin applies resource-conscious materialization (or pre-computation)

techniques. To reduce interaction latency, Sculpin combines data caching and pre-fetching

across all three layers of storage (see Figure 3-1: main memory on the client, main memory

on the server, and server disk.

When the user performs zooms in Sculpin, she expects to see more detail from the

underlying data. To support multiple levels of detail, we insert aggregation operations into
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the user’s query. However, complex scientific analyses take time, and may not execute at

interactive speeds in the DBMS. To ensure that zooms are fast in Sculpin, we compute

a subset of zoom levels, or levels of detail, beforehand, and store them on disk. Each

zoom level is treated as a separate materialized view, which we can partition into equal-

size blocks, or data tiles [63], allowing for efficient data retrieval by the client.

To support exploration along multiple dimensions, Sculpin creates an ensemble of

“navigable” visualizations, often referred to as coordinate multiple-view visualizations

(CMV) [86], where each visualization maps to specific dimensions in the underlying dataset.

In CMV, the user can pan or zoom using a particular visualization to explore along the cor-

responding dimensions.

In this chapter, we present Sculpin’s tile-based data model for arrays, and general-

purpose architecture for supporting exploration of data tiles using the array-based DBMS

SciDB [94]. The subsequent chapters explain the optimization techniques implemented in

Sculpin to enable exploration of massive array data at interactive speeds.

3.2 Data Model

Sculpin is designed to support exploration of massive arrays (i.e., data represented in a

matrix-based format). In this section, we describe the kinds of array data supported by

Sculpin, and our process for building zoom levels and data tiles.

3.2.1 Datasets Supported by Sculpin

The datasets that work best with Sculpin share the same properties that make SciDB per-

formant: (a) the majority of column types are numerical (integers, floats, etc.), and (b) the

relative position of points within these columns matters (e.g., comparing points in time,

or in latitude-longitude position). These properties ensure that the underlying arrays are

straightforward to aggregate, partition, and visualize in Sculpin. The following three exam-

ple datasets share these properties: geospatial data (e.g., satellite imagery in Figure 3-2a),

multidimensional data (e.g., iris flower classification in Figure 3-2b), and time series data

(e.g., heart rate monitoring in Figure 3-2c). Beyond these three examples, SciDB has also
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(a) Satellite Imagery (b) Multidimensional

(c) Timeseries (Heart rate Monitoring)

Figure 3-2: Potential tiling schemes for three types of data.

been used for efficiently analyzing genomics data [96] and astronomy data [93]. Given its

extensive support for complex analytics over multidimensional datasets, we use SciDB as

the back-end DBMS in Sculpin.

Consider Figure 3-2a, where the user is exploring an array of snow cover measurements

computed from satellite imagery. Each array cell has been mapped to a pixel, where orange

and yellow pixels correspond to snow. We have partitioned the current zoom level along

the array’s two dimensions (latitude and longitude), resulting in four data tiles. The user’s

current viewport is located at the top left data tile; the user can move to other tiles by pan-

ning in the client-side interface. The user can also zoom in or out to explore different zoom

levels. In Figure 3-2b, a multidimensional dataset is being explored along two dimensions:

petalLength and sepalWidth. Since the user is only exploring two of the total dimensions,

the data is only partitioned along these two dimensions to form data tiles. The user’s current

viewport is located at the top left data tile. In Figure 3-2c, only one dimension is being ex-

plored (time), which is partitioned into 1D tiles and rendered as a time series visualization.

The user’s current viewport is located at the center tile along the time dimension.
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3.2.2 Interactions Supported by Sculpin

In this thesis, we focus on supporting data exploration through one or more two-dimensional

(2D) views, where exploration means that the user can browse, but not modify the underly-

ing dataset. In addition, we assume that users are interacting with the data using consistent,

incremental actions that only retrieve a fraction of the underlying dataset. For example, if

the user wants to go from zoom level 0 to 4 in Sculpin, she must go through levels 1, 2,

and 3 first. Otherwise, users are essentially performing random accesses on the underlying

data, which are generally difficult to optimize for any back-end DBMS (e.g., “jumping” to

any location in the dataset).

These assumptions define a specific class of exploration interfaces, characterized by

the following four rules: (a) the interface supports a finite set of interactions (i.e., no open-

ended text boxes); (b) these interactions cannot modify the underlying dataset; (c) each

interaction will request only a small fraction of data tiles; and (d) each interaction represents

an incremental change to the user’s current location in the dataset (i.e., no “jumping”). Note

that given rule (c), Sculpin does not currently support interactions that force a full scan of

the entire dataset, such as searches (e.g., find all satellite imagery pixels with a snowcover

value above 0.7).

3.2.3 Building Data Tiles

To improve performance, Sculpin builds a subset of data tiles in advance (i.e., before the

user starts to explore), and stores them on disk in SciDB. First, we consider the comprehen-

sive case, where every tile is computed (or built) in advance, and then describe how Sculpin

augments this process to build only a subset of individual tiles. To create visualizations,

Sculpin must perform two separate operations on the back-end: a build operation, where

Sculpin executes the user’s query in the DBMS and stores the results as a separate array;

and a fetch operation, where Sculpin retrieves the data to be visualized by issuing a fetch

query to the DBMS for the computed array. In this section, we focus on the build operation,

where Sculpin builds zoom levels and data tiles in three steps: (1) building a separate ma-

terialized view for each zoom level; (2) partitioning each zoom level into non-overlapping

blocks of fixed size (i.e., data tiles); and (3) computing any necessary metadata (e.g., data
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Figure 3-3: A 16x16 array being aggregated down to an 8x8 array with aggregation param-
eters (2,2). Every 4 cells in the input array (i.e., the red box on the left) becomes a single
cell in the aggregated results (i.e., the red box on the right).

Figure 3-4: A zoom level being partitioned into four tiles, with tiling parameters (4,4).

statistics) for each data tile. The most detailed zoom level (i.e., highest resolution) is just

the original query results without any aggregation.

Building Materialized Views: To build a materialized view, we apply an aggregation

operation to the user’s query, where the aggregation parameters dictate how detailed the

resulting zoom level will be. These parameters form a tuple ( j1, j2,..., jd), where d is the

number of dimensions. Each parameter j specifies an aggregation interval over the cor-

responding dimension, where every j array cells along this dimension are aggregated into

a single cell. Consider Figure 3-3, where we have a 16x16 array (on the left), with two

dimensions labeled x and y, respectively. Aggregation parameters of (2,2) correspond to

aggregating every 2 cells along dimension x, and every 2 cells along dimension y (i.e., the

red box in Figure 3-3). If we compute the average cell value for each (non-overlapping)

window in the 16x16 array, the resulting array will have dimensions 8x8 (right side of

Figure 3-3).

Partitioning the Views: Next, we partition each computed zoom level into data tiles.

To do this, we assign a tiling interval to each dimension, which dictates the number of

aggregated cells contained in each tile along this dimension. For example, consider our

aggregated 8x8 view in Figure 3-4. If we specify a tiling window of (4,4), Sculpin will

partition this view into four separate data tiles, each with the dimensions we specified in
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our tiling parameters (4x4).

We choose the aggregation and tiling parameters such that one tile at zoom level i

translates to four higher-resolution tiles at level i+ 1. To do this, we calculated our zoom

levels bottom-up (i.e., starting at the raw data level), multiplying our aggregation intervals

by 2 for each coarser zoom level going upward. We then applied the same tiling intervals

to every zoom level. Thus, all tiles have the same dimensions (i.e., tile size), regardless of

zoom level.

Note that each zoom level covers the full range of the query result. Therefore, for any

tile, we can calculate the corresponding “parent” or “child” tiles that a user might zoom to

when interacting with the client-side interface.

Computing Metadata: Last, Sculpin computes any necessary metadata for each data

tile. For example, some of our recommendation models rely on data characteristics, or

signatures, to be computed for each tile, such as histograms or machine vision features (see

Section 4.2 for more detail). As Sculpin processes each tile and zoom level, this metadata

is computed and stored in a shared data structure for later use by our prediction engine.

Choosing a Tile Size: Pre-computing tiles ensures that Sculpin provides consistently

fast performance across zoom levels. However, choosing a bad tile size can negatively

affect performance. For example, increasing the tile size reduces the number of tiles that

can be stored in the middleware cache (assuming a fixed cache size), which could reduce

Sculpin’s prefetching capabilities. In our evaluation (Sections 4.4 and 5.4), we take this into

account by varying the number of tiles that are prefetched by Sculpin in our experiments.

We plan to perform an in-depth study of how tiling parameters affect performance as future

work.

Computing Subsets of Tiles: Instead of computing every zoom level, only a subset of

zoom levels are computed in advance, saving the time and space required to compute and

store the ignored zoom levels. Specifically, the only the coarsest zoom levels are built in

advance. We discuss our materialization optimizations in detail in Chapter 5. Then, once

the user starts exploring the data, Sculpin switches its focus to computing (or building)

individual data tiles. When Sculpin needs to fetch a tile that has not been built, Sculpin

uses the same two-step build and fetch process described above: Sculpin issues one query to
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Figure 3-5: A diagram of the Sculpin architecture.

build and store the tile in the DBMS, then another to fetch the built tile from the DBMS. To

build a data tile, Sculpin filters the original zoom level query for the exact range matching

the tile, then executes this filtered query in the DBMS. We refer to the time spent executing

the tile query as the cost of the tile. Note that Sculpin treats the DBMS as a black box,

and does not assume access to any intermediate query results or any metadata that is not

publicly accessible through query API’s.

3.3 Architecture

Sculpin contains both client-side and server-side logic to track and predict user interac-

tions, as well as to build, pre-fetch and cache tiles. A diagram of the Sculpin architecture is

provided in Figure 3-51. Sculpin has a browser-based front-end on the client which renders

visualizations and manages tiles in the browser, fetching tiles from the server when neces-

sary. On the server, Sculpin has a prediction framework for predicting what tiles the user

will request in the future, and a tile builder for determining which tiles should be built and

when (offline or online). The tile builder issues queries to a back-end DBMS to build tiles.

In this section, we describe each major component of the Sculpin architecture.

Client-Side Front-End: The front-end is the sole user-facing component of Sculpin,

and is designed to run entirely in a web browser. This component is responsible for creating
1Sculpin currently assumes a single-user context. We discuss extending Sculpin to the multi-user case as

future work in Chapter 7.
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and updating the coordinated visualizations (e.g. see Figure 3-6) that are used to explore

data. On the left, Figure 3-6 shows a map view of the western US and Mexico; on the right,

a timeline view showing changes in light intensity over time. The user can pan and zoom

in any visualization within the coordinated views, which triggers tile requests to the server,

and re-rendering of the visualizations (more details are provided in Section 3.4). Sculpin

requires knowledge of the user’s recent interactions to make predictions. Therefore, this

component is also responsible for recording the user’s interactions with each visualization

of the coordinated views, and for mapping these interactions into tile requests to be sent to

the server.

Server-Side Prediction Framework: We developed our prediction framework to sup-

port our multidimensional visualization front-end. Using past user interaction input, the

framework runs multiple low-level predictors, one per visualization in the client-side coor-

dinated view. Each predictor is a dedicated sub-component designed specifically to make

predictions for 2D visualizations, and each predictor only has access to past interactions

within the associated visualization. The predictors are run in parallel, and space is al-

located for the predicted data tiles from each low-level predictor. To efficiently allocate

space across predictors, we utilize a multi-level prediction strategy, where we first predict

the most likely visualization that the user will interact with next. Extra space is given to the

visualization that is deemed more likely to be interacted with next. The final predictions

are then consolidated across predictors and sent to the Tile Builder for retrieval.

Server-Side Tile Builder: Tile Builder is responsible for issuing queries to the server-

side DBMS to build and fetch tiles, and for managing the disk-based builder cache. The

builder cache is finite, so the Tile Builder is also responsible for deciding which tiles to

evict when the cache is full. The Tile Builder has two associated processes, an offline and

an online process. The offline process pre-populates the builder cache with the zoom levels

that are the most expensive to build. The online process is executed during runtime. In both

cases, given a list of candidate tiles from the predictors mentioned above, the Tile Builder

performs optimizations to determine which tiles should be built first based on likelihood of

use (see Section 5.2 for more detail).
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Figure 3-6: A snapshot of a Sculpin coordinated view visualization.

3.4 Front-End Interface Design

In this section, we describe the two major sub-components of the front-end: the Vis Man-

ager, which controls the coordinated view visualization; and the Tile Request Manager, the

component responsible for communicating with the server.

3.4.1 Vis Manager

The Vis Manager controls the coordinated view visualizations that the user explores, and

tracks the user’s interactions. Each visualization renders one or two dimensions from the

underlying dataset (i.e., one or two data dimensions). Each visualization has a specific

configuration that describes the mapping from x and y visualization dimensions (or pixel

space) to data attributes or dimensions in the underlying array (data space). The user’s cur-

rent location within each visualization also defines her current position within the dataset.

The front end combines the position information from all of the visualizations to com-

pute range filters to find the corresponding data tiles. Therefore, when the user interacts

with a visualization, the front-end must fetch a fresh set of tiles corresponding to the new

combined data range. The new tiles are then used to re-render all visualizations in the

coordinated view.

Button clicks are used to zoom and mouse drags are used to pan in the visualizations.

Button clicks shift the visualization by a fixed distance (e.g., zooming in by one level, or

panning left by one tile). Mouse drags shift the visualization in the same direction and

distance as the corresponding drag action.

The Vis Manager records the start and end coordinates of each interaction in two ways:

in pixel space (i.e., where the user started and ended on her computer screen) and data
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space (i.e., where the user started and ended within the dataset).

3.4.2 Tile Request Manager

The Tile Request Manager is responsible for managing all requests sent to the server, and

all tiles sent to the client. For each interaction, the Tile Request Manager checks a client-

side tile cache for the tiles corresponding to this location. If some tiles are missing, the Tile

Request Manager issues a request to the server for these tiles, and stores any tiles retrieved

from the server in the client-side main memory cache. If the cache is full, tiles are evicted

using one of the tile eviction policies described in Section 5.3.1. The Tile Request Manager

also periodically sends interaction data to the server to update the Prediction Framework.

3.5 Chapter Summary

In this chapter, we presented the data model and architecture of Sculpin, an exploratory

browsing system that supports detail-on-demand (or pan-zoom) browsing of multidimen-

sional datasets. Sculpin adopts a client-server architecture, where the user interacts with

a lightweight visualization front-end on a client machine (e.g., a laptop), and the client

fetches the data to be visualized from a remote server running a DBMS (here, SciDB).

To the best of our knowledge, Sculpin is the first exploratory browsing system to simulta-

neously reduce interaction latency (i.e., response times), materialization latency, and disk

space consumption. To do this, Sculpin contains a server-side middleware layer with sev-

eral optimization techniques. In Chapters 4 and 5, we discuss the specific optimization

techniques utilized in Sculpin to support interactive exploration of massive datasets.
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Chapter 4

Dynamic Prefetching of Data Tiles in

Sculpin

4.1 Introduction

In the previous chapter, we introduced the data model and general architecture of the

Sculpin exploratory browsing system. The purpose of Sculpin is to enable users to quickly

and iteratively browse large datasets. The general analysis workflow includes the following

steps: 1) the user inputs a complex analysis query to be visualized (i.e., a DBMS query); 2)

the visualization tool executes queries in the DBMS to prepare an interactive visualization;

and 3) the user interacts with the resulting visualization through panning and zooming in-

teractions. The user can repeat this process with a new DBMS query to explore. In this

chapter, we explain the design of the Sculpin prediction framework, which applies novel

data pre-fetching techniques to reduce interaction latencies in the system, or the time taken

by the system to respond to the user’s interactions with a rendered visualization (i.e., the

user’s pans and zooms). However, we note that reducing interaction latencies only ad-

dresses one of our performance goals for Sculpin. Specifically, we focus on three major

performance goals throughout this thesis:

Goal 1 Reduce interaction latency, so the user can perform panning and zooming interac-

tions quickly.
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Figure 4-1: A diagram of Sculpin’s tile storage scheme.

Goal 2 Reduce materialization latency, so the user can quickly create new visualizations

of DBMS queries.

Goal 3 Reduce the disk space consumed by data tiles (i.e., materialized queries), so the

user can create visualizations with minimal effort.

We explain how Sculpin supports Goals 2 and 3 in the next chapter.

To reduce interaction latencies in Sculpin (Goal 1), we first consider the full interaction

process. Specifically, the user cycles through the following interaction steps when browsing

data through a single visualization in Sculpin: (1) she analyzes the result of the previous

request, (2) performs an action in the interface to update or refine the request (e.g., zooms

in), and then (3) waits for the result to be rendered on the screen. Sculpin eliminates step 3

by prefetching neighboring tiles and storing them in main memory while the user is still in

step 1, thereby providing the user with a seamless browsing experience. At the middleware

level, we incorporate a main-memory cache for fetching computed tiles, shown in Figure 4-

1. When tiles are prefetched, they are copied from SciDB to the cache. However, in a

multi-user environment, there may be too little space on the server to cache all neighboring

tiles for every user. Furthermore, we may only have time to fetch a small number of tiles

before the user’s next request. Thus, we must rank the tiles first, and fetch only the most

likely candidates.

While prefetching is known to be effective, Sculpin needs access to the user’s past inter-

actions with the interface to predict future data requests. We have observed that the client

has extensive records of the user’s past interactions, which we can leverage to improve our

prefetching strategy. For example, the client knows what regions the user has visited in the

past, and what actions she has recently performed. One straightforward optimization is to
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train a Markov model on the user’s past actions, and to use this model to predict the user’s

future actions [17, 27]. We refer to these prediction techniques as recommendation models

throughout this thesis.

However, the user’s actions are often too complex to be described by a single model

(which we will show in Section 4.4). Thus, existing models only cover a fraction of possible

analysis goals, leading to longer user wait times due to prediction errors. A comprehensive

approach is needed, such that we can consistently prefetch the right tiles over a diverse

range of high-level analysis goals.

To address the limitations of existing techniques, we have designed a new two-level

predictor for our middleware, which is a sub-component of our prediction framework. This

predictor is designed to anticipate the user’s future interactions with a single 2D visualiza-

tion. At the top level, our predictor learns the user’s current analysis phase (i.e., her current

frame of mind), given her most recent actions. The user’s analysis phase hints at her current

analysis goals, and thus provides context for which actions in the interface she may use to

reach her goals. We provide examples of analysis phases in the following paragraph. Fur-

thermore, users frequently employ several low-level browsing patterns within each analysis

phase (e.g., panning right three times in a row). Therefore at the bottom level, our predic-

tor runs multiple recommendation models in parallel, each designed to model a specific

low-level browsing pattern. Using this two-level design, our predictor tracks changes in

the user’s current analysis phase, and updates its prediction strategy accordingly. To do

this, we increase or decrease the space allotted to each low-level recommendation model

for predictions.

Taking inspiration from the Pirolli and Card Sensemaking model [80], we have ob-

served that the space of user interaction patterns can be partitioned into three separate

analysis phases: Foraging (analyzing individual tiles at a coarse zoom level to form a new

hypothesis), Sensemaking (comparing neighboring tiles at a detailed zoom level to test the

current hypothesis), and Navigation (moving between coarse and detailed zoom levels to

transition between the previous two phases). The user’s goal changes depending on which

phase she is currently in. For example, in the Navigation phase, the user is shifting the

focus of her analysis from one region in the dataset to another. In contrast, the user’s goal
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in the Foraging phase is to find new regions that exhibit interesting data patterns.

We consider two separate mechanisms for our low-level recommendation models: (a)

learning what to fetch based on the user’s past movements (e.g., given that the the user’s

last three moves were all to “pan right,” what should be fetched?) [27]; and (b) using data-

derived characteristics, or signatures, to identify neighboring tiles that are similar to what

the user has requested in the past. We use a Markov chain to model the first mechanism,

and a suite of signatures for the second mechanism, ranging from simple statistics (e.g.,

histograms) to sophisticated machine vision features.

We then take our 2D predictor, which is designed for making predictions for a single 2D

visualization, and extend it into a comprehensive multidimensional prediction framework,

capable of making predictions in parallel across multiple visualizations. To do this, we run

a separate copy of our predictor code, one copy per visualization in the user interface, and

allocate space separately to each predictor based on how likely the user is to interact with

the corresponding visualization in the interface.

To evaluate our prediction techniques, we conducted a user study, where domain sci-

entists explored satellite imagery data. Our results show that Sculpin achieves (near) in-

teractive speeds for data exploration (i.e., average latency within 500 ms). We also found

that Sculpin achieves: (1) dramatic improvements in latency compared with traditional

non-prefetching systems (430% improvement in latency); and (2) higher prediction accu-

racy (25% better accuracy) and significantly lower latency (88% improvement in latency),

compared to existing prefetching techniques. We make the following contributions:

1. We propose a new three-phase analysis model to describe how users generally ex-

plore array-based data.

2. We present our two-level predictor, with an SVM classifier at the top level to pre-

dict the user’s current analysis phase, and recommendation models at the bottom to

predict low-level interaction patterns.

3. We propose an extension to our original predictor design to make predictions across

multiple visualizations, which we developed as a multidimensional prediction frame-

work.

4. We present the results from our user study. Our results show that our prediction ap-
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proach provides higher prediction accuracy and significantly lower latency, compared

to existing techniques.1

4.1.1 Background

Sculpin relies on a diverse set of prediction components and user inputs. Here, we provide

an overview of the main concepts utilized in Sculpin.

User Interactions/Moves: The user’s interactions with Sculpin are the actions she

makes in the front-end interface to explore her data. We also refer to these interactions

as moves.

User Session: A user session refers to a single session for which the user has logged

into Sculpin and explored a single dataset.

Data Model: The Sculpin data model defines: (1) the structure and layout of data tiles,

and (2) how to build data tiles. We explain the Sculpin data model in detail in Section 3.2.

Analysis Model: Our analysis model is defined by our three analysis phases, and how

these phases interact with each other. We explain our analysis model in detail in Sec-

tion 4.2.3.

Analysis Phase: The user’s current analysis phase represents her frame of mind while

exploring data in Sculpin (i.e., Foraging, Navigation, or Sensemaking). Analysis phases

can be inferred through the user’s interactions; we explain how we predict analysis phases

in Section 4.2.3.

Browsing Patterns: Low-level browsing patterns are short chains of interactions re-

peated by the user (e.g., zooming in three times). We explain how we predict these patterns

in Section 4.2.4.

Recommendation Model: A recommendation model is a model used to predict low-

level browsing patterns (e.g., Markov chains). Sculpin employs two kinds of recommenda-

tion models: Action-Based (Section 4.2.4) and Signature-Based (Section 4.2.4).

1Note that we verify Sculpin’s performance in the multidimensional context in the following chapter, and
focus here on demonstrating our pre-fetching techniques specifically in the 2D case.
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4.2 2D Predictor Design

In this section, we describe the methods behind the core component of the prediction frame-

work, the 2D predictor. The goal of the 2D predictor component is to identify changes in

the user’s browsing patterns when interacting with a single 2D visualization, and to up-

date its prediction strategy accordingly. In this way, our predictor ensures that the most

relevant prediction algorithms are being used to prefetch data tiles. To do this, our predic-

tor makes predictions at two separate levels. At the top level, it learns the user’s current

analysis phase. At the bottom level, it models the observed analysis phase with a suite of

recommendation models.

We chose a two-level design because we have found that users frequently switch their

browsing patterns over time. In contrast, recommendation models make strict assumptions

about the user’s browsing patterns, and thus ignore changes in the user’s behavior. For

example, a Markov chain trained solely on move data (e.g., pan left, zoom out, etc.) relies

on the assumption that the user’s past moves will always be good indicators of her future

actions. However, once the user finds a new region to explore, the panning actions that she

used to locate this region will be poor predictors of the future zooming actions she will use

to move towards this new region. As a result, we have found that recommendation models

only work well in specific cases, making any individual model a poor choice for predicting

the user’s entire browsing session.

However, if we can learn what a user is trying to do, we can identify the analysis phase

that best matches her current goals, and apply the corresponding recommendation model(s)

to make predictions. To build the top level of our predictor, we trained a classifier to predict

the user’s current analysis phase, given her past tile requests. To build the bottom level of

our predictor, we developed a suite of recommendation models to capture the different

browsing patterns exhibited in our analysis phases. To combine the top and bottom levels,

we developed three separate allocation strategies for our middleware cache, one for each

analysis phase.

In the rest of this section, we formalize the general prediction problem solved by

Sculpin, explain how we map raw interaction data to usable input for existing prediction
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techniques, explain the top and bottom level designs for our predictor, and discuss how we

combine the two levels using our allocation strategies.

4.2.1 Managing Interaction Data

Though visualizations are generally mapped to two dimensions from the underlying dataset

(or two data dimensions), users can also explore the data at different zoom levels, which

together act as a third interaction “dimension”. As such, Sculpin treats zoom levels as a

3D space created from 2D data, where panning occurs along the two data dimensions, and

zooming occurs along the third zooming dimension. Though existing systems support this

notion of “3D” zooming [63, 60, 17], they fail to support true 3D data exploration (e.g.,

exploration beyond two data dimensions, such as beyond just latitude and longitude). In

contrast, Sculpin supports multidimensional data exploration through a coordinated view

visualization design.

To enable certain prediction algorithms, such as Markov models, to generalize beyond

specific data tile structures, Sculpin also translates a user’s interactions into a small set of

directional “moves”. Specifically, Sculpin considers ten different prediction “moves”: the

four cardinal directions (north, south, east, west), the four intercardinal directions (north-

west, northeast, southwest, southeast), zoom in, and zoom out. Here, “north” refers to

“up”, “south” to “down”, “west” to “left”, and “east” to “right”.

The Prediction Framework labels an interaction as a “zoom in” or “zoom out” by com-

paring the change in zoom level for the interaction. If no change in zoom level has occurred,

the Prediction Framework assumes that the user performed a “pan”.

4.2.2 Prediction Formalization

Here, we provide definitions for all inputs to and outputs from Sculpin, and a formalization

of our general prediction problem.

User Session History: The user’s last n moves are constantly recorded by the Tile Re-

quest Manager on the frontend and sent to the predictor as an ordered list of user requests:

H = [r1, r2, ..., rn]. Each request ri ∈ H retrieves a particular tile Tri. Note that n (i.e., the
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history length) is a system parameter set before the current session starts.

Training Data: Training data is used to prepare the predictor ahead of time, and is

supplied as a set of traces: {U1, U2, ...}. Each trace U j represents a single user session, and

consists of an ordered list of user requests: U j = [r1 ,r2 ,r3 ,...].

Allocation Strategy: The Tile Builder regularly sends the current allocation strategy to

the predictor: {k1, k2 ,...}, were k1 is the amount of space allocated to recommendation

model m1.

General Prediction Problem: Given a user request r for tile Tr, a set of recommender

allocations {k1, k2, ...}, and session history H, compute an ordered list of tiles to prefetch

P = [T1 ,T2 ,T3 ,...], where each tile Ti ∈ P is at most d moves away from Tr. The first

tile (T1) has highest priority when prefetching tiles. d is a system parameter set before the

current session starts (default is d = 1).

Only a few of these prediction parameters must be specified by the user: allocation

strategies for the tile cache (Section 4.2.5); distance threshold d (Section 4.2.4); user history

length n (Section 4.2.4); and user traces as training data (Sections 4.2.3-4.2.4).

4.2.3 Top-Level Design

In this section, we explain the three analysis phases that users alternate between while

browsing array-based data, and how we use this information to predict the user’s current

analysis phase.

Learning Analysis Phases

We informally observed several users browsing array-based data in SciDB, searching for

common interaction patterns. We used these observed patterns to define a user analysis

model, or a general-purpose template for user interactions in Sculpin. Our user analysis

model was inspired in part by the well-known Sensemaking model [80]. However, we

found that the Sensemaking Model did not accurately represent the behaviors we observed.

For example, the Sensemaking model does not explicitly model navigation, which is an

important aspect of browsing array data. Thus, we extended existing analysis models to
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Table 4.1: Input features for our SVM phase classifier, computed from traces from our user
study (see Section 4.4 for more details).

Feature Name Information Accuracy for
Recorded this Feature

X position (in tiles) X position 0.676
Y position (in tiles) Y position 0.692
Zoom level zoom level ID 0.696
Pan flag 1 (if user panned), or 0 0.580
Zoom-in flag 1 (if zoom in), or 0 0.556
Zoom-out flag 1 (if zoom out), or 0 0.448

match these observed behaviors. We found that our users alternated between three high-

level analysis phases, each representing different user goals: Foraging, Sensemaking, and

Navigation. Within each phase, users employed a number of low-level interaction patterns

to achieve their goals. We model the low-level patterns separately in the bottom half of our

predictor, which we describe in detail in Section 4.2.4.

In the Foraging phase, the user is looking for visually interesting patterns in the data

and forming hypotheses. The user will tend to stay at coarser zoom levels during this

phase, because these levels allow the user to scan large sections of the dataset for visual

patterns that she may want to investigate further. In the Sensemaking phase, the user has

identified a region of interest (or ROI), and is looking to confirm an initial hypothesis.

During this phase, the user stays at more detailed zoom levels, and analyzes neighboring

tiles to determine if the pattern in the data supports or refutes her hypothesis. Finally, during

the Navigation phase, the user is either zooming out to return to the Foraging phase (i.e., to

look for a new ROI to explore), or zooming in to in preparation for the Sensemaking phase

(i.e., to analyze a particular ROI).

Predicting the Current Analysis Phase

The top half of our two-level scheme predicts the user’s current analysis phase. This prob-

lem is defined as follows:

Sub-Problem Definition: given a new user request r and the user’s session history H,

predict the user’s current analysis phase (Foraging, Sensemaking, or Navigation).

To identify the current analysis phase, we apply a Support Vector Machine (SVM)
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Algorithm 1 Pseudocode to update the last ROI after each request.
Input: A user request r for tile Tr

Output: ROI, a set of tiles representing the user’s last visited ROI.
1: ROI←{}
2: tempROI ←{}
3: inFlag← False
4: procedure UPDATEROI(r)
5: if r.move =“zoom-in” then
6: inFlag← True
7: tempROI ←{Tr}
8: else if r.move =“zoom-out” then
9: if inFlag = True then

10: ROI← tempROI

11: inFlag← False
12: tempROI ←{}
13: else if inFlag = True then
14: add Tr to tempROI

15: return ROI

classifier, similar to the work by Brown et al. [14]. SVM’s are a group of supervised

learning techniques that are frequently used for classification and regression tasks. We used

a multi-class SVM classifier with a radial basis function (or RBF) kernel. We implemented

our classifier using the LibSVM Java Library2.

To construct an input to our SVM classifier, we compute a feature vector using the cur-

rent request r, and the user’s previous request rn ∈ H. The format and significance of each

extracted feature in our feature vector is provided in Table 4.1. Because this SVM classifier

only learns from interaction data and relative tile positions, we can apply our classification

techniques to any dataset that is amenable to a tile-based format. To build a training dataset

for the classifier, we collected user traces from the 18 participants of our user study. We

then hand-labeled each user request from the user traces with its corresponding analysis

phase. We describe our user study and evaluate the accuracy of the analysis phase classifier

in Section 4.4.

2https://github.com/cjlin1/libsvm
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4.2.4 Bottom-Level Design

Once the user’s current analysis phase has been identified, Sculpin employs the correspond-

ing recommendation model(s) to predict specific tiles. Sculpin runs these models in par-

allel, where each model is designed to predict specific low-level browsing patterns. The

space allocated to each model (i.e., number of tiles that each model can prefetch) is ad-

justed by Sculpin over time, based on how effective the model is for the current analysis

phase. These recommendation models can be categorized into two types of predictions: (a)

Action-Based (AB): learning what to predict from the user’s previous moves (e.g., pans and

zooms); and (b) Signature-Based (SB): learning what to predict by using data characteris-

tics, or signatures, from the tiles that the user has recently requested (e.g., histograms). For

an individual recommendation model m, the prediction problem is as follows:

Sub-Problem Definition: given a user request r, a set of candidate tiles for prediction

C, and the session history H, compute an ordering for the candidate tiles Pm = [T1, T2, ...].

The ordering signifies m’s prediction of how relatively likely the user will request each tile

in C. The predictor trims Pm as necessary, depending on the amount of space allocated to

m.

Here, we describe: (1) the inputs and outputs for our recommendation models; (2) how

the individual models were implemented; and (3) how we allocate space to each model per

analysis phase.

General Recommendation Model Design

Our Signature-Based recommendation model requires one additional input in order to make

predictions: the last location in the dataset that the user explored in detail, which we refer

to as the user’s most recent Region of Interest, or ROI. Here we explain how we derive C,

and the user’s most recent ROI.

Candidate Tiles for Prediction: We compile the set of candidate tiles by finding all

tiles that are at most d moves away from r. For example, d = 1 represents all tiles that are

exactly one move away from r.
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Algorithm 2 Pseudocode showing the Markov chain transition frequencies building pro-
cess.
Input: For PROCESSTRACES, a set of user traces, and sequence length n.
Output: F , computed transition frequencies.

1: procedure PROCESSTRACES({U1,U2, ...,U j, ...}, n)
2: F ←{}
3: for user trace U j do
4: Vj← GETMOVESEQUENCE(U j)
5: F ← UPDATEFREQUENCIES(Vj, F , n)

6: return F
7: procedure GETMOVESEQUENCE(U j)
8: Vj← [ ]
9: for i = 1,2, ..., where i≤ |Vj | do

10: Vj[i]←U j[i].move

11: return Vj

12: procedure UPDATEFREQUENCIES(Vj = [v1,v2,v3, ...], F , n)
13: for i = n+1,n+2, ..., where n < i≤ |Vj | do
14: F [sequence(vi−n,vi−(n−1),vi−(n−2), ...,vi−1)→ vi] += 1

15: return F

Most Recent ROI: We represent the user’s most recent ROI as a set of data tiles, and use

a simple heuristic to compute this set; the pseudocode is provided in Algorithm 1. When

a new user request is received, the predictor calls UPDATEROI to update the user’s most

recent ROI. To find the most recent ROI, this heuristic searches through H for a match to

the following pattern: one zoom-in, followed by zero or more pan’s, followed by one zoom-

out. In lines 5-7 of Algorithm 1, a zoom-in triggers the collection of a new temporary ROI

(tempROI), and the requested tile Tr is added to tempROI (line 7). We track zoom-in’s using

the inFlag variable (line 6). In contrast, an observed zoom-out tells the predictor to stop

adding tiles to tempROI (lines 8-12). If the inFlag was set while the zoom-out occurred, we

replace the user’s old ROI with tempROI (lines 9-10). Then, tempROI is reset (line 12). Last,

if r.move = pan while the inFlag is true, Tr (i.e., the requested tile) is added to tempROI

(lines 13-14).

Actions-Based (AB) Recommender

As the user moves to or from ROI’s, she is likely to consistently zoom or pan in a pre-

dictable way (e.g., zoom out three times). Doshi et al. leverage this assumption in their Mo-
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mentum model, which predicts that the user’s next move will match her previous move [27].

We expand on this idea with our AB recommender, which builds an n-th order Markov

chain from users’ past actions.

To build the Markov chain, we create a state for each possible sequence of moves,

where we only consider sequences of length n (i.e., the length of H). For example, if n = 3,

then the following are two sequences that would have their own states in the Markov chain:

panning left three times (i.e., le f t, le f t, le f t), and zooming out twice and then panning

right (i.e., out, out, right). After creating our states, we create an outgoing transition from

each state for every possible move the user can make in the interface. In the n = 3 case, if

the user is in state (le f t, le f t, le f t) and then decides to pan right, we represent this as the

user taking the edge labeled “right” from the state (le f t, le f t, le f t) to the state (le f t, le f t,

right).

We learn transition probabilities for our Markov chains using traces from our user study;

the traces are described in Section 4.2.2. Algorithm 2 shows how we calculate the transition

frequencies needed to compute the final probabilities. For each user trace U j from the

study, we extract the sequence of moves observed in the trace (lines 7-11). We then iterate

over every sub-sequence of length n (i.e., every time a state was visited in the trace), and

count how often each transition was taken (lines 12-15). To do this, for each sub-sequence

observed (i.e., for each state observed from our Markov chain), we identified the move

that was made immediately after this sub-sequence occurred, and incremented the relevant

counter (line 14).

Note that with this design, our Markov chains could have thousands of states. Thus

many of these transition probabilities may not be calculable directly from the training data.

To address this issue, we utilize well-known techniques from natural language processing

that were developed to address a similar problem: calculating probabilities for unobserved

word sequences. To fill in missing counts, we apply Kneser-Ney smoothing, a well-studied

smoothing method in natural language processing for Markov chains [20]. We used the

BerkeleyLM [78] Java library to implement our Markov chains.
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(a) Potential snow cover ROI’s in
the US and Canada.

(b) Tiles in the user’s history, after
visiting ROI’s from (a).

Figure 4-2: Example ROI’s in the US and Canada for snow cover data. Snow is orange
to yellow, snow-free areas in green to blue. Note that (a) and (b) span the same latitude-
longitude range.

Table 4.2: Features computed over individual array attributes in Sculpin to compare data
tiles for visual similarity.

Signature Measures Visual Characteristics
Compared Captured

Normal Mean, standard average position/color/size
Distribution deviation of rendered datapoints
1-D histogram bins position/color/size distribu-
histogram -tion of rendered datapoints
SIFT histogram built distinct “landmarks” in the

from clustered visualization (e.g., clusters
SIFT descriptors of orange pixels)

DenseSIFT same as SIFT distinct “landmarks” and
their positions in the
visualization

Signature-Based (SB) Recommender

The goal of our SB recommender is to identify neighboring tiles that are visually similar

to what the user has requested in the past. For example, in the Foraging phase, the user is

using a coarse view of the data to find new ROI’s to explore. When the user finds a new

ROI, she zooms into this area until she reaches her desired zoom level. Each tile along her

zooming path will share the same visual features, which the user depends on to navigate to

her destination. In the Sensemaking phase, the user is analyzing visually similar data tiles

at the same zoom level. One such example is when the user is exploring satellite imagery

of the earth, and panning to tiles within the same mountain range.

Consider Figure 4-2a, where the user is exploring snow cover data derived from a satel-
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lite imagery dataset. Snow is colored orange, and regions without snow are blue. Thus, the

user will search for ROI’s that contain large clusters of orange pixels, which are circled in

Figure 4-2a. These ROI’s correspond to mountain ranges.

Given the user’s last ROI (i.e., the last mountain range the user visited), we can look for

neighboring tiles that look similar (i.e., find more mountains). Figure 4-2b is an example

of some tiles that may be in the user’s history if she has recently explored some of these

ROI’s, which we can use for reference to find new ROI’s.

We measure visual similarity by computing a diverse set of tile signatures. A signature

is a compact, numerical representation of a data tile, and is stored as a vector of double-

precision values. Table 4.2 lists the four signatures we compute in Sculpin. All of our

signatures are calculated over a single SciDB array attribute. The first signature in Table 4.2

calculates the average and standard deviation of all values stored within a single data tile.

The second signature builds a histogram over these array values, using a fixed number of

bins.

We also tested two machine vision techniques as signatures: the scale-invariant feature

transform (SIFT), and a variant called denseSIFT (signatures 3 and 4 in Table 4.2). SIFT

is used to identify and compare visual “landmarks” in an image, called keypoints. Much

like how seeing the Statue of Liberty can help people distinguish pictures of New York city

from pictures of other cities, SIFT keypoints help Sculpin compare visual landmarks in two

different visualizations (e.g., two satellite imagery heatmaps with similar clusters of orange

pixels, or two line charts showing unusually high peaks in heart-rate signals). We used the

OpenCV library to compute our SIFT and denseSIFT signatures3.

Algorithm 3 outlines how we compare candidate tiles to the user’s last ROI using these

signatures. We first retrieve all four signatures for each candidate tile (lines 3-4). We also

retrieve these four signatures for each ROI tile on lines 5-6. We explain how we identify

ROI tiles in Section 4.2.4. Then we compute how much each candidate tile (TA) deviates

from each ROI tile (TB), with respect to each signature (lines 7-8). To do this, a distance

function for the signature is applied to the candidate tile and ROI tile (denoted as distSi in

Algorithm 3). Since our signatures do not automatically account for the physical distance

3http://opencv.org
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between TA and TB, we apply a penalty to our signature distances based on the Manhattan

distance between the tiles. Since all four of our current signatures produce histograms as

output, we use the Chi-Squared distance metric as the distance function for all signatures.

We then normalize the computed distance values (lines 10-11).

To produce a single distance measure for a given candidate-ROI pair, we treat the four

resulting distance measures as a single vector, and compute the `2-norm of the vector (lines

12-13). To adjust how much influence each signature has on our final distance measure-

ments, we can modify the `2-norm function to include weights for each signature. All

signatures are assigned equal weight by default, but the user can update these weight pa-

rameters as necessary.
`2

weighted(A,B) =
√

∑
Si

wi(di,A,B)2

At this point, there will be multiple distance values calculated for each candidate tile,

one per ROI tile. For example, if we have four ROI tiles, then there will be four distance

values calculated per candidate tile. We sum these ROI tile distances, so we have a single

distance value to compare for each candidate tile (lines 14-15). We then rank the candidates

by these final distance values.

Note that it is straightforward to add new signatures to the SB recommender. To add a

new signature, one only needs to add: (1) an algorithm for computing the signature over

a single data tile, and (2) a new distance function for comparing this signature (if the Chi-

Squared distance is not applicable).

4.2.5 Cache Allocation Strategies

In this section, we describe the recommendation models associated with each analysis

phase, and how we use this information to allocate space to each recommender in our

tile cache.

In the Navigation phase, the user is zooming and panning in order to transition between

the Foraging and Sensemaking phases. Thus, we expect the AB recommendation model to

be most effective for predicting tiles for this phase, and allocate all available cache space

to this model.

88



Algorithm 3 Computes the visual distance of each candidate tile, with respect to a given
ROI.
Input: Signatures S1-S4, candidate tiles, ROI tiles
Output: A set of distance values D

1: for Signature Si, i = 1−4 do
2: di,MAX ← 1
3: for each candidate tile TA do
4: Retrieve signature Si(TA)

5: for each ROI tile TB do
6: Retrieve signature Si(TB)

7: for each candidate/ROI pair (TA,TB) do
8: di,A,B← 2dmanh(TA,TB)−1[distSi(Si(TA),Si(TB))]
9: di,MAX ← max(di,MAX ,di,A,B)

10: for each candidate/ROI pair (TA,TB) do
11: di,A,B←

di,A,B
di,MAX

12: for each candidate/ROI pair (TA,TB) do

13: dA,B←
√

∑Si wi(di,A,B)2

dphysical(A,B)

14: for each candidate tile TA do
15: dA← ∑B dA,B

return D ={d1,d2, ...,dA, ...}

In the Sensemaking phase, the user is mainly panning to neighboring tiles with similar

visual features. Therefore, we expect the SB recommendation model to perform well when

predicting tiles for this phase, and allocate all available cache space to this model.

In the Foraging phase, the user is using visual features as cues for where she should

zoom in next. When the user finds a ROI that she wants to analyze, the tiles she zooms into

to reach this ROI will share the same visual properties. Thus, the SB model should prove

useful for this phase. However, the user will also zoom out several times in a row in order

to return to the Foraging phase, exhibiting a predictable pattern that can be utilized by the

AB model. Therefore, we allocate equal amounts of space to both models for this phase.

4.3 Prediction Framework Design

Unfortunately, we have found that the Sculpin predictor becomes unnecessarily compli-

cated when extended to the multidimensional prediction case. For example, the Sculpin

SB recommender ranks the tiles that surround the user’s current location to make predic-
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tions. However, when the user has access to several different dimensions at any given time,

this results in ∏d td tiles that can be predicted, where d is a navigable dimension, and td

is the number of tiles that are one interaction away from the user’s current location along

this dimension. This number could be exponential in the number of dimensions, making a

ranking-based prediction approach prohibitively expensive to apply for multidimensional

datasets.

In response, we propose a new framework for supporting multi-dimensional prediction.

The key idea is to constrain the multi-dimensional prediction problem by exploiting the

core design principles driving coordinated view visualizations [86], a very common and

well-studied interface design for multidimensional data exploration. Specifically, Sculpin

takes into account that the user can only explore one visualization at a time in a standard

coordinated view design. By extension, the user can only interact with a limited number of

data dimensions at any given time, since each visualization within the Sculpin interface is

associated with a small number of dimensions from the underlying dataset. For example,

map visualizations are generally associated with two data dimensions (latitude and longi-

tude). Note that we focus on data dimensions; we manage interaction dimensions (e.g.,

zooming) separately (see Section 4.2.1 for more details).

Using these insights, we can constrain our dimensionality problem by re-framing it

as a multi-level prediction problem: before we predict which interactions the user will

perform, we first predict which visualization these interactions will be performed on. If

we can accurately predict which visualization the user will interact with next, we are left

with a familiar prediction sub-problem: identifying which interactions the user will perform

within the given visualization. Once the next visualization is identified, we can use existing

prediction algorithms (i.e., or predictors) to pre-fetch relevant tiles.

In this section, we describe: 1) our multi-level approach to tile prediction across mul-

tiple dimensions, and 2) our new strategy for allocating pre-fetching space across multiple

visualizations.
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4.3.1 Formalization

Here, we describe the inputs to the Sculpin Prediction Framework, and define the multidi-

mensional prediction problem.

Inputs for Individual Predictors: The predictors only require access to the user’s re-

cent request history H. We define a user request r ∈ H as a single message sent from the

client Tile Request Manager to the server to fetch new tiles after a user interaction. r con-

tains the following information: the start and end coordinates of the user’s last interaction

(as defined in Section 3.4.1), and a list of tile ID’s to be fetched. A user session can be

defined as an ordered list of user requests U = [r1,r2,...].

Sculpin Inputs: The input to the Framework is simply a list of interaction histories

[H1,H2,...], one history for each of the coordinated visualizations. For a given visualization

v, Hv = {r : r was triggered by v}. We also assume that Sculpin has access to a set of past

user sessions to train the Prediction Framework offline.

Prediction Problem: Given the user’s recent interaction history H and the user’s last

request (rn ∈ H), the prediction framework returns an ordered list of tile candidates P =

[T1,T2,...], representing the most likely tiles the user will request in the future. The number

of candidates is equal to the total space allocated for pre-fetching tiles in Sculpin.

4.3.2 Multidimensional Data Tile Prediction

Here, we explain how we combine the Vis Selector (top level) and the 2D predictors (bot-

tom level) to form a multi-level prediction design for pre-fetching multidimensional data

tiles.

Vis Selector

To enable the user to switch between data dimensions (e.g., from latitude-longitude to

time), all possible dimensions have to be on the screen, so the user can initiate an operation

on any one of them. This takes the form of interacting with one of the visualizations in

the coordinated view (e.g., map view versus time view). When an interaction occurs, this

signals a clear switch in dimensions, enabling Sculpin to learn the current context, and
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make predictions accordingly.

Given the user’s recent interaction history, Sculpin first needs to predict which visual-

ization the user will interact with next. With knowledge of the user’s next visualization,

Sculpin can focus on pre-fetching tiles that are reachable through interactions with this

specific visualization. The specific sub-problem solved by the Vis selector is: given the

user’s recent interaction history H, and a list of visualizations V = [v1,v2,...], select the

visualization that the user is most likely to interact with next.

To better understand the visualization selection problem, we informally observed users

exploring satellite imagery using a prototype interface similar to the Sculpin front-end. We

found that users tend to interact with the same visualization several times, before switching

to a different one. We selected a momentum-based approach to predicting the user’s next

visualization [27], where the user’s previous visualization is likely to be the next visualiza-

tion that the user will interact with next.

Running Multiple Predictors

Given the user’s next visualization v and request histories for each visualization [H1,H2,...],

the Prediction Framework returns a list of tiles P = [T1,T2, ...], representing the tiles that

the user will request in the future.

To capture the interaction patterns exhibited within individual visualizations, Sculpin

runs multiple 2D predictors in parallel. Each Predictor uses its own separate suite of low-

level recommendation models to predict which tiles will be requested for the associated

visualization. The recommendation models are trained on past user sessions, where each

user session is filtered for the associated visualization: Uv = {r : r was triggered by v}.

Each predictor produces an ordered list of candidate tiles to be pre-fetched, where the

most likely tile to be requested is first in the list. Each list is truncated based on the amount

of pre-fetching space allocated to the associated predictor. Then, the lists are merged in

a round-robin configuration to create a single master list (duplicates are skipped). Using

round-robin means that Sculpin assumes equal weighting across predictors. One could

apply weights to each predictor, and use a more sophisticated merging strategy.

The Prediction Framework then checks the main memory tile cache for the predicted
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tiles. All un-cached predictions from the master list are then sent to the Tile Builder for

retrieval. Once the tiles are retrieved, they are batch-inserted into the server-side main

memory tile cache.

Pre-fetching space is allocated separately to each predictor, where the predictor associ-

ated with the most likely visualization receives the majority of the space in the cache for

predicting data tiles. The remaining space is divided equally among the remaining predic-

tors. Sculpin gives the most promising predictor three quarters of the pre-fetching space by

default.

4.4 Experiments: Evaluating the 2D Predictor

The 2D predictor is the cornerstone of Sculpin: the 2D predictor powers the prediction

framework, which in turn supports the other optimizations in Sculpin. Thus, before we

can gauge the overall effectiveness of the Sculpin system, we must first evaluate the 2D

predictor. In this section, we explain how we evaluated the 2D predictor through a user

study with scientists exploring NASA MODIS satellite imagery, and the results of this

study.

Although the goal behind our prediction techniques is to reduce interaction latency,

we will demonstrate in Section 4.4.5 that there is a linear (constant factor) correlation be-

tween latency and the accuracy of the prediction algorithm. As such, we claim that we

can improve the observed interaction latency in Sculpin by reducing the number of pre-

diction errors that occur when prefetching tiles ahead of the user. Our aim in this section

is to show that Sculpin provides significantly better prediction accuracy, and thus lower

interaction latency, when compared to existing prefetching techniques.

We validate our claims about user exploration behavior through a user study on NASA

MODIS satellite imagery data, and evaluate the prediction accuracy of our 2D predictor

using traces collected from the study. To validate our hypothesis that prediction accuracy

dictates the overall latency of the system, we also measured the average latency observed

in Sculpin for each of our prediction techniques.

To test the accuracy of our predictor, we conducted three sets of evaluations. We first
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evaluate each prediction level separately. At the top level, we measure how accurately we

can predict the user’s current analysis phase. At the bottom level, we measure the overall

prediction accuracy of each recommendation model, with respect to each analysis phase,

and compare our individual models to existing techniques. Then we compare the accuracy

of the full predictor to our best performing individual recommendation models, as well as

existing techniques. Last, we evaluate the relationship between accuracy and latency, and

compare the overall latency of our full predictor to existing techniques.

4.4.1 MODIS Dataset

The NASA MODIS is a satellite instrument that records imagery data. This data is origi-

nally recorded by NASA in a three-dimensional array (latitude, longitude and time). Each

array cell contains a vector of wavelength measurements, where each wavelength measure-

ment is called a MODIS “band.”

One use case for MODIS data is to estimate snow depths in the mountains. One well-

known MODIS snow cover algorithm, which we apply in our experiments, is the Normal-

ized Difference Snow Index (NDSI) [85]. The NDSI indicates whether there is snow at a

given MODIS pixel (i.e., array cell). A high NDSI value (close to 1.0) means that there is

snow at the given pixel, and a low value (close to -1.0) corresponds to no snow cover. The

NDSI uses two separate wavelength measurements (i.e., MODIS bands) to calculate this.

We label the two bands used in the NDSI as µV IS for visible light, and µSWIR for short-

wave infrared. The NDSI is calculated by applying the following function to each cell of

the MODIS array, which calculates the normalized difference between the corresponding

MODIS bands within the array cell:

NDSI =
(µV IS−µSWIR)

(µV IS +µSWIR)
.

It is straightforward to translate this transformation into a user-defined function (UDF)

in SciDB.
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Modifications for User Study

Our test dataset consisted of NDSI measurements computed over one week of raw NASA

MODIS data, where the temporal range of the data was from late October to early Novem-

ber of 2011. We downloaded the raw data directly from the NASA MODIS website4, and

used SciDB’s MODIS data loading tool to load the data into SciDB. We applied the NDSI

to the raw MODIS data as a user-defined function, and stored the resulting NDSI calcula-

tions in a separate array. The NDSI array was roughly 10TB in size when stored in SciDB.

Given that our 2D predictor is designed specifically to work with a single 2D visual-

ization, we modified the MODIS dataset to match this data structure. Prior to the study,

The NDSI dataset was aggregated into a single, one-week time window, reducing the total

dimensions from three (latitude, longitude, time) to two (latitude and longitude only). This

enabled us to visualize the MODIS data using a single latitude-longitude map. The NDSI

dataset contained four numeric attributes: maximum, minimum and average NDSI values;

and a land/sea mask value that was used to filter for land or ocean pixels in the dataset.

Sculpin’s tile computation process resulted in nine total zoom levels for this dataset, where

each level was a separate layer of data tiles.

Calculating the NSDI in SciDB

In this section, we explain how to compute the NSDI in SciDB. We assume that we already

have a NDSI UDF written in SciDB, which we refer to as “ndsi_func”.

Let SV IS and SSWIR be the SciDB arrays containing recorded data for their respective

MODIS bands. We use two separate arrays, as this is the current schema supported by

the MODIS data loader for SciDB [81]. SV IS and SSWIR share the same array schema. An

example of this schema is provided below.

SV IS/SWIR(reflectance)[latitude, longitude].

The array attributes are denoted in parentheses (reflectance) and the dimensions are

shown in brackets (latitude and longitude). The attributes represent the MODIS band mea-

surements recorded for each latitude-longitude coordinate.

4http://modis.gsfc.nasa.gov/data/
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The following is the SciDB query we execute to compute the NDSI over the SV IS and

SSWIR arrays:

Query 4.1: SciDB query to apply the NDSI.

1 store(

2 apply(

3 join(SV IS,SSWIR),

4 ndsi,

5 ndsi_func(SV IS.reflectance,

6 SSWIR.reflectance)

7 ),

8 NDSI

9 );

We first perform an equi-join, matching the latitude-longitude coordinates of the two

arrays (line 3). Note that SciDB implicitly joins on dimensions, so latitude and longitude

are not specified in the query. We then apply the NDSI to each pair of joined array cells

by calling the “ndsi_func” UDF (lines 5-6). We pass the reflectance attribute of SV IS and

the reflectance attribute of SSWIR to the UDF. We store the result of this query as a separate

array in SciDB named NDSI (line 8), and the NDSI calculations are recorded in a new

“ndsi” attribute in this array (line 4).

4.4.2 Experimental Setup

Hardware/Software setup

The Sculpin front-end for the study was a web-based visualizer. The D3.js Javascript library

was used to render data tiles. We describe the interface in more detail below.

The data was partitioned across two servers running SciDB version 13.3. Each server

had 24 cores, 47GB of memory, and 10.1 TB of disk space. Both servers ran Ubuntu Server

12.04. The first server was also responsible for running the Sculpin middleware (prediction

engine and cache manager), which received tile requests from the client-side interface.

Note that in these experiments, only a single Sculpin predictor was needed, since par-
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ticipants only interacted with a single 2D map visualization.

Measuring Accuracy

The number of cache misses (i.e., prediction accuracy) directly impacts whether delays oc-

cur in Sculpin, and thus also determines the length of user wait times (i.e., the interaction

latency). Therefore, we used prediction accuracy as one of our primary metrics for com-

parison, similar to Lee et al. [56]. To compute this, we ran our models in parallel while

stepping through tile request logs, one request at a time. For each requested tile, we col-

lected a ranked list of predictions from each of our recommendation models, and recorded

whether the next tile to be requested was located within the list.

We simulated space allocations in our middleware cache by varying k in our accuracy

measurements. Thus measuring prediction accuracy becomes equivalent to measuring the

hit rate of our tile cache. For example, k = 2 meant that Sculpin only had space to fetch

two tiles before the user’s next request. We varied k from 1 to 8 in our experiments. At

k = 9, we are guaranteed to prefetch the correct tile, because the interface only supports

nine different moves: zoom out, pan (left, right, up, down), and zoom in (users could zoom

into one of four tiles at the zoom level below).

Given that Sculpin prefetches new tiles after every request, we found that having Sculpin

predict further than one move ahead did not actually improve accuracy. Therefore, predict-

ing beyond the user’s next move was irrelevant to the goals of these experiments, and we

only considered the tiles that were exactly one step ahead of the user. We leave prefetching

more than one step ahead of the user as future work.

Comparing with Existing Techniques

To compare our two-level prediction engine with existing techniques, we implemented two

models proposed in [27], the “Momentum” and “Hotspot” models. Several more recent

systems, such as ATLAS [17] and ImMens [63] apply very similar techniques (see Chap-

ter 6 for more information).

Momentum: The Momentum model assumes that the user’s next move will be the

same as her previous move. To implement this, the tile matching the user’s previous move
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Figure 4-3: User study browsing interface.

is assigned a probability of 0.9, and the eight other candidates are assigned a probability of

0.0125. Note that this is a Markov chain, since probabilities are assigned to future moves

based on the user’s previous move.

Hotspot: The Hotspot model is an extension of the Momentum model that adds aware-

ness of popular tiles, or hotspots, in the dataset. To find hotspots in the NDSI dataset, we

counted the number of requests made for each tile visited in our user study, and chose the

tiles with the most requests. When the user is not close to any hotspots, the Hotspot model

defaults to the behavior of the Momentum model. When a hotspot is nearby, the Hotspot

model assigns a higher ranking to any tiles that bring the user closer to that hotspot, and a

lower ranking to the remaining tiles. We trained the Hotspot model on trace data ahead of

time. This training process took less than one second to complete.

4.4.3 User Study

To ascertain whether prefetching was a viable strategy for exploring multidimensional sci-

entific datasets, we worked directly with earth and ocean scientists at the University of

California Santa Barbara (UCSB) and the University of Washington (UW) to: (1) choose

a use case of interest to our collaborators (MODIS snow cover); and (2) develop a set of

search tasks for this use case that domain scientists with diverse backgrounds and skill sets

could complete during the study. In this section, we outline the study design, and validate

whether our analysis phases are an appropriate classification of user behavior using results

from the study. We avoided biasing the behavior of our study participants by caching all
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data tiles in main memory while the study was being conducted. This prevented our partic-

ipants from choosing their movements based on response time (e.g., avoiding zooming out

if it is slower than other movements). This also ensured that all study participants had the

same browsing experience throughout the study.

Participants

The study consisted of 18 domain scientists (graduate students, post doctoral researchers,

and faculty). Most of our participants were either interested in or actively working with

MODIS data. Participants were recruited at UW and UCSB.

Study Procedure

Each participant read and signed a consent form prior to participating in the study. Par-

ticipants completed the study on their own devices (either a desktop or laptop computer),

in their own work offices. Every participant was observed in-person as they completed

the study. We provided each participant with instructions on how to use our visualization

tool at the beginning of the study. Participants were then given the opportunity to explore

the interface of our tool for five minutes, and were encouraged to ask questions about the

instructions and the interface. After participants completed the study, they filled out a five-

minute debrief survey about their experience with the tool.

Browsing Interface

Figure 4-3 is an example of the client-side interface. The interface used for the study was

an early Sculpin prototype that used buttons for panning instead of mouse drags. Each

visualization in the interface represented exactly one data tile. Participants (i.e., users)

used directional buttons (top of Figure 4-3) to move up, down, left, or right. Moving

up or down corresponded to moving along the latitude dimension in the NDSI dataset,

and left or right to the longitude dimension. Each directional move resulted in the user

moving to a completely separate data tile. User’s left clicked on a quadrant to zoom into

the corresponding tile, and right clicked anywhere on the visualization to zoom out.
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Directional buttons ensured that users’ actions mapped to specific data tiles. Though

different from existing geospatial interfaces (e.g., Google Maps), our browsing interface

provides clear and efficient button-based navigation through the dataset. Furthermore,

study participants commented that this navigation design is useful when selecting specific

data ranges for further analysis.

Browsing Tasks

Participants completed the same search task over three different regions in the NDSI dataset.

For each region, participants were asked to identify four data tiles (i.e., four different visu-

alizations) that met specific visual requirements. The tasks were as follows:

1. Find four data tiles in the continental United States at zoom level 6 with the highest

NDSI values.

2. Find four data tiles within western Europe at zoom level 8 with NDSI values of .5 or

greater.

3. Find 4 data tiles in South America at zoom level 6 that contain NDSI values greater

than .25.

A separate request log was recorded for each user and task. Therefore, by the end of

the study we had 54 user traces, each consisting of sequential tile requests.

Post-Study: General Observations

The most popular ROI’s for each task were: the Rocky Mountains for Task 1, Swiss Alps

for Task 2, and Andes Mountains for Task 3. The average number of requests per task are

as follows: 35 tiles for Task 1, 25 tiles for Task2, and 17 tiles for Task 3. The mountain

ranges in Tasks 2 and 3 (Europe and South America) were closer together and had less

snow than those in task 1 (US and Southern Canada). Thus, users spent less time on these

tasks, shown by the decrease in total requests.

We also tracked whether the request was a zoom in, zoom out, or pan. Figure 4-4a

shows the distribution of directions across all study participants, recorded separately for

each task. We see that for all tasks, our study participants spent the most time zooming
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(a) Disribution of moves (b) Distribution of Phases

(c) Distribution of Moves
(Task1)

(d) Distribution of Moves
(Task 2)

(e) Distribution of Moves
(Task3)

Figure 4-4: Distribution of moves (a) and phases (b), averaged across users, partitioned by
task; distribution of moves computed for each user for Task 1 (c), Task 2 (d), and Task 3
(e); each user’s distribution of moves is represented as a single column. In Figures (c), (d),
and (e): panning is red, zooming in is green, and zooming out is blue; users with similar
move distributions are grouped together.

in. This is because users had to zoom to a specific zoom level for each task, and did

not have to zoom back out to the top level to complete the task. In tasks 1 and 2, users

panned and zoomed out roughly equally. In task 3, we found that users clearly favored

panning more than zooming out. We also found that large groups of users shared similar

browsing patterns, shown in Figures 4-4c-4-4e. For example in Task 1, we observed that

14 participants panned, zoomed in, and zoomed out roughly equally throughout the task,

represented by the first 14 columns of Figure 4-4c. These groupings further reinforce the

reasoning behind our analysis phases, showing that most users can be categorized by a

small number of specific patterns within each task, and even across tasks.

Evaluating Our Three Analysis Phases

To demonstrate some of the patterns that we found in our user traces, consider Figure 4-5,

which plots the change in zoom level over time for one of our user traces. The coarsest

zoom level is plotted at the top of Figure 4-5, and the most-detailed zoom level was plotted

at the bottom. The x-axis represents each successive tile request made by this user. A
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Figure 4-5: Change in zoom level per request as study participant 2 completed task 2.

downward slope corresponds to the user moving from a coarser to a more detailed zoom

level; an upward slope corresponds to the reverse; and a flat line (i.e., slope of 0) to the user

panning to tiles at the same zoom level.

We see that the user alternates between zooming out to a coarser zoom level, and zoom-

ing into more detailed zoom levels. We know that the coarser views were used to locate

snow, and the high-resolution views to find specific tiles that satisfied task 2 (hence the four

tile requests specifically at zoom level 8).

We see in Figure 4-5 that this user’s behavior corresponds directly to the three analysis

phases described in Section 4.2.3. The user’s return to coarser views near the top of Fig-

ure 4-5 correspond to the user returning to the Foraging phase (e.g., request ID’s 20 to 23).

The user’s zooms down to the bottom half of the plot correspond to the user moving to the

Sensemaking phase, as they searched for individual tiles to complete the task. Furthermore,

we found that 13 out of 18 users exhibited this same general exploration behavior through-

out their participation in the study. 16 out of 18 users exhibited this behavior during 2 or

more tasks. Furthermore, we found that only 57 out of the 1390 total requests made in the

study were not described adequately by our exploration model.

Therefore, we conclude that our three analysis phases provide an accurate classification

of how the vast majority of users actually explored our NDSI MODIS dataset.
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(a) Accuracy of our best AB model (Markov3)
and existing models.

(b) Accuracy of the four signatures in our SB
model.

(c) Accuracy of our final engine (hybrid) and our
best individual models.

Figure 4-6: Accuracy of our AB model, SB model, and final predictor (i.e., hybrid model).

4.4.4 Evaluating the 2D Predictor

Now that we have established that our three analysis phases provide a comprehensive la-

beling scheme for user behavior, we move on to evaluating our two-level predictor. In

particular, we evaluated each level of our predictor separately, and then compared the com-

plete predictor to the existing techniques described in our experimental setup.

At the top level of our predictor, we measured how accurately we could predict the

user’s current exploration phase. At the bottom level, we measured the accuracy of each

recommendation model, with respect to each analysis phase.

The following experiments apply leave-one-out cross validation [53], a common cross-

validation technique for evaluating user study data. For each user, the models were trained

on the trace data of the other 17 out of 18 participants, and tested on the trace data from

the remaining participant that was removed from the training set. After evaluating each

user individually, we averaged the results across all users to produce our final accuracy

calculations.
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Predicting the User’s Current Analysis Phase

The goal was to measure how accurately we could predict the user’s current analysis phase.

To build a training and testing set for this experiment, we manually labeled each request in

our request logs with one of our 3 analysis phases. Figure 4-4b shows the distribution of

phase labels. We see that users spent noticeably less time in the Foraging phase for tasks 2

and 3 (i.e., looking for new ROI’s), which is consistent with our user study observations.

To test our SVM classifier, we performed leave-one-out cross validation (see above),

where all requests for the corresponding user were placed in the test dataset, and the re-

maining requests were placed in the training set. Training the classifier took less than one

second. We found that our overall accuracy across all users was 82%. For some users, we

could predict the current analysis phase with 90% accuracy or higher.

Accuracy of Recommendation Models

To validate the accuracy of our individual recommenders, we conducted two sets of exper-

iments, where we: (1) compared the accuracy of our AB recommender to existing tech-

niques, and (2) measured the prediction accuracy of our SB recommender separately for

each of our four tile signatures. The goal of these experiments was two-fold. First, we

wanted to find the phases where existing techniques performed well, and where there was

room for improvement. Second, we wanted to test whether our AB and SB models excelled

in accuracy for their intended analysis phases. To do this, we evaluated how accurately our

individual models could predict the user’s next move, for each analysis phase.

Action-Based (AB) Model: To evaluate the impact of history length on our AB recom-

mender, we implemented a separate Markov chain for n = 2 to n = 10, which we refer to

as Markov2 through Markov10, respectively. Each Markov chain only took milliseconds

to train. We found that n = 2 was too small, and resulted in worse accuracy. Otherwise, we

found negligible improvements in accuracy for lengths beyond n = 3, and thus found n = 3

(i.e., Markov3) to be most efficient Markov chain for our AB model.

Figure 4-6a shows the prediction accuracy of our AB model compared to the Momen-

tum and Hotspot models, with increasing values of k. Note that k represents the total space
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(in tiles) that each model was given for predictions (see Section 4.4.2 for more informa-

tion). In Figure 4-6a, we see that for the Foraging and Sensemaking phases, our AB model

matches the performance of existing techniques for all values of k. Furthermore, we found

that our AB model achieves significantly higher accuracy during the Navigation phase for

all values of k. This validates our decision to use the AB model as the primary model for

predicting the Navigation phase.

Signature-Based (SB) Model: Figure 4-6b shows the accuracy of each of our indi-

vidual signatures, with respect to analysis phase. To do this, we created four separate

recommendation models, one per signature. Amongst our signatures, we found that the

SIFT signature provided the best overall accuracy. We expected a machine vision feature

like SIFT to perform well, because users are comparing images when they analyze MODIS

tiles.

We found that the denseSIFT signature did not perform as well as SIFT. denseSIFT

performs worse because it matches entire images, whereas SIFT only matches small regions

of an image. Here, relevant visualizations will contain clusters of orange snow pixels, but

will not look similar otherwise. For example, the Rockies will look very different from the

Andes, but they will both contain clusters of snow (orange) pixels. Thus, many relevant

tiles will not appear to be similar with regards to the denseSIFT signature.

Evaluating the Final 2D Predictor

We used the accuracy results for our phase predictor and best individual recommendation

models as inputs to our final two-level predictor. Our predictor only incorporated two

recommenders, the AB recommender with n = 3 (i.e., Markov3) and the SIFT SB rec-

ommender. Note that we updated our original allocation strategies based on our observed

accuracy results. When the Sensemaking phase is predicted, our model always fetches pre-

dictions from our SB model only. Otherwise, our final model fetches the first 4 predictions

from the AB model (or less if k < 4), and then starts fetching predictions from the SB

model if k > 4.

Figure 4-6c shows that our final predictor successfully combined the strengths of our

two best prediction models. It was able to match the accuracy of the best recommender
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Figure 4-7: Accuracy of the hybrid model compared to existing techniques.

Figure 4-8: Plot of average response time given prefetch accuracy, for all models and fetch
sizes (linear regression: Adj R2=0.99985, Intercept=961.33, Slope=-939.08, P=1.1704e-
242.

for each analysis phase, resulting in better overall accuracy than any individual recom-

mendation model. We also compared our final predictor to existing techniques, shown in

Figure 4-7. We see that for the Foraging phase, our predictor performs as well (if not better)

than existing techniques. For the Navigation phase, we achieve up to 25% better prediction

accuracy. Similarly for the Sensemaking phase, we see a consistent 10-18% improvement

in accuracy.

4.4.5 Latency

We used the same setup from our accuracy experiments to measure latency. To measure the

latency for each tile request, we recorded the time at which the client sent the request to the

middleware, as well as the time at which the requested tile was received by the client. We

calculated the resulting latency by taking the difference between these two measurements.

On a cache hit, the middleware was able to retrieve the tile from main memory, allowing

Sculpin to send an immediate response. On a cache miss, the middleware was forced to

issue a query to SciDB to retrieve the missing tile, which was slower. On average, the

middleware took 19.5 ms to send tiles for a cache hit, and 984.0 ms for a cache miss.
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To evaluate our claim that accuracy dictates latency, we plotted the relationship between

prefetching accuracy and average response time (i.e., average latency), shown in Figure 4-

8. Accuracy and response times were plotted for all models and fetch sizes. We see a

strong linear relationship between accuracy and response time, where a 1% increase in ac-

curacy corresponded to a 10ms decrease in average response time (adjusted R2 = 0.99985).

Given this constant accuracy-latency factor, we found that the higher prediction accuracy

of our hybrid algorithm translates to a time savings of 150-250ms per tile request, when

compared with existing prefetching techniques. The difference in latency is plotted in Fig-

ure 4-9, where we calculated the average response times for three models. We found that

our hybrid model reduced response times by more than 50% for k ≥ 5, compared with

existing techniques.

This latency evaluation indicates that Sculpin provides significantly better performance

over not only traditional systems (i.e., exploration systems without prefetching), but also

existing systems that enable prefetching (e.g., [27, 17, 63]). Specifically, as shown in Fig-

ure 4-9, with a prefetch size of 5 tiles (k = 5), our system demonstrates a 430% improvement

over traditional systems (i.e., average latency of 185ms vs. 984ms), and 88% over existing

prefetching techniques (average latency of 185 ms vs. 349 ms for Momentum, and 360 ms

for Hotspot).

In addition, Sculpin provides a much more fluid and interactive user experience than

traditional (no prefetching) systems. As shown in HCI literature, a 1 second interaction

delay is at the limit of a user’s sensory memory [15]. Delays greater than 1 second make

users feel like they cannot navigate the interface freely [72, 62]. In this regard, traditional

systems (i.e., a constant latency of 1 second per request) are not considered interactive by

HCI standards.

In contrast, Sculpin remains highly interactive during most of the user’s interactions

with the interface, with only 19.5ms of delay per tile request. As shown in Figure 4-7, with

a fetch size of 5 tiles (k = 5), the prediction algorithm succeeds the vast majority of the

time (82% of the time), making a cache miss (and the full 1 second delay) an infrequent

event. Thus our techniques allow systems with limited main memory resources (e.g., less

than 10MB of prefetching space per user) to operate at interactive speeds, so that many
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Figure 4-9: Average prefetching response times for hybrid model and existing techniques.

users can actively navigate the data freely and in parallel.

4.5 Summary

In this chapter, we presented the multidimensional prediction framework developed in

Sculpin, which consists of two layers: a) an inner layer of predictors, where each pre-

dictor is responsible for making predictions for a single 2D visualization; and b) an outer

vis selector layer, which efficiently allocates pre-fetching space across multiple predic-

tors to support multiple visualizations in the Sculpin user interface. We presented results

from a user study we conducted, where 18 domain experts used Sculpin to explore NASA

MODIS satellite imagery data. We tested the performance of our 2D predictor design us-

ing traces recorded from our user study, and presented accuracy results showing that when

exploring a single visualization in Sculpin, our predictor provides: (1) significant accuracy

improvements over existing prediction techniques (up to 25% higher accuracy); and (2)

dramatic latency improvements over current non-prefetching systems (430% improvement

in latency), and existing prediction techniques (88% improvement in latency). We show

the performance of our full prediction engine in Chapter 5.
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Chapter 5

Efficient Pre-Computation and Caching

of Data Tiles in Sculpin

5.1 Introduction

Through predictive pre-fetching, Sculpin is able to significantly reduce interaction latencies

as the user explores her data (i.e., making panning and zooming interactions fast–500ms

or less), thereby achieving our first performance goal. However, pre-fetching alone fails to

address the two remaining performance goals in Sculpin: reducing materialization latency,

or the time spent preparing the raw data for visualization (Goal 2); and reducing the disk

space consumed by data tiles (Goal 3).

In this chapter, we explain how the remaining two goals can be achieved through one

simple idea: compute fewer data tiles (or execute fewer queries on the DBMS). This is

because the scope of the user’s query is generally much larger than what the user ulti-

mately explores. By computing only a small fraction of data tiles for any given user query,

we can simultaneously shrink both the materialization latency (Goal 2) and the storage

requirements (Goal 3). To do this, we exploit the hierarchical nature of exploratory brows-

ing: users start exploring at coarse-grained zoom levels, and only zoom in when they see

something interesting. Virtually all users will explore the coarsest zoom levels. However,

exploration at the finer-grained zoom levels will vary significantly by user. Therefore, if we

focus on pre-computing tiles on only the coarsest zoom levels, we will cover the majority
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of requested tiles for the query.

We then pair our offline computation strategy (i.e., pre-compute tiles on the coarsest

zoom levels first) with a predictive pre-computation strategy to maintain low interaction

latency in the online case (i.e., Goal 1). To do this, we identify where the user will move

next, then compute these tiles just ahead of the user as she explores. Sculpin already com-

putes the tiles from the coarsest zoom levels offline. These tiles are also the most expensive

tiles to compute, because tiles at coarse zoom levels span a larger portion of the underly-

ing dataset. As such, Sculpin has already eliminated the risk of computing expensive tiles

while the user explores. Thus in the online case, the only tiles left to compute are tiles at

the finest-grained zoom levels. Each of these tiles spans only a small piece of the entire

dataset, making them faster to compute, and thus making predictive pre-computation more

effective.

To further reduce interaction latency (addressing Goal 1), Sculpin employs two kinds

of visualization-focused caching optimizations. To the best of our knowledge, Sculpin is

the first system to utilize multi-level caching optimizations for general-purpose exploratory

browsing. Sculpin applies two browsing-specific cache replacement policies to ensure that

only the least useful tiles are removed from Sculpin’s tile caches: 1) a navigation-based

policy that evicts tiles that the user cannot easily navigate to; and 2) a ranking-based policy

that considers how likely tiles are to be requested by the user, given her recent interac-

tions. We also study how two different cache coordination protocols affect cache misses

across Sculpin’s three storage layers: coordination to ensure complete overlap between

caches (mutual inclusion); and coordination to ensure no overlap between caches (mutual

exclusion).

To evaluate our pre-computation and caching techniques, we conducted a second user

study with 20 earth science researchers exploring satellite sensor data. We found that

Sculpin provides significant improvements in both the materialization latency (380% im-

provement), and disk space used to store data tiles (370% improvement), while also main-

taining low interaction latency (i.e., average response time of 490ms or less). In summary,

we make the following contributions:

1. We propose a unified design that reduces both interaction and materialization laten-
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cies. The key idea is to only materialize the data tiles that will actually be viewed by

the user, which represents a small fraction of the entire dataset. We then utilize mul-

tiple caches across both the client and server to more efficiently manage materialized

tiles.

2. To simultaneously reduce materialization latency and storage requirements, we pro-

pose a two-stage materialization process: materialize the tiles on the coarsest zoom

levels offline, before the user starts to explore. Then materialize any missing tiles

just ahead of the user as she explores by utilizing the Sculpin prediction framework

(see Chapter 4 for details on the prediction framework).

3. To ensure that Sculpin maintains low interaction latency, we incorporate caching

across both the client and server, and propose new cache coordination protocols and

cache replacement policies to maximize usage of all available cache space.

4. We evaluate our pre-computation and caching techniques in a second user study with

20 real users exploring real-world data, and we find that Sculpin provides significant

improvements in materialization latency and storage requirements, while simultane-

ously achieving low interaction latency.

5.2 Tile Builder

A critical performance goal for Sculpin is to reduce materialization latency in the system.

In Sculpin, this takes the form of reducing the time spent building data tiles offline, before

the user starts exploring. However, reducing materialization latency must also be balanced

with reducing interaction latency (our first performance goal). To achieve this, the Tile

Builder spreads the work of building tiles between an offline process (i.e., before the user

explores) and an online process (i.e., while the user is actively exploring a visualization).

In this section we explain the steps to the offline and online tile building processes.

5.2.1 Building Tiles Offline

The offline tile-building process is designed to target both performance goal 2 (reduce

materialization latency) and performance goal 3 (reduce disk storage requirements). We
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achieve both goals with one simple technique: build as few tiles as possible. This technique

is driven by one key insight: the scope of the user’s query is significantly larger than what

she actually explores. As such, the vast majority of data tiles will ultimately be ignored by

the user. For example, for each task in our user study, our participants only explored 2%

of the data tiles (see Section 5.4.2 for more details on our user study). If we can identify

ahead of time which tiles are unlikely to be requested by the user, we can ignore these tiles

completely during the offline tile-building process. Using this approach, we save not only

the time required to build these tiles, but also the disk space required to store them.

To identify which tiles to build and which to ignore, we exploit the hierarchical nature

of exploratory browsing. When users explore through a detail-on-demand interface, they

begin their exploration at the coarsest-grained zoom levels, and only zoom in when they

spot something interesting in the data. As such, the vast majority of tiles at the coars-

est zoom levels are routinely explored by users. In contrast, significantly fewer tiles are

explored at the finest-grained zoom levels, where users are only zooming into small, tar-

geted regions. Therefore, if we focus on building tiles at the coarsest zoom levels, we will

cover the vast majority of tiles explored by users. By targeting core behavioral patterns,

our approach can be applied to any exploratory browsing system with a detail-on-demand

interface.

Given that only the coarsest zoom levels will be built, the key decision that must be

made during the offline build process is how many zoom levels to build. To do this, the Tile

Builder considers the impact of ignoring a particular zoom level on interaction latency in

the system. For example, if the user requests a tile at the coarsest zoom level, and this tile

has not been built, she could be waiting 12 seconds or longer for this tile to appear on the

screen (timing data from our experiments is provided in Section 5.4.3). Unfortunately, data

tiles at the coarsest zoom levels also take the most time to build, because these tiles span

significantly more of the dataset.

To combat high interaction latency, the Tile Builder considers the average time required

to build a single tile at each zoom level, which we refer to as the build estimate for this zoom

level. To do this, the Tile builder randomly selects 100 tiles from each zoom level, executes

the corresponding queries, and measures the time taken to execute each query (i.e., the cost
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of each tile). The resulting tile costs are then averaged to compute the final build estimate.

Sculpin then traverses each zoom level, from coarsest to finest. For each zoom level with a

build estimate that is larger than a user-defined build threshold parameter (one second, by

default) the Tile Builder builds and stores the tiles corresponding to this zoom level. Given

that building any of these tiles online could have a catastrophic impact on the interaction

latency, tiles that are built offline can never be evicted from the builder cache.

5.2.2 Building Tiles Online

Given that only a subset of tiles are built offline, an online build process is needed to

anticipate when a user will visit tiles that are not yet built. Thus, the goal of the online

build process is to predict where the user will explore next, and build the corresponding

tiles, if necessary. To achieve this, the online build process uses the predictions from the

Prediction Framework to identify which tiles to build ahead of time and store in the builder

cache.

When the user requests a tile that has not been built, the Tile Builder issues the corre-

sponding query to the DBMS, and returns the result to the Prediction Framework.

5.3 Caching Optimizations

To further reduce the impact of our tile building techniques on interaction latency, we devel-

oped a unified caching architecture in Sculpin that spans both the client and server. Though

several systems include a single basic cache for storing pre-fetched tiles [17, 9, 27], no ex-

isting exploratory browsing systems utilize multiple caches, nor do they implement cache

management strategies that exploit knowledge of how users explore array data. Smart evic-

tion policies can reduce cache miss rates by evicting tiles from the cache that the user is

unlikely to explore, making space for recommendations from the Prediction Framework.

Cache coordination protocols support better overall cache utilization across the entire sys-

tem. Here we propose two visualization-aware cache replacement policies, and two tile-

based cache coordination protocols to further reduce interaction latency in Sculpin.
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5.3.1 Cache Replacement Policies

Here, we describe the policies we employ to evict irrelevant tiles from our tile caches.

Ranking-Based Eviction: This policy labels tiles based on the likelihood that they

will be requested by the user in the future. To label cached tiles, a separate call is made

to the Prediction Framework, where the current state of the cache (i.e., the ID’s of the

tiles currently stored in the cache) is passed as input. The Prediction framework returns

an ordered list containing a subset of the tiles, representing the tiles that are likely to be

requested by the user in the future. This ranked list is computed by running the predictors,

and comparing the resulting prediction output to the current cache state. Any cached tiles

that are not recommended by the predictors are selected for eviction. The remaining tiles

are then prioritized based on their assigned ranking in the prediction output. Sculpin then

evicts the non-recommended tiles, in LRU order. However, if the Prediction Framework

believes that every tile in the cache is likely to be predicted, then this policy defaults to

LRU.

Navigation-Based Eviction: This policy exploits knowledge of how users navigate in

pan-zoom interfaces: if a cached tile is far away from the user’s current location, it can

be more safely evicted than tiles near the current location. As such, this policy requires a

predefined distance threshold as input, where the distance from the user’s current location

to a given tile is measured in the number of user interactions (i.e., pans or zooms) required

for the user to see this tile in the interface. The default threshold is one interaction. When

the cache is full, this policy evicts any tiles outside the given distance threshold. This

measure applies to both tiles within the same zoom level, as well as tiles on adjacent zoom

levels.

When all cached tiles are within the distance threshold, this policy defaults to LRU.

Note that we use the LRU policy as a baseline for evaluating our other cache replacement

policies. We evaluate the performance of our cache replacement policies in Section 5.4.5.
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5.3.2 Cache Coordination Protocols

Previous work focuses on a single cache when managing data tiles [17, 9, 27]. However in

Sculpin, the client and server each have their own caches for tile management. Here, we

describe two cache coordination protocols for actively managing data tiles across multiple

caches. The protocols are as follows:

Mutual Exclusion None of the caches share overlap in tiles (i.e., if a tile is cached in the

client, it cannot be cached in the server).

Mutual Inclusion All caches share complete overlap in tiles (i.e., if a tile is cached in the

client, it must also be cached in the server).

To enforce the protocols, cache updates are sent in one direction: from the client to the

server, then from the Prediction Framework to the Tile Builder. Each update contains a

list of tile ID’s, representing the contents of the caches. Thus, the Prediction Framework

receives updates that only include the client-side main memory cache, and the Tile Builder

receives updates that include both the client-side and server-side main memory caches. The

receiver of a cache update message is responsible for changing its cache state to match the

state of the sender. In the case of Mutual Exclusion, the receiver of the update evicts any

cached tiles that are on the input list. In the case of Mutual Inclusion, the receiver retrieves

and caches as many tiles on the list as possible (i.e., attempts to mimic the state of the

sender’s cache). If the receiver has a larger cache than the sender, the protocol only applies

up to the cache size of the sender. Thus, any additional tiles that are not explicitly marked

by the sender can stay in the receiver’s cache. Sculpin uses the Mutual Inclusion protocol

by default.

Currently, Sculpin does not support hybrid protocols (i.e., protocols for partial over-

laps). We leave these protocols for future work.

5.4 Experiments

As stated previously, Sculpin targets three specific performance goals: 1) reduce interaction

latency, 2) reduce materialization latency, and 3) reduce disk space usage. In this section,
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we outline how we collected realistic user data for our performance experiments (through a

user study with real-world data, explained in Sections 5.4.1 and 5.4.2), explain the specific

measures we focus on to evaluate Sculpin (Section 5.4.3), and analyze Sculpin’s perfor-

mance across all three goals (Sections 5.4.4 through 5.4.8).

As established in Chapter 4, a system is considered to have low interaction latency if

the average response time is 500ms or less. Therefore, to achieve Goal 1, Sculpin must

maintain this response time requirement.

For Goal 2, we aim to reduce the materialization latency as much as possible. For

example, if we can reduce materialization latency by 50%, we can enable the user to explore

visualizations twice as fast. Furthermore, Goals 2 and 3 are tightly coupled: the more data

that gets materialized, the more time we need to prepare it and the more space we need to

store it. As such, we expect that significant improvements in materialization latency will

also lead to similar improvements in storage requirements. We explain exactly how we

measure both materialization latency and disk space consumed in Section 5.4.3.

5.4.1 Datasets

For these experiments, Sculpin was used to explore part of a massive NASA MODIS

dataset. This dataset spanned one year of MODIS satellite sensor measurements collected

in or near the US in 2014 [1]. This dataset was over 12TB in size when stored within SciDB

using compression (roughly 1TB per month).

To evaluate Sculpin, we visualized two queries executed on the sensor data: a snow

cover query, showing the likelihood of snow at each observed point on the earth (very

similar to the query analyzed in Chapter 4); and a natural color query (described in [81]),

representing how the earth looks to the human eye. We refer to the snow cover query results

as the NDSI dataset, for the function we used to calculate the presence of snow [85]. The

natural color query results were split across two separate analyses: tracking the progress of

a hurricane along the Pacific Coast (called the Hurricane dataset), and tracking the appear-

ance of phytoplankton blooms in the Gulf of Mexico (called the Ocean Blooms dataset).

The time range of each dataset is as follows: December 12 - 25 for the snow cover dataset
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(aggregated per day), September 1 - 14 for the hurricane dataset (aggregated per day), and

April 1 to June 14 for the ocean blooms dataset (aggregated per week). Each dataset had 3

dimensions: latitude, longitude, and time.

5.4.2 User Study

The most effective method for evaluating interactive visualization systems is to have real

people use them to complete real-world tasks. As such, we designed and conducted a user

study, where study participants explored satellite sensor data using Sculpin. We selected the

tasks for our user study based on our previous work on similar data (discussed in Chapter 4),

as well as through collaborations with domain scientists at MIT. To ensure that participants’

interactions were not influenced by delays in the system, we built all data tiles ahead of

time and stored them on disk for the duration of the study, similar to the approach used in

Chapter 4.

Participants

Our participants were 18 graduate students and 2 postdoctoral researchers at MIT, who ac-

tively analyze or are interested in analyzing multidimensional sensor data, such as satellite

sensor data. There were 15 male and 5 female participants, ages 24 to 37. Each participant

completed the study once.

Study Procedure

Each participant read and signed a consent form prior to participating in the study. Partic-

ipants completed the study on a laptop that we provided. We observed every participant

in-person as they completed the study. At the beginning of the study, each participant was

presented with brief instructions on how to use our visualization tool, and given the op-

portunity to explore the interface of our tool for five minutes and were encouraged to ask

questions about the task or the interface. After completing the study, participants filled out

a five-minute survey about the user study interface.
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User Interface

In this experiment, Sculpin’s draggable interface was used1. An example of the user in-

terface is provided in the Sculpin overview in Chapter 3 (Figure 3-6, a user exploring 3D

natural color data). For the 3D datasets, the interface consisted of two separate visualiza-

tions: a 1D time view, and a 2D map view. The time view was a draggable line chart,

showing average measurements over time: the average NDSI for the snow cover dataset,

and the average intensity of “red” light for the natural color views. The 2D map view

was a heatmap for the snow cover data, and a Red-Blue-Green image for the natural color

view, similar to the images rendered by GIS products. Participants could interact with the

time view to move forward or backward in time, or interact with the map view to explore

different parts of the United States.

The interface displayed 8 different tiles at once, across both coordinated visualizations.

As users manipulated the interface, requests were sent to the server to retrieve new tiles.

Depending on how far the user panned in the interface, 2 to 8 tiles were retrieved from the

server. 8 new tiles were always requested when a zoom interaction occurred. As partici-

pants explored each dataset, we found that the vast majority of interactions were panning

interactions: 92% of all interactions for the NDSI dataset, 79% of all interactions for the

Hurricane dataset, and 85% of all interactions for the Ocean Blooms dataset. The median

number of tiles fetched per user interaction was 4 tiles.

Tasks

Participants completed four phases of tasks, where they explored three different satellite

sensor datasets (described in Section 5.4.1), one dataset per task phase. Each phase con-

sisted of a training subtask to get users acquainted with the dataset, and a search task to

complete by analyzing the dataset. All training subtasks and search tasks asked the par-

ticipant to use the visualization tool to explore satellite sensor data and answer questions

about this data. To answer these questions, the user had to either search for specific visual

artifacts (e.g., patches of snow or a phytoplankton bloom), or to analyze specific geograph-

1The user study in Chapter 4 used an early prototype interface, with button-based panning interactions.
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ical regions in or near the United States (e.g., the Gulf of Mexico, Utah, Washington).

We selected our tasks to be as realistic as possible, while ensuring that a diverse group of

participants could complete the study in a reasonable amount of time.

Across all participants, we found that only a small fraction of data tiles were explored

per task: 0.77% for NDSI, 0.85% for Hurricane, and 2.03% for Ocean Blooms.

5.4.3 Experimental Setup

In this section, we explain the physical setup and experimental design for our performance

experiments.

Physical Setup

All experiments are performed using two servers running Ubuntu 12.04 and SciDB. One

of the two servers also runs the Sculpin middleware layer. The servers each have 48GB of

RAM. One server has 10TB of disk space; the other server has 20TB of space.

User Study Data

We use traces collected from our user study to conduct our performance experiments. Note

that none of the pre-computed tiles from the user study are included in these exper-

iments. As such, these performance experiments must also take into account the time

required to compute any requested data tiles. A single trace from the study corresponds

to one user completing a single task, which we refer to as a user session. We perform

leave-one-out cross validation [53], which is a well-known cross validation technique used

in machine learning, and an evaluation strategy employed in Chapter 4. In leave-one-out

cross validation, the system is trained on traces from 19 of our 20 study participants, and

tested on the traces from the participant that was left out. This process is repeated for all

20 participants, providing 20 separate results. We then average across all participants to

produce our final experimental results.

A user session is an ordered list of user interactions. To evaluate a single user session,

we iterate over this list of interactions in order. For each interaction, we send both the
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Table 5.1: Four separate cases (0.25, 0.5, 1.0, and 1.5 seconds) for the average time to build
a single tile at the cheapest zoom level (bottom row, in bold). Each case defines average
tile cost for every zoom level in the datasets. The zoom levels with tile costs lower than 1
second are highlighted in yellow for each case. The last column shows the total number of
tiles on each zoom level. These numbers are for the NDSI and Hurricane tasks.

NDSI,
Hurricane Tile Cost (in seconds)

Zoom
Level Case 1 Case 2 Case 3 Case 4

Total
Tiles

0 12.990 25.980 51.959 77.939 14
1 3.756 7.511 15.023 22.534 56
2 1.393 2.786 5.572 8.358 224
3 0.745 1.490 2.979 4.469 686
4 0.483 0.966 1.931 2.897 2744
5 0.355 0.709 1.418 2.127 10206
6 0.25 0.5 1.0 1.5 40824

Table 5.2: Four separate cases (0.25, 0.5, 1.0, and 1.5 seconds) for the average time to build
a single tile at the cheapest zoom level (bottom row, in bold). Each case defines average
tile cost for every zoom level in the datasets. The zoom levels with tile costs lower than 1
second are highlighted in yellow for each case. The last column shows the total number of
tiles on each zoom level. These numbers are for the Ocean Blooms task.

Ocean
Blooms Tile Cost (in seconds)

Zoom
Level Case 1 Case 2 Case 3 Case 4

Total
Tiles

0 7.967 15.934 31.870 47.805 13
1 2.347 4.693 9.387 14.081 52
2 0.872 1.746 4.490 5.238 208
3 0.575 1.149 2.298 3.447 637
4 0.279 0.559 1.117 1.676 2548
5 0.25 0.5 1.0 1.5 9477

previous n = 3 interactions (i.e., the interaction history) and the user’s current interaction

to the Sculpin client-side Tile Manager, which sends this information to the server-side

middleware component. Sculpin then: 1) retrieves the tiles corresponding to the user’s

current interaction, and sends them to the client; then 2) sends the user’s interaction history

to the Prediction Framework and Tile Builder to make predictions. All of our evaluation

metrics are updated per user interaction.
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Evaluation Metrics

To evaluate performance goal 1 (interaction latency), we measure average response time,

the metric applied in Chapter 4, as well as previous work [63, 62]. We measure response

time by subtracting the time the client issued a request from the time the client received a

response from the server. To calculate the average response time for a single user session,

we sum the response times for this session, and divide the sum by the total number of

requests.

To evaluate performance goal 2 (materialization latency), we first measure the time

taken to complete the offline tile building process in Sculpin (i.e., the time to prepare the

user’s query for visualization). We then divide this value by the total time required to

build every data tile in the dataset (i.e., the approach used by many exploratory browsing

systems [63, 60, 9]).

To evaluate performance goal 3 (storage space consumption), we take a similar ap-

proach. We count the total number of unique tiles that were built by Sculpin within a single

user session (both offline and online). We then divide this value by the total number of tiles

in the dataset (i.e., the number of tiles built by existing exploratory browsing systems).

Simulating Tile Building and Retrieval

In Sculpin, tiles are built by executing the corresponding array query in SciDB, and storing

the result as a separate array. To fetch a tile from SciDB, Sculpin issues a fetch query (i.e.,

a scan query for the computed tile array). Here, we describe how we calculate and measure

both tile build times and tile fetch times in our experiments.

Using a single-threaded, single-disk setup, we found that the cheapest tile cost was

roughly 1.5 seconds, which we refer to as the baseline condition. The tile costs per zoom

level from this analysis are provided in the fifth column of Tables 5.1 and 5.2, labeled Case

4. The total number of tiles per zoom level is provided in column 6, labeled Total Tiles.

We simulate the same analysis (shown as Cases 1-3) by scaling the compute time of the

baseline condition. The purpose of these simulations is to estimate the compute time of

different server configurations, such as when using multiple disks for data replication, or
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Figure 5-1: Response time results divided by task, and averaged across all users. The cost
of building tiles is varied across four different cases listed in Section 5.4.3. The dotted line
is our target response time (500ms).

using multi-threaded execution.

For example, to create Case 3, where the tile cost for the cheapest zoom level is 1

second, we multiply the original tile cost (1.5 seconds) by a scaling factor of 2
3 . Cheap

zoom levels, or levels with tiles that take less than one second to build, are highlighted in

yellow. Only expensive tiles are built during the offline process. Thus, each case represents

a different number of tiles being built. These tile costs are applied for all experiments

involving the Tile Builder (Sections 5.4.8 and 5.4.4).

To compare with previous work, we chose to also simulate fetch times. In our previous

user study in Chapter 4, we found that Sculpin had an average fetch time of 984ms when

retrieving pre-computed tiles from SciDB. Thus, we set our simulated fetch time to be the

same.

When considering the total tiles per zoom level in Tables 5.1 and 5.2, we see that the

finer grained zoom levels contain significantly more tiles. As a result, these zoom levels

require more space to store, as well as more time to compute.

5.4.4 Tile Builder Evaluation

The Tile Builder is designed to target our last two performance goals: reduce materializa-

tion latency, and reduce disk storage requirements. We measure materialization latency

as the time spent building tiles offline. We measure disk storage as the number of tiles

built during a single user session (both offline and online). Our focus in this set of ex-
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Table 5.3: The fraction of time spent building tiles offline, recorded for each task and each
of the four tile building cases described in Section 5.4.3.

Fraction of Time Spent Building
Tiles Offline (in %).

Tile Building Cases NDSI Hurricane
Ocean
Blooms

Case 4 (1.5) 100 100 100
Case 3 (1.0) 23.8 23.8 26.3
Case 2 (0.5) 2.5 2.5 6.8
Case 1 (0.25) 0.7 0.7 1.4

periments is to compare Sculpin’s tile building strategy (build only tiles from the coarsest

zoom levels offline) with the strategy of existing exploratory browsing systems (build ev-

erything offline). To do this, we calculate relative measures for the time spent building tiles

(Sculpin time divided by total time), and number of tiles built (Sculpin count divided by

total tiles). Each metric is measured separately for each task and each tile building case in

Section 5.4.3.

Experimental Parameters: The offline build threshold is set to 1 second. Therefore,

any zoom levels with average tile cost less than 1.0 will be ignored by the offline tile build-

ing process. These zoom levels are highlighted in yellow in Tables 5.1 and 5.2. In the online

build process, we re-use the Prediction Framework to decide which tiles to pre-compute af-

ter each user request, similar to the pre-fetching process described in Section 5.4.7. In this

case, we only allow the Prediction Framework to recommend 16 tiles to pre-compute after

each user request, which we found empirically to be the most effective parameter setting

for the online build process. Note that only a small fraction of tiles are ever pre-computed

online, since the vast majority of tiles requested by participants are at the coarsest zoom

levels, which are already computed offline. In these experiments, our caching optimizations

are turned off, so we can measure the exact contribution of our tile building techniques to

the overall performance of Sculpin.

Materialization Latency Results: Table 5.3 shows the fraction of time spent building

tiles offline. To calculate this, we count the number of tiles Sculpin built per zoom level,

multiply each count by its corresponding tile cost cost from Tables 5.1 and 5.2, and sum

the results. Then we divide the resulting sums by the total processing time required to build
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every tile in the dataset (i.e., the approach of previous work [63, 60, 9]). In 3 out of 4 cases,

the bottom zoom level is “cheap,” and can be ignored during the offline process (i.e., none

of the bottom zoom level is materialized offline). By ignoring this one zoom level, Sculpin

already provides a 3.8x improvement in materialization latency. Furthermore in Case 1,

nearly all zoom levels are “cheap” (i.e., most tiles in the dataset can be built in under one

second). Here, Sculpin can exploit this fact and build just two or three zoom levels within

the dataset, leading to a 71x improvement in materialization latency for Case 1. In Case 4,

every zoom level must be built offline, representing the worst case scenario for Sculpin. As

we can see, Sculpin matches the performance of existing work in this case.

Disk Space Results: Table 5.4 shows the fraction of tiles built offline by the Tile

Builder, where this fraction is calculated for each task by dividing the number of tiles

that Sculpin built by the total number of tiles in the corresponding dataset. We see that the

Tile Builder provides similar improvements in storage space: 62x improvement for Case 1,

13x for Case 2, 3.7x for Case 3, and comparable performance in Case 4.

Impact on Interaction Latency: Here, we measure the average response time in

Sculpin (i.e., the interaction latency), when using only our tile building optimizations (i.e.,

caching is still turned off). In Figure 5-1, we see that when the cheapest zoom level has

an average tile cost of 1.5 seconds (Case 4), we get the best average response time from

Sculpin: 280ms for NDSI, 500ms for Hurricane, and 439ms for Ocean Blooms. This is ex-

pected, because the Tile Builder builds every tile offline here. However, because every tile

is built in advance, this case results in the worst results for materialization latency and disk

usage (i.e., no improvement over existing systems). As we decrease the number of zoom

levels built offline, we see dramatic reductions in storage space and materialization latency.

However, this also increases the average response time, since the Tile Builder will now have

to build more tiles online. The worse case for response times is Case 1, where the cheapest

zoom level has an average tile cost of 250 milliseconds. In this case, the Tile Builder only

builds 2 of the zoom levels in advance, and Sculpin has average response times of 391ms

for NDSI, 698ms for Hurricane, and 691 milliseconds for Ocean Blooms. The response

times for NDSI are significantly better (i.e., lower) due to having high prediction accuracy

from the Prediction Framework for this task (pre-fetching is always on by default). Thus,
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Table 5.4: The fraction of tiles built offline by the Tile Builder, recorded for each task and
each of the four tile building cases described in Section 5.4.3.

Fraction of Tiles Built (in %)

Tile Building Cases NDSI Hurricane
Ocean
Blooms

Case 4 (1.5) 100 100 100
Case 3 (1.0) 25.4 25.4 27.0
Case 2 (0.5) 1.8 1.8 7.6
Case 1 (0.25) 0.6 0.6 1.6

if we use only our tile building optimizations, we see a tradeoff: when we spend less time

building tiles offline, we increase the average response time. In the next section, we explain

how we combine our tile building optimizations with our caching optimizations to achieve

all 3 of our performance goals.

5.4.5 Caching Evaluation

While our tile building optimizations provide dramatic improvements in materialization

latency and disk storage requirements, they alone are insufficient to address all three of

our performance goals. We developed our caching optimizations specifically to target our

first performance goal: to maintain low interaction latency (i.e., average response times of

500ms or less). In this section, we compare our cache replacement policies to LRU, test

our cache coordination protocols, and report on Sculpin’s average response times when

combining our tile building and caching optimizations.

Cache Replacement Policies

Experimental Parameters: In this experiment, only the server-side main memory cache

is enabled, and tile building optimizations are turned off (i.e., every tile is built offline).

We vary the number of tiles Sculpin is allowed to cache from the user’s recent requests,

ranging from 4 to 128 tiles. We evaluated average response times with all three of our

cache replacement policies: LRU, Navigation-based, and Rank-based.

Interaction Latency Results: We found that Navigation-based and Rank-based were

both notably better than LRU across all three tasks. The response time results per cache
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Figure 5-2: Average response time results for the Ocean Blooms task, when caching 4-128
tiles in Sculpin, calculated separately for each cache replacement strategy. Similar results
were observed for all three tasks.

replacement policy are provided in Figure 5-2. We observed very similar results for all

three tasks, however to conserve space we only show results for the Ocean Blooms task.

We found that the Navigation-based cache replacement policy can provide a 46ms reduc-

tion in response time compared to LRU, and the Rank-based policy can provide a 32 ms

reduction. However, as the cache increases in size, Sculpin is able to store more of the

user’s recent requests, making sophisticated cache eviction strategies less critical. Given

that the Navigation-based policy is generally better than the Rank-based policy, we only

use the Navigation-based policy for our later experiments.

Figure 5-3 shows a steady decrease in response times as the size of the server-side

main memory cache increases from 4 to 32 tiles. However, cache sizes larger than 32 tiles

seemed to provide only a marginal benefit. For example, increasing the cache size from

32 to 128 tiles only reduced response times by 17ms for the NDSI task. Therefore for the

remainder of our experiments, we set the size of our tile caches to 32 tiles.

Cache Coordination Protocols

Experimental Parameters: In this experiment, we enable caching in both the server-side

main memory cache (managed by the Prediction Framework) and the builder cache (man-

aged by the Tile Builder). Our tile building optimizations are now turned on (i.e., only a

fraction of data tiles are built offline). In the previous experiment, we found that a cache

size of 32 tiles to be most effective. Therefore, each cache has space to store 32 tiles from
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Figure 5-3: Average response time results for all 3 tasks, when caching 4-128 tiles in
Sculpin, using the Navigation cache replacement policy.

Figure 5-4: Average response time results for each tile building case (0.25, 0.5, 1.0 and
1.5 seconds), and each dataset, when both the tile building and caching optimizations are
enabled in Sculpin. The vertical dashed line represents Sculpin’s default build threshold of
1 second. The horizontal dashed line represents the interactivity threshold of 500ms.

the user’s recent requests. The Navigation-based cache replacement policy is used for both

caches due to its superior performance. We experimented with our two cache coordination

protocols: Mutual Inclusion and Mutual Exclusion.

Interaction Latency Results: We found little performance difference between the two

and therefore only report the results using the Mutual Inclusion coordination protocol. Fig-

ure 5-4 shows the new average response time results. For all four tile building cases, our

caching techniques result in a consistent 200-300ms reduction in response time across all

three datasets. Even when compared directly with existing techniques, where every tile is

pre-computed offline (i.e., Case 4), our caching optimizations still provide at least: a 56%

improvement in performance for the Ocean Blooms dataset, a 66% improvement for the

Hurricane dataset, and a 93% improvement for the NDSI dataset. As a result, we see that

for all four tile building cases, Sculpin is able to provide interactive response times (i.e.,
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Table 5.5: Average response time (in seconds), with pre-fetching, tile building and caching
enabled. The client-side cache was either turned on (with size 32 tiles), or turned off. Two
separate clients were tested: a laptop connected to a public wireless network, and the server
running Sculpin.

Machine
Client
Caching NDSI Hurricane

Ocean
Blooms

Laptop
On 0.173 0.444 0.483
Off 0.203 0.519 0.598

Server
On 0.136 0.282 0.305
Off 0.138 0.301 0.326

500ms or less).

5.4.6 Impact of Client-Side Caching

In this experiment, we ran our end-to-end system with tile building case 3 (the 1 second

case), and Mutual Inclusion as the default coordination protocol. We evaluated average

response times when client-side caching was both on and off, and using two different client

machines: a laptop using the public wireless network at MIT, and the server running the

Sculpin back-end. The results are provided in Table 5.5. We found that when the client and

server are co-located, client-side caching provides only a marginal improvement in perfor-

mance: 2ms improvement for NDSI, 19ms for Hurricane, and 21ms for Ocean Blooms.

However, when using a laptop on a public network, we observe a noticeable improvement

in performance when client-side caching is turned on: 30ms improvement for NDSI, 75ms

for Hurricane, and 115ms for Ocean Blooms. Furthermore, we found that using client-

side caching brought the average response time within interactive bounds for this case (i.e.,

under 500ms).

5.4.7 Prediction Framework Evaluation

Predictive data pre-fetching is the most common technique in exploratory browsing for

reducing interaction latency [9, 17, 27, 26]. As such, Sculpin incorporates pre-fetching as

a key optimization technique that is always in use. However, in addition to competitive

performance, Sculpin also provides a new approach to efficiently pre-fetching data tiles in

the multidimensional case. Here, we report briefly on our results.
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Comparing With the 2D Case: We compared Sculpin’s full multidimensional frame-

work with the performance of a single 2D predictor, which represents the best prediction

technique developed thus far for exploratory browsing in the 2D case (e.g., panning and

zooming in a latitude-longitude map) [9]. Specifically, we compare Sculpin’s prediction

accuracy and average response times for the NDSI dataset to the 2D snow cover case eval-

uated in our previous user study (see Chapter 4 for more details). Note that no existing sys-

tems currently support prediction beyond the 2D case (e.g., panning and zooming through

latitude, longitude, and time).

Experimental Parameters: To ensure a fair comparison is made with our previous

study, we pre-compute all data tiles in advance for this experiment. To study the impact of

total pre-fetching space on performance, we measure prediction accuracy as we increase

pre-fetching space (in tiles). For each user study task, we perform leave-one-out cross

validation for five different pre-fetch sizes: 4, 8, 16, 22, and 32 tiles pre-fetched before each

user interaction. We observed in the user study that the median number of tiles requested

per user interaction was 4 tiles. Thus, pre-fetching 4 tiles is equivalent to predicting 1 of

the user’s possible interactions, 8 tiles to 2 interactions, and so on. The cross validation

results for each task and pre-fetch size are aggregated across all users.

Prediction Results: With a pre-fetch size of 16 tiles (i.e., predicting 4 of the user’s 10

possible directional moves), Sculpin achieves 72% prediction accuracy (283ms response

time). This is very close to the prediction results observed for the 2D case, which achieved

74% accuracy when pre-fetching 4 of the user’s 9 possible directional moves (250ms re-

sponse time). We found that increasing the pre-fetching size beyond 16 tiles provided only

marginal improvements in performance.

5.4.8 End-to-End System Evaluation

Here, we summarize Sculpin’s end-to-end performance on the 1 second tile building case

(Case 3). To do this, we measure all three of our performance goals in a realistic user

environment.

Experimental Parameters: For this experiment, our tile building optimizations and

129



caching optimizations (with all three caches enabled) are turned on. A laptop connected to

a public wireless network was used as the client.

Interaction Latency Results: Using a laptop connected to a public wireless network

as the client machine, Sculpin provided an average response time of 490ms or less for all

three datasets, achieving performance goal 1 (maintaining low interaction latency).

Materialization Latency Results: With existing exploratory browsing systems [63,

60, 9], users must wait for a slow offline build process to complete before seeing any vi-

sualizations of their queries. This is problematic when the user wants to explore a new

query quickly. Thus, to enable the user to see query results faster (and thus iterate over her

analyses faster), Sculpin reduces the materialization latency, or the time spent preparing

the user’s query for visualization. To measure this, we calculate the time Sculpin spends

building data tiles offline, and divide this time by the total time required to compute every

data tile in advance (i.e., the approach of exiting systems). We found that Sculpin provided

a 420% improvement in materialization latency for the NDSI and and Hurricane datasets.

For the Ocean Blooms dataset, Sculpin provided a 380% improvement (down to 150 min-

utes from 572 minutes). Thus, users can visualize queries in Sculpin four times as fast as

other systems, achieving performance goal 2 (reducing materialization latency).

Storage Results: The client-side cache was 32MB in size, and the server-side main

memory cache was 48MB in size, representing a small main-memory footprint for client

and server-side caching. The builder cache contained roughly 14GB of data for the NDSI

and Hurricane tasks, which provided a 393% improvement in space usage (originally 54.7GB).

Similarly, the builder cache contained 3.5GB of data for the Ocean Blooms task (originally

12.9GB), resulting in a 374% improvement in space usage. Thus, Sculpin achieves perfor-

mance goal 3 (reducing storage requirements).

5.5 Summary

In this chapter, we presented two new techniques in Sculpin, incremental tile building and

visualization-aware caching, which are used in conjunction with data-prefetching to re-

duce both materialization latency (i.e., the time required to prepare the underlying data for
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visualization) and disk space usage (i.e., total tiles built by Sculpin). To evaluate our pre-

computation and caching techniques, we conducted a second user study with 20 domain

scientists exploring satellite sensor data. We found that Sculpin maintains low interaction

latency (average response time of 500ms or less), while also significantly reducing mate-

rialization latency (380% improvement) and disk space consumed by materialized results

(370% improvement). Thus, Sculpin reduces the time and space required to develop in-

teractive visualizations, enabling users to quickly and iteratively analyze complex analyses

over large multidimensional datasets.
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Chapter 6

Related Work

The techniques developed in Sculpin span several areas of research: 1) latency analysis for

visual exploration systems; 2) data resolution reduction for efficient visualization of mas-

sive datasets; 3) analysis of user interaction logs to extract and model user behavior; and

4) interface design techniques and systems optimizations to support efficient multidimen-

sional data exploration. Here, we highlight the projects and techniques in these areas that

are most relevant to Sculpin.

6.1 Latency Analysis for Visual Exploration Systems

A critical component of this thesis is to better understand how latency alters users’ explo-

ration behaviors in search-based data analytics tasks. Here, we highlight work in psychol-

ogy, HCI and visualization that inspired our experimental design and analysis.

6.1.1 Psychology of Searching

Early exploration of human information processing uncovered two complimentary pro-

cesses at work in the context of visual search: automatic detection (i.e., committing the

objects to be found to long-term memory prior to performing the search task) and con-

trolled search (i.e., using a methodical, exhaustive and often serial process to identify the

objects to be found) [88, 90]. Automatic detection was demonstrated to become sharper
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with repeated exposure, developing from a consistent mapping between stimuli and re-

sponse over multiple examples. In contrast, controlled search is a more methodical serial

comparison behavior which requires active attention by the subject. It has been hypothe-

sized that controlled processing operations such as this make extensive use of short-term

memory [88], and are frequently disrupted by automatic detection [90].

6.1.2 Latency in VIS and HCI

Disengagement due to latency in visualization is a frequently noted phenomenon, and ad-

dressing latency has led to advancements in approximate and pre-cached query results,

which we discuss in Section 6.2. The negative effect of high latency on exploratory analy-

sis was explicitly measured in [62] and [108], with both works concluding that users per-

form better with lower latency. Research in Human Computer Interaction has found that

user preference is highly skewed towards sub-100ms latency in direct touch input [71, 46],

yet latency has little effect on the higher level tasks involved in a real-time strategy game

[22, 89]. The stratification of higher-order and lower-order tasks agrees with the evidence

found in psychology research that suggests different speeds (and thus different latency

“thresholds”) for different user actions.

6.1.3 Influencing a User’s Analysis Behavior

By making subtle changes to the task setting and comparing the behavior of a test and con-

trol group, it can be shown that behavior is a function of the change in setting. In one such

experiment, participants were shown different pictures before being asked to do a creativity

task, and it was found that participants shown a picture of a happy baby performed better

than those shown a hammer [57]. Priming the user’s emotions prior to viewing a visualiza-

tion has been shown to effect perception [39], while priming locus of control effected user

strategy in a visual search task [75]. Behavioral manipulations can also occur continuously

throughout the entire task. The user’s attention in a digital view can also be manipulated

with subtle flickers [100], modulations [99], or changing regional saliency [8]. In Chap-

ter 2, we manipulate the latency of each interaction to infer the functional relationship
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between latency and visual search strategy for different analysis tasks.

6.2 Data Resolution Reduction

In an effort to support fast rendering of massive datasets, many systems apply aggregation

or sampling techniques to reduce the amount of data to be rendered on the screen. This

technique is also known as resolution reduction [10]. Here we discuss the recent advance-

ments in each of these areas to support scalable visualization.

6.2.1 Aggregation

Aggregation techniques are generally applied across the entire dataset, and thus are often

considered an expensive operation that must be completed prior to rendering visualiza-

tions. As such, aggregation is generally applied offline, before the user starts to explore

her data. However, an offline aggregation process can be beneficial because it condenses

potentially massive query results into a much smaller data range, resulting in significantly

fewer datapoints to be rendered in the final visualization. One example of applying aggre-

gation to DBMS query results is to calculate a windowed average across the results (e.g., as

explained in Section 3.2), such that the width of the aggregation windows match the range

of available pixels on the user’s laptop, a technique utilized in our prior work [10]. Here,

we discuss two general aggregation techniques applied in visualization systems: hierarchi-

cal aggregation, and specialized data cubes. Sculpin leverages the aggregation techniques

proposed in previous work to provide concise visualizations of query results.

Hierarchical Aggregation

Elmqvist and Fekete [32] developed an abstraction for applying hierarchical aggregation to

efficiently process and visualize spatial (and spatiotemporal) data. The focus of their work

was to visually simplify aggregate visualizations of massive datasets by reducing clutter,

allowing aggregate visualizations such as treemaps to scale up to larger dataset sizes.
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Data Cubes

Data cubes [35] are a specialized data structure for supporting efficient execution of aggre-

gate analytical operations over large datasets. They have been studied and optimized for

many years within the database community, the most relevant techniques to Sculpin being

efficient data cube materialization [5, 21, 69]. However, raw data cubes are ill-suited to

efficient data processing for visualization applications. In response, two data-cube variants

have emerged to make data cubes more effective for fast data processing for visualiza-

tion: data tiles [63], which are also utilized in Sculpin, and nanocubes [60] (and the more

recent hashedcubes [76]). Nanocubes are a specialized form of data cubes for spatiotem-

poral datasets that directly incorporate hierarchical aggregation results. Using nanocubes,

Lins et al. are able to support extremely fast visualization of large spatiotemporal datasets,

assuming that the entire nanocubes structure can fit in memory on the user’s client machine.

However, a major drawback to the nanocubes data structure (and data cube-like struc-

tures in general) is the amount of space required to store these data structures. Sculpin

significantly reduces the amount of space consumed by data tiles by incrementally building

the data tiles, and carefully selecting only the most critical data tiles for pre-computation.

6.2.2 Sampling

Efficient sampling of large datasets has been an active area of database research for many

years, and continues to gain interest in both the database and visualization communities.

Here, we highlight the major sampling strategies that have been developed, and their ap-

plications to visualization. Two major strategies are considered when building samples for

visualization: offline sampling, where the sample is built at data load time, and online or

progressive sampling, where the sample is built on the fly (i.e., at query execution time).

We note here that sampling is an orthogonal optimization technique that can be applied

alongside the optimizations proposed in Sculpin. As such, a complete survey of sampling

techniques is outside the scope of this thesis1.

1We defer to recent work in this area to provide a more comprehensive review [4, 25, 58].

136



Offline Sampling

A variety of query sampling engines have been developed to efficiently build samples at

data load time, which can be used later to quickly render new visualizations. These tech-

niques focus on stratified sampling [64], and either rely on prior knowledge of the queries

to be executed over the sample (i.e., the query workload) [4, 19, 2, 3, 91, 73], or build

samples without knowledge of the query workload [2, 3, 7].

These techniques are used infrequently for visualization use cases, as they are less

flexible for ad-hoc analysis and visualization. Users often visualize and then discard new

query results, making long-term samples of these results to be of limited use.

Online Sampling

Hellerstein et al. (Control [41]) and Fisher et al. (Sample Action [33]) use online aggre-

gation to visualize individual aggregates (e.g., a sum or a count) from increasingly large

samples over time. Kamat et al. (DICE [47]) and Crotty et al. (A-WARE [23]) use progres-

sive sampling to enable sub-second response times for a larger set of visualization types.

Online aggregation techniques can also be applied in a distributed fashion to improve

performance. One such example is the VisReduce system developed by Im et al. [44],

which utilizes MapReduce-style data processing techniques to create visualizations.

Li et al. propose a new technique to efficiently sample database joins using random

walks [58], providing a new avenue of research for progressive visualization of complex

queries over massive datasets.

Sampling Parameters

However, in all sampling cases, one must know when a sample is “large enough” to pro-

vide an accurate visualization of query results. In the case of progressive sampling, this

problem falls on the shoulders of the user, who must then decide for themselves when they

have seen enough information. However, it would be significantly more helpful to users if

visualization systems could determine appropriate sample sizes automatically. To this end,

recent work has studied how to set these parameters for specific visualization use cases.
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For example, Kim et al. developed an algorithm to identify the smallest sample size re-

quired to render a bar chart such that the bars are correctly ordered by height [51]. Park et

al. calculate minimum size samples for scatterplot and map charts [77] using a loss func-

tion that ensures that the visual differences between the “true” visualization and sampled

visualization are within a given threshold.

6.3 Analysis of User Interactions

Sculpin’s optimization strategy relies on the ability to record, collect and mine user inter-

action logs to develop a better understanding of user behavior. Several projects have also

explored techniques to extract behavioral information and train behavioral models from

raw interaction logs. Here, we discuss a number of techniques for visualizing, analyzing

and mining insights from interaction logs.

6.3.1 Interaction Log Analysis

Wei et al. developed a visualization system to facilitate visual exploration and analysis of

web clickstream data [102]. Heer et al. explore various design decisions for developing

interfaces for interaction log (or history) analysis, and propose new techniques for effi-

ciently rendering and navigating visualization histories [40]. Guo et al. developed a new

framework for mining interaction logs from text analysis interfaces [37]. Using this frame-

work, they can quantitatively measure correlations between specific interaction features

and insight generation and characteristics. Brown et al. studied user search patterns while

users performed a search task involving the classic Where’s Waldo image puzzles [14]. By

training machine learning techniques on the interaction logs from the study, they could ac-

curately predict whether a participant would finish the Waldo puzzle quickly or slowly, and

even infer specific personality factors for this participant such as extroversion and locus of

control.
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6.3.2 Pre-fetching and Prediction

Several systems use data pre-fetching to reduce user wait times (i.e., system latency) when

exploring database queries, using a single visualization to explore 2D datasets. Doshi et al.

(Xmdv Tool [27, 26]) and Chan et al. (ATLAS [17]) propose simple direction-based pre-

diction techniques for pre-fetching data. Lee et al. [56] and Cetintemel et al. [16] propose

using more sophisticated behavioral models, such as Markov chains and SVM models.

In Sculpin, we include more data-driven prediction algorithms, and propose a general-

purpose approach for combining existing prediction techniques. We also extend previ-

ous work to support data pre-fetching for multiple visualizations and multidimensional

datasets.

Furthermore, despite the clear importance of efficient data management in supporting

interactive visualization [107], existing visualization systems that utilize pre-fetching still

ignore the impact of multi-level data caching on reducing response times. In a related area,

Li et al. study multi-level caching specifically for maps [59]. We extend existing work

by proposing cache replacement and coordination strategies that exploit knowledge of user

exploration behavior in general-purpose exploratory browsing systems.

6.3.3 Sensemaking Models

The analysis model developed in Chapter 4 is based on the sensemaking model presented

by Pirolli and Card [80]. In this work, Pirolli and Card describe the following flow for data

analysis: a foraging loop, where one is focused on collecting and filtering information,

followed by a sensemaking loop, where one constructs a theory or hypothesis based on the

information collected. We adopt these ideas in our analysis model as separate Foraging

and Sensemaking phases (see Chapter 4 for more details). However, a subset of interaction

patterns that we observed in our user studies are not well represented by the Pirolli and

Card sensemaking model. For example, the navigation-focused interactions we observed,

such as zooming in to a particular ROI, or zooming out to the coarsest zoom level after per-

forming an in-depth analysis of an ROI, do not seem to match the foraging or sensemaking

loops of this model. As such, we incorporated a separate Navigation analysis phase into
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our analysis model to support these interaction patterns.

6.4 Multidimensional Visualization Exploration

Supporting visual exploration of multidimensional data is becoming increasingly impor-

tant. As such, several visualization systems have been developed to allow users to ex-

plore multidimensional datasets. van den Elzen and van Wijk [97], Key et al. [50], Var-

tak et al. [98] and Wongsuphasawat et al. [106] developed interfaces that provide thumb-

nails of recommended visualizations (or small-multiples) that users can click on to explore

a new visualization of their data, along various data dimensions. However, these systems

are designed for small-scale data analysis. Kamat et al. [47] developed an interface to

support exploration along different data cube dimensions via a drop-down query menu.

However, forcing the user to interact with a query menu prevents the user from directly ma-

nipulating the current visualization to explore her data. Thus, these systems lack the abil-

ity to support fluid in-depth exploration of large-scale datasets. Nanocubes [60], hashed-

cubes [76] and imMens [63] support multidimensional datasets, but still have dataset size

limitations. In contrast, Sculpin supports in-depth exploration of massive arrays through

direct manipulation of multiple visualizations within a coordinated view visualization de-

sign.
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Chapter 7

Future Work

In this chapter, we propose several future directions for scalable visual analytics. We first

discuss direct opportunities to further improve the performance of visual exploration tools

like Sculpin. We then turn to a broader discussion of how visual exploration tools can

potentially shape the future of big data analytics and data science.

7.1 Making Visual Exploration More Effective

Sculpin provides significant improvements over existing techniques, but there are some

drawbacks to the current design. Here, we discuss the limitations to Sculpin, and propose

several avenues for future work: support for more flexible exploration, support for more

dataset types, finer-grained incremental tile building, and support for more diverse percep-

tual measures of exploratory browsing systems.

7.1.1 Supporting more interaction types

Sculpin only lets users pan and zoom, and prevents users from performing other kinds of

exploration, such as searching for tiles containing specific characteristics (e.g., tiles with

no cloud cover), or jumping to specific locations. An interesting area for future work is

to extend the tile-based data model (and existing prediction techniques) to support a wider

variety of interactions.
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7.1.2 Supporting more dataset types

Sculpin is designed primarily for exploring large, multidimensional matrices. However,

scientists explore many types of large datasets, such as social network data and medical

data, which have completely different structures. Important future work for systems like

Sculpin must include new data structures and optimization techniques to support a wider

variety of dataset types.

For example, our proposed tiling scheme works well for arrays. However, when con-

sidering other types of data (e.g., social graphs or patient health records), it is unclear how

to map these datasets to tiles. We plan to develop a general-purpose tiling mechanism for

relational datasets. We also plan to study how tiling parameters affect performance for

array and non-array datasets.

Similarly, we manually identified four signatures for our SB recommender, and found

that SIFT works best for the NDSI dataset (see Chapter 4 for more details). However, other

features may be more appropriate for different datasets. For example, counting outliers or

computing linear correlations may work well for prefetching time series data. We plan to

build a general-purpose signature toolbox with more of these signatures, and plan to extend

Sculpin to learn what signatures work best for a given dataset automatically. To evaluate

Sculpin’s new tiling scheme and signature toolbox, we plan to conduct a user study on

non-array-based datasets. For example, we plan to support the MIMIC II medical dataset,

which provides hospital data recorded for thousands of patients and many data types (e.g.,

unstructured text, tabular, and array data).

7.1.3 Finer-grained tile building

Sculpin only builds a subset of all possible data tiles. However, to ensure that the user never

has to wait for an expensive tile to be computed while she explores, Sculpin takes an overly

conservative approach, and builds entire zoom levels at a time (see Chapter 5 for more

details). It is unlikely that every tile needs to be computed for most zoom levels, including

expensive ones. To accurately identify which expensive tiles can be safely avoided, we

need better metrics for measuring the risk of building (or not building) specific tiles. We
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also need new techniques for predicting which tiles are likely to be requested by the user

before she starts exploring (i.e., without any information about her exploration behavior).

In addition, our prediction framework does not currently take into account potential

optimizations within a multi-user scheme. For example, it is unclear how to partition the

middleware cache to make predictions for multiple users exploring different datasets, or

how to share data between users exploring the same dataset. We plan to extend our archi-

tecture to manage coordinated predictions and caching across multiple users.

7.1.4 More Perceptual Measures

A hybrid evaluation strategy was adopted throughout this thesis, where we collected real

behavioral data through user studies, and then retroactively evaluated Sculpin’s perfor-

mance using traces collected from these studies. This strategy allowed us to study how

humans explore massive sensor datasets, and also to gauge how effective our optimizations

are in supporting fast data exploration.

However, as shown in our results from our first study in Chapter 2, our current eval-

uation method may have blind spots, and we need new evaluation methods to concretely

measure the impact of poor system performance on exploratory browsing in a standardized

way. Specifically, new perceptual measures are needed to better evaluate both the posi-

tive and negative effects of various optimization techniques. We suggested a technique for

measuring the impact of latency in an exploratory browsing system by gauging user pref-

erences for low versus high-latency data regions. Similar measures for identifying bias in

the conclusions drawn by the user, and the number of “useful” insights reached by the user

are potential measures to be developed for the future.

Ultimately, we aim to better understand the dynamics of the partnership formed be-

tween data scientists and exploratory browsing systems. The system reacts to the user’s

behavior, but the user also reacts to the system’s behavior. How can we better characterize

this bidirectional effect, and study how the dynamics change when new system optimiza-

tions and features are introduced to the system?
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7.2 Making Visual Exploration More Relevant

Interactive data visualization and exploration at scale is an exciting area of research with

many new possible research directions to pursue. Here, we provide a sketch of some

promising directions for the fields of data science and big data analytics, with respect to

data visualization.

7.2.1 Generalizing Data Exploration at Scale

Many user interfaces have been designed to support data exploration in a variety of areas,

including biology, medicine, urban planning, earth science, physics, social science, and

astronomy. However, no one has explored what this means for the fields of data manage-

ment and visualization. Specifically, it is unclear how many unique interactions exist across

all these interfaces. Interesting future work would be to evaluate whether and how these

disparate interaction types could be unified across domains. A critical piece of this future

direction will be to develop new optimizations that translate across disparate data structures

and semantics.

7.2.2 Automated Recommendations for Data Analysis

Data analysis is a complex process, where users have to make many decisions about how

to best analyze their data. This thesis focuses on making individual analysis iterations

fast using exploratory browsing systems. As such, this thesis focuses on improving the

system’s performance. However, the human’s performance also plays an important role

in efficiency. Specifically, if the user makes smart choices about how to analyze her data,

she can reach her goals with less effort (i.e., fewer and faster iterations). Therefore, it is

critical to consider a more holistic view of what it means for the data analysis process to be

efficient, and to develop optimizations accordingly.

One such opportunity is to extend behavioral modeling and interaction prediction to

provide automated recommendations. These recommendations would provide real-time

feedback to the user as she analyzes her dataset, so she can immediately redirect the course
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of her analysis to better match her goals. In the case of Sculpin, the system could rec-

ommend new data regions of potential interest to the user, given the regions she recently

visited in the past. These recommendations can potentially reduce the number of interac-

tions that the user performs within a single analysis iteration, but more importantly, it might

help the user identify new patterns in the data that she had previously missed. Taking this a

step further, the system can also help direct the course of the user’s analysis using specula-

tive execution. Specifically, if the system can predict which analyses the user will want to

perform in the future (e.g., what DBMS query the user will write next), then it can specu-

latively execute these analyses during the user’s current analysis iteration, and recommend

them to the user for her next iteration.

7.2.3 Collaborative Data Analysis Systems

Human collaboration is a natural and common facet to data analysis and exploration. For

example, it is common for several users to work together to formulate an initial hypothesis

or research direction for analyzing a new dataset. However, most existing data exploration

systems only support single-user experiences. To provide the most effective support in all

aspects of the data analysis process, exploratory browsing systems must support multiple

users exploring datasets together.

The first step to supporting collaborative exploration is to support multi-user explo-

ration, where many users are exploring different datasets at the same time. Here, the chal-

lenges involve identifying when resources should be shared between users, and how to best

distribute resources across all users. Given that user exploration behaviors change over

time, exploratory browsing systems also need to be able to adapt their resource allocations

on the fly. Thus an important component to this trajectory of future work will be to develop

new techniques to support a diverse set of exploration patterns evolving simultaneously.

145



146



Chapter 8

Conclusions

The focus of this thesis has been to provide users (e.g., data scientists) with a fast, fluid in-

teraction experience when using exploratory browsing tools to visualize and explore mas-

sive array data. As such, we focused on reducing system latency, or the time required by the

system to respond to a user’s actions. To do this, we first characterized how users choose

and switch between high level search strategies when faced with system latency, and then

developed three separate optimization techniques to reduce system latency in exploratory

browsing systems, implemented in our system Sculpin.

Through our initial user study in Chapter 2, we demonstrated how system latency can

have clear negative effects on the user’s ability to quickly and easily analyze her data.

Our participants explored image collages, where each image in the collage represented an

image “tile” within the interface. We simulated system latencies by inserting a delay before

making image tiles appear on the screen. From our study, we found that when there are

long delays in when and where tiles appear on the screen, the system can lead the user to

draw certain conclusions about the dataset. In the case of our study, each user was given

multiple target pictures find in the collage. The results of our study demonstrate that users

showed clear preferences for certain target images within the collage when system latencies

were introduced to the interface. Given these results, it is clear that latency in the system

can cause users to bias their actions, hindering their ability to freely and objectively analyze

their data. As such, it is critical to minimize the impact of system latency on users, which

we propose to do by reducing the amount of latency observed by users in the system.
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We then define the two forms of system latency that impact users: materialization

latency, or the time required to prepare and materialize query results in the DBMS for

visualization; and interaction latency, or the time required to fetch data from the DBMS in

response to a user pan or zoom interaction.

In response, we developed Sculpin, a general-purpose system designed for interactive

and iterative exploration of large, multidimensional datasets. Sculpin employs a client-

server architecture, where the user interacts with a lightweight client-side interface, and the

data to be explored is retrieved from a back-end server running a DBMS. For efficient data

processing and retrieval, Sculpin utilizes a tile-based data model, where query results are

partitioned into fixed-width blocks, or data tiles. We developed three optimization tech-

niques in Sculpin to address both materialization and interaction latency. These techniques

were implemented within a modular optimization layer that interacts with the client-side

user interface and server-side DBMS. Sculpin employs three separate techniques in the

optimization layer to improve performance: 1) a multidimensional prediction framework,

to anticipate the user’s future interactions and pre-fetch the corresponding data tiles ahead

of time to reduce interaction latency; 2) incremental tile pre-computaiton techniques, to

reduce the number of tiles that need to be computed before the user’s visualization can

be rendered in the client-side interface; and 3) visualization-aware caching techniques to

further boost performance as the user explores her dataset.

We conducted two separate user studies to evaluate Sculpin, where in total 38 earth

scientists used Sculpin to explore NASA MODIS satellite sensor data. We tested the per-

formance of Sculpin using traces recorded from both of our user studies. We presented per-

formance results showing that our prediction framework provides: (1) significant accuracy

improvements over existing prediction techniques (up to 25% higher accuracy); and (2)

dramatic latency improvements over current non-prefetching systems (430% improvement

in latency), and existing prediction techniques (88% improvement in latency). Using all

three performance optimizations together, we found that Sculpin maintains low interaction

latency (average response time of 490ms or less), while also improving the materialization

latency (380% improvement) and space consumed by materialized query results (370%

improvement).
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Thus, Sculpin reduces the overall system latency and storage requirements for devel-

oping interactive visualizations, enabling users to quickly and iteratively analyze complex

analyses over massive, multidimensional datasets.
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Appendix A

Additional MODIS Data Processing

Here, we outline the necessary steps to duplicate the analysis queries we used in Chapter 5,

using data from the NASA MODIS.

To calculate the snow cover dataset, we follow the same approach as in Chapter 4:

join the two arrays corresponding to the bands for visible light (band 4) and short-wave

infrared light (band 6) measurements, and calculate the normalized difference snow index

(or NDSI) using the reflectance measurement from these bands. The NDSI ranges from -1

(no snow) to +1 (high likelihood of snow), and is calculated for each SciDB array cell. The

NDSI is as follows, where S4 is the band 4 array, and S6 is the band 6 array in SciDB:

(S4.re f - S6.re f ) / (S4.re f + S6.re f ).

Note that it is straightforward to translate this function into a user defined function in

SciDB [81] (see Chapter 4 for the exact SciDB query used to calculate the NDSI).

To calculate the natural color dataset, we follow the approach of Planthaber et al. [81],

where we join the bands representing red, blue, and green visible light (bands 1, 4, and 3,

respectively):

join(join(S1,S4),S3).

The result can then be sent to the front-end to be rendered as a natural color view.

Filtering for Cloud Cover

Removing cloud cover is a common filtering step, applied before calculating snow cover.

We use a simplified version of the approach proposed by Song et al. to filter for clouds [92],
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which involves three different MODIS bands: a water vapor absorption band (band 26),

and two cloud/land boundary detection bands (bands 1 and 2). Radiance measurements are

used for band 26, and reflectance measurements for bands 1 and 2. To determine whether a

particular MODIS measurement (i.e., array cell in the MODIS arrays) contains cloud cover,

at least one of the following conditions must be true: b26 ≤ 6.0; b1 ≤ 0.25; b2/b1 > 1.6; or

b2/b1 < 0.8.

It is straightforward to combine these four conditions into a single function that returns

a boolean as output. Thus, this cloud-filtering function can also be implemented as a user

defined function with three inputs (i.e., the cloud filtering bands).

To apply the cloud filtering function to the above queries, we perform array joins as

necessary to combine the cloud filtering bands, then apply the cloud filtering udf as a filter:

filter(join(join(S26,S1),S2),

cloud_udf(S26.rad,S1.re f,S2.re f)).

We can then join the filtered result with additional MODIS arrays (e.g., the NDSI bands)

to ensure that only cloud-free measurements are included in our calculations.
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