
On the Complexity of Synchronization

by

Rati Gelashvili

B.S., Swiss Federal Institute of Technology (2012)
S.M., Massachusetts Institute of Technology (2014)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 19, 2017

Certified by. .
Nir Shavit

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

On the Complexity of Synchronization

by

Rati Gelashvili

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2017, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

The field of distributed algorithms revolves around efficiently solving synchronization
tasks, such as leader election and consensus. We make contributions towards a better
understanding of the complexity of central tasks in standard distributed models.

In the population protocols model, we demonstrate how to solve majority and
leader election efficiently, in time 𝑂(log2 𝑛), using 𝑂(log 𝑛) states per node, for 𝑛
nodes. Central to our algorithms is a new leaderless phase clock technique. We also
prove tight lower bounds on the state complexity of solving these tasks.

In shared memory, we prove that any nondeterministic solo terminating consen-
sus algorithm for anonymous processes has to use Ω(𝑛) read-write registers. Then,
we show how to solve 𝑛-process wait-free consensus by combining synchronization
instructions that would be considered “weak” according to Herlihy’s consensus hier-
archy. This collapses the hierarchy when instructions can be applied to the same
memory location, as is the case in all existing multicore processors. We suggest an
alternative hierarchy and provide a practical universal construction using only “weak”
instructions, that performs as well as the Compare-and-Swap-based solution.

Space complexity of solving 𝑘-set agreement is a problem that highlights important
gaps in our understanding and state-of-the-art methods. No general lower bound
better than 2 is known. We introduce a new technique based on an indirect black-box
application of Sperner’s Lemma through an algorithmic reduction to the impossibility
of wait-free 𝑘-set agreement. We design a simulation such that for any protocol Π
either the simulating processes solve wait-free 𝑘-set agreement (impossible), or they
simulate an execution of Π that uses many registers.

Finally, time complexity of leader election is a long-standing open problem. We
give an algorithm with 𝑂(log⋆ 𝑘) time complexity in asynchronous message-passing
system, for 𝑘 participants.

Thesis Supervisor: Nir Shavit

Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to thank Professor Nir Shavit for supervision, an incredible support and

for introducing me to the exciting field of concurrent algorithms. It is my privilege

and pleasure to be a student of Nir who I respect and admire as a wonderful human

being and a brilliant researcher and advisor, my true role model. In many ways

interaction with Nir shaped me as a scientist, a friend and a world citizen.

I want to thank Professor Faith Ellen - for thorough feedback, outstanding sup-

port and encouragement. I am very much looking forward to the postdoc under her

supervision.

Special thanks to Professors James Aspnes and Aleksander Madry for their valu-

able feedback and the very fact of serving on my thesis committee.

This thesis is based on joints works with Dan Alistarh, Jim Aspnes, David Eisen-

stat, Faith Ellen, Idit Keidar, Ron Rivest, Nir Shavit, Alexander (Sasha) Spiegelman,

Adrian Vladu, Milan Vojnovic, Roger Wattenhofer, Leqi (Jimmy) Zhu. Razor-sharp

discussions were part of these enjoyable intellectual journeys under which I learnt,

grew, and matured as a scientist.

I would like to specially thank Dan Alistarh for taking me under his wing as a

young student, and Jimmy Zhu for the most productive, challenging and very pleasant

collaborations. I would also like to thank Philipp Woelfel, Yoram Moses, Idit Keidar,

Sasha Spiegelman, Faith Ellen, Jimmy Zhu, Dan Alistarh for hosting me as a visitor at

various points during my PhD - you have been amazing hosts and inspiring presence!

Family and friends from all around the world - without your support I would not

have been where I am today!

Friends in the Boston area with whom I spent past five years (including frosty

winters). Among them I want to say special thanks to Guranda Darchidze, Ilya

Razenshteyn, Shibani Santurkar, David Budden, Adrian Vladu, Mohsen Ghaffari,

Jerry Li, Guatam 1 “G” Kamath, Mira Radeva, Mari Kobiashvili, Tornike Metreveli,

Sasha Konstantinov, Achuta Kadambi, Merav Parter and Stephan Holzer.

1Gautam

5

A huge part of this experience has been internships. Thus, I would like to thank

Milan Vojnovic, Dan Alistarh, David Amenhauser, Debabrata Banerjee, Bogdan

Munteanu, Diwaker Gupta, Mirjam Wattenhofer and Kriti Puniyani for providing

outstanding personal and work environment.

I am very thankful to MIT Department of Computer Science and Electrical En-

gineering for providing the funding for my education and research.

Lastly, I want to mention Soso (Sensei) Dzmanashvili for unconditional support

and extracurricular inspiration.

6

Contents

1 Introduction 13

1.1 On Population Protocols . 14

1.1.1 Leader Election and Majority 16

1.1.2 Summary . 19

1.1.3 Chapter Outline . 19

1.2 On Shared Memory . 22

1.2.1 Complexity-Based Hierarchy 22

1.2.2 Towards Reduced Instruction Sets for Synchronization 24

1.2.3 Anonymous Space Lower Bound 25

1.2.4 𝑘-Set Agreement . 27

1.2.5 Chapter Outline . 30

1.3 On Message Passing . 32

2 Population Protocols 35

2.1 Model . 35

2.2 Leader-Minion Algorithm . 40

2.2.1 Analysis . 42

2.3 Leaderless Phase Clock . 48

2.3.1 Analysis . 49

2.4 Phased Majority Algorithm . 51

2.4.1 Analysis . 55

2.5 Synthetic Coin Flips . 66

2.5.1 Analysis . 66

7

2.5.2 Approximate Counting . 69

2.6 Phased Leader Election . 69

2.6.1 Analysis . 71

2.7 Lower Bounds . 72

2.7.1 Technical Tools . 72

2.7.2 Output-Dominant Majority 78

2.7.3 General Lower Bound . 84

3 Shared Memory 97

3.1 Anonymous Space Lower Bound . 97

3.1.1 Definitions and Notation . 98

3.1.2 A Square-Root Lower Bound 100

3.1.3 Linear Lower Bound . 104

3.2 The Space Hierarchy . 117

3.2.1 Model . 117

3.2.2 Arithmetic Instructions . 118

3.2.3 Increment . 121

3.2.4 Buffers . 123

3.2.5 Multiple Assignment . 132

3.3 Universality using “Weak” Instructions 140

3.3.1 Algorithm . 142

3.4 Enter the Simulation: 𝑘-Set Agreement 145

3.4.1 Model . 145

3.4.2 Local Argument . 146

3.4.3 Global Argument . 151

4 Message Passing 163

4.1 Definitions and Notation . 163

4.2 Leader Election Algorithm . 166

4.2.1 The PoisonPill Technique . 166

4.2.2 Heterogeneous PoisonPill . 167

8

4.2.3 Final construction . 170

5 Conclusions 179

9

10

List of Figures

1-1 Summary of results on Majority and Leader Election. 20

2-1 The state update rules for the LM algorithm. 41

2-2 Pseudocode for the phased majority algorithm, part 1/2 95

2-3 Pseudocode for the phased majority algorithm, part 2/2 96

3-1 Proof of Lemma 3.1.10, Case 1 . 112

3-2 Proof of Lemma 3.1.10, Case 2 . 114

3-3 Illustration of Case 2 in History object emulation 126

3-4 Element of 𝐴. 142

3-5 Pseudocode for the Implementation of a 1-Augmented Snapshot Object 154

4-1 PoisonPill Technique . 166

4-2 Heterogeneous PoisonPill . 168

4-3 PreRound procedure . 171

4-4 Doorway procedure . 172

4-5 Leader election algorithm . 172

11

12

Chapter 1

Introduction

To solve a problem in a distributed fashion, nodes peforming parts of the computa-

tion need to synchronize with each other. The common synchronization requirements

are often abstracted and captured by synchronization tasks. Examples of important

synchronization tasks include consensus (agreement) [LSP82, PSL80], leader elec-

tion (test-and-set) [AGTV92], majority [Tho79], mutual exclusion [Dij65], renam-

ing [ABND+90], task allocation (do-all) [KS92] and timestamps [Lam78].

These tasks are usually considered in two classical models for distributed com-

putation: asynchronous shared memory and asynchronous message-passing [Lyn96].

Additionally, population protocols [AAD+06] are a popular model of distributed com-

puting, in which randomly-interacting agents with little computational power coop-

erate to jointly perform complex computation.

In all these models, randomization plays a critical role in solving synchronization

tasks. In population protocols, interactions happen according to a randomized sched-

uler. In the classical models, celebrated impossibility results of [FLP85, HS99] limit

the power of deterministic distributed computation. Fortunately, relaxing the task

specifications to allow for randomization [BO83] (and in particular, probabilistic ter-

mination) has proved a very useful tool for circumventing fundamental impossibilities,

and for obtaining efficient algorithms.

In each model, there are two standard complexity measures. Time complexity,

defined appropriately, can be formulated in all three models. In population protocols,

13

the other (more important) measure is state complexity of the agents. In asynchronous

shared memory, space complexity denotes the number of shared memory locations

that can be concurrently accessed by processors. Such locations have historically also

been called registers. In asynchronous message-passing, the other natural measure is

message complexity of an algorithm.

The thesis is divided into three main chapters, each presenting results related to

one model. We describe the results in more detail below.

1.1 On Population Protocols

Population protocols [AAD+06] are a model of distributed computing in which agents

with very little computational power and interacting randomly cooperate to collec-

tively perform computational tasks. Initially introduced to model animal popula-

tions [AAD+06], they have proved a useful abstraction for settings from wireless

sensor networks [PVV09, DV12], to gene regulatory networks [BB04], and chemical

reaction networks [CCDS15]. In this last context, there is an intriguing line of applied

research showing that population protocols can be implemented at the level of DNA

molecules [CDS+13], and that some natural protocols are equivalent to computational

tasks solved by living cells in order to function correctly [CCN12].

A population protocol consists of a set of 𝑛 finite-state agents, interacting in

randomly chosen pairs, where each interaction may update the local state of both

participants. A configuration captures the “global state” of the system at any given

time: since agents are anonymous, the configuration can be entirely described by the

number of nodes in each state. The protocol starts in some valid initial configuration,

and defines the outcomes of pairwise interactions. The goal is to have all agents

stabilize to some configuration, representing the output of the computation, such

that all future configurations satisfy some predicate over the initial configuration of

the system.

In the fundamental majority task [AAE08b, PVV09, DV12], agents start in one

of two input states 𝐴 and 𝐵, and must stabilize on a decision as to which state has

14

a higher initial count. Another important task is leader election [AAE08a, AG15,

DS15], which requires the system to stabilize to final configurations in which a single

agent is in a special leader state.

We work in a standard setting where, at each step, a probabilistic scheduler picks

the next pair of nodes to interact uniformly at random among all pairs. One key

complexity measure for algorithms is parallel time, defined as the number of pairwise

interactions until stabilization, divided by 𝑛, the number of agents. The other is

state complexity, defined as the number of distinct states that an agent can internally

represent.

We focus on exact tasks, in which the protocol must return the correct deci-

sion in all executions, as opposed to approximate tasks, such as approximate major-

ity [AAE08b], where the system may stabilize to wrong output configurations with low

probability. Moveover, we consider parallel time until stabilization, i.e. until the first

moment after which the configuration is guaranteed to always satisfy the correct out-

put requirements (regardless of subsequent interactions), versus convergence, which is

the actual moment after which the configuration always satisfies the output require-

ments, despite possibly non-zero probability of further divergence. Stabilization may

not occur earlier than convergence. Thus, our algorithms have the same guarantees

on convergence, but our lower bounds only apply to parallel time to stabilization.

Evidence suggests that the cell cycle switch in eukaryotic cells solves an approx-

imate version of majority [CCN12]; a three-state population protocol for approx-

imate majority was empirically studied as a model of epigenetic cell memory by

nucleosome modification [DMST07]; Also, both majority and leader election are key

components when simulating register machines via population protocols [AAD+06,

AAE08a, AAE08b]. Moreover, known efficient constructions for computing certain

predicates rely on existence of a node in a leader state [AAE08a, CDS14]. Thus, it is

not surprising that there has been a considerable interest in the complexity of these

tasks [AAE08b, AAE08a, PVV09, DV12, CCN12, DS15, AG15, BFK+16, AAE+17].

15

1.1.1 Leader Election and Majority

A progression of deep technical results [Dot14, CCDS15] culminated in Doty and

Soloveichik showing that leader election in sublinear time is impossible for protocols

which are restricted to a constant number of states per node [DS15].

At the same time, we designed a simple algorithm called “Leader-Minion”, that

solves leader election in 𝑂(log3 𝑛) parallel time and requires 𝑂(log3 𝑛) states per

node [AG15]. The algorithm follows basic and common convention that every agent

starts as a potential leader, and whenever two leaders interact, one drops out of

contention. Once only a constant number of potential leaders remain, they take

a long time to interact, implying super-linear stabilization time. To overcome this

problem, we introduce a propagation mechanism, by which contenders compete by

comparing their seeding, and the nodes who drop out of contention become “minions”

and assume the identity of their victor, causing nodes still in contention but with

lower seeding to drop out.

In [AAE+17], we gave a new leader election algorithm called “Lottery-Election”,

which uses 𝑂(log2 𝑛) states, and stabilizes in 𝑂(log5.3 𝑛 log log 𝑛) parallel time in ex-

pectation and 𝑂(log6.3 𝑛) parallel time with high probability. This reduces the state

space size by a logarithmic factor at the cost of a poly-logarithmic running time in-

crease over [AG15]. We achieve this by introducing a new synthetic coin technique,

which allows nodes to generate almost-uniform local coins within a constant number

of interactions, by exploiting the randomness in the scheduler, and in particular the

properties of random walks on the hypercube. Synthetic coins can be used to estimate

the total number of agents in the system, and may be of independent interest as a

way of generating randomness in a constrained setting. We employ synthetic coins

to “seed” potential leaders randomly, which lets us reduce the number of leaders at

an accelerated rate compared to [AG15]. This in turn reduces the maximum seeding

that needs to be encoded, and hence the number of states required by the algorithm.

In [AAE+17], we also improved the lower bound of [DS15]. We show that there

exist constants 𝑐 ∈ (0, 1) and 𝐾 ≥ 1, such that any protocol using 𝜆𝑛 ≤ 𝑐 log log 𝑛

16

states and electing at most ℓ(𝑛) leaders, requires Ω(𝑛/(𝐾𝜆𝑛 · ℓ(𝑛)2)) expected time to

stabilize. Specifically, any protocol electing polylogarithmically many leaders using

≤ 𝑐 log log 𝑛 states requires Ω(𝑛/polylog 𝑛) time1.

The lower bound argument of [AAE+17] provides a unified analysis: the bounds

for leader election and majority are corollaries of the main theorem characterizing

the existence of certain “stable” configurations. When applied to majority, our lower

bound shows that there exist constants 𝑐 ∈ (0, 1) and 𝐾 ≥ 1 such that any protocol

using 𝜆𝑛 ≤ 𝑐 log log 𝑛 states must take Ω(𝑛/(𝐾𝜆𝑛 + 𝜖𝑛)2)) time to stabilize, where 𝜖𝑛

is the initial discrepancy between the counts of the two input states. For example, any

protocol using ≤ 𝑐 log log 𝑛 states, even if the initial discrepancy is polylogarithmic

in 𝑛, takes Ω(𝑛/polylog 𝑛) parallel time to stabilize. The only prior lower bound was

proved by us in [AGV15b], showing that sublinear time is impossible using at most

four states per node.

In [AGV15b], we designed a poly-logarithmic time protocol called “AVC” which

requires a number of states per node that is linear in 𝑛. The AVC algorithm stabilizes

in poly-logarithmic time using poly-logarithmic states under a restricted set of initial

configurations, e.g. assuming that the discrepancy 𝜖𝑛 between the two input states

is large. In [AAE+17], we gave a new poly-logarithmic-time algorithm for major-

ity, called “Split-Join”, that runs in 𝑂(log3 𝑛) time both in expectation and with high

probability, and uses 𝑂(log2 𝑛) states per node. This improves on [AGV15b, BFK+16]

that require at least polinomially many states in 𝑛 per node for achieving polylogarith-

mic stabilization time. Morover, the time-space bounds for the Split-Join algorithm

hold for worst-case initial configurations, i.e. for 𝜖 = 1/𝑛. The idea is encode output

opinions and their relative strength as integer values : a node with positive (or nega-

tive) value supports a majority of 𝐴 (or of 𝐵, respectively). A higher absolute value

means higher “confidence" in the corresponding output. Whenever two nodes meet,

they average their values. This is the template used in [AGV15b], but to reduce the

1It is interesting to note that by Chatzigiannakis et al. [CMN+11] identified Θ(log log 𝑛) as a
state complexity threshold in terms of the computational power of population protocols, i.e. the set
of predicates that such algorithms can compute. Their results show that variants of such systems
in which nodes are limited to 𝑜(log log 𝑛) space per node are limited to only computing semilinear
predicates, whereas 𝑂(log 𝑛) space is sufficient to compute general symmetric predicates.

17

state space further in the Split-Join algorithm, we rely on a new quantized averaging

technique in which nodes represent only certain values as output estimates. Recently,

reference [BCER17] gave a different protocol using 𝑂(log2 𝑛) states, but with a better

stabilization time of 𝑂(log2 𝑛).

Recently, in [AAG17], we introduced a new synchronization construct, called a

leaderless phase clock. A phase clock is a gadget which allows nodes to have an

(approximate) common notion of time, by which they collectively count time in phases

of Θ(𝑛 log 𝑛) interactions, with bounded skew. The phase clock ensures that all

nodes will be in the same phase during at least Θ(log 𝑛) interactions of each node.

Phase clocks are critical components of generic register simulations for population

protocols, e.g. [AAER07]. However, they are rarely used for algorithm design, since

all known constructions require the existence of a unique leader, which is expensive

to generate. One key innovation behind our algorithm is that it is leaderless, as nodes

maintain the shared clock collectively, without relying on a special leader node. At the

implementation level, the phase clock is based on a simple but novel connection to load

balancing by power of two choices, e.g. [KLMadH92, ABKU99, BCSV06, PTW15].

We build on the phase clock to obtain a new space-optimal algorithm for major-

ity, called Phased-Majority. In a nutshell, the algorithm splits nodes into workers,

whose job is to compute the majority value, and clocks, which implement a leader-

less phase clock, and maintains a proportion between the counts of nodes of these

types. Splitting a state space in different types is common, i.e. in the Leader-Minion

algorithm, where each state is either a leader or a minion. However, doing this ex-

plicitly at the beginning of the protocol and maintaining a proportion of the counts

is a recent algorithmic idea due to Ghaffari and Parter [GP16]. Workers alternate

carefully-designed cancellation and doubling phases, inspired by a similar mechanism

in [AAE08a]. In the former phases, nodes of disagreeing opinions as to the initial

majority cancel each other out, while the latter, nodes attempt to spread their cur-

rent opinion. These dynamics ensure stabilization in expected 𝑂(log 𝑛 · log 1
𝜖
) parallel

time, both in expectation and with high probability.

We further exploit the phase clock to obtain a simple phased algorithm for leader

18

election. Here, the nodes are split into contenders, whose job is to elect a leader

within themselves, and clocks, which implement a phase clock. Remarkably, to design

an efficient algorithm, we still need to combine this with the idea of having minions

(that we call followers in this algorithm), and use synthetic coin flips to break ties

between contenders. The resulting algorithm uses 𝑂(log 𝑛) states, and stabilizes in

𝑂(log2 𝑛) parallel time, both in expectation and with high probability. Based on a

different phase clock construction, an independent parallel work by Gąsieniec and

Stachowiak [GS17] has designed a leader election protocol using 𝑂(log log 𝑛) states.

This is optimal due to the unified lower bound of [AAE+17] for majority and leader

election. Combined, our results and [GS17] demonstrate an interesting separation

between the state complexities of these tasks.

1.1.2 Summary

The results described above and summarized in Figure 1-1 highlight trade-offs between

the running time of a population protocol and the number of states, available at each

agent. The premise of the population protocols model has always been the simplicity

of the agents. In its applications, it is also imperative that the agents have as low state

complexity as possible. For instance, technical constraints limit the number of states

currently implementable in a molecule [CDS+13]. One such technical constraint is the

possibility of leaks, i.e. spurious creation of states following an interaction [TWS15].

In DNA implementations, the more states a protocol implements, the higher the

likelihood of a leak, and the higher the probability of divergence. Time efficiency is

also critical in practical implementations. Since 𝑛, the number of agents is usually

quite large, it is standard to require that the parallel time until stabilization must be

at most polylogarithmic in 𝑛.

1.1.3 Chapter Outline

To exemplify the model, we will start the chapter by describing our Leader-Minion

algorithm and proving its state and time complexity of 𝑂(log3 𝑛). Then, we will focus

19

Problem Expected Time Bound Number of States Reference

Exact
Majority
𝜖 = 1/𝑛

𝑂(𝑛 log 𝑛) 4 [DV12, MNRS14]
𝑂(log2 𝑛) Θ(𝑛) [AGV15b]
𝑂(log3 𝑛) 𝑂(log2 𝑛) [AAE+17]
𝑂(log2 𝑛) 𝑂(log2 𝑛) [BCER17]

𝑂(log 1/𝜖 · log 𝑛) 𝑂(log 𝑛) [AAG17]
Ω(𝑛) ≤ 4 [AGV15b]

Ω(log 𝑛) any [AGV15b]
Ω(𝑛/polylog𝑛) < 1/2 log log 𝑛 [AAE+17]
𝑂(𝑛1−𝑐), 𝑐 > 0 Ω(log 𝑛) [AAG17]

Leader Election

𝑂(log3 𝑛) 𝑂(log3 𝑛) [AG15]
𝑂(log5.3 𝑛 log log 𝑛) 𝑂(log2 𝑛) [AAE+17]

𝑂(log2 𝑛) 𝑂(log 𝑛) [AAG17]
𝑂(log2 𝑛) 𝑂(log log 𝑛) [GS17]

Ω(𝑛) 𝑂(1) [DS15]
Ω(𝑛/polylog𝑛) < 1/2 log log 𝑛 [AAE+17]

Figure 1-1: Summary of results on Majority and Leader Election.

on developing tools that enable better algorithms. We will describe our the leaderless

phase clock construction from [AAG17] and the phased majority algorithm. Next,

we will explain and prove the synthetic coin technique from [AAE+17] that extracts

the randomness from the scheduler and allows us to simulate almost fair coin flips,

followed by the phased leader election algorithm that uses both the phase clock and

synthetic coins.

Then, we will describe the lower bounds from [AAE+17]. At a high level, the

results of [DS15, AAE+17] employ three technical steps. The first step proves that,

from an initial configuration, every algorithm must reach a dense configuration, where

all states that are expressible by the algorithm are present in large count. The second

step consists of applying a transition ordering lemma of [CCDS15] which establishes

properties that the state transitions must have in order reduce certain state counts

fast from dense configurations. In the third step, these properties are used to perform

careful ad-hoc surgery arguments to show that any algorithm that stabilizes to a

correct output faster than allowed using few states must necessarily reach “stable”

configurations2 in which certain low-count states can be “erased,” i.e., may disappear

2Roughly, a configuration is stable if it may not generate any new types of states.

20

completely following a sequence of interactions. This implies executions in which the

algorithm stabilizes to the wrong output, for example by engineering examples where

these low-count states are exactly the set of all possible leaders.

One difference between [AAE+17] and [DS15] is a stronger version of the main

density theorem of [Dot14] used in [DS15] for dense configurations. Another key

difference is that in [AAE+17], we develop a new characterization of stable configu-

rations, without requiring constant bounds on state space size. This also necessitates

non-trivial modifications to the surgery sequences that erase the required states.

A fundamental barrier to better lower bounds is that the first step does not hold

for algorithms using, e.g. 𝑂(
√

log 𝑛) states. With such a state space, is possible to

build algorithms which never go through a configuration where all states are expressed

in high counts. In this thesis, we will also prove a lower bound from [AAG17] that

circumvents this challenge, showing that any algorithm for majority which stabilizes

in expected time 𝑂(𝑛1−𝑐) for 𝑐 > 0 requires Ω(log 𝑛) states. We develop a general-

ization of the transition ordering lemma, and a new general surgery technique, which

do not require the existence of dense configurations. This lower bound requires an

additional assumption that we call output dominance, which we will discuss in detail

in Chapter 2 and which is satisfied by all existing majority algorithms. Since we elimi-

nate the density requirement, our lower bound technique applies even if the algorithm

only stabilizes fast when initial configuration is equipped with a leader, which is a

significant generalization over previous arguments. It can also be generalized to other

types of predicates, such as equality.

We should note that [AAE08a] provides a protocol using a constant number of

states and with a polylogarithmic parallel convergence time if the initial configuration

is equipped with a leader. Our lower bound applies to such initial configurations and

demonstrates an interesting separation, as for similarly fast stabilization, Ω(log 𝑛)

states would be necessary.

21

1.2 On Shared Memory

1.2.1 Complexity-Based Hierarchy

Herlihy’s Consensus Hierarchy [Her91] assigns a consensus number to each object,

namely, the number of processes for which there is a wait-free binary consensus algo-

rithm using only instances of this object and read-write registers. It is simple, elegant

and, for many years, has been our best explanation of synchronization power.

Robustness says that, using combinations of objects with consensus numbers at

most 𝑘, it is not possible to solve wait-free consensus for more than 𝑘 processes [Jay93].

The implication is that modern machines need to provide objects with infinite con-

sensus number. Otherwise, they will not be universal, that is, they cannot be used

to implement all objects or solve all tasks in a wait-free (or non-blocking) manner

for any number of processes [Her91, Tau06, Ray12, HS12]. Although there are inge-

nious non-deterministic constructions that prove that Herlihy’s Consensus Hierarchy

is not robust [Sch97, LH00], it is known to be robust for deterministic one-shot ob-

jects [HR00] and deterministic read-modify-write and readable objects [Rup00]. It is

unknown whether it is robust for general deterministic objects.

In adopting this explanation of computational power, we failed to notice an im-

portant fact: multiprocessors do not compute using synchronization objects. Rather,

they apply synchronization instructions to locations in memory. With this point of

view, Herlihy’s Consensus Hierarchy no longer captures the phenomena we are trying

to explain.

For example, consider two simple instructions:

∙ fetch-and-add(2), which returns the number stored in a memory location and

increases its value by 2, and

∙ test-and-set(), which returns the number stored in a memory location and sets

it to 1 if it contained 03.
3This definition of test-and-set is slightly stronger than the standard one, which always sets the

location to 1. However, they have the same consensus number and they behave identically if the
values are always binary.

22

Objects that support only one of these instructions as an operation have consensus

number 2 and cannot be combined to solve wait-free consensus for 3 or more processes.

However, in a system that supports both instructions, it is possible to solve wait-free

binary consensus for any number of processes. The protocol uses a single memory

location initialized to 0. Processes with input 0 perform fetch-and-add(2), while

processes with input 1 perform test-and-set(). If the value returned is odd, the process

decides 1. If the value 0 was returned from test-and-set(), the process also decides 1.

Otherwise, the process decides 0.

Another example considers three instructions:

∙ read(), which returns the number stored in a memory location,

∙ decrement(), which decrements the number stored in a memory location and

returns nothing, and

∙ multiply(𝑥), which multiplies the number stored in a memory location by 𝑥 and

returns nothing.

A similar situation arises: Objects that support only two of these instructions have

consensus number 1 and cannot be combined to solve wait-free consensus for 2 or more

processes. However, in a system that supports all three instructions, it is possible to

solve wait-free binary consensus for any number of processes. The protocol uses a

single memory location initialized to 1. Processes with input 0 perform decrement(),

while processes with input 1 perform multiply(𝑛). The second operation by each

process is read(). If the value returned is positive, then the process decides 1. If it is

negative, then the process decides 0.

For randomized computation, Herlihy’s Consensus Hierarchy also collapses: ran-

domized wait-free binary consensus among any number of processes can be solved

using only read-write registers, which have consensus number 1. Fich, Herlihy, and

Shavit [FHS98] proved that Ω(
√
𝑛) historyless objects, which support only trivial

operations, such as read , and historyless operations, such as write, test-and-set , and

swap, are necessary to solve this problem. They noted that, in contrast, one fetch-

and-increment or fetch-and-add object suffices for solving this problem. Yet, these

23

objects and historyless objects are similarly classified in Herlihy’s Hierarchy (i.e. they

all have consensus number 1 or 2). They suggested that the number of instances of

an object needed to solve randomized wait-free consensus among 𝑛 processes might

be another way to classifying its power.

Based on these observations, we consider a classification of instruction sets based

on the number of memory locations needed to solve obstruction-free 𝑛-valued con-

sensus among 𝑛 ≥ 2 processes. Obstruction freedom [HLM03] is a simple and nat-

ural progress measure. Some state-of-the-art synchronization operations, for exam-

ple hardware transactions [Int12], do not guarantee more than obstruction freedom.

Obstruction freedom is also closely related to randomized computation. In fact, any

(deterministic) obstruction free algorithm can be transformed into a randomized wait-

free algorithm that uses the same number of memory locations (against an oblivious

adversary) [GHHW13]. Obstruction-free algorithms can also be transformed into

wait-free algorithms in the unknown-bound semi-synchronous model [FLMS05].

1.2.2 Towards Reduced Instruction Sets for Synchronization

Contrary to common belief, our work [EGSZ16] described above has shown that

computability does not require multicore architectures to support “strong” synchro-

nization instructions like compare-and-swap, as opposed to combinations of “weaker”

instructions like decrement and multiply . However, this is the status quo, and in turn,

most efficient concurrent data-structures heavily rely on compare-and-swap (e.g. for

swinging pointers and in general, conflict resolution).

In [GKSW17], we show that this need not be the case, by designing and imple-

menting a concurrent linearizable Log data-structure (also known as a History object),

supporting two operations: append(item), which appends the item to the log, and

get-log(), which returns the appended items so far, in order. Readers are wait-free

and writers are lock-free, and this data-structure can be used in a lock-free universal

construction to implement any concurrent object with a given sequential specifica-

tion. Our implementation uses atomic read , xor , decrement , and fetch-and-increment

instructions supported on X86 architectures, and provides similar performance to a

24

compare-and-swap-based solution on today’s hardware. This raises a fundamental

question about minimal set of synchronization instructions that the architectures

have to support.

1.2.3 Anonymous Space Lower Bound

The above considerations motivated us to investigate the space complexity of solving

obstruction-free and randomized wait-free consensus in a system in which processes

communicate using only read-write registers, which was a long-standing open ques-

tion. The space complexity of such an algorithm is defined as the maximum number

of registers used in any execution. A lot of research has been dedicated to improving

space complexity upper and lower bounds for canonical tasks.

For instance, for test-and-set, an Ω(log 𝑛) lower bound was shown in [SP89]. On

the other hand, an 𝑂(
√
𝑛) deterministic obstruction-free upper bound was given

in [GHHW13]. The final breakthrough was the recent obstruction-free algorithm

designed by Giakkoupis et al. [GHHW15], with 𝑂(log 𝑛) space complexity. For times-

tamps, an implementation due to Lamport [Lam74] uses 𝑛 single-writer registers.

Later, in [EFR08], Ellen, Fatourou and Ruppert gave an algorithm using 𝑛 − 1 reg-

isters and proved a 1
2

√
𝑛− 1 lower bound on the number of registers required to

implement 𝑇 . The lower bound was improved to 𝑛/6−1 by Helmi, Higham, Pacheco,

and Woelfel in [HHPW14].

For consensus, randomized wait-free algorithms that work against strong adver-

sary and use 𝑂(𝑛) read-write registers are long known [Abr88, AH90, SSW91, Zhu15].

Algorithms that solve consensus in a deterministic obstruction-free manner using𝑂(𝑛)

registers are also known [GR05, Bow11, Zhu15, BRS15]. A lower bound of Ω(
√
𝑛) by

Fich et al. [FHS98] first appeared in 1993. The proof is notorious for its technicality

and utilizes a neat inductive combination of covering and valency arguments. An-

other version of the proof appeared in a textbook [AE14b]. The authors of [FHS98]

conjectured a tight lower bound of Ω(𝑛), but such a bound or a sublinear space al-

gorithm remained elusive up until very recently, when Zhu showed a lower bound of

𝑛− 1 registers [Zhu16].

25

For the intervening two decades, however, the linear lower bound had not been

proven even in the restricted case, when the processes are anonymous [AGM02,

FHS98]. In such a system, processes have no identifiers and can be thought of as

running the same code: all processes with the same input start in the same initial

state, behave identically and remain in the same states until they read different values

or observe different coin flip outcomes.

The linear upper bound holds for anonymous processes, as a number of determin-

istic obstruction-free and randomized wait-free (against strong adversary) consensus

algorithms that use 𝑂(𝑛) registers are anonymous [GR05, Zhu15, BRS15]. In the

algorithms of [Zhu15], the processes are memoryless (do not use local memory), in

addition to being anonymous, and exactly 𝑛 registers are used. In this further re-

stricted model, [Zhu15] also showed that 𝑛 registers are actually necessary.

The authors of [FHS98] introduced the notion of clones of processes, which has

since become a standard tool for proving anonymous space lower bounds. They first

showed the Ω(
√
𝑛) lower bound for anonymous processes, and then extended it to a

much more complex argument for the general case. Our paper [Gel15] preceded the re-

sult of [Zhu16] and showed an Ω(𝑛) lower bound in the anonymous case for consensus

algorithms satisfying the standard nondeterministic solo termination property. Any

lower bound for algorithms satisfying the nondeterministic solo termination implies a

lower bound for deterministic obstruction-free and randomized wait-free algorithms.

As in [FHS98, AE14b], the bound is for the worst-case space complexity of the algo-

rithm, i.e. for the number of registers used in some execution, regardless of its actual

probability.

Our argument relies heavily on the anonimity of the processes, and introduces

specific techniques that we hope will be useful for future work. We design a class of

executions, which we call reserving, and define a notion of valency which corresponds

to the possible return values for these executions. We also extend the role of the

clones of processes, by considering pairs of processes that can be split and reunited.

This enables proving larger lower bounds by reusing the clones.

26

1.2.4 𝑘-Set Agreement

The 𝑘-set agreement problem is a classical synchronization task, introduced by Chaud-

huri [Cha93], where 𝑛 processes, each with an input value, are required to return at

most 𝑘 different input values in any execution. This is a generalization of the funda-

mental consensus task, which corresponds to the setting when 𝑘 = 1.

Some of the most celebrated results in the field of distributed algorithms are

the impossibility of solving consensus deterministically when at most one process

may crash [FLP85] and, more generally, the impossibility of solving 𝑘-set agreement

deterministically when at most 𝑘 processes may crash [BG93, HS99, SZ00], using

only read-write registers. One way to bypass these impossibility results is to design

algorithms that are obstruction-free [HLM03]. Obstruction-freedom is a termination

condition that only requires a process to return in its solo executions, i.e. if a process

takes sufficiently many steps on its own. 𝑥-obstruction-freedom [Tau17] generalizes

this condition: in any sufficiently long execution where at most 𝑥 processes take

steps, these processes are required to return. It is known that 𝑘-set agreement can be

solved using only registers in an 𝑥-obstruction-free way for 𝑥 ≤ 𝑘 [YNG98]. Another

way to overcome the impossibility of solving consensus is using randomized wait-free

algorithms, where non-faulty processes are required to terminate with probability

1 [BO83]. It is known how to convert any deterministic obstruction-free algorithm

into a randomized wait-free algorithm against an oblivious adversary [GHHW13].

This recent progress on space complexity of consensus overviewed in previous

sections highlights how little is known about the space complexity of 𝑘-set agree-

ment. The best obstruction-free algorithms require 𝑛 − 𝑘 + 1 registers [Zhu15,

BRS15], and work even for anonymous processes. Bouzid et al. [BRS15] also give

an 𝑥-obstruction-free algorithm that uses 𝑛 − 𝑘 + 𝑥 registers, improving on the

𝑚𝑖𝑛(𝑛 + 2𝑥 − 𝑘, 𝑛) space complexity of Delporte-Gallet, Fauconnier, Gafni, and

Rajsbaum’s algorithm [DGFGR13]. Delporte-Gallet, Fauconnier, Kuznetsov, and

Ruppert [DGFKR15] proved that it is impossible to solve 𝑘-set agreement using 1

register, but nothing better is known. For anonymous processes, they also proved

27

a lower bound of
√︀
𝑥(𝑛

𝑘
− 2) for 𝑥-obstruction-free algorithms, which still leaves a

polynomial gap between the lower and upper bounds.

In this thesis, we prove a space lower bound of 𝑛 − 𝑘 + 1 registers for solving

𝑛-process 𝑘-obstruction-free 𝑘-set agreement. This also implies an improved lower

bound of 𝑛 registers for consensus. The technique we develop for proving this result

stems from simple intuition from combinatorial topology. We build a novel algorith-

mic reduction to the impossibility of solving wait-free 𝑘-set agreement via a simula-

tion, in which the simulated processes run specific types of executions, reminiscent of

executions used by the adversary in Zhu’s lower bound [Zhu16]. We believe that the

simulation can be generalized to lead to a space lower bound of ⌊𝑛−𝑥+1
𝑘+1−𝑥

⌋+ 1 registers

for solving 𝑛-process 𝑥-obstruction-free 𝑘-set agreement. This generalized result is

provided in the full version of our paper [EGZ17].

Intuition: There are good reasons why proving lower bounds on the number of

registers for 𝑘-set agreement may be substantially more difficult than for consensus.

The covering technique due to Burns and Lynch [BL93] used in virtually all space

lower bounds (in particular for consensus [FHS98, Gel15, Zhu16]), resembles the FLP

impossibility argument in the following sense: starting from a suitable initial config-

uration, an execution is repeatedly extended to reach subsequent configurations that

satisfy a valency invariant about the number of values that can still be returned.

Additionally, in covering lower bounds, the algorithm is forced to use more and more

registers. This approach fails for 𝑘-set agreement. On a high level, the impossibility

results for 𝑘-set agreement consider some representation (a simplicial complex, or a

multi-graph) of all possible process states in all possible executions. Then, Sperner’s

Lemma [Sol49] is used to prove that, roughly speaking, for any given number of steps,

there exists an execution leading to a configuration in which processes have not agreed

on fewer than 𝑘 + 1 values.

Informally, the latter type of argument can be thought as “global”, since it proves

the existence of a bad execution based on the global representation of all process states

in all possible executions. The former type of argument can be thought as “local”, since

28

it considers a fixed configuration satisfying certain invariants, some indistinguishable

configurations, and inductively extends the execution to reach another configuration.

As an illustrating example, consider the iterated immediate snapshot (IIS) model

of [BG97], where processes participate in a sequence of rounds, each associated with a

single-writer snapshot object. In round 𝑖, each process performs two steps: it updates

𝑆𝑖 with its full state and then performs a scan of 𝑆𝑖. Consider 𝑟-synchronized con-

figurations in which every process has completed round 𝑟, but not yet started round

𝑟 + 1. It is known that the global representation of all reachable 𝑟-synchronized

configurations corresponds to the 𝑟-th iterated standard chromatic subdivision of an

𝑛-simplex. The vertices represent possible process states after 𝑟 rounds of IIS and

every face of the subdivided simplex corresponds to a reachable 𝑟-synchronized con-

figuration. Since we consider 𝑟-synchronized configurations, the value that a process

returns in a solo execution starting from such a configuration only depends on its

state (because it will not see any other process in subsequent rounds). We call this

value the solo valency of the process in that state and we use it to color the cor-

responding vertex. Sperner’s Lemma is applicable to the original (input) complex,

since all initial configurations satisfy the following boundary condition: for any set

of processes 𝑃 , any value returned in a 𝑃 -only execution from that configuration is

the solo valency of some process in 𝑃 . This guarantees that one of the faces in the

𝑟-th subdivision will correspond to a “good” configuration, i.e. it will have the solo

valency property that we need. However, for faces of the subdivision, the boundary

condition might not hold. Thus, this “global” argument cannot be used to extend

a “good” 𝑟-synchronized configuration to a “good” 𝑟′-synchronized configuration by

𝑟′ − 𝑟 additional IIS rounds. This is a serious challenge for local arguments.

On the other hand, we do not know enough about the topological representation

of algorithms that are 𝑥-obstruction-free, or use fewer than 𝑛 multi-writer regis-

ters [HKR13]. There is ongoing work to develop a more general theory [GKM14,

SHG16, GHKR16]. However, as of now we do not know enough to prove a space

lower bound via a topological argument. Known approaches that do not explicitly

use topology [AC11, AP12] also do not overcome these problems.

29

Technical Overview: We start in a constrained setting and consider algorithms

for 𝑘-set agreement that satisfy 𝑘-obstruction-freedom and, additionally, a certain

boundary condition. Confirming our intuition, in this setting we are able to success-

fully derive an 𝑛 − 𝑘 − 1 space lower bound using a covering argument. Informally,

this is a “local” argument, which inductively extends an execution to reach another

configuration that has 𝑘+ 1 valencies. To apply Sperner’s Lemma directly, we would

have to develop a characterization of 𝑘-obstruction-free solvability using multi-writer

registers, which we do not know how to do. Instead, we construct simulations that

serve as algorithmic reductions to the impossibility of 𝑘-set agreement. If 𝑘 + 1 va-

lencies cannot be maintained or if processes return, then we design an algorithm for

𝑘 + 1 processes to solve wait-free 𝑘-set agreement via a suitable simulation This can

be viewed as an indirect, black-box application of Sperner’s Lemma.

We then use an insight from the impossibility results for 𝑘-set agreement as they

apply Sperner’s lemma only once, from the initial configuration. The impossibility

tells us that there is an infinite execution where 𝑘 + 1 valencies are maintained, we

just cannot incrementally build it. Instead, we design a simulation for 𝑘+1 processes

to solve 𝑘-set agreement based on a given protocol Π for 𝑛 processes, such that,

either the simulation yields a wait-free solution to the task, which is impossible, or

the simulating processes perform an arbitrarily large number of simulated steps. We

control the scheduling of simulated steps, and by using the scheduling algorithm from

the space lower bound adversary of [Zhu16], the simulating processes marshall their

simulated processes such that they cover mode and more registers. In order to stay

consistent, the processes need to simulate block writes, and we accomplish this by

generalizing multi-writer register implementation of [DS97].

1.2.5 Chapter Outline

We will first show the proof of the Ω(𝑛) anonymous space lower bound.

Then, we describe our new hierarchy from [EGSZ16] based on the space complex-

ity of solving obstruction-free consensus. For various instruction sets ℐ, we provide

upper and lower bounds on 𝒮𝒫(ℐ, 𝑛), the minimum number of memory locations

30

(supporting ℐ) needed to solve obstruction-free 𝑛-valued consensus among 𝑛 ≥ 2 pro-

cesses (abbreviated as 𝑛-consensus). The results are summarized in Table 1.1. For a

given set of instructions ℐ, 𝒮𝒫(ℐ, 𝑛) is a function of 𝑛, that takes values on positive

integers. We will present detailed proofs of some of these results here.

Instructions ℐ 𝒮𝒫(ℐ, 𝑛)
{read(), test-and-set()}, {read(),write(1)} ∞

{read(), test-and-set(), reset()}, {read(),write(1),write(0)} 𝑛− 1 (lower), 𝑂(𝑛 log 𝑛) (upper)
{read(),write(𝑥)} 𝑛− 1 (lower), 𝑛 (upper)
{read(), swap(𝑥)} Ω(

√
𝑛) (lower), 𝑛− 1 (upper)

{ℓ-buffer-read(), ℓ-buffer-write(𝑥)} ⌈𝑛−1
ℓ
⌉ (lower), ⌈𝑛

ℓ
⌉ (upper)

{read(),write(𝑥), increment()} 2 (lower), 𝑂(log 𝑛) (upper)
{read(),write(𝑥), fetch-and-increment()}

{read-max (),write-max (𝑥)} 2
{compare-and-swap(𝑥, 𝑦)} {read(), set-bit(𝑥)} 1
{read(), add(𝑥)}, {read(),multiply(𝑥)}

{fetch-and-add(𝑥)}}, {fetch-and-multiply(𝑥)}

Table 1.1: Space Hierarachy

Consider the instructions

∙ multiply(𝑥), which multiplies the number stored in a memory location by 𝑥 and

returns nothing, and

∙ add(𝑥), which adds 𝑥 to the number stored in a memory location and returns

nothing. and

∙ set-bit(𝑥), which sets bit 𝑥 of a memory location to 1 and returns nothing.

We show that one memory location supporting read() and one of these instructions

can be used to solve 𝑛-consensus. The idea is to show that these instruction sets

can implement 𝑛 counters in a single location and then use a racing counters algo-

rithm [AH90], adjusted to fit our needs.

We will also show that a single memory location supporting the set of instructions

{read(),write(𝑥), fetch-and-increment()} cannot be used to solve 𝑛-consensus, for 𝑛 ≥

3. On the positive side, we also present an algorithm for solving 𝑛-consensus using

𝑂(log 𝑛) such memory locations.

31

Next, we will introduce a family of buffered read and buffered write instructions ℬℓ,

for ℓ ≥ 1, and show how to solve 𝑛-consensus using ⌈𝑛
ℓ
⌉ memory locations supporting

these instructions. Extending Zhu’s 𝑛 − 1 lower bound [Zhu16], we also prove that

⌈𝑛−1
ℓ
⌉ such memory locations are necessary, which is tight except when 𝑛−1 is divisible

by ℓ. Moreover, we will show a surprising result that the preceding lower bound holds

within a factor of two even in the presence of atomic multiple assignment. Multiple

assignment can be implemented by simple transactions, so our result implies that

such transactions cannot significantly reduce space complexity. The proof further

extends the techniques of [Zhu16] via a combinatorial argument, which we hope will

be of independent interest.

Then, we will describe our practical lock-free universal construction that uses

only atomic read , xor , decrement , and fetch-and-increment instructions. We will

conclude Chapter 3 by our simulation-based argument for the space complexity of

𝑘-set agreement.

1.3 On Message Passing

In the asynchronous shared-memory model, (almost) tight complexity bounds are

known for randomized implementations of tasks such as consensus [AC08], mutual ex-

clusion [HW09, HW10, GW12b], renaming [AACH+14], and task allocation [BKRS96,

ABGG12].

Less is known about the complexity of randomized distributed tasks in the asyn-

chronous message-passing model4. In message-passing, a set of 𝑛 processors commu-

nicate via point-to-point channels. Communication is asynchronous, i.e., messages

can be arbitrarily delayed. Further, the system is controlled by an adaptive adver-

sary, which sees the contents of messages and local state, and can choose to crash

less than half of the participants at any point during the computation.

We focus on test-and-set (leader election), which is the distributed equivalent of a

4Simulations between the two models exist [ABND95], but their complexity overhead is consid-
erable.

32

tournament: each process must return either a winner or a loser indication, with the

property that exactly one process may return winner. The time complexity of leader

election against a strong adversary is a major open problem. No lower bounds are

known. The fastest known solution is more than two decades old [AGTV92], and is

a tournament tree: pair up the participants into two-processor “matches,” decided by

two-processor randomized consensus; winners continue to compete, while losers drop

out, until a single winner prevails. The time complexity is logarithmic, as the winner

has to communicate at each tree level. Despite significant interest and progress on

this problem in weaker adversarial models [AAG+10, AA11, GW12a], the question of

whether a tournament is optimal as a way to elect a leader against a strong adversary

was not known.

In the master’s thesis of the author [Gel14], it was shown that this is not the case

in message-passing, by describing an algorithm, called PoisonPill, that solves test-and-

set in expected 𝑂(log log 𝑛) time. The general structure is rather simple: computation

occurs in phases, where each phase is designed to drop as many participants as pos-

sible, while ensuring that at least one processor survives. The main algorithmic idea

was a way to hide the processor coin flips during the phase, handicapping the adap-

tive adversary. In each phase, each processor first takes a “poison pill" (moves to

commit state), and broadcasts this to all other processors. The processor then flips

a biased local coin to decide whether to drop out of contention (low priority) or to

take an “antidote" (high priority), broadcasts its new state, and checks the states of

other processors. Crucially, if it has flipped low priority, and sees any other processor

either in commit state or in high priority state, the processor returns lose. Otherwise,

it survives to the next phase.

The above mechanics guarantee at least one survivor (in the unlikely event where

all processors flip low priority, they all survive), but can lead to few survivors in each

phase. The insight is that, to ensure many survivors, the adversary must examine the

processors’ coin flips. But to do so, the adversary must first allow it to take the poison

pill (state commit). Crucially, any low-priority processor observing this commit state

automatically drops out. We prove that, because of this catch-22, the adversarial

33

scheduler can do no more than to let processors execute each phase sequentially, one-

by-one, hoping that the first processor flipping high priority, which eliminates all later

low-priority participants, comes as late as possible in the sequence. We bias the flips

such that a group of at most square root participants survive because they flipped

high priority, and square root participants survive because they did not observe any

high priority. This choice of bias seems hard to improve, as it yields the perfect

balance between the sizes of the two groups of survivors.

In Chapter 4, we will describe our algorithm from [AGV15a], where we further im-

proved the time complexity of the test-and-set algorithm using a second algorithmic

idea that breaks the above-mentioned roadblock. Consider two extreme scenarios for

a phase: first when all participants communicate with each other, leading to similar

views and second, when processors see fragmented views, observing just a subset of

other processors. In the first case, each processor can safely set a low probability of

surviving. This does not work in the second case since processor views have a lot of

variance. We exploit this variance to break symmetry. Our technical argument com-

bines these two strategies such that we obtain at most 𝑂(log2 𝑛𝑟) expected survivors

in a phase, under any scheduling. The resulting algorithm is adaptive, meaning that,

if 𝑘 ≤ 𝑛 processors participate, its complexity becomes 𝑂(log* 𝑘).

34

Chapter 2

Population Protocols

We start the chapter by formally defining the model.

2.1 Model

A task in the population protocol model is specified by a finite set of input states 𝐼,

and a finite set of output symbols, 𝑂. The predicate corresponding to the task maps

any input configuration onto an allowable set of output symbols. We instantiate this

definition for majority and leader election below.

A population protocol 𝒫𝑘 with 𝑘 states is defined by a triple 𝒫𝑘 = (Λ𝑘, 𝛿𝑘, 𝛾𝑘). Λ𝑘

is the set of states available to the protocol, satisfying 𝐼 ⊆ Λ𝑘 and |Λ𝑘| = 𝑘. The

protocol consists of a set of state transitions of the type

𝐴+𝐵 → 𝐶 +𝐷,

defined by the protocol’s state transition function 𝛿𝑘 : Λ𝑘 × Λ𝑘 → Λ𝑘 × Λ𝑘. Finally,

𝛾𝑘 : Λ𝑘 → 𝑂 is the protocol’s output function.

This definition extends to protocols which work for variable number of states: in

that case, the population protocol 𝒫 will be a sequence of protocols 𝒫𝑚,𝒫𝑚+1, . . . ,

where 𝑚 is the minimal number of states which the protocol supports.

In the following, we will assume a set of 𝑛 ≥ 2 agents, interacting pairwise. Each

35

of the agents, or nodes, executes a deterministic state machine, with states in the set

Λ𝑘. The legal initial configurations of the protocol are exactly configurations where

each agent starts in a state from 𝐼. Once started, each agent keeps updating its

state following interactions with other agents, according to a transition function 𝛿𝑘.

Each execution step is one interaction between a pair of agents, selected to interact

uniformly at random from the set of all pairs. The agents in states 𝑆1 and 𝑆2 transition

to states given by 𝛿𝑘(𝑆1, 𝑆2) after the interaction.

Configurations: Agents are anonymous, so any two agents in the same state are

identical and interchangeable. Thus, we represent any set of agents simply by the

counts of agents in every state, which we call a configuration. More formally, a

configuration 𝑐 is a function 𝑐 : Λ𝑘 → N, where 𝑐(𝑆) represents the number of agents

in state 𝑆 in configuration 𝑐. We let |𝑐| stand for the sum, over all states 𝑆 ∈ Λ𝑘, of

𝑐(𝑆), which is the same as the total number of agents in configuration 𝑐. For instance,

if 𝑐 is a configuration of all agents in the system, then 𝑐 describes the global state of

the system, and |𝑐| = 𝑛.

We say that a configuration 𝑐′ is reachable from a configuration 𝑐, denoted 𝑐 =⇒ 𝑐′,

if there exists a sequence of consecutive steps (interactions from 𝛿𝑘 between pairs of

agents) leading from 𝑐 to 𝑐′. If the transition sequence is 𝑝, we will also write 𝑐 =⇒𝑝 𝑐
′.

We call a configuration 𝑐 the sum of configurations 𝑐1 and 𝑐2 and write 𝑐 = 𝑐1 + 𝑐2,

when 𝑐(𝑆) = 𝑐1(𝑆) + 𝑐2(𝑆) for all states 𝑆 ∈ Λ𝑘.

Majority: In the majority problem, nodes start in one of two initial states 𝐴,𝐵 ∈ 𝐼.

The output set is 𝑂 = {Win𝐴,Win𝐵}, where, intuitively, an initial state wins if its

initial count is larger than the other state’s. Formally, given an initial configuration

𝑖𝑛, let 𝜖𝑛 = |𝑖𝑛(𝐴) − 𝑖𝑛(𝐵)| denote the discrepancy, i.e. initial relative advantage of

the majority state.

We say that a configuration 𝑐 correctly outputs the majority decision for 𝑖𝑛, when

for any state 𝑆 ∈ Λ𝑘 with 𝑐(𝑆) > 0, if 𝑖𝑛(𝐴) > 𝑖𝑛(𝐵) then 𝛾𝑘(𝑆) = Win𝐴, and if

𝑖𝑛(𝐵) > 𝑖𝑛(𝐴) then 𝛾𝑘(𝑆) = Win𝐵. (The output in case of an initial tie can be

36

arbitrary.) A configuration 𝑐 has a stable correct majority decision for 𝑖𝑛, if for all

configurations 𝑐′ with 𝑐 =⇒ 𝑐′, 𝑐′ correctly outputs the majority decision for 𝑖𝑛.

A population protocol 𝒫𝑘 stably computes majority decision from 𝑖𝑛 within ℓ steps

with probability 1− 𝜑, if, with probability 1− 𝜑, any configuration 𝑐 reachable from

𝑖𝑛 by the protocol with ≥ ℓ steps has a stable correct majority decision. In this thesis,

we consider the exact majority task, as opposed to approximate majority [AAE08b],

which allows nodes to produce the wrong output with some probability.

Leader Election: In the leader election problem, 𝐼 = {𝐴}, and in the initial

configuration 𝑖𝑛 all agents start in the same initial state 𝐴. The output set is 𝑂 =

{Win,Lose}. Intuitively, a single node should output Win, while the others should

output Lose.

We say that a configuration 𝑐 has a single leader if there exists some state 𝑆 ∈ Λ𝑛

with 𝛾𝑛(𝑆) = Win and 𝑐(𝑆) = 1, such that for any other state 𝑆 ′ ̸= 𝑆, 𝑐(𝑆 ′) > 0

implies 𝛾𝑛(𝑆 ′) = Lose. A configuration 𝑐 of 𝑛 agents has a stable leader, if for all 𝑐′

reachable from 𝑐, it holds that 𝑐′ has a single leader.

A population protocol 𝒫𝑘 stably elects a leader within 𝑟 steps with probability

1−𝜑, if, with probability 1−𝜑, any configuration 𝑐 reachable from 𝑖𝑛 by the protocol

within ≥ 𝑟 steps has a stable leader.

Complexity Measures: The above setup considers sequential interactions; how-

ever, interactions between pairs of distinct agents are independent, and are usually

considered as occurring in parallel. It is customary to define one unit of parallel time

as 𝑛 consecutive steps of the protocol.

A population protocol 𝒫 stably elects a leader using 𝑠(𝑛) states in time 𝑡(𝑛) if,

for all sufficiently large 𝑛, the expected number of steps for protocol 𝒫𝑠(𝑛) (with 𝑠(𝑛)

states) to stably elect a leader from the initial configuration, divided by 𝑛, is 𝑡(𝑛). We

call 𝑠(𝑛) the state complexity and 𝑡(𝑛) the time complexity (or stabilization time) of

the protocol. For the majority problem, the complexity measures might also depend

on 𝜖. Thus, 𝒫 having state complexity 𝑠(𝑛, 𝜖) and time complexity 𝑡(𝑛, 𝜖) means that

37

for sufficiently large 𝑛, 𝒫𝑠(𝑛,𝜖) stabilizes to the correct majority decision in expected

time 𝑡(𝑛, 𝜖) for all 𝜖. If the expected time is finite, then we say that population

protocol stably elects a leader (or stably computes majority decision).

Monotonicity: The above definition of population protocols only requires that for

any 𝑛, there is just one protocol 𝒫𝑠(𝑛) that stabilizes fast for 𝑛 agents. In particular,

notice that, so far, we did not constrain how protocols 𝒫𝑘 with different number of

states 𝑘 are related to each other.

Additionally, we would like our protocols to be monotonic, meaning that a popu-

lation protocol with a certain number of states that solves a task for 𝑛 agents should

not be slower when running with 𝑛′ < 𝑛 agents. Formally, a monotonic population

protocol 𝒫 stably elects a leader with 𝑠(𝑛) states in time 𝑡(𝑛), if there exists a suffi-

ciently large constant 𝑑, such that for all 𝑛 ≥ 𝑑, protocol 𝒫𝑠(𝑛) stably elects a leader

from the initial configuration 𝑖𝑛′ of 𝑛′ agents, for any 𝑛′ with 𝑑 ≤ 𝑛′ ≤ 𝑛, in expected

parallel time 𝑡(𝑛).

A monotonic population protocol 𝒫 stably computes majority decision with 𝑠(𝑛, 𝜖)

states in time 𝑡(𝑛, 𝜖), if there exists a sufficiently large constant 𝑑, such that for all

𝑛 ≥ 𝑑, 𝒫𝑠(𝑛,𝜖) stably computes majority decision from the initial configuration 𝑖𝑛′ of

𝑛′ agents with discrepancy 𝜖′𝑛′, for any 𝑛′ with 𝑑 ≤ 𝑛′ ≤ 𝑛 and 𝜖′ ≥ 𝜖, in expected

parallel time 𝑡(𝑛, 𝜖).

Weak Monotonicity: We will also consider a different, weaker version of mono-

tonicity that is satisfied when a protocol used for more nodes never has less states. In

particular, for leader election, we only require that the state complexity function 𝑠(𝑛)

be monotonically non-decreasing for all sufficiently large 𝑛. For majority, we require

that for any fixed 𝜖, and sufficiently large 𝑛, 𝑠(𝑛, 𝜖) be monotonically non-decreasing,

and additionally, that 𝒫𝑠(𝑛,𝜖) should also correctly solve majority for 𝑛 agents with

discrepancy 𝜖′𝑛, where 𝜖′ > 𝜖, but with arbitrary finite stabilization time.

Notice that weak monotonicity is actually far too weak for practical algorithms,

as it does not demand a protocol that works for a large number of nodes to also work

38

for smaller number of nodes. However, we will be able to prove certain strong lower

bounds even under this extremely non-restrictive condition.

Output Dominance: Our conditional lower bound will make the following addi-

tional assumption on the output properties of population protocols for majority:

Definition 2.1.1 (Output Dominance). For any population protocol 𝒫𝑘 ∈ 𝒫, let 𝑐

be a configuration with a stable majority decision. Let let 𝑐′ be another configuration,

such that for any state 𝑆 ∈ Λ𝑘, if 𝑐′(𝑆) > 0, then 𝑐(𝑆) > 0. Then, for any configura-

tion 𝑐′′ such that 𝑐′ =⇒ 𝑐′′, if 𝑐′′ has a stable majority decision, then this decision is

the same as in 𝑐.

Intuitively, output dominance says that, if we change the counts of states in any

configuration 𝑐 with a stable output, then the protocol will still stabilize to the same

output decision. In other words, the protocol cannot swap output decisions from

a stable configuration if the count of some states changes. To our knowledge, all

known techniques for achieving exact majority in population protocols satisfy this

condition. In fact, known algorithms satisfy the following stronger condition, which

we call output closedness :

Definition 2.1.2 (Output Closedness). Consider any 𝒫𝑘 ∈ 𝒫 and configuration 𝑐,

such that all nodes in 𝑐 support the same majority decision. That is, for all 𝑆 ∈ Λ𝑘

with 𝑐(𝑆) > 0, 𝛾𝑘(𝑆) = WIN𝑋 for a fixed 𝑋 ∈ {𝐴,𝐵}. Then, for any 𝑐′ with 𝑐 =⇒ 𝑐′,

if 𝑐′ has a stable majority decision, then this decision is WIN𝑋 .

As mentioned, output closedness implies output dominance.

Lemma 2.1.3. If a population protocol 𝒫 satisfies output closedness, then it satisfies

output dominance.

Proof. For any 𝒫𝑘, consider an arbitrary configuration 𝑐 that has a stable majority

decision WIN𝑋 for 𝑋 ∈ {𝐴,𝐵}. Let 𝑐′ be another configuration, such that for any

𝑆 ∈ Λ𝑘, if 𝑐′(𝑆) > 0 then 𝑐(𝑆) > 0. Since 𝑐 has a stable output, for all 𝑆 ∈ Λ𝑘, if

𝑐′(𝑆) > 0, then we also have 𝛾𝑘(𝑆) = WIN𝑋 . By output closedness, for any 𝑐′′ such

39

that 𝑐′ =⇒ 𝑐′′, if 𝑐′′ has a stable majority decision, then it is WIN𝑋 . This is the same

as the decision in 𝑐, completing the proof.

Next, to exemplify the model, we describe our leader-minion algorithm from [AG15]

and prove its stabilization guarantees.

2.2 Leader-Minion Algorithm

To familiarize the reader with populations protocols, in this section, we describe our

LM leader election algorithm from [AG15]. It is a simple algorithm that first achieved

polylogarithmic state and time complexity for leader election. The algorithm has

an integer parameter 𝑚 > 0, which we set to Θ(log3 𝑛). Each state corresponds

to an integer value from the set {−𝑚,−𝑚 + 1, . . . ,−2,−1, 1, 2,𝑚 − 1,𝑚,𝑚 + 1}.

Respectively, there are 2𝑚 + 1 different states. We will refer to states and values

interchangeably. All nodes start in the same state corresponding to value 1.

The algorithm, specified in Figure 2-1, consists of a set of simple deterministic

update rules for the node state. In the pseudocode, the node states before an interac-

tion are denoted by 𝑥 and 𝑦, while their new states are given by 𝑥′ and 𝑦′. All nodes

start with value 1 and continue to interact according to these simple rules. We prove

that all nodes except one will stabilize to negative values, and that stabilization is

fast with high probability. This solves the leader election problem since we can define

𝛾 as mapping only positive states to Win (a leader). (Alternatively, 𝛾 that maps only

two states with values 𝑚 and 𝑚+ 1 to WIN would also work, but we will work with

positive leader states for the simplicity of presentation.)

Since positive states translate to being a leader according to 𝛾, we call a node

a contender if it has a positive value, and a minion otherwise. We present the

algorithm in detail below. The state updates (i.e. the transition function 𝛿) of the

LM algorithm are completely symmetric, that is, the new state 𝑥′ depends on 𝑥 and

𝑦 (lines 2-4) exactly as 𝑦′ depends on 𝑦 and 𝑥 (lines 5-7).

If a node is a contender and has absolute value not less than the absolute value

40

Parameters:
𝑚, an integer > 0, set to Θ(log3 𝑛)
State Space:
LeaderStates = {1, 2, . . . ,𝑚− 1,𝑚,𝑚+ 1},
MinionStates = {−1,−2, . . . ,−𝑚+ 1,−𝑚},
Input: States of two nodes, 𝑥 and 𝑦
Output: Updated states 𝑥′ and 𝑦′

Auxiliary Procedures:

is-contender(𝑥) =

{︂
true if 𝑥 ∈ LeaderStates;
false otherwise.

contend-priority(𝑥, 𝑦) =

{︂
𝑚 if max(|𝑥|, |𝑦|) = 𝑚+ 1;
max(|𝑥|, |𝑦|) + 1 otherwise.

minion-priority(𝑥, 𝑦) =

{︂
−𝑚 if max(|𝑥|, |𝑦|) = 𝑚+ 1;
−max(|𝑥|, |𝑦|) otherwise.

1 procedure update⟨𝑥, 𝑦⟩
2 if is-contender(𝑥) and |𝑥| ≥ |𝑦| then
3 𝑥′ ← contend-priority(𝑥, 𝑦)
4 else 𝑥′ ← minion-priority(𝑥, 𝑦)
5 if is-contender(𝑦) and |𝑦| ≥ |𝑥| then
6 𝑦′ ← contend-priority(𝑥, 𝑦)
7 else 𝑦′ ← minion-priority(𝑥, 𝑦)

Figure 2-1: The state update rules for the LM algorithm.

of the interaction partner, then the node remains a contender and updates its value

using the contend-priority function (lines 3 and 6). The new value will be one larger

than the previous value except when the previous value was 𝑚+ 1, in which case the

new value will be 𝑚.

If a node had a smaller absolute value than its interaction partner, or was a minion

already, then the node will be a minion after the interaction. It will set its value using

the minion-priority function, to either −max(|𝑥|, |𝑦|), or −𝑚 if the maximum was

𝑚+ 1 (lines 4 and 7).

Values 𝑚+ 1 and 𝑚 are treated exactly the same way by minions (essentially cor-

responding to −𝑚). These values serve as a binary tie-breaker among the contenders

that ever reach the value 𝑚, as will become clear from the analysis.

41

2.2.1 Analysis

Throughout the proof, we call a node contender when the value associated with its

state is positive, and a minion when the value is negative. As previously discussed,

we assume that 𝑛 > 2. For presentation purposes, we also consider 𝑛 to be a power

of two.

We first prove that the algorithm never eliminates all contenders and that a con-

figuration with a single contender means that a leader is elected.

Lemma 2.2.1. There is always at least one contender in the system. Suppose the

execution reaches a configuration 𝑐 with only node 𝑣 being a contender. Then, 𝑣

remains a contender (mapped to WIN by 𝛾) in any configuration 𝑐′ reachable from 𝑐,

and 𝑐′ never contains another contender.

Proof. By the structure of the algorithm, a node starts as a contender and may

become a minion during an execution, but a minion may never become a contender.

Moreover, an absolute value associated with the state of a minion node can only

increase to an absolute value of an interaction partner.

Suppose for contradiction that an execution reaches a configuration 𝑐 where all

nodes are minions. Let the maximum absolute value of the nodes be 𝑢 in 𝑐. Because

the minions cannot increase the maximum absolute value in the system, there must

have been a contender with value 𝑢 during the execution before the execution reached

𝑐. For this contender to have become a minion, it must have interacted with another

node with an absolute value strictly larger than 𝑢. The absolute value of a node never

decreases except from 𝑚 + 1 to 𝑚, and despite existence of a larger absolute value

than 𝑢 before reaching 𝑐, 𝑢 was the largest absolute value in 𝑐. Thus, 𝑢 must be equal

to 𝑚. But after such an interaction, the second node that was in the state 𝑚 + 1

remains a contender with value 𝑚. Before the execution reaching 𝑐, it must also have

interacted with yet another node with value 𝑚+ 1 in order to become a minion itself.

But then, the interaction partner remains a contender with value 𝑚 and the same

reasoning applies to it. Our proof follows by infinite descent.

Consequently, whenever there is a single contender in the system, it must have the

42

largest absolute value. Otherwise, it could interact with a node with a larger absolute

value and become a minion, contradicting the above proof that all nodes may never

be minions. Due to this invariant, the only contender may never become a minion

and we know the minions can never become contenders.

Now we turn our attention to the stabilization speed (assuming 𝑛 > 2) of the LM

algorithm. Our goal is bound the number of steps necessary to eliminate all except

a single contender. In order for a contender to get eliminated, it must come across

a larger value of another contender, the value possibly conducted through a chain of

multiple minions via multiple interactions.

We first show by a rumor spreading argument that if the difference between the

values of two contenders is large enough, then the contender with the smaller value will

become a minion within the next 𝑂(𝑛 log 𝑛) interactions, with constant probability.

Then we use anti-concentration bounds to establish that for any two fixed contenders,

given that no absolute value in the system reaches 𝑚, after every 𝑂(𝑛 log2 𝑛) inter-

actions the difference between their values is large enough with constant probability.

Lemma 2.2.2. Consider a configuration 𝑐, in which there are two contenders with

values 𝑢1 and 𝑢2, where 𝑢1−𝑢2 ≥ 4𝜉 log 𝑛 for 𝜉 ≥ 8. Then, after 𝜉𝑛 log 𝑛 interactions

from 𝑐, the node that initially held the value 𝑢2 will be a minion with probability at

least 1/24 (independent of the history of previous interactions leading up to 𝑐).

Proof. We call a node that has an absolute value of at least 𝑢1 an up-to-date node,

and out-of-date otherwise. Initially, at least one node is up-to-date. When there

are 𝑥 up-to-date nodes, the probability that an out-of-date node interacts with an

up-to-date node next, increasing the number of up-to-date nodes to 𝑥+ 1, is 2𝑥(𝑛−𝑥)
𝑛(𝑛−1)

.

By a Coupon Collector argument, the expected number of steps until every node is

up-to-date is
∑︀𝑛−1

𝑥=1
𝑛(𝑛−1)
2𝑥(𝑛−𝑥)

≤ (𝑛−1)
2

∑︀𝑛−1
𝑥=1

(︀
1
𝑥

+ 1
𝑛−𝑥

)︀
≤ 2𝑛 log 𝑛.

By Markov’s inequality, the probability that not all nodes are up-to-date after

𝜉𝑛 log 𝑛 interactions is at most 2/𝜉. Hence, expected number of up-to-date nodes after

𝜉𝑛 log 𝑛 interactions is at least 𝑛(𝜉−2)
𝜉

. Let 𝑞 be the probability that the number of up-

to-date nodes after 𝜉𝑛 log 𝑛 interactions is at least 𝑛
3

+1. We have 𝑞𝑛+(1−𝑞)(𝑛
3

+1) ≥

43

E[𝑌] ≥ 𝑛(𝜉−2)
𝜉

, which implies 𝑞 ≥ 1
4

for 𝑛 > 2 and 𝜉 ≥ 8.

Hence, with probability at least 1/4, at least 𝑛/3 + 1 are nodes are up to date

after 𝜉𝑛 log 𝑛 interactions from configuration 𝑐. By symmetry, the 𝑛/3 up-to-date

nodes except the original node are uniformly random among the other 𝑛 − 1 nodes.

Therefore, any given node, in particular the node that had value 𝑢2 in 𝑐 has probability

at least 1/4 · 1/3 = 1/12 to be up-to-date after 𝜉𝑛 log 𝑛 interactions. When the node

that was holding value 𝑢2 in 𝑐 becomes up-to-date and gets an absolute value of

at least 𝑢1 from an interaction, it must become a minion by the structure of the

algorithm if its value before this interaction was still strictly smaller than 𝑢1. Thus,

we only need to show that the probability of selecting the node that initially had

value 𝑢2 at least 4𝜉 log 𝑛 times (so that its value can reach 𝑢1) during these 𝜉𝑛 log 𝑛

interactions is at most 1/24. The claim then follows by Union Bound.

In each interaction, the probability to select this node (that initially held 𝑢2)

is 2/𝑛. Let us describe the number of times it is selected in 𝜉𝑛 log 𝑛 interactions

by considering a random variable 𝑍 ∼ Bin(𝜉𝑛 log 𝑛, 2/𝑛). By Chernoff Bound, the

probability being selected at least 4𝜉 log 𝑛 times is at most:

Pr [𝑍 ≥ 4𝜉 log 𝑛] ≤ exp

(︂
−2𝜉

3
log 𝑛

)︂
≤ 1

𝑛2𝜉/3
≤ 1

24

finishing the proof.

Next, we show that, after Θ(𝑛 log2 𝑛) interactions, the difference between the

values of any two given contenders is high, with a reasonable probability.

Lemma 2.2.3. For an arbitrary configuration 𝑐, fix two conteders in 𝑐 and a constant

𝜉 ≥ 1. Let 𝑐′ be a configuration reached after 32𝜉2𝑛 log2 𝑛 interactions from 𝑐.

If absolute values of all nodes are strictly less than 𝑚 at all times before reaching

𝑐′, then, with probability at least 1
24
− 1

𝑛8𝜉 , in 𝑐′, either at least one of the two fixed

nodes have become minions, or their absolute values differ by at least 4𝜉 log 𝑛.

Proof. Suppose no absolute value reaches 𝑚 at any point before reaching 𝑐′ and that

the two fixed nodes are still contenders in 𝑐′. We need to prove that the difference of

44

values is large enough.

Consider the 32𝜉2𝑛 log2 𝑛 interactions following 𝑐. If an interaction involves exactly

one of the two fixed nodes, we call it a spreading. For each interaction, probability

of it being spreading is 4(𝑛−2)
𝑛(𝑛−1)

, which for 𝑛 > 2 is at least 2/𝑛. So, we can describe

the number of spreading interactions among the 32𝜉2𝑛 log2 𝑛 steps by considering a

random variable 𝑋 ∼ Bin(32𝜉2𝑛 log2 𝑛, 2/𝑛). By Chernoff Bound, the probability of

having no more than 32𝜉2 log2 𝑛 spreading interactions is at most

Pr
[︀
𝑋 ≤ 32𝜉2 log2 𝑛

]︀
≤ exp

(︂
−64𝜉2 log2 𝑛

22 · 2

)︂
<

1

𝑛8𝜉
,

Let us from now on focus on the high probability event that there are at least

32𝜉2 log2 𝑛 spreading interactions between 𝑐 and 𝑐′, and prove that the desired differ-

ence will be large enough with probability 1
24

. This implies the claim by Union Bound

with the above event (since for 𝑛 > 2, 1
𝑛8𝜉 <

1
24

holds).

We assumed that both nodes remain contenders up until 𝑐′. Hence, in each spread-

ing interaction, a value of exactly one of them, with probability 1/2 each, increases

by one. Let us call the fixed nodes 𝑉1 and 𝑉2, and suppose the value of 𝑉1 was not less

than the value of 𝑉2 in 𝑐. Let us now focus on the sum 𝑌 of 𝑘 independent uniformly

distributed ±1 Bernoulli trials 𝑥𝑖 with 1 ≤ 𝑖 ≤ 𝑘, where each trial corresponds to

a spreading interaction and outcome +1 means that the value of 𝑉1 increased, while

−1 means that the value of 𝑉2 increased. In this terminology, we are done if we show

that Pr[𝑌 ≥ 4𝜉 log 𝑛] ≥ 1
24

for 𝑘 ≥ 32𝜉2 log2 𝑛 trials.

However, we have that:

Pr[𝑌 ≥ 4𝜉 log 𝑛] ≥ Pr[|𝑌 | ≥ 4𝜉 log 𝑛]

2
=

Pr[|𝑌 2| ≥ 16𝜉2 log2 𝑛]

2
(2.2.1)

≥ Pr[|𝑌 2| ≥ 𝑘/2]

2
=

Pr[|𝑌 2| ≥ E[𝑌 2]/2]

2
(2.2.2)

≥ 1

22 · 2
E[𝑌 2]2

E[𝑌 4]
≥ 1

24
(2.2.3)

where 2.2.1 follows from the symmetry of the sum with regards to the sign, that

is, from Pr[𝑌 > 4𝜉 log 𝑛] = Pr[𝑌 < −4𝜉 log 𝑛]. For 2.2.2 we have used that 𝑘 ≥

45

32𝜉2 log2 𝑛 and E[𝑌 2] = 𝑘 (more about this below). Finally, to get 2.2.3 we use

Paley-Zygmund inequality and the fact that E[𝑌 4] = 3𝑘(𝑘−1)+𝑘 ≤ 3𝑘2. Evaluating

E[𝑌 2] and E[𝑌 4] is simple by using the definition of 𝑌 and the linearity of expectation.

The expectation of each term then is either 0 or 1 and it suffices to count the number

of terms with expectation 1, which are exactly the terms where each multiplier is

raised to an even power.

We are ready to prove the stabilization speed with high probability

Theorem 2.2.4. There exists a constant 𝛼, such that for any constant 𝛽 ≥ 3 fol-

lowing holds: If we set 𝑚 = 𝛼𝛽 log3 𝑛 = Θ(log3 𝑛), the algorithm elects a leader (i.e.

reaches a configuration with a single contender) in at most 𝑂(𝑛 log3 𝑛) steps, i.e. in

parallel time 𝑂(log3 𝑛), with probability at least 1− 1/𝑛𝛽.

Proof. Let us fix 𝜉 ≥ 8 large enough, such that for some constant 𝑝

1

24
·
(︂

1

24
− 1

𝑛8𝜉

)︂
≥ 𝑝. (2.2.4)

Consider constants 𝛽 ≥ 3 and 𝛼 = 16
𝑝
· (33𝜉2). We set 𝑚 = 𝛼𝛽 log3 𝑛 and focus on

the first 𝛼𝛽𝑛 log3 𝑛
4

steps of the algorithm execution. For any fixed node, the prob-

ability that it interacts in each step is 2/𝑛. Let us describe the number of times

a given node interacts within the first 𝛼𝛽𝑛 log3 𝑛
4

steps by considering a random vari-

able Bin(𝛼𝛽𝑛 log3 𝑛
4

, 2/𝑛). By Chernoff Bound, the probability being selected at least

𝑚 = 𝛼𝛽 log3 𝑛 times is at most exp
(︀
−𝛼𝛽

6
log3 𝑛

)︀
≤ 1

𝑛𝛼𝛽/6 . By Union Bound over all 𝑛

nodes, with probability at least 1− 𝑛
𝑛𝛼𝛽/6 , all nodes interact strictly less than 𝑚 times

during the first 𝛼𝛽𝑛 log3 𝑛
4

interactions.

Let us from now on focus on the above high probability event, which means that

all absolute values are strictly less than 𝑚 during the first 𝛼𝛽𝑛 log3 𝑛
4

= 4𝛽
𝑝

(33𝜉2)𝑛 log3 𝑛

interactions. For a fixed pair of nodes, we apply Lemma 2.2.3 followed by Lemma 2.4.2

(with parameter 𝜉) 4𝛽(33𝜉2)𝑛 log3 𝑛

𝑝(32𝜉2𝑛 log2 𝑛+𝜉𝑛 log𝑛)
≥ 4𝛽 log𝑛

𝑝
times. Each time, by Lemma 2.2.3,

after 32𝜉2𝑛 log2 𝑛 interactions with probability at least 1
24
− 1

𝑛8𝜉 the nodes end up

with values at least 4𝜉 log 𝑛 apart. In this case, after the next 𝜉𝑛 log 𝑛 interactions,

46

by Lemma 2.4.2, one of the nodes becomes a minion with probability at least 1/24.

Since Lemma 2.4.2 is independent from the interactions that precede it, by (2.2.4),

each of the 4𝛽 log𝑛
𝑝

times if both nodes were contenders, with probability at least 𝑝 one

of the nodes becomes a minion. The probability that both nodes in a given pair are

still contenders after the first 𝛼𝛽𝑛 log3 𝑛
4

steps is thus at most (1−𝑝)
4𝛽 log𝑛

𝑝 ≤ 2−4𝛽 log𝑛 <

1
𝑛2𝛽 . By Union Bound over all 𝑛(𝑛−1)

2
< 𝑛2 pairs, with probability at least 1− 𝑛2

𝑛2𝛽 , for

every pair of nodes, one of them is a minion after 𝛼𝛽𝑛 log3 𝑛
4

interactions. Hence, with

this probability, there will be only one contender.

Combining with the conditioned event that none of the nodes interact 𝑚 or more

times gives that after the first 𝛼𝛽𝑛 log3 𝑛
4

= 𝑂(𝑛 log3 𝑛) interactions there must be a

single contender with probability at least 1− 𝑛2

𝑛2𝛽 − 𝑛
𝑛𝛼𝛽/6 ≥ 1− 1

𝑛𝛽 for 𝛽 ≥ 3. A single

contender means that leader is elected by Lemma 2.2.1.

Finally, we prove the expected stabilization bound

Theorem 2.2.5. There is a setting of parameter 𝑚 of the algorithm such that 𝑚 =

Θ(log3 𝑛), such that the algorithm elects the leader in expected 𝑂(𝑛 log3 𝑛) steps, i.e.

in parallel time 𝑂(log3 𝑛).

Proof. Let us prove that from any configuration, the algorithm elects a leader in

expected 𝑂(𝑛 log3 𝑛) steps. By Lemma 2.2.1, there is always a contender in the

system and if there is only a single contender, then a leader is already elected. Now

in a configuration with at least two contenders consider any two of them. If their

values differ, then with probability at least 1/𝑛2 these two contenders will interact

next and the one with the lower value will become a minion (after which it may never

be a contender again). If the values are the same, then with probability at least 1/𝑛,

one of these nodes will interact with one of the other nodes, leading to a configuration

where the values of our two nodes differ1, from where in the next step, independently,

with probability at least 1/𝑛2 these nodes will interact and one of them will become a

minion. Hence, unless a leader is already elected, in every two steps, with probability

1This is always true, even when the new value is not larger, for instance when the values were
equal to 𝑚+ 1, the new value of one of the nodes will be 𝑚 ̸= 𝑚+ 1.

47

at least 1/𝑛3 the number of contenders decreases by 1.

Thus, the expected number of interactions until the number of contenders de-

creases by 1 is at most 2𝑛3. In any configuration there can be at most 𝑛 contenders,

thus the expected number of interactions until reaching a configuration with only a

single contender is at most 2(𝑛− 1)𝑛3 ≤ 2𝑛4 from any configuration.

By Theorem 2.2.4 with 𝛽 = 4 we get that with probability at least 1 − 1/𝑛4

the algorithm stabilizes after 𝑂(𝑛 log3 𝑛) interactions. Otherwise, with probability at

most 1/𝑛4 it ends up in some configuration from where it takes at most 2𝑛4 expected

interactions to elect a leader. The total expected number of steps is therefore also

𝑂(𝑛 log3 𝑛) +𝑂(1) = 𝑂(𝑛 log3 𝑛), i.e. parallel time 𝑂(log3 𝑛).

Before we design algorithms that use 𝑂(log 𝑛) states we have to develop the re-

quired tools. We start by the leaderless phase clock.

2.3 Leaderless Phase Clock

Intuitively, the phase clock works as follows. Each node keeps a local counter, intial-

ized at 0. On each interaction, the two nodes compare their values, and the one with

the lower counter value increments its local counter. We can use the fact that interac-

tions are uniformly random to obtain that the nodes’ counter values are concentrated

within an additive 𝑂(log 𝑛) factor with respect to the mean, with high probability.

The above procedure has the obvious drawback that, as the counters continue to

increment, nodes will need unbounded space to store the values. We overcome this as

follows. We fix a period Ψ = Θ(log 𝑛), and a range value 𝜌 = Θ(log 𝑛), with Ψ≫ 𝜌.

The goal of the algorithm is to maintain a “phase clock" with values between 0 and

Ψ − 1, with the property that clock at different nodes are guaranteed to be within

some interval of range 𝜌 around the mean clock value, with high probability.

We let each phase clock state be 𝑉𝑖, where 𝑖 is from 0 to Ψ− 1 and represents the

counter value of the node in state 𝑉𝑖. The update rule upon each interaction is as

follows. If both nodes have counter values either in [0,Ψ−𝜌−1] or [Ψ−𝜌,Ψ−1], then

the node that has the lower counter value will increment its local counter. Formally,

48

for any 𝑖 ≤ 𝑗, with 𝑖, 𝑗 ∈ [0,Ψ− 𝜌− 1] or 𝑖, 𝑗 ∈ [Ψ− 𝜌,Ψ− 1], we have that

𝑉𝑖 + 𝑉𝑗 → 𝑉𝑖+1 + 𝑉𝑗. (2.3.1)

In the second case, one of the node values, say 𝑖, is in [0,Ψ− 𝜌− 1], while the other

value, 𝑗, is in [Ψ− 𝜌,Ψ− 1]. In this case, we simply increment the level of the node

with the higher counter value. Formally, when 𝑖 ∈ [0,Ψ−𝜌−1] and 𝑗 ∈ [Ψ−𝜌,Ψ−2],

we have that

𝑉𝑖 + 𝑉𝑗 → 𝑉𝑖 + 𝑉𝑗+1. (2.3.2)

Finally, if a node would reach counter value Ψ as the result of the increment, it simply

resets to value 𝑉0:

𝑉Ψ−1 + 𝑉Ψ−1 → 𝑉Ψ−1 + 𝑉0 and 𝑉𝑖 + 𝑉Ψ−1 → 𝑉𝑖 + 𝑉0, ∀𝑖 ∈ [0,Ψ− 𝜌− 1]. (2.3.3)

2.3.1 Analysis

We will show that counter values stay concentrated within around the mean, so that

the difference between the largest and the smallest value will be less than 𝜌 = 𝑂(log 𝑛),

with high probability. The updates in 2.3.2—2.3.3 allow the algorithm to reset the

counter value to 0 periodically, once the values reach a range where inconsistent

wrap-arounds become extremely unlikely.

For any configuration 𝑐, let 𝑤ℓ(𝑐) be the weight of node ℓ, defined as follows.

Assume node ℓ is in state 𝑉𝑖. For 𝑖 ∈ [0, 𝜌], if in 𝑐 there exists some node in state 𝑉𝑗

with 𝑗 ∈ [Ψ − 𝜌,Ψ − 1] (i.e. if
∑︀

𝑗∈[Ψ−𝜌,Ψ−1] 𝑐(𝑉𝑗) > 0), then we have 𝑤ℓ(𝑐) = 𝑖 + Ψ.

Otherwise, we have 𝑤ℓ(𝑐) = 𝑖. Given this definition, let 𝜇(𝑐) =
∑︀𝑛

ℓ=1 𝑤ℓ(𝑐)

𝑛
be the mean

weight, and 𝑥ℓ(𝑐) = 𝑤ℓ(𝑐)− 𝜇(𝑐). Let us also define 𝐺(𝑐), the gap in configuration 𝑐,

as maxℓ𝑤ℓ(𝑐)−minℓ𝑤ℓ(𝑐).

From an initial configuration with a gap sufficiently smaller than 𝜌, we consider

the number of steps to reach a configuration with a gap of at least 𝜌. Our goal is to

49

show that a large number of steps is required with high probability. Our definitions

are chosen to ensure the following invariant as long as the gap is not ≥ 𝜌 in the

execution: The evolution of the values 𝑥ℓ(𝑐) is identical to that of an algorithm where

there is no wrap-around once the value would reach Ψ.

Let us simplify the exposition by considering the process, where values continue

to increase unboundedly. Critically, we notice that this process is now identical to

the classical two-choice load-balancing process: consider a set of 𝑛 bins, whose ball

counts are initially 0. At each step 𝑡, we pick two bins uniformly at random, and

insert a ball into the less loaded of the two. Here, let us use 𝑥ℓ(𝑡) to represents the

number of balls in ℓ-th bin, minus the average number of balls per bin after 𝑡 steps.

For a fixed constant 𝛼 < 1, define the potential function

Γ(𝑡) =
𝑛∑︁

ℓ=1

2 cosh(𝛼𝑥ℓ(𝑡)) =
𝑛∑︁

ℓ=1

(exp(𝛼𝑥ℓ(𝑡)) + exp(−𝛼𝑥ℓ(𝑡))) .

Peres, Talwar, and Wieder prove in [PTW15] that:

Lemma 2.3.1 (Theorem 2.9 in [PTW15]). Given the above process, for any 𝑡 ≥ 0,

E[Γ(𝑡+ 1)|Γ(𝑡)] ≤
(︁

1− 𝛼

𝑛

)︁
Γ(𝑡) + 𝜃, (2.3.4)

where 𝛼 < 1 is a constant from the definition of Γ and 𝜃 ≫ 1 is a fixed constant.

From here, we can prove the following property of the leaderless phase clock.

Corollary 2.3.2. Given the above process, the following holds: Suppose 𝑐 is a config-

uration with 𝐺(𝑐) ≤ 𝛾 log 𝑛, for some constant 𝛾. Then, for any constant parameter

𝛽, there exists a constant 𝛾′(𝛽), such that with probability 1−𝑚/𝑛𝛽, for each config-

uration 𝑐′ reached by the 𝑚 interactions following 𝑐, it holds that 𝐺(𝐶 ′) < 𝛾′(𝛽) log 𝑛.

Proof. We let 𝛾′(𝛽) = 2𝛾 + 4+2𝛽
𝛼

, where 𝛼 is the constant from Lemma 2.3.1, and

let 𝜌 = 𝛾′(𝛽) log 𝑛. As discussed in Section 2.3, since we are counting the number of

steps from configuration 𝑐, where the gap is less than 𝜌, until the gap becomes ≥ 𝜌,

we can instead analyze the unbounded two-choice process. In the two choice process,

50

Γ(0) corresponds to the potential in configuration 𝑐. By simple bounding, we must

have that Γ(0) ≤ 2𝑛𝛼𝛾+1. Assume without loss of generality that Γ(0) = 2𝑛𝛼𝛾+1.

It has already been established by Lemma 2.3.1 that

E[Γ(𝑡+ 1)|Γ(𝑡)] ≤
(︁

1− 𝛼

𝑛

)︁
Γ(𝑡) + 𝜃.

This implies that Γ(𝑡) will always tend to decrease until it reaches the threshold

Θ(𝑛)2., so that its expectation will always be below its level at step 0 (in configuration

𝑐).

Hence, we have that, for any 𝑡 ≥ 0,

E[Γ(𝑡)] ≤ 2𝑛𝛼𝛾+1.

By Markov’s inequality, we will obtain that

Pr[Γ(𝑡) ≥ 𝑛𝛼𝛾+2+𝛽] ≤ 1/𝑛𝛽.

It follows by convexity of the exponential and the definition of Γ that for each 𝑐′,

Pr[𝐺(𝑐′) ≥ 2(𝛾 + (2 + 𝛽)/𝛼) log 𝑛] ≤ 1/𝑛𝛽.

Setting 𝜌 = 𝛾′(𝛽) = 2𝛾 + 4+2𝛽
𝛼

and taking union bound over the above event for 𝑚

steps following configuration 𝑐 completes the proof.

2.4 Phased Majority Algorithm

At a high level, the state space of the algorithm algorithm is partitioned into into

worker, clock, backup and terminator states. Every state falls into one of these cat-

egories, allowing us to uniquely categorize the nodes based on the state they are in.

The purpose of worker nodes is to reach a consensus on the output decision. The

2By applying expectation and telescoping, as in the proof of Theorem 2.10 in [PTW15].

51

purpose of clock nodes is to synchronize worker nodes, enabling a logarithmic state

space. The job of backup nodes is to ensure correctness via a slower protocol, which

is only used with low probability. The terminator nodes are there to spread a final

majority decision. Every node starts as worker, but depending on state transitions,

may become a clock, a backup or a terminator.

The algorithm alternates cancellation phases, during which workers with different

opinions cancel each other out, and doubling phases, during which workers which still

have a “strong” opinion attempt to spread it to other nodes. Clock nodes will keep

these phases in sync.

State Space: The state of a worker node consists of a triple of: (1) an phase number

in {1, 2, . . . , 2 log 𝑛+ 1}; (2) a value ∈ {1, 1/2, 0}; (3) its current preference WIN𝐴 or

WIN𝐵. The state of a clock node consists of a pair (1) position, a number, describing

the current value of its phase clock, initially 0, and (2) its current preference for

WIN𝐴 or WIN𝐵. Backup nodes implement a set of four possible states, which serve

as a way to implement the four-state protocol of [DV12, MNRS14]. We use this as a

slow but dependable backup in the case of a low-probability error event. There are

two terminator states, 𝐷𝐴 and 𝐷𝐵. Additionally, every state encodes two bits: the

node’s original input state (𝐴 or 𝐵) and a clock-creation boolean flag.

Nodes with input 𝐴 start in a worker state, with phase number 1, value 1, and

preference WIN𝐴. Nodes with input 𝐵 start in a similar initial state, but with

preference WIN𝐵. The clock-creation flag is true for all nodes, and it means that

all nodes could still become clocks. The output of a clock or a worker state is its

preference. The output of an backup state is the output of the corresponding state

of the 4-state protocol. The output mapping for terminator states is the obvious

𝛾(𝐷𝐴) = WIN𝐴 and 𝛾(𝐷𝐵) = WIN𝐵.

A worker node is strong if its current value is 1/2 or 1. A worker node with value

0 is weak. We say that a worker is in phase 𝜑 if its phase number is 𝜑. For the phase

clock, we will set the precise value of the parameter 𝜌 = Θ(log 𝑛) in the next section,

during the analysis. The size of the clock will be Ψ = 4𝜌. Clock states with position

52

in [𝜌, 2𝜌) and [3𝜌, 4𝜌) will be labelled as buffer states. We will label states [0, 𝜌) as

ODD states, and [2𝜌, 3𝜌) as EVEN states.

We now describe the different interaction types, based on the type of states of the

interacting nodes. Pseudocode is given in Figure 2-2 and Figure 2-3.

Backup and Terminator Interactions: When both nodes are backups, they be-

have as in the 4-state protocol of [DV12, MNRS14]. Backup nodes do not change their

type, but cause non-backup interaction partners to change their type to a backup.

When a node changes to a backup state, it uses an input state of the 4-state protocol

corresponding to its original input.

After an interaction between a terminator node in state 𝐷𝑋 with 𝑋 ∈ {𝐴,𝐵} and

a clock or worker node with preference WIN𝑋 , both nodes end up in 𝐷𝑋 . However,

both nodes end up in backup states after an interaction between 𝐷𝐴 and 𝐷𝐵, or a

terminator node and a worker/clock node of the opposite preference.

Clock State Update: When two clock nodes interact, they update positions ac-

cording to the phase clock algorithm described in Section 2.3. They might both

change to backup states (a low probability event), if their positions had a gap larger

than the maximum allowed threshold 𝜌 of the phase clock. A clock node that meets a

worker node remains in a clock state with the same position, but adopts the preference

of the interaction partner if the interaction partner was strong.

Worker State Update: Let us consider an interaction between two workers in the

same phase. When one worker is weak and the other worker is strong, the preference

of the node that was weak always gets updated to the preference of the strong node.

Similar to [AAE08a], there are two types of phases. Odd phases are cancellation

phases, and even phases are doubling phases. In a cancellation phase, if both inter-

acting workers have value 1 but different preferences, then both values are updated

to 0, preferences are kept, but if clock-creation flag is true at both nodes, then one of

the nodes (say, with preference WIN𝐴) becomes a clock. Its position is set to 0 and

53

its preference is carried over from the previous worker state. This is how clocks are

created. In a doubling phase, if one worker has value 1 and another has value 0, then

both values are updated to 1/2.

Worker Phase and State Updates: Suppose a worker in phase 𝜑 meets a clock.

The clock does not change its state. If 𝜑 is odd and the label of the clock’s state is

EVEN , or if 𝜑 is even and the label is ODD , then the worker enters phase 𝜑 + 1.

Otherwise, the worker does not change its state.

Suppose two workers meet. If their phase numbers are equal, they interact ac-

cording to the rules described earlier. When one is in phase 𝜑 and another is in

phase 𝜑 + 1, the worker in phase 𝜑 enters phase 𝜑 + 1 (the second worker remains

unchanged). When phase numbers differ by > 1, both nodes become backups.

Here is what happens when a worker enters phase 𝜑 + 1. When 𝜑 + 1 is odd

and the node already had value 1, then it becomes a a terminator in state 𝐷𝑋 given

its preference was WIN𝑋 for 𝑋 ∈ {𝐴,𝐵}. Similarly, if the worker was already

in maximum round 𝜑 = 2 log 𝑛 + 1, it becomes a terminator with its preference.

Otherwise, the node remains a worker and sets phase number to 𝜑 + 1. If 𝜑 + 1 is

odd and the node had value 1/2, it updates the value to 1, otherwise, the it keeps the

value unchanged.

Clock Creation Flag: As described above, during a cancellation, clock-creation

flag determines whether one of the nodes becomes a clock instead of becoming a weak

worker. Initially, clock-creation is set to true at every node. We will set a threshold

𝑇𝑐 < 𝜌, such that when any clock with clock-creation=true reaches position 𝑇𝑐, it sets

clock-creation to false. During any interaction between two nodes, one of which has

clock-creation=false, both nodes set clock-creation to false. A node can never change

clock-creation from false back to true.

54

2.4.1 Analysis

We take a sufficiently large3 constant 𝛽, apply Corollary 2.3.2 with 𝛾 = 29(𝛽 + 1),

and take the corresponding 𝜌 = 𝛾′(𝛽) log 𝑛 > 𝛾 log 𝑛 to be the whp upper bound on

the gap that occurs in our phase clock (an interaction between two clocks with gap

≥ 𝜌 leads to an error and both nodes become backups). We set the clock-creation

threshold to 𝑇𝑐 = 23(𝛽 + 1) log 𝑛 < 𝜌.

We start by proving some useful properties of the algorithm.

Lemma 2.4.1. In any reachable configuration of the phased majority algorithm from

valid initial configurations, the number of clock nodes is at most 𝑛/2.

Proof. 𝑛 workers start in input states and at most one clock is created per two nodes

in these initial worker states. This happens only when two workers in the input states

with opposite preferences interact while clock-creation is true. However, the values

get cancelled, and due to the transition rules, the node that did not become a clock

may never re-enter the initial state. Therefore, per each clock created there is one

node that will never become a clock, proving the claim.

Lemma 2.4.2 (Rumor Spreading). Suppose that in some configuration 𝑐, one node

knows a rumor. The rumor is spread by interactions through a set of nodes 𝑆 with

|𝑆| ≥ 𝑛/2. Then, the expected number of interactions from 𝑐 for all nodes in 𝑆

to know the rumor is 𝑂(𝑛 log 𝑛). Moreover, for sufficiently large constant 𝛽, after

𝛽𝑛 log 𝑛 interactions, all nodes know the rumor with probability 1− 𝑛−9.

Proof Adopted. This problem, also known as epidemy spreading, is folklore. Analysis

follows via coupon collector arguments. The expectation bound is trivial and proved

for instance in [AG15], Lemma 4.2.

A formal proof of the high probability claim using techniques from [KMPS95] can

for instance be found in [AAE08a]. The fact that rumor spreads through at least half

of the nodes affects the bounds by at most a constant factor. To see this, observe

that each interaction has a constant probability of being between nodes in 𝑆 ∪ {𝑢},
3For the purposes of Lemma 2.4.2, described later.

55

where 𝑢 is the source of the rumor. Thus, with high probability by Chernoff, constant

fraction of interactions actually occur between these nodes and these intaractions act

as a rumor spreading on 𝑆 ∪ {𝑢}.

Lemma 2.4.3 (Backup). Let 𝑐 be a configuration of all nodes, containing a backup

node. Then, within 𝑂(𝑛2 log 𝑛) expected intaractions from 𝑐, the system will stabilize

to the correct majority decision.

Proof. By Lemma 2.4.2, within 𝑂(𝑛 log 𝑛) expected interactions all nodes will be in

a backup state. That configuration will correspond to a reachable configuration of

the 4-state protocol of [DV12, MNRS14], and all remaining interactions will follow

this backup protocol. As the nodes have the same input in 4-state protocol as in the

original protocol, it can only stabilize to the correct majority decision. Moreover,

the 4-state protocol stabilizes in 𝑛2 log 𝑛 expected interactions from any reachable

configuration, completing the proof.

We call an execution backup-free if no node is ever in a backup state. Next, we

define an invariant and use it to show that the system may never stabilize to the

wrong majority decision.

Invariant 2.4.4 (Sum Invariant). For any configuration 𝑐 define potential function

𝑄(𝑐) as follows. For each worker in 𝑐 in phase 𝜑 with value 𝑣, if its preference

is WIN𝐴, we add 𝑣 · 2log𝑛−⌊(𝜑−1)/2⌋ to 𝑄(𝑐). If its preference is WIN𝐵, we subtract

𝑣 ·2log𝑛−⌊(𝜑−1)/2⌋ from 𝑄(𝑐). Suppose 𝑐 is reachable from an initial configuration where

input 𝑋 ∈ {𝐴,𝐵} has the majority with advantage 𝜖𝑛, by a backup-free execution

during which no node is ever in a terminator state 𝐷𝑋 . If 𝑋 = 𝐴, we have 𝑄(𝑐) ≥ 𝜖𝑛2,

and if 𝑋 = 𝐵, then 𝑄(𝑐) ≤ 𝜖𝑛2.

Lemma 2.4.5 (Correctness). If the system stabilizes to majority decision WIN𝑋 for

𝑋 ∈ {𝐴,𝐵}, then state 𝑋 had the majority in the initial configuration.

Proof. Without loss of generality, assume that state 𝐴 had the majority in the initial

configuration (WIN𝐴 is the correct decision). For contradiction, suppose the system

stabilizes to the decision WIN𝐵. Then, the stable configuration may not contain

56

terminators in state 𝐷𝐴 or strong workers with preference WIN𝐴. We show that such

configurations are unreachable in backup-free executions.

If any node is in state𝐷𝐴 during the execution, it will remain in𝐷𝐴 unless an error

occurs (and nodes change to backup states). In neither of these cases can the system

stabilize to decision WIN𝐵. This is because 𝛾(𝐷𝐴) = WIN𝐴 and in executions where

some node enters a backup state, we stabilize to the correct decision by Lemma 2.4.3.

By Invariant 2.4.4, for any configuration 𝐶 reached by a backup-free execution

during which, additionally, no node is ever is state 𝐷𝐴, we have 𝑄(𝐶) ≥ 𝑛. But any

configuration 𝐶 with strictly positive 𝑄(𝐶) contains at least one strong node with

preference WIN𝐴, as desired.

Hence, in the following, when we show that the system stabilizes, it implies that

the decision is correct.

Lemma 2.4.6 (Terminator). Let 𝑐 be a configuration of all nodes, containing a ter-

minator node. In backup-free executions, the system stabilizes to the correct majority

decision within 𝑂(𝑛 log 𝑛) interactions in expectation and with high probability. Oth-

erwise, the system stabilizes within 𝑂(𝑛2 log 𝑛) expected intaractions.

Proof. If there is a backup node in 𝑐, then the claim follows from Lemma 2.4.3.

Otherwise, the terminator spreads the rumor, such that the nodes that the rumor

has reached are always either in the same terminator state, or in an backup state.

By Lemma 2.4.2, this takes 𝑂(𝑛 log 𝑛) interactions both in expectation and with

high probability. If all nodes are in the same terminator state, then the system has

stabilized to the correct majority decision by Lemma 2.4.5. Otherwise, there is a

backup node in the system, and by Lemma 2.4.3, the system will stabilize within

further 𝑂(𝑛2 log 𝑛) expected interactions.

We derive a lemma about each type of phase.

Lemma 2.4.7 (Cancellation). Suppose in configuration 𝑐 every node is either a clock

or a worker in the same cancellation phase 𝜑 (𝜑 is odd). Consider executing 8(𝛽 +

1)𝑛 log 𝑛 interactions from 𝑐 conditioned on an event that during this interaction

57

sequence, no clock is ever in a state with label EVEN , and that the phase clock gap

is never larger than 𝜌. Let 𝑐′ be the resulting configuration. Then, with probability

1 − 𝑛−𝛽, in 𝑐′ it holds that: (1) all strong nodes have the same preference, or there

are at most 𝑛/10 strong nodes with each preference; (2) every node is still a clock, or

a worker in phase 𝜑.

Proof. By our assumption, no clock is ever in a state with label EVEN during the

interaction sequence. This implies that no worker may enter phase 𝜑 + 1 or become

a terminator. We assumed that the phase clock gap never violates the threshold 𝜌,

and we know all workers are in the same phase, so backups also do not occur.

In configuration 𝑐, all workers are in phase 𝜑, which is a cancellation phase, and

must have values in {0, 1}. This is true for phase 1, and when a node becomes active in

a later cancellation phase, it updates value 1/2 to 1, so having value 1/2 is impossible.

Thus, the only strong nodes in the system have value 1. As no weak worker or a clock

may become strong during these 8(𝛽 + 1)𝑛 log 𝑛 interactions, the count of strong

nodes never increases. The only way the count of strong nodes decreases is when two

agents with value 1 and opposite preferences interact. In this case, the count always

decreases by 2 (both values become 0 or if clock-creation=true, one node becomes a

clock).

Our claim about the counts then is equivalent to Lemma 5 in [AAE08a] invoked

with a different constant (5 instead of 4, as 8(𝛽 + 1)𝑛 log 𝑛 > 5(𝛽 + 1)𝑛 ln𝑛) and by

treating strong nodes with different preferences as (1, 0) and (0, 1).

Lemma 2.4.8 (Duplication). Suppose in configuration 𝑐 every node is either a clock

or a worker in the same duplication phase 𝜑 (𝜑 is even). Consider executing 8(𝛽 +

1)𝑛 log 𝑛 interactions from 𝑐 conditioned on events that during this interaction se-

quence (1) no clock is ever in a state with label ODD , (2) the phase clock gap is never

larger than 𝜌, and (3) the number of weak workers is always ≥ 𝑛/10. Let 𝑐′ be the

resulting configuration. Then, with probability 1 − 𝑛−𝛽, in 𝑐′ it holds that: (1) all

strong workers have value 1/2; (2) every node is still a clock, or a worker in phase 𝜑.

Proof. By our assumption, no clock is ever in a state with label ODD during the

58

interaction sequence. This implies that no worker may enter phase 𝜑 + 1 or become

a terminator. We assumed that the phase clock gap never violates the threshold 𝜌,

and we know all workers are in the same phase, so backups also do not occur.

In a duplication phase, workers may not update a state such that their value

becomes 1. Consider a fixed strong worker state in configuration 𝑐 with value 1. By the

assumption, probability of an interaction between our fixed node and a weak worker

is at least 𝑛/10
𝑛(𝑛−1)/2

≥ 1/5𝑛. If such an interaction occurs, our node’s value becomes

1/2. The probability that this does not happen is at most (1 − 1/5𝑛)8(𝛽+1)𝑛 log𝑛 ≤

(1 − 1/5𝑛)5𝑛·(𝛽+1) ln𝑛 = 𝑛−𝛽−1. By union bound over at most 𝑛 nodes, we get that

with probability 1− 𝑛−𝛽, no worker will have value 1, as desired.

Next, we develop a few more tools before proving stabilization guarantees.

Lemma 2.4.9. Suppose we execute 𝛼(𝛽 + 1)𝑛 log 𝑛 successive interactions for 𝛼 ≥

3/2. With probability 1− 𝑛−𝛽, no node interacts more than 2𝛼(1 +
√︁

3
2𝛼

)(𝛽 + 1) log 𝑛

times in these interactions.

Proof. Consider a fixed node in the system. In any interaction, it has a probability

2/𝑛 of being chosen. Thus, we consider a random variable Bin(𝛼(𝛽 + 1)𝑛 log 𝑛, 2/𝑛),

i.e. the number of successes in independent Benoulli trials with probability 2/𝑛.

By Chernoff bound, setting 𝜎 =
√︁

3
2𝛼
≤ 1, the probability interacting more than

2𝛼(1 + 𝜎)(𝛽 + 1) log 𝑛 times is at most 1/𝑛𝛽+1. Union bound over 𝑛 nodes completes

the proof.

Notice that the number of interactions trivially upper bounds the number of times

a node can go through any type of state transition during these interactions. In

particular, the probability that any clock in the system increases its position more

than 2𝛼(1 +
√︁

3
2𝛼

)(𝛽 + 1) log 𝑛 times during these interactions is 𝑛−𝛽.

Lemma 2.4.10. Consider a configuration in which there are between 2𝑛/5 and 𝑛/2

clocks, each with a position in [0, 2𝜌), and all remaining nodes are workers in the

same phase 𝜑, where 𝜑 is odd. Then, the number of interactions before some clock

reaches position 2𝜌 is 𝑂(𝑛 log 𝑛) with probability 1− 𝑛−𝛽.

59

Proof. In this case, until some clock reaches position 2𝜌, no backup or terminator

nodes may appear in the system. Every interaction between two clocks increases one

of them. Therefore, the number of interactions until some clock reaches position 2𝜌

is upper bounded by the number of interactions until 2𝜌𝑛 interactions are performed

between clocks. At each interaction, two clocks are chosen with probability at least

1/9 (for all sufficiently large 𝑛). We are interested in the number of Bernoulli trials

with success probability 1/9, necessary to get 2𝜌𝑛 successes with probability at least

1− 𝑛−𝛽. As we have 𝜌 = Θ(log 𝑛), this is 𝑂(𝑛 log 𝑛) by Chernoff bound.

Lemma 2.4.11. Let 𝛿(𝑐) for a configuration 𝑐 be the number of weak workers minus

the number of workers with value 1. Suppose that throughout a sequence of interactions

from configuration 𝑐 to configuration 𝑐′ it holds that (1) all nodes are clocks and

workers; and (2) no worker enters an odd phase. Then, 𝛿(𝑐′) ≥ 𝛿(𝑐).

Proof. We will prove that 𝛿 is monotonically non-decreasing for configurations along

the interaction sequence from 𝑐 to 𝑐′. Under our assumptions, interactions that affect

𝛿 are cancellations and duplications. A cancellation decreases the count of workers

with value 1 and increases the count of weak workers, increasing 𝛿 of the configuration.

A duplication decrements both, the number of workers with value 1, and the number

of weak workers, leaving 𝛿 unchanged.

The final theorem below is proved in two parts, in Lemma 2.4.13 and Lemma 2.4.14

that follow.

Theorem 2.4.12. If the initial majority state has an advantage of 𝜖𝑛 nodes over

the minority state, our phased majority algorithm stabilizes to the correct majority

decision in 𝑂(log 1/𝜖 · log 𝑛) parallel time, both w.h.p. and in expectation.

Lemma 2.4.13. If the initial majority state has an advantage of 𝜖𝑛 nodes over the

minority state, our algorithm stabilizes to the correct majority decision in 𝑂(log 1/𝜖 ·

log 𝑛) parallel time, with high probability.

Proof. In this argument, we repeatedly consider high probability events, and suppose

they occur. In the end, an union bound over all these events gives the desired result.

60

Consider the first 8(𝛽 + 1)𝑛 log 𝑛 interactions of the protocol. Initially there are

no clocks, and each clock starts with a position 0 and increases its position at most

by one per interaction. By Lemma 2.4.9, with probability 1 − 𝑛−𝛽, during these

interactions no clock may reach position 𝑇𝑐 = 23(𝛽+ 1) log 𝑛, as that would require a

node to interact more than 𝑇𝑐 times. The states of the clock with label EVEN all have

position 2𝜌 ≥ 58(𝛽 + 1) log 𝑛. Therefore, we can apply Lemma 2.4.7 and get that in

the resulting configuration 𝑐, with probability 1− 𝑛−𝛽, either all strong workers have

the same preference, or the number of strong workers with each preference is at most

𝑛/10. We will deal with the case when all strong nodes have the same preference

later. For now, suppose the number of strong workers with each preference is at

most 𝑛/10. As every cancellation up to this point creates one weak worker and one

clock, the number of clocks and weak workers is equal and between 2𝑛/5 and 𝑛/2.

Thus, for 𝛿 defined as in Lemma 2.4.11 we have 𝛿(𝑐) ≥ 𝑛/5 > 𝑛/10. We also know

that in configuration 𝑐, each node is either a clock that has not yet reached position

𝑇𝑐 = 23(𝛽 + 1) log 𝑛 (and thus, also not reached a position with a label EVEN), or it

is a worker still in phase 1.

By Lemma 2.4.10, with probability at least 1 − 𝑛−𝛽, within 𝑂(𝑛 log 𝑛) interac-

tions we reach a configuration 𝑐′ where some clock is at a position 2𝜌, which has

a label EVEN . But before this, some clock must first reach position 𝑇𝑐. Consider

the first configuration 𝑐1 when this happens. The clock at position 𝑇𝑐 would set

clock-creation ← false. Notice that from 𝑐1, clock-creation=false propagates via

rumor spreading, and after the rumor reaches all nodes, no node will ever have

clock-creation=true again, and no more clocks will be created. By Lemma 2.4.2, this

will be the case with high probability4 in a configuration 𝑐2 reached after (3/2)𝛽𝑛 log 𝑛

interactions from 𝑐1. Moreover, by Lemma 2.4.9, no clock will have reached a position

larger than 𝑇𝑐 + 6(𝛽 + 1) log 𝑛 ≤ 29(𝛽 + 1) log 𝑛 in 𝑐2, which is precisely the quantity

𝛾 log 𝑛 we used as the maximum starting gap when applying Corollary 2.3.2 to deter-

mine the 𝜌 of our phase clock. In 𝑐2, all clocks have positions in [0, 29(𝛽 + 1) log 𝑛),

and no more clocks will ever be created. By Lemma 2.4.1 and since the number of

4Recall that 𝛽 was chosen precisely to be sufficiently large for the whp claim of Lemma 2.4.2.

61

clocks was ≥ 2𝑛/5 in configuration 𝑐, the number of clock nodes is from now on fixed

between 2𝑛/5 and 𝑛/2 (unless some node becomes a backup or a terminator). Also,

the definition of 𝜌 lets us focus on the high probability event in Corollary 2.3.2, that

the phase clock gap remains less than 𝜌 during Θ(𝑛 log 𝑛) interactions following 𝑐2.

Since 29(𝛽+1) log 𝑛 < 𝜌 < 2𝜌, in 𝑐2 no clock has reached a state with label EVEN ,

and thus, configuration 𝑐2 occurs after configuration 𝑐 and before configuration 𝑐′.

Recall that we reach 𝑐′ from 𝑐 within 𝑂(𝑛 log 𝑛) interactions with high probability.

In 𝑐′, some clock has reached position 2𝜌, but the other nodes are still either clocks

with position in [𝜌, 2𝜌), or workers in phase 1. Let 𝑐′′ be a configuration reached

after (3/2)𝛽𝑛 log 𝑛 interactions following 𝑐′. By Lemma 2.4.9, in 𝑐′′, all clocks will

have positions ≤ 2𝜌+ 6(𝛽 + 1) log 𝑛 < 3𝜌. Combining with the fact that at least one

node was at 2𝜌 in 𝑐′, maximum gap is < 𝜌, and positions [𝜌, 2𝜌) have label buffer,

we obtain that during the (3/2)𝛽𝑛 log 𝑛 interactions from 𝑐′ leading to 𝑐′′, all clocks

will be in states with label EVEN or buffer. However, there is at least one clock with

label EVEN starting from 𝑐′, spreading the rumor through workers making them

enter phase 2. Due to Lemma 2.4.1, at least half of the nodes are workers. Therefore,

by Lemma 2.4.2, in 𝑐′′, with probability at least 1−𝑛−9, all worker nodes are in phase

2. All clocks will be less than gap 𝜌 apart from each other with some clock with a

position in [2𝜌, 3𝜌), and no clock with position ≥ 3𝜌.

We now repeat the argument, but for a duplication phase instead of a cancellation

using Lemma 2.4.8, and starting with all clocks with positions in [2𝜌, 3𝜌) as opposed to

[0, 𝜌) and all workers in phase 2. We consider a sequence of 8(𝛽+1)𝑛 log 𝑛 interactions,

and by Lemma 2.4.9, no clock will reach position 3𝜌+ 23(𝛽+ 1) log 𝑛. Thus, no node

will update to an odd phase and since 𝛿(𝑐) ≥ 𝑛/10, by Lemma 2.4.11, the number

of weak nodes must be at least 𝑛/10 throughout the interaction sequence, allowing

the application of Lemma 2.4.8. We get that with high probability, after 𝑂(𝑛 log 𝑛)

rounds, there will again only be clocks and workers in the system. All clocks will be

less than gap 𝜌 apart with some clock at a position in [3𝜌, 0) and with no clock yet

reaching position 0 (wrapping around).

Now, due to the loop structure of the phase clock, we can use the same argument

62

as in Lemma 2.4.10 to claim that, with probability at least 1−𝑛−𝛽, within 𝑂(𝑛 log 𝑛)

interactions we reach a configuration where some clock is at a position 0 (label ODD).

Because maximum gap is < 𝜌, all clocks will have label buffer, and the clock at 0 will

now spread the rumor making all workers enter phase 3 within the next (3/2)𝛽𝑛 log 𝑛

interactions. No worker will become a terminator, since Lemma 2.4.8 guarantees that

all the nodes with value 1 get their values duplicated (turned into 1/2) before they

enter phase 3.

Then, we repeat the argument for a cancellation phase (as for phase 1), except

that interactions do not create clock nodes (due to clock-creation=false) With high

probability, within 𝑂(𝑛 log 𝑛) interactions, all nodes will again be in a worker or a

clock state. Moreover, either all strong nodes will support the same decision, or

the number of strong nodes supporting each decision will be at most 𝑛/10. Since

by Lemma 2.4.1, the number of clocks is at most 𝑛/2, 𝛿 as defined in Lemma 2.4.11

is at least 𝑛/2− 2(𝑛/10)− 2(𝑛/10) = 𝑛/10 for this configuration, and will remain so

until some node reaches phase 5, allowing us to use Lemma 2.4.8 for phase 4, etc.

Due to Invariant 2.4.4, the case when all strong worker nodes support the same

decision must occur before phase 2 log 1/𝜖+ 1. Assume that original majority was 𝐴,

then𝑄(𝑐) must remain larger than 𝜖𝑛2 (up to this point all nodes are clocks or workers,

so the condition about 𝐷𝐴 holds). The maximum potential in phase 2 log 1/𝜖 + 1 is

𝜖𝑛2 and it is attained when all nodes are strong and support WIN𝐴.

Hence, we only need to repeat the argument 𝑂(log 1/𝜖) times. The number of high

probability events that we did union bound over is 𝑂(𝑛 · log 1/𝜖 · log 𝑛) (number of

interactions for the phase clock). Combining everything, we get that with probability

1− 𝑂(log 1/𝜖)
𝑛9 , the algorithm stabilizes within 𝑂(log 1/𝜖 · log 𝑛) parallel time.

Lemma 2.4.14. If the initial majority state has an advantage of 𝜖𝑛 nodes over the

minority state, our algorithm stabilizes to the correct majority decision in 𝑂(log 1/𝜖 ·

log 𝑛) expected parallel time.

Proof. We know that in the high probability case of Lemma 2.4.13, the protocol sta-

bilizes within 𝑂(log 1/𝜖 · log 𝑛) parallel time. What remains to bound the expectation

63

the low probability events of Lemma 2.4.13.

Notice that as soon as any node gets into an backup or a terminator state,

by Lemma 2.4.3 and Lemma 2.4.6, the remaining expected time for the protocol to

stabilize is 𝑂(𝑛2 log 𝑛) interactions. Therefore, we will be looking to bound expected

time to reach configurations with a backup or a terminator node.

Without loss of generality, suppose 𝐴 is the inital majority. If all nodes start in 𝐴,

then the system is already stable with the correct decision. If the initial configuration

contains just a single node in state 𝐵, then it takes expected 𝑂(𝑛) interactions for

this node to interact with a node in state 𝐴, and lead to a configuration where 𝑛− 2

nodes are in state 𝐴 (worker state with value 1 and preference WIN𝐴), one node is

a worker with value 0 and one node is a clock with position 0. One of these two

nodes (weak worker and the clock) has preference WIN𝐵 and it takes another 𝑂(𝑛)

expected interactions for it to meet a strong node with preference WIN𝐴 and update

its own preference. At that point (after 𝑂(1) expected parallel time) the system will

be stable with the correct majority decision (since there is only one clock, its position

remains at 0, and because of this, workers do not perform any phase updates).

Next, we consider the case when there are at least 2 nodes in state 𝐵 in the initial

configuration. Interactions between two nodes both in state 𝐴 and two nodes both

in state 𝐵 do not lead to state updates. After one cancellation, as in the previous

case, there will be nodes in input states, one clock stuck at position 0, and one weak

worker that might change its preference, but not phase or value. Therefore, after

𝑂(𝑛) expected interactions, we will get at least two clock nodes in the system.

Unless some node ends up in a backup or a terminator state (this is a good case,

as discussed earlier) the number of clocks never decreases. During interactions when

there are 𝑘 ≥ 2 clocks in the system, the probability of an interaction between two

clocks is 𝑘(𝑘−1)/2
𝑛(𝑛−1)/2

≥ 𝑘/𝑛2. Therefore, it takes 𝑂(𝑛2/𝑘) expected interactions for one of

the clocks to increment its position. After 𝑘 ·4𝜌 = 𝑂(𝑘 log 𝑛) such increments of some

clock position, at least one of the clocks should go through all the possible positions.

Notice that this statement is true without the assumption about the maximum gap

of the clock (important, because that was a with high probability guarantee, while

64

here we are deriving an expectation bound that holds from all configurations)

Consider any non-clock node 𝑣 in the system in some configuration 𝑐. Since we

know how to deal with the case when some node ends up in a backup or a terminator

state, suppose 𝑣 is a worker. The clock node that traverses all positions in [0, 4𝜌)

necessarily passes through a state with label ODD and with label EVEN . If 𝑣 is in

an odd phase and does not move to an even phase, then when the clock is in state

labelled EVEN , there would be 1/𝑛2 chance of interacting with 𝑣, and vice versa. If

such intaraction occurs, and 𝑣 does not change its state to a non-worker, then it must

necessarily increase its phase. Therefore, in any given configuration, for any given

worker, the expected number of interactions before it either changes to a non-worker

state or increases it phase is 𝑂(𝑘 log 𝑛 · 𝑛2

𝑘
· 𝑛2) = 𝑂(𝑛4 log 𝑛).

By Lemma 2.4.1, there can be at most 𝑛/2 clocks in the system in any configura-

tion. Also, non-worker states can never become worker states again. The maximum

number of times a worker can increase its phase is 𝑂(log 𝑛). Thus, within 𝑂(𝑛5 log2 𝑛)

expected interactions, either some node should be in a backup or terminator state,

or in the maximum phase possible (2 log 𝑛+ 1).

If some worker reaches a maximum phase possible, there are no backup or ter-

minator nodes and there exists another worker with a smaller phase, within 𝑂(𝑛2)

expected interactions they will interact. This will either turn both nodes into back-

ups, or the other node will also enter phase 2 log 𝑛 + 1. Thus, within at most 𝑂(𝑛3)

additional expected interactions, all workers will be in phase 2 log 𝑛+ 1 (unless there

is a backup or a terminator in the system). This contradicts with Invariant 2.4.4,

implying that our assumption that no node gets into a backup or a terminator state

should be violated within expected 𝑂(𝑛5 log2 𝑛) interactions (using linearity of expec-

tation and discarding asymptotically dominated terms). Hence, the protocol always

stabilizes within 𝑂(𝑛4 log2 𝑛) expected parallel time. The system stabilizes in this ex-

pected time in the low probability event of Lemma 2.4.13, giving the total expectated

time of at most 𝑂(log 1/𝜖 · log 𝑛) + 𝑂(log 1/𝜖·𝑛4·log2 𝑛)
𝑛9 = 𝑂(log 1/𝜖 · log 𝑛) as desired.

65

2.5 Synthetic Coin Flips

The state transition rules in population protocols are deterministic, i.e. the interact-

ing nodes do not have access to random coin flips. In this section, we introduce a

general technique that extracts randomness from the schedule and after only constant

parallel time, allows the interactions to rely on close-to-uniform synthetic coin flips.

This turns out to be an useful gadget for designing efficient protocols.

Suppose that every node in the system has a boolean parameter coin, initialized

with zero. This extra parameter can be maintained independently of the rest of the

protocol, and only doubles the state space. When agents 𝑥 and 𝑦 interact, they both

flip the values of their coins. Formally, 𝑥′.coin ← 1−𝑥.coin and 𝑦′.coin ← 1−𝑦.coin,

and the update rule is fully symmetric.

The nodes can use the coin value of the interaction partner as a random bit in a

randomized algorithm. Clearly, these bits are not independent or uniform. However,

we prove that with high probability the distribution of coin quickly becomes close to

uniform and remains that way. We use the concentration properties of random walks

on the hypercube, analyzed previously in other contexts, e.g. [AR16]. We also note

that a similar algorithm is used by Laurenti et al. [CKL16] to generate randomness

in chemical reaction networks, although they do not prove convergence bounds.

2.5.1 Analysis

We will prove the following guarantee.

Theorem 2.5.1. For any 𝑖 ≥ 0, let 𝑋𝑖 be the number of coin values equal to one in the

system after 𝑖 interactions. Fix interaction index 𝑘 ≥ 𝛼𝑛 for a fixed constant 𝛼 ≥ 2.

For all sufficiently large 𝑛, we have that Pr[|𝑋𝑘 − 𝑛/2| ≥ 𝑛/24𝛼] ≤ 2 exp(−𝛼
√
𝑛/8).

Proof. We label the nodes from 1 to 𝑛, and represent their coin values by a binary

vector of size 𝑛. Let 𝑘0 = 𝑘 − 𝛼𝑛, and fix the vector 𝑣0 representing the coin values

of the nodes after the interaction of index 𝑘0. For example, if 𝑘0 = 0, we know 𝑣 is a

zero vector, because of the way the algorithm is initialized.

66

For 1 ≤ 𝑡 ≤ 𝛼𝑛, denote by 𝑌𝑡 the pair of nodes that are flipped during interac-

tion 𝑘0 + 𝑡. Then, given 𝑣0 and 𝑌1, . . . , 𝑌𝛼𝑛, 𝑋𝑘 can be computed deterministically.

Moreover, it is important to note that 𝑌𝑗 are independent random variables and that

changing any one 𝑌𝑗 can only change the value of 𝑋𝑘 by at most 4. Hence, we can

apply McDiarmid’s inequality [McD89], stated below.

Claim 2.5.2 (McDiarmid’s inequality). Let 𝑌1, . . . , 𝑌𝑚 be independent random vari-

ables and let 𝑋 be a function 𝑋 = 𝑓(𝑌1, . . . , 𝑌𝑚), such that changing variable 𝑌𝑗 only

changes the function value by at most 𝑐𝑗. Then, we have that

Pr[|𝑋 − E[𝑋]| ≥ 𝜖] ≤ 2 · exp

(︃
− 2𝜖2∑︀𝑚

𝑗=1 𝑐
2
𝑗

)︃
.

Returning to our argument, assume that the sum of coin values after interaction

𝑘 − 𝛼𝑛 is fixed and represented by the vector 𝑣0. In the above inequality, we set

𝑋𝑘 = 𝑓𝑣0(𝑌1, . . . , 𝑌𝛼𝑛), 𝜖 = 𝛼𝑛3/4 and 𝑐𝑗 = 4, for all 𝑗 from 1 to 𝛼𝑛. We get that

Pr[|𝑋𝑘 − E[𝑋𝑘|] ≥ 𝛼𝑛3/4] ≤ 2 · exp(−𝛼2
√
𝑛/8).

Fixing 𝑣0 also fixes the number of ones among coin values in the system at that

moment, which we will denote by 𝑥, i.e.

𝑥 :=
𝑛∑︁

𝑗=1

𝑣𝑗(𝑘0) = 𝑋𝑘−𝛼𝑛.

We then notice that the following claim holds, whose proof is deferred.

Claim 2.5.3. E[𝑋𝑖+𝑚 | 𝑋𝑖 = 𝑥] = 𝑛/2 + (1− 4/𝑛)𝑚 · (𝑥− 𝑛/2).

By Claim 2.5.3 we have

E[𝑋𝑘 | 𝑋𝑘−𝛼𝑛 = 𝑥] = 𝑛/2 + (1− 4/𝑛)𝛼𝑛 · (𝑥− 𝑛/2).

67

Since 0 ≤ 𝑥 ≤ 𝑛 and (1− 4/𝑛)𝛼𝑛 ≤ exp(−4𝛼), we have that

𝑛/2− 𝑛/24𝛼+1 ≤ E[𝑋𝑘 | 𝑋𝑘−𝛼𝑛 = 𝑥] ≤ 𝑛/2 + 𝑛/24𝛼+1.

For any fixed 𝑣, we can apply McDiarmid’s inequality as above, and get an upper

bound on the probability that 𝑋𝑘 (given fixed 𝑣0), diverges from the expectation by

at most 𝛼𝑛3/4. But, as we just established, for any 𝑣0, the expectation we get in

the bound will be at most 𝑛/24𝛼+1 away from 𝑛/2. Combining these and using that

𝑛/24𝛼+1 ≥ 𝛼𝑛3/4 for all sufficiently large 𝑛 gives the desired bound.

Next, we provide the missing proof of the claim used above.

Claim 2.5.3. E[𝑋𝑖+𝑚 | 𝑋𝑖 = 𝑥] = 𝑛/2 + (1− 4/𝑛)𝑚 · (𝑥− 𝑛/2).

Proof. If two agents both with coin values one are selected, the number of ones

decreases by two. If both coin values are zero, it increases by two, and otherwise

stays the same. Hence, we have that

E[𝑋𝑖+𝑚 | 𝑋𝑖+𝑚−1 = 𝑡] = (𝑡− 2) · Pr[𝑋𝑖+𝑚 = 𝑡− 2]

+ 𝑡 · 𝑃𝑟[𝑋𝑖+𝑚 = 𝑡] + (𝑡+ 2) · Pr[𝑋𝑖+𝑚 = 𝑡+ 2]

= (𝑡− 2) · 𝑡(𝑡− 1)

𝑛(𝑛− 1)
+ 𝑡 · 2𝑡(𝑛− 𝑡)

𝑛(𝑛− 1)

+ (𝑡+ 2) · (𝑛− 𝑡)(𝑛− 𝑡− 1)

𝑛(𝑛− 1)

= 𝑡+
2

𝑛(𝑛− 1)
·
(︀
𝑛2 − 2𝑛𝑡− 𝑛+ 2𝑡

)︀
= 𝑡 ·

(︂
1− 4

𝑛

)︂
+ 2

Thus, we get a recursive dependence E[𝑋𝑖+𝑚] = E[𝑋𝑖+𝑚−1] · (1− 4/𝑛) + 2, that gives

E[𝑋𝑖+𝑚] = 2 ·
𝑚−1∑︁
𝑗=0

(︂
1− 4

𝑛

)︂𝑗

+ E[𝑋𝑖] ·
(︂

1− 4

𝑛

)︂𝑚

=
𝑛

2
+

(︂
1− 4

𝑛

)︂𝑚 (︁
𝑥− 𝑛

2

)︁

by telescoping.

68

2.5.2 Approximate Counting

Synthetic coins can be used to estimate the number of agents in the system, as follows.

Each node executes the coin-flipping protocol, and counts the number of consecutive

1 flips it observes, until the first 0. Each agent records the number of consecutive 1

coin flips as its estimates. The agents then exchange their estimates, always adopting

the maximum estimate. It is easy to prove that the nodes will eventually stabilize

to a number which is a constant-factor approximation of log 𝑛, with high probability.

This property is made precise in [AAE+17] in the proof of Lemma D.2.

2.6 Phased Leader Election

We partition the state space into clock states, contender states, and follower states. A

clock state is just a position on the phase clock loop. A contender state and a follower

state share the following two fields (1) a phase number in [1,𝑚], which we will fix

to 𝑚 = 𝑂(log 𝑛) later, and (2) a High/Low indicator within the phase. Finally, all

states have the following bit flags (1) clock-creation, as in the majority protocol, and

(2) a coin bit for generating synthetic coin flips with small bias, as described in the

previous section. Similar to the phased majority algorithm, we will set 𝜌 = Θ(log 𝑛)

for the phase clock, and have the loop size of the phase clock be Ψ = 4𝜌. Thus, the

state complexity of the algorithm is Θ(log 𝑛).

Initially, all nodes are contenders, with phase number 1 and a High indicator. The

coin is initialized with 0 and clock-creation=true. Each node flips its coin at every

interaction. As in the majority, we assign one of three different labels to each clock

position, buffer, ODD and EVEN . Only contenders map to the leader output, and

our goal is stabilize to a single contender.

Clock States and Flags: Clock nodes, as in Section 2.4, implement the phase clock

from Section 2.3 to update their position. When a clock with clock-creation=true

reaches the threshold 𝑇𝑐, it sets clock-creation to false. The threshold is set as in the

phased majority in Section 2.4, and clock-creation flag works exactly the same way.

69

Contenders and Followers: The general idea of the followers comes from [AG15],

and it is also used in [AAE+17]. They help contenders eliminate each other by

transmitting information.

More precisely, a follower maintains a maximum pair of a phase number and a

High/Low indicator (lexicographically ordered, High > Low) ever encountered in an

interaction partner (regardless of whether the partner was a contender or a follower).

When a contender meets another contender or a follower with a larger phase-indicator

pair than its own, it becomes a follower and adopts the pair. A contender or a follower

with a strictly larger pair than its interaction partner does not update its state. Also,

when a contender and a follower meet and they both have the same pair, both remain

in their respective states.

When two contenders with the same pair interact and clock-creation=true, one of

them becomes a clock at position 0. If clock-creation=false, then one of them becomes

a follower with the same pair. The other contender remains in the same state. For

technical reasons, we want to avoid creating more than 𝑛/2 clocks. This can be

accomplished by adding a single created bit initialized to 0. When two contenders

with the same pair meet, and both of their created bit is 0, then one of them becomes a

clock and another sets created to 1. Otherwise, if one of the contenders has created= 1,

then it becomes a follower; the other remains unchanged. Then Lemma 2.4.1 still

works and gives that we will never have more than 𝑛/2 clocks.

Contender Phase Update Consider a contender in phase 𝜑. If 𝜑 is odd phase and

the contender meets a clock whose state has an EVEN label, or when 𝜑 is even and

the contender meets a clock with an ODD-labelled state, then it increments its phase

number to 𝜑 + 1. However, again due to technical reasons (to guarantee unbiased

synthetic randomness), entering the next phase happens in two steps. First the node

changes to a special intermediate state (this can be implemented by a single bit that

is true if the state is intermediate), and only after the next interaction changes to

non-intermediate contender with phase 𝜑 + 1 and sets the High/Low indicator to

the coin value of the latest interaction partner. If the coin was 1, indicator is set to

70

High and if the coin was 0, then it is set to Low . For the partner, meeting with an

intermediate state is almost like missing an interaction - only the coin value is flipped.

An exception to the rule of incrementing the phase is obviously when a contender is

in phase 𝑚. Then the state does not change.

2.6.1 Analysis

Here we show how to adjust analysis of the phased majority algorithm to get the

desired guaranteed for phased leader election.

Theorem 2.6.1. Our algorithm elects a unique stable leader within 𝑂(log2 𝑛) parallel

time, both with high probability and in expectation.

Proof. We first prove that is always at least one contender in the system. Assume

the contrary, and consider the interaction sequence leading to a contenderless config-

uration. Consider the contender which had the highest phase-indicator pair when it

got eliminated, breaking ties in favor of the later interaction. This is a contradiction,

because no follower or other contender may have eliminated it, as this requires having

a contender with a larger phase-indicator pair.

By construction, the interacted bit combined with Lemma 2.4.1 ensures that there

are never more than 𝑛/2 clocks in the system. We set up the phase clock with the

same 𝜌 as in majority, and also the clock-creation threshold 𝑇𝑐 = 23(𝛽 + 1) log 𝑛.

After the first 8(𝛽 + 1)𝑛 log 𝑛 interactions, with probability 1− 𝑛−𝛽, there will be at

least 2/5𝑛 clocks. The proof of this claim is similar to Lemma 2.4.8: if the number

of contenders with initial state and created set to 0 was at least 𝑛/10 throughout

the sequence of interactions, then any given node would have interacted with such

node with high probabiliy, increasing the number of clocks. Otherwise, the number of

nodes with created = 0 falls under 𝑛/10, but there are as many nodes that are clocks

as contenders that are not created = 0 and at least (𝑛− 𝑛/10)/2 > 2𝑛/5.

Now we can apply the same argument as in Lemma 2.4.13 and get that, with

high probability, the nodes will keep entering larger and larger phases. In each phase,

as in the majority argument, a rumor started at each node reaches all other nodes

71

with high probability. This means that if a contender in a phase selects indicator

High, then all other contenders that select indicator Low in the same phase will get

eliminated with high probability. By Theorem 4.1 from [AAE+17], the probability

that a given contender picks High is at least 1/2 − 1/28 with probability at least

1− 2 exp(−
√
𝑛/4). For every other node, the probability of choosing Low is similarly

lower bounded. Thus, Markov’s inequality implies that in each phase, the number of

contenders decreases by a constant fraction with constant probability, and phases are

independent of each other. By a Chernoff bound, it is sufficient to take logarithmically

many phases to guarantee that one contender will remain, with high probability,

taking a union bound with the event that each phase takes 𝑂(log 𝑛) parallel time, as

proved in Lemma 2.4.13

For the expected bound, observe that when there are more than two contenders in

the system, there is 1/𝑛2 probability of their meeting. Hence, the protocol stabilizes

from any configuration, in particular in the with low probability event, within 𝑂(𝑛3)

interactions, which does not affect the total expected parallel time of 𝑂(log2 𝑛).

2.7 Lower Bounds

In the previous sections, we have been implicitly consistent with notation in the

following sense: we have primarily used capital latin letters for states, small latin

letters for configurations, and greek letters for constants. We may not abide with

these principles in this section, because we will instead be consistent with the notation

used in the lower bound papers, and also with the original notation of the technical

tools that we use and extend [Dot14, CCDS15, DS15, AAE+17].

We start by the developing this technical machinery.

2.7.1 Technical Tools

Fix a function 𝑓 : N → R+. Consider a configuration 𝑐 reached by an execution

of a protocol 𝒫𝑘 (a protocol with 𝑘 states), and states 𝑟1, 𝑟2 ∈ Λ𝑘. A transition

𝛼 : (𝑟1, 𝑟2) → (𝑧1, 𝑧2) is an 𝑓 -bottleneck for 𝑐, if 𝑐(𝑟1) · 𝑐(𝑟2) ≤ 𝑓(|𝑐|). This bot-

72

tleneck transition implies that the probability of a transition (𝑟1, 𝑟2) → (𝑧1, 𝑧2) is

bounded. Hence, proving that transition sequences from initial configuration to final

configurations contain a bottleneck implies a lower bound on the stabilization time.

Conversely, if a protocol stabilizes fast, then it must be possible to stabilize using a

transition sequence which does not contain any bottleneck.

Given a protocol 𝒫𝑘 with 𝑘 states executing in a system of 𝑛 agents, for a con-

figuration 𝑐 and a set of configurations 𝑌 , let us define 𝑇 [𝑐 =⇒ 𝑌] as the expected

parallel time it takes from 𝑐 to reach some configuration in 𝑌 for the first time.

Lemma 2.7.1. In a system of 𝑛 nodes executing protocol 𝒫𝑘, let 𝑓 : N → R+ be a

fixed function, 𝑐 : Λ𝑘 → N be a configuration, and 𝑌 be a set of configurations, such

that every transition sequence from 𝑐 to some 𝑦 ∈ 𝑌 has an 𝑓 -bottleneck. Then it

holds that 𝑇 [𝑐 =⇒ 𝑌] ≥ 𝑛−1
2𝑓(𝑛)𝑘2

.

Proof. By definition, every transition sequence from 𝑐 to a configuration 𝑦 ∈ 𝑌 con-

tains an 𝑓 -bottleneck, so it is sufficient to lower bound the expected time for the first

𝑓 -bottleneck transition to occur from 𝑐 before reaching 𝑌 . In any configuration 𝑐′

reachable from 𝑐, for any pair of states 𝑟1, 𝑟2 ∈ Λ𝑘 such that (𝑟1, 𝑟2) → (𝑜1, 𝑜2) is an

𝑓 -bottleneck transition in 𝑐′, the definition implies that 𝑐′(𝑟1) · 𝑐′(𝑟2) ≤ 𝑓(𝑛). Thus,

the probability that the next pair of agents selected to interact are in states 𝑟1 and

𝑟2, is at most 2𝑓(𝑛)
𝑛(𝑛−1)

. Taking an union bound over all 𝑘2 possible such transitions, the

probability that the next transition is 𝑓 -bottleneck is at most 𝑘2 2𝑓(𝑛)
𝑛(𝑛−1)

. Bounding by

a Bernoulli trial with success probability 2𝑓(𝑛)𝑘2

𝑛(𝑛−1)
, the expected number of interactions

until the first 𝑓 -bottleneck transition is at least 𝑛(𝑛−1)
2𝑓(𝑛)𝑘2

. The expected parallel time is

this quantity divided by 𝑛, completing the argument.

Lemma 2.7.2. Consider a population protocol 𝒫𝑘 for majority, executing in a system

of 𝑛 agents. Fix a function 𝑓 . Assume that 𝒫𝑘 stabilizes in expected time 𝑜
(︁

𝑛
𝑓(𝑛)·𝑘2

)︁
from an initial configuration 𝑖𝑛. Then, for all sufficiently large 𝑛, there exists a

configuration 𝑦𝑛 with 𝑛 agents and a transition sequence 𝑞𝑛, such that (1) 𝑖𝑛 =⇒𝑞𝑛 𝑦𝑛,

(2) 𝑞𝑛 has no 𝑓 -bottleneck, and (3) 𝑦𝑛 has a stable majority decision.

73

Proof. We know that the expected stabilization time from 𝑖𝑛 is finite. Therefore,

a configuration 𝑦𝑛 that has a stable majority decision must be reachable from 𝑖𝑛

through some transition sequence 𝑞𝑛. However, we also need 𝑞𝑛 to satisfy the second

requirement.

Let 𝑌𝑛 be a set of all stable output configurations with 𝑛 agents. Suppose for con-

tradiction that every transition sequence from 𝑖𝑛 to some 𝑦 ∈ 𝑌𝑛 has an 𝑓 -bottleneck.

Then, using Lemma 2.7.1, the expected time to stabilize from 𝑖𝑛 to a majority deci-

sion is 𝑇 [𝑖𝑛 =⇒ 𝑌𝑛] ≥ 𝑛−1
2𝑓(𝑛)𝑘2

= Θ(𝑛
𝑓(𝑛)𝑘2

). But we know that the protocol stabilizes

from 𝑖𝑛 in time 𝑜(𝑛
𝑓(𝑛)𝑘2

), and the contradiction completes the proof.

For our general state lower bounds, we will also develop a slightly different version

of the above lemma. It is based on the fact that all protocols with a limited state

count will end up in a configuration in which all states are present in large counts.

The following statement, provided here without a proof, generalizes the main result

of [Dot14] to a super-constant state space. We prove it in [AAE+17], Lemma A.1.

Lemma 2.7.3 (Density Lemma). Consider a population protocol 𝒫𝑘 executing in a

system of 𝑛 agents, where 𝑘 ≤ 1/2 log log 𝑛, from an initial configuration 𝑖𝑛, where for

each state 𝑠 ∈ Λ𝑘, either 𝑖𝑛(𝑠) = 0, or 𝑖𝑛(𝑠) ≥ 𝑛/𝑀 , for some constant 𝑀 . Without

loss of generality, assume that every state in Λ𝑘 can actually be produced by some

transition sequence5. Then, with probability ≥ 1− (1/𝑛)0.99, the execution will reach

some configuration 𝑐, such that for every state 𝑠 ∈ Λ𝑘, we have 𝑐(𝑠) ≥ 𝑛0.99.

Here is the promised modified version of Lemma 2.7.2.

Lemma 2.7.4. Consider a population protocol 𝒫𝑘 executing in a system of 𝑛 agents,

where 𝑘 ≤ 1/2 log log 𝑛, from an initial configuration 𝑖𝑛, where for each state 𝑠 ∈ Λ𝑘,

either 𝑖𝑛(𝑠) = 0, or 𝑖𝑛(𝑠) ≥ 𝑛/𝑀 , for some constant 𝑀 . Without loss of generality,

assume that every state in Λ𝑘 can be produced by some transition sequence. Fix a

function 𝑓 . Assume that 𝒫𝑘 stabilizes in expected time 𝑜
(︁

𝑛
𝑓(𝑛)·𝑘2

)︁
from 𝑖𝑛. Then, for

all sufficiently large 𝑛, there exist configuration 𝑥𝑛, 𝑦𝑛 with 𝑛 agents, and a transition

5Otherwise, we would just consider the subset of the states in Λ𝑘 that are actually producible.

74

sequence 𝑞𝑛, such that: (1) 𝑖𝑛 =⇒ 𝑥𝑛, (2) 𝑥𝑛(𝑠) ≥ 𝑛0.99 for all 𝑠 ∈ Λ𝑘, (3) 𝑥𝑛 =⇒𝑞𝑛 𝑦𝑛,

(4) 𝑞𝑛 has no 𝑓 -bottleneck, and (5) 𝑦𝑛 is a stable output configuration.

Proof. The proof is analogous to the proof of Lemma 2.7.2, except we first reach

configuration 𝑥𝑛 from 𝑖𝑛 using the Density Lemma, and then reach 𝑦𝑛 from 𝑥𝑛 instead

of from 𝑖𝑛. The density lemma ensures that 𝑥𝑛 satisfies the first two properties.

Moreover, since the probability of reaching a configuration that can serve as 𝑥𝑛 is

1− (1/𝑛)0.99, the stabilization speed of 𝒫𝑘 from 𝑥𝑛 must also be 𝑜
(︁

𝑛
𝑓(𝑛)·𝑘2

)︁
, allowing

us to apply the proof argument of Lemma 2.7.2.

A detailed proof of this statement can also be found in [AAE+17], Lemma A.3.

Hence, fast stabilization requires the existence of a bottleneck-free transition se-

quence. The next transition ordering lemma, proves a property of such a transition

sequence: there exists an order over all states whose counts decrease by a large margin

such that, for each of these states 𝑑𝑗, the sequence contains at least a certain number

of a specific transition that consumes 𝑑𝑗, but does not consume or produce any states

𝑑1, . . . , 𝑑𝑗−1 that are earlier in the ordering. This lemma is due to [CCDS15], and

with minor modifications plays major role in the lower bounds of [DS15, AAE+17].

The proof is omitted and can be found in any of these references (the formulation

with 𝑓 -bottleneck is proved in [AAE+17], Lemma A.4)

Lemma 2.7.5 (Transition Ordering Lemma). Consider a population protocol 𝒫𝑘,

executing in a system of 𝑛 agents. Fix 𝑏 ∈ N, and let 𝛽 = 𝑘2𝑏+𝑘𝑏. Let 𝑥, 𝑦 : Λ𝑘 → N

be configurations of 𝑛 agents, such that for all states 𝑠 ∈ Λ𝑘 we have 𝑥(𝑠) ≥ 𝛽2 and

𝑥 =⇒𝑞 𝑦 via a transition sequence 𝑞 without a 𝛽2-bottleneck. Define

∆ = {𝑑 ∈ Λ𝑘 | 𝑦(𝑑) ≤ 𝑏}

to be the set of states whose count in configuration 𝑦 is at most 𝑏. Then there is an

order ∆ = {𝑑1, 𝑑2, . . . , 𝑑𝑚}, such that, for all 𝑗 ∈ {1, . . . ,𝑚}, there is a transition 𝛼𝑗

of the form (𝑑𝑗, 𝑠𝑗) → (𝑜𝑗, 𝑜
′
𝑗) with 𝑠𝑗, 𝑜𝑗, 𝑜

′
𝑗 ̸∈ {𝑑1, . . . , 𝑑𝑗}, and 𝛼𝑗 occurs at least 𝑏

times in 𝑞.

75

For protocols that use Ω(log log 𝑛) states, dense intermediate configurations may

no longer occur. Instead, we prove the following suffix transition ordering lemma,

which considers the suffix of the ordering starting with some state whose count de-

creases by a large margin.

Lemma 2.7.6 (Suffix Transition Ordering Lemma). Let 𝒫𝑘 be a population protocol

executing in a system of 𝑛 agents. Fix 𝑏 ∈ N, and let 𝛽 = 𝑘2𝑏+𝑘𝑏. Let 𝑥, 𝑦 : Λ𝑘 → N

be configurations of 𝑛 agents such that for a state 𝐴′ ∈ Λ𝑘 (1) 𝑥 =⇒𝑞 𝑦 via a transition

sequence 𝑞 without a 𝛽2-bottleneck. (2) 𝑥(𝐴′) ≥ 𝛽, and (3) 𝑦(𝐴′) = 0. Define

∆ = {𝑑 ∈ Λ𝑘 | 𝑦(𝑑) ≤ 𝑏}

to be the set of states whose count in configuration 𝑦 is at most 𝑏. Then there is an

order {𝑑1, 𝑑2, . . . , 𝑑𝑚}, such that 𝑑1 = 𝐴′ and for all 𝑗 ∈ {1, . . . ,𝑚} (1) 𝑑𝑗 ∈ ∆, and

(2) there is a transition 𝛼𝑗 of the form (𝑑𝑗, 𝑠𝑗)→ (𝑜𝑗, 𝑜
′
𝑗) that occurs at least 𝑏 times

in 𝑞. Moreover, 𝑠𝑗, 𝑜𝑗, 𝑜′𝑗 ∈ (Λ𝑘 −∆) ∪ {𝑑𝑗+1, . . . , 𝑑𝑚}.

Proof. We know by definition that 𝐴′ ∈ ∆. We will construct the ordering in reverse,

i.e. we will determine 𝑒𝑗 for 𝑗 = |∆|, |∆| − 1, . . . in this order, until 𝑒𝑗 = 𝐴′. Then,

we set 𝑚 = |∆| − 𝑗 + 1 and 𝑑1 = 𝑒𝑗, . . . , 𝑑𝑚 = 𝑒|Δ|.

We start by setting 𝑗 = |∆|. Let ∆|Δ| = ∆. At each step, we will define the next

∆𝑗−1 as ∆𝑗−{𝑒𝑗}. We define Φ𝑗 : (Λ𝑘 → N)→ N based on ∆𝑗 as Φ𝑗(𝑐) =
∑︀

𝑑∈Δ𝑗
𝑐(𝑑),

i.e. the number of agents in states from ∆𝑗 in configuration 𝑐. Notice that once ∆𝑗

is well-defined, so is Φ𝑗.

The following works for all 𝑗 as long as 𝑒𝑗′ ̸= 𝐴′ for all 𝑗′ > 𝑗, and thus, lets

us construct the ordering. Because 𝑦(𝑑) ≤ 𝑏 for all states in ∆, it follows that

Φ𝑗(𝑦) ≤ 𝑗𝑏 ≤ 𝑘𝑏. On the other hand, we know that 𝑥(𝐴′) ≥ 𝛽 and 𝐴′ ∈ ∆𝑗, so

Φ𝑗(𝑥) ≥ 𝛽 ≥ 𝑘𝑏 ≥ Φ𝑗(𝑦). Let 𝑐′ be the last configuration along 𝑞 from 𝑥 to 𝑦 where

Φ𝑗(𝑐
′) ≥ 𝛽, and 𝑟 be the suffix of 𝑞 after 𝑐′. Then, 𝑟 must contain a subsequence of

transitions 𝑢 each of which strictly decreases Φ𝑗, with the total decrease over all of 𝑢

being at least Φ𝑗(𝑐
′)− Φ𝑗(𝑦) ≥ 𝛽 − 𝑘𝑏 ≥ 𝑘2𝑏.

76

Let 𝛼 : (𝑟1, 𝑟2)→ (𝑝1, 𝑝2) be any transition in 𝑢. 𝛼 is in 𝑢 so it strictly decreases

Φ𝑗, and without loss of generality 𝑟1 ∈ ∆𝑗. Transition 𝛼 is not a 𝛽2-bottleneck since

𝑞 does not contain such bottlenecks, and all configurations 𝑐 along 𝑢 have 𝑐(𝑑) < 𝛽

for all 𝑑 ∈ ∆𝑗 by definition of 𝑟. Hence, we must have 𝑐(𝑟2) > 𝛽 meaning 𝑟2 ̸∈ ∆𝑗.

Exactly one state in ∆𝑗 decreases its count in transition 𝛼, but 𝛼 strictly decreases

Φ𝑗, so it must be that both 𝑝1 ̸∈ ∆𝑗 and 𝑝2 ̸∈ ∆𝑗. We take 𝑑𝑗 = 𝑟1, 𝑠𝑗 = 𝑟2, 𝑜𝑗 = 𝑝1

and 𝑜′𝑗 = 𝑝2.

There are 𝑘2 different types of transitions. Each transition in 𝑢 decreases Φ𝑗 by

one and there are at least 𝑘2𝑏 such instances, at least one transition type must repeat

in 𝑢 at least 𝑏 times, completing the proof.

The next lemma for majority protocols that satisfy output dominance lets us apply

the Suffix Transition Ordering Lemma, with 𝐴′ set to the initial minority state.

Lemma 2.7.7. Let 𝒫 be a monotonic population protocol satisfying output dominance

that stably computes majority decision for all sufficiently large 𝑛 using 𝑠(𝑛, 𝜖) states.

For all sufficiently large 𝑛, consider executing protocol 𝒫𝑠(𝑛,𝜖) in a system of 𝑛′ < 𝑛/2

agents, from an initial configuration 𝑖𝑛′ with 𝜖𝑛′ more agents in state 𝐵. Consider

any 𝑐 with 𝑖𝑛′ =⇒ 𝑐, that has a stable majority decision WIN𝐵. Then 𝑐(𝐴) = 0.

Proof. Notice that for sufficiently large 𝑛, we can consider executing protocol 𝒫𝑠(𝑛,𝜖)

from an initial configuration 𝑖𝑛′ , and know that it stabilizes to the correct majority

decision, because 𝒫 is a monotonic protocol.

Assume for contradiction that 𝑐(𝐴) > 0. Since 𝑐 has a stable majority decision

WIN𝐵, we must have 𝛾𝑠(𝑛,𝜖)(𝐴) = WIN𝐵. Now consider a system of 𝑛 agents, execut-

ing 𝒫𝑠(𝑛,𝜖), where 𝑛′ agents start in configuration 𝑖𝑛′ and reach 𝑐, and the remaining

agents each start in state 𝐴. Clearly, for the system of 𝑛 > 2𝑛′ agents, 𝐴 is the

majority. Define 𝑐′ to be configuration 𝑐 plus 𝑛 − 𝑛′ agents in state 𝐴. We only

added agents in state 𝐴 from 𝑐 to 𝑐′ and 𝑐(𝐴) > 0, thus for any state 𝑠 ∈ Λ𝑠(𝑛,𝜖) with

𝑐′(𝑠) > 0, we have 𝑐(𝑠) > 0. However, as 𝑐 has a stable majority WIN𝐵, by output

closedness, any configuration 𝑐′′ with 𝑐′ =⇒ 𝑐′′ that has a stable majority decision,

should have a decision WIN𝐵.

77

As 𝒫 stably computes the majority decision, 𝒫𝑠(𝑛,𝜖) should stabilize in a finite

expected time for 𝑛 agents. 𝑐′ is reachable from an initial configuration of 𝑛 agents.

Thus, some configuration 𝑐′′ with a stable majority decision must be reachable from

𝑐′. However, the initial configuration has majority 𝐴, and 𝑐′′ has a majority decision

WIN𝐵, a contradiction.

2.7.2 Output-Dominant Majority

In this section, we prove the following.

Theorem 2.7.8. Assume any monotonic population protocol 𝒫 satisfying output

dominance, which stably computes majority decision using 𝑠(𝑛, 𝜖) states. Then, the

time complexity of 𝒫 must be Ω
(︁

𝑛−2𝜖𝑛
32𝑠(𝑛,𝜖)·𝑠(𝑛,𝜖)7·(𝜖𝑛)2

)︁
.

Proof. We will proceed by contradiction. Assume a protocol 𝒫𝑠(𝑛,𝜖) which would

contradict the lower bound.

Then, for all sufficiently large 𝑛, 𝒫𝑠(𝑛,𝜖) stably computes majority decision in

expected parallel time 𝑜
(︁

𝑛−2𝜖𝑛
32·𝑠(𝑛,𝜖)·𝑠(𝑛,𝜖)7·(𝜖𝑛)2

)︁
. We denote 𝑘 = 𝑠(𝑛, 𝜖), 𝑛′ = 𝑛−2𝜖𝑛

𝑘+1
,

𝑏(𝑛) = 3𝑘 · (2𝜖𝑛) and 𝛽(𝑛) = 𝑘2 · 𝑏(𝑛) + 𝑘 · 𝑏(𝑛). Let 𝑖𝑛′ be an initial configuration of

𝑛′ agents, with 𝜖𝑛′ more agents in state 𝐵.

By monotonicity of the protocol 𝒫 , 𝒫𝑘 should also stabilize from 𝑖𝑛′ in expected

time 𝑜
(︁

𝑛−2𝜖𝑛
32𝑘·𝑘7·(𝜖𝑛)2

)︁
, which is the same as 𝑜

(︁
𝑛′

𝑘2·𝛽(𝑛)2

)︁
. Thus, by Lemma 2.7.2, there

exists a transition sequence 𝑞 without a 𝛽(𝑛)2 bottleneck, and configuration 𝑦𝑛′ with

a stable majority decision, such that 𝑖𝑛′ =⇒𝑞 𝑦𝑛′ .

The bound is only non-trivial in a regime where 𝜖𝑛 ∈ 𝑜(
√
𝑛), and 𝑛′ = 𝑛−2𝜖𝑛

𝑘+1
∈

𝜔(𝑘2 · 𝛽(𝑛)2). In this regime, we have 𝑖𝑛′(𝐴) = 𝑛′−𝜖𝑛′

2
≥ 𝛽(𝑛) for all sufficiently large

𝑛. Also, by Lemma 2.7.7, 𝑦𝑛′(𝐴) = 0. Therefore, we can apply the suffix transition

ordering Lemma 2.7.6 with 𝒫𝑘, 𝑏 = 𝑏(𝑛) and 𝛽 = 𝛽(𝑛). This gives an ordering

{𝑑1, . . . , 𝑑𝑚} on a subset of ∆ and corresponding transitions 𝛼𝑗.

Claim 2.7.9. Let 𝑛′′ = 𝑛′ · (𝑚+1)+2𝜖𝑛 and 𝑖 be an initial configuration of 𝑛′′ agents

consisting of 𝑚 + 1 copies of configuration 𝑖𝑛′ plus 2𝜖𝑛 agents in state 𝐴. Then,

78

𝑖 =⇒ 𝑧, for a configuration 𝑧, such that for all 𝑠 ∈ Λ𝑘, if 𝑧(𝑠) > 0 then 𝑦𝑛′(𝑠) > 0.

We prove the claim later in this section, right after the main theorem.

Returning to the main thread, we have 𝑛′′ ≤ 𝑛 due to 𝑚 ≤ 𝑘. Moreover, the

initial configuration 𝑖 of 𝑛′′ agents has at least 𝜖𝑛 ≥ 𝜖𝑛′′ more agents in state 𝐴 than

𝐵 (since (𝑚 + 1) · 𝜖𝑛′ ≤ 𝜖𝑛, which follows from (𝑚 + 1)𝑛′ ≤ (𝑘 + 1)𝑛′ ≤ 𝑛). So,

monotonicity of 𝒫 implies that 𝒫𝑘 also stably computes majority decision from initial

configuration 𝑖. We know 𝑖 =⇒ 𝑧, so it must be possible to reach a configuration 𝑦

from 𝑧 that has a stable majority decision (otherwise 𝒫𝑘 would not have a finite time

complexity to stabilize from 𝑖). By output dominance property of 𝒫 for 𝑧 and 𝑦𝑛′ , 𝑦

has to have the same majority decision as 𝑦𝑛′ . However, the correct majority decision

is WIN𝐵 in 𝑖𝑛′ and WIN𝐴 in 𝑖.

Now we prove the inductive claim.

Claim 2.7.9 (Surgery). Let 𝑛′′ = 𝑛′ · (𝑚+ 1) + 2𝜖𝑛 and 𝑖 be an initial configuration

of 𝑛′′ agents consisting of 𝑚 + 1 copies of configuration 𝑖𝑛′ plus 2𝜖𝑛 agents in state

𝐴. Then, 𝑖 =⇒ 𝑧, for a configuration 𝑧, such that for all 𝑠 ∈ Λ𝑘, if 𝑧(𝑠) > 0 then

𝑦𝑛′(𝑠) > 0.

Proof. In this proof, we consider transition sequences that might temporarily bring

counts of agents in certain states below zero. This will not be a problem because

later we add more agents in these states, so that the final transition sequence is

well-formed, meaning that no count ever falls below zero.

We do the following induction. For every 𝑗 with 1 ≤ 𝑗 ≤ 𝑚, consider an initial

configuration 𝜄𝑗 consisting of 𝑗 copies of configuration 𝑖𝑛′ plus 2𝜖𝑛 agents in state 𝐴.

Then, there exists a transition sequence 𝑞𝑗 from 𝜄𝑗 that leads to a configuration 𝑧𝑗,

with the following properties:

1. For any 𝑑 ∈ ∆− {𝑑𝑗+1, . . . , 𝑑𝑚}, the count of agents in 𝑑 remains non-negative

throughout 𝑞𝑗. Moreover, if 𝑦𝑛′(𝑑) = 0, then 𝑧𝑗(𝑑) = 0.

2. For any 𝑑 ̸∈ ∆− {𝑑𝑗+1, . . . , 𝑑𝑚} the minimum count of agents in 𝑑 during 𝑞𝑗 is

≥ −3𝑗 · (2𝜖𝑛).

79

3. For any 𝑑 ∈ {𝑑𝑗+1, . . . , 𝑑𝑚}, if 𝑦𝑛′(𝑑) = 0, then |𝑧𝑗(𝑑)| ≤ 3𝑗 · (2𝜖𝑛).

The base case: Consider 𝑗 = 1. Here 𝜄1 is simply 𝑖𝑛′ combined with 2𝜖𝑛 agents

in state 𝐴. We know 𝑖𝑛′ =⇒𝑞 𝑦𝑛′ . Thus, from 𝜄1 by the same transition sequence

𝑞 we reach a configuration 𝑦𝑛′ plus 2𝜖𝑛 agents in state 𝑑1 = 𝐴. Moreover, by suffix

transition ordering lemma, we know that transition 𝛼1 of form (𝐴, 𝑠1) → (𝑜1, 𝑜
′
1)

occurs at least 𝑏(𝑛) ≥ (2𝜖𝑛) times in 𝑞. We add 2𝜖𝑛 occurences of transition 𝛼1 at

the end of 𝑞 and let 𝑞1 be the resulting transition sequence. 𝑧1 is the configuration

reached by 𝑞1 from 𝜄1.

For any 𝑑 ∈ Λ𝑘, during the transition sequence 𝑞, the counts of agents are non-

negative. In the configuration after 𝑞, the count of agents in state 𝑑1 = 𝐴 is 𝑦𝑛′(𝐴) +

2𝜖𝑛 = 2𝜖𝑛, and during the remaining transitions of 𝑞1 (2𝜖𝑛 occurences of 𝛼1), the

count of agents in 𝐴 remains non-negative and reaches 𝑧1(𝑑1) = 0 as required (since

𝑦𝑛′(𝑑1) = 𝑦𝑛′(𝐴) = 0). 𝑠1, 𝑜1, 𝑜′1 ∈ (Λ𝑘 −∆) ∪ {𝑑2, . . . 𝑑𝑚} implies that for any state

𝑑 ∈ ∆−{𝑑1, 𝑑2, . . . , 𝑑𝑚}, the count of agents in 𝑑 remains unchanged and non-negative

for the rest of 𝑞1. Moreover, 𝑧1(𝑑) = 𝑦𝑛′(𝑑), thus if 𝑦𝑛′(𝑑) = 0 then 𝑧1(𝑑) = 0. This

completes the proof of the first property.

Now, consider any 𝑑 ̸∈ ∆−{𝑑2, . . . , 𝑑𝑚}. The count of 𝑑 is non-negative during 𝑞,

and might decrease by at most 2𝜖𝑛 < 3𝑗 · (2𝜖𝑛) during the remaining 2𝜖𝑛 occurences

of transition 𝛼1 in 𝑞1 (achieved only when 𝑠1 = 𝑑 and 𝑠1 ̸= 𝑜1, 𝑜
′
1). This proves the

second property.

The final count of any state in 𝑧1 differs by at most 2 · (2𝜖𝑛) ≤ 3𝑗 · (2𝜖𝑛) from the

count of the same state in 𝑦𝑛′ . (the only states with different counts can be 𝑠1, 𝑜1 and

𝑜′1, and the largest possible difference of precisely 2 · (2𝜖𝑛) is attained when 𝑜1 = 𝑜′1).

This implies the third property.

Inductive step: We assume the inductive hypothesis for some 𝑗 < 𝑚 and prove it

for 𝑗+1. Inductive hypothesis gives us configuration 𝜄𝑗 and a transition sequence 𝑞𝑗 to

another configuration 𝑧𝑗, satisfying the three properties for 𝑗. We have 𝜄𝑗+1 = 𝑖𝑛′ + 𝜄𝑗,

adding another new configuration 𝑖𝑛′ to previous 𝜄𝑗.

80

Let 𝑢 be the minimum count of state 𝑑𝑗+1 during 𝑞𝑗. If 𝑢 ≥ 0, we let 𝑞1𝑗+1 = 𝑞.

Otherwise, we remove |𝑢| ≤ 3𝑗 · (2𝜖𝑛) ≤ 𝑏(𝑛) instances of transition 𝛼𝑗+1 from 𝑞, and

call the resulting transition sequence 𝑞1𝑗+1.

Now from 𝜄𝑗+1 = 𝑖𝑛′ + 𝜄𝑗 consider performing transition sequence 𝑞1𝑗+1 followed

by 𝑞𝑗. 𝑞1𝑗+1 affects the extra configuration 𝑖𝑛′ (difference between 𝜄𝑗 and 𝜄𝑗+1), and

produces |𝑢| extra nodes in state 𝑑𝑗+1 if 𝑢 was negative. Now, when 𝑞𝑗 is performed

afterwards, the count of state 𝑑𝑗+1 never becomes negative.

Let 𝑣 be the count of 𝑑𝑗+1 in the configuration reached by the transition sequence

𝑞1𝑗+1 followed by 𝑞𝑗 from 𝜄𝑗+1. Since the count never becomes negative, we have 𝑣 ≥ 0.

If 𝑦𝑛′(𝑑𝑗+1) > 0, then we let this sequence be 𝑞𝑗+1. If 𝑦𝑛′(𝑑𝑗+1) = 0, then we add 𝑣

occurences of transition 𝛼𝑗+1, i.e. 𝑞𝑗+1 is 𝑞1𝑗+1 followed by 𝑞𝑗 followed by 𝑣 times 𝛼𝑗+1.

The configuration reached from 𝜄𝑗+1 by 𝑞𝑗+1 is 𝑧𝑗+1.

Consider 𝑑 ∈ ∆− {𝑑𝑗+2, . . . , 𝑑𝑚}. For 𝑑 = 𝑑𝑗+1, if 𝑦𝑛′(𝑑𝑗+1) = 0, then we ensured

that 𝑧𝑗+1(𝑑𝑗+1) = 0 by adding 𝑣 occurences of transitions 𝛼𝑗+1 at the end. In fact,

by construction, the count of agents in 𝑑𝑗+1 never becomes negative during 𝑞𝑗+1. It

does not become negative during 𝑞1𝑗+1 and the |𝑢| extra nodes in state 𝑑𝑗+1 that are

introduced ensure futher non-negativity of the count during 𝑞𝑗. Finally, if the count

is positive and 𝑦𝑛′(𝑑𝑗+1) = 0, it will be reduced to 0 by the additional occurences of

transition 𝛼𝑗+1, but it will not become negative. For 𝑑 ∈ ∆ − {𝑑𝑗+1, 𝑑𝑗+2, . . . , 𝑑𝑚},

recall that 𝛼𝑗+1 = (𝑑𝑗+1, 𝑠𝑗+1) → (𝑜𝑗+1, 𝑜
′
𝑗+1), where 𝑠𝑗+1, 𝑜𝑗+1, 𝑜

′
𝑗+1 ∈ (Λ𝑘 − ∆) ∪

{𝑑𝑗+2, . . . 𝑑𝑚}. Thus, none of 𝑠𝑗+1, 𝑜𝑗+1, 𝑜
′
𝑗+1 are equal to 𝑑. This implies that the

count of agents in 𝑑 remain non-negative during 𝑞𝑗+1 as the removal and addition of

𝛼𝑗+1 does not affect the count (count is otherwise non-negative during 𝑞; also during

𝑞𝑗 by inductive hypothesis). If 𝑦𝑛′(𝑑) = 0, we have 𝑧𝑗+1(𝑑) = 𝑧𝑗(𝑑) + 𝑦𝑛′(𝑑) = 0, as

desired. This proves the first property.

The states for which the minimum count of agents during 𝑞𝑗+1 might be smaller

than during 𝑞𝑗 are 𝑠𝑗+1, 𝑜𝑗+1 and 𝑜′𝑗+1. Let us first consider 𝑜𝑗+1 and 𝑜′𝑗+1. In our

construction, we might have removed at most 3𝑗 · (2𝜖𝑛) occurences of 𝛼𝑗+1 from

𝑞 to get 𝑞1𝑗+1, and the largest decrease of count would happen by 2 · 3𝑗 · (2𝜖𝑛) if

𝑜𝑗+1 = 𝑜′𝑗+1. Adding transitions 𝛼𝑗+1 at the end only increases the count of 𝑜𝑗+1 and

81

𝑜′𝑗+1. Therefore, the minimum count of agents for these two states is −3𝑗 · (2𝜖𝑛) −

2 · 3𝑗 · (2𝜖𝑛) = −3𝑗+1 · (2𝜖𝑛), as desired. Now consider state 𝑠𝑗+1. We can assume

𝑠𝑗+1 ̸= 𝑜𝑗+1, 𝑜
′
𝑗+1 as otherwise, the counts would either not change or can be analyzed

as above for 𝑜𝑗+1. Removing occurences of transition 𝛼𝑗+1 only increases count of

𝑠𝑗+1, and it only decreases if we add 𝑣 occurences of 𝛼𝑗+1 at the end to get the count

of 𝑑𝑗+1 to 0. Since 𝑦𝑛′(𝑑𝑗+1) should be 0 in this case in order for us to add transitions

at the end, we know 𝑣 = 𝑧𝑗(𝑑𝑗+1) if 𝑢 ≥ 0, and 𝑣 = 𝑧𝑗(𝑑𝑗+1) + |𝑢| if 𝑢 < 0. In the

second case, we remove |𝑢| occurences before adding 𝑣 occurences, so the minimum

count in both cases decreases by at most |𝑧𝑗(𝑑𝑗+1)|. By induction hypothesis the

minimum count is ≥ −3𝑗 · (2𝜖𝑛) and |𝑧𝑗(𝑑𝑗+1)| ≤ 3𝑗 · (2𝜖𝑛), so the new minimum

count of 𝑠𝑗+1 is ≥ −2 · 3𝑗 · (2𝜖𝑛) ≥ −3𝑗+1 · (2𝜖𝑛). This proves the second property.

In order to bound the maximum new |𝑧𝑗+1(𝑑)| for 𝑑 ∈ {𝑑𝑗+2, . . . , 𝑑𝑚} with 𝑦𝑛′(𝑑) =

0, we take a similar approach. Since 𝑦𝑛′(𝑑) = 0, if |𝑧𝑗+1(𝑑)| differs from |𝑧𝑗(𝑑)|, then

𝑑 must be either 𝑠𝑗+1, 𝑜𝑗+1 or 𝑜′𝑗+1. The minimum negative value that 𝑧𝑗+1(𝑑) can

achieve can be shown to be 3𝑗+1 · (2𝜖𝑛) with the same argument as in the previous

paragraph - considering 𝑑 = 𝑜𝑗+1 = 𝑜′𝑗+1 and 𝑑 = 𝑠𝑗+1 and estimating the maximum

possible decrease, combined with |𝑧𝑗(𝑑)| ≤ 3𝑗 ·(2𝜖𝑛). Let us now bound the maximum

positive value. If 𝑑 = 𝑜𝑗+1 = 𝑜′𝑗+1, the increase caused by 𝑣 additional occurences of

𝛼𝑗+1 at the end of 𝑞𝑗+1 is 2𝑣. As before, 𝑣 = 𝑧𝑗(𝑑𝑗+1) if 𝑢 ≥ 0, and 𝑣 = 𝑧𝑗(𝑑𝑗+1) + |𝑢|

if 𝑢 < 0, and in the second case, we also decrease the count of 𝑑 by 2|𝑢| when

removing |𝑢| occurences of 𝛼𝑗+1 to build 𝑞1𝑗+1 from 𝑞. Thus, the maximum increase

is 2|𝑧𝑗(𝑑𝑗+1)| ≤ 2 · 3𝑗 · (2𝜖𝑛). If 𝑑 = 𝑠𝑗+1, then the only increase comes from at most

|𝑢| ≤ 3𝑗 ·(2𝜖𝑛) removed occurences of 𝛼𝑗+1. Therefore, the maximum positive value of

𝑧𝑗+1(𝑑) equals maximum positive value of 𝑧𝑗(𝑑) which is 3𝑗 · (2𝜖𝑛) plus the maximum

possible increase of 2 · 3𝑗 · (2𝜖𝑛), giving 3𝑗+1 · (2𝜖𝑛) as desired. This completes the

proof for the third property and of the induction.

The rest of the proof: We take 𝑖 = 𝑖𝑛′ + 𝜄𝑚 and 𝑧 = 𝑦𝑛′ + 𝑧𝑚. The transition

sequence 𝑝 from 𝑖 to 𝑧 starts by 𝑞 from 𝑖𝑛′ to 𝑦𝑛′ , followed by 𝑞𝑚.

By the first property of 𝑞𝑚, and the fact that no count is ever negative in 𝑞 from

82

𝑖𝑛′ to 𝑦𝑛′ , for any 𝑑 ∈ ∆, the count of agents in state 𝑑 never becomes negative during

𝑝. Next, consider any state 𝑑 ∈ Λ𝑘−∆. By the second property, when 𝑞𝑚 is executed

from 𝜄𝑚 to 𝑧𝑚, the minimum possible count in 𝑞𝑚 is −3𝑚·(2𝜖𝑛). However, in transition

sequence 𝑝, 𝑞𝑚 from 𝜄𝑚 to 𝑧𝑚 follows 𝑞, and after 𝑞 we have an extra configuration

𝑦𝑛′ in the system. By the definition of ∆, 𝑦𝑛′(𝑑) ≥ 𝑏(𝑛) ≥ 3𝑘 · (2𝜖𝑛) ≥ 3𝑚 · (2𝜖𝑛).

Therefore, the count of agents in 𝑑 also never becomes negative during 𝑝, and thus

the final transition sequence 𝑝 is well-formed.

Now, consider a state 𝑠, such that 𝑦𝑛′(𝑠) = 0. We only need to show that 𝑧(𝑠) = 0.

By definition of ∆, we have 𝑠 ∈ ∆, and the first property implies 𝑧(𝑠) = 𝑧𝑚(𝑠) = 0,

completing the proof.

This lower bound implies, for instance, that for 𝜖 = 1/𝑛, a monotonic protocol

satisfying output dominance and stably solves majority using log 𝑛/(4 log 3) states,

needs to have time complexity Ω(
√
𝑛/polylog𝑛).

Weak Monotonicity:

We use monotonicity of the protocol to invoke the same protocol with different number

of nodes. In particular, in Theorem 2.7.8, if the protocol uses 𝑘 states for 𝑛 nodes,

we need to be able to use the same protocol for 𝑛/𝑘 nodes. Suppose instead that the

protocol is weakly monotonic. If the state complexity is 𝑘 ≤ log 𝑛/(2 log log 𝑛), then

we can find infinitely many 𝑛 with the desired property that the same protocol works

for 𝑛/𝑘 and 𝑛 nodes. This allows us to apply the same lower bound argument, but

we would only get a lower bound for state complexities up to log 𝑛/(2 log log 𝑛).

Non-Dense Initial Configurations:

Unlike [DS15, AAE+17], we do not (and cannot) require fast stabilization from con-

figurations where all states have large counts, which necessitated starting in “dense”

initial configurations. Our lower bound works from more general initial configura-

tions. For instance, suppose that 𝜃(𝑛) nodes start in states 𝐴 and 𝐵, among which

we must compute the majority decision, but the remaining nodes can be in arbitrary

83

states. Even if a protocol is only required to stabilize fast when a single leader is

provided in the initial configuration, our lower bound applies. Without modification,

the lower bound argument does require that the protocol should not stabilize to a

wrong decision even if initially there are multiple nodes in this designated leader state.

However, we can assume that the leader states do not need to map to any output.

Thus, the lower bound applies for instance to protocols where all non-leader nodes

would eventually stabilize to the correct output, and stabilize fast only if there was a

single leader to start with.

2.7.3 General Lower Bound

In this section, we prove a weaker lower bound for leader election and majority, but

only under the weak monotonicity assumption.

Our framework here is based on [DS15], but differs from it in a few key points.

Specifically, the crux of the argument in [DS15] is the existence of a set Γ of unbounded

states, whose counts grow unbounded as the number of agents 𝑛 tends to infinity. The

unbounded property of Γ is used multiple times throughout the proof, and together

with Dickson’s Lemma it establishes the existence of a sequence of configurations

with growing counts for all states in Γ. This argument breaks in our case as Dickson’s

Lemma applies only if the number of states is constant. We overcome this problem

by carefully choosing the thresholds on the counts that certain states reach.

Given a population protocol 𝒫𝑘, a configuration 𝑐 : Λ𝑘 → N, and a function

𝑔 : N → N+, we define sets Γ𝑔(𝑐) = {𝑠 ∈ Λ𝑘 | 𝑐(𝑠) > 𝑔(|𝑐|)} and ∆𝑔(𝑐) = {𝑠 ∈ Λ𝑘 |

𝑐(𝑠) ≤ 𝑔(|𝑐|)}. Intuitively, Γ𝑔(𝑐) contains states above a certain count, while ∆𝑔(𝑐)

contains state below that count. Notice that Γ𝑔(𝑐) = Λ𝑘 −∆𝑔(𝑐).

The proof strategy is to first show that if a protocol stabilizes “too fast,” then it

can also reach configurations where all agents are in states in Γ𝑔(𝑐). Recall that a

configuration 𝑐 is defined as a function Λ𝑘 → N. Let 𝑆 ⊆ Λ𝑘 be some subset of states

such that all agents in configuration 𝑐 are in states from 𝑆, formally, {𝑠 ∈ Λ𝑘 | 𝑐(𝑠) >

0} ⊆ 𝑆. For notational convenience, we will write 𝑐>0 ⊆ 𝑆 to mean the same.

84

Theorem 2.7.10. Consider a weakly monotonic population protocol 𝒫. In case of

leader election, define 𝐼 to be a set of all input configurations. For majority, let 𝐼

be a set of all input configurations with a fixed 𝜖 < 0.98 6. Suppose the protocol uses

𝑘(𝑛) ≤ 1/2 log log 𝑛 states for input configurations in 𝐼 with 𝑛 agents. Let 𝑔 : N→ N+

be a function such that 𝑔(𝑛) ≥ 2𝑘(𝑛) for all 𝑛 and 6𝑘(𝑛) · 𝑘(𝑛)2 · 𝑔(𝑛) = 𝑜(𝑛0.99).

Suppose 𝒫 stabilizes in 𝑜
(︁

𝑛
(6𝑘(𝑛)·𝑘(𝑛)3·𝑔(𝑛))2

)︁
time from all 𝑖 ∈ 𝐼 with |𝑖| = 𝑛. Then,

for infinitely many 𝑛′ such that the protocol uses the same number of states for when

the number of agents is between 𝑛′ and 3𝑛′, (i.e. 𝑘(𝑛′) = . . . = 𝑘(3𝑛′)), there exists

an initial configuration of 2𝑛′ agents 𝑖2𝑛′ ∈ 𝐼 and a stable output configuration 𝑦 of

𝑛′ agents, such that for any configuration 𝑢 that satisfies the boundedness predicate

ℬ(𝑛′, 𝑦) below, it holds that 𝑖2𝑛′ + 𝑢 =⇒ 𝑧 where 𝑧>0 ⊆ Γ𝑔(𝑦).

We say that a configuration 𝑢 satisfies the boundedness predicate ℬ(𝑛′, 𝑦) if 1) it

contains between 0 and 𝑛′ agents, 2) all agents in 𝑢 are in states from ∆𝑔(𝑦), i.e.

𝑢>0 ⊆ ∆𝑔(𝑦), and 3) 𝑦(𝑠) + 𝑢(𝑠) ≤ 𝑔(𝑛′) for all states 𝑠 ∈ ∆𝑔(𝑦).

Proof. For simplicity, set 𝑏(𝑛) = (6𝑘(𝑛)+2𝑘(𝑛))·𝑔(𝑛) and 𝛽(𝑛) = 𝑘(𝑛)2·𝑏(𝑛)+𝑘(𝑛)·𝑏(𝑛).

Then, we know the protocol stabilizes in 𝑜
(︁

𝑛
(𝛽(𝑛)·𝑘(𝑛))2

)︁
time. By Lemma 2.7.4, for all

sufficiently large 𝑛′ we can find configurations of 𝑛′ agents 𝑖𝑛′ , 𝑥, 𝑦 : Λ𝑘′ → N, where

𝑘′ = 𝑘(𝑛′), such that

1. 𝑖𝑛′ is an initial configuration of the protocol 𝒫𝑘′ , (notice that the density re-

quirement on 𝑖𝑛′ is satisfied for leader election and majority when 𝜖 < 0.98).

2. 𝑖𝑛′ =⇒ 𝑥 =⇒𝑞 𝑦, where 𝑦 is a stable output configuration of 𝑛′ agents for 𝒫𝑘′

and 𝑞 does not contain a 𝛽2 bottleneck.

3. ∀𝑠 ∈ Λ𝑘′ : 𝑥(𝑠) ≥ 𝛽(𝑛′). Here, we use the assumption on function 𝑔.

Moreover, because the state complexity 𝑘(𝑛) ≤ 1/2 log log 𝑛 for sufficiently large 𝑛,

and by weak monotonicity of the protocol, for infinitely many 𝑛′ it additionally holds

that the protocol uses 𝑘′ states also for 𝑛′ + 1, 𝑛′ + 2, . . . , 3𝑛′ agents in the system.

(otherwise state complexity would grow at least logarithmically in 𝑛).
6Interesting regime is when discrepancy 𝜖𝑛 is smaller than a constant fraction of the nodes.

85

Consider any such 𝑛′. Then, we can invoke Lemma 2.7.5 with 𝑥, 𝑦, transition

sequence 𝑞 and parameter 𝑏 = 𝑏(𝑛′). The definition of ∆ in the lemma statement

matches ∆𝑏(𝑦), and 𝛽 matches 𝛽(𝑛′). Thus, we get an ordering of states ∆𝑏(𝑦) =

{𝑑1, 𝑑2, . . . , 𝑑𝑚} and a corresponding sequence of transitions 𝛼1, 𝛼2, . . . , 𝛼𝑚, where

each 𝛼𝑗 is of the form (𝑑𝑗, 𝑠𝑗)→ (𝑜𝑗, 𝑜
′
𝑗) with 𝑠𝑗, 𝑜𝑗, 𝑜′𝑗 ̸∈ {𝑑1, 𝑑2, . . . , 𝑑𝑗}. Finally, each

transition 𝛼𝑗 occurs at least 𝑏(𝑛′) = (6𝑘′ + 2𝑘′) · 𝑔(𝑛′) times in 𝑞.

We will now perform transformations on the transition sequence 𝑞, called surgeries,

with the goal of reaching a desired type of configuration. The next two claims specify

these transformations, which are similar to the surgeries used in [DS15], but with

some key differences due to configuration 𝑢 and the new definitions of Γ and ∆. The

proofs are provided later. Configuration 𝑢 is defined as in the theorem statement.

For brevity, we use Γ𝑔 = Γ𝑔(𝑦), ∆𝑔 = ∆𝑔(𝑦), Γ𝑏 = Γ𝑏(𝑦) and ∆𝑏 = ∆𝑏(𝑦).

Claim 2.7.11. There exist configurations 𝑒 : Λ𝑘′ → N and 𝑧′ with 𝑧′>0 ⊆ Γ𝑔, such

that 𝑒 + 𝑢 + 𝑥 =⇒ 𝑧′. Moreover, we have an upper bound on the counts of states in

𝑒: ∀𝑠 ∈ Λ𝑘′ : 𝑒(𝑠) ≤ 2𝑘′ · 𝑔(𝑛′).

The configuration 𝑒+ 𝑢+ 𝑥 has at most 2𝑘′ · 𝑔(𝑛′) · 𝑘′ + 2𝑛′ agents, which is less than

3𝑛′ for sufficiently large 𝑛′. Thus, the protocol 𝒫𝑘′ is used.

For any configuration 𝑒 : Λ𝑘′ → N, let 𝑒Δ be its projection onto ∆, i.e. a configu-

ration consisting of only the agents from 𝑒 in states ∆. We can define 𝑒Γ analogously.

By definition, 𝑒Γ = 𝑒− 𝑒Δ.

Claim 2.7.12. Let 𝑒 be any configuration satisfying ∀𝑠 ∈ Λ𝑘′ : 𝑒(𝑠) ≤ 2𝑘′ ·𝑔(𝑛′). There

exist configurations 𝑝 and 𝑤, such that 𝑝>0 ⊆ ∆𝑏, 𝑤>0 ⊆ Γ𝑔 and 𝑝+𝑥 =⇒ 𝑝+𝑤+𝑒Δ𝑔 .

Moreover, for counts in 𝑝, we have that ∀𝑠 ∈ Λ𝑘′ : 𝑝(𝑠) ≤ 𝑏(𝑛′) and for counts in 𝑤Γ𝑔 ,

we have ∀𝑠 ∈ Γ𝑔 : 𝑤(𝑠) ≥ 2𝑘′ · 𝑔(𝑛′).

Let our initial configuration 𝑖2𝑛′ ∈ 𝐼 be 𝑖𝑛′+𝑖𝑛′ , which is a valid initial configuration

and for majority, 𝜖 is also the same. Trivially, 𝑖2𝑛′ = 𝑖𝑛′ + 𝑖𝑛′ =⇒ 𝑥 + 𝑥. Let us

apply Claim 2.7.12 with 𝑒 as defined in Claim 2.7.11, but use one 𝑥 instead of 𝑝.

This is possible because ∀𝑠 ∈ Λ𝑘′ : 𝑥(𝑠) ≥ 𝛽(𝑛′) ≥ 𝑏(𝑛′) ≥ 𝑝(𝑠). Hence, we get

86

𝑥+ 𝑥 =⇒ 𝑥+𝑤+ 𝑒Δ𝑔 = 𝑥+ 𝑒+ (𝑤− 𝑒Γ𝑔). The configuration 𝑤− 𝑒Γ𝑔 is well-defined

because both 𝑤 and 𝑒Γ𝑔 contain agents in states in Γ𝑔, with each count in 𝑤 being

larger or equal to the respective count in 𝑒Γ𝑔 , by the bounds from the claims.

Finally, by Claim 2.7.11, we have 𝑢 + 𝑥 + 𝑒 + (𝑤 − 𝑒Γ𝑔) =⇒ 𝑧′ + (𝑤 − 𝑒Γ𝑔). We

denote the resulting configuration (with all agents in states in Γ𝑔) by 𝑧, and have

𝑖2𝑛′ + 𝑢 =⇒ 𝑧, as desired.

Claim 2.7.11. There exist configurations 𝑒 : Λ𝑘′ → N and 𝑧′ with 𝑧′>0 ⊆ Γ𝑔, such

that 𝑒 + 𝑢 + 𝑥 =⇒ 𝑧′. Moreover, we have an upper bound on the counts of states in

𝑒: ∀𝑠 ∈ Λ𝑘′ : 𝑒(𝑠) ≤ 2𝑘′ · 𝑔(𝑛′).

Proof. The proof is similar to [DS15], but we consider a subsequence of the ordered

transitions ∆𝑏 = {𝑑1, . . . , 𝑑𝑚} obtained earlier by Lemma 2.7.5. Since 𝑏(𝑛′) ≥ 𝑔(𝑛′),

we can represent ∆𝑔 = {𝑑𝑗1 , . . . , 𝑑𝑗𝑙}, with 𝑗1 ≤ . . . ≤ 𝑗𝑙. We iteratively add groups of

transitions at the end of the transition sequence 𝑞, (𝑞 is the transition sequence from 𝑥

to 𝑦), such that, after the first iteration, the resulting configuration does not contain

any agent in 𝑑𝑗1 . Next, we add group of transitions and the resulting configuration

will not contain any agent agent in 𝑑𝑗1 or 𝑑𝑗2 , and we repeat this 𝑙 times. In the end,

no agents will be in states from ∆𝑔.

The transition ordering lemma provides us with the transitions to add. Initially,

there are at most 𝑔(𝑛′) agents in state 𝑑𝑗1 in the system (because of the requirement

in Theorem 2.7.10 on counts in 𝑢 + 𝑦). So, in the first iteration, we add the same

amount, which is at most 𝑔(𝑛′), of transitions 𝑑𝑗1 , 𝑠𝑗1 → 𝑜𝑗1 , 𝑜
′
𝑗1

, after which, as

𝑠𝑗1 , 𝑜𝑗1 , 𝑜
′
𝑗1
̸∈ {𝑑1, . . . 𝑑𝑗1}, the resulting configuration will not contain any agent in

configuration 𝑑𝑖1 . If there are not enough agents in the system in state 𝑠𝑗1 already to

add all these transitions, then we add the remaining agents in state in 𝑠𝑗1 to 𝑒. For

the first iteration, we may need to add at most 𝑔(𝑛′) agents.

For the second iteration, we add transitions of type 𝑑𝑗2 , 𝑠𝑗2 → 𝑜𝑗2 , 𝑜
′
𝑗2

to the

resulting transition sequence. Therefore, the number of agents in 𝑑𝑗2 that we may

need to consume is at most 3 · 𝑔(𝑛′), 𝑔(𝑛′) of them could have been there in 𝑦 + 𝑢,

and we may have added 2 · 𝑔(𝑛′) in the previous iteration, if for instance both 𝑜𝑗1 and

87

𝑜′𝑗1 were 𝑑𝑗2 . In the end, we may need to add 3 · 𝑔(𝑛′) extra agents to 𝑒.

If we repeat these iterations for all remaining 𝑟 = 3, . . . , 𝑙, in the end we will end

up in a configuration 𝑧 that contains all agents in states in Γ𝑔 as desired, because of

the property of transition ordering lemma that 𝑠𝑗𝑟 , 𝑜𝑗𝑟 , 𝑜′𝑗𝑟 ̸∈ {𝑑1, . . . , 𝑑𝑗𝑟}. For any

𝑟, the maximum total number of agents we may need to add to 𝑒 at iteration 𝑟 is

(2𝑟 − 1) · 𝑔(𝑛′). The worst case is when 𝑜𝑗1 and 𝑜′𝑗1 are both 𝑑𝑗2 , and 𝑜𝑗2 , 𝑜′𝑗2 are both

𝑑𝑗3 , etc.

It must hold that 𝑙 < 𝑘′, because the final configuration contains 𝑛′ agents in

states in Γ𝑔 and none in {𝑑𝑗1 , . . . , 𝑑𝑗𝑙}, so Γ𝑔 cannot be empty. Therefore, the total

number of agents added to 𝑒 is 𝑔(𝑛′) ·
∑︀𝑙

𝑟=1(2
𝑟 − 1) < 2𝑙+1 · 𝑔(𝑛′) ≤ 2𝑘′ · 𝑔(𝑛′). This

completes the proof because 𝑒(𝑠) for any state 𝑠 can be at most the number of agents

in 𝑒, which is at most 2𝑘′ · 𝑔(𝑛′).

Claim 2.7.12. Let 𝑒 be any configuration satisfying ∀𝑠 ∈ Λ𝑘′ : 𝑒(𝑠) ≤ 2𝑘′ ·𝑔(𝑛′). There

exist configurations 𝑝 and 𝑤, such that 𝑝>0 ⊆ ∆𝑏, 𝑤>0 ⊆ Γ𝑔 and 𝑝+𝑥 =⇒ 𝑝+𝑤+𝑒Δ𝑔 .

Moreover, for counts in 𝑝, we have that ∀𝑠 ∈ Λ𝑘′ : 𝑝(𝑠) ≤ 𝑏(𝑛′) and for counts in 𝑤Γ𝑔 ,

we have ∀𝑠 ∈ Γ𝑔 : 𝑤(𝑠) ≥ 2𝑘′ · 𝑔(𝑛′).

Proof. As in the proof of Claim 2.7.11, we define a subsequence (𝑗1 ≤ 𝑗𝑙), ∆𝑔 =

{𝑑𝑗1 , . . . , 𝑑𝑗𝑙} of ∆𝑏 = {𝑑1, . . . , 𝑑𝑚} obtained using Lemma 2.7.5. We start by the

transition sequence 𝑞 from configuration 𝑥 to 𝑦, and perform iterations for 𝑟 = 1, . . .𝑚.

At each iteration, we modify the transition sequence, possibly add some agents to

configuration 𝑝, which we will define shortly, and consider the counts of all agents

not in 𝑝 in the resulting configuration. Configuration 𝑝 acts as a buffer of agents in

certain states that we can temporarily borrow. For example, if we need 5 agents in a

certain state with count 0 to complete some iteration 𝑟, we will temporarily let the

count to −5 (add 5 agents to 𝑝), and then we will fix the count of the state to its

target value, which will also return the “borrowed” agents (so 𝑝 will also appear in the

resulting configuration). As in [DS15], this allows us let the counts of certain states

temporarily drop below 0.

We will maintain the following invariants on the count of agents, excluding the

88

agents in 𝑝, in the resulting configuration after iteration 𝑟:

1) The counts of all states (not in 𝑝) in ∆𝑔 ∩ {𝑑1, . . . , 𝑑𝑟} match to the desired

counts in 𝑒Δ𝑔 .

2) The counts of all states in {𝑑1, . . . 𝑑𝑟} −∆𝑔 are at least 2𝑘′ · 𝑔(𝑛′).

3) The counts in any state diverged by at most (3𝑟−1)·2𝑘′ ·𝑔(𝑛′) from the respective

counts in 𝑦.

These invariants guarantee that we get all the desired properties after the last

iteration. Let us consider the final configuration after iteration 𝑚. Due to the first

invariant, the set of all agents (not in 𝑝) in states ∆𝑔 is exactly 𝑒Δ𝑔 . All the remaining

agents (also excluding agents in 𝑝) are in 𝑤, and thus, by definition, the counts of

states in ∆𝑔 in configuration 𝑤 will be zero, as desired. The counts of agents in states

∆𝑏 −∆𝑔 = {𝑑1, . . . 𝑑𝑚} −∆𝑔 that belong to 𝑤 will be at least 2𝑘′ · 𝑔(𝑛′), due to the

second invariant. Finally, the counts of agents in Γ𝑏 that belong to 𝑤 will also be at

least 𝑏(𝑛′) − 3𝑘′ · 2𝑘′ · 𝑔(𝑛′) ≥ 2𝑘′ · 𝑔(𝑛′), due to the third invariant and the fact that

the states in Γ𝑏 had counts at least 𝑏(𝑛′) in 𝑦. Finally, the third invariant also implies

the upper bound on counts in 𝑝. The configuration 𝑝 will only contain the agents in

states ∆𝑏, because the agents in Γ𝑏 have large enough starting counts in 𝑦 borrowing

is never necessary.

In iteration 𝑟, we fix the count of state 𝑑𝑟. Let us first consider the case when 𝑑𝑟

belongs to ∆𝑔. Then, the target count is the count of the state 𝑑𝑟 in 𝑒Δ𝑔 , which we are

given is at most 2𝑘′ · 𝑔(𝑛′). Combined with the third invariant, the maximum amount

of fixing required may be is 3𝑟−1 ·2𝑘′ ·𝑔(𝑛′). If we have to reduce the number of 𝑑𝑟, then

we add new transitions 𝑑𝑟, 𝑠𝑟 → 𝑜𝑟, 𝑜
′
𝑟, similar to Claim 2.7.11 (as discussed above, not

worrying about the count of 𝑠𝑟 possibly turning negative). However, in the current

case, we may want to increase the count of 𝑑𝑟. In this case, we remove instances

of transition 𝑑𝑟, 𝑠𝑟 → 𝑜𝑟, 𝑜
′
𝑟 from the transition sequence. The transition ordering

lemma tells us that there are at least 𝑏(𝑛′) of these transitions to start with, so by the

third invariant, we will always have enough transitions to remove. We matched the

89

count of 𝑑𝑟 to the count in 𝑒Δ𝑔 , so the first invariant still holds. The second invariant

holds as we assumed 𝑑𝑟 ∈ ∆𝑔 and since by Lemma 2.7.5, 𝑠𝑟, 𝑜𝑟, 𝑜′𝑟 ̸∈ {𝑑1, . . . , 𝑑𝑟}. The

third invariant also holds, because we performed at most 3𝑟−1 · 2𝑘′ · 𝑔(𝑛′) transition

additions or removals, each affecting the count of any other given state by at most 2,

and hence the total count differ by at most

(3𝑟−1 − 1) · 2𝑘′ · 𝑔(𝑛′) + 2 · 3𝑟−1 · 2𝑘′ · 𝑔(𝑛′) = (3𝑟 − 1) · 2𝑘′ · 𝑔(𝑛′).

Now assume that 𝑑𝑟 belongs to ∆𝑏 −∆𝑔. If the count of 𝑑𝑟 is already larger than

2𝑘′ · 𝑔(𝑛′), than we do nothing and move to the next iteration, and all the invariants

will hold. If the count is smaller than 2𝑘′ · 𝑔(𝑛′), then we set the target count to

2𝑘′ · 𝑔(𝑛′) and add or remove transitions as in the previous case, and the first two

invariants will hold after the iteration. The only case when the count might require

fixing by more than (3𝑟−1 − 1) · 2𝑘′ · 𝑔(𝑛′) is when it originally was between 𝑔(𝑛′)

and 2𝑘′ · 𝑔(𝑛′) and decreased. Then, as in the previous case, the maximum amount

of fixing required is at most 3𝑟−1 · 2𝑘′ · 𝑔(𝑛′) and considering the maximum effect on

counts, the new differences can be at most (3𝑟 − 1) · 2𝑘′ · 𝑔(𝑛′). As before, we also

have enough transitions to remove and the third invariant holds.

The following lemma is the key to getting a lower bound for a non-constant number

of states.

Lemma 2.7.13. Consider a population protocol 𝒫𝑘 in a system of 𝑛 agents, and an

arbitrary fixed function ℎ : N → N+ such that ℎ(𝑛) ≥ 2𝑘. Let 𝜉(𝑛) = 2𝑘. For all

configurations 𝑐, 𝑐′ : Λ𝑘 → N, such that 𝑐>0 ⊆ Γℎ(𝑐) ⊆ Γ𝜉(𝑐
′), any state producible

from 𝑐 is also producible from 𝑐′. Formally, for any state 𝑠 ∈ Λ𝑘, 𝑐 =⇒ 𝑦 with

𝑦(𝑠) > 0 implies 𝑐′ =⇒ 𝑦′ with 𝑦′(𝑠) > 0.

Proof. Since ℎ(𝑛) ≥ 2𝑘, for any state from Γℎ(𝑐), its count in 𝑐 is at least 2𝑘. As

Γℎ(𝑐) ⊆ Γ𝜉(𝑐
′), the count of each of these states in 𝑐′ is also at least 𝜉(𝑛) = 2𝑘. We

say two agents have the same type if they are in the same state in 𝑐. We will prove by

induction that any state that can be produced by some transition sequence from 𝑐,

90

can also be produced by a transition sequence in which at most 2𝑘 agents of the same

type participate (ever interact). Configuration 𝑐 only has agents with types (states)

in Γℎ(𝑐), and configuration 𝑐′ also has at least 2𝑘 agents for each of those types, the

same transition sequence can be performed from 𝑐′ to produce the same state as from

𝑐, proving the desired statement.

The induction is as follows. There is a ℓ ≤ 𝑘, such that we can find sets 𝑆0 ⊂

𝑆1 ⊂ . . . ⊂ 𝑆ℓ where 𝑆ℓ contains all the states that are producible from 𝑐, and all

sets 𝑆𝑗 satisfy the following property. Let 𝐴𝑗 be a set consisting of 2𝑗 agents of each

type in Γℎ(𝑐), out of all the agents in configuration 𝑐 (we could also use 𝑐′), for the

total of 2𝑗 · |Γℎ(𝑐)| agents. There are enough agents of these types in 𝑐 (and in 𝑐′) as

𝑗 ≤ ℓ ≤ 𝑘. Then, for each 0 ≤ 𝑗 ≤ ℓ and each state 𝑠 ∈ 𝑆𝑗, there exists a transition

sequence from 𝑐 in which only the agents in 𝐴𝑗 ever interact and in the resulting

configuration, one of these agents from 𝐴𝑗 ends up in state 𝑠.

We do induction on 𝑗 and for the base case 𝑗 = 0 we take 𝑆0 = Γℎ(𝑐). The set 𝐴0

as defined contains one (20) agent of each type in Γℎ(𝑐) = 𝑆0
7. All states in 𝑆0 are

immediately producible by agents in 𝐴0 via an empty transition sequence (without

any interactions).

Let us now assume inductive hypothesis for some 𝑗 ≥ 0. If 𝑆𝑗 contains all the

producible states from configuration 𝑐, then ℓ = 𝑗 and we are done. We will have

ℓ ≤ 𝑘, because 𝑆0 ̸= ∅ and 𝑆0 ⊂ 𝑆1 ⊂ . . . 𝑆ℓ imply that 𝑆ℓ contains at least ℓ different

states, and there are 𝑘 total. Otherwise, there must be some state 𝑠 ̸∈ 𝑆𝑗 that can

be produced after an interaction between two agents both in states in 𝑆𝑗, let us say

by a transition 𝛼 : 𝑟1, 𝑟2 → 𝑠, 𝑝 with 𝑟1, 𝑟2 ∈ 𝑆𝑗 (or there is no state that cannot

already be produced). Also, as 𝑆𝑗 contains at least 𝑗 states out of 𝑘 total, and there

is the state 𝑠 ̸∈ 𝑆𝑗, 𝑗 < 𝑘 holds and the set 𝐴𝑗+1 is well-defined. Let us partition

𝐴𝑗+1 into two disjoint sets 𝐵1 and 𝐵2 where each contain 2𝑗 agents from 𝑐 for each

type. Then, by induction hypothesis, there exists a transition sequence where only

the agents in 𝐵1 ever interact and in the end, one of the agents 𝑏1 ∈ 𝐵1 ends up in

7In 𝑐, all the agents are in one of the states of Γℎ(𝑐), so as long as 𝑛 > 0 there must be at least
one agent per state (type). So, if Γℎ(𝑐) = ∅, then 𝑛 must necessarily be 0, so nothing is producible
𝐴0 = ∅, ℓ = 0 and we are done.

91

the state 𝑟1. Analogously, there is a transition sequence for agents in 𝐵2, after which

an agent 𝑏2 ∈ 𝐵2 ends up in state 𝑟2. Combining these two transition and adding

one instance of transition 𝛼 in the end between agents 𝑏1 and 𝑏2 (in states 𝑟1 and 𝑟2

respectively) leads to a configuration where one of the agents from 𝐴𝑗+1 is in state 𝑠.

Also, all the transitions are between agents in 𝐴𝑗+1. Hence, setting 𝑆𝑗+1 = 𝑆𝑗 ∪ {𝑠}

completes the inductive step and the proof.

We are now ready to prove the lower bounds for majority and leader election as

separate corollaries of the main theorem.

Corollary 2.7.14. Any weakly monotonic population protocol that stably computes

correct majority decision with state complexity 𝑠(𝑛, 𝜖) ≤ 1/2 log log 𝑛, must take

Ω
(︁

𝑛
36𝑠(𝑛,𝜖)·𝑠(𝑛,𝜖)6·max(2𝑠(𝑛,𝜖),𝜖𝑛)2

)︁
expected parallel time to stabilize.

Proof. We set 𝑔(𝑛) = max(2𝑠(𝑛,𝜖)+1, 10𝜖𝑛). For majority computation, initial configu-

rations consist of agents in one of two states, with the majority state holding an 𝜖𝑛

advantage in the counts. The bound is nontrivial only in a regime 𝜖𝑛 ∈ 𝑜(
√
𝑛), which

we will henceforth assume without loss of generality.

Assume, for contradiction, that some protocol stabilizes in expected parallel time

𝑜
(︁

𝑛
36𝑠(𝑛,𝜖)·𝑠(𝑛,𝜖)6·max(2𝑠(𝑛,𝜖),𝜖𝑛)2

)︁
. Since 𝜖𝑛 ∈ 𝑜(

√
𝑛), we have 𝜖 < 0.98. Using Theo-

rem 2.7.10 we can find infinitely many configurations 𝑖 and 𝑧 of at most 3𝑛′ agents,

such that (1) 𝑖+ 𝑢 =⇒ 𝑧, (2) 𝑖 is an initial configuration of 2𝑛′ agents with majority

state 𝐴 and advantage 2𝜖𝑛′. (3) The number of states used for 𝑛′, 𝑛′ + 1, . . . , 3𝑛′ is

the same, denoted by 𝑘′. (4) 𝑧>0 ⊆ Γ𝑔(𝑦), i.e all agents in 𝑧 are in states that have

counts at least 𝑔(𝑛′) in some stable output configuration 𝑦 of 𝑛′ agents.

Suppose initial majority is 𝐴. Let us prove that for all sufficiently large 𝑛′, in any

stable configuration 𝑦 of 𝑛′ agents, strictly less than 2𝑠(𝑛′,𝜖) ≤ 𝑔(𝑛′)/2 agents must

be in the initial minority state 𝐵. The reason is that if 𝑐 is the initial configuration

of all 𝑛′ agents in state 𝐵 by weak monotonicity, the protocol must stabilize from 𝑐

to decision Win𝐵. By Lemma 2.7.13, from any configuration that contains at least

2𝑠(𝑛′,𝜖) agents in 𝐵 it would also be possible to reach a configuration where some

agent supports decision 𝐵. Therefore, all stable final configuration 𝑦 have at most

92

𝑔(𝑛′)/2−1 agents in initial minority state 𝐵. This allows us to let 𝑢 be a configuration

of 𝑔(𝑛′)/2 + 1 ≥ 5𝜖𝑛′ + 1 agents in state 𝐵.

To get the desired contradiction we will prove two things. First, 𝑧 is actually a

stable output configuration for decision Win𝐴 (majority opinion in 𝑖), and second,

𝑖+𝑢 is an initial configuration from which the protocol 𝒫𝑘′ must stabilize to the correct

majority decision. However, 𝑖 + 𝑢 has more nodes in state 𝐵. This will imply that

the protocol stabilize to a wrong outcome, and complete the proof by contradiction.

If we could reach a configuration from 𝑧 with any agent in a state 𝑠 that maps to

output Win𝐵 (𝛾(𝑠) = Win𝐵), then by Lemma 2.7.13, from a configuration 𝑦 (which

contains 2𝑠(𝑚,𝜖) agents in each of the states in Γ𝑔(𝑦)) we can also reach a configuration

with an agent in a state 𝑠 that maps to output Win𝐵. However, configuration 𝑦 is a

final stable configuration majority decision 𝐴.

Configuration 𝑖 contains 2𝜖𝑛′ more agents in state 𝐴 states than in state 𝐵. Con-

figuration 𝑢 consists of at least 5𝜖𝑛′ + 1 agents all in state 𝐵. Hence, 𝑖+ 𝑢, which is

a valid initial configuration (as all nodes are in states 𝐴 or 𝐵) of at most 3𝑛′ agents,

has a majority of state 𝐵 with discrepancy at least 3𝜖𝑛′. By weak monotonicity, the

protocol 𝒫𝑘′ must stabilize to the decision WIN𝐵 from 𝑖+ 𝑢, as desired.

Corollary 2.7.15. Any weakly monotonic population protocol that stably elects at

least one and at most ℓ(𝑛) leaders with state complexity 𝑠(𝑛) ≤ 1/2 log log 𝑛, must

take Ω
(︁

𝑛
144𝑠(𝑛)·𝑠(𝑛)6·ℓ(𝑛)2

)︁
expected parallel time to stabilize.

Proof. We set 𝑔(𝑛) = 2𝑠(𝑛) · ℓ(𝑛). The set 𝐼 of initial configurations for leader election

all agents are in the same starting state.

Suppose for contradiction that a protocol stabilizes in expected parallel time

𝑜
(︁

𝑛
144𝑠(𝑛)·𝑠(𝑛)6·ℓ(𝑛)2

)︁
. Using Theorem 2.7.10 and setting 𝑢 to be a configuration of

zero agents, we can find infinitely many configurations 𝑖 and 𝑧 of 2𝑛′ agents, such

that (1) 𝑖 =⇒ 𝑧, (2) 𝑖 ∈ 𝐼 is an initial configuration of 2𝑛′ agents, (3) The number of

states used for 𝑛′, 𝑛′ + 1, . . . , 2𝑛′ is the same, denoted by 𝑘′. (4) 𝑧>0 ⊆ Γ𝑔(𝑦), i.e. all

agents in 𝑧 are in states that each have counts of at least 2𝑠(𝑛′) · ℓ(𝑛′) in some stable

output configuration 𝑦 of 𝑛′ agents.

93

Because 𝑦 is a stable output configuration of a protocol that elects at most ℓ(𝑛′)

leaders, none of these states in Γ𝑔(𝑦) that are present in strictly larger counts (2𝑠(𝑛′) ·

ℓ(𝑛′) > ℓ(𝑛′)) in 𝑦 and 𝑧 can be leader states (i.e. 𝛾 maps these states to output Lose).

Therefore, the configuration 𝑧 does not contain a leader. This is not sufficient for a

contradiction, because a leader election protocol may well pass through a leaderless

configuration before stabilizing to a configuration with at most ℓ(𝑛′) leaders. We

prove below that any configuration reachable from 𝑧 must also have zero leaders.

This implies an infinite time on stabilization from a valid initial configuration 𝑖 (as

𝑖 =⇒ 𝑧) and completes the proof by contradiction.

If we could reach a configuration from 𝑧 with an agent in a leader state, then

by Lemma 2.7.13, from a configuration 𝑐′ that consists of 2𝑠(𝑛′) agents in each of

the states in Γ𝑔(𝑦), it is also possible to reach a configuration with a leader, let

us say through transition sequence 𝑞. Recall that the configuration 𝑦 contains at

least 2𝑠(𝑛′) · ℓ(𝑛′) agents in each of these states in Γ𝑔(𝑦), hence there exist disjoint

configurations 𝑐′1 ⊆ 𝑦, 𝑐′2 ⊆ 𝑦, etc, . . . , 𝑐′ℓ(𝑛′) ⊆ 𝑦 contained in 𝑦 and corresponding

transition sequences 𝑞1, 𝑞2, . . . , 𝑞ℓ(𝑛′), such that 𝑞𝑗 only affects agents in 𝑐′𝑗 and leads

one of the agents in 𝑐′𝑗 to become a leader. Configuration 𝑦 is a output configuration so

it contains at least one leader agent already, which does not belong to any 𝑐′𝑗 because

as mentioned above, all agents in 𝑐′𝑗 are in non-leader states. Therefore, it is possible

to reach a configuration from 𝑦 with ℓ(𝑛′) + 1 leaders via a transition sequence 𝑞1 on

the 𝑐′1 component of 𝑦, followed by 𝑞2 on 𝑐′2, etc, 𝑞ℓ(𝑛′) on 𝑐′ℓ(𝑛′), contradicting that 𝑦

is a stable output configuration.

94

Parameters:
𝜌, an integer > 0, set to Θ(log 𝑛)
𝑇𝑐 < 𝜌, an integer > 0, threshold for clock-creation
State Space:
WorkerStates = .phase ∈ {1, . . . , 2 log 𝑛+ 1},

.value ∈ {0, 1/2, 1}

.preference ∈ {WIN𝐴,WIN𝐵};
ClockStates = .position ∈ {0,Ψ− 1},

.preference ∈ {WIN𝐴,WIN𝐵};
BackupStates = 4 states from the protocol of [DV12];
TerminatorStates = {𝐷𝐴, 𝐷𝐵}.

Additional two bit-flags in every state .InitialState ∈ {𝐴,𝐵}
.clock-creation ∈ {true, false};

Input: States of two nodes, 𝑆1 and 𝑆2

Output: Updated states 𝑆′
1 = update(𝑆1, 𝑆2) and 𝑆′

2 = update(𝑆2, 𝑆1)
Auxiliary Procedures:

backup(𝑆) =

{︂
𝐴[DV12] if 𝑆.InitialState = 𝐴;
𝐵[DV12] otherwise.

term-preference(𝑆) =

{︂
𝐷𝐴 if 𝑆 = 𝐷𝐴 or 𝑆.preference = WIN𝐴

𝐷𝐵 if 𝑆 = 𝐷𝐵 or 𝑆.preference = WIN𝐵

pref-conflict(𝑆,𝑂) =

{︂
true term-preference(𝑆) ̸= term-preference(𝑂)
false otherwise.

is-strong(𝑆) =

{︂
true if 𝑆 ∈WorkerStates and 𝑆.value ̸= 0
false otherwise.

clock-label(𝑂) =

⎧⎨⎩
0 if 𝑂.position ∈ [2𝜌, 3𝜌)
1 if 𝑂.position ∈ [0, 𝜌)
−1 otherwise.

inc-phase(𝜑,𝑂) =

{︂
true if 𝜑 = 𝑂.phase − 1 or 𝜑 mod 2 = 1− clock-label(𝑂)
false otherwise.

8 procedure update⟨𝑆,𝑂⟩
9 if 𝑆 ∈ BackupStates or 𝑂 ∈ BackupStates then

10 if 𝑆 ∈ BackupStates and 𝑂 ∈ BackupStates then
11 𝑆′ ← update[DV12](𝑆,𝑂)

12 else if 𝑂 ∈ BackupStates then
13 𝑆′ ← backup(𝑆)
14 else 𝑆′ ← 𝑆
15 return 𝑆′

// Backup states processed, below 𝑆 and 𝑂 are not in backup states
16 if 𝑆 ∈ TerminatorStates or 𝑂 ∈ TerminatorStates then
17 if pref-conflict(𝑆,𝑂) = false then
18 𝑆′ ← term-preference(𝑆)
19 else 𝑆′ ← backup(𝑆)
20 return 𝑆′

Figure 2-2: Pseudocode for the phased majority algorithm, part 1/2

95

// Below, both 𝑆 and 𝑂 are workers or clocks
21 𝑆′ ← 𝑆
22 if 𝑂.clock-creation = false then
23 𝑆′.clock-creation ← false
24 if is-strong(𝑆) = false and is-strong(𝑂) = true then
25 𝑆′.preference ← 𝑂.preference

// Clock creation flag and preference updated (always)
26 if 𝑆 ∈ ClockStates then
27 if 𝑂 ∈ ClockStates then

/* Update 𝑆′.Position according to Section 2.3. If gap between
𝑆.position and 𝑂.position not less than 𝜌, set 𝑆′ ← backup(𝑆).
If 𝑆.position ≥ 𝑇𝑐, set 𝑆′.clock-creation ← false. */

28 return 𝑆′

// Below, 𝑆 is a worker and 𝑂 is a worker or a clock
29 𝜑← 𝑆.phase
30 if inc-phase(𝜑,𝑂) = true then
31 if 𝜑 = 2 log 𝑛+ 1 or (𝜑 mod 2 = 0 and 𝑆.value = 1) then
32 𝑆′ ← term-preference(𝑆)
33 else
34 𝑆.phase = 𝜑+ 1
35 if 𝜑 mod 2 = 0 and 𝑆.value = 1/2 then
36 𝑆′.value = 1

37 return 𝑆′

38 if 𝑂 ∈ ClockStates then
39 return 𝑆′

// Below, 𝑆 is a worker and 𝑂 is a worker
40 if |𝑆.phase −𝑂.phase| > 1 then
41 𝑆′ ← backup(𝑆)
42 return 𝑆′

// Below, worker meets worker within the same phase
43 if 𝜑 mod 2 = 1 then

// Cancellation phase
44 if 𝑆.value = 1 and 𝑂.value = 1 and pref-conflict(𝑆,𝑂) = true then
45 if 𝑆′.clock-creation = 𝑡𝑟𝑢𝑒 and 𝑆.preference = WIN𝐴 then
46 𝑆′ ← clock(.position = 0, .preference = 𝑆.preference)
47 else
48 𝑆′.value ← 0

49 else
// Doubling phase

50 if 𝑆.value +𝑂.value = 1 then
51 𝑆′.value = 1/2

52 return 𝑆′

Figure 2-3: Pseudocode for the phased majority algorithm, part 2/2

96

Chapter 3

Shared Memory

3.1 Anonymous Space Lower Bound

The optimal space complexity of consensus in asynchronous shared memory was an

open problem for two decades. For a system of 𝑛 processes, no algorithm using a

sublinear number of registers is known. Up until very recently, the best known lower

bound due to Fich, Herlihy, and Shavit was Ω(
√
𝑛) registers.

Fich, Herlihy, and Shavit first proved their lower bound for the special case of the

problem where processes are anonymous (i.e. they run the same algorithm) and then

extended it to the general case.

Here we close the gap for the anonymous case of the problem. We show that any

consensus algorithm from read-write registers for anonymous processes that satisfies

the standard nondeterministic solo termination property, has to use Ω(𝑛) registers

in some execution. This implies an Ω(𝑛) lower bound on the space complexity of de-

terministic obstruction-free and randomized wait-free consensus, matching the upper

bound. As in [FHS98, AE14b], the bound is for the worst-case space complexity of

the algorithm, i.e. for the number of registers used in some execution, regardless of

its actual probability.

Our argument relies heavily on the anonimity of the processes. We introduce new

techniques for marshalling anonymous processes and their executions, in particular,

the concepts of leader-follower pairs and reserving executions, that play a critical role

97

in the lower bound argument and will hopefully be more generally applicable.

3.1.1 Definitions and Notation

We consider the standard asynchronous shared-memory model with anonymous pro-

cesses and atomic read-write registers. Processes take steps, where each step is either

a shared-memory step or an internal step. There are no guarantees on when a process

takes its next step, in fact, any process is allowed stop taking steps altogether.

A shared-memory step of a process is either a read or a write to some register.

With an internal step, a process can make local nondeterministic choices, or return

a value, after which the process takes no more steps. Naturally, the outcomes of

nondeterministic choices influence the state of the process and its next steps.

A configuration is a collection of all process states and the contents of all registers,

and describes the global state of the system. An execution is a sequence of steps by

processes and a solo execution is an execution where all steps are taken by a single

process. An execution starts in a configuration and leads to a configuration. We

will use capital latin letters to denote configurations and lower case greek letters to

denote executions, and we will refer to the configuration reached by an execution 𝛼

that started in configuration 𝐶 as the configuration 𝐶𝛼. Finally, an execution 𝛼𝛽

simply stands for the execution 𝛼 followed by the execution 𝛽.

Notice that, if a process 𝑝 in state 𝑠 makes a certain nondeterministic choice and

ends up in state 𝑠′, then, at any time, any process 𝑞 that is in the same state 𝑠 might

make the same nondeterministic choice and also end up in state 𝑠′. In this work, we

will restrict our attention to executions where all processes in the same state make

the same nondeterministic choices.

We will also only consider executions where any process, after a shared-memory

step, immediately performs all subsequent internal steps, leading to a shared-memory

step, unless it returns a value. Therefore, from now on, the term step will refer

exclusively to a shared-memory step, and we will consider only process states in

which the next step is a shared-memory step.

In a system of anonymous processes, all processes with the same input start in the

98

same state. If in some configuration, a process 𝑝 in state 𝑠 writes 𝑣 to some register

𝑟 and changes state to 𝑠′, then in any configuration, any process 𝑞 in the same state

𝑠 will also write 𝑣 to register 𝑟 with its next step and change state to 𝑠′. If in some

configuration, a process 𝑝 in state 𝑠 reads 𝑣 from register 𝑟 and changes state to 𝑠′,

then in any configuration, any process 𝑞 in state 𝑠 will also read from the register 𝑟

with its next step. Notice that the reads by 𝑝 and 𝑞 are in different configurations and

might return different results. However, if 𝑞 happens to read the value 𝑣, then it will

also change its state to 𝑠′. The above statements are true since by our assumption 𝑝

and 𝑞 make the same nondeterministic choices.

We say that a process 𝑝 is covering a register 𝑟, if the next step of 𝑝 is a write to

𝑟. A block write of a set of processes 𝑃 to a set of covered registers 𝑅 is a sequence

of write steps by processes in 𝑃 , where each step writes to a different register in 𝑅

and all registers in 𝑅 get written to.

A clone of a process 𝑝, exactly as in [FHS98, AE14b], is defined as another process

with the same input as 𝑝, that shadows 𝑝 by performing the same steps as 𝑝 in

lockstep, reading and writing the same values immediately after 𝑝, and remaining

in the same state, until just before some write of 𝑝. Because the system consists of

anonymous processes, in any execution with sufficiently many processes, for any write

step of 𝑝, there always exists an alternative execution with a clone 𝑞 that shadowed

𝑝 all the way until the write. In particular, in the alternative execution, process 𝑞

covers the register and is about to write the value that 𝑝 last wrote there. Moreover,

the two executions with or without the clone covering the register are completely

indistinguishable to all processes other than the clone itself.

In the binary consensus problem, each participating process starts with a binary

input, 0 or 1, and is supposed to return a binary output. The correctness requirement

is that all outputs must be the same and equal to the input of some process. We say

that an execution decides 0 (or 1) if some process returns 0 (or 1, respectively) during

this execution.

The wait-free termination requirement means that each participating process is

supposed to eventually return an output within a finite number of its own steps, re-

99

gardless of how the other processes are scheduled. The obstruction-free termination

requirement means that any process that runs solo is supposed to eventually return

an output within a finite number of steps. In randomized algorithms, processes are

allowed to flip random coins and decide their next steps accordingly. In this setting,

the randomized wait-free termination requirement means that each participating pro-

cess is supposed to eventually return an output within a finite number of its own steps

with probability 1.

The FLP result shows that, in the asynchronous shared memory model with read-

write registers, no deterministic algorithm can solve binary consensus in a wait-free

way. However, it is possible to solve consensus both in a deterministic obstruction-free

and in a randomized wait-free way. The nondeterministic solo termination property

means that from each reachable configuration, for each process, there exists a finite

solo execution by the process where it terminates and returns an output. We prove

our lower bounds for binary consensus algorithms that satisfy the nondeterministic

solo termination property, because both deterministic obstruction-free algorithms and

randomized wait-free algorithms fall into this category.

The following standard indistinguishability lemma is a key ingredient in our lower

bound arguments.

Lemma 3.1.1. If a process 𝑝 has the same state in two configurations 𝐶 and 𝐷, and

the contents of all registers are the same in both of these configurations, then every

solo execution by 𝑝 starting from 𝐶 can have the same results starting from 𝐷.

3.1.2 A Square-Root Lower Bound

To demonstrate our approach, we start by presenting a proof of the Ω(
√
𝑛) space

lower bound in the anonymous setting. This is the same as the best known lower

bound from [FHS98], but the inductive argument and the valency definition used are

considerably different.

If there is a solo execution of some process returning 0 from a configuration,

then we call this configuration 0-solo-deciding (and 1-solo-deciding if there is a solo

100

execution of a process that returns 1). Solo termination implies that every config-

uration is 0-solo-deciding or 1-solo-deciding. Note that the same configuration can

be simultaneously 0-solo-deciding and 1-solo-deciding. We call such configurations

solo-bivalent, and solo-univalent otherwise. If a configuration is 0-solo-deciding, but

not 1-solo-deciding (i.e. no solo execution from this configuration decides 1), then

we call it 0-solo-valent, meaning that the configuration is solo-univalent with valency

0. Analogously, a configuration is 1-solo-valent if it is 1-solo-deciding but not 0-solo-

deciding.

Lemma 3.1.2. Consider a system of at least two processes. Then, in every solo-

bivalent configuration, we can always find two distinct processes 𝑝 and 𝑞, such that

there is a solo execution of 𝑝 returning 0 and a solo execution of 𝑞 returning 1.

Proof. Either the configuration is solo-bivalent because of solo executions of distinct

processes, in which case we are done, or two solo executions of some process 𝑝 return

different values. In this case it suffices to consider any terminating solo execution of

another process 𝑞.

Lemma 3.1.3. Consider a system of (𝑟−1)𝑟
2

+ 2 anonymous processes for any 𝑟 ≥ 0.

Then, for any consensus algorithm that uses atomic read-write registers and satis-

fies the nondeterministic solo termination property, there exists a configuration 𝐶𝑟

reachable by an execution 𝜌𝑟 with the following properties:

∙ There is a set 𝑅 of 𝑟 registers, each of which has been written to during 𝜌𝑟, and

∙ the configuration 𝐶𝑟 is solo-bivalent.

Proof. The proof is by induction, with the base case 𝑟 = 0. Our system consists of

two processes 𝑝 and 𝑞, 𝑝 starts with input 0, 𝑞 starts with input 1, and 𝐶0 is the

initial configuration. The solo-bivalency of 𝐶0 follows from Lemma 3.1.1 as process 𝑝

cannot distinguish between 𝐶0 and a configuration where both processes start with

input 0, in which case the terminating solo execution of 𝑝 (which exists due to the

nondeterministic solo termination property) is required to return 0. Analogously,

some solo execution of process 𝑞 returns 1.

101

Let us assume the induction hypothesis for some 𝑟 and prove it for 𝑟+ 1. We can

reach a solo-bivalent configuration 𝐶𝑟 using (𝑟−1)𝑟
2

+ 2 processes by an execution 𝜌𝑟

that writes to a set 𝑅 of 𝑟 registers. The goal is to use another set of 𝑟 processes in

order to write to a new register and extend 𝐶𝑟 to 𝐶𝑟+1.

From configuration 𝐶𝑟, by Lemma 3.2.12, there exists a solo execution 𝛼 by process

𝑝 that returns 0 and a solo execution 𝛽 of process 𝑞 that returns 1. For each register

in 𝑅, let us add a new clone of the process that last wrote to it. Hence, each register

in 𝑅 will now be covered by a clone, poised to write the same value as present in the

register in configuration 𝐶𝑟.

Let us now apply a covering argument utilizing the clones. Consider execution

𝜌𝑟𝛼𝛾𝛽, where 𝛾 is a block write to 𝑅 by the new clones. We know that process 𝑝

returns 0 after 𝜌𝑟𝛼. During its solo execution 𝛼, process 𝑝 has to write to a register

outside of 𝑅. Otherwise, the configuration after 𝜌𝑟𝛼𝛾 is indistinguishable from 𝐶𝑟

to process 𝑞 as the values in all registers are the same, and 𝑞 is still in the same

state as in 𝐶𝑟. Hence, by Lemma 3.1.1, 𝑞 can return 1 after 𝜌𝑟𝛼𝛾𝛽 as it would after

𝜌𝑟𝛽, contradicting the correctness of the consensus algorithm. Analogously, process

𝑞 has to write outside of 𝑅 during 𝛽. Let 𝛼 = 𝛼′𝑤𝑝𝛼
′′, where 𝑤𝑝 is the first write

of 𝑝 outside the set of registers 𝑅, and let 𝛽 = 𝛽′𝑤𝑞𝛽
′′, with 𝑤𝑞 being the first write

outside of 𝑅. Let ℓ be the length of 𝛾𝛽′𝑤𝑞 and, for 0 ≤ 𝑖 ≤ ℓ, let 𝜋𝑖 be the length 𝑖

prefix of 𝛾𝛽′𝑤𝑞.

Next, we use a valency argument to reach 𝐶𝑟+1. We show that either the configu-

ration reached after 𝜌𝑟𝛼′𝛾𝛽′𝑤𝑞, or one of the configurations reached after 𝜌𝑟𝛼′𝜋𝑖𝑤𝑝 for

some 𝑖, satisfies the properties necessary to be 𝐶𝑟+1. The number of processes used

in any case is (𝑟−1)𝑟
2

+ 2 from before, plus 𝑟 clones introduced during the inductive

step, which gives 𝑟(𝑟+1)
2

+ 2 as required. Moreover, in any of these configurations we

can find 𝑟 + 1 registers that have been written to during 𝜌𝑟+1, i.e. while reaching

𝐶𝑟+1 from the initial configuration, as we can include 𝑟 registers in 𝑅 and one more

register written to by either 𝑤𝑝 or 𝑤𝑞. Thus, we only need to show that one of these

configurations is solo-bivalent.

Assume the contrary. Then the configuration after 𝜌𝑟𝛼′𝜋0𝑤𝑝 is solo-valent. More-

102

over, since 𝐶𝑟 is the configuration reached by 𝜌𝑟, 𝜋0 is the empty execution, and 𝑝

returns 0 in 𝜌𝑟𝛼
′𝑤𝑝𝛼

′′, the configuration 𝐶𝑟𝛼
′𝜋0𝑤𝑝 is actually 0-solo-valent. On the

other hand, the configuration reached by 𝜌𝑟𝛼
′𝛾𝛽′𝑤𝑞 = 𝜌𝑟𝛼

′𝜋ℓ must be 1-solo-valent.

It is solo-univalent by the contradiction assumption and 1-solo-deciding as 𝑞 cannot

distinguish configurations 𝐶𝑟 and 𝐶𝑟𝛼
′𝛾, and thus by Lemma 3.1.1, the solo execution

𝛽′′ of 𝑞 can still return 1.

Because the configuration 𝐶𝑟𝛼
′𝜋ℓ is 1-solo-valent, any terminating solo execution

of process 𝑝 from that configuration must also return 1. In particular, every termi-

nating solo execution that starts by 𝑝 performing its next step 𝑤𝑝 returns 1. So the

configuration 𝐶𝑟𝛼
′𝜋ℓ𝑤𝑝 must be 1-solo-valent: a terminating solo execution of 𝑝 re-

turns 1 and it is solo-univalent by the contradiction assumption for 𝑖 = ℓ. Therefore,

configuration 𝐶𝑟𝛼
′𝜋𝑖𝑤𝑝 is 0-solo-valent for 𝑖 = 0 and 1-solo-valent for 𝑖 = ℓ. Hence,

there exists an 𝑖, such that 𝑋 = 𝐶𝑟𝛼
′𝜋𝑖𝑤𝑝 is 0-solo-valent, and 𝑌 = 𝐶𝑟𝛼

′𝜋𝑖+1𝑤𝑝 is

1-solo-valent. Let 𝑜 be the extra step in 𝜋𝑖+1.

𝑜 is either performed by process 𝑞 or by the new clones as a part of block write 𝛾.

It may not be a read or a write to the same register as 𝑤𝑝 writes to, since 𝑝 would

not distinguish between 𝑋 and 𝑌 and by Lemma 3.1.1, could return the same output

from both configurations. This would contradict the different solo-univalencies of 𝑋

and 𝑌 . Therefore, steps 𝑤𝑝 and 𝑜 commute. Let 𝜎 be a terminating solo execution

from 𝑌 by the process 𝑓 that performed 𝑜. Since 𝑌 is 1-solo-valent, 𝑓 returns 1 after

𝜎. Now consider 𝑓 performing its next step 𝑜 from 𝑋. Since 𝑤𝑝 and 𝑜 commute, the

process cannot distinguish the resulting configuration𝑋𝑜 from 𝑌 and by Lemma 3.1.1,

it returns 1 after solo execution 𝜎 from configuration 𝑋𝑜. However, 𝑜𝜎 is also a

solo execution by 𝑓 from 𝑋 that returns 1, contradicting the 0-valency of 𝑋. The

contradiction proves the induction step, completing our argument.

Notice that for 𝑛 processes, Lemma 3.1.3 directly implies the existence of an

execution where Ω(
√
𝑛) registers are written to, proving the desired lower bound.

103

3.1.3 Linear Lower Bound

Consider a system with 𝑛 anonymous processes and an arbitrary correct consensus

algorithm satisfying the nondeterministic solo termination property. We will assume

that no execution of the algorithm uses ⌊𝑛/14−1⌋ registers and derive a contradiction.

For notational convenience, let us define 𝑚 to be ⌊𝑛/14⌋ − 2.

The argument in Lemma 3.1.3 in the previous section relies on a new set of clones in

each iteration to overwrite the changes to the contents of the registers made during the

inductive step. This is the primary reason why we only get an Ω(
√
𝑛) lower bound. As

the authors of [FHS98] also mention, to get a stronger lower bound we would instead

have to reuse processes to overwrite the registers. However, after the overwriting,

we cannot guarantee that processes would still cover various registers. Moreover,

it is insufficient to simply cover registers with processes without any knowledge of

what they are about to write. We start by introducing concepts that will be used to

overcome these challenges.

Process Pairs: The Leader and The Follower

To prove Lemma 3.1.3, we used clones that covered registers to overwrite these reg-

isters using a block-write, to reset their contents to be the same as in a previous

configuration with known valency. In order to do something similar, but without us-

ing new clones, we will consider pairs of processes, consisting of a leader process and

a follower process. The follower is a clone of the leader process and the pair remain

in the same states and perform the same steps during the whole execution. Every

process in the system will be either a leader or a follower in some pair.

Usually, when we schedule a leader to perform a step, its follower performs the

same step immediately after the leader. In this case, we say that the pair perfomed

the step. However, sometimes we will split the pair by having only the leader perform

a write step and let the follower cover the register. We will explicitly say when this

is the case. After we split the pair in such a way, we will delay scheduling the leader

and the follower will remain poised to write to the covered register. Later, we will

104

schedule the follower to write, effectively resetting the register to the value it had

after the write by the leader. As the leader did not take any steps in the meanwhile,

after the write the follower will again be in the same state as its leader. Hence, the

pair of the leader and the follower will no longer be split, and will continue taking

steps in lock-step as a pair.

This is very different from the way clones were used in the proof of Lemma 3.1.3,

because after the pair of the leader and its follower is united, it can be split again.

Therefore, the same follower can reset the contents of registers written by its leader

multiple times.

We call a split pair of a leader and a follower fresh as long as the register that

the leader wrote to, and its follower is covering, has not been overwritten. After the

register is overwritten, we call the split pair stale. In any configuration, there is at

most one fresh split pair whose follower covers a particular register.

In addition, we also use cloning in a way similar to the proof of Lemma 3.1.3,

except that we do this only a constant number of times, as opposed to 𝑟 times, to

reach the next configuration 𝐶𝑟+1. Moreover, each time we do this, we actually clone

a pair, i.e. we create duplicates of both a leader and its follower. The new leader-

follower pair is in the same state as the original pair, and from there on behaves as

any other pair.

By definition, both the leader and the follower in unsplit pairs are in the same

state. Therefore, we say that an unsplit pair covers a register when both the leader

and the follower cover it and we say that an unsplit pair returns when both the

leader and the follower return in two successive steps. A solo execution by an unsplit

pair 𝑝 is an execution containing even number of steps, where the leader in pair

𝑝 takes a step, immediately followed by exactly the same step of the follower in

𝑝. Thus, nondeterministic solo termination property for the leader process implies

nondeterminstic solo termination for the executions of the unsplit pair.

105

Reserving Executions

Intuitively, reserving executions ensure that, for each register written to during an

execution, some pair is reserved to cover it. We can use these pairs for covering in

subsequent inductive configurations.

Definition 3.1.4. Let 𝐶 be some configuration reachable by the algorithm, and let

𝑃 be a set of at least 𝑚 + 1 unsplit pairs. We call an execution 𝛾 that starts from

configuration 𝐶 reserving from 𝐶 by 𝑃 if:

∙ 𝛾 is a sequence of steps by pairs in 𝑃 (first by the leader of the pair, immediately

followed by the follower). Hence, 𝛾 contains even number of steps.

∙ For each prefix 𝛾′ of 𝛾 and for each register written to during 𝛾′, in configuration

𝐶𝛾′, there is an unsplit pair 𝑝 ∈ 𝑃 that covers it.

∙ If a pair 𝑝 ∈ 𝑃 returns during 𝛾, then this happens during the last two steps of

𝛾.

Notice that, by definition, any even-length prefix of a reserving execution is also

a reserving execution. Let Res(𝐶,𝑃) be the set of all reserving executions from 𝐶 by

pairs in 𝑃 that end with a pair 𝑝 ∈ 𝑃 returning. We first show that, given sufficiently

many pairs, such an execution exists. This will be essential for defining valency based

on reserving executions. Recall that we assumed a strict upper bound of 𝑚 on the

number of registers that can ever be written.

Lemma 3.1.5. For any reachable configuration 𝐶 and any set 𝑃 of at least 𝑚 + 1

unsplit pairs that have not returned, we have that Res(𝐶,𝑃) ̸= ∅.

Proof. For a given 𝐶 and 𝑃 , we will prove the lemma by constructing a particular

reserving execution 𝛾 that ends when some pair 𝑝 ∈ 𝑃 returns. We start with an

empty 𝛾 and repeatedly extend it.

In the first stage, consider each pair 𝑝 ∈ 𝑃 , one at a time. By nondeterministic

solo termination, there exists a solo execution by pair 𝑝 where 𝑝 returns. If this solo

execution contains write steps, extend 𝛾 by the prefix of the execution before the first

write, and consider the next pair in 𝑃 . Otherwise, complete 𝛾 by extending it with

106

the whole solo execution of 𝑝.

The first stage consists of extending the execution at most |𝑃 | times. Each time,

we extend 𝛾 by a prefix of a finite solo execution of some pair 𝑝 ∈ 𝑃 . These steps are

reads by leaders and followers of pairs in 𝑃 , and therefore the constructed prefix of 𝛾

is reserving.

If some pair returns in the first stage, the construction of 𝛾 is complete. Otherwise,

since the first stage is finite, we move on to the second stage.

In the second stage, the execution 𝛾 is extended by repeatedly doing the following

two phases. At the beginning of the first phase, we keep an invariant that each of the

at least 𝑚 + 1 pairs in 𝑃 is covering a register (this holds after the first stage). Let

𝑅 be the set of registers covered by pairs in 𝑃 . Since |𝑅| ≤ 𝑚 < |𝑃 |, we can find two

pairs 𝑝, 𝑞 ∈ 𝑃 covering the same register in 𝑅. By nondeterministic solo termination,

there exists a solo execution of pair 𝑝 where 𝑝 returns. If this solo execution contains

a write to a register outside of 𝑅, extend 𝛾 by the prefix of the execution before this

write, and continue from the first phase. Note that 𝑝 still covers a register, satisfying

the invariant. Add this register to 𝑅. Otherwise, complete 𝛾 by extending it with the

whole solo execution of pair 𝑝.

In the second stage, each iteration extends 𝛾 by a finite number of steps. After

each iteration, if the construction is not complete, the size of 𝑅 increases by one, but

it cannot become more than 𝑚 as only 𝑚 registers can ever be written. Thus, after

at most 𝑚 finite extensions, we will complete the construction of 𝛾 when some pair

returns.

To see that the execution is reserving, notice that all registers that were written

to are in 𝑅. By construction, each register in 𝑅 remains covered from the beginning

of the second stage or when it is first added to 𝑅 during the second stage.

The next lemma follows immediately from the definition of reserving executions.

Lemma 3.1.6. Consider a reachable configuration 𝐶, a set of at least 𝑚+ 1 unsplit

pairs 𝑃 ′ none of which have returned in 𝐶, and some unsplit pair 𝑝 ̸∈ 𝑃 ′ poised to

perform a write 𝑤𝑝 in 𝐶. Let 𝐶 ′ be the configuration reached from 𝐶 after the pair

107

𝑝 performs 𝑤𝑝 (first the leader, then the follower). Moreover, assume that another

unsplit pair 𝑞 ̸= 𝑝 with 𝑞 ̸∈ 𝑃 ′ is covering the same register that 𝑤𝑝 writes to. If

𝛾 ∈ Res(𝐶 ′, 𝑃 ′), then 𝑤𝑝𝑤𝑝𝛾 is in Res(𝐶,𝑃 ′ ∪ {𝑝} ∪ {𝑞}).

New Definition of Valency

Here we define valency based on reserving executions. For a set of process pairs 𝑈 , we

say that a configuration 𝐶 is 0-reserving-deciding𝑈 , if there exists a subset of 𝑚 + 1

unsplit pairs 𝑃 ⊆ 𝑈 (|𝑃 | = 𝑚+ 1), and a reserving execution in Res(𝐶,𝑃) returning

0. We define 1-reserving-deciding𝑈 analogously. Using Lemma 3.1.5 it immediately

follows that

Lemma 3.1.7. Let 𝑈 contain at least 𝑚 + 1 unsplit pairs that have not returned in

configuration 𝐶. Then, 𝐶 is 𝑣-reserving-deciding𝑈 for at least one 𝑣 ∈ {0, 1}.

A configuration that is both 0-reserving-deciding𝑈 and 1-reserving-deciding𝑈 is

called reserving-bivalent𝑈 . Otherwise, the configuration is called reserving-univalent𝑈 .

If a configuration is 0-reserving-deciding𝑈 , but not 1-reserving-deciding𝑈 (i.e. no

reserving execution by 𝑚 + 1 unsplit pairs in 𝑈 starting from this configuration

decides 1), then we call it 0-reserving-valent𝑈 . Analogously, a configuration is called

1-reserving-valent𝑈 if it is 1-reserving-deciding𝑈 , but not 0-reserving-deciding𝑈 .

The next lemma says that, from a bivalent configuration, there are reserving

executions by disjoint sets of processes that decide different values.

Lemma 3.1.8. Let 𝐶 be a reserving-bivalent𝑈 configuration for 𝑈 a set of at least

3𝑚 + 2 unsplit pairs. Then there are disjoint sets of 𝑚 + 1 unsplit pairs 𝑃 ′ ⊆ 𝑈

and 𝑄′ ⊆ 𝑈 (𝑃 ′ ∩ 𝑄′ = ∅), such that an execution in Res(𝐶,𝑃 ′) returns 0 and an

execution in Res(𝐶,𝑄′) returns 1.

Proof. None of the pairs in 𝑈 have already returned in configuration 𝐶, as that would

contradict the existence of a reserving execution returning the other output. As 𝐶

is reserving-bivalent𝑈 , there exist sets of 𝑚 + 1 unsplit pairs 𝑃 and 𝑄, such that an

execution in Res(𝐶,𝑃) returns 0 and an execution in Res(𝐶,𝑄) returns 1. If 𝑃 and

108

𝑄 do not intersect then we are done by setting 𝑃 ′ = 𝑃 and 𝑄′ = 𝑄.

Otherwise, consider an arbitrary set 𝐻 ⊆ 𝑈−𝑃 −𝑄 of 𝑚+1 unsplit pairs. If 𝐶 is

0-reserving-deciding𝐻 , we set 𝑃 ′ = 𝐻 and 𝑄′ = 𝑄, and if 𝐶 is 1-reserving-deciding𝐻 ,

then we set 𝑃 ′ = 𝑃 and 𝑄′ = 𝐻. One of these cases holds due to Lemma 3.1.7,

completing the proof.

The Main Proof

Consider any correct consensus algorithm satisfying nondeterministic solo termination

in a system of anonymous processes, with the property that every execution uses at

most 𝑚 registers. We will restrict attention to executions in which the processes are

partitioned into leader-follower pairs. Let 0 ≤ 𝑟 ≤ 𝑚. Suppose there exists a set 𝑈

containing 5𝑚+ 6 + 2𝑟 leader-follower pairs and a configuration 𝐶𝑟 that is reachable

by an execution by leaders and followers in 𝑈 .

Consider configuration 𝐶𝑟. Let 𝑅𝑠 denote the set of registers that are covered by

the follower of a fresh split pair. Suppose that there are no stale split pairs. Suppose

there is a set 𝑅𝑐 of 𝑟−|𝑅𝑠| other registers that are each covered by at least one unsplit

pair. Let 𝑉 consist of 𝑟 leader-follower pairs covering the 𝑟 registers in 𝑅𝑐 ∪ 𝑅𝑠. In

particular, all split pairs are in 𝑉 . Finally, suppose that there are two disjoint sets

of unsplit pairs 𝑃,𝑄 ⊆ 𝑈 − 𝑉 , such that some execution 𝛼 ∈ Res(𝐶𝑟, 𝑃) returns 0,

some execution 𝛽 ∈ Res(𝐶𝑟, 𝑄) returns 1, and |𝑃 | + |𝑄| ≤ 2𝑚 + 4. Recall that by

definition of reserving executions, in both 𝛼 and 𝛽, all steps are taken as pairs - first

the leader, then its follower, and the last two steps are some leader-follower returning

the output.

Let 𝐶0 be an initial configuration that contains a set 𝑈 of 5𝑚+ 6 leader-follower

pairs, half of which have input 0 and half of which have input 1. Let 𝑅𝑠, 𝑅𝑐, and

𝑉 be empty. Let 𝑃 be a set of 𝑚 + 1 pairs in 𝑈 with input 0 and let 𝑄 be a set

of 𝑚 + 1 pairs in 𝑈 with input 1. There are no split pairs in any initial configu-

ration. By Lemma 3.1.5, Res(𝐶0, 𝑃),Res(𝐶0, 𝑄) ̸= ∅. Since all steps of executions

in Res(𝐶0, 𝑃) are by processes with input 0, all executions in Res(𝐶0, 𝑃) return 0.

Similarly, all executions in Res(𝐶0, 𝑄) return 1. Thus, it is possible to satisfy all the

109

assumptions when 𝑟 = 0.

We will construct a set 𝑈 ′ of 5𝑚+6+2(𝑟+1) leader-follower pairs, a configuration

𝐶𝑟+1 that is reachable by an execution by leaders and followers in 𝑈 ′, disjoint sets

of registers 𝑅′
𝑠 and 𝑅′

𝑐 and disjoint sets of leader-follower pairs 𝑉 ′, 𝑃 ′, 𝑄′ ⊆ 𝑈 ′ such

that, in 𝐶𝑟+1,

1. 𝑅′
𝑠 is the set of registers that are covered by the follower of a fresh split pair in

𝑉 ′,

2. one unsplit pair in 𝑉 ′ covers each register in 𝑅𝑐,

3. |𝑉 ′| = |𝑅′
𝑠|+ |𝑅′

𝑐| = 𝑟 + 1,

4. some execution in Res(𝐶𝑟+1, 𝑃
′) returns 0,

5. some execution in Res(𝐶𝑟+1, 𝑄
′) returns 1,

6. |𝑃 ′|+ |𝑄′| ≤ 2𝑚+ 4, and

7. there are no stale split pairs.

We will construct the execution that starts in 𝐶𝑟 and reaches 𝐶𝑟+1. In 𝑈 ′−𝑈 we have

two more pairs available that have not taken steps and can be used to clone a leader-

follower pair. Let 𝑇 denote 𝑈 − 𝑉 − 𝑃 −𝑄. Since |𝑉 | = 𝑟 and |𝑃 | + |𝑄| ≤ 2𝑚 + 4,

we have |𝑇 | ≥ 3𝑚+ 2 + 𝑟 ≥ 3𝑚+ 2.

In 𝐶𝑟, each register in 𝑅𝑐 is covered by some pair (both a leader and its follower)

in 𝑉 . Let 𝛾𝑐 be a block write to all registers in 𝑅𝑐 by only the leaders but not the

followers of the respective covering pairs, i.e. after each write we get a new fresh split

pair. Without loss of generality assume that 𝐶𝑟𝛾𝑐 is 1-reserving-deciding𝑇 .

For any execution 𝛿 by processes not in 𝑉 , we denote by 𝑊 (𝛿) the set of registers

written to during 𝛿. In 𝐶𝑟, each register in 𝑅𝑠 is covered by a follower of a split pair

in 𝑉 whose leader has already performed the write and is stopped. For any execution

𝛿′ in which processes in 𝑉 do not take steps, we define 𝛾𝑠(𝛿′) to be the block write

to all registers in 𝑅𝑠 ∩𝑊 (𝛿′) (registers written to during 𝛿′ that are in 𝑅𝑠) by the

respective followers of split pairs in 𝑉 . After each write, another follower catches up

with its leader and a previously split pair is united. So, if we run an execution 𝛿′ from

𝐶𝑟 that changes the contents of some registers in 𝑅𝑠, we can clean these changes up

by executing 𝛾𝑠(𝛿′), which leads to all registers in 𝑅𝑠 having the same contents as in

110

𝐶𝑟.

Using a crude covering argument we can show that

Lemma 3.1.9. The execution 𝛼 must contain a write step outside 𝑅𝑐 ∪𝑅𝑠.

Proof. Assume the contrary. We know that the execution 𝛼 starting from 𝐶𝑟 returns

0. Only processes in 𝑃 take steps during 𝛼, 𝑃 is disjoint from 𝑉 and only processes

in 𝑉 take steps during 𝛾𝑐 and 𝛾𝑠(𝛼). 𝑇 is disjoint from both 𝑃 and 𝑉 , and thus

the configurations 𝐶𝑟𝛼𝛾𝑠(𝛼)𝛾𝑐 and 𝐶𝑟𝛾𝑐 are indistinguishable to all processes in 𝑇 .

This is because no process in 𝑇 has taken steps, the registers in 𝑅𝑐 ∪ 𝑅𝑠 contain the

same values, and no other registers have been written to during 𝛼, 𝛾𝑠(𝛼) or 𝛾𝑐. Con-

figuration 𝐶𝑟𝛾𝑐 is 1-reserving-deciding𝑇 , hence the same execution from Res(𝐶𝑟𝛾𝑐, 𝑇)

that returns 1, also returns 1 when executed from 𝐶𝑟𝛼𝛾𝑠(𝛼)𝛾𝑐. This contradicts the

correctness of the consensus algorithm.

Let us write 𝛼 = 𝛼′𝑤𝑝𝑤𝑝𝛼
′′, where 𝑤𝑝 is the first write step to a register reg ̸∈

(𝑅𝑐∪𝑅𝑠), performed by some leader-follower pair 𝑝 ∈ 𝑃 . Next, we prove the following

technical lemma using a FLP-like case analysis:

Lemma 3.1.10. We can construct an execution 𝜌, such that in configuration 𝐶𝑟𝜌,

we have disjoint sets of registers 𝑅′
𝑠, 𝑅

′
𝑐 and disjoint sets of pairs 𝑉 ′, 𝑃 ′, 𝑄′ ∈ 𝑈 ′, that

satisfy the first six properties. By these properties all fresh split pairs in 𝐶𝑟𝜌 belong

to 𝑉 ′, but some pairs in 𝑈 ′ − 𝑉 ′ − 𝑃 ′ −𝑄′ might be split and stale, contradicting the

seventh property. However, for each such pair 𝑝

∙ 𝑝 ∈ 𝑉 , it was split on a register 𝑥 ∈ 𝑅𝑠 and was fresh in 𝐶𝑟, and

∙ neither the leader nor follower in 𝑝 have taken steps in 𝜌, but 𝜌 includes a write

to 𝑥 that makes 𝑝 stale.

Proof. Recall that 𝑇 does not contain any split pairs.

Case 1: the configuration 𝐶𝑟𝛼
′ is 1-reserving-deciding𝑇 : Let ℓ be the length

of 𝑤𝑝𝑤𝑝𝛼
′′ and let 𝜋𝑗 be a prefix of 𝑤𝑝𝑤𝑝𝛼

′′ of length 2𝑗 for 0 ≤ 𝑗 ≤ ℓ/2. Hence, the

difference between 𝜋𝑗 and 𝜋𝑗+1 is the same step performed twice by a leader and a

111

Figure 3-1: Proof of Lemma 3.1.10, Case 1

leader follower

wp wp

: : :
: : :

α
0 π1

α
00

π2

π`

Cr

follower of a pair 𝑝 ∈ 𝑃 , as illustrated in Figure 3-1. Pairs in 𝑃 are not split, as by

the inductive hypothesis only pairs in 𝑉 are split, and 𝑉 ∩ 𝑃 = ∅. We consider two

further subcases.

Case 1.1: for some 0 ≤ 𝑗 ≤ ℓ/2, the configuration 𝐶𝑟𝛼
′𝜋𝑗 is reserving-

bivalent𝑇 : In this case, we let 𝜌 be 𝛼′𝜋𝑗. Since 𝐶𝑟𝜌 is reserving-bivalent𝑇 and 𝑇

contains at least 3𝑚+ 2 unsplit pairs, by Lemma 3.1.8, there are 𝑃 ′ ⊆ 𝑇 and 𝑄′ ⊆ 𝑇 ,

with 𝑃 ′ ∩ 𝑄′ = ∅ and |𝑃 ′| = |𝑄′| = 𝑚 + 1, such that an execution in Res(𝐶𝑟𝜌, 𝑃
′)

returns 0 and an execution in Res(𝐶𝑟𝜌,𝑄
′) returns 1.

Case 1.2: for every 0 ≤ 𝑖 ≤ ℓ/2, the configuration 𝐶𝑟𝛼
′𝜋𝑖 is reserving-

univalent𝑇 : By Case 1 assumption 𝐶𝑟𝛼
′𝜋0 is 1-reserving-deciding𝑇 , hence, it must

be 1-reserving-valent𝑇 . On the other hand, 𝛼 returns 0, so the configuration 𝐶𝑟𝛼
′𝜋ℓ/2

must be 0-reserving-valent𝑇 . No intermediate configuration is bivalent, so we can

find a configuration 𝐶𝑟𝛼
′𝜋𝑗 that is 1-reserving-valent𝑇 , while 𝐶𝑟𝛼

′𝜋𝑗+1 is 0-reserving-

valent𝑇 , for some 0 ≤ 𝑗 < ℓ/2. We let 𝜌 be 𝛼′𝜋𝑗.

Let 𝑜𝑜 be the steps by a leader-follower pair in 𝑃 separating 𝜋𝑗 and 𝜋𝑗+1. 𝑜 may

not be a read, as no process in 𝑇 could distinguish between a 1-reserving-valent𝑇

configuration 𝐶𝑟𝛼
′𝜋𝑗 and a 0-reserving-valent𝑇 configuration 𝐶𝑟𝛼

′𝜋𝑗𝑜𝑜 = 𝐶𝑟𝛼
′𝜋𝑗+1.

Let 𝑄′ be a set of any 𝑚 + 1 pairs in 𝑇 . By Lemma 3.1.5, Res(𝐶𝑟𝜌,𝑄
′) is non-

empty and since 𝐶𝑟𝜌 is 1-reserving-valent𝑇 , all executions in Res(𝐶𝑟𝜌,𝑄
′) return 1.

Recall that 𝑈 ′ contains the pairs in 𝑈 and an additional two leader-follower pairs that

have not taken any steps. Let us use these pairs 𝑝′ and 𝑝′′ to clone the leader-follower

pair performing the write step 𝑜. Both cloned leaders and followers will be in the

112

same state as the leader and follower in the original pair performing 𝑜. The leader

and follower in 𝑝′ are thus poised to perform write steps 𝑜′ identical to the step 𝑜

at configuration 𝐶𝑟𝜌, and the leader and the follower in 𝑝′′ are poised to perform 𝑜′′

identical to 𝑜.

Let 𝐹 be a set of 𝑚 + 1 pairs from 𝑇 − 𝑄′ (we know |𝑇 | ≥ 3𝑚 + 2). Let 𝑃 ′ be

𝐹 ∪ {𝑝′, 𝑝′′}, |𝑃 ′| = 𝑚 + 3 in total. By Lemma 3.1.5 and the fact that configuration

𝐶𝑟𝛼𝜋𝑗+1 is 0-reserving-valent𝑇 , there is a reserving execution 𝜉 ∈ Res(𝐶𝑟𝛼𝜋𝑗+1, 𝐹)

that returns 0.

Having pair 𝑝′ perform 𝑜′ from 𝐶𝑟𝜌 while 𝑝′′ covers the same register with the step

𝑜′′, we reach the configuration 𝐶𝑟𝜌𝑜
′𝑜′. This configuration is indistinguishable from

𝐶𝑟𝛼𝜋𝑗+1 for any pair in 𝐹 , because they have not taken steps and the contents of

all registers are the same. Thus, execution 𝜉 from 𝐶𝑟𝜌𝑜
′𝑜′ also returns 0, i.e. 𝑜′𝑜′𝜉

from 𝐶𝑟𝜌 returns 0, and by Lemma 3.1.6, 𝑜′𝑜′𝜉 ∈ Res(𝐶𝑟𝛼𝜋𝑗, 𝑃
′) = Res(𝐶𝑟𝜌, 𝑃

′). By

construction |𝑃 ′| + |𝑄′| = 2𝑚 + 4 and 𝑃 ′ ∩ 𝑄′ = ∅. The reason why we cloned two

pairs instead of cloning one pair and using a pair from 𝑃 that was poised to perform

𝑜 is that we later require 𝑃 ′, 𝑄′ ⊆ 𝑇 ∪ (𝑈 ′−𝑈), in order to ensure that 𝑃 ′ and 𝑄′ are

disjoint from 𝑉 ′, constructed below.

Case 1: the rest of the proof for both subcases The set 𝑅′
𝑠 will be 𝑅𝑠−𝑊 (𝜌),

i.e. the registers from 𝑅𝑠 that have not been written to during the execution 𝜌 = 𝛼′𝜋𝑗

from 𝐶𝑟. For each of these registers we still have the same pair from 𝑉 split on it,

and since this pair was fresh in 𝐶𝑟 and the register has not been written to during

𝜌, it is still fresh in 𝐶𝑟𝜌 as required. There are no other fresh split pairs in 𝐶𝑟𝜌: no

new split pairs were introduced during 𝜌, and the rest of fresh pairs in 𝐶𝑟 were split

on 𝑅𝑠 ∩𝑊 (𝜌). These pairs are no longer fresh in 𝐶𝑟𝜌, as the registers their followers

covered were written to during 𝜌.

The set 𝑅′
𝑐 is simply (𝑅𝑐 ∪ 𝑅𝑠 ∪ {reg}) − 𝑅′

𝑠 = 𝑅𝑐 ∪ (𝑅𝑠 ∩𝑊 (𝜌)) ∪ {reg}. We

must show that there is a leader-follower pair covering each of these registers in

configuration 𝐶𝑟𝜌. For each register in 𝑅𝑐, we take the same pair from 𝑉 that was

covering it in 𝐶𝑟. For each register in (𝑅𝑠 ∩𝑊 (𝜌)) ∪ {reg}, we find a pair from 𝑃

113

Figure 3-2: Proof of Lemma 3.1.10, Case 2

leader follower
: : :

: : :

α
0

Cr
: : :

γs(α
0
)

γc

σ1

σ2
σ`

covering it in 𝐶𝑟𝜌. Since 𝛼 is a reserving execution from 𝐶𝑟, all its prefixes of even

length including 𝛼′𝜋𝑗 are also reserving. Thus, in 𝐶𝑟𝛼
′𝜋𝑗 = 𝐶𝑟𝜌, for each register that

has been written to during 𝜌, in particular for registers in (𝑅𝑠 ∩𝑊 (𝜌)) ∪ {reg}, we

find a covering pair in 𝑃 . Technically, if 𝑗 = 0, register reg is not yet written, but the

next step in 𝛼 is 𝑤𝑝 by a pair covering reg.

The set 𝑉 ′ ⊆ 𝑉 ∪𝑃 contains all 𝑟+1 pairs we used to cover registers in 𝑅′
𝑐∪𝑅′

𝑠 =

R𝑐 ∪ 𝑅𝑠 ∪ reg. Recall that by our construction, 𝑃 ′, 𝑄′ ⊆ 𝑇 ∪ (𝑈 ′ − 𝑈). Also, 𝑇 was

disjoint from 𝑉 , 𝑃 and 𝑄, and so are the two pairs in 𝑈 ′ − 𝑈 that had never taken

steps before. Therefore, we have (𝑃 ′ ∪𝑄′) ∩ 𝑉 ′ = ∅ as required.

Case 2: the configuration 𝐶𝑟𝛼
′ is 0-reserving-valent𝑇 : No processes in 𝑉 take

steps in 𝛼′, and therefore 𝛾𝑠(𝛼′) is well defined. In 𝛾𝑠(𝛼′), each register in 𝑅𝑠∩𝑊 (𝛼′)

is overwritten to the value that the register had in 𝐶𝑟 by the follower of the split

pair in 𝑉 that covered it. Hence, for all processes in 𝑇 , configuration 𝐶𝑟𝛼
′𝛾𝑠(𝛼

′)𝛾𝑐 is

indistinguishable from the 1-reserving-deciding𝑇 configuration 𝐶𝑟𝛾𝑐. This is because

the processes in 𝑇 have not taken steps (𝑇 is disjoint from 𝑃 ∪𝑉) and the contents of

all registers are the same in these configurations (𝛼′ contains writes only to registers

in 𝑅𝑐 ∪𝑅𝑠).

Let us denote by ℓ the length of execution 𝛾𝑠(𝛼
′)𝛾𝑐 and let 𝜎𝑗 be the prefix of

this execution of length 𝑗 for 0 ≤ 𝑗 ≤ ℓ. Notice that, unlike the previous case,

where the difference between 𝜋𝑗 and 𝜋𝑗+1 was a pair of identical steps by a leader

and the follower, the difference between 𝜎𝑗 and 𝜎𝑗+1 is exactly one step, by either

a leader or a follower of some pair. By definition, each step in 𝛾𝑠(𝛼
′) is performed

by a follower (uniting a previously split pair after each step), while each step in 𝛾𝑐

114

is performed by a leader (creating a new fresh split pair after each step). This is

illustrated in Figure 3-3.

Case 2.1: for some 0 ≤ 𝑗 ≤ ℓ, the configuration 𝐶𝑟𝛼
′𝜎𝑗 is reserving-bivalent𝑇 :

We let 𝜌 be 𝛼′𝜎𝑗. As in Case 1.1, 𝐶𝑟𝜎𝑗 is reserving-bivalent𝑇 and |𝑇 | ≥ 3𝑚 + 2.

Therefore, by Lemma 3.1.8, there are 𝑃 ′ ⊆ 𝑇 and 𝑄′ ⊆ 𝑇 , with 𝑃 ′ ∩ 𝑄′ = ∅ and

|𝑃 ′| = |𝑄′| = 𝑚+1, such that an execution in Res(𝐶𝑟𝜌, 𝑃
′) returns 0 and an execution

in Res(𝐶𝑟𝜌,𝑄
′) returns 1.

Case 2.2: for every 0 ≤ 𝑖 ≤ ℓ, the configuration 𝐶𝑟𝛼
′𝜎𝑖 is reserving-univalent𝑇 :

The configuration 𝐶𝑟𝛼
′𝜎0 is 0-reserving-valent𝑇 by the Case 2 assumption. Since

all writes in 𝛼′ are to registers in 𝑅𝑐 ∪ 𝑅𝑠, the contents of all registers are the same

in 𝐶𝑟𝛼
′𝜎ℓ and 𝐶𝑟𝛾𝑐. Moreover, the processes in 𝑇 have not taken steps in 𝛼′𝜎ℓ or 𝛾𝑐.

Therefore, configuration 𝐶𝑟𝛼
′𝜎ℓ is indistinguishable from 1-reserving-deciding𝑇 𝐶𝑟𝛾𝑐

to all processes in 𝑇 .

No intermediate configuration is bivalent, so there is a configuration 𝐶𝑟𝛼
′𝜎𝑗 that

is 0-reserving-valent𝑇 , while 𝐶𝑟𝛼
′𝜎𝑗+1 is 1-reserving-valent𝑇 , for some 0 ≤ 𝑗 < ℓ. We

let 𝜌 be 𝛼′𝜎𝑗.

We can construct 𝑃 ′ and 𝑄′ in a very similar way to Case 1.2. If 𝑜 is the step

separating 𝜎𝑗 and 𝜎𝑗+1, 𝑜 may not be a read as before, and we use two pairs in 𝑈 ′−𝑈

to clone leader-follower pairs 𝑝′ and 𝑝′′, both about to perform identical write steps

𝑜′ and 𝑜′′. We let 𝑃 ′ be a set of any 𝑚+ 1 pairs in 𝑇 and 𝑄′ be a set of 𝑚+ 3 pairs,

with 𝑚+ 1 pairs from 𝑇 −𝑃 ′ and the two cloned pairs. Then, by the same argument

as in Case 1.2, 𝑃 ′ and 𝑄′ satisfy all required properties.

Case 2: the rest of the proof for both subcases The set 𝑅′
𝑠 is (𝑅𝑠−𝑊 (𝛼′))∪

(𝑅𝑐 ∩𝑊 (𝜎𝑗)). It consists of registers from 𝑅𝑠 that were not written to during 𝛼′ and

registers from 𝑅𝑐 that were written to during 𝜎𝑗 (during the prefix of block write 𝛾𝑐

that was executed).

For each register in 𝑅𝑠 −𝑊 (𝛼′), we still have the same pair from 𝑉 split on it

in configuration 𝐶𝑟𝜌 as in 𝐶𝑟. This split pair was fresh in 𝐶𝑟 and covered a register

115

in 𝑅𝑠 that has not been written to during 𝜌 = 𝛼′𝜎𝑗. Therefore, it is still fresh as

required in 𝐶𝑟𝜌. Execution 𝜎𝑗 may contain a prefix of 𝛾𝑐, during which only leaders

but not the followers take steps and new fresh split pairs are created. These pairs

are split on registers in 𝑅𝑐 ∩𝑊 (𝜎𝑗), and there is one newly split fresh pair per each

of these registers. No other split pairs are fresh, since fresh pairs that were split on

𝑅𝑠 ∩𝑊 (𝛼′) cannot be fresh in 𝐶𝑟𝜌, as the registers covered by their followers were

written to during 𝛼′.

The set 𝑅′
𝑐 is (𝑅𝑐 −𝑊 (𝜎𝑗)) ∪ (𝑅𝑠 ∩𝑊 (𝛼′)) ∪ {reg}. As in Case 1, 𝛼′ is a prefix

of a reserving execution 𝛼 ∈ Res(𝐶𝑟, 𝑃), so for each register in 𝑅𝑠 ∩𝑊 (𝛼′) there is a

covering pair from 𝑃 in 𝐶𝑟𝜌. The register reg is covered by the leader-follower pair in

𝑃 with a pending write 𝑤𝑝. For each register in 𝑅𝑐 −𝑊 (𝐵𝑗), we take the pair from

𝑉 that was covering it in 𝐶𝑟. Neither leader nor follower in this pair have taken steps

during 𝜌 = 𝛼′𝜎𝑗 and still cover the same register in 𝐶𝑟𝜌.

As in Case 1, the set 𝑉 ′ ⊆ 𝑉 ∪ 𝑃 contains all 𝑟 + 1 pairs used to cover registers

in 𝑅′
𝑐 ∪𝑅′

𝑠 = 𝑅𝑐 ∪ R𝑠 ∪ reg. Also, 𝑃 ′, 𝑄′ ⊆ 𝑇 ∪ (𝑈 ′ − 𝑈) and it follows as before that

(𝑃 ′ ∪𝑄′) ∩ (𝑉 ′) = ∅ as required.

In order to finish the proof, we need to show how to get rid of stale split pairs that

might exist in configuration 𝐶𝑟𝜌. In 𝐶𝑟 there were no stale split pairs in the system,

so they must have appeared during the execution 𝜌 constructed in Lemma 3.1.10 For

each register in 𝑅𝑠 ∩𝑊 (𝜌), there is a split pair 𝑝 ∈ 𝑉 that was fresh in 𝐶𝑟, but is

stale in 𝐶𝑟𝜌, because the register covered by the follower of 𝑝 was overwritten during

𝜌.

We now modify the execution 𝜌; For each split pair 𝑝 that is stale in 𝐶𝑟𝜌, let 𝑠

be the first write step during 𝜌 to the register the follower of 𝑝 covers. We add a

write step by the follower of 𝑝 in execution 𝜌 immediately before step 𝑠. This way,

no pair other than the follower observes a difference, since the changes are promptly

overwritten by 𝑠. The follower, meanwhile, catches up with the leader, hence, the

pair is united.

Let 𝜌′ be the modified execution, where as described above, we have added a write

step of a follower of each pair that was stale in 𝐶𝑟𝜌 (and covered a register in 𝑅𝑠 ∩

116

𝑊 (𝜌)). We will use the configuration 𝐶𝑟𝜌
′ as 𝐶𝑟+1. Because of the indistinguishability,

𝐶𝑟+1 satisfies all the required properties and does not contain any stale split pairs, as

all such pairs from 𝐶𝑟𝜌 are now united.

Corollary 3.1.11. In a system of 𝑛 anonymous processes, any consensus algorithm

satisfying non-deterministic solo termination must use ⌊𝑛/14⌋ − 1 registers.

Proof. Suppose for the sake of contradiction that all executions use at most 𝑚 =

⌊𝑛/14⌋ − 2 registers, where 𝑛 is the number of anonymous processes. Then, we can

reach 𝐶𝑚+1 using 10𝑚+ 12 + 4𝑚+ 4 < 𝑛 processes. In configuration 𝐶𝑚+1, there are

𝑚 + 1 registers in 𝑅𝑐 ∪ 𝑅𝑠, each of which has either already been written to (𝑅𝑠) or

is covered by an unsplit process (𝑅𝑐).

3.2 The Space Hierarchy

3.2.1 Model

Our model is similar to the standard asynchronous shared memory model [AW04],

albeit with a few important differences. We consider a system of 𝑛 ≥ 2 processes that

supports some set of deterministic synchronization instructions, ℐ, on a set of identical

memory locations. The processes take steps at arbitrary, possibly changing, speeds

and may crash at any time. Each step is an atomic invocation of some instruction on

some memory location. Scheduling is controlled by an adversary.

The processes can use instructions on the memory locations to simulate (or im-

plement) various objects. An object provides a set of operations which processes can

call. Although a memory location together with the supported instructions can be

viewed as an object, we do not do so, to emphasize the uniformity requirement that

the same set of instructions is supported on all memory locations.

We consider the problem of solving obstruction-free 𝑚-valued consensus in such

a system. Here, each of the 𝑛 processes has an input from {0, 1, . . . ,𝑚 − 1} and is

supposed to output a value (called a decision), such that all decisions are the same

and equal to the input of one of the processes. Obstruction-free means that every

117

process will eventually decide a value provided no other process is taking steps at the

same time. When 𝑚 = 𝑛, we call this problem 𝑛-consensus.

For lower bounds, we consider 𝑛 processes solving 2-valued consensus, which is

also called binary consensus. In deterministic algorithms, the next step of a process is

uniquely defined at every configuration, and process 𝑝 is said to be poised to perform

a specific instruction on a memory location 𝑟 at a configuration 𝐶 if 𝑝’s next step in

configuration 𝐶 is to perform that instruction on 𝑟. We prove our lower bounds for a

more general, nondeterministic solo termination [FHS98] property, which means that

from each reachable configuration, for each process, there exists a finite solo execution

by the process where it terminates and returns an output. In these lower bounds, for

each process 𝑝 in a configuration 𝐶, we always consider one fixed next step 𝛿 of 𝑝,

such that 𝑝 has a finite terminating solo execution from 𝐶𝛿. Then, we say that 𝑝 is

poised on a memory location 𝑟 at a configuration 𝐶 if 𝛿 is an instruction on 𝑟.

3.2.2 Arithmetic Instructions

Consider a system that supports only read() and either add(𝑥), multiply(𝑥), or

set-bit(𝑥). We show how to solve 𝑛-consensus using a single memory location in

such a system. The idea is to show that we can simulate certain collections of objects

that can solve 𝑛-consensus.

An 𝑚-component unbounded counter object has 𝑚 components, each with a non-

negative integral value. It supports an increment() operation on each component,

that increments the value of the component by 1, and a snapshot() operation, that

returns the values of all 𝑚 components. In the next lemma, we present a racing

counters algorithm that bears some similarity to a consensus algorithm by Aspnes

and Herlihy [AH90].

Lemma 3.2.1. It is possible to solve obstruction-free 𝑚-valued consensus among 𝑛

processes using an 𝑚-component unbounded counter.

Proof. We initialize all components with 0 and associate a separate component 𝑐𝑣 with

each possible input value 𝑣. Processes that promote a particular value 𝑣 increment

118

𝑐𝑣. (Initially, each process promotes its input value.) After performing an increment,

a process takes a snapshot of all 𝑚 components and promotes the value associated

with a highest component (breaking ties arbitrarily). When a process observes that

some component 𝑐𝑣 is more than 𝑛 larger than all other components, it returns the

value 𝑣 associated with 𝑐𝑣. This works because each other process will increment some

component at most once before next taking a snapshot, and, in that snapshot, 𝑐𝑣 will

still be the only maximum. From then on, each of these processes will promote value

𝑣 and keep incrementing 𝑐𝑣, which will soon become large enough for all processes

to return 𝑣. Obstruction-freedom follows because a process running on its own will

continue to increment the same component and, thus, eventually be able to return.

The component values may grow arbitrarily large in the preceding protocol. The

next lemma shows that it is possible to overcome this limitation when each component

also supports a decrement() operation. More formally, an 𝑚-component bounded

counter object has𝑚 components, where each component has a value in {0, 1, . . . , 3𝑛−

1}. It supports both increment() and decrement() operations on each component,

along with a snapshot() operation that returns the values of all components. If a

process ever attempts to increment a component that has value 3𝑛− 1 or decrement

a component that has value 0, the object breaks (and every subsequent operation

invocation returns ⊥).

Lemma 3.2.2. It is possible to solve obstruction-free 𝑚-valued consensus among 𝑛

processes using an 𝑚-component bounded counter.

Proof. We modify the construction in Lemma 3.2.1 slightly by changing what a pro-

cess does when it wants to increment 𝑐𝑣 to promote the value 𝑣. Among the other

components (i.e. excluding 𝑐𝑣), let 𝑐𝑢 be one that is highest. If 𝑐𝑢 < 𝑛, it increments

𝑐𝑣, as before. If 𝑐𝑢 ≥ 𝑛, then, instead of incrementing 𝑐𝑣, it decrements 𝑐𝑢.

A component with value 0 is never decremented. This is because, after the last

time some process observed it to be at least 𝑛, each process will decrement the

component at most once before reading its value again. Similarly, a component 𝑐𝑣

never becomes larger than 3𝑛 − 1: after the last time some process observed it to

119

be less than 2𝑛, each process can increment 𝑐𝑣 at most once before reading its value

again. If 𝑐𝑣 ≥ 2𝑛, then either the other components are less than 𝑛, in which case

the process returns without incrementing 𝑐𝑣, or the process decrements some other

component, instead of incrementing 𝑐𝑣.

In the following theorem, we show how to simulate unbounded and bounded

counter objects.

Theorem 3.2.3. It is possible to solve 𝑛-consensus using a single memory location

that supports only read() and either multiply(𝑥), add(𝑥), or set-bit(𝑥).

Proof. We first give an obstruction-free implementation using a single location in a

system with read() and multiply(𝑥) instructions. This proves the claim for this set of

instructions, by Lemma 3.2.1. The location is initialized with 1. For each component

𝑐𝑣, where 𝑣 ∈ {0, . . . ,𝑚 − 1}, let 𝑝𝑣 be the (𝑣 + 1)’st prime number. A process

increments a component 𝑐𝑣 by performing multiply(𝑝𝑣). A read() instruction returns

the value 𝑥 currently stored in the memory location, which gives a snapshot of all

components: component 𝑐𝑣 is the exponent of 𝑝𝑣 in the prime decomposition of 𝑥.

A similar construction does not work in a system with read() and add(𝑥) in-

structions. For example, suppose one component is incremented by calling add(𝑎)

and another component is incremented by calling add(𝑏). Then, the value 𝑎𝑏 can

be obtained by incrementing the first component 𝑏 times or incrementing the second

component 𝑎 times. However, we can use a single memory location that supports

{read(), add(𝑥)} to implement an 𝑚-component bounded counter. By Lemma 3.2.2,

this is sufficient for solving consensus. We initialize the location with 0 and view

the value stored in the location as a number written in base 3𝑛. We interpret the

𝑖’th least significant digit of this number as the value of the component 𝑐𝑖−1. To

increment 𝑐𝑖, we perform add((3𝑛)𝑖), to decrement 𝑐𝑖, we perform add(−(3𝑛)𝑖), and

read() provides an atomic snapshot of all components.

Finally, in systems supporting read() and set-bit(𝑥), we partition the memory

location into blocks of 𝑚𝑛 bits. Process 𝑖 sets the (𝑣𝑛+ 𝑖)’th bit in block 𝑏 to indicate

that it has incremented component 𝑐𝑣 at least 𝑏 times. To increment component 𝑐𝑣,

120

a process sets its bit for component 𝑐𝑣 in the appropriate block based on the number

of times it has previously incremented 𝑐𝑣. It is possible to determine to current value

of each component via a single read(): the value of component 𝑐𝑣 is simply the sum

of the number of times each process has incremented 𝑐𝑣.

3.2.3 Increment

Consider a system that supports only read , write(𝑥), and either fetch-and-increment()

or increment(). We prove that it is not possible to solve 𝑛-consensus in the first

(stronger) case using a single memory location and we provide an algorithm in the

second (weaker) case, which uses 𝑂(log 𝑛) memory locations.

Theorem 3.2.4. It is not possible to solve nondeterministic solo terminating con-

sensus for 𝑛 ≥ 2 processes using a single memory location that supports only read(),

write(𝑥), and fetch-and-increment().

Proof. Suppose there is a binary consensus algorithm for two processes, 𝑝 and 𝑞,

using only 1 memory location. Consider solo terminating executions 𝛼 and 𝛽 by 𝑝

with input 0 and input 1, respectively. Let 𝛼′ be the longest prefix of 𝛼 that does

not contain a write and define 𝛽′ analogously. Without loss of generality, suppose

that in 𝛽′ at least as many fetch-and-increment instructions are performed as in 𝛼′.

Let 𝐶 be the configuration that results from executing 𝛼′ starting from the initial

configuration in which 𝑝 has input 0 and the other process, 𝑞 has input 1.

Consider the shortest prefix 𝛽′′ of 𝛽′ in which 𝑝 performs the same number of

fetch-and-increments as it performs in 𝛼′. Let 𝐶 ′ be the configuration that results

from executing 𝛽′′ starting from the initial configuration in which both 𝑝 and 𝑞 have

input 1. Then 𝑞 must decide 1 in its solo terminating execution 𝛾 starting from

configuration 𝐶 ′. However, 𝐶 and 𝐶 ′ are indistinguishable to process 𝑞, so it must

decide 1 in 𝛾 starting from configuration 𝐶. Thus, 𝑝 cannot have decided yet in

configuration 𝐶, otherwise both 0 and 1 would have been decided.

Therefore, 𝑝 is poised to perform a write in configuration 𝐶. Let 𝛼′′ be the remain-

der of 𝛼, so 𝛼 = 𝛼′𝛼′′. Since there is only one memory location, the configurations

121

resulting from performing this write starting from 𝐶 and 𝐶𝛾 are indistinguishable to

𝑝. Thus, 𝑝 also decides 0 starting from 𝐶𝛾. But in this execution, both 0 and 1 are

decided. This is a contradiction.

The following well-known construction converts any algorithm for solving binary

consensus to an algorithm for solving 𝑛-valued consensus [HS12].

Lemma 3.2.5. Consider a system that supports a set of instructions that includes

read() and write(𝑥). If it is possible solve obstruction-free binary consensus among 𝑛

processes using only 𝑐 memory locations, then it is possible to solve 𝑛-consensus using

only (𝑐+ 2) · ⌈log2 𝑛⌉ − 2 locations.

Proof. The processes agree bit-by-bit in ⌈log2 𝑛⌉ asynchronous rounds, each using

𝑐 + 2 locations. A process starts in the first round with its input value as its value

for round 1. In round 𝑖, if the 𝑖’th bit of its value is 0, a process writes this value in a

designated 0-location for the round. Otherwise, it writes it in a designated 1-location.

Then, it performs the obstruction-free binary consensus algorithm using 𝑐 locations

to agree on the 𝑖’th bit 𝑣 of the output. If this bit differs from the 𝑖’th bit of its value,

the process reads one of the recorded values from the designated 𝑣-location for round

𝑖 and adopts its value for the next round. Note that some process must have already

recorded a value to this location since, otherwise, the bit 𝑣 would have been agreed

upon. This ensures that the values used for round 𝑖+ 1 are all input values and they

all agree in their first 𝑖 bits. By the end, all processes have agreed on ⌈log2 𝑛⌉ bits,

i.e. on one of the at most 𝑛 different input values.

We can save two locations because the last round does not require designated 0

and 1-locations.

We can implement a 2-component unbounded counter, defined in Section 3.2.2, us-

ing two locations that support read() and increment(). The values in the two locations

never decrease. Therefore, a snapshot() operation of the counter can be performed

using the double collect algorithm in [AAD+93]. By Lemma 3.2.1, a 2-component un-

bounded counter lets 𝑛 processes solve obstruction-free binary consensus. The next

122

result then follows from Lemma 3.2.5.

Theorem 3.2.6. It is possible to solve 𝑛-consensus using only 𝑂(log 𝑛) memory lo-

cations that support only read(), write(𝑥), and increment().

3.2.4 Buffers

In this section, we consider the instructions ℓ-buffer-read() and ℓ-buffer-write(𝑥), for

ℓ ≥ 1, which generalize read and write, respectively. Specifically, an ℓ-buffer-read()

instruction returns the last ℓ inputs to ℓ-buffer-write instructions previously applied

on the memory location, in order from least recent to most recent.

We consider a system that supports the instruction set ℬℓ = {ℓ-buffer-read(), ℓ-buffer-write(x)},

for some ℓ ≥ 1. We call each memory location in such a system an ℓ-buffer . Note

that a 1-buffer is simply a register. For ℓ > 1, an ℓ-buffer essentially maintains a

buffer of the ℓ most recent writes to that location and allows them to be read.

In Section 3.2.4, we show that a single ℓ-buffer can be used to simulate a pow-

erful history object that can be updated by at most ℓ processes. This will allow

us to simulate an obstruction-free variant of Aspnes and Herlihy’s algorithm for 𝑛-

consensus [AH90] and, hence, solve 𝑛-consensus, using only ⌈𝑛/ℓ⌉ ℓ-buffers. In Sec-

tion 3.2.4, we prove that ⌈(𝑛−1)/ℓ⌉ ℓ-buffers are necessary, which matches the upper

bound whenever 𝑛− 1 is not a multiple of ℓ.

Simulations Using Buffers

A history object 𝐻 supports two operations, get-history() and append(𝑥), where

get-history() returns the sequence of all values appended to 𝐻 by prior append op-

erations, in order. We first show that, using a single ℓ-buffer 𝐵, we can simulate a

history object 𝐻 that supports at most ℓ different appenders, but arbitrarily many

readers.

Lemma 3.2.7. A single ℓ-buffer can simulate a history object on which at most ℓ

different processes can perform append(𝑥) and any number of processes can perform

get-history().

123

Proof. Without loss of generality, assume that no value is appended to 𝐻 more than

once. This can be achieved by having a process include its process identifier and a

sequence number along with the value that it wants to append.

In our implementation, 𝐵 is initially ⊥ and each value written to 𝐵 is of the form

(h, 𝑥), where h is a history of appended values and 𝑥 is a single appended value.

To implement append(𝑥) on 𝐻, a process obtains a history h by performing

get-history() on 𝐻 and then performs ℓ-buffer-write on 𝐵 with value (h, 𝑥). The

operation is linearized at this ℓ-buffer-write step.

To implement get-history() on 𝐻, a process simply performs an ℓ-buffer-read of

𝐵 to obtain a vector (𝑎1, . . . , 𝑎ℓ), where 𝑎ℓ is the most recently written value. The

operation is linearized at this step.

Next, we consider a given get-history() operation. Let 𝑅 be the ℓ-buffer-read step,

which is the linearization point of this get-history() operation. We describe how the

return value of this operation is computed, and prove that in all cases, it returns

the sequence of inputs to all append operations on 𝐻 linearized before 𝑅, in order

from least recent to most recent. The proof assumes that all get-history() operations

for which strictly less append operations on 𝐻 were linearized before their respective

linearization points, return the correct output (i.e. the proof is by induction on

the number of append operations linearized before the get-history() operation). Let

(𝑎1, . . . , 𝑎ℓ) be the vector returned by 𝑅.

We have (𝑎1, . . . , 𝑎ℓ) = (⊥, . . . ,⊥) only when there are no ℓ-buffer-write steps

before 𝑅, i.e. if and only if no append operations are linearized before 𝑅. In this case,

the empty sequence is returned, as required.

Now, suppose that there is at least one append operation linearized before 𝑅 and

let 𝑘 be the smallest integer such that 𝑎𝑘 ̸= ⊥. It follows that, for 𝑘 ≤ 𝑖 ≤ ℓ,

𝑎𝑖 = (h𝑖, 𝑥𝑖), where 𝑥𝑖 is an appended value, and h𝑖 is a history returned by a

get-history() operation on 𝐻 with linearization point 𝑅𝑖. Then, strictly fewer append

operations are linearized before 𝑅𝑖 than before 𝑅. Specifically, step 𝑅𝑖 = ℓ-buffer-read

is before ℓ-buffer-write(𝑎𝑖), which is the linearization point of an append(𝑥𝑖) operation

that is linearized before 𝑅.

124

Whenever 𝑘 > 1, i.e. when get-history() operation observes 𝑎1 = ⊥, it returns

(𝑥𝑘, 𝑥𝑘+1, · · · , 𝑥ℓ). There must be only ℓ− 𝑘 + 1 occurrences of a ℓ-buffer-write step

before 𝑅. Since each append operation is linearized at its ℓ-buffer-write, only ℓ−𝑘+1

append instructions are linearized before 𝑅 and 𝑥𝑘, . . . , 𝑥ℓ are the values appended by

these ℓ− 𝑘 + 1 append operations, in order from least recent to most recent. Hence,

the return value of get-history is correct.

Now suppose 𝑘 = 1. Let h = h𝑚 be the longest history amongst h1, . . . ,hℓ. If h

contains 𝑥1, then the get-history() operation returns h′ · (𝑥1, . . . , 𝑥ℓ), where h′ is the

prefix of h up to, but not including, 𝑥1. If h does not contain 𝑥1, then h · (𝑥1, . . . , 𝑥ℓ)

is returned.

Let 𝑊 be the ℓ-buffer-write step which wrote 𝑎1 to 𝐵. There are two cases to

consider.

Case 1: h contains 𝑥1. By the induction hypothesis, h𝑚 = h contains all values

appended to 𝐻 by append operations linearized before step 𝑅𝑚, in order from least

recent to most recent. By definition, 𝑥1, . . . , 𝑥ℓ are the last ℓ values appended to 𝐻

prior to step 𝑅, in order. Since h contains 𝑥1, it must also contain all values appended

to 𝐻 prior to 𝑥1. It follows that h′ · (𝑥1, . . . , 𝑥ℓ) is the correct return value, where h′

is the prefix of h up to, but not including, 𝑥1.

Case 2: h does not contain 𝑥1. Let us first show that step 𝑊 = ℓ-buffer-write(𝑎1),

which is the linearization point of append(𝑥1), must happen after𝑅𝑖 for each 1 ≤ 𝑖 ≤ ℓ,

which is the get-history() step by append(𝑥𝑖). Assume for contradiction that 𝑊 is

before 𝑅𝑖. Then, by induction hypothesis, h𝑖 contains 𝑥1 and also, h𝑖 is a prefix of h.

So h contains 𝑥1, giving the desired contradiction.

Thus, step 𝑊 takes place after step 𝑅𝑖 for each 2 ≤ 𝑖 ≤ ℓ, and before the

corresponding ℓ-buffer-write(𝑎𝑖), by definition of ℓ-buffer, 𝑥1 and 𝑥𝑖. Thus, the append

operations which performed 𝑅1, . . . , 𝑅ℓ are all concurrent. In particular, 𝑊 occurs in

each of their execution intervals. It follows that these append operations are all by

different processes. Since there are at most ℓ updating processes, there is no append

125

...

h1 = ℓ-buff-read

h2 = ℓ-buff-read

h3 = ℓ-buff-read

h = hm = ℓ-buff-read

...

W = ℓ-buff-write(a1)

ℓ-buff-write(a2)

ℓ-buff-write(a3)

ℓ-buff-write(am)

ℓ concurrent append(xi) operations

Figure 3-3: Illustration of Case 2 in History object emulation

operation linearized between 𝑅𝑚 and 𝑊 . Therefore, h contains all values appended

to 𝐻 prior to 𝑊 . It follows that h · (𝑥1, . . . , 𝑥ℓ) is the correct return value. This is

illustated in Figure 3-3.

This lemma allows us to simulate any object that supports at most ℓ updating

processes using only a single ℓ-buffer. This is because the state of an object is deter-

mined by the history of the non-trivial operations performed on it. In particular, we

can simulate an array of ℓ single-writer registers using a single ℓ-buffer.

Lemma 3.2.8. A single ℓ-buffer can simulate ℓ single-writer registers.

Proof. Suppose that register𝑅𝑖 is owned by process 𝑝𝑖, for 1 ≤ 𝑖 ≤ ℓ. By Lemma 3.2.7,

it is possible to simulate a history object 𝐻 that can be updated by ℓ processes and

read by any number of processes. To write value 𝑥 to 𝑅𝑖, process 𝑝𝑖 appends (𝑖, 𝑥) to

𝐻. To read 𝑅𝑖, a process reads 𝐻 and finds the value of the most recent write to 𝑅𝑖.

This is the second component of the last pair in the history whose first component is

𝑖.

Thus, we can use ⌈𝑛
ℓ
⌉ ℓ-buffers to simulate 𝑛 single-writer registers. It is well-

known that the 𝑛-consensus algorithm of Aspnes and Herlihy [AH90] that uses 𝑛

single-writer registers can be derandomized and made obstruction-free. Therefore,

we can simulate this algorithm and solve obstruction-free 𝑛-consensus.

Theorem 3.2.9. It is possible to solve 𝑛-consensus using only ⌈𝑛/ℓ⌉ ℓ-buffers.

126

A Lower Bound

In this section, we show a lower bound on the number of memory locations necessary

for solving obstruction-free binary consensus among 𝑛 ≥ 2 processes. We will prove

this statement for nondeterministic solo terminating protocols [FHS98], which means

that from each reachable configuration, for each process, there exists a finite solo

execution by the process where it terminates and returns an output. Any algorithm

that is obstruction-free satisfies nondeterministic solo termination.

A location 𝑟 is covered by a process 𝑝 in some configuration, if 𝑝 is poised to

perform ℓ-buffer-write on 𝑟. An ℓ-buffer is 𝑘-covered by a set of processes 𝒫 in some

configuration, if there are exactly 𝑘 processes in 𝒫 that cover it. A configuration

is at most 𝑘-covered by 𝒫 , if no ℓ-buffer in the system is 𝑘′-covered by 𝒫 in this

configuration, for any 𝑘′ > 𝑘.

Let 𝒬 be a set of processes, each of which is poised to perform ℓ-buffer-write in

some configuration 𝐶. A block write by 𝒬 from 𝐶 is an execution, starting at 𝐶, in

which each process in 𝒬 takes exactly one step. If a block write is performed that

includes ℓ different ℓ-buffer-write instructions to some ℓ-buffer, then any process that

performs ℓ-buffer-read on that ℓ-buffer immediately afterwards, gets the same result

(and ends up in the same state) regardless of the value of that ℓ-buffer in 𝐶.

We say that a set of processes 𝒫 can decide 𝑣 ∈ {0, 1} from a configuration 𝐶 if

there exists a 𝒫-only execution from 𝐶 in which 𝑣 is decided. If 𝒫 can decide both 0

and 1 from 𝐶, then 𝒫 is bivalent from 𝐶.

To obtain the lower bound, we extend the proof of the 𝑛 − 1 lower bound on

the number of registers required for solving 𝑛-process consensus [Zhu16], borrowing

intuition about reserving executions from the Ω(𝑛) lower bound for anonymous con-

sensus [Gel15]. The following auxiliary lemmas are largely unchanged from [Zhu16].

The main difference is that we only perform block writes on ℓ-buffers that are ℓ-

covered by 𝒫 .

Lemma 3.2.10. There is an initial configuration from which the set of all processes

in the system is bivalent.

127

Proof. Consider an initial configuration 𝐼 with two processes 𝑝𝑣 for 𝑣 ∈ {0, 1}, where

𝑝𝑣 starts with input 𝑣. Observe that {𝑝𝑣} can decide 𝑣 from 𝐼 since, initially, 𝐼

is indistinguishable from the configuration where every process starts with 𝑣 to 𝑝𝑣.

Thus, {𝑝0, 𝑝1} is bivalent from 𝐼 and, therefore, so is the set of all processes.

Lemma 3.2.11. Let 𝐶 be a configuration and 𝒬 be a set processes that is bivalent

from 𝐶. Suppose 𝐶 is at most ℓ-covered by a set of processes ℛ, where ℛ ∩𝒬 = ∅,

and let 𝐿 be a set of locations that are ℓ-covered by ℛ in 𝐶. Let 𝛽 be a block write

from 𝐶 by the set of ℓ · |𝐿| processes from ℛ that cover 𝐿. Then, there exists a 𝒬-only

execution 𝜙 from 𝐶 such that ℛ∪𝒬 is bivalent from 𝐶𝜙𝛽 and in configuration 𝐶𝜙,

some process in 𝒬 covers a location not in 𝐿.

Proof. Suppose some process 𝑝 ∈ ℛ can decide some value 𝑣 ∈ {0, 1} from configu-

ration 𝐶𝛽 and 𝜑 is a 𝒬-only execution from 𝐶 in which 𝑣 is decided. Let 𝜙 be the

longest prefix of 𝜑 such that 𝑝 can decide 𝑣 from 𝐶𝜙𝛽. Let 𝛿 be the next step by

𝑞 ∈ 𝒬 in 𝜑 after 𝜙.

If 𝛿 is an ℓ-buffer-write to a location in 𝐿 or is an ℓ-buffer-read , then 𝐶𝜙𝛽 and

𝐶𝜙𝛿𝛽 are indistinguishable to 𝑝. Since 𝑝 can decide 𝑣 from 𝐶𝜙𝛽, but 𝑝 can only

decide 𝑣 from 𝐶𝜙𝛿𝛽, 𝛿 must be an ℓ-buffer-write to a location not in 𝐿. Thus, in

configuration in 𝐶𝜙, 𝑞 covers a location not in 𝐿, and 𝐶𝜙𝛽𝛿 is indistinguishable from

𝐶𝜙𝛿𝛽 to process 𝑝. Therefore, by definition of 𝜙, 𝑝 can only decide 𝑣 from 𝐶𝜙𝛽𝛿

and 𝑝 can decide 𝑣 from 𝐶𝜙𝛽. This implies that {𝑝, 𝑞} is bivalent from 𝐶𝜙𝛽, as

desired.

The next result says that if a set of processes is bivalent in some configuration,

then it is possible to reach a configuration from which some process can decide 0 and

some process can decide 1. It does not depend on what instructions are supported

by the memory.

Lemma 3.2.12. Suppose a set 𝒰 of at least two processes is bivalent from configura-

tion 𝐶. Then it is possible to reach, via a 𝒰-only execution from 𝐶, a configuration

𝐶 ′ such that, a set of at most two processes 𝒬 ⊆ 𝑈 is bivalent from 𝐶 ′.

128

Proof. Let 𝒱 be the set of all configurations from which 𝒰 is bivalent and which are

reachable from 𝐶 by a 𝒰 -only execution. Let 𝑘 be the smallest integer such that there

exist a configuration 𝐶 ′ ∈ 𝒱 and a set of processes 𝒰 ′ ⊆ 𝒰 that is bivalent from 𝐶 ′

with |𝒰 ′| = 𝑘. Pick any such 𝐶 ′ ∈ 𝒱 and the corresponding set of processes 𝒰 ′.

If |𝒰 ′| = 1, we set 𝒬 = 𝒰 ′, so suppose |𝒰 ′| ≥ 2. Consider a process 𝑝 ∈ 𝒰 ′ and let

𝒰 ′′ = 𝒰 ′ − {𝑝} be the set of remaining processes in 𝒰 ′. Since |𝒰 ′′| = 𝑘 − 1, 𝒰 ′′ can

only decide 𝑣 from 𝐶 ′ for some 𝑣 ∈ {0, 1}. By nondeterministic solo termination, it

follows that each process 𝑞 ∈ 𝒰 ′′ can decide 𝑣 from 𝐶 ′.

If 𝑝 can decide 𝑣 from 𝐶 ′ we set 𝒬 = {𝑝, 𝑞}. So, suppose that, like 𝒰 ′′, 𝑝 can only

decide 𝑣 from 𝐶 ′.

Since 𝒰 ′ is bivalent from 𝐶 ′, there is a 𝒰 ′-only execution 𝛼 from 𝐶 ′ that decides

𝑣. Let 𝛼′ be the longest prefix of 𝛼 such that both 𝑝 and 𝒰 ′′ can only decide 𝑣 from

𝐶 ′𝛼′. Note that 𝛼′ ̸= 𝛼, because 𝑣 is decided in 𝛼. Let 𝛿 be the next step in 𝛼 after

𝛼′. Then either 𝑝 or 𝒰 ′′ can decide 𝑣 from 𝐶 ′𝛼′𝛿.

If 𝛿 is a step by a process in 𝒰 ′′, then, since 𝒰 ′′ can only decide 𝑣 from 𝐶 ′𝛼′, 𝒰 ′′

can also only decide 𝑣 from 𝐶 ′𝛼′𝛿. Therefore, 𝑝 can decide 𝑣 from 𝐶 ′𝛼′𝛿. We are done

by setting 𝒬 = {𝑝, 𝑞}, because each process 𝑞 ∈ 𝒰 ′′ can decide 𝑣 from 𝐶 ′𝛼′𝛿.

Finally, suppose that 𝛿 is a step by 𝑝. Then, since 𝑝 is can only decide 𝑣 from 𝐶 ′𝛼′,

𝑝 can also only decide 𝑣 from 𝐶 ′𝛼′𝛿. Therefore, 𝒰 ′′ can decide 𝑣 from 𝐶 ′𝛼′𝛿. However,

|𝒰 ′′| = 𝑘 − 1. By definition of 𝑘, 𝒰 ′′ is not bivalent from 𝐶 ′𝛼′𝛿. Therefore 𝒰 ′′ can

only decide 𝑣 from 𝐶 ′𝛼′𝛿, and hence, every process 𝑞 ∈ 𝒰 ′′ can decide 𝑣 from 𝐶 ′𝛼′𝛿.

As we know that 𝑝 can decide 𝑣 from this configuration, the proof is complete.

An induction similar to [Zhu16] allows the processes to reach configuration that

is at most ℓ-covered by a set of processes ℛ, while another process 𝑧 ̸∈ ℛ covers a

location that is not ℓ-covered by ℛ. This implies that the configuration is also at

most ℓ-covered by ℛ∪ {𝑧}, allowing the inductive step to go through.

Lemma 3.2.13. Let 𝐶 be a configuration and let 𝒫 be a set of 𝑛 ≥ 2 processes. If

𝒫 is bivalent from 𝐶, then there is a 𝒫-only execution 𝛼 and a set of at most two

processes 𝒬 ⊆ 𝒫 such that 𝒬 is bivalent from 𝐶𝛼 and 𝐶𝛼 is at most ℓ-covered by the

129

remaining processes 𝒫 −𝒬.

Proof. By induction on |𝒫|. The base case is when |𝒫| = 2, and holds with the empty

execution. Now suppose |𝒫| > 2 and the claim holds for |𝒫| − 1. By Lemma 3.2.12,

there is a 𝒫-only execution 𝛾 and set of at most two processes 𝒬 ⊂ 𝒫 that is bivalent

from 𝐷 = 𝐶𝛾. Pick any process 𝑧 ∈ 𝒫−𝒬. Then 𝒫−{𝑧} is bivalent from 𝐷 because

𝒬 is bivalent.

We construct a sequence of configurations 𝐷0, 𝐷1, . . . reachable from 𝐷 such that,

for all 𝑖 ≥ 0, the following properties hold:

1. there exists a set of at most two processes 𝒬𝑖 ⊆ 𝒫−{𝑧} such that 𝒬𝑖 is bivalent

from 𝐷𝑖,

2. 𝐷𝑖 is at most ℓ-covered by the remaining processes ℛ𝑖 = (𝒫 − {𝑧})−𝒬𝑖,

3. 𝐷𝑖+1 is reachable from 𝐷𝑖 by a (𝒫 − {𝑧})-only execution 𝛼𝑖 which contains a

block write 𝛽𝑖 to the locations in 𝐷𝑖 which are ℓ-covered by processes in ℛ𝑖.

We can construct 𝐷0 by applying the induction hypothesis to 𝐷 and 𝒫−{𝑧}. This

gives a (𝒫−{𝑧})-only execution 𝜂 such that the first two properties hold in 𝐷0 = 𝐷𝜂

as required. Now suppose we have 𝐷𝑖, 𝒬𝑖, ℛ𝑖 as defined previously. By Lemma 3.2.11

applied to configuration𝐷𝑖, there is a𝒬𝑖-only execution 𝜙𝑖 such thatℛ𝑖∪𝒬𝑖 = 𝒫−{𝑧}

is bivalent from 𝐷𝑖𝜙𝑖𝛽𝑖, where 𝛽𝑖 is a block write to the locations in 𝐷𝑖 which are ℓ-

covered by processes in ℛ𝑖. Applying the induction hypothesis to 𝐷𝑖𝜙𝑖𝛽𝑖 and 𝒫−{𝑧},

we get a (𝒫 − {𝑧})-only execution 𝜓𝑖 leading to a configuration 𝐷𝑖+1 = 𝐷𝑖𝜙𝑖𝛽𝑖𝜓𝑖, in

which there is a set of at most two processes 𝒬𝑖+1 such that 𝒬𝑖+1 is bivalent from

𝐷𝑖+1. Additionally, 𝐷𝑖+1 is at most ℓ-covered by the set of remaining processes

ℛ𝑖+1 = (𝒫 − {𝑧}) − 𝒬𝑖+1. Finally, the third property is also satisfied because the

execution 𝛼𝑖 = 𝜙𝑖𝛽𝑖𝜓𝑖 contains the block write 𝛽𝑖.

Since there are only finitely many locations, there exists 0 ≤ 𝑖 < 𝑗 such that ℛ𝑖

covers the same set of locations in 𝐷𝑖 as ℛ𝑗 does in 𝐷𝑗. We now insert steps of 𝑧

so that no process in 𝒫 − {𝑧} can detect them. Consider any {𝑧}-only execution 𝜁

from 𝐷𝑖𝜙𝑖 that decides a value 𝑣 ∈ {0, 1}. Since 𝐷𝑖𝜙𝑖𝛽𝑖 is bivalent for 𝒫 − {𝑧}, and

130

𝛽𝑖 block writes to ℓ-covered locations, 𝜁 must contain an ℓ-buffer-write to a location

that is not ℓ-covered by ℛ𝑖. Otherwise, 𝐷𝑖𝜙𝑖𝜁𝛽𝑖 is indistinguishable from 𝐷𝑖𝜙𝑖𝛽𝑖 to

processes in 𝒫 − {𝑧}, and they can decide 𝑣 from 𝐷𝑖𝜁𝛽𝑖, which is impossible. Let 𝜁 ′

be the longest prefix of 𝜁 containing only writes to locations ℓ-covered by ℛ𝑖 in 𝐷𝑖.

It follows that, in 𝐷𝑖𝜙𝑖𝜁
′, 𝑧 is poised to perform an ℓ-buffer-write to a location not

ℓ-covered by ℛ𝑖 in 𝐷𝑖 and, hence, ℛ𝑗 in 𝐷𝑗.

𝐷𝑖𝜙𝑖𝜁
′𝛽𝑖 is indistinguishable from 𝐷𝑖𝜙𝑖𝛽𝑖 to 𝒫−{𝑧}, so the (𝒫−{𝑧})-only execu-

tion 𝜓𝑖𝛼𝑖+1 · · ·𝛼𝑗−1 is applicable at𝐷𝑖𝜙𝑖𝜁
′𝛽𝑖. Let 𝛼 = 𝛾𝜂𝛼0 · · ·𝛼𝑖−1𝜙𝑖𝜁

′𝛽𝑖𝜓𝑖𝛼𝑖+1 · · ·𝛼𝑗−1.

Every process in 𝒫 − {𝑧} is in the same state in 𝐶𝛼 as it is in 𝐷𝑗. In particular,

𝒬𝑗 ⊆ 𝒫 − {𝑧} is bivalent from 𝐷𝑗 and, hence, from 𝐶𝛼, and every location in 𝐷𝑗

is at most ℓ-covered by ℛ𝑗 = (𝑃 − {𝑧}) − 𝒬𝑗 in 𝐷𝑗 and, hence, in 𝐶𝛼. Moreover,

since 𝑧 takes no steps after 𝐷𝑖𝜙𝑖𝜁
′, in 𝐶𝛼, 𝑧 covers a location not ℓ-covered by ℛ𝑖 in

𝐷𝑖 and, hence, by ℛ𝑗 in 𝐷𝑗 or 𝐶𝛼. Therefore, every location is at most ℓ-covered by

ℛ𝑗 ∪ {𝑧} = 𝒫 −𝒬𝑗 in 𝐶𝛼.

Finally, we can prove the main theorem.

Theorem 3.2.14. Consider a memory consisting of ℓ-buffers. Then any nondeter-

ministic solo terminating algorithm for solving binary consensus for 𝑛 processes uses

at least ⌈(𝑛− 1)/ℓ⌉ locations.

Proof. Consider a nondeterministic solo terminating binary consensus algorithm. Let

𝐶 be an initial configuration from which the set of all 𝑛 processes, 𝒫 , is bivalent.

Such a configuration exists by Lemma 3.2.10. Lemma 3.2.13 implies that there is a

reachable configuration 𝐶 and a set of at most two processes 𝒬 ⊆ 𝒫 that is bivalent

from 𝐶. Furthermore, 𝐶 is at most ℓ-covered by the remaining processes ℛ = 𝒫−𝒬.

By the pigeonhole principle, ℛ covers at least ⌈(𝑛 − 2)/ℓ⌉ different locations. If

⌈(𝑛− 2)/ℓ⌉ < ⌈(𝑛− 1)/ℓ⌉, then 𝑛− 2 is a multiple of ℓ and every location covered by

ℛ is in fact ℓ-covered by ℛ. By Lemma 3.2.11, since 𝒬 is bivalent from 𝐶, we can

use a process in 𝒬 to cover a location not ℓ-covered by ℛ. Hence, there are at least

⌈(𝑛− 2)/ℓ⌉+ 1 = ⌈(𝑛− 1)/ℓ⌉ locations.

131

The lower bound is proven for consensus algorithms that satisfy nondeterministic

solo termination. It can also be extended to a heterogeneous setting, where memory

locations need not be identical, for example, ℓ-buffers for possibly different values of

ℓ. For this, we need to extend the definition of at most ℓ-covered to, instead, require

each ℓ-buffer to be covered by at most ℓ processes, for all values of ℓ. Then we consider

block writes to a set of locations containing ℓ different ℓ-buffer-write operations to

each ℓ-buffer in the set. The general result is that, for any algorithm which solves

consensus for 𝑛 processes and satisfies nondeterministic solo termination, the sum of

capacities of all buffers must be at least 𝑛− 1.

The lower bound also applies to systems in which the return value of every non-

trivial instruction on a memory location does not depend on the value of that location

and the return value of any trivial instruction is a function of the sequence of the

preceding ℓ non-trivial instructions performed on the location. This is because such

instructions can be implemented by ℓ-buffer-read and ℓ-buffer-write instructions. We

record each invocation of a non-trivial instruction using ℓ-buffer-write. The return

values of these instructions can be determined without even looking at the memory.

To implement a trivial instruction, we perform ℓ-buffer-read , which returns a sequence

containing the description of the last ℓ non-trivial instructions performed on the

location, which is sufficient to determine the correct return value.

3.2.5 Multiple Assignment

With 𝑚-register multiple assignment, we can atomically write to 𝑚 locations. This

plays an important role in [Her91], as 𝑚-register multiple assignment can used to

solve wait-free consensus for 2𝑚− 2 processes, but not for 2𝑚− 1 processes.

In this section, we explore whether multiple assignment could improve the space

complexity of solving obstruction-free consensus. A practical motivation to this ques-

tion is that obstruction-free multiple assignment can be easily implemented using a

simple transaction.

We prove a lower bound that is similar to the lower bound in Section 3.2.4. Sup-

pose ℓ-buffer-read() and ℓ-buffer-write(𝑥) instructions are supported on every memory

132

location in a system and, for any subset of locations, we are allowed to atomically per-

form one ℓ-buffer-write instruction per location. Then ⌈𝑛/2ℓ⌉ locations are necessary

for 𝑛 processes to solve nondeterministic solo terminating consensus. As in Sec-

tion 3.2.4, this result can be further generalized to different sets of instructions, and

heterogeneous settings.

The main technical difficulty is proving an analogue of Lemma 3.2.11. In the ab-

sence of multiple assignment, if 𝛽 is a block write to a set of ℓ-covered locations 𝐿 and

𝛿 is an ℓ-buffer-write to a location not in 𝐿, then 𝛽 and 𝛿 trivially commute (in the

sense that the resulting configurations are indistinguishable to all processes). How-

ever, a multiple assignment 𝛿 may now atomically ℓ-buffer-write to many locations,

including locations in 𝐿. Thus, it is now possible for processes to distinguish between

𝛽𝛿 and 𝛿𝛽. Using a careful combinatorial argument, we show how to perform two

blocks of multiple assignments 𝛽1 and 𝛽2 such that, in 𝛽𝑖 for 𝑖 ∈ {0, 1}, ℓ-buffer-write

is performed at least ℓ times on each location in 𝐿, and is never performed on any

location not in 𝐿. Given this, we can show that 𝛽1𝛿𝛽2 and 𝛿𝛽1𝛽2 are indistinguishable

to all processes, which is enough to prove an analogue of Lemma 3.2.11.

First, we define the notion of covering in this setting. We say that a process

𝑝 covers location 𝑟 in a configuration 𝐶, when 𝑝 is poised to perform a multiple

assignment in 𝐶 that involves an ℓ-buffer-write to 𝑟 (recall that in our definition

of poised, we always consider a single, fixed next step of each process). The next

definition is key to our proof. A 𝑘-packing of a set of processes 𝒫 in some configuration

𝐶 is a function 𝜋 mapping each process in 𝒫 to some memory location it covers such

that no location 𝑟 has more than 𝑘 processes mapped to it (i.e., |𝜋−1(𝑟)| ≤ 𝑘). When

𝜋(𝑝) = 𝑟 we say that 𝜋 packs 𝑝 in 𝑟. A 𝑘-packing may not always exist, or there may

be many, depending on the configuration, the set of processes, and the value of 𝑘. A

location 𝑟 is fully 𝑘-packed by 𝒫 in configuration 𝐶, if a 𝑘-packing of 𝒫 exists in 𝐶

and all such 𝑘-packings pack exactly 𝑘 processes in 𝑟.

Suppose that, in some configuration, there are two 𝑘-packings of the same set

of processes such that the first packs more processes in some location 𝑟 than the

second. We show there is a location 𝑟′ in which the first packing packs fewer processes

133

than the second and a 𝑘-packing that pack one less process to location 𝑟, one more

process to location 𝑟′ and the same number of processes to all other locations, as

compared to the first packing. This iterative procedure has some resemblance to

cuckoo hashing [PR01]. The proof relies on existence of a certain Eulerian path in a

multigraph that we build to represent these two 𝑘-packings.

Lemma 3.2.15. Suppose 𝑔 and ℎ are two 𝑘-packings of the same set of processes 𝒫

in some configuration 𝐶 and 𝑟1 is a location such that 𝑔 packs more processes in 𝑟1

than ℎ does (i.e., |𝑔−1(𝑟1)| > |ℎ−1(𝑟1)|). Then, there exists a sequence of locations

𝑟1, 𝑟2, . . . , 𝑟𝑡 and a sequence of distinct processes 𝑝1, 𝑝2, . . . , 𝑝𝑡−1, such that ℎ packs

more processes in 𝑟𝑡 than 𝑔, (i.e., |ℎ−1(𝑟𝑡)| > |𝑔−1(𝑟𝑡)|) and, for 1 ≤ 𝑖 ≤ 𝑡 − 1,

𝑔(𝑝𝑖) = 𝑟𝑖 and ℎ(𝑝𝑖) = 𝑟𝑖+1.

Proof. Consider a multigraph with one node for each memory location in the system

and one directed edge labelled by 𝑝, from node 𝑔(𝑝) to node ℎ(𝑝), for each process

𝑝 ∈ 𝒫 . Therefore, the in-degree of a node 𝑣 is equal to |ℎ−1(𝑣)|, which is the number

of processes that are packed into memory location 𝑣 by ℎ, and the out-degree of node

𝑣 is equal to |𝑔−1(𝑣)|, which is the number of processes that are packed in 𝑣 by 𝑔.

Now, consider any maximal Eulerian path in this multigraph starting from the

node 𝑟1. This path follows a sequence of edges for as long as possible without re-

peating any edge. Let 𝑟1, . . . , 𝑟𝑡 be the sequence of nodes visited (which may contain

repetitions) and let 𝑝𝑖 be the labels of the traversed edges, in order. Then 𝑔(𝑝𝑖) = 𝑟𝑖

and ℎ(𝑝𝑖) = 𝑟𝑖+1 for 1 ≤ 𝑖 ≤ 𝑡 − 1. Since the path is Eulerian, the labels of the

edges are distinct, which, in turn, guarantees that the sequence is finite. Finally, by

maximality, the last node in the sequence must have more incoming than outgoing

edges, so |ℎ−1(𝑟𝑡)| > |𝑔−1(𝑟𝑡)|.

Corollary 3.2.16. Let the 𝑘-packings 𝑔 and ℎ and the sequences 𝑟𝑖 and 𝑝𝑖 be defined

as in Lemma 3.2.15. For 1 ≤ 𝑗 < 𝑡, there exists a 𝑘-packing 𝑔′, such that 𝑔′ packs

one less process than 𝑔 in 𝑟𝑗, one more process than 𝑔 in 𝑟𝑡, and the same number of

processes as 𝑔 in all other locations.

134

Proof. We construct 𝑔′ from 𝑔 by re-packing each process 𝑝𝑖 from 𝑟𝑖 to 𝑟𝑖+1 for all

𝑗 ≤ 𝑖 < 𝑡. Then 𝑔′(𝑝𝑖) = 𝑟𝑖+1 for 𝑗 ≤ 𝑖 < 𝑡 and 𝑔′(𝑝) = 𝑔(𝑝) for all other processes 𝑝.

Notice that 𝑝𝑖 covers 𝑟𝑖+1, since ℎ(𝑝𝑖) = 𝑟𝑖+1 and ℎ is a 𝑘-packing.

As compared to 𝑔, 𝑔′ packs one less process in 𝑟𝑗, one more process in 𝑟𝑡, and the

same number of processes in every other location. Since ℎ is a 𝑘-packing, it packs at

most 𝑘 processes in 𝑟𝑡. Because 𝑔 is a 𝑘-packing that packs less processes in 𝑟𝑡 than

ℎ, 𝑔′ is also a 𝑘-packing.

Let 𝒫 be a set of processes, each of which is poised to perform a multiple assign-

ment in some configuration 𝐶. A block multi-assignment by 𝒫 from 𝐶 is an execution

starting at 𝐶, in which each process in 𝒫 takes exactly one step.

Consider some configuration 𝐶, a set of processes ℛ, such that a 2ℓ-packing 𝜋

of ℛ in 𝐶 exists. Let 𝐿 be the set of all locations that are fully 2ℓ-packed by ℛ in

𝐶. By definition, 𝜋 packs exactly 2ℓ processes from ℛ in each location 𝑟 ∈ 𝐿. Let

us partition these 2ℓ · |𝐿| processes packed in 𝐿 by 𝜋 into two sets ℛ1,ℛ2 ⊆ ℛ of

ℓ · |𝐿| processes each such that, for each location 𝑟 ∈ 𝐿, exactly ℓ packed processes

belong to ℛ1 and the remaining ℓ packed processes belong to ℛ2. Let 𝛽𝑖 be a block

multi-assignment by ℛ𝑖 for 𝑖 ∈ {1, 2}.

Notice that, for any location 𝑟 ∈ 𝐿, after 𝛽𝑖, the outcome of any subsequent

ℓ-buffer-read on 𝑟 does not depend on multiple assignments that occurred prior to

the block multi-assignment. Moreover, we can prove the following crucial property

about these block multi-assignments to fully packed locations.

Lemma 3.2.17. Neither 𝛽1 nor 𝛽2 involves an ℓ-buffer-write to a location outside of

𝐿.

Proof. Assume the contrary. Let 𝑞 ∈ ℛ1 ∪ ℛ2 be a process with 𝜋(𝑞) ∈ 𝐿 such that

𝑞 also covers some location 𝑟1 ̸∈ 𝐿 in 𝐶. It must be the case that 𝜋 packs exactly

2ℓ processes in 𝑟1, i.e. |𝜋−1(𝑟1)| = 2ℓ. Otherwise, re-packing 𝑞 in 𝑟1 instead of 𝜋(𝑞)

leads to another 2ℓ-packing that does not pack exactly 2ℓ processes in 𝜋(𝑞) ∈ 𝐿,

contradicting the definition of a fully 2ℓ-packed location.

135

Since 𝐿 is the set of all fully 2ℓ-packed locations, there exists a 2ℓ-packing ℎ,

which packs strictly less than 2ℓ processes in 𝑟1 ̸∈ 𝐿. Applying Lemma 3.2.15 for

2ℓ-packings 𝜋 and ℎ, we get a sequence of locations 𝑟1, . . . , 𝑟𝑡 and a sequence of

processes 𝑝1, . . . 𝑝𝑡−1. |𝜋−1(𝑟𝑡)| < |ℎ−1(𝑟𝑡)|, and since ℎ is a 2ℓ-packing, we must have

that |𝜋−1(𝑟𝑡)| < 2ℓ, i.e. 𝜋 packs strictly less than 2ℓ processes in 𝑟𝑡 in 𝐶. We consider

two cases.

First, suppose that 𝑞 does not occur in the sequence, i.e. ∀𝑖 : 𝑝𝑖 ̸= 𝑞. We know

that |𝜋−1(𝑟1)| = 2ℓ and |𝜋−1(𝑟𝑡)| < 2ℓ, implying that the locations 𝑟1 and 𝑟𝑡 must

be different. This allows us to apply Corollary 3.2.16 for the whole sequence with

𝑗 = 1. We get a 2ℓ-packing 𝜋′ that packs less than 2ℓ processes in 𝑟1, and exactly

2ℓ processes in each of the fully 2ℓ-packed locations 𝐿, including 𝜋(𝑞). Moreover, we

did not re-pack process 𝑞, so 𝜋′(𝑞) = 𝜋(𝑞). Hence, modifying 𝜋′ by re-packing 𝑞 in 𝑟1

instead of 𝜋′(𝑞) again leads to a 2ℓ-packing that does not pack exactly 2ℓ processes

in a location in 𝐿, a contradiction.

Now, assume that 𝑞 = 𝑝𝑠, for some 𝑠. By the properties of our sequences, we know

𝑟𝑠 = 𝜋(𝑝𝑠) = 𝜋(𝑞) ∈ 𝐿, and since this location is fully 2ℓ-packed in configuration 𝐶

we have |𝜋−1(𝑟𝑠)| = 2ℓ. Similar to the first case, since |𝜋−1(𝑟𝑡)| < 2ℓ in 𝐶, locations 𝑟𝑠

and 𝑟𝑡 must be different and we now apply Corollary 3.2.16 with 𝑗 = 𝑠. We get a 2ℓ-

packing 𝜋′′ that packs less than 2ℓ processes in location 𝑟𝑠 ∈ 𝐿. This is a contradiction

with the definition of a fully 2ℓ-packed location, completing the proof.

We can now prove a lemma that replaces Lemma 3.2.11 in the main argument.

Lemma 3.2.18. Let 𝐶 be a configuration and 𝒬 be a set of processes that is bivalent

from 𝐶. Suppose there is a set of processes ℛ disjoint from 𝒬 such that there exists

a 2ℓ-packing 𝜋 of ℛ in 𝐶. Let 𝐿 be the set of fully 2ℓ-packed locations by ℛ in 𝐶.

Consider block multi-assignments 𝛽1 and 𝛽2 from 𝐶, as defined above. Then, there

exists a 𝒬-only execution 𝜙 from 𝐶 such that ℛ ∪ 𝒬 is bivalent from 𝐶𝜙𝛽1 and in

configuration 𝐶𝜙, some process in 𝒬 covers a location not in 𝐿.

Proof. Suppose some process 𝑝 ∈ ℛ can decide a value 𝑣 ∈ {0, 1} from configuration

𝐶𝛽1𝛽2 and 𝜑 is a 𝒬-only execution from 𝐶 in which 𝑣 is decided. Let 𝜙 be the longest

136

prefix of 𝜑 such that 𝑝 can decide 𝑣 from 𝐶𝜑𝛽1𝛽2. Let 𝛿 be the next step by 𝑞 ∈ 𝒬

in 𝜑 after 𝜙.

Since 𝑝 can decide 𝑣 from 𝐶𝜙𝛽1𝛽2, but 𝑝 can only decide 𝑣 from 𝐶𝜙𝛿𝛽1𝛽2, 𝛿 must

be a multiple assignment which includes an ℓ-buffer-write to a location not in 𝐿. If

𝛿 was a read, the resulting configurations would be indistinguishable. Similarly, if 𝛿

was a multiple assignment involving only ℓ-buffer-write’s to locations in 𝐿, then no

process in ℛ would be able to observe a difference due to the block multi-assignments

𝛽1𝛽2. Thus, in configuration 𝐶𝜙, 𝑞 covers a location not in 𝐿, as desired.

We claim that the configuration 𝐶𝜙𝛽1𝛿𝛽2 is indistinguishable from 𝐶𝜙𝛿𝛽1𝛽2 to

the process 𝑝. Indeed, for each location 𝑟 ∈ 𝐿, the contents of location 𝑟 are the

same in 𝐶𝜙𝛿𝛽1𝛽2 as it is in 𝐶𝜙𝛽1𝛿𝛽2 due to the block multi-assignment 𝛽2. On the

other hand, for each location 𝑟 ̸∈ 𝐿, by Lemma 3.2.17, neither 𝛽1 nor 𝛽2 performs an

ℓ-buffer-write to 𝑟, thus, the contents of 𝑟 are the same in 𝐶𝜙𝛿𝛽1𝛽2 and in 𝐶𝜙𝛽1𝛿𝛽2.

Finally, the state of process 𝑝 is the same in both of these configurations.

Therefore, 𝑝 can only decide 𝑣 from 𝐶𝜙𝛽1𝛿𝛽2 and hence, 𝐶𝜙𝛽1 is 𝑣-deciding for

ℛ ∪ 𝑞. Moreover, 𝑝 can decide 𝑣 from 𝐶𝜙𝛽1𝛽2 by definition of 𝜙, and thus 𝐶𝜙𝛽1 is

𝑣-deciding for ℛ. We have established the desired bivalency of ℛ ∪ 𝒬 from 𝐶𝜙𝛽1,

completing the proof.

Using these tools, we can prove the following analogue of Lemma 3.2.13:

Lemma 3.2.19. Let 𝐶 be a configuration and let 𝒫 be a set of 𝑛 ≥ 2 processes. If

𝒫 is bivalent from 𝐶, then there is a 𝒫-only execution 𝛼 and a set of at most two

processes 𝒬 ⊆ 𝒫 such that 𝒬 is bivalent from 𝐶𝛼 and there exists a 2ℓ-packing 𝜋 of

the remaining processes 𝒫 −𝒬 in 𝐶𝛼.

Proof. By induction on |𝒫|. The base case is when |𝒫| = 2, and holds with the empty

execution. Now suppose |𝒫| > 2 and the claim holds for |𝒫| − 1. By Lemma 3.2.12,

there is a 𝒫-only execution 𝛾 and a set of at most two processes 𝒬 ⊂ 𝒫 that is

bivalent from 𝐷 = 𝐶𝛾. Pick any process 𝑧 ∈ 𝒫 − {𝑝0, 𝑝1}. Then 𝒫 − {𝑧} is bivalent

from 𝐷 because 𝒬 is bivalent.

137

We construct a sequence of configurations 𝐷0, 𝐷1, . . . reachable from 𝐷, such that,

for all 𝑖 ≥ 0, the following properties hold:

1. there exists a set of at most two processes 𝒬𝑖 ⊆ 𝒫−{𝑧} such that 𝒬𝑖 is bivalent

from 𝐷𝑖,

2. there exists a 2ℓ-packing 𝜋𝑖 of the remaining processes ℛ𝑖 = (𝒫 − {𝑧})−𝒬𝑖 in

𝐷𝑖,

3. 𝐷𝑖+1 is reachable from 𝐷𝑖 by a (𝒫 − {𝑧})-only execution 𝛼𝑖, and

4. Let 𝐿𝑖 be the set of all fully 2ℓ-packed locations by ℛ𝑖 in 𝐷𝑖. Execution 𝛼𝑖

contains a block multi-assignment 𝛽𝑖 such that, for each location 𝑟 ∈ 𝐿𝑖, 𝛽𝑖

involves at least ℓ multiple assignments which perform ℓ-buffer-write on 𝑟.

We can construct 𝐷0 by applying the induction hypothesis to 𝐷 and 𝒫−{𝑧}. This

gives a (𝒫−{𝑧})-only execution 𝜂 such that the first two properties hold in 𝐷0 = 𝐷𝜂

as required. Now suppose we have 𝐷𝑖, 𝒬𝑖, ℛ𝑖, 𝜋𝑖, and 𝐿𝑖 as defined previously.

By Lemma 3.2.18 applied to configuration 𝐷𝑖, there is a 𝒬𝑖-only execution 𝜙𝑖 such

that ℛ𝑖 ∪𝒬𝑖 = 𝒫 − {𝑧} is bivalent from 𝐷𝑖𝜙𝑖𝛽𝑖, and where 𝛽𝑖 = 𝛽1 is a block multi-

assignment in which for each location 𝑟 ∈ 𝐿𝑖, ℓ-buffer-write is performed at least ℓ

times on 𝑟, as desired. Applying the induction hypothesis to 𝐷𝑖𝜙𝑖𝛽𝑖 and 𝒫 − {𝑧},

we get a (𝒫 − {𝑧})-only execution 𝜓𝑖 leading to a configuration 𝐷𝑖+1 = 𝐷𝑖𝜙𝑖𝛽𝑖𝜓𝑖,

in which there is a set of at most two processes 𝒬𝑖+1 such that 𝒬𝑖+1 is bivalent

from 𝐷𝑖+1. Additionally, there exists a 2ℓ-packing 𝜋𝑖 of the remaining processes

ℛ𝑖+1 = (𝒫 − {𝑧}) − 𝒬𝑖+1 in 𝐷𝑖+1. Finally, the third and fourth properties are also

satisfied as the execution 𝛼𝑖 = 𝜙𝑖𝛽𝑖𝜓𝑖 contains the block multi-assignment 𝛽𝑖.

Since there are only finitely many locations, there exists 0 ≤ 𝑖 < 𝑗 such that

𝐿𝑖 = 𝐿𝑗. That is, the set of fully 2ℓ-packed locations by ℛ𝑖 in 𝐷𝑖 is the same as the

set of fully 2ℓ-packed locations by ℛ𝑗 in 𝐷𝑗. Let 𝐿 = 𝐿𝑖. We now insert steps of 𝑧

so that no process in 𝒫 − {𝑧} can detect them. Consider any {𝑧}-only execution 𝜁

from 𝐷𝑖𝜙𝑖 that decides a value 𝑣 ∈ {0, 1}. Since 𝐷𝑖𝜙𝑖𝛽𝑖 is bivalent for 𝒫 − {𝑧}, and,

for each location 𝑟 ∈ 𝐿, 𝛽𝑖 contains at least ℓ multiple assignments which perform

138

ℓ-buffer-write to 𝑟, 𝜁 must contain an ℓ-buffer-write to a location not in 𝐿. Otherwise,

𝐷𝑖𝜙𝑖𝜁𝛽𝑖 is indistinguishable from 𝐷𝑖𝜙𝑖𝛽𝑖 to processes in 𝒫−{𝑧}, and they can decide

𝑣 from 𝐷𝑖𝜁𝛽𝑖, which is impossible. Let 𝜁 ′ be the longest prefix of 𝜁 containing only

multiple assignments that involve writes to locations in 𝐿. It follows that, in 𝐷𝑖𝜙𝑖𝜁
′,

𝑧 is poised to perform an ℓ-buffer-write to a location not in 𝐿 = 𝐿𝑖, and hence, not

in 𝐿𝑗.

𝐷𝑖𝜙𝑖𝜁
′𝛽𝑖 is indistinguishable from 𝐷𝑖𝜙𝑖𝛽𝑖 to 𝒫−{𝑧}, so the (𝒫−{𝑧})-only execu-

tion 𝜓𝑖𝛼𝑖+1 · · ·𝛼𝑗−1 is applicable at𝐷𝑖𝜙𝑖𝜁
′𝛽𝑖. Let 𝛼 = 𝛾𝜂𝛼0 · · ·𝛼𝑖−1𝜙𝑖𝜁

′𝛽𝑖𝜓𝑖𝛼𝑖+1 · · ·𝛼𝑗−1.

Every process in 𝒫 − {𝑧} is in the same state in 𝐶𝛼 as it is in 𝐷𝑗. In particular,

𝒬𝑗 ⊆ 𝒫 −{𝑧} is bivalent from 𝐷𝑗 and, hence, from 𝐶𝛼. Furthermore, the 2ℓ-packing

𝜋𝑗 of ℛ𝑗 in 𝐷𝑗 is a 2ℓ-packing of ℛ𝑗 in 𝐶𝛼, and the set of locations that are fully

2ℓ-packed by ℛ𝑗 in 𝐶𝛼 is 𝐿. Since 𝑧 takes no steps after 𝐷𝑖𝜙𝜁
′, in 𝐶𝛼, 𝑧 covers a

location 𝑟 not in 𝐿. By definition of 𝐿, since 𝑟 ̸∈ 𝐿, there is a 2ℓ-packing 𝜋′
𝑗 of ℛ𝑗

in 𝐶𝛼 which packs less than 2ℓ processes into 𝑟. Thus, we can define a 2ℓ-packing 𝜋

of ℛ𝑗 ∪ {𝑧} by packing each process in ℛ𝑗 according to 𝜋′
𝑗 and packing 𝑧 into 𝑟. It

follows that 𝜋 is a 2ℓ-packing of 𝒫 −𝒬𝑗 = ℛ𝑗 ∪ {𝑧} in 𝐶𝛼.

We can now prove the main theorem.

Theorem 3.2.20. Consider a memory consisting of ℓ-buffers. If the processes can

atomically ℓ-buffer-write to any subset of the ℓ-buffers, then any algorithm for solving

nondeterministic solo terminating consensus for 𝑛 processes uses at least ⌈(𝑛−1)/2ℓ⌉

locations.

Proof. Consider a binary consensus algorithm satisfying nondeterministic solo termi-

nation. Let 𝐶 be an initial configuration from which the set of all 𝑛 processes, 𝒫 , is

bivalent. Such a configuration exists by Lemma 3.2.10. Lemma 3.2.19 implies that

there is a reachable configuration 𝐶 and a set of at most two processes 𝒬 ⊆ 𝒫 that is

bivalent from 𝐶. Furthermore, there exists a 2ℓ-packing 𝜋 of the remaining processes

ℛ = 𝒫−𝒬 in 𝐶. By the pigeonhole principle, ℛ covers at least ⌈(𝑛−2)/2ℓ⌉ different

locations. If ⌈(𝑛 − 2)/2ℓ⌉ < ⌈(𝑛 − 1)/2ℓ⌉, then 𝑛 − 2 is a multiple of 2ℓ, and every

location is fully 2ℓ-packed by ℛ. By Lemma 3.2.18, since 𝒬 is bivalent from 𝐶, we

139

can use a process in 𝒬 to cover a location not fully 2ℓ-packed by ℛ. Hence, there are

at least ⌈(𝑛− 2)/2ℓ⌉+ 1 = ⌈(𝑛− 1)/2ℓ⌉ locations.

3.3 Universality using “Weak” Instructions

In order to develop efficient concurrent algorithms and data-structures in multiproces-

sor systems, processes that take steps asynchronously need to coordinate their actions.

In shared memory systems, this is accomplished by applying hardware-supported low-

level atomic instructions to memory locations. An atomic instruction takes effect as

a single indivisible step. The most natural and universally supported instructions are

read and write, as these are useful even in uniprocessors to store and load data from

memory.

A concurrent implementation is wait-free, if any process that takes infinitely many

steps completes infinitely many operation invocations. An implementation is lock-free

if in any infinite execution infinitely many operations are completed. The celebrated

FLP impossibility result [FLP85] implies that in a system equipped with only read and

write instructions, there is no deterministic algorithm to solve binary lock-free/wait-

free consensus among 𝑛 ≥ 2 processes. Binary consensus is a synchronization task

where processes start with input bits, and must agree on an output bit that was an

input to one of the processes. For one-shot tasks like consensus, wait-freedom and

lock-freedom are equivalent.

Herlihy’s Consensus Hierarchy [Her91] takes the FLP result further. It assigns a

consensus number to each object, namely, the number of processes for which there is

a wait-free binary consensus algorithm using only instances of this object and read -

write registers. An object with a higher consensus number is hence a more powerful

tool for synchronization. Moreover, Herlihy showed that consensus is a fundamental

synchronization task, by developing a universal construction which allows 𝑛 processes

to wait-free implement any object with a sequential specification, provided that they

can solve consensus among themselves.

Herlihy’s hierarchy is simple, elegant and, for many years, has been our best

140

explanation of synchronization power. It provides an intuitive explanation as to

why, for instance, the compare-and-swap instuction can be viewed “stronger” than

fetch-and-increment , as the consensus number of a Compare-and-Swap object is 𝑛,

while the consensus number of Fetch-and-Increment is 2.

However, key to this hierarchy is treating synchronization instructions as distinct

objects, an approach that is far from the real-world, where multiprocessors do let pro-

cesses apply supported atomic instructions to arbitrary memory locations. In fact, a

recent work by Ellen et al. [EGSZ16] has shown that a combination of instructions

like decrement and multiply-by-n, whose corresponding objects have consensus num-

ber 1 in Herlihy’s hierarchy, when applied to the same memory location, allows solving

wait-free consensus for 𝑛 processes. Thus, in terms of computability, a combination of

instructions traditionally viewed as “weak” can be as powerful as a compare-and-swap

instruction, for instance.

The practical question is whether we can really replace a compare-and-swap in-

struction in concurrent algorithms and data-structures with a combination of weaker

instructions. This might seem improbable for two reasons. First, compare-and-swap

is ubiquitous in practice and used heavily for various tasks like swinging a pointer.

Second, the protocol given by Ellen et al. solves only binary 𝑛-process consensus. It is

not clear how to use it for implementing complex concurrent objects, as utilizing Her-

lihy’s universal construction is not a practical solution. On the optimistic side, there

exists a concurrent queue implementation based on fetch-and-add that outperforms

compare-and-swap-based alternatives [MA13]. Both a Queue and a Fetch-and-Add

object have consensus number 2, and this construction does not “circumvent” Her-

lihy’s hierarchy by applying different non-trivial synchronization instructions to the

same location. Indeed, we are not aware of any practical construction that relies on

applying different instructions to the same location.

As a proof of concept, we develop a lock-free universal construction using only

read , xor , decrement , and fetch-and-increment instructions. The construction could

be made wait-free by standard helping techniques. In particular, we implement a Log

object [BMW+13] (also known as a History object [Dav04]), which supports high-level

141

operations get-log() and append(item), and is linearizable [HW90] to the sequential

specification that get-log() returns all previously appended items in order. This inter-

face can be used to agree on a simulated object state, and thus, provides the universal

construction [Her91]. In practice, we require a get-log() for each thread to return a

suffix of items after the last get-log() by this thread. We design a lock-free Log with

wait-free readers, which performs as well as a compare-and-swap-based solution on

modern hardware.

In our construction, we could replace both fetch-and-increment and decrement

with the atomic fetch-and-add instruction, reducing the instruction set size even fur-

ther.

3.3.1 Algorithm

We work in the bounded concurrency model where at most 𝑛 processes will ever access

the Log implementation. The object is implemented by a single fetch-and-increment-

based counter 𝐶, and an array 𝐴 of 𝑏-bit integers on which the hardware supports

atomic xor and decrement instructions. We assume that 𝐴 is unbounded. Otherwise,

processes can use 𝐴 to agree on the next array 𝐴′ to continue the construction. 𝐶 and

the elements of 𝐴 are initialized by 0. We call an array location invalid if it contains

a negative value, i.e., if its most significant bit is 1, empty if it contains value 0, and

valid otherwise. The least significant 𝑚 = ⌈log2 (𝑛+ 1)⌉ bits are contention bits and

have a special importance to the algorithm. The remaining 𝑏 −𝑚 − 1 bits are used

to store items. See Figure 3-4 for illustration.

Figure 3-4: Element of 𝐴.

For every array location, at most one process will

ever attempt to record a (𝑏−𝑚− 1)-bit item, and at

most 𝑛 − 1 processes will attempt to invalidate this

location. No process will try to record to or invalidate

the same location twice. In order to record item 𝑥, a

process invokes xor(𝑥′), where 𝑥′ is 𝑥 shifted by 𝑚 bits

to the left, plus 2𝑚−1 ≥ 𝑛, i.e., the contention bits set to 1. To invalidate a location,

a process calls a decrement . The following properties hold:

142

1. After a xor or decrement is performed on a location, no read on it ever returns

0.

2. If a xor is performed first, no later read returns an invalid value. Ignoring the

most significant bit, the next most significant 𝑏 −𝑚 − 1 bits contain the item

recorded by xor .

3. If a decrement is performed first, then all values returned by later reads are

invalid.

A xor instruction fails to record an item if it is performed after a decrement.

To implement a get-log() operation, process 𝑝 starts at index 𝑖 = 0, and keeps read-

ing the values of𝐴[𝑖] and incrementing 𝑖 until it encounters an empty location𝐴[𝑖] = 0.

By the above properties, from every valid location 𝐴[𝑗], it can extract the item 𝑥𝑗

recorded by a xor , and it returns an ordered list of all such items (𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑘). In

practice, we require 𝑝 to return only a suffix of items appended after the last get-log()

invocation by 𝑝. This can be accomplished by keeping 𝑖 in static memory instead

of initializing it to 0 in every invocation. To make get-log wait-free, 𝑝 first performs

𝑙 = 𝐶.read(). Then, if 𝑖 becomes equal to 𝑙 during the traversal, it stops and returns

the items extracted so far.

To implement append(𝑥), process 𝑝 starts by ℓ = 𝐶.fetch-and-increment(). Then

it attempts to record item 𝑥 in 𝐴[ℓ] using an atomic xor instruction. If it fails to

record an item, the process does another fetch-and-increment and attempts xor at

that location, and so on, until it is able to successfully record 𝑥. Suppose this location

is 𝐴[ℓ′]. Then 𝑝 iterates from 𝑗 = ℓ′− 1 down to 𝑗 = 0, reading each 𝐴[𝑗], and if 𝐴[𝑗]

is empty, performing a decrement on it. Afterwards, process 𝑝 can safely return.

fetch-and-increment guarantees that each location is xored at most once, and it

can be decremented at most 𝑛 − 1 times, once by each process that did not xor .

As a practical optimization, each process can store the maximum ℓ′ from its previous

append operations and only iterate down to ℓ′ in the next invocation (all locations with

lower indices will be non-empty). Our implementation of append is lock-free, because

if an operation takes steps and does not terminate it must be repeatedly failing to

143

record items in locations. This only happens if other xor operations successfully

record their items and invalidate these locations.

At any time 𝑡 during the execution, let us denote by 𝑓(𝑡) as the maximum index

such that, 𝐴[𝑓(𝑡)] is valid and 𝐴[𝑗] is non-empty for all 𝑗 ≤ 𝑓(𝑡). By the first property

𝑓(𝑡) is non-decreasing, i.e., for 𝑡′ > 𝑡 we have 𝑓(𝑡′) ≥ 𝑓(𝑡). We linearize an append(𝑥)

operation by 𝑝 that records 𝑥 at location 𝐴[ℓ] at the smallest 𝑡 where 𝑓(𝑡) ≥ ℓ. This

happens during the operation by 𝑝, as when 𝑝 starts append(𝑥), 𝐴[ℓ] is empty, and

when 𝑝 finishes, 𝐴[0] ̸= 0, . . . , 𝐴[ℓ − 1] ̸= 0 and 𝐴[ℓ] is valid. Next, we show how to

linearize get-log().

Consider a get-log() operation with the latest returned item 𝑥ℓ extracted from

𝐴[ℓ]. We show by contradiction that the execution interval of this get-log() must

contain time 𝑡 such that 𝑓(𝑡) = ℓ. We then linearize get-log() at the smallest such 𝑡.

It is an easy exercise to deal with the case when multiple operations are linearized at

exactly the same point by slightly perturbing linerization points to enforce the correct

ordering. Suppose the get-log() operation extracts 𝑥ℓ from 𝐴[ℓ] at time 𝑇 . 𝑓(𝑇) ≥ ℓ

as get-log() stops at an empty index, and by the contradiction assumption we must

have ℓ′ = 𝑓(𝑇) > ℓ. get-log() then reaches valid location 𝐴[ℓ′] and extracts an item

𝑥ℓ′ from it, contradicting the definition of 𝑥ℓ.

We implemented the algorithm on X86 processor and with 32 threads. It gave the

same performance as an implementation that used compare-and-swap for recording

items and invalidating locations. It turns out that in today’s architectures, the cost of

supporting compare-and-swap is not significantly higher than that of supporting xor

or decrement . This may or may not be the case in future Processing-in-Memory archi-

tectures [PAC+97]. Finding a compact set of synchronization instructions that, when

supported, is equally powerful as the set of instructions used today is an important

question to establish in future research.

144

3.4 Enter the Simulation: 𝑘-Set Agreement

3.4.1 Model

We consider the standard asynchronous shared memory system with 𝑛 processes that

communicate using shared multi-reader, multi-writer registers. Without loss of gener-

ality [AAD+93], we consider protocols that use a multi-writer atomic snapshot where

processes alternately update and scan.

We are interested in the space complexity of 𝑥-obstruction-free protocols for the

𝑘-set agreement problem. In this problem, each process starts with an input in

{0, 1, . . . , 𝑘} and must decide a value that is the input of some process such that

the set of decided values among all processes has size at most 𝑘.

A protocol satisfies 𝑥-obstruction-freedom if, for any configuration 𝐶 and for any

set 𝒫 of at most 𝑥 processes, an infinite 𝒫-only execution does not exist. In other

words, if only processes in 𝒫 take steps and they take sufficiently many steps, then

each process that takes steps has to decide a value and terminate. In this work, we

will be focusing on the 𝑘-obstruction-free setting.

We call an execution 𝒫-only for a set of processes 𝒫 , if it contains only steps by

processes in 𝒫 . A solo execution of process 𝑝 is a {𝑝}-only execution. We say that a

process 𝑝 decides a value 𝑣 when it returns 𝑣. We say that a set of processes 𝒫 can

decide value 𝑣 from configuration 𝐶 or has valency 𝑣 in configuration 𝐶 when there

exists a possibly empty 𝒫-only execution 𝛼 from 𝐶 such that some process 𝑝 ∈ 𝒫 has

decided 𝑣 in 𝐶𝛼. We say that process 𝑝 can decide 𝑣 from configuration 𝐶 or has

valency 𝑣 in configuration 𝐶, when {𝑝} does.

We will rely on the following impossibility result for 𝑘-set agreement.

Theorem 3.4.1. Let 𝑘 ≥ 1. Suppose 𝑘+ 1 processes start with 𝑘+ 1 different inputs.

There is no deterministic wait-free protocol that allows the processes to collectively

output at most 𝑘 different input values subject to condition that a value 𝑣 is output

only if the process with input value 𝑣 has taken at least one step.

145

3.4.2 Local Argument

Boundary Condition: A protocol for 𝑘-set agreement satisfies the boundary con-

dition if, for any set of processes 𝒫 in any reachable configuration 𝐶, the following

holds. Let 𝑉 be the set of all valencies of 𝒫 in 𝐶. Then, there exists a (possibly

empty) 𝒫-only execution 𝛼 from 𝐶 such that

1. the set of all valencies of 𝒫 in 𝐶𝛼 is still 𝑉 , and

2. for any 𝒬 ⊆ 𝒫 and any valency 𝑣 of 𝒬 in 𝐶𝛼, there exists 𝑞 ∈ 𝒬 with valency

𝑣 in 𝐶𝛼.

The motivation behind the boundary condition is that it lets us reach configurations

that look like initial configurations, which should allow us to derive a “local” FLP-

style space lower bound by inductively extending an execution. This is exactly what

we will do in the rest of this section.

Lemma 3.4.2 (Baby Simulation 1). Consider a 𝑘-set agreement protocol, that sat-

isfies the boundary condition and 𝑘-obstruction-freedom. If a set of processes 𝒫 has

valencies {0, 1, . . . , 𝑘} in some configuration 𝐶, then no process has already decided

in 𝐶.

Proof. Assume the contrary. Without loss of generality, suppose a process 𝑝 has

decided value 𝑘 in 𝐶. Since 𝒫 has valencies {0, 1, . . . , 𝑘} in 𝐶 and the protocol

satisfies the boundary condition, there exists a 𝒫-only execution 𝛼 and there exists

𝑝𝑖 ∈ 𝒫 , for each 𝑖 ∈ {0, 1, . . . , 𝑘 − 1}, such that 𝑝𝑖 has valency 𝑖 in 𝐶𝛼. If there

exists a 𝒫-only execution 𝛼′ from 𝐶𝛼 such that every value in {0, . . . 𝑘− 1} has been

decided in 𝐶𝛼𝛼′, then 𝑘-set agreement is violated. This and the valency of 𝑝0 in 𝐶𝛼

immediately gives a contradiction for 𝑘 = 1.

For 𝑘 ≥ 2, we construct a wait-free protocol for the (𝑘−1)-agreement task among

𝑘 processes, contradicting the known impossibility result stated in Theorem 3.4.1.

The idea is that process 𝑞𝑖 with input 𝑖 in the wait-free protocol simulates processes

𝑝𝑖 starting in configuration 𝐶𝛼. If 𝑝𝑖 has already decided 𝑖 in 𝐶𝛼, 𝑞𝑖 immediately

returns 𝑖. By the boundary condition, for any set of values 𝑉 ⊆ {0, 1 . . . , 𝑘 − 1}, a

146

{𝑝𝑣 : 𝑣 ∈ 𝑉 }-only execution from 𝐶𝛼 can only decide values from 𝑉 . Thus, simulating

processes can only decide a value 𝑣 in executions where 𝑞𝑣 has taken at least one step,

as required. The simulated protocol is 𝑘-obstruction-free, |{𝑞0, . . . 𝑞𝑘−1}| = 𝑘, and

each 𝑞𝑖 simulates a single process 𝑝𝑖, every simulation is wait-free. We designed a

wait-free protocol for 𝑘 processes to agree on 𝑘 − 1 values, completing the proof by

contradiction.

The next lemma is also proved using a simulation, albeit a more complex one.

Lemma 3.4.3 (Baby Simulation 2). Consider a 𝑘-set agreement protocol, that satis-

fies the boundary condition and 𝑘-obstruction-freedom. Suppose 𝐶 is a configuration

in which a set of processes ℛ covers |ℛ| registers. If there is a set of processes 𝒫

disjoint from ℛ that has valencies {0, 1, . . . , 𝑘} in 𝐶, then there is a 𝒫-only execution

𝛾 starting from 𝐶 such that 𝑃 still has valencies {0, 1, . . . , 𝑘} in 𝐶𝛾𝛽, where 𝛽 is the

block write by ℛ.

Proof. Assume the contrary. Let 𝛼 be the 𝒫-only execution that exists by the bound-

ary condition and let 𝐶 ′ = 𝐶𝛼. If there is a 𝒫-only execution 𝛼′ from 𝐶 ′ such that

𝒫 has 𝑘 + 1 valencies in 𝐶 ′𝛼′𝛽, then 𝛾 = 𝛼𝛼′ satisfies the claim. So, suppose that,

or every 𝒫-only execution 𝛼′ from 𝐶 ′, 𝒫 has at most 𝑘 valencies in 𝐶 ′𝛼′𝛽. From the

boundary condition, for each 0 ≤ 𝑖 ≤ 𝑘, there exists 𝑝𝑖 ∈ 𝒫 such that 𝑝𝑖 has valency

𝑖 in 𝐶 ′. We now construct a wait-free protocol for 𝑘-set agreement task among 𝑘 + 1

processes 𝒬 = {𝑞0, . . . 𝑞𝑘}, again contradicting Theorem 3.4.1. The idea is to have

processes in 𝒬 simulate processes in {𝑝0, . . . , 𝑝𝑘}, and also a block write by ℛ, but

only after every 𝑞𝑖 has taken a step.

The simulation uses a multi-writer snapshot object with one component for each

register in the original protocol, initialized to its contents in 𝐶 ′, as well as 𝑘 + 1

additional one bit components, 𝑏0, 𝑏1, . . . , 𝑏𝑘, each initialized to 0. These bits indicate

which processes in 𝒬 have entered the simulation: Each process 𝑞𝑖 updates 𝑏𝑖 to 1

with its first step. Then, as in Lemma 3.4.2, 𝑞𝑖 immediately returns 𝑖 if 𝑝𝑖 has already

decided 𝑖 in 𝐶 ′. The rest of the simulation works as follows.

Process 𝑞𝑖 simulates 𝑝𝑖, updating the components corresponding to which 𝑝𝑖 writes,

147

performing scans to simulate 𝑝𝑖’s reads, and returning value 𝑣 if 𝑝𝑖 decides 𝑣 in the

simulation. If 𝑞𝑖 ever performs a scan and sees that every process in 𝒬 has taken a

step, i.e. 𝑏0 = 𝑏1 = · · · = 𝑏𝑘 = 1, then 𝑞𝑖 considers the contents of the components

corresponding to the registers in the view returned by this latest scan. It locally

emulates the pending block write 𝛽 by ℛ (changing the emulated contents of |ℛ|

registers) followed by a solo execution of 𝑝𝑖, which terminates by obstruction-freedom.

Note that 𝑞𝑖 does not take any more steps after this scan and decides whatever 𝑝𝑖

decides in the local emulation. To see that this simulation is correct, we distinguish

two types of executions:

Case 1: Some process in 𝒬 does not take steps. At most 𝑘 simulated processes

take steps and wait-freedom is guaranteed by 𝑘-obstruction-freedom. Furthermore,

at most 𝑘 values are returned. By the boundary condition in 𝐶 ′, if value 𝑣 is decided

by some 𝑞𝑖, then 𝑝𝑣 and, thus, 𝑞𝑣 have taken at least one step.

Case 2: Every process in 𝒬 takes at least one step. Consider the first configuration

𝐷 of the simulating system where every process in𝒬 has taken at least one step. Then,

the simulated system is in some configuration 𝐶 ′𝛼′. We show that any valency 𝑣 of

𝒬 in 𝐷 in the simulating system is also a valency of 𝒫 in 𝐶 ′𝛼′𝛽 in the simulated

system. Since 𝒫 has at most 𝑘 valencies in 𝐶 ′𝛼′𝛽, processes in 𝒬 will never violate

𝑘-set agreement. Moreover, any process 𝑞𝑖 that has not already decided in 𝐷 will

return after performing its next scan. Thus the simulation is wait-free.

For any process 𝑞𝑖 that has already decided 𝑣 in 𝐷 or will decide 𝑣 after next

performing an update, the value 𝑣 must be the valency of 𝑝𝑖 in 𝐶𝛼′ and thus, a

valency of 𝑝𝑖 ∈ 𝒫 in 𝐶 ′𝛼′𝛽, as desired. Now consider the remaining processes 𝒬′ ∈ 𝒬.

Each is about to perform a scan or an update operation followed by a scan on behalf

of the process it is simulating. In its scan it will observes that every process in 𝒬

has taken a step and then do local computation to decide a value. Therefore, each

𝑞𝑖 ∈ 𝒬′ does its emulation of 𝑝𝑖 from a configuration 𝐶𝛼′𝜇𝑖𝛽, where 𝜇𝑖 consists of

some of the pending writes of processes 𝑝𝑗 with 𝑞𝑗 ∈ 𝒬′. In 𝐶𝛼′𝜇𝑖𝛽, the contents of

registers are the same as in configuration 𝐶𝛼′𝛽𝜇′
𝑖, where 𝜇′

𝑖 contains the writes from

𝜇𝑖 to the registers not written to by 𝛽 (i.e. not covered by ℛ), in the same order as in

148

𝜇𝑖. Suppose 𝑞𝑖 decides 𝑣, which means that 𝑝𝑖 decides 𝑣 from 𝐶𝛼′𝛽𝜇′
𝑖 in the emulated

solo execution. Since 𝜇′
𝑖 consists of steps by processes in 𝒫 , 𝑣 must be a valency of 𝒫

in 𝐶 ′𝛼′𝛽, completing the proof.

Lemma 3.4.4. Any 𝑘-set agreement protocol that satisfies obstruction-freedom has an

initial configuration from which a set of 𝑘+ 1 processes 𝒫 has valencies {0, 1, . . . , 𝑘}.

Proof. For each 𝑣 ∈ {0, 1, . . . , 𝑘}, let 𝐼𝑣 be the configuration where every process starts

with input 𝑣. Now consider an initial configuration 𝐼, where, for each 𝑣 ∈ {0, 1, . . . , 𝑘},

there is a process 𝑝𝑣 ∈ 𝒫 that starts with input 𝑣. Configurations 𝐼 and 𝐼𝑣 are

indistinguishable to 𝑝𝑣, so it returns 𝑣 in a solo execution starting from 𝐼. Therefore,

𝒫 has 𝑘 + 1 valencies in configuration 𝐼.

We use Lemma 3.4.3 to perform block writes that allow covering more registers,

maintaining all 𝑘 + 1 valencies by Lemma 3.4.2. We get the following bound.

Theorem 3.4.5. Any 𝑘-obstruction-free protocol for solving 𝑘-set agreement among

𝑛 processes that satisfies the boundary condition uses at least 𝑛− 𝑘 − 1 registers.

Proof. We start in the initial configuration 𝐼 provided by Lemma 3.4.4, with a set

of processes 𝒫 that have valencies {0, 1, . . . , 𝑘} in 𝐼. The set 𝒫 will not change

during the argument. Let {𝑝′1, . . . , 𝑝′𝑛−𝑘−1} be the set of remaining processes and, for

0 ≤ 𝑟 ≤ 𝑛 − 𝑘 − 1, let ℛ𝑟 = {𝑝′𝑗 | 1 ≤ 𝑗 ≤ 𝑟}. We will prove by induction on 𝑟,

that from any configuration where 𝒫 has 𝑘 + 1 valencies, it is possible to reach a

configuration by (𝒫 ∪ℛ𝑟)-only execution, in which processes in ℛ𝑟 cover 𝑟 different

registers and processes in 𝒫 still have 𝑘 + 1 different valencies. This proves the

existence of a configuration with 𝑛− 𝑘 − 1 covered registers.

The base case 𝑟 = 0 of the induction holds in any configuration where 𝒫 has 𝑘+ 1

valencies.

Now suppose the induction hypothesis holds for 𝑟 < 𝑛 − 𝑘 − 1 and consider any

reachable configuration 𝐶 in which 𝒫 has 𝑘+1 valencies (eg. the initial configuration).

We construct a sequence of configurations 𝐶0, 𝐶1, . . . reachable from 𝐶 such that, for

all 𝑖 ≥ 0, the following properties hold:

149

1. In 𝐶𝑖, the processes in ℛ𝑟 cover 𝑟 different registers,

2. In 𝐶𝑖, 𝒫 has valencies {0, 1, . . . , 𝑘}, and

3. 𝐶𝑖+1 is reachable from 𝐶𝑖 by a (𝒫 ∪ ℛ𝑟)-only execution 𝛼𝑖 which contains a

block write 𝛽𝑖 by ℛ𝑟 to the 𝑟 registers covered by ℛ𝑟 in 𝐶𝑖.

By the induction hypothesis, there is a (𝒫 ∪ ℛ𝑟)-only execution 𝜂 such that, in

configuration 𝐶0 = 𝐶𝜂, ℛ𝑟 covers 𝑟 different registers and 𝒫 has 𝑘 + 1 valencies.

If 𝑟 = 0, let 𝐶𝑖 = 𝐶0 and 𝛼𝑖 be an empty execution, for all 𝑖 ≥ 1. Otherwise, let

𝑖 ≥ 0 be arbitrary and suppose we have constructed 𝐶𝑖 with the desired properties.

By Lemma 3.4.3, there is a 𝒫-only execution 𝛾𝑖 from 𝐶𝑖 such that 𝒫 has 𝑘+1 valencies

in 𝐶𝑖𝛾𝑖𝛽𝑖, where 𝛽𝑖 is the block write by ℛ𝑟 to the 𝑟 registers it covers in 𝐶𝑖. By the

induction hypothesis, there is a (𝒫∪ℛ𝑟)-only execution 𝜂𝑖 such that, in configuration

𝐶𝑖+1 = 𝐶𝑖𝛾𝑖𝛽𝑖𝜂, ℛ𝑟 covers 𝑟 different registers and 𝒫 still has valencies {0, 1, . . . , 𝑘}.

Let 𝛼𝑖 = 𝛾𝑖𝛽𝑖𝜂𝑖. Then 𝐶𝑖+1 satisfies the three desired properties.

There are only finitely many registers, so there exists 0 ≤ 𝑖 < 𝑗 such thatℛ𝑟 covers

the same set of registers in 𝐶𝑖 as in 𝐶𝑗. We now insert steps of process 𝑝′𝑟+1 so that no

process in 𝒫 ∪ℛ𝑟 can detect them. Consider any {𝑝′𝑟+1}-only execution 𝜁 from 𝐶𝑖𝛾𝑖

that decides a value. If 𝜁 only writes to registers covered by ℛ𝑟 in 𝐶𝑖, then 𝐶𝑖𝛾𝑖𝜁𝛽𝑖

is indistinguishable from 𝐶𝑖𝛾𝑖𝛽𝑖 to processes in 𝒫 , due to the block write 𝛽𝑖. Hence

𝒫 has 𝑘 + 1 valencies in configuration 𝐶𝑖𝛾𝑖𝜁𝛽𝑖. But this contradicts Lemma 3.4.2,

since process 𝑝′𝑟+1 has decided in configuration 𝐶𝑖𝛾𝑖𝜁𝛽𝑖. Therefore, during 𝜁, process

𝑝′𝑟+1 writes to a register not covered by ℛ𝑟 in 𝐶𝑖. Let 𝜁 ′ be the longest prefix of 𝜁

containing only writes to registers covered by ℛ𝑟 in 𝐶𝑖. Then, in 𝐶𝑖𝛾𝑖𝜁
′, 𝑝′𝑟+1 is poised

to perform a write to a register not covered by ℛ𝑟 in 𝐶𝑖 (or in 𝐶𝑗).

𝐶𝑖𝛾𝑖𝜁
′𝛽𝑖 is indistinguishable from 𝐶𝑖𝛾𝑖𝛽𝑖 to 𝒫 ∪ℛ𝑟, so the 𝒫 ∪ℛ𝑟-only execution

𝜂𝑖𝛼𝑖+1 · · ·𝛼𝑗−1 is still applicable from 𝐶𝑖𝛾𝑖𝜁
′𝛽𝑖. Let 𝛼 = 𝜂𝛼0 · · ·𝛼𝑖−1𝛾𝑖𝜁

′𝛽𝑖𝜂𝑖𝛼𝑖+1 · · ·𝛼𝑗−1.

Every process in 𝒫 ∪ ℛ𝑟 is in the same state in 𝐶𝛼 as in 𝐶𝑗. In particular, 𝒫 has

𝑘 + 1 valencies and ℛ𝑟 covers the same 𝑟 registers in 𝐶𝛼 as in 𝐶𝑗. Moreover, since

𝑝′𝑟+1 takes no steps in 𝛽𝑖𝜂𝑖𝛼𝑖+1 · · ·𝛼𝑗−1, it covers a location in 𝐶𝛼 that is not covered

by ℛ𝑟 in 𝐶𝑖 (or 𝐶𝑗). Therefore, in 𝐶𝛼, the set ℛ𝑟+1 = ℛ ∪ {𝑝′𝑟+1} covers a set of

150

𝑟 + 1 registers, as desired.

3.4.3 Global Argument

Consider any 𝑘-set agreement protocol Π for 𝑛 > 𝑘 processes, 𝑝1, . . . , 𝑝𝑛, that satisfies

𝑘-obstruction-freedom. We will prove that the protocol must use at least 𝑛 − 𝑘 + 1

registers. Indeed, assume that the protocol uses 𝑚 ≤ 𝑛 − 𝑘 registers. We show that,

in this case, it is possible to simulate Π and deterministically solve 𝑘-set agreement

among 𝑘 + 1 processes, say 𝑞0, 𝑞1, . . . , 𝑞𝑘, in a wait-free manner. Since this is known

to be impossible (see Theorem 3.4.1), the result follows.

Overview: We start by an intuitive overview of the simulation. Suppose 𝑞𝑖 starts

with input 𝑖. Processes 𝑞1, . . . , 𝑞𝑘 directly simulate 𝑝𝑛−𝑘+1, . . . , 𝑝𝑛 on their respective

inputs and return what the simulated process decides if it terminates in the simulation.

We pay special attention to process 𝑞0, as it will simulate processes 𝑝1, . . . , 𝑝𝑚, all

with input 0. If any of these processes returns in the simulation, 𝑞0 returns the same

value. Then, since Π is 𝑘-obstruction-free, 𝑝𝑛−𝑘+1, . . . , 𝑝𝑛, and hence 𝑞1, . . . , 𝑞𝑘, will

all eventually decide. 𝑞0 starts by simulating 𝑝1. If 𝑝1 does not perform any more

writes after some point, then 𝑝𝑛−𝑘+1, . . . , 𝑝𝑛 cannot tell if 𝑝1 actually takes any more

steps, and they must eventually all decide. Hence, so will 𝑝1. So suppose that 𝑝1

always performs more writes and does not terminate.

Eventually, 𝑞0 will be about to simulate a write by 𝑝1 to a register 𝑟1 that 𝑝1 has

previously written to. Assuming 𝑞0 can determine what the contents of the registers

were in Π immediately before 𝑝1’s first write to 𝑟1, 𝑞0 now locally simulates 𝑝2 running

solo immediately before 𝑝1’s previous write to 𝑟1.

If 𝑝2 does not write to any registers other than 𝑟1 and decides some value, then

𝑞0 decides the same value and terminates. This is valid because 𝑝2 could actually

have taken these steps before 𝑝1’s first write to 𝑟1 (which hides them) and the other

processes 𝑝𝑛−𝑘+1, . . . , 𝑝𝑛 would not be able to tell the difference. Thus, as before, the

other processes are guaranteed to all decide afterwards.

So suppose 𝑝2 writes to a register 𝑟2 ̸= 𝑟1 when it runs solo immediately before

151

𝑝1’s first write to 𝑟1. In this case, 𝑞0 locally simulates 𝑝2, until 𝑝2 is about to write to

𝑟2. Now, instead of just simulating 𝑝1’s write to 𝑟1, 𝑞0 signals to the other simulators

that {𝑝1, 𝑝2} performed a block write to {𝑟1, 𝑟2}. After this, 𝑞0 continues simulating

𝑝1 (and 𝑝2 as appropriate, maintaining its state locally) as described.

Continuing to simulate processes 𝑝1, 𝑝2, . . . , 𝑝𝑛−𝑘 this way, 𝑞0 either decides, or

signals larger and larger block writes. Eventually, 𝑞𝑘 will be about to signal a block

write by {𝑝1, 𝑝2, . . . , 𝑝𝑚} to 𝑚 ≤ 𝑛− 𝑘 registers (or it returns). We assumed that Π

uses 𝑚 registers so this block write obliterates the contents of all registers. Thus 𝑞0

can locally simulate what 𝑝1 decides after the block update by {𝑝1, . . . , 𝑝𝑚} and decide

that value. After this, all other processes will also decide by 𝑘-obstruction-freedom.

Hence, the simulation is wait-free, which is impossible.

An astute reader may have observed that 𝑞0 simulates processes in a manner

reminiscent of the adversarial scheduler in the 𝑛 − 1 lower bound for consensus.

Indeed, viewing the adversarial scheduler as an algorithm, 𝑞0 is essentially running

that algorithm. In some sense, this pits the space lower bound adversary against the

𝑘-set agreement impossibility adversary. This is a win-win situation for us. To avoid

agreement due to the 𝑘-obstruction-freedom, 𝑞0, and thus, the space lower bound

adversary, must take steps. But the more steps the space lower bound adversary

takes, the more registers get covered.

Critical to the simulation is the ability to emulate a system with 𝑚 multi-writer

registers, such that one process, 𝑞0, can also signal block writes. In addition, 𝑞0 needs

to determine the contents of registers at certain points before the block writes, in

order to locally simulate the extra process for a subsequent larger block in a consistent

way. This is accomplished by the following object implementation from read-write

registers.

1-Augmented Snapshot Object: We implement a 1-augmented 𝑚-component

multi-writer snapshot object ℳ[1..𝑚] shared by 𝑘 + 1 processes, 𝑞0, 𝑞1, . . . , 𝑞𝑘. It

supports an Update(𝑗, 𝑣) operation, for 1 ≤ 𝑗 ≤ 𝑚, that can be performed by pro-

cesses 𝑞𝑖, for 1 ≤ 𝑖 ≤ 𝑘, and a Scan() operation that can be performed by all processes.

152

In addition, it supports a Block-Update([𝑗1, . . . , 𝑗ℓ], [𝑣1, . . . , 𝑣ℓ]) operation that can be

performed only by process 𝑞0.

Update(𝑗, 𝑣) updates the value of the 𝑗-th component ofℳ to 𝑣 and Scan() returns

the values of all components of ℳ. A Block-Update 𝐵 to components [𝑗1, . . . , 𝑗ℓ] of

ℳ sets ℳ[𝑗𝑟] to 𝑣𝑟 for all 1 ≤ 𝑟 ≤ ℓ, and returns a Scan of ℳ with the following

properties: Let 𝐿 be the last Block-Update by 𝑞0 prior to 𝐵, or the beginning of the

execution, if 𝐵 is the first Block-Update by 𝑞0. Let 𝐿′ be the last Scan operation

between 𝐿 and 𝐵, or 𝐿, if there is no such operation. Then the Block-Update returns

the values of all components ofℳ at some point between 𝐿′ and 𝐵. This is the key

property that allows 𝑞0 to insert steps of new processes into the simulation.

We design a non-blocking linearizable [HW90] implementation of ℳ. It uses a

single-writer snapshot object H[0..𝑘], along with an unbounded number of single-

writer registers L1[𝑏], . . . , L𝑘[𝑏] for 𝑏 ≥ 0, that are only written to by processes

𝑞1, . . . , 𝑞𝑘, respectively. As customary, H supports atomic update(𝑗, 𝑣) and scan()

methods, while L𝑖[𝑏] supports atomic read() and write(𝑣) methods. Component H[𝑖]

is used by 𝑞𝑖 to store the history of its Updates as a list of triples (𝑗, 𝑣, 𝑡), where 𝑗 is

a component of ℳ, 𝑣 is the value, and 𝑡 is a unique timestamp associated with the

update. For a Block-Update of ℓ components, 𝑞0 appends ℓ triples to H[0], all with

the same timestamp. Registers L𝑖[𝑏] are used to help 𝑞0 determine what to return in

its 𝑏 + 1’st Block-Update. Initially, H = (⊥, . . . ,⊥) and L𝑖[𝑏] = ⊥ for all 1 ≤ 𝑖 ≤ 𝑘

and all 𝑏 ≥ 0.

Notation: We will use uppercase latin letters to denote execution steps (scan,

update, read , write invocations) and operations (Update, Scan, Block-Update). The

corresponding lowercase letters denote return values. For instance, if 𝐻 is a scan

(H.scan()), then ℎ will be the result of scan 𝐻 (return value of 𝐻). Given ℎ, a result

of scan, we denote by ℎ𝑖 the value in 𝑖-th component (of 𝐻[𝑖]), and by #ℎ𝑖 the number

of different timestamps associated with the triples recorded in ℎ𝑖. For process 𝑞𝑖 ̸= 𝑞0,

this will be the number of Update operations it has performed onℳ. For process 𝑞0,

#ℎ0 will be the number of Block-Updates.

153

The pseudo-code of our implementation ofℳ is given in Figure 3-5.

53 procedure Get-timestamp(ℎ) by 𝑞𝑖
54 for 𝑗 ∈ {0, 1, . . . , 𝑘} do
55 𝑡𝑗 ← #ℎ𝑗
56 𝑡𝑖 ← 𝑡𝑖 + 1
57 return (𝑡0, . . . , 𝑡𝑘)

58 procedure Get-view(ℎ) by 𝑞𝑖
59 for 𝑗 = 1..𝑚 do
60 if there is an update triple in ℎ with first component 𝑗 then
61 𝑡← max{𝑡′ : (𝑗, 𝑣′, 𝑡′) is a triple in ℎ}
62 let (𝑗, 𝑣, 𝑡) be the unique triple in ℎ with component 𝑗 and timestamp 𝑡
63 𝑣𝑗 ← 𝑣

64 else 𝑣𝑗 ← ⊥
65 return (𝑣1, . . . , 𝑣𝑚)

66 procedure Scan() by 𝑞𝑖
67 repeat
68 ℎ← H.scan()
69 if 𝑖 ̸= 0 then L𝑖[#ℎ0].write(ℎ)
70 ℎ′ ← H.scan()

71 until ℎ = ℎ′

72 return Get-view(ℎ)

73 procedure Update(𝑗, 𝑣) by 𝑞𝑖 ̸= 𝑞0
74 ℎ← H.scan()
75 𝑡← Get-timestamp(ℎ) // Get a timestamp, 𝑡, associated with the Update
76 H.update(𝑖, ℎ𝑖 · (𝑗, 𝑣, 𝑡)) // Append (𝑗, 𝑣, 𝑡) to the 𝑖’th component of H

77 procedure Block-Update([𝑗1, . . . , 𝑗ℓ], [𝑣1, . . . , 𝑣ℓ]) by 𝑞0
78 ℎ← H.scan()
79 𝑡← Get-timestamp(ℎ)
80 H.update(0, ℎ0 · [(𝑗1, 𝑣1, 𝑡), . . . , (𝑗ℓ, 𝑣ℓ, 𝑡)]) // Append all to the 0’th

component of H
81 last← ℎ
82 for 𝑗 ∈ {1, . . . , 𝑘} do
83 𝑟[𝑗]← L𝑗 [#ℎ0].read()
84 if 𝑟[𝑗] ̸= ⊥ and last is a proper prefix of 𝑟[𝑗] then
85 last← 𝑟[𝑗]

86 return Get-view(last)

Figure 3-5: Pseudocode for the Implementation of a 1-Augmented Snapshot Object

Auxiliary Procedures: As in [Mat89, Fid91, AW04], a timestamp is a (𝑘 + 1)-

component vector of non-negative integers, ordered lexicographically. Given ℎ, a

result of scan, process 𝑞𝑖 generates a new timestamp 𝑡 = (𝑡0, 𝑡1, . . . , 𝑡𝑘) from ℎ by

154

setting 𝑡𝑗 ← #ℎ𝑗 for 𝑗 ̸= 𝑖 and 𝑡𝑖 ← #ℎ𝑖 + 1. In Lemma 3.4.8 we show that

timestamps are unique.

Given ℎ, a result of scan, for each component 𝑗, let 𝑣𝑗 be the value with the lexico-

graphically largest associated timestamp among all triples (𝑗, 𝑣, 𝑡) in all components

of ℎ, or ⊥ if no such triple exists. The view of ℎ, denoted view(ℎ), is the vector

(𝑣1, . . . , 𝑣𝑚).

Main Procedures: To perform an Update(𝑗, 𝑣), process 𝑞𝑖 ̸= 𝑞0 (𝑞0 always uses

Block-update) scans H to obtain ℎ, computes the timestamp 𝑡 from ℎ that will be

associated with the Update, and updates H[𝑖] by appending (𝑗, 𝑣, 𝑡) to it.

To compute a return value of a Block-Update, 𝑞0 uses the latest scan of H taken

by any process before the Block-Update. To make this possible, each process 𝑞𝑖 ̸= 𝑞0

helps 𝑞0 while executing the Scan operation. During Scan(), 𝑞𝑖 repeatedly scans H.

It records the result ℎ of its scan in L𝑖[#ℎ0] (recall that #ℎ0 represents the number

of Block-Updates by 𝑞0). Then it takes a second scan of H and retries helping if the

result of the scan is no longer equal to ℎ. Otherwise, it returns view(ℎ).

To perform a Block-update([𝑗1, . . . , 𝑗ℓ], [𝑣1, . . . , 𝑣ℓ]), 𝑞0 first takes a scan 𝐻 of H.

It then generates a timestamp 𝑡 from ℎ (the result of 𝐻) to associate with the

Block-Update and updates H[0] by appending the triples (𝑗1, 𝑣1, 𝑡), . . . , (𝑗ℓ, 𝑣ℓ, 𝑡) to

it. To determine the return value, 𝑞0 takes another scan of H, and sets last to the

result of the latest scan among the result of this scan and {L𝑖[𝑏] : L𝑖[𝑏] ̸= ⊥}, where

𝑏 is the number of Block-Updates by 𝑞0. Notice that any two scans 𝐻 and 𝐻 ′ are

comparable component-wise, so 𝑞0 can detect if a scan step occured earlier than an-

other scan step by checking if some component of the result has less entries (formally,

see Observation 2). Finally, 𝑞0 removes all triples with timestamp 𝑡 from 𝑓0, i.e. the

records of the ongoing Block-Update, and returns the view.

Linearization Points: A Scan operation is linearized at the last scan of H

in performed in the Scan on Line 70. A (Block-)Update operation with associated

timestamp 𝑡 involving component 𝑗 is linearized at the first point that H contains an

update triple with component 𝑗 and timestamp 𝑡′ ⪰ 𝑡. If multiple (Block-)Update

operations are linearized at the same point, then they are ordered in increasing order

155

of their associated timestamps. The following observations are consequences of these

definitions.

Observation 1. Let 𝑈 be an Update operation to component 𝑗 with an associated

timestamp 𝑡 and let 𝑋 be any update to H that appends an update triple with com-

ponent 𝑗 and timestamp 𝑡′ ⪰ 𝑡 to H. Then 𝑈 is linearized no later than 𝑋. A

Block-Update operation 𝐵 is always linearized at its update to H. Furthermore, if

multiple Updates are linearized at 𝐵’s update to H, then 𝐵 is ordered last.

If 𝐻 and 𝐻 ′ are scans of H with results ℎ and ℎ′ such that, for each 𝑗 ∈

{0, 1, . . . , 𝑘}, ℎ𝑗 is a prefix of ℎ′𝑗, then we say that ℎ is a prefix of ℎ′. If ℎ𝑗 is a

proper prefix of ℎ′𝑗 for some 𝑗, then we say that ℎ is a proper prefix of ℎ′. Since pro-

cesses only append values to their own components in H and scans of H are atomic,

we have the following observation.

Observation 2. Let 𝐻 and 𝐻 ′ be scans of H that return ℎ and ℎ′, respectively. If

𝐻 occurs before 𝐻 ′, then, for each 𝑗 ∈ {0, 1 . . . , 𝑘}, ℎ𝑗 is a prefix of ℎ′𝑗. Conversely,

if there is some 𝑗 ∈ {0, 1 . . . , 𝑘} such that ℎ𝑗 is a proper prefix of ℎ′𝑗, then 𝐻 occurs

before 𝐻 ′.

We say that the result ℎ of a scan of H contains a timestamp 𝑡, if ℎ (or, more pre-

cisely, some component ℎ𝑖 of ℎ) contains an update triple with timestamp 𝑡. The next

lemma implies that a timestamp generated from ℎ by any process is lexicographically

larger than any timestamp contained in ℎ.

Lemma 3.4.6. For any timestamp 𝑡 contained in the result ℎ′ of a scan 𝐻 ′ of H,

#ℎ′𝑗 ≥ 𝑡𝑗, for all 0 ≤ 𝑗 ≤ 𝑘.

Proof. By definition, 𝑡 is generated from a result ℎ of a scan 𝐻 by some process

𝑞𝑖 as follows: 𝑡𝑗 = #ℎ𝑗, for 𝑗 ̸= 𝑖, and 𝑡𝑖 = #ℎ𝑖 + 1. Since 𝐻 occurs before 𝐻 ′,

by Observation 2, #ℎ′𝑗 ≥ #ℎ𝑗 = 𝑡𝑗, for all 𝑗 ̸= 𝑖. Furthermore, ℎ′ contains 𝑡, so

𝑞𝑖’s update to H that appends an update triple with timestamp 𝑡 occurs before 𝐻 ′,

implying that #ℎ′𝑖 ≥ #ℎ𝑖 + 1 = 𝑡𝑖.

156

Corollary 3.4.7. Let ℎ′ be the result of a scan and let 𝑡′ = Get-timestamp(ℎ′) by

any process. Then, for any timestamp 𝑡 contained in ℎ′, 𝑡 ≺ 𝑡′.

Lemma 3.4.8. Every (Block-)Update operation is associated with a different times-

tamp.

Proof. Suppose two processes 𝑞𝑖 ̸= 𝑞𝑗 generate timestamps 𝑡 and 𝑡′ from scans 𝐻 and

𝐻 ′ of H that return ℎ and ℎ′, respectively. Then 𝑡𝑖 = #ℎ𝑖 +1, 𝑡𝑗 = #ℎ𝑗, 𝑡′𝑗 = #ℎ′𝑗 +1,

and 𝑡′𝑖 = #ℎ′𝑖. If 𝑡 = 𝑡′, then #ℎ𝑖 + 1 = #ℎ′𝑖 and #ℎ′𝑗 + 1 = #ℎ𝑗. It follows

that #ℎ𝑖 < #ℎ′𝑖 and #ℎ𝑗 > #ℎ′𝑗. However, by Observation 2, this is impossible.

Therefore, 𝑡 ̸= 𝑡′.

Now, consider timestamps generated by the same process 𝑞𝑖. Since 𝑞𝑖 appends one

or more updates triples with timestamp 𝑡 to the 𝑖-th component of H immediately

after it generates 𝑡, the result of any subsequent scan by 𝑞𝑖 contains 𝑡. Thus, by

Corollary 3.4.7, any timestamp 𝑡′ generated by 𝑞𝑖 after 𝑡 is lexicograpically larger

than 𝑡.

Now, we prove that our linearization is correct. We first show that the linearization

points of operations are always contained within their respective execution intervals.

Lemma 3.4.9 (Linearization). Each operation is linearized within its execution in-

terval.

Proof. By definition, a Scan operation is linearized at a point within its execution

interval. A (Block-)Update operation 𝑈 to component 𝑗 with associated timestamp 𝑡

is linearized at the first point that H contains an update triple with component 𝑗 and

timestamp 𝑡′ ⪰ 𝑡. Let ℎ be the result of the scan 𝐻 in 𝑈 . Then 𝑡 = Get-timestamp(ℎ).

By Corollary 3.4.7, all of the timestamps contained in ℎ are lexicographically smaller

than 𝑡. Thus, 𝑈 is linearized after 𝐻. On the other hand, since 𝑈 contains an update

to H that appends an update triple with component 𝑗 and timestamp 𝑡, 𝑈 is linearized

no later than this update. It follows that 𝑈 is linearized at a point in its execution

interval.

157

Observation 3. If a scan 𝐻 ′ of H occurs after the linearization point of a (Block-)Update

𝑈 involving component 𝑗 with associated timestamp 𝑡, then the result of 𝐻 ′ contains

an update triple with component 𝑗 and timestamp at least as large as 𝑡.

The next lemma says that if 𝐻 is a scan that returns ℎ, then Get-view(ℎ) is

the result that should be returned by any Scan linearized at 𝐻 according to the

specification ofℳ.

Lemma 3.4.10. Let 𝐻 be a scan that returns ℎ. Suppose Get-view(ℎ) = (𝑣1, . . . , 𝑣𝑚).

Then, for each 1 ≤ 𝑗 ≤ 𝑚, 𝑣𝑗 is the value of the last (Block-)Update to component 𝑗

of ℳ linearized before 𝐻, or ⊥ if no such (Block-)Update exists.

Proof. First, suppose that no (Block-)Update operation involving component 𝑗 is

linearized before 𝐻. We claim that ℎ does not contain an update triple involving

component 𝑗. Assume the contrary. Among all update triples with component 𝑗 in

ℎ, let (𝑗, 𝑣𝑗, 𝑡) be the one with the largest timestamp. Some (Block-)Update operation

𝑈 performed an update 𝑋 that appended (𝑗, 𝑣𝑗, 𝑡) to H prior to 𝐻. However, by Ob-

servation 1, 𝑈 would be linearized no later than 𝑋. This is a contradiction, since 𝑋

occurs before 𝐻 and, hence, 𝑈 is linearized before 𝐻.

Now, suppose there is some (Block-)Update operation involving component 𝑗 that

is linearized before 𝐻. Consider the last such operation 𝑈 linearized before 𝐻. Let

𝑡 be its associated timestamp. Then, by Observation 3, ℎ contains an update triple

with component 𝑗 and timestamp 𝑡′′ ⪰ 𝑡. Let 𝑡′ be the largest timestamp of any

update triple with component 𝑗 in ℎ. By Lemma 3.4.8, there is exactly one update

triple in ℎ with component 𝑗 and timestamp 𝑡′. By definition of Get-view(ℎ), the

value of this update triple is 𝑣𝑗.

Since ℎ contains an update triple with component 𝑗 and timestamp 𝑡′′, we have

that 𝑡′ ⪰ 𝑡′′ ⪰ 𝑡. We now show that 𝑡′ = 𝑡 which, by Lemma 3.4.8, implies that 𝑈

appended triple (𝑗, 𝑣𝑗, 𝑡
′), as desired. Indeed, let 𝑋 be the update to H that appended

(𝑗, 𝑣𝑗, 𝑡
′) and let 𝑈 ′ be the (Block-)Update operation that performed 𝑋. By definition

of 𝑡′, prior to𝑋, H does not contain an update triple with component 𝑗 and timestamp

at least 𝑡′. By our linearization rules, it follows that 𝑈 ′ is linearized at 𝑋, which is

158

before 𝐻.

On the other hand, by Observation 1, since 𝑡′ ⪰ 𝑡, 𝑈 is linearized at no later than

𝑋. Since 𝑈 is the last (Block-)Update operation involving component 𝑗 linearized

before 𝐻 and 𝑈 ′ is linearized at 𝑋, 𝑈 must be linearized at 𝑋. If 𝑡′ ≻ 𝑡, then, by our

linearization rules, 𝑈 is linearized earlier than 𝑈 ′. This contradicts the definition of

𝑈 . Therefore, 𝑡 = 𝑡′.

Corollary 3.4.11 (Scans). Consider any Scan that returns (𝑣1, . . . , 𝑣𝑚). Then, for

each 1 ≤ 𝑗 ≤ 𝑚, 𝑣𝑗 is the value of the last (Block-)Update to component 𝑗 of ℳ

linearized before the Scan operation, or ⊥ if no such (Block-)Update exists.

Lemma 3.4.12. Let 𝑈 be a Block-Update operation, let 𝐻 be the scan of H in 𝑈

that returns ℎ, let 𝑋 be the update to H in 𝑈 , let 𝑟[1], . . . , 𝑟[𝑘] be the values read

from L1[#ℎ0], . . . , L𝑘[#ℎ0], respectively, in 𝑈 , and let last be the value of the variable

on Line 81 after the for loop in 𝑈 . Then:

∙ last is the result of a scan that occurs before 𝑋.

∙ Let 𝐿 be the last scan that returns last. Then 𝐿 occurs no earlier than 𝐻 and

there is no Scan operation linearized between 𝐿 and 𝑋.

Proof. A process 𝑞𝑖 ̸= 𝑞0 only writes to L𝑖[𝑏] when it takes a scan 𝐻 ′ of H that returns

ℎ′ such that #ℎ′0 = 𝑏. Thus, at all times, L𝑖[#ℎ0] contains either ⊥ or the result of a

scan 𝐻 ′ of H taken before 𝑋. It follows that 𝑟[1], . . . , 𝑟[𝑘] are all results of scans of

H that occur before 𝑋. Therefore, last, which is either ℎ or some 𝑟[𝑗], can only be

the the result of a scan of H that occurs before 𝑋. By the code, ℎ is a prefix of last.

Since 𝐿 is the last scan to return last, by Observation 2, 𝐿 occurs no earlier than 𝐻.

Now suppose for a contradiction, that there is some Scan operation 𝑆 linearized

between 𝐿 and 𝑋. Let 𝐺 be the last scan in 𝑆, where 𝑆 is linearized, and let 𝑔 be

the result of 𝐺. Since 𝐺 is between 𝐿 and 𝑋, hence, between 𝐻 and 𝑋, 𝑆 is not

performed by 𝑞0. Suppose 𝑆 is performed by 𝑞𝑖 ̸= 𝑞0.

Since 𝐺 occurs after 𝐿, which occurs no earlier than 𝐻, by Observation 2, #𝑔0 ≥

#ℎ0. On the other hand, since 𝐺 occurs before 𝑋, #𝑔0 ≤ #ℎ0. It follows that

159

#𝑔0 = #ℎ0. From the condition on Line 71, this implies that 𝑞𝑖 performed a write to

L𝑖[#ℎ0] with value 𝑔 before 𝐺. Since 𝐺 occurs before 𝑋 and 𝑟[𝑖] is read from L𝑖[#ℎ0]

after 𝑋, 𝑔 is a prefix of 𝑟[𝑖]. By definition of last, it follows that 𝑔 is a prefix of last.

On the other hand, since 𝐿 occurs before 𝐺, last is a prefix of 𝑔. Therefore, last = 𝑔.

It follows that 𝐺 occurs no later than 𝐿. Contradiction.

Corollary 3.4.13 (Block-Updates). Let 𝐵 be a Block-Update operation by 𝑞0 and let

𝑋 be the update of H at which 𝐵 is linearized. Consider the Block-Update by 𝑞0 prior

to 𝐵, and let 𝑋 ′ be its linearization point, or the beginning of the execution if 𝐵 is the

first Block-Update. If there is a Scan operation linearized between 𝑋 ′ and 𝑋, then let

𝑆 be the linearization point of the last Scan operation linearized between 𝑋 ′ and 𝑋.

Otherwise, let 𝑆 be 𝑋 ′. Then 𝐵 returns the values of components of ℳ linearized at

some point between 𝑆 and 𝑋.

Proof. Let last and 𝐿 be defined as in Lemma 3.4.12. By Lemma 3.4.12, 𝐿 occurs

no earlier than the scan of H in 𝐵, and hence 𝐿 occurs after 𝑋 ′, since 𝑋 ′ is either

the beginning of the execution or an update performed by 𝑞0 earlier. Furthermore,

𝐿 occurs before 𝑋. It follows that 𝐿 occurs after 𝑆, since otherwise, there would be

a Scan linearized between 𝐿 and 𝑋, contradicting Lemma 3.4.12. Since 𝐿 returns

last, by Lemma 3.4.10, Get-view(last) returns the values of the last (Block-)Updates

to each component linearized before 𝐿, as desired.

Theorem 3.4.14. The algorithm in Figure 3-5 is a linearizable non-blocking imple-

mentation of a 1-augmented 𝑚-component multi-writer snapshot object ℳ.

Proof. Linearizability follows from Lemma 3.4.9, Corollary 3.4.11 and Corollary 3.4.13.

By the code, (Block-)Update operations are wait-free. On the other hand, if a process

takes steps but does not return from a Scan invocation, then it must repeatedly be

failing the condition on Line 71. This is only possible if a new triple is appended

to H by an update on Line 76 or Line 80 in an unique corresponding (Block-)Update

operation. Thus, other processes must be completing infinitely many (Block-)Update

invocations.

160

Theorem 3.4.15. Any 𝑘-obstruction-free protocol using read-write registers for 𝑘-set

agreement among 𝑛 > 𝑘 requires 𝑛− 𝑘 + 1 registers.

Proof. Suppose not, so that the protocol uses 𝑚 ≤ 𝑛 − 𝑘 registers. Without loss of

generality, we assume that the protocol uses an 𝑚-component multi-writer snapshot.

We will show that it is possible for 𝑘 + 1 processes 𝑞0, 𝑞1, . . . , 𝑞𝑘 to solve wait-free

𝑘-set agreement by simulating the protocol using our 1-augmented snapshot object

ℳ[1..𝑚], contradicting Theorem 3.4.1.

Indeed, 𝑞1, . . . , 𝑞𝑘 directly simulate steps of 𝑝𝑛−𝑘+1, . . . , 𝑝𝑛 on their respective in-

puts usingℳ to perform updates and snapshots. Process 𝑞0 simulates 𝑝1, . . . , 𝑝𝑚 on

its input according to the space lower bound adversary, by the strategy described in

the beginning of Section 3.4.3. Initially, it simulates 𝑝1, using Block-Update operation

to build block updates of size 1, and decides if 𝑝1 decides.

To build block update of size 1 < 𝑠 ≤ 𝑚, 𝑞0 repeatedly builds block updates of size

𝑠 − 1 (using 𝑝1, . . . , 𝑝𝑠−1), keeping track of the views returned by the Block-Updates

as well as the states of the simulated processes, until it is about to perform a block

update to a set of components 𝐶 of size 𝑠 − 1 that it has previously performed a

Block-Update 𝑈 to. It then locally simulates 𝑝𝑠 running solo from the view returned

by 𝑈 . If 𝑝𝑠 decides a value before updating a component not in 𝐶, then 𝑞0 returns

that value. Otherwise, it stops 𝑝𝑠 in its local simulation before 𝑝𝑠 is about to perform

an update to a component 𝑐 /∈ 𝐶. Finally, if 𝑠 < 𝑚, then it uses ℳ to signal a

block update of size 𝑠 to components 𝐶 ∪ {𝑐}, including 𝑝𝑠’s update in addition to

the original block update of size 𝑠− 1. If 𝑠 = 𝑚, then 𝑞0 locally simulates 𝑝1 running

solo after the block update by 𝑝1, . . . , 𝑝𝑠 to components 𝐶 ∪{𝑐} and decides the same

value as 𝑝1 (and terminates).

We claim that this simulates a valid execution of the protocol. Indeed, we linearize

steps by the processes in order of their operations onℳ. Block updates by processes

in {𝑝1, . . . , 𝑝𝑚} signaled by 𝑞0 are linearized consecutively, as a block, as desired. Fur-

thermore, the locally simulated steps of processes 𝑝2, . . . , 𝑝𝑚 are inserted immediately

after the corresponding views returned by Block-Update from which their solo execu-

tions are simulated from. This is indistinguishable to every other simulated process

161

because the steps are hidden by the block updates and because, by the property on

the views that Block-Updates return, no process takes a scan between their inserted

steps and before the Block-Update.

Finally, the simulation is wait-free. Indeed, in any execution where 𝑞0 takes finitely

many steps, the remaining processes 𝑞1, . . . , 𝑞𝑘 are guaranteed to terminate because

the protocol is 𝑘-obstruction-free. Furthermore, after 𝑞0 performs at most

(︂(︂
𝑚

1

)︂
+ 1

)︂(︂(︂
𝑚

2

)︂
+ 1

)︂
. . .

(︂(︂
𝑚

𝑚− 1

)︂
+ 1

)︂
≤
(︂

2

(︂
𝑚

𝑚/2

)︂)︂𝑚−1

≤ 2𝑚2

block updates, it is guaranteed to terminate as it will have built a block update to

𝑚 components. After this, 𝑞1, . . . , 𝑞𝑘 are guaranteed to terminate as well because of

𝑘-obstruction-freedom. Contradiction.

162

Chapter 4

Message Passing

4.1 Definitions and Notation

We consider the classic asynchronous message-passing model [ABND95]. Here, 𝑛 pro-

cessors communicate with each other by sending messages through channels. There

is one channel from each processor to every other processor; the channel from 𝑖 to 𝑗

is independent from the channel from 𝑗 to 𝑖. Messages can be arbitrarily delayed by

a channel, but do not get corrupted.

Computations are modeled as sequences of steps of the processors, which can be

either delivery steps, representing the delivery of a new message, or computation steps.

At each computation step, the processor receives all messages delivered to it since

the last computation step, and, unless it is faulty, it can perform local computation

and send new messages. A processor is non-faulty, if it is allowed to perform local

computations and send messages infinitely often and if all messages it sends are

eventually delivered. Notice that messages are also delivered to faulty processors,

although their outgoing messages may be dropped.

We consider algorithms that tolerate up to 𝑡 ≤ ⌈𝑛/2⌉− 1 processor failures. That

is, when more than half of the processors are non-faulty, they all return an answer

from the protocol with probability one. A standard assumption in this setting is

that all non-faulty processors always take part in the computation by replying to the

messages, irrespective of whether they participate in a certain algorithm or even after

163

they return a value—otherwise, the 𝑡 ≤ ⌈𝑛/2⌉ − 1 condition may be violated.

Communicate Procedure: Our algorithms use a procedure called communicate,

defined in [ABND95] as a building block for asynchronous communication. The call

communicate(𝑚) sends the message𝑚 to all 𝑛 processors and waits for at least ⌊𝑛/2⌋+

1 acknowledgments before proceeding with the protocol. The communicate procedure

can be viewed as a best-effort broadcast mechanism; its key property is that any two

communicate calls intersect in at least one recipient. In the following, a processor

𝑖 will communicate messages of the form (propagate,𝑣𝑖) or (collect,𝑣). For the first

message type, each recipient 𝑗 updates its view of the variable 𝑣 and acknowledges

by sending back an ACK message. In the second case, the acknowledgement is a pair

(ACK,𝑣𝑗) containing 𝑗’s view of the variable for the receiving process. In both cases,

processor 𝑖 waits for > 𝑛/2 ACK replies before proceeding with its protocol. In the

case of collect, the communicate call returns an array of at least ⌊𝑛/2⌋+ 1 views that

were received.

Adversary: We consider strong adversarial setting where the scheduling of pro-

cessor steps, message deliveries and processor failures are controlled by an adaptive

adversary. At any point, the adversary can examine the system state, including the

outcomes of random coin flips, and adjusts the scheduling accordingly.

Complexity Measures: We consider two worst-case complexity measures against

the adaptive adversary. Message complexity is the maximum expected number of

messages sent by all processors during an execution. When defining time complexity,

we need to take into account the fact that, in asynchronous message-passing, the

adversary schedules both message delivery and local computation.

Definition 4.1.1 (Time Complexity). Assume that the adversary fixes two arbitrarily

large numbers 𝑡1 and 𝑡2 before an execution, and these numbers are unknown to the

algorithm. Then, during the execution, the adversary delivers every message of a

non-faulty processor within time 𝑡1 and schedules a subsequent step of any non-faulty

164

processor in time at most 𝑡2.1 An algorithm has time complexity 𝑂(𝑇) if the maximum

expected time before all non-faulty processors return that the adversary can achieve is

𝑂(𝑇 (𝑡1 + 𝑡2)).2

For instance, in our algorithms, all messages are triggered by communicate. A pro-

cessor depends on the adversary to schedule a step in order to compute and call

communicate, and then depends on the adversary to deliver these messages and ac-

knowledgments. In the above definition, if all processors call communicate at most 𝑇

times, then all non-faulty processors return in time at most 2𝑇 (𝑡1+𝑡2) = 𝑂(𝑇 (𝑡1+𝑡2)):

each communicated message reaches destination in time 𝑡1, gets processed within time

𝑡2, at which point the acknowledgment is sent back and delivered after 𝑡1 time. So,

after 2𝑡1 + 𝑡2 time responses from more than half processors are received, and in at

most 𝑡2 time the next step of the processor is scheduled when it again computes and

communicates. This implies the following.

Claim 4.1.2. For any algorithm, if the maximum expected number of communicate

calls by any processor that the adversary can achieve is 𝑂(𝑇), then time complexity

is also 𝑂(𝑇).

Problem Statement: In leader election (test-and-set), each processor may return

either WIN or LOSE. Every (correct) processor should return (termination), and

only one processor may return WIN (unique winner). No processor may lose before

the eventual winner starts its execution. The goal is to ensure that operations are lin-

earizable, i.e., can be ordered such that (1) the first operation is WIN and every other

return value is LOSE , and (2) the order of non-overlapping operations is respected.

1Note that the adversary can set 𝑡1 or 𝑡2 arbitrarily large, unknown to the algorithm, so the
guarantees from the algorithm’s prospective are still only that messages are eventually delivered and
steps are eventually scheduled.

2Applied to asynchronous shared-memory, this yields an alternative definition of step (time)
complexity, taking 𝑡2 as an upper bound on the time for a thread to take a shared-memory step (and
ignoring 𝑡1). Counting all the delivery and non-trivial computation steps in message-passing gives
an alternative definition of message complexity, corresponding to shared-memory work complexity.

165

4.2 Leader Election Algorithm

Our leader election algorithm guarantees that if 𝑘 processors participate, the maxi-

mum expected number of communicate calls by any processor that the strong adaptive

adversary can achieve is 𝑂(log* 𝑘), and the maximum expected total number of mes-

sages is 𝑂(𝑛𝑘). We start by illustrating the algorithmic idea from [Gel14].

4.2.1 The PoisonPill Technique

Consider the protocol specified in Figure 4-1 from the point of view of a participating

processor. The procedure receives the id of the processor as an input, and returns a

SURVIVE/DIE indication. All 𝑛 processors react to received messages by replying

with acknowledgments according to the communicate procedure. In the following, we

Input: Unique identifier 𝑖 of the participating processor
Output: SURVIVE or DIE
Local variables:

Status[𝑛] = {⊥};
Views[𝑛][𝑛];
int coin;

87 procedure PoisonPill⟨𝑖⟩
88 Status[𝑖]← Commit /* commit to coin flip */
89 communicate(propagate,Status[𝑖]) /* propagate status */
90 𝑐𝑜𝑖𝑛← random(1 with probability 1/

√
𝑛, 0 otherwise) /* flip coin */

91 if coin = 0 then Status[𝑖]← Low-Pri
92 else Status[𝑖]← High-Pri
93 communicate(propagate,Status[𝑖]) /* propagate updated status */
94 Views ← communicate(collect ,Status) /* collect status from > 𝑛/2 */
95 if Status[𝑖] = Low-Pri then
96 if ∃ 𝑝𝑟𝑜𝑐. 𝑗 : (∃𝑘 : Views[𝑘][𝑗] ∈ {Commit ,High-Pri} and

∀𝑘′ : Views[𝑘′][𝑗] ̸= Low-Pri) then
97 return DIE /* 𝑖 has low priority, sees processor 𝑗 with either

high priority or committed and not low priority, and dies */
98 return SURVIVE

Figure 4-1: PoisonPill Technique

call a quorum any set of more than 𝑛/2 processors.

Each participating processor announces that it is about to flip a random coin by

moving to state Commit (lines 88-89), then obtain either low or high priority based

166

on the outcome of a biased coin flip. The processor then propagates its priority

information to a quorum (line 93). Next, it collects the status of other processors

from a quorum using the communicate(collect , Status) call on line 94 that requests

views of the array Status from each processor 𝑗, returning the set of replies received,

of size at least 𝑛/2.

The crux of the round procedure is the DIE condition on line 97. A processor 𝑝

returns DIE at this line if both of the following occur: (1) the processor 𝑝 has low

priority, and (2) it observes another processor 𝑞 that does not have low priority in

any of the views, but 𝑞 has either high priority or is committed to flipping a coin

(state Commit) in some view. Otherwise, processor 𝑝 survives.

The key observations are that

Claim 4.2.1. If all processors participating in PoisonPill return, at least one processor

survives.

We can also bound the maximum expected number of processors that survive:

Claim 4.2.2. The maximum expected number of processors that return SURVIVE is

𝑂(
√
𝑛).

The proofs of these claims are given in [Gel14]. In the same work, applying this

technique recursively with some extra care, an algorithm with an expected𝑂(log log 𝑛)

time complexity is constructed. But we do not want to stop here.

4.2.2 Heterogeneous PoisonPill

Building a more efficient algorithm based on the PoisonPill technique requires reducing

the number of survivors beyond Ω(
√
𝑛) without violating the invariant that not all

participants may die. We control the coin flip bias, but setting the probability of

flipping 1 to 1/
√
𝑛 is provably optimal. Let the adversary schedule processors to

execute PoisonPill sequentially. With a larger probability of flipping 1, more than
√
𝑛

processors are expected to get a high priority and survive. With a smaller probability,

at least the first
√
𝑛 processors are expected to all have low priority and survive. There

167

are always Ω(
√
𝑛) survivors.

To overcome the above lower bound, after committing, we make each processor

record the list ℓ of all processors including itself, that have a non-⊥ status in some

view collected from the quorum. Then we use the size of list ℓ of a processor to

determine its probability bias. Each processor also augments priority with its ℓ and

propagates that as a status. This way, every time a high or low priority of a processor

𝑝 is observed, ℓ of processor 𝑝 is also known. Finally, the survival criterion is modified:

each processor first computes set 𝐿 as the union of all processors whose non-⊥ statuses

it ever observed itself, and of the ℓ lists it has observed in priority informations in

these statuses. If there is a processor in 𝐿 for which no reported view has low priority,

the current processor drops.

The algorithm is described in Figure 4-2. The particular choice of coin flip bias is

influenced by factors that should become clear from the analysis. Despite modifica-

99 procedure HeterogeneousPoisonPill⟨𝑖⟩
100 Status[𝑖]← {.stat = Commit , .list = {}} /* commit to coin flip */
101 communicate(propagate,Status[𝑖]) /* propagate status */
102 Views ← communicate(collect ,Status) /* collect status from > 𝑛/2 */
103 ℓ← {𝑗 | ∃𝑘 : Views[𝑘][𝑗] ̸= ⊥} /* record participants */
104 if |ℓ| = 1 then prob ← 1 /* set bias */

105 else prob ← log |ℓ|
|ℓ| /* set bias */

106 𝑐𝑜𝑖𝑛← random(1 with probability prob, 0 otherwise) /* flip coin */
107 if coin = 0 then Status[𝑖]← {.stat = Low-Pri , .list = ℓ} /* record priority

and list */
108 else Status[𝑖]← {.stat = High-Pri , .list = ℓ} /* record priority and list */
109 communicate(propagate,Status[𝑖]) /* propagate priority and list */
110 Views ← communicate(collect ,Status) /* collect status from > 𝑛/2 */
111 if Status[𝑖].stat = Low-Pri then
112 𝐿← ∪𝑘,𝑗:Views[𝑘][𝑗] ̸=⊥Views[𝑘][𝑗].list /* union all observed lists */
113 𝐿← 𝐿 ∪ {𝑗 | ∃𝑘 : Views[𝑘][𝑗] ̸= ⊥} /* record new participants */
114 if ∃ 𝑝𝑟𝑜𝑐. 𝑗 ∈ 𝐿 : ∀𝑘 : Views[𝑘][𝑗].stat ̸= Low-Pri then
115 return DIE /* 𝑖 has low priority, learns about processor 𝑗

participating whose low priority is not reported, and dies */
116 return SURVIVE

Figure 4-2: Heterogeneous PoisonPill

tions, the same argument as in Claim 4.2.1 still guarantees at least one survivor. Let

168

us now prove that the views of the processors have the following interesting closure

property, which will be critical to bounding the number of survivors with low priority.

Claim 4.2.3. Consider any set 𝑆 of processors that each flip 0 and survive. Let 𝑈

be the union of all 𝐿 lists of processors in 𝑆. Then, for 𝑝 ∈ 𝑈 and every processor 𝑞

in the ℓ list of 𝑝, 𝑞 is also in 𝑈 .

Proof. In order for processors in 𝑆 to survive, they should have observed a low priority

for each of the processors in their 𝐿 lists. Thus, every processor 𝑝 ∈ 𝑈 must flip 0, as

otherwise it would not have a low priority. However, the low priority of 𝑝 observed by

a survivor was augmented by the ℓ list of 𝑝. According to the algorithm, the survivor

includes in its own 𝐿 all processors 𝑞 from this ℓ list of 𝑝, implying 𝑞 ∈ 𝑈 .

Next, let us prove a few other useful claims:

Claim 4.2.4. If processor 𝑞 completed executing line 101 no later than processor 𝑝

completed executing line 101, then 𝑞 will be included in the ℓ list of 𝑝.

Proof. When 𝑝 collects statuses on line 102 from a quorum, 𝑞 is already done prop-

agating its Commit on line 101. As every two quorum has an intersection, 𝑝 will

observe a non-⊥ status of 𝑞 on line 103.

Claim 4.2.5. The probability of at least 𝑧 processors flipping 0 and surviving is

𝑂(1/𝑧).

Proof. Let 𝑆 be the set of the 𝑧 processors that flip 0 and survive and let us define

𝑈 as in Claim 4.2.3. For any processor 𝑝 ∈ 𝑈 and any processor 𝑞 that completes

executing line 101 no later than 𝑝, by Claim 4.2.4 processor 𝑞 has to be contained in

the ℓ list of 𝑝, which by the closure property (Claim 4.2.3) implies 𝑞 ∈ 𝑈 . Thus, if

we consider the ordering of processors according to the time they complete executing

line 101, all processors not in 𝑈 must be ordered strictly after all processors in 𝑈 .

Therefore, during the execution, first |𝑈 | processors that complete line 101 must all

flip 0. The adversary may influence the composition of 𝑈 , but by the closure property,

each ℓ list of processors in 𝑈 contains only processors in 𝑈 , meaning |ℓ| ≤ |𝑈 |. So the

169

probability for each processor to flip 0 is at most (1− log |𝑈 |
|𝑈 |) and for all processors in

𝑈 to flip 0’s is at most (1− log |𝑈 |
|𝑈 |)|𝑈 | = 𝑂(1/|𝑈 |). This is 𝑂(1/𝑧) since all 𝑧 survivors

from 𝑆 are included in their own lists and hence also in 𝑈 .

We have never relied on knowing 𝑛. If 𝑘 ≤ 𝑛 processors participate in the heteroge-

neous PoisonPill, we get

Lemma 4.2.6. The maximum expected number of processors that flip 0 and survive

is 𝑂(log 𝑘) +𝑂(1).

Proof. Let 𝑍 denote the number of processors that flip 0 and survive. Then, E[𝑍] =∑︀𝑘
𝑧=0 Pr[𝑍 ≥ 𝑧] and Pr[𝑍 ≥ 𝑧] = 𝑂(1/𝑧) by Claim 4.2.5.

Lemma 4.2.7. The maximum expected number of processors that flip 1 is 𝑂(log2 𝑘)+

𝑂(1).

Proof. Consider the ordering of processors according to the time they complete ex-

ecuting line 101, breaking ties arbitrarily. Due to Claim 4.2.4, the processor that is

ordered first always has |𝑙| ≥ 1, the second processor always computes |𝑙| ≥ 2, and so

on. The probability of flipping 1 decreases as |𝑙| increases, and the best expectation

achievable by adversary is 1 +
∑︀𝑘

𝑙=2
log 𝑙
𝑙

= 𝑂(log2 𝑘) +𝑂(1) as desired.

4.2.3 Final construction

The idea of implementing leader election is to have rounds of heterogeneous PoisonPill,

where all processors participate in the first round and only the survivors of round 𝑟

participate in round 𝑟 + 1. Each processor 𝑝, before participating in round 𝑟𝑝, first

propagates 𝑟𝑝 as its current round number to a quorum, then collects information

about the rounds of other processors from a quorum. Let 𝑅 be the maximum round

number of a processor in all views that 𝑝 collected. To determine the winner, we use

the idea from [SSW91]: if 𝑅 > 𝑟𝑝, then 𝑝 loses and if 𝑅 < 𝑟𝑝 − 1 then 𝑝 wins. We

also use a standard doorway mechanism [AGTV92] to ensure linearizability.

Figure 4-3 contains the pseudocode of PreRound procedure that processors execute

before participating in round 𝑟. Every processor starts in the same initial non-negative

170

round. The PreRound procedure takes round number 𝑟 and the id of the processor

as an input and outputs either PROCEED , WIN or LOSE . Each processor 𝑝 first

propagates 𝑟 to a quorum, then collects information about the rounds of other proces-

sors also from a quorum. Let 𝑅 be the maximum round number of a processor in all

views that 𝑝 collected. Using idea from [SSW91], if 𝑅 > 𝑟, then 𝑝 loses, if 𝑅 < 𝑟 − 1

then 𝑝 wins and otherwise 𝑝 returns PROCEED . To ensure linearizability we use a

Input: Unique identifier 𝑖 of the participating processor, round number 𝑟
Output: PROCEED , WIN , or LOSE
Local variables:

int Round [𝑛] = {0};
int Views[𝑛][𝑛];
int R;

117 procedure PreRound⟨𝑖, 𝑟⟩
118 Round [𝑖]← r /* record own round */
119 communicate(propagate,Round [𝑖]) /* propagate own round */
120 Views ← communicate(collect ,Round) /* collect round from > 𝑛/2 */
121 𝑅← max𝑘,𝑗|𝑗 ̸=𝑖(𝑉 𝑖𝑒𝑤𝑠[𝑘][𝑗]) /* maximum round of other processors

observed */
122 if 𝑟 < 𝑅 then
123 return LOSE
124 if 𝑅 < 𝑟 − 1 then
125 return WIN
126 return PROCEED

Figure 4-3: PreRound procedure

standard doorway technique, described in Figure 4-4. This doorway mechanism is

implemented by the variable door stored by the processors. A value false corresponds

to the door being open and a value true corresponds to the door being closed. Each

participating processor 𝑝 starts by collecting the views of door from more than half of

the processors on line 129. If a closed door is reported, 𝑝 is too late and automatically

returns LOSE . The door is closed by processors on line 132, and this information is

then propagated to a quorum. The goal of the doorway is to ensure that no processor

can lose before the winner has started its execution.

Finally we put the pieces together. Our complete leader election algorithm is

described in Figure 4-5. It involves going through the doorway procedure in the

171

Output: PROCEED or LOSE
Local variables:

bool door = false /* door is initially open */
127 bool Doors[𝑛];

128 procedure Doorway⟨⟩
129 Doors ← communicate(collect , door) /* collect door from > 𝑛/2 */
130 if ∃𝑗 : 𝐷𝑜𝑜𝑟𝑠[𝑗] = true then
131 return LOSE /* lose if the door is closed */
132 door ← true /* close the door */
133 communicate(propagate, door) /* propagates door = true to > 𝑛/2 */
134 return PROCEED

Figure 4-4: Doorway procedure

beginning, and then rounds of PreRound procedure possibly followed by participation

in a HeterogeneousPoisonPill protocol for round 𝑟. Note that HeterogeneousPoisonPill

protocols for different rounds are completely disjoint from each other.

Input: Unique identifier 𝑖 of the participating processor
Output: WIN or LOSE
Local variables:

int r = 1 ;
outcome;

135 procedure LeaderElect⟨𝑖⟩
136 if Doorway⟨⟩ = LOSE then
137 return LOSE /* lose if door was closed */
138 repeat
139 outcome ← PreRound⟨𝑖, 𝑟⟩ /* preround routine */
140 if outcome ∈ {WIN ,LOSE} then
141 return outcome /* return if rounds permit */

142 if HeterogeneousPoisonPillr⟨i⟩ = DIE then
143 return LOSE /* lose if did not survive the round */
144 𝑟 ← 𝑟 + 1

145 until never

Figure 4-5: Leader election algorithm

We now prove the properties of the algorithm.

Lemma 4.2.8. If all processors that call LeaderElect return, at least one processor

returns WIN .

Proof. Assume for contradiction that all processors that participate in PoisonPill re-

172

turn LOSE . Let us first prove that at least one processor always reaches the loop

on line 138, or alternatively that not all processors can lose on line 137. This would

mean that all processors return LOSE on line 131 of the Doorway procedure, but in

that case the door would never be closed on line 132. Thus, all processor views would

be door = false, and no processor would actually be able to return on line 131.

Since we showed that at least one processor reaches the loop, let us consider the

largest round 𝑟 in which some processors return, either in the pre-round routine of

round 𝑟 on line 141 or because of the poison pill on line 143. By our assumption all

these processors return LOSE in round 𝑟. But then, none of them may return on

line 141, because this is only possible after returning LOSE on line 123, which only

happens if a larger round than 𝑟 is reported, contradicting our assumption that 𝑟 is

the largest round.

So, at least one processor participates in the HeterogeneousPoisonPill𝑟 protocol.

However, by exactly the same argument as in Claim 4.2.1, HeterogeneousPoisonPill𝑟 is

guaranteed to have at least one survivor which would then participate in round 𝑟+ 1,

again contradicting that 𝑟 is the largest round.

Lemma 4.2.9. At most one processor that executes LeaderElect can return WIN .

Proof. A processor 𝑝 can only return WIN from LeaderElect on line 141, which only

happens after 𝑝 returns WIN from PreRound call with some round 𝑟. This means

𝑝 first propagated round 𝑟 to a quorum on line 119, then collected views of Round

array on line 120, and observed maximum round 𝑅 < 𝑟− 1 of any processor in any of

the views. This implies that when 𝑝 finished propagating 𝑟 to a quorum, no processor

had finished propagating 𝑟 − 1, i.e. executing line 119 in round 𝑟 − 1. Otherwise,

since every two quorums have an intersection, 𝑝 would have observed round 𝑟−1 and

𝑅 < 𝑟 − 1 would not hold. But for every other processor 𝑞, when 𝑞 executes line 120

in round 𝑟 − 1 and invokes the PreRound procedure, 𝑅 will be at least 𝑟 since 𝑝 has

already propagated to a quorum, so 𝑞 will observe 𝑟 − 1 < 𝑟 and return LOSE on

line 123 and subsequently return LOSE from LeaderElect.

Lemma 4.2.10. Our leader election algorithm is linearizable.

173

Proof. All processors that execute LeaderElect cannot return LOSE by Lemma 4.2.8.

Therefore, in every execution we can find LeaderElect invocation where processor

either does not return, or returns WIN . On the other hand, by Lemma 4.2.9, no

more than one processor can return WIN . If no processor returns WIN , let us

linearize the processor that invoked LeaderElect the earliest as the leader. This way,

we always have an unique processor to be linearized as the winner. We linearize it at

the beginning of its invocation interval, say point 𝑃 , and claim that every remaining

LeaderElect call can be linearized as returning LOSE after 𝑃 .

Assume contrary, then the problematic LeaderElect invocation must return before

𝑃 , and we know it has to return LOSE . By definition, this earlier call either closes

the door or observes a closed door while executing the Doorway procedure. Therefore,

the later call that we are linearizing as the winner has to observe a closed door on

line 129 and cannot avoid returning LOSE on line 131. Hence, this invocation can

never return WIN , and since we are linearizing it as winner, it should be the case that

it does not return and no other processor returns WIN . We picked this invocation

to have the earliest starting point, so every other LeaderElect invocation that does

not return must start after 𝑃 . Let us now consider an extension of the current

execution where the processors executing these invocations are continuosly scheduled

to take steps and all messages are delivered. According to the above argument,

since all invocations start after 𝑃 , these processors must observe a closed door on

line 129 and return LOSE after only finitely many steps. We have hence constructed

a valid execution where all processors that execute LeaderElect return LOSE . This

contradiction with Lemma 4.2.8 completes the proof.

We need one final claim before proving the main theorem.

Claim 4.2.11. The maximum expected number of participants decreases at least by

some fixed constant fraction in every two rounds.

Proof. This obviously holds for a single participant, because it will return WIN in

the next round and the number of participants after that will be zero.

We know that for 𝑘 participants in some round, by Lemma 4.2.6 and Lemma 4.2.7,

174

the maximum expected number of participants in the next round is 𝑂(log2 𝑘 + 1).

This implies that for a large enough constant 𝐷, there is constant 𝑐1 < 1 such that

for 𝑘 > 𝐷 the maximum expected number of participants in the next round, and

thus in all rounds thereafter, is at most 𝑐1𝑘. If 𝑘 ≤ 𝐷, then the first processor that

finishes executing line 101 flips 1 with at least a constant probability. In this case, all

processors that flip 0 will die, and the expected number of the remaining processors

that flip 0 is at least 𝑘−1
2
≤ 𝑘

4
for 𝑘 ≥ 2. This is because the expected number of

remaining processors that flip 1 is at most 𝑘−1
2

, as each of them observes at least

the first processor and itself, hence has no more than 1/2 probability of flipping 1.

Thus, if 𝑘 ≤ 𝐷, with a constant probability, a constant fraction of participants dies,

meaning that there is a constant 𝑐2 < 1 such that the maximum expected number of

participants is at most 𝑐2𝑘. Setting 𝑐 = max(𝑐1, 𝑐2) < 1 we obtain that the maximum

expected number of participants in every two rounds always decreases by at least a

constant fraction to 𝑐𝑘.

Theorem 4.2.12. Our leader election algorithm is linearizable. If there are at most

⌈𝑛/2⌉− 1 processor faults, all non-faulty processors terminate with probability 1. For

𝑘 participants, it has time complexity 𝑂(log* 𝑘) and message complexity 𝑂(𝑘𝑛).

Proof. We have shown linearizability in Lemma 4.2.10.

All 𝑘 ≥ 1 processors participate in the first round. The maximum expected num-

ber of processors that participate in round 3 is clearly no more than the maximum ex-

pected number of survivors of the first round, which by Lemma 4.2.6 and Lemma 4.2.7

for 𝑘 > 1 can be written as 𝐶(log2 𝑘 + 2 log 𝑘) for some constant 𝐶. If 𝑘 = 1, then

this lone processor will observe all other processors in round 0, leading to 𝑅 = 0 and

as current round is 𝑟 = 2 it will return WIN in the second round. Hence, for 𝑘 = 1,

there will be zero participants in the third round. Thus, for any 𝑘, the maximum

expected number of participants in round 3 is at most 𝑓(𝑘) = 𝐶(log2 𝑘 + 2 log 𝑘).

Let us say the adversary can achieve a probability distribution for round 3 such

175

that there are 𝐾𝑖 participants with probability 𝑝𝑖. We have shown above that

∑︁
𝑖

𝑝𝑖𝐾𝑖 ≤ 𝑓(𝑘) (4.2.1)

Now, using the same argument as above, we can bound the maximum expected num-

ber of participants in round 5 to be at most
∑︀
𝑝𝑖𝑓(𝐾𝑖). Function 𝑓 is concave for

non-negative arguments, and for arguments larger than a constant it is also monotoni-

cally increasing. This implies that either
∑︀
𝑝𝑖𝐾𝑖, the expected number of participants

in round 3, is constant, or

∑︁
𝑝𝑖𝑓(𝐾𝑖) ≤ 𝑓(

∑︁
𝑝𝑖𝐾𝑖) ≤ 𝑓(𝑓(𝑘)) (4.2.2)

where the first part is Jensen’s inequality and the second follows from (4.2.1) and

the monotonicity property. Similarly, we get that unless the maximum expected

number of participants in round 5 is less than a constant, the maximum number of

participants in round 7 is at most 𝑓(𝑓(𝑓(𝑘))), and so on. Since 𝑓(𝑓(𝑘)) ≥ log 𝑘 for all

𝑘 larger than some constant, if we denote by 𝑆0 the number of participants in round

1 + 2 log* 𝑘, maximum E[𝑆0] that the adversary can achieve must also be constant.

These 𝑆0 participants execute the same algorithm, with 𝑆1 of them participating in

the next round, etc.

Let 𝑅 be the number of remaining rounds. Expectation of 𝑅 can be written as

E[𝑅] =
∞∑︁
𝑖=1

Pr[𝑅 ≥ 𝑖] =
∞∑︁
𝑖=1

Pr[𝑆𝑖 ≥ 1] ≤
∞∑︁
𝑖=1

E[𝑆𝑖] (4.2.3)

where the equality is by the definition of rounds and then we apply Markov’s inequality

to get to expectations. Finally, by Claim 4.2.11 we get that E[𝑅] = 𝑂(E[𝑆0]) =

𝑂(1) and thus the maximum total number of rounds any processor participates in is

𝑂(log* 𝑘), and processors perform only fixed, constantly many communicate calls per

round. Time complexity follows from Claim 4.1.2.

To bound the maximum expected number of messages, let 𝑄𝑟 be the number

of participants in round 𝑟, counting from the very first round. Since each proces-

176

sor sends 𝑂(𝑛) messages per round, the maximum expected number of messages is∑︀∞
𝑟=1 E[𝑂(𝑛𝑄𝑟)] = 𝑛 · E[𝑂(𝑄1)] = 𝑂(𝑛𝑘) using Claim 4.2.11.

If there are at most ⌈𝑛/2⌉ − 1 processor faults, all communicate calls return, and

processors must enter larger rounds. However, the probability that all processors

terminate before reaching round 𝑟 is 1− Pr[𝑄𝑟 ≥ 1] ≥ 1− E[𝑄𝑟] which tends to 1 as

𝑟 increases by Claim 4.2.11.

177

178

Chapter 5

Conclusions

We make progress on understanding the complexity of fundamental tasks in standard

distributed models. Our work leads to numerous new interesting open problems and

directions for future research.

Population Protocols: Our lower bounds can be seen as bad news for algorithm

designers, since it show that stabilization is slow even if the protocol implements

a super-constant number of states per node. On the positive side, the achievable

stabilization time improves quickly as the size of the state space nears the lower bound

thresholds. However, this still motivates the unresolved problem of establishing the

optimal state complexity of algorithms that converge fast (in polylogarithmic parallel

time). Our lower bounds on majority and leader election apply to algorithms that

stabilize fast, which is a stronger requirement than convergence. For majority our

results highlight a separation. While fast stabilization requires Ω(log 𝑛) states, it is

possible to design an algorithm that would converge fast using 𝑂(log log 𝑛) states.

While some of the same technical tools may well turn out to be useful when dealing

with the convergence requirement as opposed to stabilization, solving this problem is

likely to require developing novel and interesting techniques.

Extending the results about leader election and majority to other tasks is another

important direction. [BDS17] takes a step in this direction, exploring the complexity

of computing different types of predicates.

179

Finally, a technical challenge that we would love to see settled is getting rid of

the “output dominance” assumption in our majority lower bound. We conjecture that

the same Ω(log 𝑛) lower bound must hold unconditionally (showing otherwise would

also be a an impressive and surprising result). Proving this is likely to involve more

complex“surgeries” on transition sequences.

Complexity-Based Hierarchy: We defined a hierarchy based on the space com-

plexity of solving consensus. We used consensus because it is a well-studied, general

task that seems to capture a fundamental difficulty of multiprocessor synchronization.

Moreover, consensus is universal: any sequentially defined object can be implemented

in a wait-free way using only consensus objects and registers [Her91].

We did not address the issue of universality within our hierarchy. One history

object can be used to implement any sequentially defined object. Consequently, it

may make sense to consider defining a hierarchy on sets of instructions based on

their ability to implement a history object, a compare-and-swap object, or a repeated

consensus object shared by 𝑛 processes. However, the number of locations required

for solving 𝑛-consensus is the same for implementing these long-lived objects, for

many of the instruction sets that we considered. (It appears that this may not be

true for {read , increment}.)

It may be that a truly accurate complexity-based hierarchy would have to take

time complexity into consideration. It is immediately unclear which definition of

time to use. Exploring this may be an important future direction. One reasonable

candidate is the solo step complexity, i.e. maximum number of solo steps that any

process needs to ever take to return a value. However, getting tight bounds on this

complexity measure is challenging (see [ABBH16] for recent progress on the solo step

complexity of consensus), maybe more so than for space complexity.

It is standard to assume that memory locations have unbounded size, in order to

focus solely on the challenges of synchronization. For a hierarchy to be truly practical,

however, we might need to consider the size of the locations used by an algorithm.

There are several other interesting open problems. To the best of our knowledge,

180

all existing space lower bounds rely on a combination of covering and indistinguisha-

bility arguments. However, when the covering processes apply swap(𝑥), as opposed

to write(𝑥), they can observe differences between executions, so they can no longer be

reused to maintain indistinguishability. This means that getting a tighter space lower

bound for {swap(𝑥), read()} would most likely require a completely novel approach.

An algorithm that uses less than 𝑛 − 2 space would be even more surprising, as the

processes would necessarily have to adapt their access patterns to the memory loca-

tions based on the swapped values, in order to circumvent the argument from [Zhu16].

The authors are unaware of any such algorithm.

We conjecture that, for sets of instructions, ℐ, which contain only read(), write(𝑥),

and either increment() or fetch-and-increment(), 𝒮𝒫(ℐ, 𝑛) ∈ Θ(log 𝑛). Similarly, we

conjecture, for ℐ = {read(),write(0),write(1)}, 𝒮𝒫(ℐ, 𝑛) ∈ Θ(𝑛 log 𝑛). Proving this

is likely to require techniques that depend on the number of input values, such as in

the lower bound for 𝑚-valued adopt-commit objects in [AE14a].

We would like to understand the properties of sets of instructions at certain levels

in the hierarchy. For instance, what properties enable a collection of instructions to

solve 𝑛-consensus using a single location? Is there an interesting characterization of

the sets of instructions ℐ for which 𝒮𝒫(ℐ, 𝑛) is constant?

How do subsets of a set of instructions relate to one another in terms of their

locations in the hierarchy? Alternatively, what combinations of sets of instructions

decrease the amount of space needed to solve consensus? For example, using only

read(), write(𝑥), and either increment() or decrement(), more than one memory loca-

tion is needed to solve binary consensus. But with both increment() and decrement()

a single location suffices. Are there general properties governing these relations?

Our practical implementation also motivates finding a compact set of synchroniza-

tion instructions that, when supported, is equally powerful as the set of instructions

used today as an important question to establish in future research.

Simulation: As a corollary of our lower bound for 𝑘-obstruction-free 𝑘-set agree-

ment, we get a right lower bound of 𝑛 registers for consensus, which further emphasizes

181

that our simulation-based technique has strong potential to prove previously elusive

results. The simulation technique can be generalized to 𝑥-obstruction-free algorithms

for any 𝑥 ≤ 𝑘 [EGZ17]. The lower bound for 𝑥 = 1 of 𝑛/𝑘 registers also applies to

nondeterministic solo terminating algorithms and thus, to randomized wait-free algo-

rithms. We are also able to prove a space lower bound of ⌊𝑛/2⌋+1 for the 𝜖-agreement

task for sufficiently small 𝜖. 𝜖-agreement requires processes to return values at most

𝜖 apart from each other. Our goal is to get a general characterization of tasks for

which this approach can be applied systematically to get tight or close to tight space

lower bounds. Taking this even further, it is intriguing to explore whether similar

simulation technique can be used for other complexity measures, for instance solo

step complexity, or randomized step (time) complexity.

We believe that the simulation technique can be further improved. For instance,

in our constructions, simulators do not share simulated processes. One could envision

using BG simulation [BG93], which might allow getting stronger space lower bounds.

Finally, we introduce the informal concept of local and global proofs, and a formal

boundary condition. Exploring the complexity of tasks under this condition might

allow us to make progress and get insight on more problems than formerly possible.

Message Passing: Expected time complexity of leader election in asynchronous

message passing, and in fact, also in asynchronous shared memory against the adap-

tive adversary is one of the most notorius open problems in the field. If we replace

collects by atomic snapshots, our algorithm also works in shared memory and uses

no more than expected log⋆ 𝑘 snapshot (and write) steps for 𝑘 participants. Thus,

it shows that if we assume unit-cost snapshots in shared-memory for the purposes of

proving a lower bound (which is a natural technical step), then the best lower bound

we can aim for is log⋆ 𝑛.

182

Bibliography

[AA11] Dan Alistarh and James Aspnes. Sub-logarithmic test-and-set against

a weak adversary. In Proceedings of 25th International Symposium on

Distributed Computing, DISC ’11, pages 97–109, 2011.

[AACH+14] Dan Alistarh, James Aspnes, Keren Censor-Hillel, Seth Gilbert, and

Rachid Guerraoui. Tight bounds for asynchronous renaming. Journal

of the ACM (JACM), 61(3):18:1–18:51, May 2014.

[AAD+93] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt,

and Nir Shavit. Atomic snapshots of shared memory. Journal of the

ACM, 40(4):873–890, 1993.

[AAD+06] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J Fischer, and

René Peralta. Computation in networks of passively mobile finite-state

sensors. Distributed computing, 18(4):235–253, March 2006.

[AAE08a] Dana Angluin, James Aspnes, and David Eisenstat. Fast computa-

tion by population protocols with a leader. Distributed Computing,

21(3):183–199, September 2008.

[AAE08b] Dana Angluin, James Aspnes, and David Eisenstat. A simple popula-

tion protocol for fast robust approximate majority. Distributed Com-

puting, 21(2):87–102, July 2008.

[AAE+17] Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and

Ronald L Rivest. Time-space trade-offs in population protocols. In Pro-

183

ceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms,

SODA ’17, pages 2560–2579, 2017.

[AAER07] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The

computational power of population protocols. Distributed Computing,

20(4):279–304, November 2007.

[AAG+10] Dan Alistarh, Hagit Attiya, Seth Gilbert, Andrei Giurgiu, and Rachid

Guerraoui. Fast randomized test-and-set and renaming. In Proceedings

of 24th International Symposium on Distributed Computing, DISC ’10,

pages 94–108, 2010.

[AAG17] Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal ma-

jority in population protocols. arXiv preprint arXiv:1704.04947, 2017.

[ABBH16] Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. Lower bound

on the step complexity of anonymous binary consensus. In Proceedings

of the 30th International Symposium on Distributed Computing, DISC

’16, pages 257–268, 2016.

[ABGG12] Dan Alistarh, Michael A. Bender, Seth Gilbert, and Rachid Guerraoui.

How to allocate tasks asynchronously. In Proceedings of the 53rd IEEE

Symposium on Foundations of Computer Science, FOCS ’12, pages

331–340, 2012.

[ABKU99] Yossi Azar, Andrei Z Broder, Anna R Karlin, and Eli Upfal. Balanced

allocations. SIAM Journal on Computing, 29(1):180–200, 1999.

[ABND+90] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rüdiger

Reischuk. Renaming in an asynchronous environment. Journal of The

ACM (JACM), 37(3):524–548, July 1990.

[ABND95] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory

robustly in message-passing systems. Journal of the ACM (JACM),

42(1):124–142, 1995.

184

[Abr88] Karl Abrahamson. On achieving consensus using a shared memory. In

Proceedings of the 7th ACM Symposium on Principles of Distributed

Computing, PODC ’88, pages 291–302, 1988.

[AC08] Hagit Attiya and Keren Censor. Tight bounds for asynchronous ran-

domized consensus. Journal of the ACM (JACM), 55(5):20:1–20:26,

October 2008.

[AC11] Hagit Attiya and Armando Castañeda. A non-topological proof for the

impossibility of k-set agreement. In Proceedings of the 13th Symposium

on Self-Stabilizing Systems, SSS ’11, pages 108–119, 2011.

[AE14a] James Aspnes and Faith Ellen. Tight bounds for adopt-commit objects.

Theory of Computing Systems, 55(3):451–474, 2014.

[AE14b] Hagit Attiya and Faith Ellen. Impossibility results for distributed com-

puting. Synthesis Lectures on Distributed Computing Theory, 5(1):1–

162, 2014.

[AG15] Dan Alistarh and Rati Gelashvili. Polylogarithmic-time leader election

in population protocols. In Proceedings of the 42nd International Collo-

quium on Automata, Languages, and Programming, ICALP ’15, pages

479–491, 2015.

[AGM02] Hagit Attiya, Alla Gorbach, and Shlomo Moran. Computing in totally

anonymous asynchronous shared memory systems. Information and

Computation, 173(2):162–183, 2002.

[AGTV92] Yehuda Afek, Eli Gafni, John Tromp, and Paul M. B. Vitányi. Wait-free

test-and-set (extended abstract). In Proceedings of the 6th International

Workshop on Distributed Algorithms, WDAG ’92, pages 85–94, 1992.

[AGV15a] Dan Alistarh, Rati Gelashvili, and Adrian Vladu. How to elect a leader

faster than a tournament. In Proceedings of the 34th ACM Symposium

185

on Principles of Distributed Computing, PODC ’15, pages 365–374,

2015.

[AGV15b] Dan Alistarh, Rati Gelashvili, and Milan Vojnovic. Fast and exact ma-

jority in population protocols. In Proceedings of the 34th ACM Sympo-

sium on Principles of Distributed Computing, PODC ’15, pages 47–56,

2015.

[AH90] James Aspnes and Maurice Herlihy. Fast randomized consensus using

shared memory. Journal of Algorithms, 11(3):441–461, September 1990.

[AP12] Hagit Attiya and Ami Paz. Counting-based impossibility proofs for

renaming and set agreement. In Proceedings of the 26th International

Symposium on Distributed Computing, DISC ’12, pages 356–370, 2012.

[AR16] Alexandr Andoni and Ilya Razenshteyn. Tight lower bounds for data-

dependent locality-sensitive hashing. In Proceedings of the 32nd In-

ternational Symposium on Computational Geometry, SoCG ’16, pages

9:1–9:11, 2016.

[AW04] Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals,

simulations, and advanced topics, volume 19. John Wiley & Sons, 2004.

[BB04] James M Bower and Hamid Bolouri. Computational modeling of genetic

and biochemical networks. MIT press, 2004.

[BCER17] Andreas Bilke, Colin Cooper, Robert Elsaesser, and Tomasz Radzik.

Population protocols for leader election and exact majority with

𝑂(log2 𝑛) states and 𝑂(log2 𝑛) convergence time. arXiv preprint

arXiv:1705.01146, 2017.

[BCSV06] Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöck-

ing. Balanced allocations: The heavily loaded case. SIAM Journal on

Computing, 35(6):1350–1385, 2006.

186

[BDS17] Amanda Belleville, David Doty, and David Soloveichik. Hardness of

computing and approximating predicates and functions with leaderless

population protocols. In Proceedings of the 44nd International Collo-

quium on Automata, Languages, and Programming, ICALP ’17, 2017.

[BFK+16] Petra Berenbrink, Tom Friedetzky, Peter Kling, Frederik Mallmann-

Trenn, and Chris Wastell. Plurality consensus via shuffling: Lessons

learned from load balancing. arXiv preprint arXiv:1602.01342, 2016.

[BG93] Elizabeth Borowsky and Eli Gafni. Generalized flp impossibility result

for t-resilient asynchronous computations. In Proceedings of the 25th

ACM Symposium on Theory of Computing, STOC ’93, pages 91–100,

1993.

[BG97] Elizabeth Borowsky and Eli Gafni. A simple algorithmically reasoned

characterization of wait-free computation. In Proceedings of the 16th

ACM Symposium on Principles of Distributed Computing, PODC ’97,

pages 189–198, 1997.

[BKRS96] Jonathan F. Buss, Paris C. Kanellakis, Prabhakar L. Ragde, and

Alex A. Shvartsman. Parallel algorithms with processor failures and

delays. Journal of Algorithms, 20:45–86, January 1996.

[BL93] James E Burns and Nancy A Lynch. Bounds on shared memory for

mutual exclusion. Information and Computation, 107(2):171–184, 1993.

[BMW+13] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan

Prabhakaran, Michael Wei, John D Davis, Sriram Rao, Tao Zou, and

Aviad Zuck. Tango: Distributed data structures over a shared log. In

Proceedings of the 24th ACM Symposium on Operating Systems Prin-

ciples, SOSP ’13, pages 325–340, 2013.

[BO83] Michael Ben-Or. Another advantage of free choice (extended abstract):

Completely asynchronous agreement protocols. In Proceedings of the

187

2nd ACM Symposium on Principles of Distributed Computing, PODC

’83, pages 27–30, 1983.

[Bow11] Jack Bowman. Obstruction-free snapshot, obstruction-free consensus,

and fetch-and-add modulo k. Technical Report TR2011-681, Dart-

mouth College, Computer Science, Hanover, NH, 2011.

[BRS15] Zohir Bouzid, Michel Raynal, and Pierre Sutra. Brief announcement:

Anonymous obstruction-free (n, k)-set agreement with n- k+ 1 atomic

read/write registers. In Proceedings of the 29th International Sympo-

sium on Distributed Computing, DISC ’15, page 669, 2015.

[CCDS15] Ho-Lin Chen, Rachel Cummings, David Doty, and David Soloveichik.

Speed faults in computation by chemical reaction networks. Distributed

Computing, 2015. To appear.

[CCN12] Luca Cardelli and Attila Csikász-Nagy. The cell cycle switch com-

putes approximate majority. Nature Scientific Reports, 2:656:1–656:9,

September 2012.

[CDS+13] Yuan-Jyue Chen, Neil Dalchau, Niranjan Srnivas, Andrew Phillips,

Luca Cardelli, David Soloveichik, and Georg Seelig. Programmable

chemical controllers made from dna. Nature Nanotechnology,

8(10):755–762, September 2013.

[CDS14] Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic func-

tion computation with chemical reaction networks. Natural computing,

13(4):517–534, 2014.

[Cha93] Soma Chaudhuri. More choices allow more faults: Set consensus prob-

lems in totally asynchronous systems. Information and Computation,

105(1):132–158, 1993.

[CKL16] Luca Cardelli, Marta Kwiatkowska, and Luca Laurenti. Programming

discrete distributions with chemical reaction networks. In Proceedings

188

of the 22nd International Conference on DNA Computing and Molec-

ular Programming, DNA22, pages 35–51. Springer, 2016.

[CMN+11] Ioannis Chatzigiannakis, Othon Michail, Stavros Nikolaou, Andreas

Pavlogiannis, and Paul G Spirakis. Passively mobile communicating

machines that use restricted space. In Proceedings of the 7th ACM

SIGACT/SIGMOBILE International Workshop on Foundations of Mo-

bile Computing, FOMC ’11, pages 6–15, 2011.

[Dav04] Matei David. Wait-free linearizable queue implementations, 2004.

[DGFGR13] Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Sergio Ra-

jsbaum. Black art: Obstruction-free k-set agreement with |mwmr reg-

isters| < |processes|. In Proceedings of the 1st International Conference

on Networked Systems, NETYS ’13, pages 28–41, 2013.

[DGFKR15] Carole Delporte-Gallet, Hugues Fauconnier, Petr Kuznetsov, and Eric

Ruppert. On the space complexity of set agreement. In Proceedings

of the 34th ACM Symposium on Principles of Distributed Computing,

PODC ’15, pages 271–280, 2015.

[Dij65] E. W. Dijkstra. Solution of a problem in concurrent programming

control. Communications of the ACM, 8(9):569, September 1965.

[DMST07] Ian B. Dodd, A. M. Micheelsen, Kim Sneppen, and Geneviéve Thon.

Theoretical analysis of epigenetic cell memory by nucleosome modifi-

cation. Cell, 129(4):813–822, 2007.

[Dot14] David Doty. Timing in chemical reaction networks. In Proceedings of

the 25th ACM-SIAM Symposium on Discrete Algorithms, SODA ’14,

pages 772–784, 2014.

[DS97] Danny Dolev and Nir Shavit. Bounded concurrent time-stamping.

SIAM Journal on Computing, 26(2):418–455, 1997.

189

[DS15] David Doty and David Soloveichik. Stable leader election in population

protocols requires linear time. In Proceedings of the 29th International

Symposium on Distributed Computing, DISC ’15, pages 602–616, 2015.

[DV12] Moez Draief and Milan Vojnovic. Convergence speed of binary interval

consensus. SIAM Journal on Control and Optimization, 50(3):1087–

1109, May 2012.

[EFR08] Faith Ellen, Panagiota Fatourou, and Eric Ruppert. The space com-

plexity of unbounded timestamps. Distributed Computing, 21(2):103–

115, 2008.

[EGSZ16] Faith Ellen, Rati Gelashvili, Nir Shavit, and Leqi Zhu. A complexity-

based hierarchy for multiprocessor synchronization:[extended abstract].

In Proceedings of the 35th ACM Symposium on Principles of Distributed

Computing, PODC ’16, pages 289–298, 2016.

[EGZ17] Faith Ellen, Rati Gelashvili, and Leqi Zhu. Enter the simulation: Space

lower bounds for agreement. http://www.cs.toronto.edu/~lezhu/

enter-the-simulation.pdf, 2017. Manuscript.

[FHS98] Faith Ellen Fich, Maurice Herlihy, and Nir Shavit. On the space com-

plexity of randomized synchronization. Journal of the ACM (JACM),

45(5):843–862, 1998.

[Fid91] Colin Fidge. Logical time in distributed computing systems. Computer,

24(8):28–33, 1991.

[FLMS05] Faith Ellen Fich, Victor Luchangco, Mark Moir, and Nir Shavit.

Obstruction-free algorithms can be practically wait-free. In Proceed-

ings of the 19th International Conference on Distributed Computing,

DISC ’05, pages 78–92, 2005.

190

http://www.cs.toronto.edu/~lezhu/enter-the-simulation.pdf
http://www.cs.toronto.edu/~lezhu/enter-the-simulation.pdf

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impos-

sibility of distributed consensus with one faulty process. Journal of the

ACM (JACM), 32(2):374–382, April 1985.

[Gel14] Rati Gelashvili. Leader election and renaming with optimal message

complexity. Master’s thesis, Massachusetts Institute of Technology,

2014.

[Gel15] Rati Gelashvili. On the optimal space complexity of consensus for

anonymous processes. In Proceedings of the 29th International Sympo-

sium on Distributed Computing, DISC ’15, pages 452–466, 2015.

[GHHW13] George Giakkoupis, Maryam Helmi, Lisa Higham, and Philipp Woelfel.

An 𝒪(
√
𝑛) space bound for obstruction-free leader election. In Proceed-

ings of the 27th International Symposium on Distributed Computing,

DISC ’13, pages 46–60, 2013.

[GHHW15] George Giakkoupis, Maryam Helmi, Lisa Higham, and Philipp Woelfel.

Test-and-set in optimal space. In Proceedings of the 47th ACM Sym-

posium on Theory of Computing, STOC ’15, pages 615–623, 2015.

[GHKR16] Eli Gafni, Yuan He, Petr Kuznetsov, and Thibault Rieutord. Read-

write memory and k-set consensus as an affine task. In Proceedings of

the 20th International Conference on Principles of Distributed Systems,

OPODIS ’16, pages 6:1–6:17, 2016.

[GKM14] Eli Gafni, Petr Kuznetsov, and Ciprian Manolescu. A generalized asyn-

chronous computability theorem. In Proceedings of the 33th ACM sym-

posium on Principles of Distributed Computing, PODC ’14, pages 222–

231, 2014.

[GKSW17] Rati Gelashvili, Idit Keidar, Alexander Spiegelman, and Roger Wat-

tenhofer. Towards reduced instruction sets for synchronization. arXiv

preprint arXiv:1705.02808, 2017.

191

[GP16] Mohsen Ghaffari and Merav Parter. A polylogarithmic gossip algorithm

for plurality consensus. In Proceedings of the 35th ACM Symposium on

Principles of Distributed Computing, PODC ’16, pages 117–126, 2016.

[GR05] Rachid Guerraoui and Eric Ruppert. What can be implemented anony-

mously? In Proceedings of the 19th International Symposium on Dis-

tributed Computing, DISC ’05, pages 244–259. 2005.

[GS17] Leszek Gąsieniec and Grzegorz Stachowiak. Fast space optimal leader

election in population protocols. arXiv preprint arXiv:1704.07649,

2017.

[GW12a] George Giakkoupis and Philipp Woelfel. On the time and space com-

plexity of randomized test-and-set. In Proceedings of the 31st ACM

Symposium on Principles of Distributed Computing, PODC ’12, pages

19–28, 2012.

[GW12b] George Giakkoupis and Philipp Woelfel. A tight rmr lower bound for

randomized mutual exclusion. In Proceedings of the 44th ACM Sympo-

sium on Theory of Computing, STOC ’12, pages 983–1002, 2012.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), 13(1):124–149, January

1991.

[HHPW14] Maryam Helmi, Lisa Higham, Eduardo Pacheco, and Philipp Woelfel.

The space complexity of long-lived and one-shot timestamp implemen-

tations. Journal of the ACM (JACM), 61(1):7, 2014.

[HKR13] Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum. Distributed

computing through combinatorial topology. Newnes, 2013.

[HLM03] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free

synchronization: Double-ended queues as an example. In Proceedings

192

of the 23rd IEEE International Conference on Distributed Computing

Systems, ICDCS ’03, pages 522–529, 2003.

[HR00] Maurice Herlihy and Eric Ruppert. On the existence of booster types.

In Proceedings of the 41st IEEE Symposium on Foundations of Com-

puter Science, FOCS ’00, pages 653–663, 2000.

[HS99] Maurice Herlihy and Nir Shavit. The topological structure of asyn-

chronous computability. Journal of The ACM (JACM), 46(6):858–923,

November 1999.

[HS12] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Program-

ming. Morgan Kaufmann, 2012.

[HW90] Maurice Herlihy and Jeannette Wing. Linearizability: A correctness

condition for concurrent objects. ACM Transactions on Programming

Languages and Systems (TOPLAS), 12(3):463–492, 1990.

[HW09] Danny Hendler and Philipp Woelfel. Randomized mutual exclusion in

o(log n/log log n) rmrs. In Proceedings of the 28th ACM Symposium

on Principles of Distributed Computing, PODC ’09, pages 26–35, 2009.

[HW10] Danny Hendler and Philipp Woelfel. Adaptive randomized mutual ex-

clusion in sub-logarithmic expected time. In Proceedings of the 29th

ACM Symposium on Principles of Distributed Computing, PODC ’10,

pages 141–150, 2010.

[Int12] Intel. Transactional synchronization in Haswell.

http://software.intel.com/en-us/blogs/2012/02/07/

transactional-synchronization-in-haswell, 2012. Manual.

[Jay93] Prasad Jayanti. On the robustness of herlihy’s hierarchy. In Proceedings

of the 12th ACM Symposium on Principles of Distributed Computing,

PODC ’93, pages 145–157, 1993.

193

http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell

[KLMadH92] Richard M Karp, Michael Luby, and Friedhelm Meyer auf der Heide.

Efficient pram simulation on a distributed memory machine. In Pro-

ceedings of the 24th ACM Symposium on Theory of Computing, STOC

’92, pages 318–326, 1992.

[KMPS95] Anil Kamath, Rajeev Motwani, Krishna Palem, and Paul Spirakis. Tail

bounds for occupancy and the satisfiability threshold conjecture. Ran-

dom Structures & Algorithms, 7(1):59–80, August 1995.

[KS92] Paris C. Kanellakis and Alex A. Shvartsman. Efficient parallel algo-

rithms can be made robust. Distributed Computing, 5(4):201–217, April

1992.

[Lam74] Leslie Lamport. A new solution of dijkstra’s concurrent programming

problem. Communications of the ACM, 17(8):453–455, 1974.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a dis-

tributed system. Communications of the ACM, 21(7):558–565, July

1978.

[LH00] Wai-Kau Lo and Vassos Hadzilacos. All of us are smarter than any

of us: Nondeterministic wait-free hierarchies are not robust. SIAM

Journal on Computing, 30(3):689–728, 2000.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine

generals problem. ACM Transactions on Programming Languages and

Systems (TOPLAS), 4(3):382–401, July 1982.

[Lyn96] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[MA13] Adam Morrison and Yehuda Afek. Fast concurrent queues for x86

processors. In Proceedings of the 18th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, volume 48 of PPoPP

’13, pages 103–112, 2013.

194

[Mat89] Friedemann Mattern. Virtual time and global states of distributed

systems. Parallel and Distributed Algorithms, 1(23):215–226, 1989.

[McD89] Colin McDiarmid. On the method of bounded differences. Surveys in

Combinatorics, 141(1):148–188, 1989.

[MNRS14] George B. Mertzios, Sotiris E. Nikoletseas, Christoforos Raptopoulos,

and Paul G. Spirakis. Determining majority in networks with local

interactions and very small local memory. In Proceedings of the 41st

International Colloquium on Automata, Languages, and Programming,

ICALP ’14, pages 871–882, 2014.

[PAC+97] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm,

Kimberly Keeton, Christoforos Kozyrakis, Randi Thomas, and Kather-

ine Yelick. A case for intelligent ram. IEEE Micro, 17(2):34–44, 1997.

[PR01] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Springer,

2001.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the

presence of faults. Journal of the ACM (JACM), 27(2):228–234, April

1980.

[PTW15] Yuval Peres, Kunal Talwar, and Udi Wieder. Graphical balanced alloca-

tions and the (1 + 𝛽)-choice process. Random Structures & Algorithms,

47(4):760–775, July 2015.

[PVV09] Etienne Perron, Dinkar Vasudevan, and Milan Vojnovic. Using three

states for binary consensus on complete graphs. In Proceedings of the

28th IEEE Conference on Computer Communications, INFOCOM ’09,

pages 2527–2535, 2009.

[Ray12] Michel Raynal. Concurrent programming: algorithms, principles, and

foundations. Springer Science & Business Media, 2012.

195

[Rup00] Eric Ruppert. Determining consensus numbers. SIAM Journal on

Computing, 30(4):1156–1168, 2000.

[Sch97] Eric Schenk. The consensus hierarchy is not robust. In Proceedings

of the 16th ACM Symposium on Principles of Distributed Computing,

PODC ’97, page 279, 1997.

[SHG16] Vikram Saraph, Maurice Herlihy, and Eli Gafni. Asynchronous com-

putability theorems for t-resilient systems. In Proceedings of the 30th

International Symposium on Distributed Computing, DISC ’16, pages

428–441, 2016.

[Sol49] Lefschetz Solomon. Introduction to Topology. Princeton University

Press, 1949.

[SP89] Eugene Styer and Gary L Peterson. Tight bounds for shared memory

symmetric mutual exclusion problems. In Proceedings of the 8th ACM

Symposium on Principles of Distributed Computing, PODC ’89, pages

177–191, 1989.

[SSW91] Michael Saks, Nir Shavit, and Heather Woll. Optimal time randomized

consensus – making resilient algorithms fast in practice. In Proceedings

of the 2nd ACM-SIAM Symposium on Discrete Algorithms, SODA ’91,

pages 351–362, 1991.

[SZ00] Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is im-

possible: The topology of public knowledge. SIAM Journal on Com-

puting, 29(5):1449–1483, 2000.

[Tau06] Gadi Taubenfeld. Synchronization algorithms and concurrent program-

ming. Pearson Education, 2006.

[Tau17] Gadi Taubenfeld. Contention-sensitive data structures and algorithms.

Theoretical Computer Science, 2017.

196

[Tho79] Robert H Thomas. A majority consensus approach to concurrency

control for multiple copy databases. ACM Transactions on Database

Systems (TODS), 4(2):180–209, June 1979.

[TWS15] Chris Thachuk, Erik Winfree, and David Soloveichik. Leakless dna

strand displacement systems. In Proceedings of the 21st International

Conference on DNA Computing and Molecular Programming, DNA21,

pages 133–153. Springer, 2015.

[YNG98] Jiong Yang, Gil Neiger, and Eli Gafni. Structured derivations of con-

sensus algorithms for failure detectors. In Proceedings of the 17th ACM

Symposium on Principles of Distributed Computing, PODC ’98, pages

297–306, 1998.

[Zhu15] Leqi Zhu. Brief announcement: Tight space bounds for memoryless

anonymous consensus. In Proceedings of the 29th International Sympo-

sium on Distributed Computing, DISC ’15, page 665, 2015.

[Zhu16] Leqi Zhu. A tight space bound for consensus. In Proceedings of the 48th

ACM Symposium on Theory of Computing, STOC ’16, pages 345–350,

2016.

197

	1 Introduction
	1.1 On Population Protocols
	1.1.1 Leader Election and Majority
	1.1.2 Summary
	1.1.3 Chapter Outline

	1.2 On Shared Memory
	1.2.1 Complexity-Based Hierarchy
	1.2.2 Towards Reduced Instruction Sets for Synchronization
	1.2.3 Anonymous Space Lower Bound
	1.2.4 k-Set Agreement
	1.2.5 Chapter Outline

	1.3 On Message Passing

	2 Population Protocols
	2.1 Model
	2.2 Leader-Minion Algorithm
	2.2.1 Analysis

	2.3 Leaderless Phase Clock
	2.3.1 Analysis

	2.4 Phased Majority Algorithm
	2.4.1 Analysis

	2.5 Synthetic Coin Flips
	2.5.1 Analysis
	2.5.2 Approximate Counting

	2.6 Phased Leader Election
	2.6.1 Analysis

	2.7 Lower Bounds
	2.7.1 Technical Tools
	2.7.2 Output-Dominant Majority
	2.7.3 General Lower Bound

	3 Shared Memory
	3.1 Anonymous Space Lower Bound
	3.1.1 Definitions and Notation
	3.1.2 A Square-Root Lower Bound
	3.1.3 Linear Lower Bound

	3.2 The Space Hierarchy
	3.2.1 Model
	3.2.2 Arithmetic Instructions
	3.2.3 Increment
	3.2.4 Buffers
	3.2.5 Multiple Assignment

	3.3 Universality using ``Weak'' Instructions
	3.3.1 Algorithm

	3.4 Enter the Simulation: k-Set Agreement
	3.4.1 Model
	3.4.2 Local Argument
	3.4.3 Global Argument

	4 Message Passing
	4.1 Definitions and Notation
	4.2 Leader Election Algorithm
	4.2.1 The PoisonPill Technique
	4.2.2 Heterogeneous PoisonPill
	4.2.3 Final construction

	5 Conclusions

