
Lower Bounds on the Classical Simulation of
Quantum Circuits for Quantum Supremacy

by

Alexander M. Dalzell

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Bachelor of Science in Physics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c© Alexander M. Dalzell, MMXVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Author .
Department of Physics

May 12, 2017

Certified by. .
Aram W. Harrow

Assistant Professor
Thesis Supervisor

Accepted by .
Professor Nergis Malvalvala

Senior Thesis Coordinator, Department of Physics

2

Lower Bounds on the Classical Simulation of Quantum

Circuits for Quantum Supremacy

by

Alexander M. Dalzell

Submitted to the Department of Physics
on May 12, 2017, in partial fulfillment of the

requirements for the degree of
Bachelor of Science in Physics

Abstract

Despite continued experimental progress, no task has yet been performed on quantum
technology that could not also have been performed quickly on today’s classical com-
puters. One proposed path toward achieving this milestone, which is often referred
to as quantum supremacy, is to perform specific types of quantum circuits for which
it is guaranteed, under plausible complexity theoretic conjectures, that any classi-
cal approximate weak simulation algorithm for these circuits must take more than
polynomial time. Instantaneous quantum (IQP) circuits and Quantum Approximate
Optimization Algorithm (QAOA) circuits are examples of circuits with this guarantee
under the assumption that the polynomial hierarchy (PH) does not collapse. How-
ever, these arguments do not communicate how large these quantum circuits must be
built before simulating them is hard in practice. We show how a fine-grained version
of this assumption involving the PH leads to a fine-grained lower bound on the simu-
lation time for IQP and QAOA circuits. Using the lower bound, we conclude that IQP
circuits must contain roughly 1700 qubits, and QAOA circuits must contain roughly
7100 qubits before their simulation would be guaranteed to be intractable on today’s
fastest supercomputers. Additionally, we apply the same logic to find an asymptotic
lower bound on the classical weak simulation of Clifford + T circuits with n qubits,
m Clifford gates, and t T gates, concluding that any simulation with runtime of the
form poly(n,m)2γt must have γ > 1/135 ≈ 0.0074. The best existing algorithm of
this form has γ ≈ 0.228.

Thesis Supervisor: Aram W. Harrow
Title: Assistant Professor

3

4

Acknowledgments

This work has been the product of significant contributions from many different peo-

ple. First and foremost, I gratefully acknowledge the indispensable help of my thesis

supervisor Aram Harrow for proposing this project one year ago, for patiently help-

ing me learn the complexity theory and quantum supremacy background I needed to

make progress, and for assisting me to work through the details of the result when I

got stuck.

Additionally, Rolando La Placa has been a key contributor to this project at every

step, assisting with brainstorming, background research, and the calculations them-

selves. His insight and advice when I presented my ideas, confusions, and frustrations

allowed this project to progress much more quickly than otherwise possible. In par-

ticular, I thank him for the suggestion to apply our method to find a lower bound

not only for IQP and QAOA circuits but also for Clifford + T circuits, leading to the

results in Chapter 5. This portion was completed with the assistance of Ryuji Takagi

in locating the optimal T gate implementation of CCZ and CCCZ gates. Another

important technical contribution belongs to Ashley Montanaro; our lower bounds are

much simpler (and tighter) due to his important suggestion to replace the problem

MAJ-SAT with MAJ-ZEROS in our analysis.

Finally, I am grateful to Dax Koh for his help this past semester fleshing out

the final ideas that went into this thesis, including the details of the QAOA and

Clifford + T circuit constructions for the MAJ-ZEROS problem. Additionally, Dax’s

feedback on early drafts of this thesis has been invaluable for improving its clarity

and correctness.

5

6

Contents

1 Introduction 15

1.1 Motivation . 15

1.2 Previous work . 17

1.2.1 Quantum supremacy by quantum circuit simulation 17

1.2.2 Specific quantum supremacy proposals 19

1.2.3 Classical simulation algorithms 21

1.3 Summary of results . 21

2 Quantum circuits 25

2.1 General quantum circuits . 26

2.2 Universal gate sets and compilation 29

2.3 Restricted models of quantum circuits 30

2.3.1 Instantaneous quantum circuits (IQP) 30

2.3.2 Quantum approximate optimization algorithm (QAOA) circuits 32

2.4 Classical simulation of quantum circuits 33

2.4.1 Feynman’s intuition . 33

2.4.2 Strong vs. weak simulation . 34

2.4.3 Approximate simulation . 34

2.4.4 Clifford circuits and the Gottesman-Knill theorem 35

2.4.5 General simulation algorithms 36

3 Complexity theory 37

3.1 The basics . 37

7

3.1.1 Computational problems . 38

3.1.2 The complexity classes P and NP 38

3.2 Counting problems . 39

3.3 Probabilistic computation . 40

3.4 The polynomial hierarchy . 42

3.5 Quantum computation and postselection 43

3.6 Hardness of simulation for quantum circuits 45

3.6.1 Hardness for general quantum circuits 45

3.6.2 Hardness for restricted classes of quantum circuits 47

4 Lower bounds for simulation of IQP and QAOA circuits 51

4.1 Outline of lower-bounds argument . 51

4.2 The problem MAJ-ZEROS . 52

4.3 Derivation of lower bounds . 54

4.3.1 PostIQP circuit for solving MAJ-ZEROS 54

4.3.2 PostQAOA circuit for solving MAJ-ZEROS 59

4.3.3 Moving from PostBPTIME to Σ3TIME 62

4.3.4 Conclusion and result . 65

5 Lower bounds for simulation of Clifford + T circuits 69

5.1 Outline of lower-bounds argument . 69

5.2 Derivation of lower bounds . 70

5.2.1 Clifford + T circuit for solving MAJ-ZEROS 70

5.2.2 Conclusion and result . 72

6 Conclusions and future directions 75

6.1 Bottlenecks and places for improvement 75

6.2 Impact of result . 77

6.3 Future work . 77

8

A Proofs 79

A.1 Proof of Theorem 4.3.6: Σ3TIME algorithm for problems in PostBP-

TIME . 79

A.2 Proof of Theorem 4.3.7: Oracle separation between PP and Σ3TIME 84

9

10

List of Figures

2-1 Example of a general quantum circuit with three gates and five qubits,

where the last two qubits are measured. The gates U1, U2, and U3 are

unitary operations acting on a subset of the five qubits. 27

2-2 Example of an instantaneous quantum circuit. Each qubit must begin

and end with a Hadamard gate, and all internal gates must be diag-

onal in the Z basis. The vertical lines indicate controlled operations.

Thus, in our example, the second qubit first undergoes a controlled-Z

operation (CZ) with the first qubit, applying a minus sign only if both

bits are in the |1〉 state, then acts as the control on a controlled-T

operation with the fourth qubit: the T gate is applied only when the

second qubit is in the |1〉 state. 31

2-3 Example of a QAOA circuit. Each qubit begins with a Hadamard

gate, and then 2p gates are performed alternating between applying

Hamiltonian C and applying Hamiltonian B. 32

3-1 Gadget to simulate the effect of an internal H gate within the postse-

lected instantaneous circuit model. A new ancilla qubit is introduced

into the H |0〉 state, a CZ operation is applied between the two qubits,

then the first qubit is measured and postselected into the outcome |0〉

(denoted by the symbol 〈0| at the end of the line). The resulting cir-

cuit fits into the instantaneous model and the second qubit is left in

the state which results from applying H to the original state of the

first qubit. 48

11

4-1 IQP circuit Cf corresponding to the degree-3 polynomial f(z) = z1 +

z2 + z1z2 + z1z2z3. The unitary Uf implemented by the circuit has the

property that 〈0|Uf |0〉 = gap(f)/2n where in this case n = 3. 53

4-2 The circuit C ′f corresponding to the degree-3 polynomial f(z) = z1 +

z2 +z1z2 +z1z2z3, to be compared to the circuit Cf from Figure 4-1. By

controlling each diagonal operation from Cf with an ancilla qubit, and

postselecting on the first n = 3 qubits being |0〉 (denoted by symbol

〈0|), the state |ψ〉 given by Eq. (4.2) is produced. 56

4-3 The circuit that, given |ψ〉, creates the state |ψ′〉 = (α− βr) |0〉+ (α+

βr) |1〉, up to normalization, for arbitrary α and β. The angle θ is

2 arccos(α). The gate Zφ denotes the gate exp(−iφZ/2). The state |ψ〉

is prepared by the circuit C ′f as exemplified by Figure 4-2. To make

this into a PostIQP circuit, we must replace the internal H gates with

the gadget from Figure 3-1, as described in the proof of Theorem 3.6.1. 57

4-4 Circuit that produces the state α |0〉 − β |1〉 for β/α = ηi and i = 4.

The final i − 1 qubits are postselected into the |0〉 state. This circuit

is implementable within the QAOA framework. 60

4-5 Numerically calculated lower bound on the function s(b) when ε = 0

giving the time per gate necessary to simulate an IQP or QAOA circuit

over b qubits. 67

12

5-1 Decomposition of a CCZ gate into postselected Clifford + T gates,

from [25], where we have used postselection instead of a corrective

conditional gate. The circuit negates the input only if qubits a, b, and

c are all |1〉. It requires two ancilla qubits and uses four T gates. CCU

gates for any gate U can be constructed by replacing the CZ gate in

this circuit with a CU gate, where the third qubit is the control and

fifth qubit is the target. Therefore, we can implement a CCCZ gate

by replacing the CZ gate with this circuit, embedding it inside of itself

to create a circuit with eight T gates. In [24], a lower bound of four T

gates is shown for such a decomposition, so the circuit is optimal. . . 70

13

14

Chapter 1

Introduction

1.1 Motivation

The central motivation for quantum computation is the expectation that quantum

computers, when they are built, will provide an advantage over today’s classical

computers. However, nearly two decades after the first quantum algorithms were

implemented experimentally [11, 26], no clear experimental demonstration of such an

advantage has occurred; every computation performed thus far on quantum hardware

has been reproducible by classical computers in a reasonable amount of time.

Theoretically speaking, there are many reasons to believe that this advantage will

exist. Feynman [19] first argued that quantum computers would be advantageous

for simulating quantum systems since classical simulations would in general require

resources that grow exponentially with the size of the system — 2n complex numbers

are generally needed to fully describe an n-qubit quantum state. Later, Shor famously

gave a quantum algorithm to factor integers in polynomial time [33], a feat that no

known classical algorithm can match. Other algorithms likewise purport to eclipse

the abilities of classical computers, but in all these cases, the existence of the quantum

advantage has not been proven, but rather rests on conjectures that range in their

degree of credibility.1

1Provable quantum advantages exist when the resource being measured is something other than
the algorithm’s runtime, such as oracle queries (e.g., Grover’s search algorithm [22]) or circuit depth
(see, e.g., [8]).

15

Thus, demonstrating the practical advantage of quantum computers — achiev-

ing quantum supremacy [31] — involves both theoretical and experimental elements.

Quantum supremacy requires that a task be performed experimentally on a quantum

computer that is classically intractable using known methods, but also whose classi-

cal intractability is entailed more generally by widely-believed theoretical conjectures.

In many instances, suggested quantum supremacy tasks have no direct practical use,

but achieving quantum supremacy is still important both for practical and theoretical

reasons. Practically, it is an important milestone on the path to producing quantum

devices that do perform useful computations not possible on a classical computer.

Theoretically, it is important for proving that quantum mechanics endows physical

systems with fundamentally greater computational power than they are classically

thought to possess, contradicting the extended Church-Turing thesis, which claims

that our notion of classical computation fully captures what is possible on physical

hardware.

Recent experimental advances make achieving quantum supremacy a reasonable

goal for quantum computing in the next decade, but further theoretical advancement

is needed to understand which tasks should be chosen for implementation on near-

term quantum hardware as well as to determine definitively when quantum supremacy

has been achieved. Existing quantum supremacy arguments conclude that certain

tasks will be hard for classical computers in a coarse asymptotic sense, but leave open

the important practical question: how large must our quantum devices be before it

is actually hard to reproduce their results on our current best classical technology?

For some tasks, actually realizing the quantum advantage necessitates much larger

quantum devices than what is expected to be achievable in the near future. For exam-

ple, Shor’s algorithm for factoring is a possible avenue toward quantum supremacy.

It is a generally believed conjecture that no polynomial-time classical algorithm for

factoring exists, so there is theoretical basis for a quantum advantage. However,

practically speaking, classical computers are able to factor numbers with hundreds of

bits [28], meaning a quantum supremacy demonstration using Shor’s algorithm would

require at least as many qubits, and likely many times more due to the need for qubit-

16

consuming error-correcting codes and fault-tolerant computation [2]. In comparison,

current proposed quantum technology aims to operate on only tens of qubits [6], so

demonstrating quantum supremacy this way is not likely to be feasible in the near

future.

Other quantum supremacy arguments [2, 9, 18] assert that certain classes of quan-

tum circuits cannot be classically simulated in polynomial time, but make no state-

ment about how large the simulation time actually is. Thus, it is hard to assess if

these tasks are, like factoring integers, difficult for classical computers in theory but

not in practice, at least compared to the abilities of current quantum technology.

Our work begins to fill this void. Building on existing quantum supremacy argu-

ments, we impose a more specific conjecture and arrive at a more specific conclusion

about classical hardness: where previous arguments show that (under certain be-

lievable assumptions) “any classical simulation of certain quantum circuits must take

more than polynomial time,” we show that (under more refined but still believable

assumptions) “any classical simulation of certain quantum circuits must take more

than s(q) time” where s is an explicit exponential function in the number of qubits q.

Thus, we find lower bounds on the classical simulation time for quantum-supremacy-

related circuit simulation tasks, which allow us to determine how many qubits such

a circuit must contain before simulating it classically is guaranteed to be intractable.

This information is vital to determine when quantum supremacy has actually been

achieved, and in the meantime allows us to determine which quantum supremacy

proposals generate the most direct path to success.

1.2 Previous work

1.2.1 Quantum supremacy by quantum circuit simulation

Several quantum supremacy tasks have been proposed. As mentioned, known algo-

rithms with exponential quantum speedups, such as Shor’s algorithm [33], are one

obvious avenue toward quantum supremacy, but, in the case of Shor’s algorithm,

17

there are both practical and theoretical drawbacks. Practically, factoring integers

on a quantum computer likely requires the full power of universal quantum comput-

ing — the ability to perform arbitrary fault-tolerant quantum gates — making the

task more challenging experimentally. Moreover, theoretically, while it is a generally

accepted conjecture that factoring integers cannot be done efficiently on a classical

computer, the failure of this conjecture would not entail a revolutionary change in the

way computer scientists understand computation [2]. As we will see, the conjecture

underpinning many of the other quantum supremacy proposals has a significantly

stronger theoretical basis.

To circumvent these difficulties, other tasks have been proposed that are more

natural for quantum systems to perform and that do not require the full power of

universal fault-tolerant quantum computation. Building on the idea that quantum

computers should be difficult to simulate classically, it is more natural to choose a

task that is explicitly related to simulating quantum systems. When we perform a

quantum algorithm in the form of a quantum circuit, we obtain a random outcome

drawn from some probability distribution. Sampling from this probability distribution

is easy for a quantum computer, almost by definition, but if we believe simulating

quantum circuits classically is hard, then doing the same with a classical computer

should be difficult. As we will see, the difficulty of performing this task has a solid

theoretical basis. Thus, we might be able to use the task of sampling from the

probability distributions associated with quantum circuits to demonstrate quantum

supremacy.

In certain instances, we can restrict these quantum circuits and still have strong

guarantees about the hardness of classical simulation. The advantage here is that

these restricted classes of quantum circuits might be easier to implement experimen-

tally than general quantum circuits. Unlike factoring, sampling from these probability

distributions often has no direct utility; the reason to perform these tasks experimen-

tally lies purely in the fact that doing so would demonstrate quantum supremacy. In

hindsight, this sort of sampling task makes sense: if our goal is to showcase the power

of quantum computing, and not necessarily to do something useful, it will be easiest

18

to use tasks which are natural for quantum computers, like sampling from quantum

circuit distributions.

It is important to note that these results still hold for approximate sampling, when

the approximation is understood in the multiplicative sense. Additive approximate

sampling requires additional assumptions and is not considered in our work.

The conjectures used to underpin these results are expressed in the language of

complexity theory, the topic of Chapter 3. Complexity theorists have categorized

problems into different complexity classes and proved relationships between those

classes. For example, it is widely believed, but unproven, that the classes P and

NP are not equal. Conjecturing that P 6= NP allows other statements to be proven,

including that no classical algorithm can efficiently compute the probabilities in the

probability distribution associated with an arbitrary quantum circuit [18].

A stronger, but related conjecture states that the polynomial hierarchy (PH) does

not collapse. The PH is a class made up of an infinite number of levels, and to say that

the PH does not collapse means that each of the levels is not equal to the level above

it. The non-collapse of the polynomial hierarchy is also widely believed, and implies

that no classical algorithm can produce samples from the probability distribution

associated with an arbitrary quantum circuit [9]. The non-collapse of the PH in

this instance can be thought of intuitively as the statement that exactly counting

solutions to certain computational problems is hard even when given the power to

approximately count the number of solutions easily. It is important to emphasize that

this conjecture is purely classical and bears little relation at first glance to quantum

computation.

1.2.2 Specific quantum supremacy proposals

Recent work has used the basic reasoning discussed in the previous subsection to

present proposals for quantum supremacy involving restricted classes of quantum

circuits.

19

(1) Bremner, Josza, and Shepherd [9] considered instantaneous quantum (IQP) cir-

cuits, where all of the internal quantum gates commute, and showed how the

non-collapse of the PH implies that the probability distribution of such circuits

cannot be sampled from efficiently on a classical computer. This also holds when

the sampling is only required to be approximate in the multiplicative sense.

(2) Aaronson and Arkhipov [2] showed how similar statements hold for linear optical

systems, calling the associated computational task BosonSampling.

(3) Farhi and Harrow [18] proved the same result for multiplicative approximate

simulation of Quantum Approximate Optimization Algorithm (QAOA) circuits,

which have the advantage that they might have practical application in solving

optimization problems.

(4) The Quantum-AI group at Google has suggested (and plans to experimentally

implement) [6] a quantum supremacy experiment using random circuits on a 2D

lattice of roughly 50 qubits. The theoretical basis for classical hardness lies in

the conjecture QUATH [3], which is related but not the same as the argument

involving the polynomial hierarchy.

For IQP circuits [10] and BosonSampling [2], it can also be shown that approxi-

mate simulation is hard in the additive sense, if additional conjectures are imposed.

Additive approximations are generally advantageous because they might be more

easily implemented experimentally; however, our work does not consider the additive

case.

In Chapter 4, we consider IQP and QAOA circuits and show how a more specific

lower bound on the classical simulation time can be derived if a stronger fine-grained

assumption is used. It would likely be possible to extend our basic framework to the

other quantum supremacy proposals as well.

20

1.2.3 Classical simulation algorithms

The theoretical arguments behind quantum supremacy aim to prove what classical

algorithms cannot do. It is also interesting and important to understand what they

can do. What kinds of circuits can be simulated efficiently, and how inefficient are

the best general simulation algorithms?

It is productive to consider the Clifford + T framework for this discussion. Clifford

circuits are quantum circuits containing only Hadamard (H), phase (S), or CNOT

(CX) gates. The Gottesman-Knill theorem states that these circuits can be simulated

efficiently on a classical computer [20]. On the other hand, if we allow a circuit

to use Clifford gates as well as π/8-gates (T), then we can perform any quantum

computation we wish. Therefore, if simulating general quantum circuits is difficult,

the difficulty in a sense must originate from the T gates. Work has been done to find

fast algorithms to simulate Clifford + T gates. The fastest known algorithm is due

to Bravyi and Gosset [7], which simulates a circuit on n qubits with t T and T † gates

and m total gates in time poly(n,m)20.228t. Thus, the scaling is exponential, but the

exponentiality has been isolated to the total number of T gates.

1.3 Summary of results

Chapter 2 and Chapter 3 introduce the necessary background for quantum circuits

and complexity theory to understand our results. Chapter 4 and Chapter 5 contain

our original results.

The main result of Chapter 4 is expressed by Corollary 4.3.7.1. We assume Con-

jecture 4.3.1, which claims an explicit exponential separation between the third level

of the PH (but generalized to allow for greater than polynomial time) and the com-

plexity class PP. We make arguments that this conjecture is believable and motivate

it using an oracle separation. This is a fine-grained version of the conjecture that the

PH does not collapse.

We show how this allows us to prove that if a classical algorithm can approximately

weakly simulate IQP or QAOA circuits (up to multiplicative factor ε) with a gates

21

over b qubits in time a · s(b) for some simulation-time function s, then s must satisfy

c(g · nL · s(q)) > 2n/5

92
− n

8
(1.1)

where g, q, and L are given by

g = 4n+ 13; q = n+ 4; L = 50 log(3n)/(2− 7ε)2 (1.2)

in the case of IQP circuits and

g = 29n+ 48; q = 4n+ 6; L = 50 log(3n)/(2− 7ε)2 (1.3)

in the case of QAOA circuits and the function c is given by

c(x) = log(kx)(kx)
(

4(kx)2 + 6(kx) + 9
)

+ log(kx)2 (1.4)

where k = max(16, 4 log(8x)/3).

The reasoning that leads to this result can be explained intuitively as a connec-

tion between simulation of quantum circuits and a purely classical algorithm. If a

simulation algorithm were to exist that breaks the bound in Eq. (1.1), then we could

use this simulation as a subroutine to solve a purely classical computational problem

using fewer resources than we expect to be possible, breaking a believable conjecture.

The algebra in these expressions might obscure the key elements of this result.

Notice that c(x) scales approximately like x3 (ignoring the log(x) factors), and g, q,

and L are polynomial in n, so Eq. (1.1) gives an implicit exponential lower bound

on the function s(q). If we look solely at the exponential dependence of this lower

bound, we can see it roughly reads s(b) > 2b/15. For a specific value of b, we can

numerically solve for the lower bound on s(b) exactly, corresponding to the minimum

amount of time it must take to simulate each additional gate of the circuit with a

classical algorithm.

22

Let’s assume we have a classical computer that makes 1017 operations per second,

in line with state-of-the-art classical supercomputers. Using the lower bound on s(b),

we can determine the number of qubits b such that simulating each additional gate

takes at least a day. For IQP circuits this calculation yields roughly 1700 qubits

and for QAOA circuits it yields roughly 7100 qubits. Since we’re dealing with a

lower bound, tighter lower bounds could reduce the number of qubits we calculate,

but our calculation provides an important preliminary piece of information about

generally how large our quantum systems must be to be used for a quantum supremacy

demonstration.

In Chapter 5, we make a similar argument to arrive at a lower bound on classical

simulation algorithms for Clifford + T circuits in Corollary 5.2.3.3. We assume the

simulation time depends on n, m, and t like poly(n,m)2γt as in Bravyi and Gosset’s

algorithm [7], and, under the same fine-grained complexity-theoretic conjecture as

before, we conclude that γ > 1/135. This is not tight compared to the best known

algorithm where γ = 0.228, but it is a preliminary lower bound that limits how much

these simulation algorithms can be improved.

23

24

Chapter 2

Quantum circuits

The extended Church-Turing thesis states that any physically reasonable implemen-

tation of an “algorithm” can be simulated efficiently on a Turing machine. The im-

portance of this statement is that it defines a precise mathematical model — the

Turing machine — that fully captures classical computation. Within the model, we

can rigorously prove which tasks can and cannot be performed, and classify different

tasks based on how much of a certain computational resource (e.g., time) they re-

quire. This is the topic of complexity theory and will be discussed in more detail in

Chapter 3.

For quantum computation, we need a model to replace the Turing machine that

fully captures what is physically possible before we can make any mathematical

progress in understanding the resources different tasks require on a quantum com-

puter. Several models have been analyzed, including the quantum circuit model

[30, 14], adiabatic quantum computation [17], the quantum Turing machine [13], and

measurement-based quantum computation [21]. All of these models have been shown

to be equivalent in the sense that if one model can solve a task T efficiently, all of

the other models can also solve T efficiently. Since these are thought to be physi-

cally implementable models for an “algorithm,” albeit a quantum algorithm,1 finding

a computational task which can be performed efficiently in one of the mentioned

1After all, we do believe the physical world obeys the rules of quantum mechanics.

25

quantum models but not in the Turing machine model would refute the extended

Church-Turing thesis. It is widely believed, yet unproven, that such a task exists.

In this work, we analyze the quantum circuit model, which is one of the most

widely-used models for quantum computation. In short, the quantum circuit model

defines a quantum algorithm as a sequence of quantum gates acting on a set of quan-

tum bits, called qubits, which store the quantum data. Thus, the model makes a

strong analogy to a classical circuit, where data is stored in classical bits which are

acted upon by logic gates to perform the computation.

2.1 General quantum circuits

First, we will define the most general version of the quantum circuit model. The

fundamental building block of a quantum circuit is a qubit. A qubit is simply any

two-level quantum system, the state of which lies in the Hilbert space spanned by the

states |0〉 and |1〉. Whereas a classical bit takes a value of either 0 or 1, a quantum

bit will generally exist in a superposition of the two states: α |0〉+ β |1〉 for complex

numbers α and β such that |α|2 + |β|2 = 1. When we have n qubits, the state of the

system is a superposition
∑2n−1

x=0 αx |x〉 over the 2n basis states corresponding to the

2n possible n-bit strings. We will require in general that the state of a circuit on n

qubits begin in the |0〉⊗n state.

The next element of a quantum circuit is the sequence of quantum gates that act

on the qubits. Quantum gates are similar to classical gates like AND, OR, and NOT

gates in that they mutate the data stored in certain bits and cause interaction be-

tween data on different bits, but there are several notable differences. To preserve the

normalization of the state and respect the linearity of quantum mechanics, quantum

gates must be represented by unitary matrices acting on the vector of amplitudes αx

corresponding to the state of the system. Thus, quantum gates must be reversible,

meaning irreversible classical gates such as AND and OR do not carry over naturally

into quantum computation. In general, all unitary gates are valid for quantum com-

putation, and thus performing a certain task on a quantum computer is reduced to

26

finding a sequence of gates which creates the desired output. Typically, though, algo-

rithms are restricted to using gates that act non-trivially on only a constant number

of the qubits (that is, a number that does not depend on n), since these are most

straightforward to implement experimentally.

The final element of a quantum circuit is the measurement, which produces the

output of the circuit. For our purposes, we will always consider a measurement

in the computational basis, meaning that if we measure m qubits, we receive an

outcome representing a bit string on those m qubits, and the system collapses onto

the corresponding projection of the Hilbert space. If the state of the system prior

to measurement is |ψ〉, the probability of observing outcome x will be the quantity

〈ψ|Px |ψ〉 where Px is the projection operator onto the subspace corresponding to the

measured m bits taking the outcome x. In Figure 2-1 we see a drawing of an example

of a quantum circuit.

|0〉

U1

U2|0〉

|0〉

U3|0〉

|0〉

Figure 2-1: Example of a general quantum circuit with three gates and five qubits,
where the last two qubits are measured. The gates U1, U2, and U3 are unitary
operations acting on a subset of the five qubits.

Let us pause to define a few notable gates. Important single-qubit gates include

the Pauli gates

X =

0 1

1 0

 ; Y =

0 −i

i 0

 ; Z =

1 0

0 −1

 (2.1)

27

In addition to the Pauli gates, we define the Hadamard gate H and the phase gate

S, as follows.

H =
1√
2

1 1

1 −1

 ; S =

1 0

0 i

 (2.2)

The most basic interacting two-qubit gate is the CNOT gate, which flips the second

qubit only when the first qubit is in the |1〉 state.

CNOT ≡ CX =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (2.3)

Adding a subscript to a gate specifies which qubit it acts on. For the CNOT gate

CXij indicates qubit i is the control and qubit j is the target of the bit flip. The

idea of a controlled operation extends more generally. For a unitary U acting on m

qubits, the controlled-U operation CU acts on m+ 1 qubits, applying U to the final

m qubits only for states whose first qubit is |1〉.

The set {Hi, Si, CXij} for all qubits i, j generates the Clifford group of unitary

operations, which will be discussed later.

The sequence of gates we choose to implement will depend on the input to the

task we are solving. If a quantum circuit has g total gates, we will require that the

description of the circuit — the number of qubits n, the sequence of gates, and the

qubit or qubits to be measured — be computable classically in time which scales like

a polynomial in g. Without this condition, we could solve hard classical problems

with efficient quantum circuits by first using exponential classical time to compute

the answer, and then hardwiring the answer into a polynomial-sized quantum circuit.

For each quantum circuit, there corresponds a probability distribution over the

possible measurement outcomes, and each time we perform the quantum circuit, we

obtain one sample from this probability distribution.

As defined, implementing a quantum circuit requires the ability to perform any

unitary gate. In the next subsection, we will see that in practice it is not necessary

28

to have this power; we can approximate any unitary gate with gates from a limited,

simple set.

2.2 Universal gate sets and compilation

For classical circuits, there exist universal gate sets such that any Boolean function

can be computed using only gates drawn from the set. For example, the NAND

gate by itself forms a universal gate set, since any Boolean function can be computed

using only NAND gates. In quantum computing the idea is similar: a universal

gate set is a set of gates such that any unitary operation can be approximated to

arbitrary accuracy using only gates from the set. Thus, instead of needing to be able

to implement any unitary operation, we only need to be able to implement gates from

the universal set to be able to perform the computation arbitrarily accurately. This

is important, since it would be an experimental nightmare if quantum computation

really required the ability to perform every possible unitary gate. In experiment, it is

especially hard to perform gates in which many qubits interact. Luckily, interacting

gates can be built out of single qubit gates, and the simple CXij gate introduced in

the previous section.

Theorem 2.2.1. All single-qubit gates along with CNOT gates between any two qubits

form a universal gate set.

Theorem 2.2.2. Let

T =

1 0

0 eiπ/4

 (2.4)

Then {H,T} is a universal set for all single-qubit unitary gates.

Proof. The proofs of Theorem 2.2.1 and Theorem 2.2.2 appear in Quantum Compu-

tation and Quantum Information by Nielsen and Chuang [30].

Thus, the set

{Hi, Ti, CXij for all i and pairs (i, j)}

29

forms a universal gate set for all unitary gates.

The process of turning a unitary gate into a string of gates taken from a universal

gate set is sometimes referred to as compilation. The existence of universal gate sets

means compilation is possible, but it does not mean that the compiling can be done

using a short string of gates. Naively, we expect the length of the approximating

string to scale like poly(1/ε), where ε is the error in the approximation. Luckily, we

can do exponentially better. The Solovay-Kitaev algorithm [12] shows how a unitary

gate can be compiled into a string of only poly(log(1/ε)) gates from the universal set.

2.3 Restricted models of quantum circuits

In the previous sections, we discussed general quantum circuits. In this section,

we will discuss specific classes of quantum circuits which have been restricted in

some way. These restrictions have a debilitating effect on the power of the model —

none of the models we mention are believed to be equivalent to the general quantum

circuit model. Yet, each of the models is believed to retain some advantages over

classical computation in the sense that classical computers cannot simulate them

efficiently. They are interesting for several reasons. One reason is philosophical:

assessing the power of models after we impose certain restrictions allows us to probe

the boundary between quantum and classical and identify the key features that give

quantum computation its power. A second reason is practical: it has proved difficult

to experimentally create universal quantum computers which can implement general

circuits. Perhaps it would be more feasible to implement specific subclasses of circuits

on a real experimental device. Indeed, experiment is one motivation for the definitions

of some of the models to follow.

2.3.1 Instantaneous quantum circuits (IQP)

The first restricted model we will consider is that of instantaneous quantum compu-

tations [32, 9]. Instantaneous quantum circuits with a polynomial number of gates

and qubits, a notion we will make more precise in Chapter 3, will generate the In-

30

stantaneous Quantum Polytime (IQP) complexity class, so sometimes we will refer to

the circuits themselves as IQP circuits. There are multiple ways to define this model;

we will do so such that it fits well into the general circuit model we introduced above.

An instantaneous quantum circuit is a circuit where a Hadamard gate is applied

to each qubit at the beginning and end of the computation, but the rest of the gates

are diagonal gates. Each qubit begins in the |0〉 state but is immediately sent to the

|+〉 = H |0〉 = 1/
√

2 |0〉 + 1/
√

2 |1〉 state under the Hadamard operation, and each

qubit is measured at the end of the computation in the computational basis. Thus,

it would be equivalent to say that all the gates are diagonal, but each qubit begins

in the |+〉 state and is measured in the {|+〉 = H |0〉 , |−〉 = H |1〉} basis. All of the

internal diagonal gates commute, and therefore can be implemented in any order. In

order for the model to be physically reasonable, we might need to impose a further

restriction that each diagonal gate involve only a small constant number of qubits.

|0〉 H • T H

|0〉 H • • H

|0〉 H T H

|0〉 H • T H

|0〉 H • H

Figure 2-2: Example of an instantaneous quantum circuit. Each qubit must begin
and end with a Hadamard gate, and all internal gates must be diagonal in the Z basis.
The vertical lines indicate controlled operations. Thus, in our example, the second
qubit first undergoes a controlled-Z operation (CZ) with the first qubit, applying
a minus sign only if both bits are in the |1〉 state, then acts as the control on a
controlled-T operation with the fourth qubit: the T gate is applied only when the
second qubit is in the |1〉 state.

We call these instantaneous circuits because, if we were to implement them by

applying a constant Hamiltonian, the fact that the gates commute would allow us to

perform all of the gates simultaneously simply by adding the separate Hamiltonians.

This observation also makes it clear why we might want to restrict ourselves to local

31

gates; local gates correspond to local Hamiltonians which are simpler to implement

experimentally.

2.3.2 Quantum approximate optimization algorithm (QAOA)

circuits

The second model we will define, quantum approximate optimization algorithm

(QAOA) circuits [16, 18], has some similarities with instantaneous quantum circuits.

In fact, in a sense, QAOA can be thought of as multiple rounds of instantaneous

operations.

A QAOA circuit is a circuit of the following form. Let the circuit consist of n

qubits, which begin in the |0〉 state but are immediately hit with a Hadamard gate,

as in the instantaneous quantum circuit model. An integer p, and angles γi, βi for

i = 1, 2, . . . , p are chosen. A diagonal Hamiltonian C is specified such that C =
∑

αCα

where each Cα is a constraint on a small subset of the bits, meaning for any bit

string z, either Cα |z〉 = 0 or Cα |z〉 = |z〉 and Cα can be expressed as a function of

some small constant number of the Pauli operators Zj. We define the Hamiltonian

B =
∑n

j=1 Xj, and U(H, θ) = exp(−iHθ). The remainder of the circuit consists of

applying U(C, γ1), U(B, β1), U(C, γ2), U(B, β2), etc. for a total of 2p gates. Finally

the qubits are measured in the computational basis.

|0〉 H

U(C, γ1) U(B, β1)

. . .

U(C, γp) U(B, βp)

|0〉 H . . .

|0〉 H . . .

|0〉 H . . .

|0〉 H . . .

Figure 2-3: Example of a QAOA circuit. Each qubit begins with a Hadamard gate,
and then 2p gates are performed alternating between applying Hamiltonian C and
applying Hamiltonian B.

32

Since U(C, γj) =
∏

α U(Cα, γj), the gate U(C, γj) can be performed as a sequence

of commuting gates that perform the unitaries associated with the constraints Cα.

Thus each U(C, γj) could form the internal portion of an instantaneous quantum

circuit.

Since the operator C is a sum of many constraints, it takes the form of a common

type of computational problem, called a constraint satisfaction problem. For all bit

strings z, C |z〉 = λz |z〉, and a common and important problem asks us to find

the maximum value of λz. There is evidence that QAOA circuits might be able to

approximate this optimum value of λz more efficiently than classical algorithms when

p > 1 [16], so in comparison to instantaneous circuits, QAOA circuits might have

more practical value.

2.4 Classical simulation of quantum circuits

2.4.1 Feynman’s intuition

Why should a computer based on quantum mechanics be better than one based on

classical physics? Because the world is fundamentally quantum mechanical! If you

want to simulate quantum systems on a computer, it’s natural to think you’ll have

more success if your computer is quantum. This was Richard Feynman’s original

intuition that helped birth the field of quantum computation in 1982 [19].

Using the quantum circuit model introduced above, we can understand this intu-

ition more explicitly. The dimension of the Hilbert space for n qubits is 2n, meaning

we need an exponential number of complex amplitudes to describe the quantum state.

On the other hand, describing a classical n-bit state, by definition, requires just n

binary numbers.

Thus, simulating a quantum circuit on a classical computer appears that it should

require exponential time in general. The naive simulation algorithm operates by

storing the 2n amplitudes and updating them after each gate is applied.

33

However, how can we be sure that there isn’t a clever way to perform this simu-

lation efficiently? Three and a half decades after Feynman formed this intuition, we

still can’t prove that no clever algorithm exists, but we do have formal evidence based

on plausible conjectures that this is the case, which will be discussed in Chapter 3.

2.4.2 Strong vs. weak simulation

The naive simulation algorithm we mentioned is an example of a strong simulation of

a quantum circuit — it allows us to compute the exact probabilities that each mea-

surement outcome occurs to arbitrary accuracy. But in a sense, a quantum computer

can’t even perform this calculation efficiently! In a quantum circuit, the exact value

of the amplitudes are stored in the state, but they aren’t accessible via measure-

ment. Rather, when we measure the system, we obtain a sample from the probability

distribution associated with the measurement. Using sampling alone, it would take

exponential time to compute the exact outcome probabilities. Thus, if our goal is to

simulate a quantum computer, we should not necessarily require that our algorithm

satisfy such a strong notion of simulation.

In contrast, a system that can sample from the probability distribution associated

with a quantum circuit is said to be weakly simulating the circuit. In this sense, quan-

tum circuits naturally weakly simulate themselves, but they don’t naturally strongly

simulate themselves. Even under this weaker notion of simulation, we still have strong

evidence that no classical algorithm can simulate general quantum circuits efficiently

[18]. Additionally, we mention that a strong simulation with the ability to calculate

both the joint probabilities and the marginal probabilities of the outcome probability

distribution implies the existence of a weak simulation to sample from that probability

distribution [37].

2.4.3 Approximate simulation

We can further notice that when our quantum circuit is restricted to using only H,

T , and CX gates, it cannot exactly perform any general quantum circuit; it can

34

only perform these circuits approximately. So a quantum computer using only these

gates cannot obtain samples from the probability distribution associated with general

quantum circuits, it can only obtain approximate samples. We conclude that when

we wish to simulate quantum circuits with classical systems, what we should really

wish for is the ability to approximately weakly simulate them.

There are two precise notions of approximate weak simulation. Suppose the true

probability of measuring outcome x with quantum circuit C over n qubits is P (x).

And suppose our weak simulation algorithm produces the outcome x with probability

Q(x). The approximate simulation is multiplicative with parameter ε if

|P (x)−Q(x)| ≤ εP (x) (2.5)

for all x. The approximate simulation is additive with parameter ε if

2n−1∑
x=0

|P (x)−Q(x)| ≤ ε (2.6)

An ε-multiplicative approximation is necessarily also an ε-additive approximation

since summing Eq. (2.5) over all strings x yields Eq. (2.6). However, the converse

is not true: an ε-additive approximation is not necessarily also an ε-multiplicative

approximation.

2.4.4 Clifford circuits and the Gottesman-Knill theorem

Now, with a better understanding of the varying notions of simulation, are there

methods to simulate quantum circuits that go beyond the naive algorithm? For

certain classes of circuits, there are. Notably, a circuit that is composed entirely of

gates from the Clifford group can be simulated efficiently classically, a fact known as

the Gottesman-Knill theorem [20]. The Clifford group is generated by the set of H

and S gates on each qubit along with the set of CX gates between any two qubits.

The Pauli gates are contained in the Clifford group (e.g., Z = S2). In short, Clifford

circuits can be simulated efficiently because the quantum state always remains in

35

a portion of Hilbert space which can be represented efficiently with classical states.

The simulation algorithm works by keeping track of the state’s stabilizer, the set of

independent Pauli operators for which the state is an eigenvector. When a Clifford

gate is applied to the circuit, the stabilizer changes but the rules for updating the

stabilizer are simple and the update can be made efficiently. This is an example of

strong simulation, because the exact probabilities of each measurement outcome can

be calculated from the stabilizer at the end of the algorithm.

2.4.5 General simulation algorithms

In general, there is no known efficient algorithm for strongly or weakly simulating

quantum circuits; however, there are algorithms that do better than the naive al-

gorithm. One framework by which to search for algorithms is to consider Clifford

+ T circuits. Clifford + T circuits are universal for quantum computation, but the

Gottesman-Knill theorem suggests that the Clifford part of the circuit should be easy

to simulate, so the T gates must be the source of the difficulty in simulation. If we

have a circuit on n qubits with m total gates but only t T gates, we might expect

algorithms to exist which simulate the circuit in time poly(n,m)2γt where the expo-

nential dependence lies entirely in the number of t gates. Indeed, Bravyi and Gosset

[7] gave an algorithm for which γ ≈ 0.228.

36

Chapter 3

Complexity theory

3.1 The basics

Complexity theory is the field of mathematics and computer science that aims to

classify computational tasks by their difficulty. Difficulty is measured by the amount

of some computational resource, also known as the complexity, required to solve the

computational problem. Examples of complexity are time complexity and space com-

plexity: assuming a certain model for a computer such as a Turing machine, we can

count the minimum number of time steps or the minimum number of bits of memory

required by the model to solve a certain problem. Assuming our model of computation

is physically reasonable, problems with larger complexity will require more physical

resources to solve on real computers. Thus, complexity theory has actual practical

uses in addition to allowing us to understand fundamental mathematical facts.

The following sections establish conventions and give detail to some of the concepts

in complexity theory needed to understand our new results outlined in the following

chapters, and the final section of this chapter outlines known quantum supremacy

results using these concepts. For a more complete introduction to complexity theory,

we refer the reader to books by Sipser [35] and by Du and Ko [15].

37

3.1.1 Computational problems

It is important not to let the heuristic nature of the previous discussion obscure

the fact that complexity theory is a completely rigorous mathematical subject. For

example, the notion of a computational problem has a precise mathematical definition:

A computational problem P is a mapping from inputs w = x1 . . . xn to outputs

y1 . . . ym = P(w), where w and P(w) are taken to be bit strings of length n and m,

respectively. One example of a problem might be computing the shortest distance

between two places within a city. The input is a description of the city as a graph,

with vertices representing intersections and edges representing the lengths between

those intersections. Additionally, the two vertices corresponding to the points in

question must be specified in the input. The output is the binary representation of

the minimum distance. Problems where m = 1 and the output is just a single bit are

called decision problems, and can be expressed as questions with yes or no answers.

For example, our input might be an integer, and the problem might be: is the integer

prime? An algorithm for decision problems is said to “accept” if it outputs 1, and

“reject” if it outputs 0.

Given a problem, complexity theorists look for algorithms which can solve the

problem by computing the output given the input. Finding an explicit algorithm

establishes an upper bound on the complexity of the problem, but without a lower

bound, it is impossible to know whether or not there is another algorithm requiring

less resources that has not yet been found.

3.1.2 The complexity classes P and NP

When assessing complexity, complexity theorists typically care only about the asymp-

totic relationship between the complexity and the length of the input n. So, for time

complexity, we classify problems into those with algorithms whose number of time

steps depends on n like O(n), O(n2), O(2n), etc.

In fact, they often go a step further and group all problems with polynomial-

time algorithms together. For example, the complexity class P is the set of decision

38

problems with deterministic classical algorithms whose time complexity can be con-

strained by a polynomial in n. When we say an algorithm is “efficient,” we mean that

it is a polynomial-time algorithm.

The class NP is the set of decision problems whose answers can be verified in

polynomial time with the help of a certificate. More precisely, a problem P is in

NP if there exists a deterministic classical polynomial-time algorithm M which takes

w, the input to P , along with some bit string “certificate” c as input and has the

following properties:

(1) if P(w) = 1 then there exists some c for which M(w, c) = 1.

(2) if P(w) = 0 then M(w, c) = 0 for all c.

Graph three-coloring, the question of whether the vertices of a certain graph can

be assigned one of three colors such that no two adjacent vertices have the same color,

is an example of an NP problem: if the answer is yes, it can be easily verified with

the help of a certificate encoding the three-colored solution to the graph. However, if

the certificate encoding the solution is not known ahead of time, it is not clear how it

can be found without iterating through the exponential number of possible solutions

to see if any of them are successful three-colorings. Whether P = NP, that is, if all

problems whose solutions can be verified in polynomial time can also be solved in

polynomial time, is a major open question in complexity theory, although it is widely

believed that P 6= NP.

A problem is called NP-hard if being able to solve it in polynomial time would

imply that every NP problem can be solved in polynomial time, and hence P = NP.

If a problem is both NP-hard and a member of NP, then it is called NP-complete.

Three coloring is an example of an NP-complete problem.

3.2 Counting problems

Problems in NP ask whether or not there exists a certificate which can be used to

verify the answer to the problem in polynomial time. In contrast, counting problems in

39

the class #P can be thought of as asking how many such certificates exist. Formally,

we define #P by saying a problem P (on input w) is in #P if there exists a polynomial-

time algorithm M which takes w as input, along with a certificate c, such that

|{c : M(w, c) = 1}| = P(w). (3.1)

So, for example, the problem of whether or not a three coloring for a graph exists is

in NP, while the problem of how many three colorings there are is in #P. Evidently,

#P is more powerful than NP: if we know how many certificates there are, we can

easily determine whether or not that number is non-zero. Like problems in NP,

problems in #P are generally believed not to have a polynomial-time solution; we

can always count the number of certificates by brute force iteration, but since there

are an exponential number of possible certificates, doing so would take exponential

time.

In parallel to the definition of NP-hard and NP-complete problems, #P-hard

problems are those for which polynomial time solutions would imply FP = #P, where

FP is the set of problems with possibly multiple bits of output that can be solved

in polynomial time (the analogue of P for problems with multiple bits of output). A

problem is #P-complete if it is #P-hard and also in #P.

3.3 Probabilistic computation

So far this chapter, we have only discussed deterministic computation. However,

quantum mechanics, and by extension quantum computers, are inherently proba-

bilistic. So, before we move from classical to quantum computation, it makes sense

to consider classical randomized computation. A randomized (or probabilistic) al-

gorithm is an algorithm which at various points has the ability to make random

transitions between states. We can model this with a deterministic algorithm that

takes as an additional input a string of random bits r of length equal to the maximum

run time of the algorithm. At each time step, the machine can read at most one of

these random bits. So a decision problem P has a probabilistic algorithm if there

40

exists a deterministic algorithm M acting on the input to the problem w along with

a random string of bits r, such that, if P(w) = 1, then Prr(M(w, r) = 1) > 1/2 and

if P(w) = 0, then Prr(M(w, r) = 1) ≤ 1/2, where Prr indicates the probability taken

over all possible bit strings r. The set of problems with probabilistic algorithms that

use a polynomial number of time steps is called PP.

However, PP isn’t a very practical model, because, if an algorithmM for problem

P accepts input w with probability 1/2 + ε for some exponentially small number ε,

we will have to run M on w an exponential number of times before we can be highly

confident that P(w) = 1.

Therefore, it is more reasonable to consider bounded-error probabilistic algorithms,

where we require that if P(w) = 1, Prr(M(w, r) = 1) ≥ 2/3 and if P(w) = 0, then

Prr(M(w, r) = 1) ≤ 1/3.1 Given a bounded-error probabilistic algorithm for P , we

can become highly confident of P(w) using only a polynomial number of iterations

of running M on w. The class of problems with polynomial-time bounded-error

probabilistic algorithms is called BPP.

However, PP will still be a useful class to consider due to its connection to counting

problems. In fact, PP is in a sense the decision version of #P. Given a problem in PP

and the polynomial-time machineM which solves it probabilistically, we can interpret

the random strings r as possible certificates for the problem instance. If P(w) = 1

then strictly more than half the certificates cause M to accept, and if P(w) = 0,

at most half the certificates cause M to accept. Comparing this to #P algorithms,

which tell us exactly how many certificates cause M to accept, we can see how PP

can be understood as a counting class in which we only care about whether or not

the number is more than half the total. Thus, problems like determining whether a

majority of the possible three-colorings of a graph are natural PP problems.

1Any constant greater than 1/2 would be equivalent, up to polynomial-time overhead.

41

3.4 The polynomial hierarchy

A fruitful way of understanding the relationship between the classes we’ve mentioned

is through the polynomial hierarchy (PH), a generalization of the class NP.

The class NP can be expressed as containing any problem P for which there exists

a polynomial-time Turing machine M acting on the input w and a certificate c1 such

that given w

∃c1 M(w, c1) = 1 iff P(w) = 1. (3.2)

We can make a slightly more complex class along these lines: Let Σ2P contain

any problem for which there exists a polynomial-time Turing machine M acting on

input w and certificates c1 and c2 such that given w:

∃c1∀c2 M(w, c1, c2) = 1 iff P(w) = 1 (3.3)

By disregarding c2 altogether we see that Σ2P contains NP, but Σ2P might also

contain problems which are not in NP.

We can more generally form ΣnP by changing Eq. (3.3) to

∃c1∀c2 . . . Qncn M(w, c1, . . . , cn) = 1 iff P(w) = 1 (3.4)

where Qn is ∀ if n is even and ∃ if n is odd.

These form the levels of the polynomial hierarchy: PH = ∪n ΣnP. The zeroth

level is P, and the first level is NP. In the same sense that it is widely believed

that P 6= NP, it is also widely believed that ΣnP 6= Σn+1P. If it were to be shown

that ΣnP = Σn+1P, this would imply that ΣnP = ΣmP for all m ≥ n, the so-called

“collapse” of the PH to the nth level. If the Polynomial hierarchy doesn’t collapse, we

say it is “infinite.”

This framework is not exclusive to polynomial-time Turing machines. We can

also define the class ΣjTIME(f(m)) as those problems with algorithms satisfying

Eq. (3.4) where M is allowed to use f(m) time steps on an input w of size m.

42

An equivalent way of formulating the PH is through the concept of an oracle. An

oracle algorithm MP , is an algorithm (in whatever model of our choosing) that has

the ability to compute the answer to the problem P in a single time step. So, if P is

the three-coloring problem, then any NP problem can be solved with a polynomial

number of time steps using a P oracle: first we reduce the NP problem to an instance

of three-coloring in polynomial time, then we solve it using the oracle.

We can also define new complexity classes relative to a certain oracle. The class

PP is the set of all problems which can be solved with a deterministic polynomial-time

P-oracle algorithm. The class ΣnPP is the class defined by Eq. (3.4) except that the

algorithm M is replaced by the oracle-algorithm MP . If A is a complexity class, then

PA and ΣnPA are defined by taking the union of PP and ΣnPP , respectively, for all P

in A. Using this framework, it can be shown that Σ2P = NPNP, and more generally

Σn+1P = ΣnPNP. These observations clarify why we expect the PH to be infinite:

since we believe some NP problems require exponential time, giving any polynomial-

time class the ability to solve NP problems in a single time step should allow it to

efficiently solve some problems that previously required exponential time, meaning

that ascending a level of the hierarchy allows us to solve new problems efficiently.

Using oracles, we can relate the PH, a class of decision problems, to counting

problems in #P via Toda’s theorem [15]:

PH ⊆ P#P = PPP (3.5)

This tell us that in a sense, the ability to solve counting problems is more powerful

than the entire PH!

3.5 Quantum computation and postselection

We can also use complexity theory to describe quantum computation. We let BQP

be the class of problems for which there is a bounded-error polynomial-time quantum

algorithm. Using the quantum circuit model discussed in Chapter 2, we interpret a

polynomial-time quantum algorithm for a problem P with input w to be a quantum

43

circuit whose number of qubits and number of gates is polynomial in |w|, and whose

description can be computed in classical polynomial time. Thus, BQP is the quantum

analogue of BPP.

The fact that classical computation can be efficiently simulated on a quantum

computer means that BPP ⊆ BQP. It has also been shown that BQP ⊆ PP [4],

but otherwise, the exact placement of BQP within classical complexity classes is an

open question.

Progress can be made if we consider a slightly modified model of quantum compu-

tation called postselected quantum computation. A postselected quantum circuit is

one where, at the end of the algorithm, some qubits are measured and kept as outputs

of the circuit, as before, but others are postselected. That is, they are measured but

their measurement outcome is forced to take a certain value. In real life, we cannot

force a measurement outcome to take a certain value, so this is not a reasonable phys-

ical model. In fact, postselection would be an extremely powerful ability. We can see

how it is easy to solve all NP problems using postselection: we put the computer into

a superposition over all possible certificates c, compute M(w, c) into an ancilla qubit

while maintaining superposition, and then postselect that the ancilla qubit is in the

|1〉 state. The rest of the qubits will tell us which certificate c causes M(w, c) = 1, if

there is one at all.

The power of postselection extends further than NP, however. Letting PostBQP

be the class of problems solvable up to bounded-error with polynomial postselected

quantum circuits, Aaronson showed that PostBQP = PP [1]. Since PP is the

decision version of the exact counting class #P, the intuition for this statement is

that postselected quantum computation roughly has the power of exact counting.

Postselection is not exclusively a quantum power. We can also discuss classical

postselected algorithms, which we model by considering probabilistic algorithms M

that take w as input along with a random bit string r, except now M has three

options as output. It can accept, reject, or cancel the computation altogether. A

problem P is a member of PostBPP if there is such an M for which the probability

that M(w, r) = P(w) given that M(w, r) does not cancel is at least 2/3. Thus, as

44

in the quantum case, NP is contained in PostBPP since postselection allows us to

randomly guess a certificate and just cancel whenever we pick one that doesn’t cause

the algorithm to accept.

In contrast with PostBQP, PostBPP is known to be contained in the third

level of the PH.2 This can be shown by observing that we can solve a PostBPP

by looking at how many random strings r cause M to accept or reject. We do not

need to know the exact number of strings r, but only a multiplicative approximation

since we are guaranteed that either the number that causeM to accept is at least two

times the number that cause M to reject, or that the opposite is true. Approximate

counting the number of accepting and rejecting strings in this fashion can be achieved

using an oracle in Σ2P [36, 23], meaning PostBPP ⊆ Σ3P. The intuition for this

statement is that PostBPP has roughly the same power as approximate counting.

Toda’s theorem gives us formal evidence that PostBQP is more powerful than

PostBPP, since if PostBPP = PostBQP then PP would lie in the PH causing

its collapse, which we believe is not the case.

Intuitively, we understand this as the idea that exact counting is more difficult

than approximate counting: even if we could approximately count certificates to an

NP problem in polynomial time, it would still be exponentially difficult to count them

exactly. This statement of course remains unproven, but it is a plausible conjecture

under our current understanding of complexity theory.

3.6 Hardness of simulation for quantum circuits

3.6.1 Hardness for general quantum circuits

We can use the language of complexity theory to speak precisely about the difficulty of

simulating quantum circuits. If there were a classical algorithm to strongly simulate

quantum circuits in polynomial time, then it can be shown that P = NP,3 but as

2The class PostBPP is equivalent to the class BPPpath, which is defined and proved to lie in
the third level in Ref. [23].

3In fact, strong simulation is known to be #P-hard, so a polynomial-time classical simulation
algorithm would imply FP = #P, entailing P = NP [18]

45

we discussed in Section 2.4.2, strong simulation isn’t necessarily the most reasonable

benchmark for simulation.

On the other hand, a classical polynomial-time algorithm to weakly simulate quan-

tum circuits would not entail P = NP (as far as we know), but it would still imply

that the PH collapses, albeit to a higher level. The reasoning for this requires posts-

election. Given a classical polynomial-time weak simulation algorithm, any problem

solvable by a polynomial-sized quantum circuit would have a polynomial-time classical

algorithm meaning BQP would equal BPP. The logic would still hold if we move to

postselected quantum circuits and postselected classical algorithms: weak polynomial-

time simulation of quantum postselected circuits implies PostBQP = PostBPP.

However, in this case, since PostBQP = PP and PostBPP ⊆ Σ3P, Toda’s theorem

tells us that PH ⊆ PPP = PΣ3P ⊆ Σ4P, so the entire PH is contained in the fourth

level, meaning it collapses.4

If we can approximately weakly simulate general quantum circuits in classical

polynomial time, then we can reach the same conclusion, but only if the approximation

is multiplicative. Suppose a quantum algorithm solves problem P up to bounded

error. Letting Q(w) be the probability the quantum circuit outputs 1 on input w,

we know that Q(w) ≥ 2/3 if P(w) = 1 and Q(w) ≤ 1/3 if P(w) = 0. If we

have an approximate weak simulation algorithm with multiplicative parameter 1/5,

then we have the ability to produce the probability distribution P (w) where 4/5 ≤

P (w)/Q(w) ≤ 6/5. Hence, if P(w) = 1 then P (w) ≥ 8/15 and if P(w) = 0 then

P (w) ≤ 6/15. By repeating the algorithm a constant number of times and taking the

majority output, we can boost these probabilities above 2/3 and below 1/3 in the two

cases, yielding a bounded-error classical algorithm. This would imply PostBQP =

PostBPP and the collapse of the PH, as before.

In the strong, weak, and approximate (multiplicative) weak cases, we conclude

that polynomial-time simulation implies the collapse of the PH. So, if we start

with the believable conjecture that the PH is infinite, we conclude that there is no

4A more refined argument [23] puts PostBPP in PΣ2P ⊆ Σ3P, and since PPΣ2P
= PΣ2P, Toda’s

theorem (along with efficient classical weak simulation) actually implies a collapse of the PH to the
third level, not the fourth.

46

polynomial-time algorithm to weakly or strongly simulate general quantum circuits.

In other words, quantum circuits are supreme to classical algorithms.

3.6.2 Hardness for restricted classes of quantum circuits

Since restricted quantum circuits are themselves quantum circuits, a method for sim-

ulating a general quantum circuit is also a method for simulating the restricted class.

However, it is possible that there are ways to simulate these restricted classes much

more efficiently than general circuits, as is true for Clifford circuits via the Gottesman-

Knill theorem (see Section 2.4.4). We now discuss how for QAOA and instantaneous

circuits, this is not the case; in both cases, approximate weak simulation still implies

the collapse of the PH.

Let QAOA refer to the set of problems that can be solved by polynomial-sized

QAOA circuits, and let IQP be the same set for instantaneous quantum circuits. It is

not believed that IQP = BQP or that QAOA = BQP due to the restrictions imposed

on the QAOA and instantaneous models. However, we can show that PostQAOA =

PostIQP = PostBQP, and hence if QAOA or instantaneous quantum circuits were

exactly or approximately weakly simulable, then PostBPP = PostBQP and the

PH collapses, as before. To show that PostQAOA = PostIQP = PostBQP, we

must prove that any postselected quantum circuit can be simulated using a postse-

lected QAOA or instantaneous quantum circuit. The proofs of these statements are

expressed by the following theorems.

Theorem 3.6.1. PostIQP = PostBQP

Proof. This theorem was first proved in [9], which we reproduce here. The fact

that PostIQP ⊆ PostBQP follows from the fact that instantaneous circuits are a

subclass of general quantum circuits, so we only must show the opposite inclusion. If

a problem P is in PostBQP, then, fixing input w, there is a postselected quantum

circuit C for which Pr(C(w) = P(w)) ≥ 2/3. We can approximate this circuit to

arbitrary accuracy using solely H, T , and CZ gates (since CXij = HjCZijHj, we can

replace CX with CZ), so we can assume in the first place that C contains only gates

47

from this set. We can add two H gates to the beginning and end of the circuit on

each qubit since H2 = I. Thus, our circuit is nearly in the form of an instantaneous

quantum circuit; each qubit begins and ends with a Hadamard gate, and all of the

internal CZ and T gates are diagonal. The only problem is the internal H gates,

which are not diagonal. To remedy this, for each internal H gate we will insert the

gadget from Figure 3-1 which adds one ancilla qubit and uses postselection to simulate

the effect of the H gate.

|α〉 • H 〈0|

|0〉 H • H |α〉

Figure 3-1: Gadget to simulate the effect of an internalH gate within the postselected
instantaneous circuit model. A new ancilla qubit is introduced into the H |0〉 state,
a CZ operation is applied between the two qubits, then the first qubit is measured
and postselected into the outcome |0〉 (denoted by the symbol 〈0| at the end of the
line). The resulting circuit fits into the instantaneous model and the second qubit is
left in the state which results from applying H to the original state of the first qubit.

It is easy to verify that this circuit accomplishes the stated goal. If all such

internal H gates are replaced with one of these gadgets, we have an instantaneous

polynomial-size quantum circuit which has the same output as the original circuit C,

and hence, any PostBQP problem P can be solved in PostIQP.

Theorem 3.6.2. PostQAOA = PostBQP

Proof. The proof is similar to the proof of Theorem 3.6.1, only using a different

gadget to replace internal H gates. The gadget also requires one ancilla qubit. This

construction is found in [18].

The new results we present in this work, which are contained in Chapters 4 and

5, focus on working through these previous quantum supremacy results while paying

attention to the run time of these algorithms in a fine-grained sense. That is, no longer

will we consider two algorithms equivalent if they differ only by a polynomial, or even

by just a constant factor. In our work, we keep track of the exact form of the run time

expressions at each step. We combine this with a fine-grained assumption regarding

48

the hardness of PP in comparison to the PH, whereas previous arguments simply

claim the infinitude of the PH with no specificity as to what super-polynomial function

actually separates neighboring levels. At the end, we arrive at lower bounds for

simulation that are more specific than simply “simulation takes more than polynomial-

time.”

49

50

Chapter 4

Lower bounds for simulation of IQP

and QAOA circuits

4.1 Outline of lower-bounds argument

Previous quantum supremacy arguments begin with the assumption that the poly-

nomial hierarchy is infinite, and arrive at the conclusion that any approximate weak

simulation algorithm must take more than polynomial time. Our argument follows

the same steps, but begins with a fine-grained assumption about the polynomial

hierarchy and arrives at a fine-grained lower bound on the classical simulation.

We begin by describing a postselected IQP or QAOA circuit for solving a PP-

complete problem, which we know is possible since PP = PostBQP = PostIQP =

PostQAOA. The PP-complete problem we will use is called MAJ-ZEROS: given a

degree-3 polynomial f in n variables over the field F2, is

gap(f) ≡ |{z : f(z) = 0}| − |{z : f(z) = 1}| (4.1)

greater than zero? In other words, is the number of zeros more than half the 2n

possible bit string inputs to the polynomial? This problem has a very natural solution

in PostIQP and a somewhat natural solution in PostQAOA.

51

Next, we suppose there exists a classical algorithm to weakly simulate any IQP

or QAOA circuit in time g · s(q) where q is the number of qubits in the circuit and

g is the number of gates, leaving the function s unspecified. Note that s need not

be a polynomial. This classical postselected algorithm can be used to simulate the

PostQAOA and PostIQP circuit for MAJ-ZEROS, meaning that MAJ-ZEROS is

in the class PostBPTIME(g · s(q)).

Finally, since PostBPP ⊆ Σ3P, we can turn our PostBPTIME algorithm into

a Σ3TIME algorithm, with runtime that is polynomially related to g · s(q). Thus,

we have an implicit solution for the PP-complete problem MAJ-ZEROS in the third

level of the TIME hierarchy (it cannot be called the polynomial hierarchy because

the solution may require more than polynomial runtime). Since PP is essentially

as difficult as exact counting, we expect a PP-complete problem to be difficult, even

after ascending to the third level of the hierarchy, so we make the plausible conjecture

that (roughly) MAJ-ZEROS 6∈ Σ3TIME(2n/5). The exact function we use is not

exactly 2n/5, but asymptotically similar, and is given further motivation using an

oracle separation, as we will explain. If this conjecture is true, then the runtime

of our Σ3TIME algorithm for MAJ-ZEROS, expressed in terms of the simulation

function s, must be greater than 2n/5, giving us a lower bound for the simulation time

function s.

In other words, we show that if this lower bound on the classical simulation time

s(b) for a circuit with b qubits were broken, then we could use the simulation algorithm

as a subroutine to make a purely classical Σ3TIME algorithm for the problem MAJ-

ZEROS running in less time than we conjecture must be required.

4.2 The problem MAJ-ZEROS

The problem MAJ-ZEROS works within the field F2, that is, the integers mod 2.

The input to the problem is a polynomial in n variables with degree at most 3 and

no constant term. Since the only non-zero element in F2 is 1, every term in the

polynomial has coefficient 1. One example could be f(z) = z1 + z2 + z1z2 + z1z2z3.

52

Evaluating f for a given string z to determine whether f(z) = 0 or f(z) = 1 can be

done efficiently, but since there are an exponential number of possible strings z, it

naively takes exponential time to count the number of strings z for which f(z) = 0, or

equivalently, to compute the function gap(f) given by Eq. (4.1). To turn this into a

decision problem, the question posed by MAJ-ZEROS is whether or not gap(f) > 0.

The problem MAJ-ZEROS is a natural problem to work with because there is an

elegant correspondence between degree-3 polynomials and IQP circuits involving Z,

CZ, and CCZ gates [29]. In particular, if we label qubit i with the variable zi, then

we can form a circuit Cf from the polynomial f as follows: if the term zi appears in

f , we perform the gate Zi; if the term zizj appears, we perform the gate CZij; and if

the term zizjzk appears, we perform the gate CCZijk within the diagonal portion of

the IQP circuit. For example, for the polynomial f(z) = z1 + z2 + z1z2 + z1z2z3, the

circuit Cf is shown in Figure 4-1.

|0〉 H Z • • H

|0〉 H Z • • H

|0〉 H • H

Figure 4-1: IQP circuit Cf corresponding to the degree-3 polynomial f(z) = z1 +
z2 + z1z2 + z1z2z3. The unitary Uf implemented by the circuit has the property that
〈0|Uf |0〉 = gap(f)/2n where in this case n = 3.

Suppose the circuit Cf performs the unitary Uf . Then the crucial property of this

correspondence is that 〈0|Uf |0〉 = gap(f)
2n

, where |0〉 is shorthand for the starting |0〉⊗n

state. This is easily seen by noting that the initial set of H gates generates the equal

superposition state |B〉 =
∑2n−1

x=0 |x〉 /
√

2n, so 〈0|Uf |0〉 = 〈B|U ′f |B〉 where U ′f is the

diagonal unitary implemented by the internal portion of Cf . Since U ′f applies a (−1)

phase to states |x〉 for which f(x) = 1, 〈0|Uf |0〉 =
∑2n−1

y=0

∑2n−1
x=0 (−1)f(x) 〈y|x〉 /2n =∑2n−1

x=0 (−1)f(x)/2n = gap(f)/2n. Thus, gap(f) can be computed by calculating the

amplitude of the |0〉 state produced by the circuit.

MAJ-ZEROS is in the class PP: given f , we simply choose a random bit string

z and output the result NOT(f(z)), which can be computed in polynomial time. If

53

gap(f) > 0, this algorithm outputs 1 more than half the time, and if gap(f) ≤ 0, it

outputs 0 at least half the time, as required by a PP algorithm.

Theorem 4.2.1. MAJ-ZEROS is PP-complete.

Proof. Montanaro [29] gave a quantum-circuit proof that computing gap(f) exactly

for degree-3 polynomials over F2 is #P-complete by reduction from the problem of

computing gap(g) for an arbitrary boolean function g, which is #P-complete by

definition.

Using the same proof, one can show that MAJ-ZEROS is PP-complete by reduc-

tion from the problem of determining whether gap(g) > 0 for an arbitrary boolean

function g, which is PP-complete by definition.

Theorem 4.2.2. MAJ-ZEROS restricted to input polynomials for which each variable

appears in at most 3 terms is PP-complete.

Proof. Montanaro [29] showed that given an arbitrary degree-3 polynomial f , by

introducing new variables, we can form a degree-3 polynomial f ′ for which each

variable appears in at most 3 terms and such that gap(f) = gap(f ′). Thus, MAJ-

ZEROS can be reduced to MAJ-ZEROS on inputs with the desired restriction, proving

the theorem.

Therefore, in the following sections, we will assume that all inputs to MAJ-ZEROS

are such that each variable appears in at most 3 terms.

4.3 Derivation of lower bounds

4.3.1 PostIQP circuit for solving MAJ-ZEROS

Since MAJ-ZEROS is in PP and PP = PostBQP = PostIQP, we expect there to

exist a PostIQP algorithm for MAJ-ZEROS. We outline one such algorithm in this

section.

54

Theorem 4.3.1. For a degree-3 polynomial f on n variables where each variable

appears in at most three terms, there exists a family of postselected instantaneous

quantum circuits {Qi}n−1
i=0 , each acting on q = n + 4 qubits and at most g = 4n + 13

gates, such that taking n · L samples from Qi for different values of i allows us to

solve MAJ-ZEROS for the input f with error probability n exp(−2L/25). Thus, we

require only O(n log(n)) samples to achieve arbitrarily small error probability.

Our wording implies that the post-processing of the circuit samples is done clas-

sically, but of course we could do this instead by making many copies of the circuit

and turning the entire algorithm into one large PostIQP circuit for the problem

MAJ-ZEROS. The way we stated the algorithm, however, will make more sense once

we classically simulate the circuit since, when simulation time is exponential in the

circuit size, it is easier to simulate a smaller circuit many times than a larger circuit

a single time.

Proof. We build Qi out of two separate components. The first component will be

the circuit C ′f which does not depend on i. In the previous section, we outlined the

procedure for producing an IQP circuit Cf with n qubits implementing the unitary

Uf given a degree-3 polynomial f on n variables. This unitary has the property

that 〈0|Uf |0〉 = gap(f)/2n. We write Uf = H⊗nVfH
⊗n, where Vf is the unitary

corresponding to the internal diagonal portion of the IQP circuit. Vf consists solely

of Z, CZ, and CCZ gates. We construct a new circuit C ′f that implements unitary

U ′f by adding one ancilla qubit and using it as an additional control for every internal

gate that appears in Vf . Thus, Z gates in Uf become CZ gates in U ′f controlled by the

ancilla, CZ gates become CCZ gates, and CCZ gates become CCCZ gates. Since the

ancilla controls every internal operation, we can write U ′f = (H⊗n ⊗ I)CVfH
⊗(n+1),

where CVf denotes that the entire Vf operation is controlled by the ancilla qubit.

We temporarily omit the final H gate on the ancilla qubit, because we will continue

performing gates on it before it is measured. Then, we postselect on the original n

qubits being in the |0〉 state. An example of the circuit C ′f for the function f(z) =

z1 + z2 + z1z2 + z1z2z3 is shown in Figure 4-2.

55

|0〉 H • • • H 〈0|

|0〉 H • • • H 〈0|

|0〉 H • H 〈0|

|0〉 H • • • • |ψ〉

Figure 4-2: The circuit C ′f corresponding to the degree-3 polynomial f(z) = z1 +
z2 + z1z2 + z1z2z3, to be compared to the circuit Cf from Figure 4-1. By controlling
each diagonal operation from Cf with an ancilla qubit, and postselecting on the first
n = 3 qubits being |0〉 (denoted by symbol 〈0|), the state |ψ〉 given by Eq. (4.2) is
produced.

The ancilla qubit is left in the state |ψ〉 where, up to normalization,

|ψ〉 = |0〉+
gap(f)

2n
|1〉 ≡ |0〉+ r |1〉 (4.2)

where r = gap(f)/2n.

If we draw |ψ〉 as a vector in the real plane R2 with |0〉 on the x-axis and |1〉 on

the y-axis, then solving MAJ-ZEROS is equivalent to determining whether |ψ〉 lies in

the upper half-plane.

Without postselection, this would be exponentially difficult since two vectors on

opposite halves of the plane could be exponentially close. However, postselection

allows us to, in a sense, pry exponentially close vectors apart in polynomial time.

This procedure will form the second part of the circuit Qi, and we describe it as

follows.

We introduce another ancilla qubit and create the state α |0〉 − β |1〉 for arbitrary

α ≥ 0, β =
√

1− α2. We will show later how this can be done within the PostIQP

framework. We use this ancilla to perform a CNOT gate targeted at the ancilla

containing the state |ψ〉, which is then postselected into |0〉. This leaves the second

ancilla in the state α |0〉 − βr |1〉, up to normalization. To perform the CNOT gate

within the PostIQP framework, we write it as HaCZbaHa. The construction of state

α |0〉 − β |1〉 is made apparent by writing it as Z−π/2Xθ |0〉 = Z−π/2HZθH |0〉, where

56

θ = 2 arccos(α), Xφ = exp(−iφX/2), and Zφ = exp(−iφZ/2). The circuit diagram

depicting this construction is given in Figure 4-3.

|ψ〉 = |0〉+ r |1〉 H • H 〈0|

|0〉 H Zθ H Z−π/2 α |0〉 − β |1〉 • H |ψ′〉

Figure 4-3: The circuit that, given |ψ〉, creates the state |ψ′〉 = (α − βr) |0〉 + (α +
βr) |1〉, up to normalization, for arbitrary α and β. The angle θ is 2 arccos(α). The
gate Zφ denotes the gate exp(−iφZ/2). The state |ψ〉 is prepared by the circuit C ′f
as exemplified by Figure 4-2. To make this into a PostIQP circuit, we must replace
the internal H gates with the gadget from Figure 3-1, as described in the proof of
Theorem 3.6.1.

Replacing the two internal H gates for this construction with the postselected

IQP gadgets in Figure 3-1 will incur two extra ancilla qubits.

If we let β/α = ηi where η = 1 +
√

2 ≈ 2.41 for some integer 0 ≤ i ≤ n− 1, then

this circuit leaves the second qubit in the state, up to normalization,

|ψ′〉 = (1− ηir) |0〉+ (1 + ηir) |1〉 . (4.3)

Crucially, if r ≤ 0, then when we measure in the computational basis, the chance of

measuring the outcome 1 is always at most 1/2.

On the other hand, if r > 0, we claim that there exists some i so that we measure

the outcome 1 with probability greater than 9/10. The proof is as follows. In this

case, since gap(f) is an even integer, we write r = x/ηn−1 where 1 < x ≤ ηn−1.

Since, ηk−1 + ηk = ηk+1 − ηk for all k, if x lies between ηk and ηk+1, it is either less

than ηk + ηk−1 or greater than ηk+1 − ηk. Therefore, there must exist j (equal to

either k or k + 1) between 0 and n − 1 such that x = ηj + x′ where |x′| ≤ ηj−1.

We choose i = n − j − 1. Then our state pre-measurement is (up to normalization)

−x′/ηj |0〉 + (2 + x′/ηj) |1〉. Since |x′/ηj| ≤ 1/η, the chances of measuring 0 are at

most 1/(10 + 4
√

2) ≈ 0.064. Thus, the chances of measuring 1 are greater than 9/10.

We let the circuit Qi be given by the composition of circuit C ′f and the circuit in

Figure 4-3 where we set β/α = ηi. By taking enough samples from these Qi, we can

57

determine if an i exists for which the chances of measuring 1 is greater than 9/10,

and consequently whether gap(f) > 0. We do this as follows.

For each of the n possible values of i, we repeat the circuit Qi L times. If for some

value of i, more than 0.7L outcomes are 1, then it is likely that gap(f) > 0 and the

algorithm outputs 1 on the input f . If none of the values of i achieve this threshold,

then the algorithm rejects the input f .

Now we analyze the probability of error. Suppose in reality r ≤ 0. For a given

value of i, the probability of getting a 1 outcome is smaller than 1/2. The Hoeffding

inequality tells us that the sum of L repetitions of an experiment, each giving outcome

1 with probability p, will be greater than (p + δ)L with probability smaller than

exp(−2δ2L). In our case, p = 0.5, and δ = 0.2. We can take a union bound over each

of the n possible values of i to conclude that the probability that the algorithm fails

is at most n exp(−2L/25).

Now suppose in reality r > 0. Then there is some value of i where the probability

of getting a 1 is at least 0.9, so the algorithm can fail only if we register less than 0.7L

1 outcomes for this value of i, which happens with probability at most exp(−2L/25).

We conclude that the algorithm’s failure probability is bounded by n exp(−2L/25).

We can choose L large enough to make this quantity arbitrarily small, showing that

this is indeed a bounded-error algorithm.

The circuit acts on the original n qubits, the controlling ancilla qubit, the ancilla

qubit prepared into the state α |0〉−β |1〉, and the two auxiliary qubits introduced to

perform internal Hadamard gates with postselection. This gives a total of q = n+ 4

qubits. Since the polynomial f can be assumed to be such that each variable appears

in at most 3 terms, there can be at most 2n terms, since there are only n possible

single-variable terms, so the rest must have at least two variables. Each term requires

one gate. Additionally, we require 5 internal diagonal gates as shown in Figure 4-3.

This gives a total of 2n+ 5 internal gates and 2n+ 8 Hadamards, one applied to each

qubit at the beginning and end of the algorithm, for a total of 4n+ 13 gates.

Theorem 4.3.2. There exists a family of circuits {Qi}n−1
i=0 as in Theorem 4.3.1 such

that with n·L approximate samples up to multiplicative parameter ε < 2/7, the problem

58

MAJ-ZEROS can be solved with chance of failure n exp(−(2− 7ε)2L/50). Thus, even

in the case of approximate sampling, only O(n log(n)) samples are needed to achieve

arbitrarily small error probability.

Proof. First we note that when ε = 0, we arrive at Theorem 4.3.1. Using the same

circuit, if r ≤ 0, the sample is guaranteed to be 0 with probability (1 + ε)/2 for all

values of i. If r > 0, there is guaranteed to be a value of i for which the output will be

1 at least 9(1− ε)/10. The difference between these two probabilities is (4− 14ε)/10,

so if we set our threshold number of successes to be their average times L, that is

(7− 2ε)L/10, then we can use the Hoeffding inequality with δ = (2− 7ε)/10, proving

the theorem.

4.3.2 PostQAOA circuit for solving MAJ-ZEROS

Now, we give the analogous statement for QAOA circuits.

Theorem 4.3.3. For a degree-3 polynomial f on n variables where each variable

appears in at most three terms, there is a family of postselected QAOA quantum

circuits {Qi}n−1
i=0 , acting on at most q = 4n+6 qubits and requiring at most g = 29n+

48 constraints, such that taking n · L samples from Qi for different values of i allows

us to solve MAJ-ZEROS for the input f with error probability n exp(−2L/25). Thus,

we require only O(n log(n)) samples to achieve arbitrarily small error probability.

Proof. The proof follows the same process as the proof of Theorem 4.3.1. First,

we show how the circuit C ′f defined in the proof of Theorem 4.3.1 can be converted

to a QAOA circuit. The original column of H gates is already part of the QAOA

framework. We implement the diagonal portion of C ′f by letting the angle of rotation

γ = π/4 and constructing a Hamiltonian C which is the sum of constraints such that

exp(−iγC) implements this part of the circuit. Since CZ = exp(−iπ |11〉 〈11|) =

exp(−iγ4 |11〉 〈11|), for each CZ gate we add four copies of the constraint which is

satisfied only if both bits are 1. Likewise, CCZ = exp(−iγ4 |111〉 〈111|) and CCCZ =

exp(−iγ4 |1111〉 〈1111|), so for each of these types of gates we add constraints which

are satisfied only if all the bits involved are 1. By setting C to be the sum of all these

59

constraints, we can see that exp(−iγC) |z〉 = (−1)f(z) |z〉. Thus, we’ve translated

the diagonal portion of C ′f to the QAOA framework, and all that remains is the final

column of H gates. This does not translate directly into a QAOA circuit; we must

use postselection. Each H gate can be implemented by introducing an ancilla qubit

and eight new constraints, and postselecting on the original qubit; this is described

in [18].

This formula shows how the state |ψ〉 = |0〉 + r |1〉 defined in Eq. (4.2) can be

created. To determine if r is greater than zero, we must use postselection with a

scheme similar to that from the proof of Theorem 4.3.1, except we won’t be able to

create the state α |0〉 − β |1〉 as before since rotations by arbitrary angles is not a

capability of QAOA as it is for instantaneous circuits. Instead, to create the state

where β/α = ηi, we will use i ancilla qubits and i total T gates as illustrated in the

circuit in Figure 4-4.

|0〉 H T H • • • HZHZ α |0〉 − β |1〉

|0〉 H T • H 〈0|

|0〉 H T • H 〈0|

|0〉 H T • H 〈0|

Figure 4-4: Circuit that produces the state α |0〉−β |1〉 for β/α = ηi and i = 4. The
final i − 1 qubits are postselected into the |0〉 state. This circuit is implementable
within the QAOA framework.

To understand the construction in Figure 4-4, first note that the state HTH |0〉 =

cos(π/8) |0〉 + sin(π/8) |1〉. By inserting an HH = I into the circuit on each of the

final i − 1 qubits before any of the CZ gates, it’s clear how the circuit is equivalent

to one in which each qubit starts in the state cos(π/8) |0〉 + sin(π/8) |1〉, and then

CNOT gates are applied sequentially on each of the final i − 1 qubits controlled by

the first qubit. By postselecting these final i − 1 qubits into the |0〉⊗(i−1) state, we

send the first qubit into the cosi(π/8) |0〉 + sini(π/8) |1〉 state. Finally, by hitting

the first qubit with 2 Z and 2 H gates in the order Z, H, Z, then H (which equals

60

Z then X), we create the state sini(π/8) |0〉 − cosi(π/8) |0〉 = α |0〉 − β |1〉 where

β/α = cot(π/8)i = ηi, as cot(π/8) = 1 +
√

2.

The circuit in Figure 4-4 can be implemented in the QAOA framework with γ =

π/4 simply by adding more constraints to the Hamiltonian C and performing the H

gates by introducing an ancilla qubit, eight more constraints, and then postselecting.

We have already seen how CZ gates are implemented. The T and Z gates are

implementable since T = exp(−iγ |1〉 〈1|) and Z = exp(−iγ4 |1〉 〈1|).

Thus, we replace the portion of the circuit in Figure 4-3 that creates α |0〉 − β |1〉

with the circuit in Figure 4-4, and the rest of the proof proceeds identically to that

of Theorem 4.3.1.

Finally, we count the total number of qubits and constraints needed to implement

this algorithm. For qubits, we have the n+1 qubits from the circuit C ′f , plus n qubits

which arise to perform the final column of H gates on the first n qubits. We also need

i ancillas to create the state α |0〉 − β |1〉 and another i + 2 ancillas to perform the

i+ 2 H gates within that construction (not including the ones at the very beginning,

which are built into QAOA). Finally, there are 3 internal H gates needed to create the

state |ψ′〉 from |ψ〉 and α |0〉−β |1〉, as in Figure 4-3. This gives a total of 2n+ 2i+ 6

qubits. Since i ≤ n, this gives at most 4n+ 6 qubits.

The number of constraints we need for the C ′f portion of the overall circuit is 4

for each of the at most 2n terms in the polynomial f plus 8 for each of the H gates

among the first n qubits in C ′f , for a total of 16n constraints. The preparation of

α |0〉− β |1〉 costs i constraints for the i T gates, 4(i− 1) constraints for the i− 1 CZ

gates, 8(i + 2) constraints for the i + 2 H gates, plus an additional 8 constraints for

the 2 Z gates, for a total of 13i+ 20 constraints. Finally, creating |ψ′〉 from |ψ〉 and

α |0〉− β |1〉 costs 24 constraints for the 3 H gates and 4 constraints for the CZ gate,

giving us a grand total of at most 29n + 48 constraints after imposing i ≤ n. This

proves the theorem as stated.

Theorem 4.3.4. There exists a family of postselected QAOA circuits {Qi}n−1
i=0 as in

Theorem 4.3.3 such that with n·L approximate samples up to multiplicative parameter

ε < 2/7, the problem MAJ-ZEROS can be solved with chance of failure n exp(−(2 −

61

7ε)2L/50). Thus, even in the case of approximate sampling, only O(log(n)) samples

are needed to achieve arbitrarily small error probability.

Proof. The proof is the same as Theorem 4.3.2.

4.3.3 Moving from PostBPTIME to Σ3TIME

We have constructed PostIQP and PostQAOA circuits that, using only a polyno-

mial number of samples, allow us to solve the PP-complete problem MAJ-ZEROS up

to bounded error. With the ability to postselect, these samples could be produced

trivially using a machine with the capability to perform IQP or QAOA circuits. How-

ever, we can also produce these samples using a postselected classical computer with

the ability to weakly simulate QAOA or IQP circuits. Theorem 4.3.2 tells us that

this is still true even if the classical computer can only approximately weakly simulate

the circuits up to some multiplicative factor ε, as long as ε < 2/7.

We won’t deal with specific simulation algorithms; rather, we will assume that

there exists a classical weak simulation algorithm for IQP or QAOA circuits con-

taining a gates (or constraints, in the case of QAOA) on b qubits that runs in time

s(a, b). However, it is reasonable to assume that the simulation time should be linear

in the number of gates, so we simplify s(a, b) to a · s(b).

Theorem 4.3.5. Given the ability to classically approximately weakly simulate IQP

or QAOA circuits with a gates (or constraints) over b qubits in time a · s(b) up to

multiplicative parameter ε, there is a postselected bounded-error algorithm for MAJ-

ZEROS with runtime g · nL · s(q) where

g = 4n+ 13

q = n+ 4

L = 50 log(3n)/(2− 7ε)2 (4.4)

62

in the case of IQP circuits and

g = 29n+ 48

q = 4n+ 6

L = 50 log(3n)/(2− 7ε)2 (4.5)

in the case of QAOA circuits. In other words, MAJ-ZEROS ∈ PostBPTIME(g ·

nL · s(q)).

Proof. We use the classical simulation algorithm to produce the nL samples from

circuits Qi for different values of i and post-process them as described in the proof

of Theorem 4.3.1, giving a solution to MAJ-ZEROS which fails with probability at

most n exp(−(2− 7ε)2L/50) = 1/3.

We could stop here and conjecture that MAJ-ZEROS 6∈ PostBPTIME(h(n)),

that is, that there is no postselected bounded-error algorithm for MAJ-ZEROS run-

ning in less than h(n) time, for some super-polynomial function h, such as h(n) = 2n/5.

This would generate a lower bound on the simulation time s(b) for a circuit with b

qubits.

However, it’s not clear how to judge for what function h(n) this conjecture would

be reasonable. If h(n) were a polynomial, this conjecture would be believable since

its falsity would imply MAJ-ZEROS ∈ PostBPP ⊆ PH, causing the collapse of

the PH. On the other hand, we know of a classical O(poly(n)2n)-time algorithm for

MAJ-ZEROS which operates by iterating through all 2n possible settings of z and

computing whether f(z) = 0 in order to compute gap(f). In fact, this algorithm does

not utilize postselection or randomness at all, so it is not believable that no better

algorithm exists; the conjecture for h(n) = 2n is probably not true.

By changing our algorithm from PostBPTIME to Σ3TIME we change the form

of our conjecture to MAJ-ZEROS 6∈ Σ3TIME(h(n)). Since the polynomial hierarchy

has been studied much more deeply than the class PostBPP, it will be easier for us

to understand for what h(n) our conjecture is believable.

63

Theorem 4.3.6. If a problem P has a postselected bounded-error algorithm running

in time h(n), it has a Σ3TIME algorithm running in c(h(n)) where

c(x) = log(kx)(kx)
(

4(kx)2 + 6(kx) + 9
)

+ log(kx)2 (4.6)

and k = max(16, 4 log(8x)/3). In other words, P ∈ PostBPTIME(h(n)) implies

P ∈ Σ3TIME(c(h(n))).

Corollary 4.3.6.1. If it is possible to weakly simulate IQP or QAOA circuits as in

Theorem 4.3.5, MAJ-ZEROS ∈ Σ3TIME(c(g · nL · s(q))) where n is the number of

variables in the input polynomial and g, q, and L are given by Eqs. (4.4) for IQP

circuits or Eqs. (4.5) for QAOA circuits.

The full proof of Theorem 4.3.6 is contained in Appendix A.1, but here we mention

the main idea.

Proof idea for Theorem 4.3.6. Let the postselected probabilistic machine that solves

P be denoted M , which acts on the length-n input to the problem w and a random

string r of length equal to the runtime h(n) of M . Let A(w), R(w), and C(w) be

the sets of strings r such that M(w, r) accepts, rejects, and cancels, respectively.

Then, the bounded-error condition reads: if P(w) = 1 then |A(w)| ≥ 2|R(w)|, and

if P(w) = 0 then 2|A(w)| ≤ |R(w)|. The idea behind the proof is to approximate

|A(w)| and |R(w)| up to a multiplicative factor of
√

2, allowing us to determine which

is larger and subsequently output the correct answer to P(w). It is a long-established

fact that approximate counting in this sense can be done in the third level Σ3TIME in

time that is polynomial in the runtime of M , but the exact form of that polynomial

is rarely computed [36]. In the appendix, we carry through this calculation and

explicitly describe the approximate counting algorithm. The algorithm tests whether

there exists a set of j linear hash functions {Hi}ji=1 that compress the random inputs

r down to j bits such that at least one of the hash functions causes no collisions

for various values of j. The maximum j for which this is possible communicates

information about |A(w)| and |R(w)|, and testing whether such a set exists can be

performed efficiently using a Σ2P oracle, putting the algorithm in Σ3P.

64

4.3.4 Conclusion and result

Corollary 4.3.6.1 gives us an implicit algorithm for solving MAJ-ZEROS in the third

level of the TIME hierarchy. If we conjecture that MAJ-ZEROS 6∈ Σ3TIME(h(n))

for some function h(n), this will imply a lower bound on the simulation time s(b) for

a circuit over b qubits.

Since a polynomial third-level algorithm for MAJ-ZEROS would cause the collapse

of the polynomial hierarchy, a polynomial h(n) would lead to a believable conjecture,

but also only a polynomial lower bound on the simulation time. On the other hand, as

we mentioned in the discussion about conjectures relating to PostBPTIME, there is

a naive algorithm for MAJ-ZEROS that runs in time O(poly(n)2n) that doesn’t use

the added power of being in the third level, so h(n) = 2n is probably not a believable

conjecture.

However, since we have moved the discussion to the TIME hierarchy, we have a

much better framework from which to discuss such conjectures. A similar discussion

has been had with regard to the separation between classes P and NP. Not only is it

widely believed that NP-complete problems like three-coloring are not in P, it is also

generally believed that there exists a constant c such that these problems are not in

the class TIME(2cn), that is, some problems in NP require exponential time. This

statement is called the exponential time hypothesis (ETH). The strong exponential

time hypothesis (SETH) goes further, stating that some problems in NP are not in

TIME(2cn) for any c < 1, that is, they require 2n time.

Recall that P is the zeroth level of the polynomial hierarchy and NP is the first

level. Our discussion instead centers around a separation between the third level and

the class PP, which in a certain sense is more powerful than the entire PH since

PH ⊆ PPP.1 Since the relationship between P and NP resembles the relationship

between adjacent levels of the PH, the work surrounding ETH and SETH gives some

1The relation between PP itself and the PH is complicated, and largely unknown. We know that
PP contains NP. However, there is evidence, in work by Beigel et al. [5] separating PNP from PP
with respect to an oracle, that PP does not contain any level of the PH above NP.

65

force to the notion that we should likewise believe conjectures claiming exponential

separation between PP and the third level of the hierarchy.

We augment this argument with the following fine-grained oracle separation be-

tween PP and Σ3TIME. While an oracle separation is not a proof that two classes

are not equal, it does show that any proof purporting to claim that they are equal

must be non-relativizing; many of the most effective proof techniques in complexity

theory are necessarily relativizing.

Theorem 4.3.7. There is an oracle A such that PPA 6⊂ Σ3TIMEA(2n/5

92
− n

8
).

The proof, which utilizes known lower bounds on the size of classical circuits that

compute the majority function, is left for Appendix A.2.

Inspired by this oracle separation, we make the following conjecture.

Conjecture 4.3.1. MAJ-ZEROS 6∈ Σ3TIME(h(n)) where h(n) = 2n/5

92
− n

8
.

Conjecture 4.3.1 combined with Corollary 4.3.6.1 implies that c(g·nL·s(q)) > h(n),

an implicit lower bound on the function s, as stated in the following corollary.

Corollary 4.3.7.1. Assume conjecture 4.3.1. If there exists a classical algorithm that

can approximately simulate IQP or QAOA circuits with a gates (or constraints) over

b qubits up to multiplicative parameter ε in time a · s(b), the function s must satisfy

c(g · nL · s(q)) > 2n/5

92
− n

8
(4.7)

where g, q, and L are given by Eqs. (4.4) for IQP circuits, and by Eqs. (4.5) for

QAOA circuits.

Corollary 4.3.7.1 is the main result of this chapter. The form of the algebra makes

it difficult to express the lower bound succinctly in a form s(b) > t(b) for some function

t, but we can numerically solve for and plot the resulting bound. For ε = 0, this is

shown in Figure 4-5.

The fastest supercomputers today can perform at 1017 FLOPs (floating-point op-

erations per second).2f We can numerically determine from the plot in Figure 4-5
2A list of the fastest supercomputers is maintained at https://www.top500.org/statistics/

list/

66

https://www.top500.org/statistics/list/
https://www.top500.org/statistics/list/

Figure 4-5: Numerically calculated lower bound on the function s(b) when ε = 0
giving the time per gate necessary to simulate an IQP or QAOA circuit over b
qubits.

the number of qubits b such that the lower bound on s(b) is equal to the maximum

number of operations today’s supercomputers can perform in one day. For IQP cir-

cuits, it is roughly 1700, and for QAOA circuits, it is roughly 7100. Since the total

simulation time is a · s(b) where a is the number of gates (or constraints), in these

scenarios, it would take the most powerful supercomputer at least an entire day for

each gate to simulate IQP or QAOA circuits with this many qubits. We believe this

is a good measure of intractability.

Letting ε be positive has little effect on these numbers. Even when ε is as large as

0.1, the corresponding numbers increase by only 20 qubits for IQP circuits, bringing

the total closer to 1750 qubits, and by only 80 qubits for QAOA circuits, bringing

the total to closer to about 7150 qubits. This makes sense since positive ε leads

to a polynomial amount of overhead, and since the bound on s(b) is exponential,

this polynomial overhead should only cost an additional small logarithmic number of

qubits.

67

68

Chapter 5

Lower bounds for simulation of

Clifford + T circuits

5.1 Outline of lower-bounds argument

In the previous chapter, we showed how imposing a fine-grained complexity theoretic

assumption leads to lower bounds on the simulation time for instantaneous and QAOA

circuits. In this chapter, we present a nearly identical argument for lower bounds on

the simulation time of Clifford + T circuits. The main difference, therefore, is that

the circuit we build to solve the MAJ-ZEROS problem will be a Clifford + T circuit,

and the fundamental resource we are counting is the number of T gates, not the

number of qubits. Whereas before our simulation time was a · s(b) for a circuit with

a gates and b qubits, now our simulation time will be poly(a, b) · s(t) where t is the

number of T gates. Throughout this section, both T and T † gates will be included

whenever we count the number of T gates in a circuit.

69

5.2 Derivation of lower bounds

5.2.1 Clifford + T circuit for solving MAJ-ZEROS

Theorem 5.2.1. For a degree-3 polynomial f on n variables where each variable

appears in at most three terms, there exists a family of postselected quantum circuits

{Qi}n−1
i=0 made up solely of Clifford gates and T gates, each acting on q = 4n + 3

qubits and containing at most t = 9n T gates as well as g = 34n + 6 Clifford gates,

such that taking n · L samples from Qi for different values of i allows us to solve

MAJ-ZEROS for the input f with error probability n exp(−2L/25). Thus, we require

only O(n log(n)) samples to achieve arbitrarily small error probability.

Proof. We use the same basic circuit as in our proofs of Theorem 4.3.1 and Theorem

4.3.3. The creation of the state |ψ〉 by circuit C ′f involves H, CZ, CCZ, and CCCZ

gates. The H and CZ gates are in the Clifford + T gate set. The CCZ gates can

be decomposed into Clifford + T using only four T gates using the construction from

[25], which also describes how this circuit can be embedded within itself to perform a

CCCZ gate with eight T gates. We reproduce this decomposition in Figure 5-1. In

[24], it is shown that four T gates is optimal.

a • T † •

b • T † •

|0〉 H • T • H S • H 〈0|

|0〉 T |0〉
c •

Figure 5-1: Decomposition of a CCZ gate into postselected Clifford + T gates, from
[25], where we have used postselection instead of a corrective conditional gate. The
circuit negates the input only if qubits a, b, and c are all |1〉. It requires two ancilla
qubits and uses four T gates. CCU gates for any gate U can be constructed by
replacing the CZ gate in this circuit with a CU gate, where the third qubit is the
control and fifth qubit is the target. Therefore, we can implement a CCCZ gate
by replacing the CZ gate with this circuit, embedding it inside of itself to create a
circuit with eight T gates. In [24], a lower bound of four T gates is shown for such a
decomposition, so the circuit is optimal.

70

In the worst case, there are n terms in the polynomial f , each with three variables

(recall that we can assume each variable appears at most three times). Thus, creating

|ψ〉 requires 2n+ 1 external H gates, plus 8 T gates, 16 CNOT gates, 6 H gates, 2 S

gates, and a single CZ gate for each of the n terms. This gives an overall total of 8n

T gates, 16n CNOT gates, 8n+ 1 H gates, 2n S gates, and n CZ gates.

To create the state α |0〉 − β |1〉 for β/α = ηi, we use the construction in Figure

4-4. This requires i T gates, 2i+ 2 H gates, 2 Z gates, and i− 1 CZ gates.

Finally, to create the state |ψ′〉 from |ψ〉 and α |0〉 − β |1〉, we need 3 H gates and

1 CZ gate, or by writing HjCZijHj = CXij, just a single H gate and a single CNOT

gate.

If we impose i ≤ n we can find an upper bound on the number of each gate needed:

9n T gates, 16n+ 1 CNOT gates, 2n− 1 CZ gates, 10n+ 4 H gates, 2n S gates, and

2 Z gates. If we require that CZ be implemented with two H gates and a CNOT,

and that Z be implemented as S2 = Z, then the number of CNOT gates becomes

18n, the number of H gates becomes 14n + 2 and the number of S gates becomes

2n+ 4. Thus we have a total of 9n T gates, and 34n+ 6 other gates.

The number of qubits needed to create |ψ〉 is n+ 1 plus ancillas incurred in order

to implement CCZ and CCCZ gates as in the construction in Figure 5-1. If we

make the worst case assumption that every term has three variables, then each term

requires four ancilla qubits. However, since the fourth qubit in Figure 5-1 ends up

back in the |0〉 state, it can be reused to implement future CCZ or CCCZ gates.

Since we have embedded the circuit within itself, there will be two reusable qubits,

so we need a total of 2n non-reusable ancillas and 2 reusable ancillas to implement

all n terms.

To create α |0〉 − β |1〉 we need i ≤ n qubits, and creating |ψ′〉 from |ψ〉 and

α |0〉−β |1〉 requires no extra qubits. The total number of qubits is at most 4n+3.

As before, the theorem extends to the approximate case simply by taking more

samples.

71

Theorem 5.2.2. There exists a family of quantum circuit {Qi}n−1
i=0 as in Theorem

5.2.1 such that with n ·L approximate samples up to multiplicative parameter ε < 2/7,

the problem MAJ-ZEROS can be solved with chance of failure n exp(−(2−7ε)2L/50).

Thus, even in the case of approximate sampling, only O(log(n)) samples are needed

to achieve arbitrarily small error probability.

5.2.2 Conclusion and result

We assume the ability to weakly simulate a Clifford + T circuit with τ T gates, a

Clifford gates, and b qubits up to multiplicative factor ε in time poly(a, b, 1/ε) · s(τ).

This expression separates any exponential dependence solely to the number of T gates,

which is reasonable since Clifford circuits alone are simulable in polynomial time.

Additionally, simulation algorithms have been found that have runtime expressed in

this form, such as in [7], where s(τ) ≈ 20.228τ .

Paralleling Theorem 4.3.5, we have the following.

Theorem 5.2.3. Given the ability to classically approximately weakly sample Clifford

+ T circuits with τ T gates, a Clifford gates, and b qubits in time poly(a, b, 1/ε) · s(τ)

up to multiplicative parameter ε, there is a postselected bounded-error algorithm for

MAJ-ZEROS with runtime poly(g, q, 1/ε) · nL · s(t) where

t = 9n

g = 34n+ 8

q = 4n+ 3

L = 50 log(3n)/(2− 7ε)2 (5.1)

In other words, MAJ-ZEROS ∈ PostBPTIME(poly(g, q, 1/ε) · nL · s(t)).

Then, paralleling Corollary 4.3.6.1, we conclude from Theorem 4.3.6 the following.

Corollary 5.2.3.1. If it is possible to weakly simulate Clifford + T circuits as in

Theorem 5.2.3, MAJ-ZEROS ∈ Σ3TIME(c(poly(g, q, 1/ε) · nL · s(t))) where n is the

72

number of variables in the input polynomial, the function c is given by Eq. (4.6), and

g, q, and L are given by Eqs. (5.1).

Thus, by imposing Conjecture 4.3.1, we arrive at the lower bound.

Corollary 5.2.3.2. Assume Conjecture 4.3.1. If there exists a classical algorithm

that can approximately simulate Clifford + T circuits with τ T gates, a Clifford gates

and b qubits up to multiplicative parameter ε in time poly(a, b, 1/ε) · s(t), then the

function s must satisfy

c(poly(g, q, 1/ε) · nL · s(t)) > 2n/5

92
− n

8
(5.2)

where t, g, q, and L are given by Eqs. (5.1), and c is given by Eq. (4.6).

In Chapter 4 we used our lower bound to estimate the number of qubits needed

for simulating the circuit to be classically hard. For Clifford + T circuits, we will

instead use the lower bound to state an asymptotic lower bound on the t-dependence

of any Clifford + T simulation algorithm.

Corollary 5.2.3.3. Assume Conjecture 4.3.1. If a classical algorithm weakly simu-

lates Clifford circuits with τ T gates, a Clifford gates, and b qubits up to multiplicative

parameter ε in time poly(a, b, 1/ε) · 2γτ , then γ > 1/135 ≈ 0.0074.

Proof. The simulation algorithm must satisfy Eq. (5.2) with s(τ) = 2γτ . The asymp-

totic dependence of the function c is roughly c(x) ≈ x3 ignoring constants and loga-

rithmic factors. This can be stated precisely by noting that for any constant δ > 0,

there exists a constant k such that c(x) < kx3+δ for sufficiently large x. By including

k within the function poly(g, q, 1/ε) and substituting 9n for t, we conclude that for

sufficiently large n, the left-hand-side of Eq. (5.2) is less than poly(n, 1/ε) · 2(3+δ)γ(9n).

This must be greater than the right-hand-side which can be written as poly(n) · 2n/5.

If γ were less than or equal to 1/(3 · 9 · 5) = 1/135, then for sufficiently large n, this

inequality would be broken since for positive δ, the left-hand-size would exhibit faster

exponential growth. Thus, γ > 1/135.

73

This is the main result of the chapter. Under the purely classical complexity

theoretic assumption in Conjecture 4.3.1, we have concluded a lower bound on the

exponential dependence of any multiplicative approximate simulation of Clifford +

T circuits. The best known classical algorithm of this form is by Bravyi and Gosset

[7] and has γ ≈ 0.228 as discussed in Section 2.4.5. While our lower bound is not

extremely tight, we are unaware of any previously derived lower bounds for such

algorithms.

The factor 135 can be simply understood as the product of three factors. A factor

of 5 comes from the exponent in Conjecture 4.3.1, which we believe is reasonable due

to the oracle separation in Theorem 4.3.7. A factor of 3 comes from the fact that

the runtime gets roughly cubed when we convert from PostBPTIME to Σ3TIME

described by Theorem 4.3.6. Finally, a factor of 9 comes from the fact that there

are 9n T gates in the Clifford + T circuit to solve MAJ-ZEROS from Theorem 5.2.1.

Improving any of these three aspects of the result would directly improve the lower

bound γ > 1/135.

In a sense, the main point can be thought of as a connection between Clifford + T

simulation and a Σ3TIME algorithm for MAJ-ZEROS, the latter of which is purely

classical. Even if Conjecture 4.3.1 were to fail in favor of a weaker conjecture, we

would still have a (weaker) lower bound on Clifford + T simulation. We can restate

our result as the observation that if we had a Clifford + T simulation algorithm with

T -gate dependence 2γτ such that γ ≤ 1/135, we would also have a Σ3TIME algorithm

for MAJ-ZEROS that we expect not to exist.

74

Chapter 6

Conclusions and future directions

6.1 Bottlenecks and places for improvement

The novelty of our result lies in the fact that we are able to generate a fine-grained

lower bound on the simulation time for IQP, QAOA, and Clifford + T circuits, but

there is no indication that these lower bounds are tight. Improvements to our analysis

as well as completely different methods could generate an improved version of our

results.

There are three main ways our analysis could be improved, corresponding to the

three main steps in our result.

First, the lower bound on the runtime of any Σ3TIME algorithm for MAJ-ZEROS

expressed in conjecture 4.3.1 could be made tighter. Our lower bound scales roughly

like 2n/5, but we could conjecture other functions 2kn with k > 1/5. To support such a

change, we would either need to find a tighter oracle separation, or some other means

for motivating the new lower bound. The exponential dependence of our simulation

lower bound is directly proportional to k. Improving k by a certain factor α would

decrease our qubits estimate in Section 4.3.4 by roughly α, and increase our lower

bound on γ in Section 5.2.2 by exactly α. However, since we know the Conjecture is

not true when k = 1, we cannot hope to improve k by more than a factor of 5.

Second, our choice of PP-complete problem and circuit construction to solve that

problem with postselected IQP, QAOA, or Clifford + T circuits could be improved.

75

For example, an earlier version of this work used the PP-complete satisfiability prob-

lem MAJ-SAT instead of MAJ-ZEROS, and the move to MAJ-ZEROS improved our

results by nearly an order of magnitude. Could a wiser choice of problem yield an

even better result? Since the number of ancilla qubits required to solve MAJ-ZEROS

with IQP circuits does not grow with n, it seems to be close to the best we can do in

this case. However, for QAOA circuits, 3n ancilla qubits are required to solve MAJ-

ZEROS, leading to the factor of 4 difference between the expressions for g in Eqs. (4.4)

and Eqs. (4.5). This accounts for the roughly factor of 4 difference between our qubit

estimates for IQP and QAOA in Section 4.3.4. Perhaps a more clever construction for

solving MAJ-ZEROS or a better choice of problem would allow for a QAOA circuit

needing only constant ancillas, bringing our result for QAOA closer to our result for

IQP. Similarly, our Clifford + T construction requires 9n T gates, contributing a fac-

tor of 9 to the lower bound on γ. Optimizing this construction, or finding a different

PP-complete problem with a more natural Clifford + T construction could therefore

improve our estimate.

Lastly, the reduction from PostBPTIME to Σ3TIME encapsulated by Theorem

4.3.6 causes the runtime of the algorithm to increase according to the function c

from Eq. (4.6). Since c(x) is roughly x3 and the simulation time is exponential, this

contributes roughly a factor of 3 to our analysis, both in terms of number of qubits for

IQP and QAOA and for our lower bound on γ. Making improvements at this step is

more likely to pose difficulty since the proof method for Theorem 4.3.6 involving hash

functions seems to require significant overhead. Perhaps a different proof method,

however, could improve this part of the analysis.

Ultimately, we see that there is some room for improvement on our result, but that,

especially for IQP, we are unlikely to improve it considerably without significantly

modifying our process.

76

6.2 Impact of result

We emphasize both a practical and theoretical way in which our results are impact-

ful. Practically, our results in Chapter 4 give a rough estimate for how large IQP

and QAOA circuits must be to guarantee that sampling their output distributions

is classically intractable. In both cases, thousands of qubits are needed, which is

considerably more than what is possible on current technology. While this estimate

could be improved, we gain a rough idea of how many will be needed for future

quantum supremacy demonstrations. As technology approaches this threshold, these

estimates will be valuable for determining when quantum supremacy has actually

been demonstrated. In the meantime, the differences between these estimates might

help experimentalists decide which quantum supremacy avenues are most likely to be

successful.

Theoretically, our results demonstrate a more fine-grained connection between the

runtime of classical algorithms simulating quantum circuits and the runtime of clas-

sical third-level algorithms for the PP-complete problem MAJ-ZEROS. Previously,

it had been shown that a polynomial simulation algorithm implies a polynomial Σ3P

algorithm for MAJ-ZEROS (and other PP problems), but our construction more pre-

cisely defines the relationship between the two runtimes and defines explicitly how the

algorithm operates (as opposed to simply stating that it exists). Our lower bounds

on the simulation time of IQP, QAOA, and Clifford + T represent an important

theoretical advance toward understanding what simulation time is optimal. This is

particularly relevant for Clifford + T simulation, since any quantum circuit can be

decomposed as a Clifford + T circuit, and many experimental systems aim to operate

within that framework.

6.3 Future work

There are several directions that this work could go in the future. As mentioned,

there is room to optimize and refine the process to achieve better results. Based on

77

our analysis of the bottlenecks in the argument, the most likely way to do this is

to find more natural PP-complete problems for QAOA or Clifford + T circuits or

more efficient constructions to solve the MAJ-ZEROS problem. Additionally, more

thought could be put into strengthening Conjecture 4.3.1.

Moreover, it should be possible to extend this process to other quantum supremacy

proposals. For example, a similar analysis of the BosonSampling problem should

allow for an estimation of the number of photons needed to guarantee that classically

sampling the output distribution is intractable. For quantum supremacy avenues

relying on other lines of complexity theoretic reasoning, such as the random circuits

proposal, perhaps the high-level idea of imposing fine-grained conjectures to conclude

fine-grained results could be fruitful, if not the exact details of our argument.

Finally, our results only provide a lower bound on the simulation time for ap-

proximate weak simulations in the multiplicative sense. Additive approximations are

more general, and perhaps more attainable experimentally, but existing quantum

supremacy arguments require additional conjectures to guarantee that simulation is

still hard [2, 10]. In a future extension of this work, it would be interesting to apply

our ideas to the additive case.

78

Appendix A

Proofs

A.1 Proof of Theorem 4.3.6: Σ3TIME algorithm for

problems in PostBPTIME

Theorem 4.3.6. If a problem P has a postselected bounded-probability algorithm

running in time h(n), it has a Σ3TIME algorithm running in c(h(n)) where

c(x) = log(kx)(kx)
(

4(kx)2 + 6(kx) + 9
)

+ log(kx)2 (A.1)

and k = max(16, 4 log(8x)/3). In other words, P ∈ PostBPTIME(h(n)) implies

P ∈ Σ3TIME(c(h(n))).

Proof. The result from [23] that PostBPP = BPPPATH ⊆ PΣ2P ⊆ Σ3P implies that

the conversion from PostBPTIME to Σ3TIME should be possible, and our proof

takes on a similar strategy. These ideas rely heavily on the concept of Stockmeyer

(approximate) counting, which was first introduced in [36].

Let the postselected probabilistic machine that solves P be denoted M , which

acts on the length-n input to the problem w and a random string r of length equal

79

to the run time h(n) of M . Additionally, we define

A(w) = {r such that M(w, r) = 1}

R(w) = {r such that M(w, r) = 0}

C(w) = {r such that M(w, r) = cancel} (A.2)

The bounded-error condition tells us that if P(w) = 1 then |A(w)| ≥ 2|R(w)|,

and if P(w) = 0 then 2|A(w)| ≤ |R(w)|. If we can approximate |A(w)| and |R(w)| up

to a multiplicative factor of
√

2 we can determine which is larger and subsequently

output the correct answer to P(w). We do so as follows.

Consider a new machine Mk that acts on w along with a random string r of

length k · h(n) by simply running the algorithm M k times. Mk accepts only if all k

iterations of algorithmM accept, rejects only if all k iterations of algorithmM reject,

and cancels the computation otherwise. If Ak, Rk, and Ck are defined as in Eq. (A.2),

except using Mk in place of M , then |Ak(w)| = |A(w)|k and |Rk(w)| = |R(w)|k since

Mk accepts (rejects) any k · h(n) length string r only if each of the k length-h(n)

substrings of r is in A(w) (R(w)). Let k = max(16, 4 log(8h(n))/3), for reasons that

will make sense later.

We now describe an oracle called HASHA that allows |Ak(w)| to be approximated

using time polynomial in h(n). The input to HASHA is the string w and an integer

j, and is defined by

(∃{H1, H2, . . . , Hj}) (∀r ∈ Ak(w)) (∃i ≤ j) (∀s ∈ Ak(w), s 6= r) Hi(s) 6= Hi(r)

(A.3)

where each Hi is a linear hash function from k ·h(n) bits to j bits in the form of a j by

k ·h(n) matrix of 0s and 1s. In words, the oracle outputs 1 if, given the integer j, there

exists a set of j linear hash functions such that for all elements rk of Ak(w), we can

choose one of these hash functions Hi and be guaranteed that Hi creates no collisions

with rk, that is, the hash function Hi sends no other string sk to the same compressed

string Hi(rk). Intuitively, the larger j is, the more likely HASHA is to be true on input

80

(w, j), since it is easier to construct a hash function yielding no collisions if the output

strings from the hash function are longer. By replacing Ak with Rk in Eq. (A.3), we

can form the oracle HASHR. We can then define the oracle HASH whose input is w,

j, and a single bit of input z, such that HASH(w, r, z) = HASHA(w, r) if z = 1 and

HASH(w, r, z) = HASHR(w, r) if z = 0.

Looking at Eq. (A.3), we notice that HASHA has four quantifiers. However, we

can compress this into effectively two quantifiers since the third quantifier ranges

over only a polynomial (in h(n)) number of possibilities, so we can remove it and

combine the ∀ quantifiers on either side. We present the details of this conversion in

the following series of expressions, where each line is equal to the line above it and

equal to HASHA.

NOT ((∀{H1, . . . Hj}) (∃r ∈ Ak(w)) (∀i ≤ j) (∃s ∈ Ak(w), s 6= r) Hi(s) = Hi(r))

NOT ((∀{H1, . . . Hj}) (∃r ∈ Ak(w)) (∃(s1, . . . , sj) ∈ Ak(w)j) Hi(si) = Hi(r) ∀i ≤ j)

NOT ((∀{H1, . . . Hj}) (∃(r, s1, . . . , sj) ∈ Ak(w)j+1) Hi(si) = Hi(r) ∀i ≤ j)

(∃{H1, . . . Hj}) (∀(r, s1, . . . , sj) ∈ Ak(w)j+1, r 6= si∀i) (∃i ≤ j Hi(si) 6= Hi(r))

In this form, we see how HASHA can be computed with a Σ2TIME ma-

chine running in time polynomial in h(n): we write the last line of HASHA as

∃u∀vR((w, j), u, v) where R is a deterministic algorithm operating as follows.

(1) R checks that r 6= si ∀i, and that (r, s1, . . . sj) ∈ Ak(w)j+1 by running M on each

set of random bits. If any of these fail, R accepts.

(2) R computes Hi(r) and Hi(si) for each i ≤ j and accepts only if Hi(si) 6= Hi(r)

for at least some i. Otherwise R rejects.

We use a model where comparing two bits takes one time step. The first step

takes k ·h(n) · j steps to compare all the bits and then k ·h(n) · (j+1) steps to runMk

j + 1 times. The second step is simply matrix multiplication and takes k · h(n) · 2j2

time steps to compute Hi(r) and Hi(si) for each i, as well as k · h(n) · j time steps to

81

compare the results, giving a total number of time steps

k · h(n) · (2j2 + 3j + 1). (A.4)

Note that if h(n) were a polynomial (generally not true), then the runtime of R

would be a polynomial in the length of its inputs, putting HASHA in the class Σ2P.

By allowing R to take an extra bit of input z, it can instead solve the HASH problem

by using that bit to decide in step (1) whether to check if the strings are Ak(w) or

Rk(w). This costs no additional time steps.

The crucial fact for approximate counting is the following.

Lemma A.1.1. If jA is the least integer such that HASHA(w, jA) is true, then

2jA−3 ≤ |Ak(w)| ≤ jA2jA . (A.5)

The lemma extends similarly to HASHR.

Proof. The proof appears in [23], which draws from ideas presented by Stockmeyer

[36], and crucially relies on Sipser’s Coding Lemma for universal hashing [34].

Now we describe how to complete the approximate counting given access to an

oracle for HASH. We attempt to find jA and jR, the smallest integers such that

HASHA(w, jA) and HASHR(w, jR) are true, respectively. This can be done by bi-

nary searching the set of integers between 1 and k · h(n) using the HASH oracle,

requiring 2 log(k · h(n)) oracle queries. We know that |A(w)|k = |Ak(w)| and that

2jA−3 ≤ |Ak(w)| ≤ jA2jA . We also know jA ≤ k · h(n). Hence we can estimate

|A(w)| by the quantity Â = (jA22jA−3)1/(2k) which is approximately correct up to

a factor of (8jA)1/(2k) ≤ (8k · h(n))1/(2k). Since k ≥ 16, k1/(2k) ≤ 21/8, and since

k ≥ 4 log(8h(n))/3, (8h(n))1/(2k) ≤ (8h(n))3/(8 log(8h(n))) = 23/8, meaning our approxi-

mation is good to a factor of
√

2. We do the same to get an estimate R̂ for |R(w)|,

and then accept if Â > R̂ and reject if R̂ > Â. This gives a correct deterministic algo-

rithm for the problem P , but requires access to the HASH oracle. It will henceforth

be referred to as NHASH

82

The number of time steps needed is at most 2 to compute the input to each

subsequent oracle query (since binary searching requires at most 2 bits be flipped

to find the next input), giving 4 log(k · h(n)), plus several arithmetic steps at the

end of the algorithm to compute Â and R̂. This part will depend on the exact

computational model, but we’ll say it costs 3 steps to compute each bit of Â and R̂,

giving 3 log(k · h(n)) steps for a grand total of 7 log(k · h(n)) steps. If this calculation

does not seem rigorous enough, take solace in the fact that these time steps will

ultimately be negligible when n is large.

Since the oracle HASH has a Σ2TIME algorithm, we can convert NHASH for

the problem P into a Σ3TIME algorithm using the intuition behind the fact that

PΣ2P ⊆ Σ3P.

The HASH oracle can be written as ∃u∀vR(x, u, v) on input x. The algorithm

NHASH makes several calls to the HASH oracle while it runs. Let ai be the outcome

of the ith oracle call on input xi. Suppose m0 of the oracle calls output 0 and m1

output 1. If the ith overall oracle call (regardless of outcome) is the jth oracle call

that outputs 0 or if it’s the jth oracle call that outputs 1 then we let f(i) = j. Then

NHASH accepting on input w is equivalent to

(∃{xi}{ai}u(1)
1 . . . u(1)

m1
)(∀v(1)

1 . . . v(1)
m1
u

(0)
1 . . . u(0)

m0
)(∃v(0)

1 . . . v(0)
m0

)T (all inputs) = 1

where T is a machine that simulates NHASH, then, whenever NHASH is about to

make an oracle query, verifies that the input to this oracle query is xi and that

R(xi, u
(ai)
f(i), v

(ai)
f(i)) = ai for each oracle call i. The algorithm T does not have access to

the HASH oracle, so it cannot compute the outcome of the oracle itself, so in order

to proceed with simulating NHASH, it just uses ai as the oracle outcome. At the

end, T verifies that NHASH accepts. If any of these verifications come out false, T

rejects, but otherwise accepts. The fact that this is equivalent to NHASH accepting is

because if HASH(xi) = 1 then by definition ∃u(1)
f(i)∀v

(1)
f(i)R(xi, u

(1)
f(i), v

(1)
f(i)) = 1, whereas

if HASH(xi) = 0 then ∀u(0)
f(i)∃v

(0)
f(i)R(xi, u

(0)
f(i), v

(0)
f(i)) = 0.

83

Now we count the number of time steps that T uses. Simulating NHASH takes

7 log(k · h(n)). Comparing each of the strings xi takes 2(log(k · h(n)))2 since each xi

has log(k · h(n)) bits. Running R for all of the oracle call takes

2 log(k · h(n)) · k · h(n) ·
(

2(k · h(n))2 + 3(k · h(n)) + 1
)

steps, where we have used Eq. (A.4) and imposed j ≤ k · h(n). This gives a total run

time of

c(h(n)) = log(k · h(n)) · (k · h(n)) ·
(

4(k · h(n))2 + 6(k · h(n)) + 9
)

+ log(k · h(n))2.

Thus, T is an algorithm using c(h(n)) satisfying the form of a Σ3TIME algorithm

which solves the problem P . This proves the theorem.

A.2 Proof of Theorem 4.3.7: Oracle separation be-

tween PP and Σ3TIME

Theorem 4.3.7. There is an oracle A such that PPA 6⊂ Σ3TIMEA(2n/5

92
− n

8
).

Proof. The proof has several elements. A lower bound on the size of any classical low-

depth circuit computing the parity function is fundamentally what provides the force

for this result. This lower bound implies a lower bound on low-depth circuits that

compute the majority function (which is how it will eventually be connected to the

class PP). Low-depth circuits can be connected to PH machines with oracles, where

the circuit depth corresponds to the level of the PH, which allows us to complete the

proof.

Background for classical Boolean circuits is described in [15]. Boolean circuits

resemble quantum circuits in the sense that a set of inputs are acted upon by gates to

yield outputs, in this case AND, OR, and NOT gates. The depth of these circuits is

the minimum number of layers of gates and the size of the circuit is the total number

of gates. The output of these circuits is either a 0 or 1, so they compute a Boolean

84

function g(z) on their n-bit input z. The parity function is defined as the sum of the

bits of z mod 2. The majority function is defined to be 1 if more than half the bits

are 1 and 0 if at least half are 0.

Lemma A.2.1 (Corollary 6.38 in [15]). For sufficiently large n, the parity function

on n bits cannot be computed by a depth-d circuit of size at most 20.1n1/d.

Proof. The proof appears in [15].

Circuits that are able to compute the majority function can be used to compute

the parity function.

Lemma A.2.2. If the majority function can be computed on n bits with a circuit

of depth d and size S, then the parity function can be computed on n/2 bits with a

circuit of depth d+ 1 and size nS/2 + 1.

Proof. This proof follows an idea presented in [27]. Let the Boolean function Thrn/2k

for 1 ≤ k ≤ n/2 on n/2 bits be 1 if at least k of the input bits are 1 and 0 if not.

Now, we form a circuit with n/2 input variables, and another n/2 inputs fixed at 1,

for a total of n inputs. To compute Thrn/2k , we use our size-S circuit for computing

the majority function acting on the n/2 variable bits and n/2 − 2k + 2 of the bits

that are fixed to 1, for a total of n − 2k + 2 inputs. Thus, if the majority function

outputs 1, then strictly more than n/2− k + 1 bits are 1. But since n/2− 2k + 2 of

these bits are fixed to 1, we conclude that the majority function only outputs 1 if at

least k of the n/2 variable inputs are 1, which is precisely the function Thrn/2k . Thus,

with a circuit of size at most S and depth d, we can compute Thrn/2k .

The Boolean function that outputs 1 if exactly k of the inputs are 1 can be

expressed as

(Thrn/2k ∧ ¬Thrn/2k+1)

where ¬ means the negation of the output. So the parity function can be expressed

as the OR of this expression over all odd numbers k less than n/2. Since each Thr

function can be computed with a subcircuit of size S and there are n/2 of them, the

85

total size is nS/2 + 1 after the single OR gate has been included. This circuit will

have depth at most d+ 1.

Corollary A.2.2.1. For sufficiently large n, the majority function on n bits cannot

be computed by a depth-d circuit of size at most 20.1(n/2)1/(d+1)
/n.

Proof. If such a circuit existed, it could be used to compute the parity function, as

stated in Lemma A.2.2, with size less than 20.1n1/(d+1) and depth d + 1, breaking the

bound in Lemma A.2.1.

Now we describe the connection between PH machines equipped with an oracle

and classical low-depth circuits. Suppose we are given an oracle-machine in the kth

level of the TIME hierarchy of the form σ(A, x) = ∃y1∀y2 . . . QkykR(x, y1, . . . yk)

where A is a set which R is allowed to compute in a single time step (i.e., R has an A

oracle), n = |x|, the length of yi are bounded by the function q(n), and the run time

of the deterministic machine R with access to oracle A is bounded by function p(n).

Using σ(A, x), we construct a classical Boolean circuit. Let the circuit contain

2p(n)+2 − 2 bits labeled by the strings of length at most p(n) and their negations,

which we denote by the symbol ¬. The circuit will have the property that, if we

set the input value of bit xi corresponding to string i to A(i) and ¬xi to ¬A(i), the

output of the circuit will be 1 if and only if σ(A, x) is true. Here we are following

Ref. [15].

We fix all of the yi and simulate the running of R. When R calls the oracle, we

imagine a branch into two possible paths corresponding to the two possible answers

it could receive. At the end, we have a tree of possible computation paths, some of

which accept. Each accepting path corresponds to a specific set of oracle answers,

so for each accepting path, at the bottom level of the circuit we make an AND gate

between all of the xi or ¬xi that must be set to 1 for R to take that path. Then, at

the second level, we OR the outputs of these AND gates. This subcircuit outputs a

1 if and only if R accepts for input x and our fixed values of yi. Suppose k = 1, so

σ(A, x) = ∃y1R(x, y1). In this case, all we need to do is OR together the output of

each of these subcircuits for the various possible yi, and the output of the circuit will

86

agree with σ(A, x). This OR gate can be combined with the OR gates at the level

below it, making a depth-2 circuit.

For higher values of k, we use induction. We fix y1 and assume we have a depth-k

circuit Cy1 for the function ∃y2∀y3 . . . Qk−1yk ¬R(x, y2, . . . , yk). If we switch all the

AND gates with OR gates in this circuit, and switch every bit with its negation, we

compute the negation of this function on k−1 bits. Then, by performing an OR gate

over all such circuits Cy1 , we correctly compute σ(A, x), with a depth k + 1 circuit.

By induction, this is possible for all integers k.

Moreover, the fanin (maximum number of inputs for a single gate) at the bottom

level of this circuit is at most p(n) since that is the maximum number of oracle queries

for any computational path. The max fanin at higher levels is 2q(n)+p(n) (we have to

add the q(n) since at the 2nd level we are combining the OR from all the computation

paths with the OR associated with the ∃).

Finally, we use this circuit-hierarchy machine correspondence to choose an oracle

A that satisfies the statement of the theorem. For any oracle A, let the language

LA = {0n : the majority of the strings of length n are in A}. For any A, LA is clearly

in the class PPA, since a probabilistic machine can guess one of the strings of length

n, check if it is in A, and then accept or reject accordingly, and end up with the

correct answer more than half the time.

We want to find an A such that LA is not in ΣkTIME(t(n)) for some function

t(n). If LA were in ΣkTIME(t(n)), it would be decided by some machine at level k.

We enumerate all of the machines at level k of the hierarchy, and construct the oracle

A in stages by declaring certain strings in the language A at each stage, declaring

certain strings not in A at each stage, and deferring the rest of the strings to be

decided at a later stage.

On stage j, let σj be the jth machine in level k, which has bounds qj(n) on the

length of its inputs and pj(n) on the length of its runtime. At this point it has been

decided that some strings will be in A and that some strings will not be in A, but

only for a finite number of such strings. Choose n so that n is larger than the length

87

of all these strings and also so that

sj(n) ≡ 2(k+1)(qj(n)+pj(n)) < 20.1·2(n−1)/(k+2)

/(2n), (A.6)

which we assume for now is possible. We construct the circuit of depth k + 1 that

corresponds to σj. We assign all input bits i with length less than n the appropriate

value A(i) to keep consistency with previous stages, and we temporarily assign all

strings greater than n the value 0. This circuit has size at most sj(n) and, by Corollary

A.2.2.1, it cannot compute the majority function on 2n bits. Since all the inputs of

length not equal to n have been fixed, we can view the circuit as solely a function

of the 2n inputs corresponding to bit strings of length n. Since we know the circuit

does not compute the majority function, there must be some setting of the 2n inputs

where the output of the circuit is inconsistent with the majority. We assign the oracle

A these values on strings of length n (which had previously been left undetermined),

so that the jth predicate (which agrees with the output of the circuit) is guaranteed

to output the wrong answer on the input 0n and hence cannot decide the language

LA.

This will only be true for the jth predicate if it is possible to choose an n that

satisfies Eq. (A.6). This constraint can be simplified to

pj(n) + qj(n) < 2(n−1)/(k+2)/(10(k + 1))− n/(k + 1)

for sufficiently large n. The size of the inputs qj(n) must be less than the run time

pj(n) in order for all the bits to be read, so we further simplify the expression to

pj(n) < 2(n−1)/(k+2)/(20(k + 1))− n/(2(k + 1))

. What we’ve shown is that no level-k machine with runtime less than

2(n−1)/(k+2)/(20(k + 1)) − n/(2(k + 1)) can compute the language LA, so LA 6∈

88

ΣkTIMEA(2(n−1)/(k+2)/(20(k + 1))− n/(2(k + 1))). Since LA ∈ PPA this shows

PPA 6⊂ ΣkTIMEA(2(n−1)/(k+2)/(20(k + 1))− n/(2(k + 1))) (A.7)

Choosing k = 3 proves the theorem, where we impose the simplification 92 > 21/5 ·

20 · 4.

89

90

Bibliography

[1] Scott Aaronson. Quantum computing, postselection, and probabilistic
polynomial-time. In Proceedings of the Royal Society of London A: Mathemati-
cal, Physical and Engineering Sciences, volume 461, pages 3473–3482. The Royal
Society, 2005.

[2] Scott Aaronson and Alex Arkhipov. The computational complexity of linear
optics. In Proceedings of the forty-third annual ACM symposium on Theory of
computing, pages 333–342. ACM, 2011.

[3] Scott Aaronson and Lijie Chen. Complexity-theoretic foundations of quantum
supremacy experiments. arXiv preprint arXiv:1612.05903, 2016.

[4] Leonard M Adleman, Jonathan DeMarrais, and Ming-Deh A Huang. Quantum
computability. SIAM Journal on Computing, 26(5):1524–1540, 1997.

[5] Richard Beigel. Perceptrons, PP, and the polynomial hierarchy. Computational
Complexity, 4(4):339–349, 1994.

[6] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush, Nan Ding,
Zhang Jiang, John M Martinis, and Hartmut Neven. Characterizing quantum
supremacy in near-term devices. arXiv preprint arXiv:1608.00263, 2016.

[7] Sergey Bravyi and David Gosset. Improved classical simulation of quantum
circuits dominated by Clifford gates. Physical review letters, 116(25):250501,
2016.

[8] Sergey Bravyi, David Gosset, and Robert Koenig. Quantum advantage with
shallow circuits. arXiv preprint arXiv:1704.00690, 2017.

[9] Michael J Bremner, Richard Jozsa, and Dan J Shepherd. Classical simulation of
commuting quantum computations implies collapse of the polynomial hierarchy.
In Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, volume 467, pages 459–472. The Royal Society, 2011.

[10] Michael J Bremner, Ashley Montanaro, and Dan J Shepherd. Average-case com-
plexity versus approximate simulation of commuting quantum computations.
Physical review letters, 117(8):080501, 2016.

91

[11] Isaac L Chuang, Lieven MK Vandersypen, Xinlan Zhou, Debbie W Leung,
and Seth Lloyd. Experimental realization of a quantum algorithm. Nature,
393(6681):143–146, 1998.

[12] Christopher M Dawson and Michael A Nielsen. The solovay-kitaev algorithm.
arXiv preprint quant-ph/0505030, 2005.

[13] David Deutsch. Quantum theory, the Church-Turing principle and the universal
quantum computer. In Proceedings of the Royal Society of London A: Mathemat-
ical, Physical and Engineering Sciences, volume 400, pages 97–117. The Royal
Society, 1985.

[14] David Deutsch. Quantum computational networks. In Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences, volume
425, pages 73–90. The Royal Society, 1989.

[15] Ding-Zhu Du and Ker-I Ko. Theory of computational complexity, volume 58.
John Wiley & Sons, 2011.

[16] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate
optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.

[17] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum
computation by adiabatic evolution. arXiv preprint quant-ph/0001106, 2000.

[18] Edward Farhi and Aram W Harrow. Quantum supremacy through the quantum
approximate optimization algorithm. arXiv preprint arXiv:1602.07674v1, 2016.

[19] Richard P Feynman. Simulating physics with computers. International journal
of theoretical physics, 21(6):467–488, 1982.

[20] Daniel Gottesman. The Heisenberg representation of quantum computers. arXiv
preprint quant-ph/9807006, 1998.

[21] Daniel Gottesman and Isaac L Chuang. Demonstrating the viability of universal
quantum computation using teleportation and single-qubit operations. Nature,
402(6760):390–393, 1999.

[22] Lov K Grover. A fast quantum mechanical algorithm for database search. In Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pages 212–219. ACM, 1996.

[23] Yenjo Han, Lane A Hemaspaandra, and Thomas Thierauf. Threshold compu-
tation and cryptographic security. SIAM Journal on Computing, 26(1):59–78,
1997.

[24] Mark Howard and Earl Campbell. Application of a resource theory for
magic states to fault-tolerant quantum computing. Physical Review Letters,
118(9):090501, 2017.

92

[25] Cody Jones. Low-overhead constructions for the fault-tolerant Toffoli gate. Phys-
ical Review A, 87(2):022328, 2013.

[26] Jonathan A Jones, Michele Mosca, and Rasmus H Hansen. Implementation of a
quantum search algorithm on a quantum computer. Nature, 393(6683):344–346,
1998.

[27] Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27.
Springer Science & Business Media, 2012.

[28] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K Lenstra, Emmanuel
Thomé, Joppe W Bos, Pierrick Gaudry, Alexander Kruppa, Peter L Montgomery,
Dag Arne Osvik, et al. Factorization of a 768-bit RSA modulus. In Annual
Cryptology Conference, pages 333–350. Springer, 2010.

[29] Ashley Montanaro. Quantum circuits and low-degree polynomials over F2. Jour-
nal of Physics A: Mathematical and Theoretical, 2017.

[30] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum
information. Cambridge university press, 2010.

[31] John Preskill. Quantum computing and the entanglement frontier. arXiv preprint
arXiv:1203.5813, 2012.

[32] Dan Shepherd and Michael J Bremner. Temporally unstructured quantum com-
putation. In Proceedings of the Royal Society of London A: Mathematical, Phys-
ical and Engineering Sciences, volume 465, pages 1413–1439. The Royal Society,
2009.

[33] Peter W Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In Foundations of Computer Science, 1994 Proceedings., 35th Annual
Symposium on, pages 124–134. IEEE, 1994.

[34] Michael Sipser. A complexity theoretic approach to randomness. In Proceedings
of the fifteenth annual ACM symposium on Theory of computing, pages 330–335.
ACM, 1983.

[35] Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson
Course Technology Boston, 2006.

[36] Larry Stockmeyer. The complexity of approximate counting. In Proceedings of
the fifteenth annual ACM symposium on Theory of computing, pages 118–126.
ACM, 1983.

[37] Barbara M Terhal and David P DiVincenzo. Adaptive quantum computation,
constant depth quantum circuits and arthur-merlin games. arXiv preprint quant-
ph/0205133, 2002.

93

	Introduction
	Motivation
	Previous work
	Quantum supremacy by quantum circuit simulation
	Specific quantum supremacy proposals
	Classical simulation algorithms

	Summary of results

	Quantum circuits
	General quantum circuits
	Universal gate sets and compilation
	Restricted models of quantum circuits
	Instantaneous quantum circuits (IQP)
	Quantum approximate optimization algorithm (QAOA) circuits

	Classical simulation of quantum circuits
	Feynman's intuition
	Strong vs. weak simulation
	Approximate simulation
	Clifford circuits and the Gottesman-Knill theorem
	General simulation algorithms

	Complexity theory
	The basics
	Computational problems
	The complexity classes P and NP

	Counting problems
	Probabilistic computation
	The polynomial hierarchy
	Quantum computation and postselection
	Hardness of simulation for quantum circuits
	Hardness for general quantum circuits
	Hardness for restricted classes of quantum circuits

	Lower bounds for simulation of IQP and QAOA circuits
	Outline of lower-bounds argument
	The problem MAJ-ZEROS
	Derivation of lower bounds
	PostIQP circuit for solving MAJ-ZEROS
	PostQAOA circuit for solving MAJ-ZEROS
	Moving from PostBPTIME to 3TIME
	Conclusion and result

	Lower bounds for simulation of Clifford + T circuits
	Outline of lower-bounds argument
	Derivation of lower bounds
	Clifford + T circuit for solving MAJ-ZEROS
	Conclusion and result

	Conclusions and future directions
	Bottlenecks and places for improvement
	Impact of result
	Future work

	Proofs
	Proof of Theorem 4.3.6: 3TIME algorithm for problems in PostBPTIME
	Proof of Theorem 4.3.7: Oracle separation between PP and 3TIME

