
Energy-Efficient Protocols and Hardware
Architectures for Transport Layer Security

by

Utsav Banerjee

B. Tech. (Hons.), Indian Institute of Technology, Kharagpur (2013)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 5, 2017

Certified by. .
Anantha P. Chandrakasan

Vannevar Bush Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Energy-Efficient Protocols and Hardware Architectures for

Transport Layer Security

by

Utsav Banerjee

Submitted to the Department of Electrical Engineering and Computer Science
on May 5, 2017, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

The Internet of Things (IoT) has introduced a vision of an Internet where computing
and sensing devices are interconnected. Digitally connected devices are encroaching
on every aspect of our lives, including our homes, cars, offices, and even our bodies.
Researchers estimate that there will be over 50 billion wireless connected devices
by 2020 [1]. On one hand, the IoT enables fundamentally new applications, but on
the other, these devices are attractive targets for cyber attackers, thus making IoT
security a major concern. Datagram Transport Layer Security (DTLS) is considered
to be one of the most suited protocols for securing the IoT. However, computation and
communication overheads make it very expensive to implement DTLS on resource-
constrained IoT sensor nodes.

In this work, we profile the energy costs of DTLS version 1.3, using experimental
models for cryptographic computations and radio-frequency (RF) communications.
Based on this analysis, we propose protocol optimizations that can reduce the overall
energy consumption of DTLS up to 45%, while still maintaining the same security
strength of the standard DTLS. We discuss energy-efficient architectures for imple-
menting the standard cryptographic primitives AES (Advanced Encryption Standard),
SHA (Secure Hash Algorithm) and ECC (Elliptic Curve Cryptography) in hardware.
Our hardware can provide more than 2,500 times reduction in energy consumption
compared to traditional software implementations. These hardware primitives are
integrated with dedicated control and memory to design a DTLS co-processor that can
accelerate the complete DTLS state machine in hardware, thus minimizing the energy
consumption due to DTLS computations. The proposed DTLS core is integrated
with a RISC-V micro-processor to accurately profile these functions, as well as design
custom protocols using standalone cryptographic instructions.

Thesis Supervisor: Anantha P. Chandrakasan
Title: Vannevar Bush Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

First, I would like to thank my advisor Prof. Anantha Chandrakasan for giving me

the opportunity to be a part of his research group. Working on this project has been

an extremely rewarding experience for me, and I thank Anantha for introducing me

to this interesting area of research. I look forward to a wonderful journey during my

PhD under his guidance and mentorship.

I am grateful to all past and present members of Anantha Group for creating

such an amazing work environment. Thanks to everybody for helping me with so

many different issues throughout the course of this project. It has been my pleasure

collaborating with Chiraag on all the security-related projects, and I thank him for

being such a great mentor. Thanks to Chiraag, Phil, Mehul, Priyanka and Michael for

helping me with the tedious steps involved in taping out a chip. It has been great

working with all of you.

I would like to thank Samuel Fuller for the insightful discussions we have had over

the last couple of years. Thanks to Andy Wright for collaborating with me on the

RISC-V design.

I would like to thank the Irwin Mark Jacobs and Joan Klein Jacobs MIT Presidential

Fellowship, the Qualcomm Innovation Fellowship and Analog Devices Inc. for financial

support during various phases of this project. I also thank the TSMC University

Shuttle Program for helping with chip fabrication.

Finally, I would like to thank my parents for their unconditional love and support.

Thank you for everything. Thank you for always being there for me.

5

6

Contents

1 Introduction 15

1.1 Motivation . 16

1.2 Transport Layer Security . 17

1.3 Cryptographic Primitives . 18

1.3.1 Advanced Encryption Standard 19

1.3.2 Secure Hash Algorithm . 19

1.3.3 Elliptic Curve Cryptography 20

1.4 Previous Work . 24

1.4.1 TLS Protocol Optimizations 24

1.4.2 Cryptographic Hardware Architectures 25

1.5 Thesis Overview and Contributions 26

2 DTLS 1.3 – Energy Analysis and Protocol Optimizations 29

2.1 Software Profiling of Cryptographic Algorithms 29

2.2 Energy Model for BLE . 31

2.3 DTLS over BLE . 32

2.4 Energy-Efficient DTLS . 38

2.4.1 Packet Optimizations . 38

2.4.2 Handshake Optimizations . 41

3 Design of Energy-Efficient Cryptographic Hardware 45

3.1 AES-128-GCM . 45

3.1.1 Encryption Algorithm . 45

7

3.1.2 S-Box Design . 48

3.1.3 Energy-Efficient AES . 49

3.1.4 Authenticated Encryption/Decryption 52

3.1.5 Galois Multiplier Design . 53

3.1.6 Energy-Efficient AES-GCM 55

3.2 SHA-256 . 55

3.2.1 Hash Algorithm . 55

3.2.2 Energy-Efficient SHA-256 . 57

3.3 ECC . 57

3.3.1 ECDH and ECDSA . 58

3.3.2 Modular Arithmetic . 59

3.3.3 Point Addition and Doubling 66

3.3.4 Scalar Multiplication Formulas 67

3.3.5 Side-Channel Security . 70

3.3.6 Energy-Efficient ECC . 71

4 DTLS Co-Processor – Design and Simulation Results 79

4.1 Design of DTLS Hardware Accelerator 79

4.2 Over-the-Air Security Update . 86

4.3 Synthesis and Simulation Results . 88

4.4 Integration with RISC-V . 90

5 Conclusion 93

5.1 Thesis Contributions . 93

5.2 Comparison with State-of-the-Art . 94

5.3 Future Work . 95

A Programming the DTLS Co-Processor 97

8

List of Figures

1-1 System diagram of a typical IoT wireless sensor node. 16

1-2 Geometric representation of (a) point addition and (b) point doubling

on elliptic curves [23]. 21

1-3 Elliptic Curve Diffie-Hellman (ECDH) Key Exchange. 22

1-4 Elliptic Curve Digital Signature Algorithm (ECDSA). 23

2-1 Bluetooth Low Energy 4.2 data packet structure (all sizes in bytes). . 31

2-2 Overview of DTLS 1.3 handshake protocol with mutual authentication

and Diffie-Hellman key exchange. 33

2-3 Structure of DTLS-protected BLE packet with additional headers con-

tributed by IPv6, UDP and DTLS (all sizes in bytes). 34

2-4 Percentage of total computation energy spent in DTLS handshake. . . 37

2-5 Energy breakdown of DTLS session computations and communications,

for session durations of (a) 1 year and (b) 1 week, with data rate of 32

bytes per hour. 37

2-6 IoT network architecture, with sensor nodes and a gateway, for UDP/IPv6

packet optimizations. 39

2-7 DTLS record headers – (top) Standard 13-byte header (all sizes in

bytes), and (bottom) Optimized 3-byte header. 39

2-8 Optimized DTLS packet over BLE, with 91% reduction in protocol

overheads (all sizes in bytes). 40

2-9 Optimized Certificate messages using the (top) “Client Certificate URL”

[62] and (bottom) ”Cached Information” [63] extensions. 41

9

2-10 Energy benefits of the optimized DTLS, for session durations of (a) 1

year and (b) 1 week, with data rate of 32 bytes per hour. 42

3-1 Overview of AES round operations [35]. 46

3-2 Key expansion for AES-128 [11]. 47

3-3 Decomposition of 𝐺𝐹 (28) inversion into 𝐺𝐹 (24) operations. 49

3-4 AES architectures – (𝐴1) Serial, (𝐴2) Parallel and (𝐴3) Pipelined. . . 50

3-5 Area and power consumption distribution of the 11-cycle AES design. 51

3-6 Authenticated encryption and decryption in AES-GCM. 52

3-7 Implementation of Galois multiplier in hardware. 53

3-8 Analysis of different Galois multiplier architectures. 54

3-9 Overview of SHA-256 hash algorithm. 56

3-10 SHA-256 round function. 56

3-11 Hardware implementation of modular adder. 60

3-12 Analysis of different 256-bit modular adder architectures. 61

3-13 Hardware implementation of interleaved modular multiplication. . . . 63

3-14 Hardware implementation of modular inversion using Extended Eu-

clidean algorithm. 65

3-15 Architecture of the reconfigurable prime-field ECC hardware. 72

3-16 Micro-code used for point doubling 𝑃3 = 2𝑃1 using the reconfigurable

prime-field ECC module. 73

3-17 Micro-code used for point addition 𝑃3 = 𝑃1 ± 𝑃2(𝑃𝑥, 𝑃𝑦) using the

reconfigurable prime-field ECC module. 74

4-1 Architecture of the DTLS acceleration core. 80

4-2 Efficient hardware implementation of “Session Hash” computations. . 82

4-3 DTLS status register. 84

4-4 DTLS instruction. 85

4-5 Over-the-air update of security parameters. 87

4-6 Area breakdown of DTLS core. 88

10

4-7 Reduction in energy consumption of frequently authenticating DTLS

clients using energy-efficient DTLS hardware. 90

4-8 Block diagram of DTLS core integrated with RISC-V. 91

4-9 Chip layout of RISC-V processor with DTLS security core. 92

11

12

List of Tables

1.1 NIST standard cryptographic primitives and their security strengths. 24

2.1 Profiling of Symmetric Cryptography algorithms on ARM Cortex-M0+. 30

2.2 Profiling of Elliptic Curve Cryptography algorithms on ARM Cortex-M0+. 30

2.3 Energy consumption of TI CC2540 BLE transceiver during different

phases of a connection event [60], [61]. 32

2.4 Cryptographic computations involved in DTLS 1.3. 35

2.5 Energy costs of DTLS 1.3 – Computations and Communications. . . . 36

3.1 Comparison of our AES architectures at VDD = 1.0 V. 50

3.2 Comparison with previous work on AES-128 designs. 51

3.3 Analysis of GHASH Galois multiplier architectures at VDD = 1.0 V. . 54

3.4 Comparison with previous work on AES-128-GCM designs. 55

3.5 Comparison with previous work on SHA-256 designs. 57

3.6 Analysis of 256-bit modular adder architectures at VDD = 1.0 V. . . . 61

3.7 Analysis of 256-bit modular arithmetic operations at VDD = 1.0 V. . 66

3.8 Analysis of 256-bit prime-field ECSM using 𝑤 = 4 comb. 70

3.9 Performance of our prime-field ECC hardware at VDD = 1.0 V. 75

3.10 Comparison with previous work on prime-field ECC designs. 76

4.1 Comparison of our energy-efficient reconfigurable DTLS core with

integrated cryptographic accelerators. 88

4.2 Energy consumption of DTLS handshake implementations. 89

5.1 Comparison with the state-of-the-art. 95

13

A.1 Instruction opcodes. 97

A.2 Memory-mapped registers of DTLS co-processor. 98

14

Chapter 1

Introduction

The Internet forms the backbone of modern global communication systems. Ever since

its creation, the Internet has been growing in leaps and bounds, and has acted as a

fuel for innovation in the fields of telecommunications, computer networks, software

platforms and hardware architectures. Some of the most important evolutions of the

Internet have been the rise of wireless communications, Internet Protocol (IP)-based

networking, and cloud computing. It is estimated that 47% of the global population

has access to the Internet1, and around 75% of the global Internet usage is from wireless

mobile devices2. The IP protocol suite provides a scalable platform for connecting

these electronic devices to the Internet, and enabling communication with dedicated

servers that constitute the “cloud”. IPv4 supports 32-bit addresses, that is, around 4

billion devices, and the world has already witnessed IPv4 address exhaustion over the

past few years, another effect of the rapid growth of digital connectivity.

The next major evolution of the Internet is expected to be triggered by the concept

of Internet of Things (IoT). The IoT has introduced a vision of an Internet where

all computing and sensing devices are interconnected. The IoT is expected to enable

new applications and services that bridge our physical and virtual worlds through

machine-to-machine (M2M) communications. Fig. 1-1 shows a typical IoT sensor node.

An important component of such a device is a sensor that collects useful information

1https://en.wikipedia.org/wiki/Internet
2https://fortune.com/2016/10/28/internet-use-mobile/

15

Figure 1-1: System diagram of a typical IoT wireless sensor node.

about its immediate environment. An analog-to-digital converter (ADC) is used to

convert this analog information into digital bits. A low-power micro-processor is used

to extract meaningful data out of these bits, and a radio-frequency (RF) front-end

transmits the data into the wireless network. Since the data packets transmitted by

these sensor nodes are likely to contain private information, it is important to encrypt

them and ensure a secure channel to the cloud. For this purpose, sensor nodes may also

contain additional hardware, also known as co-processor or accelerator, to efficiently

execute cryptographic computations such as data encryption and authentication. The

goal of this research is to design energy-efficient security protocols and dedicated

cryptographic hardware for such wireless sensor nodes that constitute the IoT.

1.1 Motivation

Researchers estimate that there will be over 50 billion wireless connected devices

by 2020 [1]. On one hand, the IoT enables fundamentally new applications, but on

the other, these devices are attractive targets for cyber attackers, thus making IoT

security a major concern. IOActive’s 2016 security survey3 reveals that less than 10%

IoT products have adequate security. Symantec reports that there were 528 mobile

security vulnerabilities and around 1.1 million web attacks blocked per day in 2015

[2]. There have also been an increasing number of attacks, both proof-of-concept and

real-world, on IoT systems such as cars, smart home solutions, implantable medical

devices and other consumer electronics [2]. Researchers have recently demonstrated
3https://www.infosecurity-magazine.com/news/survey-less-than-10-of-iot-devices/

16

an attack where malware-equipped drones were used to remotely hack smart lights

in an office building and cause irreversible damage such as blackouts, data breach

and even epileptic seizures [3]. Proof-of-concept attacks have also been demonstrated

on implantable medical devices, such as pacemakers, that can potentially have lethal

effects [4].

The number of devices in an IoT network can vary from tens (e.g., smart home

and health-care solutions) to hundreds (e.g., agricultural and industrial automation)

depending on the application. Most of these devices are required to operate unattended

for extended periods of time, and are either battery-powered or rely on energy

harvesting, thus making them severely energy-constrained. Cyber security experts

unanimously agree that traditional IT security approaches do not fit directly in the IoT

scenario, one of the primary reasons being resource constraints. Therefore, security

architectures for these devices should consume minimal resources, while still providing

strong cryptographic guarantees.

1.2 Transport Layer Security

Since the IoT will be integrated with the conventional Internet, most IoT devices are

expected to use Internet Protocol (IP) addresses as unique identifiers, and IPv6 will

be used to fulfill the large address space requirements. Therefore, IP-based security

protocols become the first choice for securing these networks. Transport Layer Security

(TLS) is a cryptographic protocol widely used by the Internet community to provide

secure and reliable data communications for applications such as e-mail and financial

transactions, and this forms the basis of HTTPS (secure HTTP). TLS has been

standardized by the IETF [5] to secure connection-based Internet services such as

Transmission Control Protocol (TCP); but TCP is not suitable for low-power wireless

networks, primarily because of protocol overheads. The User Datagram Protocol (UDP)

has emerged as the transport layer protocol-of-choice for the IoT. UDP-based services

are connection-less and light-weight, hence they require low bandwidth and minimal

memory usage on embedded devices. The Datagram Transport Layer Security (DTLS)

17

protocol is based on TLS, and is intended to secure UDP-based communications.

Connection-less services are unreliable, and present unique challenges such as packet

re-ordering, packet loss and packet fragmentation. DTLS is designed to not only

handle these problems seamlessly, but also counter replay and denial-of-service (DoS)

attacks. DTLS has also been standardized by the IETF [6], and is considered as one

of the most suited protocols for securing the IoT [7].

The Network Working Group of IETF is in the process of standardizing the

next version of TLS – TLS 1.3. Both TLS 1.3 [8] and DTLS 1.3 [9] currently exist

in the form of working drafts. (D)TLS consists of two layers – record protocol and

handshake protocol. The record protocol encrypts application layer payloads, fragments

and encapsulates them into structured packets, called records, and provides message

authentication. The handshake protocol allows the communicating parties (client and

server) to negotiate security settings, perform mutual authentication and establish

a secure channel for the exchange of encrypted records. (D)TLS 1.3 proposes a

major overhaul of the handshake protocol, removes support for weaker cryptographic

primitives and adds stronger security measures than its predecessor.

1.3 Cryptographic Primitives

The primary objectives of security protocols are confidentiality, integrity, authenticity

and availability, and they use mathematical tools, called cryptographic primitives, to

achieve these goals. Cryptographic primitives can be very broadly classified into two

types – symmetric and asymmetric. Symmetric algorithms use the same secret key

to encrypt and decrypt messages, while for asymmetric algorithms, the encryption

and decryption keys are different. Asymmetric algorithms, also known as public-key

cryptography, is based on intractable mathematical problems, and is much more

computationally intensive than symmetric-key algorithms. This section provides

a quick overview of some of the cryptographic primitives standardized by the U.S.

National Institute of Standards and Technology (NIST) for commercial and government

use. For detailed introduction to cryptography and related mathematical background,

18

the reader is encouraged to refer to [10] and [11].

1.3.1 Advanced Encryption Standard

The Advanced Encryption Standard (AES) is a specification for the encryption of

electronic data, established by NIST in 2001 [12], and is a subset of the “Rijndael”

cipher designed by Vincent Rijmen and Joan Daemen. AES is a symmetric block

cipher, which uses a substitution-permutation network to process data in blocks of 128

bits, and the substitution function, called S-Box, is the only non-linear component of

the algorithm. AES supports key sizes of 128, 192 and 256 bits, and consists of 10, 12,

or 14 iteration rounds, respectively. AES can be used in the GCM (Galois/Counter

Mode) configuration [13] to perform authenticated encryption, that is, it not only

encrypts the data (confidentiality) but also generates a MAC (Message Authentication

Code) which can be used to verify that the encrypted message has not been corrupted

(integrity and authenticity).

While practical attacks have been demonstrated on reduced round versions of AES,

the fastest attack on full 10-round AES-128, known as the biclique attack, has a time

complexity of 𝑂(2126) and a space complexity of 𝑂(256) [14]. Therefore, there is no

known practical attack that would allow someone without knowledge of the secret

key to read data encrypted by a correct implementation of AES. Side channel attacks

have been demonstrated on software and hardware implementations of AES, but they

make use of additional knowledge about the secret key and AES round computations

that get leaked through side channels like execution timing, power consumption, etc.

Several software-based side-channel attacks exploit incorrect implementations of the

algorithm, and may also require special user privileges on the device.

1.3.2 Secure Hash Algorithm

The Secure Hash Algorithm (SHA) is a family of cryptographic hash functions, that

is, they can be used to map data of arbitrary sizes to a digest of fixed size. NIST

published SHA-1, the first version of the SHA family, in 1995. The SHA-2 family

19

was published in 2001 [15], and it consists of six hash functions with digests that

are 224, 256, 384 or 512 bits. SHA-3 was standardized in 2015 [16], based on the

“Keccak” function designed by Guido Bertoni, Joan Daemen, Michael Peeters, and

Gilles Van Assche, and supports arbitrary digest sizes. These cryptographic hash

functions can be used in security protocols to generate Message Digests (MD) and

HMACs (Hash-Based Message Authentication Code) [20].

For a hash function with 𝐿-bit message digest, finding a message that corresponds to

a given message digest can always be done using a brute force search in 2𝐿 evaluations.

This is called a pre-image attack and may or may not be practical depending on 𝐿 and

the particular computing environment. Finding two different messages that produce

the same message digest, known as a collision, requires on average only 2𝐿/2 evaluations

using a “birthday attack”. Researchers have recently been able to successfully generate

collisions with full SHA-1, thus rendering it insecure [17]. Currently, the best known

attacks break pre-image resistance for 52 rounds of SHA-256 or 57 rounds of SHA-512

[18], and collision resistance for 46 rounds of SHA-256 [19]. While the collision attack

is practical, with 𝑂(246) time complexity, the pre-image attack has a time complexity

of 𝑂(2255.5), which makes it impossible to implement in practice. No attacks exist on

full round SHA-2, and also on SHA-3.

1.3.3 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) is an approach to public-key cryptography based

on the algebraic structure of elliptic curves over finite fields. The use of elliptic curves

in cryptography was suggested independently by Neal Koblitz [21] and Victor S. Miller

[22] in 1985. For this research, we consider two types of elliptic curves 𝐸 over finite

fields F𝑝 of prime characteristic 𝑝 – short Weierstrass curves and Montgomery curves:

∙ A short Weierstrass curve consists of the set of points 𝐸(F𝑝) = {(𝑥, 𝑦) | 𝑦2 =

𝑥3 + 𝑎𝑥 + 𝑏 (mod 𝑝)} ∪ ∞

∙ A Montgomery curve consists of the set of points 𝐸(F𝑝) = {(𝑥, 𝑦) | 𝑏𝑦2 =

𝑥3 + 𝑎𝑥2 + 𝑥 (mod 𝑝)} ∪ ∞

20

where ∞ is the distinguished point at infinity. A Montgomery curve can also be

written in the Weierstrass form using the proper change of variables.

The fundamental operation used in ECC is point addition (𝑅 = 𝑃 + 𝑄), and its

special case is point doubling (𝑅 = 𝑃 + 𝑃). The addition and doubling operations are

both governed by the “chord-and-tangent rule” shown in Fig. 1-2.

Figure 1-2: Geometric representation of (a) point addition and (b) point doubling on
elliptic curves [23].

Together with the addition (and doubling) operation, the set of points 𝐸(F𝑝) forms

an abelian group. The point ∞ serves as the identity element of this group, that is,

𝑃 +∞ =∞+ 𝑃 = 𝑃 for all 𝑃 ∈ 𝐸(F𝑝). The order of this group (number of points

in 𝐸(F𝑝)) is denoted by #𝐸(F𝑝) = 𝑛, and 𝑛𝑃 = ∞ for all 𝑃 ∈ 𝐸(F𝑝). Repeated

additions of a point 𝑃 with itself is called “elliptic curve scalar multiplication” (ECSM).

For any scalar 𝑘, the scalar multiple 𝑘𝑃 is computed as

𝑘𝑃 = 𝑃 + 𝑃 + · · ·+ 𝑃⏟ ⏞
(𝑘-1) point additions

This computation forms the basis of the “Elliptic Curve Discrete Logarithm Problem”

(ECDLP) – determine scalar 𝑘 given the elliptic curve 𝐸(F𝑝) of order 𝑛, and the points

𝑃,𝑄 ∈ 𝐸(F𝑝) such that 𝑄 = 𝑘𝑃 . For a 𝑡-bit prime 𝑝, the fastest known algorithms

that can solve ECDLP have time complexity 𝑂(2𝑡/2) [23]. For sufficiently large primes,

21

it is infeasible for a computationally bounded adversary to solve ECDLP, and this

guarantees the security of ECC. NIST has published a list of recommended elliptic

curves over prime fields, with primes of length 192, 224, 256, 384 and 521 bits [27].

These curves are all short Weierstrass curves, and are recommended for use in all

Internet security applications including TLS. Daniel J. Bernstein’s Curve25519 [24] is

a Montgomery curve, and has been proposed to be included in TLS 1.3.

Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

The Diffie-Hellman (DH) key exchange is a method of securely establishing a shared

secret between two parties communicating over an insecure channel, originally concep-

tualized by Ralph Merkle and named after Whitfield Diffie and Martin Hellman [25],

[26]. DH provides the basis for a variety of authenticated protocols, and is used to

provide forward secrecy in TLS and DTLS.

Although the original DH protocol used the multiplicative group of integers modulo

a prime 𝑝, we are going to discuss ECDH (Fig. 1-3), its elliptic curve analogue. The key

exchange protocol starts with two parties, Alice and Bob, who wish to compute a shared

secret. The adversary, Eve, is monitoring all messages exchanged by them, that is the

communications channel is insecure. Both Alice and Bob use the same elliptic curve

𝐸(F𝑝) with order 𝑛, and a base point 𝐺 of prime order on the curve (𝑛𝐺 =∞). Alice

and Bob generate their private keys, which are the scalars 𝑎, 𝑏 ∈ [1, 𝑛− 1] respectively.

They compute and exchange their public keys 𝑄𝐴 = 𝑎𝐺 and 𝑄𝐵 = 𝑏𝐺. Eve intercepts

𝑄𝐴 and 𝑄𝐵, but cannot determine 𝑎 and 𝑏 because of the hardness of ECDLP. Finally,

Figure 1-3: Elliptic Curve Diffie-Hellman (ECDH) Key Exchange.

22

Alice computes 𝑎𝑄𝐵 = 𝑎(𝑏𝐺) = 𝑎𝑏𝐺, and Bob computes 𝑏𝑄𝐴 = 𝑏(𝑎𝐺) = 𝑎𝑏𝐺, that

is, they now share a secret, the point 𝑎𝑏𝐺 ∈ 𝐸(F𝑝), which can be used for further

cryptographic computations.

Elliptic Curve Digital Signature Algorithm (ECDSA)

The Digital Signature Algorithm (DSA) is a NIST standard algorithm used to demon-

strate the authenticity of digital messages and documents. ECDSA is a variant of

DSA, also standardized by NIST [27], which uses elliptic curves for its public-key

computations. Both DSA and ECDSA consist of two algorithms - signature generation

and signature verification.

Fig. 1-4 provides a simple description of these two steps, where Alice wants

to send a signed message 𝑚 to Bob, and Bob wants to verify the signature, using

ECDSA with a known elliptic curve 𝐸(F𝑝) with order 𝑛 and base point 𝐺. Alice

has her private key 𝑎, and the corresponding public key is 𝑄𝐴 = 𝑎𝐺. She computes

a message digest 𝐻(𝑚) using a cryptographic hash function 𝐻, and generates a

signature using the “ECSDA-Sign” algorithm, with 𝐻(𝑚) and 𝑎 as inputs. She then

sends the message 𝑚, the signature and her public key 𝑄𝐴 to Bob. To determine the

authenticity of the message, Bob again computes 𝐻(𝑚), and verifies the signature

using the “ECDSA-Verify” algorithm, with 𝐻(𝑚), 𝑄𝐴 and the signature as inputs.

In order for Bob to verify the signature correctly, it is important to have the

correct public key 𝑄𝐴. Since Alice sent 𝑄𝐴 over an insecure channel, it is possible

Figure 1-4: Elliptic Curve Digital Signature Algorithm (ECDSA).

23

that an adversary Eve may modify it. To prevent such attacks, digital certificates

are used. A digital certificate is a document containing the public key of an entity

(person or organization), along with information that defines their identity (name,

address, e-mail, etc), which is signed by a certificate authority (CA), whose public key

is trusted to be secure. Certificates are an integral part of the (D)TLS authentication

handshake.

Table 1.1: NIST standard cryptographic primitives and their security strengths.

Security Strength (Bits) AES SHA ECC

128 AES-128 SHA-256 P-256

192 AES-192 SHA-384 P-384

256 AES-256 SHA-512 P-521

Table 1.1 shows the security strengths of various NIST standard cryptographic

primitives. (D)TLS supports a large number of cipher suites, combinations of cryp-

tographic algorithms, that can be used for the handshake and record protocols, and

the recommended minimum security level is 128 bits. In this work, we are going

to focus on the TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 cipher

suite, which uses the previously described NIST standard primitives. Implementation

details of these primitives will be discussed in Chapter 3.

1.4 Previous Work

This work spans multiple areas of research, including low-overhead TLS protocols,

energy-efficient cryptographic hardware and integration of multiple primitives to

support protocol acceleration. This section provides a brief overview of some of the

existing literature in these fields.

1.4.1 TLS Protocol Optimizations

With the advent of low-power wireless links such as IEEE 802.15.4 [28] and BLE (Blue-

tooth Low Energy) [29], researchers have been trying to optimize the communication

24

overheads of IP-based protocols, so that these new devices can be easily integrated

with existing network infrastructure. [30] proposed IPv6/UDP header compression for

IEEE 802.15.4 networks, and [31] proposed using the same for IPv6/UDP over BLE.

Similar compression schemes were proposed for DTLS in[32], where DTLS record and

handshake headers can support variable length compressed formats, and some of the

handshake messages like ClientHello and ServerHello can also be compressed. [33] has

presented a new protocol architecture where DTLS records are transmitted as CoAP

(Constrained Application Protocol) resources, and CoAP acknowledgments are used

to prevent message re-ordering and re-transmissions.

1.4.2 Cryptographic Hardware Architectures

Researchers have been studying cryptographic algorithms and their implementations

for a long time, and research in energy-efficient cryptographic hardware architectures

has received increased attention in the recent past. While FPGA (Field Programmable

Gate Array) implementations are great for understanding the area and speed limitations

of a design, it is important to have ASIC (Application-Specific Integrated Circuit)

implementations in order to accurately estimate power and energy consumption. Next,

we take a quick look at some of the existing research in ASIC implementations of

AES, SHA and prime-field ECC.

Multiple AES-128 architectures are proposed in [34], with different data-path

sizes and different levels of parallelism, along with composite field-based compact

S-Box designs. Highly serialized architectures for AES-128 are low-area and low-power

([35], [37], [38]), but have high energy consumption. A low-energy 128-bit data-path

AES-128 design, with a 4-stage 2-round pipeline, is published in [36]. In [39], several

implementations for AES-GCM are presented. [40] also proposes some highly parallel

high-throughput AES-GCM designs.

Several serial implementations of SHA-256 are available in literature ([41], [42],

[43]), with similar area but different throughput figures. In [44], a low-energy highly

parallel reconfigurable SHA accelerator is presented, that supports SHA-1 and SHA-2

for all digest sizes.

25

ECC hardware architectures have been studied extensively for a large variety of

elliptic curves. ECC processors with dual-field arithmetic are presented in [45] and

[46]. Low-power low-area prime-field ECDSA implementations, which target RFID

(Radio Frequency Identification) applications, are discussed in [47], [48], [49], [50], [52]

and [56]. A low-energy full data-path prime-field ECC implementation is published

in [51], and a low-area design is proposed in [53]. A low-resource Curve25519-based

ECDH implementation is presented in [57].

There have been attempts to integrate multiple cryptographic primitives in hard-

ware, e.g., all the ECDSA designs also contain a hash function by default. [54]

presents a high-performance processor that can accelerate AES, SHA-1 and modular

arithmetic for TLS handshakes. The processor contains several execution units to run

the cryptographic computations, and a configurable micro-code engine controls the

scheduling of these algorithms. [55] proposes an energy-efficient reconfigurable public

key cryptography processor that supports modular arithmetic and binary-field ECC

computations. The cryptographic processor in [56] integrates AES, SHA-1 and ECDSA

in a low-area implementation suitable for embedded systems. [57] presents a hardware

implementation of the crypto_box function of the Networking and Cryptography

library (NaCl), which integrates Curve25519-based ECDHE with Salsa20-Poly1305-

based authenticated encryption for resource-constrained applications.

These designs are all geared toward high-performance or low-area (and low-power)

applications, and do not focus on energy-efficiency. Also, most of the prime-field

ECC processors support a single curve, where the modular arithmetic unit has been

designed to exploit the special properties of the chosen prime. There is no previous

work on dedicated energy-efficient DTLS co-processor that can accelerate the entire

protocol in hardware – cryptographic computations and the TLS state machine.

1.5 Thesis Overview and Contributions

The objectives of this research are to optimize the DTLS protocol for increased energy-

efficiency, without compromising security, and design an energy-efficient co-processor

26

that can accelerate the complete DTLS protocol in hardware.

Chapter 2 provides a comprehensive analysis of the energy costs of DTLS in a

typical IoT application. BLE is used as the RF link for this scenario, primarily because

of its low energy requirements. Based on this analysis, an energy-optimized variant of

DTLS is proposed, which can reduce communication overheads as well as computation

costs, independent of the application layer and physical/link layer protocols being

used/

Chapter 3 proposes energy-efficient architectures for AES-128, SHA-256 and

prime-field ECC (Weierstrass and Montgomery curves up to 256 bits). Rationale

behind design decisions are discussed in detail, along with post-synthesis results and

comparison with previous work.

Chapter 4 presents a DTLS co-processor, which combines the designs described

in Chapter 3 with dedicated control and memory to accelerate the DTLS state

machine in hardware. The co-processor is integrated with a standard RISC-V micro-

processor [72] to profile the DTLS protocol as well as several other cryptographic

functions. This integrated system also provides a highly flexible platform for designing

and implementing security protocols using a combination of hardware and software

approaches. ASIC implementation and simulation results are presented.

Chapter 5 summarizes the contributions of this thesis, along with key observations

and inferences, and future research directions.

27

28

Chapter 2

DTLS 1.3 – Energy Analysis and

Protocol Optimizations

The DTLS protocol has been tried and tested for over a decade, and provides strong

security guarantees. However, computation and communication overheads make

DTLS very expensive for energy-constrained IoT devices. In this work, we present a

comprehensive study of the energy costs of DTLS version 1.3. For this case study, we

assume Bluetooth Low Energy (BLE) as the physical and link layer protocol, and use

energy models for cryptographic computations and RF communications to analyze

how the energy consumption varies over different IoT use cases. Based on this analysis,

we propose an optimized low-energy variant of DTLS, which can be used to achieve

improved energy-efficiency while providing the same security guarantees of DTLS.

2.1 Software Profiling of Cryptographic Algorithms

DTLS owes its security to cryptographic algorithms of varying complexity, such

as symmetric key encryption, hashing, public key authentication and key exchange.

However, they also add to the computation cost of DTLS, which is a serious concern for

resource-constrained embedded devices that constitute the IoT. To accurately profile

the energy requirements of these cryptographic primitives, we implemented them in

software on the NXP FRDM-KL25Z evaluation board, which contains an ultra-low-

29

Table 2.1: Profiling of Symmetric Cryptography algorithms on ARM Cortex-M0+.
Cryptographic Computation Energy
AES-128-GCM Auth-Encrypt 0.121 𝜇J/B
AES-128-GCM Auth-Decrypt 0.124 𝜇J/B
AES-256-GCM Auth-Encrypt 0.141 𝜇J/B
AES-256-GCM Auth-Decrypt 0.145 𝜇J/B
SHA-256 Message Digest 0.043 𝜇J/B
SHA-256 HMAC (64-Byte Key) 0.052 𝜇J/B
SHA-512 Message Digest 0.089 𝜇J/B
SHA-512 HMAC (128-Byte Key) 0.122 𝜇J/B

Table 2.2: Profiling of Elliptic Curve Cryptography algorithms on ARM Cortex-M0+.
Cryptographic Computation Energy
P-256 ECDHE 33.06 mJ/Op
P-256 ECDSA-Sign 12.36 mJ/Op
P-256 ECDSA-Verify 34.02 mJ/Op
P-384 ECDHE 69.26 mJ/Op
P-384 ECDSA-Sign 25.43 mJ/Op
P-384 ECDSA-Verify 70.42 mJ/Op
P-521 ECDHE 143.92 mJ/Op
P-521 ECDSA-Sign 52.08 mJ/Op
P-521 ECDSA-Verify 145.49 mJ/Op

power 90nm ARM Cortex-M0+ micro-processor running at 48 MHz [58]. The software

was written as bare-metal C code using the open-source cryptographic libraries from

ARM mbedTLS [59]. Average power for the ARM processor was measured, including

the memory power, and the ARM SYS_TICK timer was used to accurately measure

execution times of the algorithms. Total energy consumption of the processor core

and memory is reported in Tables 2.1 and 2.2.

Table 2.1 shows experimental results for symmetric cryptography algorithms –

AES and SHA-2. We implemented AES-GCM with 12-byte IV and 13-byte AAD. For

SHA-2, both MD and HMAC were implemented. Energy consumption is reported

per byte of input message. Table 2.2 shows experimental results for ECDHE and

ECDSA. Energy consumption is reported per operation for ECDHE, ECDSA-Sign

30

and ECDSA-Verify. The NIST standard prime curves P-256, P-384 and P-521 were

used for this analysis. Windowing methods, with window size 𝑊 = 3, were used for

faster elliptic curve operations, along with efficient modular arithmetic owing to the

special structure of the NIST primes. Larger window sizes could not be used due to

memory constraints of the processor. Clearly, the ECC algorithms are significantly

more expensive compared to AES and SHA, and will contribute to majority of DTLS

computation costs, as will be discussed later.

Figure 2-1: Bluetooth Low Energy 4.2 data packet structure (all sizes in bytes).

2.2 Energy Model for BLE

BLE is the low-energy version of Bluetooth [29] that operates at 1 Mbps data rate,

and employs adaptive frequency hopping spread-spectrum to communicate over the

unlicensed 2.4 GHz ISM band. Energy consumption of BLE is much lower than

other RF protocols like IEEE 802.15.4 [60], thus making it the popular choice for

IoT applications. Fig. 2-1 shows a standard BLE 4.2 data packet. The 4 byte access

address is the physical address of the slave device. The PDU (Physical Data Unit)

header contains control flags and the payload size (in bytes), while the L2CAP (Logical

Link Control and Adaptation Protocol) header contains information about packet

fragmentation. The payload can be up to 251 bytes long, and its integrity is protected

by a 3-byte CRC (Cyclic Redundancy Check).

BLE networks, called piconets, are comprised of multiple slave devices connected

to a master device which coordinates all the communications, that is, a piconet is

inherently in star topology. Slave devices are in sleep for most of the time, except

for periodic connection events when the slave wakes up to communicate with the

master. Connection events always start with a packet being sent by the master, and

31

Table 2.3: Energy consumption of TI CC2540 BLE transceiver during different phases
of a connection event [60], [61].

Phase Energy
Wake-Up and Pre-Processing 𝐸𝑊𝑈𝑃 = 15 𝜇J
Receive (RX) 𝐸𝑅𝑋 = 0.528 𝜇J/B
Inter-Frame Space (IFS) 𝐸𝐼𝐹𝑆 = 6.75 𝜇J
Transmit (TX) 𝐸𝑇𝑋 = 0.672 𝜇J/B
Post-Processing and Sleep 𝐸𝑆𝐿𝑃 = 33.6 𝜇J

the slave has to wait for 150 𝜇s, called Inter-Frame Space (IFS), before transmitting

data. Table 2.3 shows the energy consumed by the TI CC2540 BLE transceiver

[61], [60] during different phases of a connection event, when it has to transmit

data to the master. The energy spent by a BLE 4.2 slave device during transmis-

sion (𝐸𝑇) and reception (𝐸𝑅) of data can be modeled using the following equations [60]:

𝐸𝑇 = 𝐸𝑊𝑈𝑃 + 𝑛𝑙𝐻𝐷𝑅𝐸𝑅𝑋 + (2𝑛− 1)𝐸𝐼𝐹𝑆 + (𝑛𝑙𝐻𝐷𝑅 + 𝑙𝑃)𝐸𝑇𝑋 + 𝐸𝑆𝐿𝑃

𝐸𝑅 = 𝐸𝑊𝑈𝑃 + (𝑛𝑙𝐻𝐷𝑅 + 𝑙𝑃)𝐸𝑅𝑋 + (2𝑛− 1)𝐸𝐼𝐹𝑆 + 𝑛𝑙𝐻𝐷𝑅𝐸𝑇𝑋 + 𝐸𝑆𝐿𝑃

where 𝑙𝐻𝐷𝑅 (= 14 bytes) is the total size of BLE header and trailer structures,

𝑙𝑃 is the total payload being transmitted / received, and 𝑛 is the number of fragments

the payload gets divided into.

2.3 DTLS over BLE

Using these models, we can analyze the energy consumption of a duty-cycled BLE

sensor node communicating with a cloud server using a DTLS-protected secure channel.

As case study, we consider a DTLS 1.3 connection with the following parameters:

∙ The TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 cipher suite

is negotiated, and the elliptic curve used for ECDHE and ECDSA is P-256.

∙ Only end-point certificates, signed using P-384 ECDSA by a trusted certification

authority (CA), are exchanged during handshake.

32

∙ The CA public key is known to both parties.

Fig. 2-2 shows the message flow for a full DTLS 1.3 handshake with digital

certificate-based mutual authentication and Diffie-Hellman key exchange (blue arrows

represent handshake messages and green arrows represent application data; dashed

arrows indicate that the messages are encrypted). The client begins the DTLS

handshake by sending a ClientHello message containing details about supported cipher

suites, public-key parameters and key shares for key exchange. The server then

computes a stateless cookie and sends it in the HelloRetryRequest message. Next, the

client sends another ClientHello, but now with the cookie it received from the server,

and the server replies with a ServerHello containing its key share and selected security

Figure 2-2: Overview of DTLS 1.3 handshake protocol with mutual authentication
and Diffie-Hellman key exchange.

33

parameters. This procedure ensures that attackers cannot mount DoS attacks on the

client or the server using forged handshake requests [6]. The remaining part of the

handshake is completely encrypted using keys derived from the Diffie-Hellman shared

secret. The server continues the handshake with an EncryptedExtensions message

containing additional protocol settings, and a CertificateRequest message to indicate

that it requires client authentication. These are followed by the server’s Certificate and

a CertificateVerify message that authenticates the server’s side of the key exchange.

The server ends this flight of messages with a Finished message that authenticates

the handshake and confirms the security of the encrypted channel. The client replies

with its own set of Certificate, CertificateVerify and Finished messages. Since UDP

packets may be lost, the DTLS 1.3 server is required to acknowledge the receipt of

this final set of messages with an Ack message. This ends the handshake, and the two

parties can now exchange ApplicationData encrypted under a new set of keys derived

from the handshake parameters.

Figure 2-3: Structure of DTLS-protected BLE packet with additional headers con-
tributed by IPv6, UDP and DTLS (all sizes in bytes).

Fig. 2-3 shows the structure of a DTLS-protected BLE packet with encrypted

application data and AES-GCM tag for message authentication. Since the total BLE

4.2 payload size is restricted to 251 bytes, maximum size of the encrypted data in a

single packet is 174 bytes. Larger application data get fragmented into 𝑛 = ⌈𝑙𝑃/174⌉

packets, where 𝑙𝑃 is the total number of bytes to be transmitted. An un-encrypted

packet has very similar structure, except for the absence of the 16-byte AES-GCM

tag, that is, 𝑛 = ⌈𝑙𝑃/190⌉.

Table 2.4 contains details of the cryptographic computations required in a typical

DTLS 1.3 handshake and record protocols [8]. Table 2.5 provides a detailed analysis

of the energy spent by a DTLS 1.3 client device in cryptographic computations and

34

RF communications, both during the handshake and the application data phases.

The energy figures were computed using the models presented in the previous section.

Typical sizes of DTLS handshake messages are also provided (rounded to the nearest

ten bytes) [8]. (T) and (R) indicate whether packets are transmitted or received

respectively. It has been assumed that the client periodically transmits 32 bytes of

data in the ApplicationData phase, that is, after the handshake is completed.

Table 2.4: Cryptographic computations involved in DTLS 1.3.
Protocol Phase Cryptographic Computation Details
ClientHello (T) 0.5 × P-256 ECDHE
HelloRetryRequest (R) -
ClientHello + Cookie (T) -
ServerHello (R) -
Handshake Traffic 0.5 × P-256 ECDHE +
Key Generation 1 × SHA-256-MD (570 Bytes) +

8 × SHA-256-HMAC (32 Bytes each)
EncryptedExtensions + 1 × AES-128-GCM-Auth-Decrypt (50 Bytes)
CertificateRequest (R)
Server Certificate (R) 1 × AES-128-GCM-Auth-Decrypt (600 Bytes) +

1 × P-384-ECDSA-Verify
Server CertificateVerify + 1 × AES-128-GCM-Auth-Decrypt (130 Bytes) +
Server Finished (R) 1 × P-256-ECDSA-Verify +

1 × SHA-256-MD (1300 Bytes) +
2 × SHA-256-HMAC (32 Bytes each)

Client Certificate (T) 1 × AES-128-GCM-Auth-Encrypt (600 Bytes)
Client CertificateVerify + 1 × AES-128-GCM-Auth-Encrypt (130 Bytes) +
Client Finished (T) 1 × P-256-ECDSA-Sign +

1 × SHA-256-MD (2030 Bytes) +
2 × SHA-256-HMAC (32 Bytes each)

Server Ack (R) 1 × AES-128-GCM-Auth-Decrypt (20 Bytes)
Application Traffic 1 × SHA-256-MD (1350 Bytes) +
Key Generation 7 × SHA-256-HMAC (32 Bytes each)
ApplicationData (T) 1 × AES-128-GCM-Auth-Encrypt (32 Bytes)

As conjectured earlier, the handshake computations are largely due to ECC. It is

important to understand the effect of these expensive, but infrequent, operations on

35

Table 2.5: Energy costs of DTLS 1.3 – Computations and Communications.
Protocol Phase Payload Energy (𝜇J)

(Bytes) Compute RF
ClientHello (T) 180 16528 305.4
HelloRetryRequest (R) 50 - 130.8
ClientHello + Cookie (T) 210 - 325.6
ServerHello (R) 130 - 173.0
Handshake Traffic - 16565.8 -
Key Generation
EncryptedExtensions + 50 6.2 139.2
CertificateRequest (R)
Server Certificate (R) 600 70497.4 642.5
Server CertificateVerify + 130 34093.4 181.5
Server Finished (R)
Client Certificate (T) 600 72.6 773.2
Client CertificateVerify + 130 12465.4 211.2
Client Finished (T)
Server Ack (R) 20 2.48 123.4
Application Traffic - 69.7 -
Key Generation

Total Handshake Energy (𝜇J): 150.3× 103 3.00× 103

ApplicationData (T) 32 3.9 145.4

the total computation energy in a DTLS session. Fig. 2-4 shows the fraction of total

computation energy that is spent in performing the handshake, for application data

rates of 32 bytes per hour, per 30 minutes, and per 10 minutes. Session durations vary

from 1 day to 365 days. With a typical data rate of 32 bytes per hour, the handshake

accounts for 82% of the total computation energy in case of year-long sessions, and

99% for week-long sessions. This percentage becomes lower for faster data rates,

e.g., 32 bytes per 10 minutes, which may apply to applications with real-time data

requirements.

In order to analyze how much the RF transceiver contributes to the total energy

consumption, we consider two prototypical scenarios – (a) session duration = 1 year

(365 days), and (b) session duration = 1 week (7 days), both at the same data rate

36

Figure 2-4: Percentage of total computation energy spent in DTLS handshake.

Figure 2-5: Energy breakdown of DTLS session computations and communications,
for session durations of (a) 1 year and (b) 1 week, with data rate of 32 bytes per hour.

of 32 bytes per hour, so that 8760 packets are sent in (a), and 168 packets in (b).

Handshake energy remains the same for both cases, but application data energy, which

is proportional to the number of packets transmitted in a session, is much larger in

(a). Session durations are typically determined by how often the DTLS authentication

handshake is performed, which in turn depends on the security requirements of the IoT

application. Fig. 2-5 shows the energy breakdown for these two use cases. Although

absolute values of RF energy consumption may vary among different commercial

transceivers, this analysis is sufficient to predict the energy trends in typical IoT

applications. “Application Data RF” accounts for 87% of the total energy in (a), while

“Handshake Compute” accounts for 84% of the total energy in (b). For both use cases,

“Application Data Compute” and “Handshake RF” consume relatively negligible energy.

37

Therefore, it is important to reduce the energy costs of both “Application Data RF”

and “Handshake Compute” in order to minimize the overall energy consumption.

2.4 Energy-Efficient DTLS

From the results discussed in the previous section, we conclude that different IoT

applications will require different optimizations to achieve energy-efficiency. We

follow a two-step approach to optimize the protocol – packet optimizations to reduce

“Application Data RF” energy, and handshake optimizations to reduce “Handshake

Compute” energy.

2.4.1 Packet Optimizations

The only way to reduce energy consumption of the RF transceiver, without modifying

its circuitry or physical layer protocols, is to have smaller packets. We propose to

optimize the following components of the packet structure:

∙ 48-byte UDP and IPv6 headers

∙ 13-byte DTLS header

∙ 16-byte AES-GCM tag

BLE headers are left untouched because we want the optimized protocol to be easily

portable over different physical and link layer protocols. Also, we do not make any

assumption about the application layer to allow further flexibility.

Header compression schemes have been proposed in [31], which can reduce the

sizes of UDP and IPv6 headers. In this work, we exploit some properties of the

network architecture to completely eliminate these headers. We assume that all sensor

nodes (SN) are connected to a gateway device in star topology, which is the default

architecture for BLE (Fig. 2-6). The gateway maintains an address translation table

that maps the physical addresses of client nodes into their corresponding UDP ports.

The gateway uses this table to fill in the UDP source port, and uses its own IP address

38

Figure 2-6: IoT network architecture, with sensor nodes and a gateway, for UDP/IPv6
packet optimizations.

as the source address. Additional shared connection context, such as the server’s IP

address and UDP port, is used by the gateway to fill in the UDP/IPv6 headers. This

does not affect security since these headers are un-encrypted and not used in DTLS

computations. This scheme requires minor modifications to the gateway software,

therefore having minimal impact on existing network infrastructure.

Figure 2-7: DTLS record headers – (top) Standard 13-byte header (all sizes in bytes),
and (bottom) Optimized 3-byte header.

Next, we propose to reduce the 13-byte DTLS record header to a fixed size of 3

bytes (Fig. 2-7), unlike the variable-size header compression proposed in [32]. “Protocol

Version” is constant, and “Length” can be inferred from the physical layer (PDU)

header, so these fields are omitted. We use 2 bits for “Content Type”, which has three

possible values (21, 22 and 23); and 3 bits for “Epoch”, which can vary from 0 to 5

(when non-forward-secret key updates are not allowed). The number of bits assigned

39

to the sequence number is dictated by our final optimization – truncated AES-GCM

tags. According to [13], AES-GCM tags can be truncated to 32 bits, provided the

same encryption key is not used for more than 215 packets, each up to 256 bytes in

length. This sets the upper limit for the DTLS sequence number to 215 − 1, that is,

15 bits. Since the header size must be a multiple of 8 bits, the upper 4 bits are set

to 0xF, which indicates that the energy-optimized variant DTLS is being used. The

complete 13-byte record header is used as AAD for AES-GCM, therefore our DTLS

header optimizations do not compromise security. Using truncated tags mandates

performing a handshake after every 215 transmitted packets, but this number is large

enough for typical IoT applications.

Fig. 2-8 shows the optimized DTLS packet. Protocol overheads have been reduced

by 91%, from 77 bytes to 7 bytes. By pushing the protocol overheads to their lower

limit, we have also increased the maximum encrypted data size to 244 bytes, which

further improves energy efficiency by allowing the client node to buffer sensor data,

and reduces fragmentation of packets (𝑛 = ⌈𝑙𝑃/244⌉ for the energy-optimized DTLS).

Figure 2-8: Optimized DTLS packet over BLE, with 91% reduction in protocol
overheads (all sizes in bytes).

Using the BLE energy model discussed earlier, the energy required to transmit 32

bytes of encrypted application data using standard DTLS/UDP/IPv6 over BLE is

calculated to be 145.4 𝜇J, while it is 98.4 𝜇J for our optimized DTLS scheme. Therefore,

when using our optimized protocol, “Application Data RF” energy is reduced by 33%.

An interesting point to note is that this percentage is smaller than the percentage

reduction in number of bytes, and this is due to the additional energy consumed by

the duty-cycled RF transceiver to wake up and power down.

40

2.4.2 Handshake Optimizations

ECDSA certificates constitute a bulk of the handshake energy consumption. In

energy-constrained IoT applications, it is fair to assume that the client and the server

can cache each other’s public keys to authenticate the key exchange, and hence

avoid exchanging the certificates. For this purpose, we refer to two seldom-used TLS

extensions – “Client Certificate URL” [62] and “Cached Information” [63].

The “Client Certificate URL” extension allows the client to send a URL (Uniform

Resource Locator) to its certificate along with the SHA-256 hash of its certificate, so

that the server can look up the certificate and easily verify if it’s the correct one. In

this context, URL can even be used to refer to some database address on the server,

where it stores all the client certificates.

The “Cached Information” extension allows the client to present the SHA-256 hash

of a previously used server certificate, for which it has cached the corresponding public

key, during the handshake, and the server may go ahead with that certificate if it

wishes to, provided the hash is correct.

Figure 2-9: Optimized Certificate messages using the (top) “Client Certificate URL”
[62] and (bottom) ”Cached Information” [63] extensions.

These TLS extensions not only reduce the Certificate messages to few tens of bytes

(Fig. 2-9), but also eliminate the need to verify CA signatures in the certificates,

which is particularly helpful because CA signatures use higher security levels. In our

case study, using these extensions can lower the handshake energy consumption by as

much as 47%.

41

Figure 2-10: Energy benefits of the optimized DTLS, for session durations of (a) 1
year and (b) 1 week, with data rate of 32 bytes per hour.

Fig. 2-10 summarizes the energy benefits of our energy-optimized DTLS for the

two test scenarios. For case (a) with 1 year session, packet optimizations provide 28%

energy reduction, and handshake optimizations provide an additional 7%. For case

(b) with 1 week session, packet optimizations provide only 4% energy reduction, while

handshake optimizations provide 42%. Therefore, packet optimizations provide energy

benefits for use cases with less frequent handshakes (a), while handshake optimizations

help with applications where handshakes need to be performed more frequently (b).

Overall, our optimized protocol provides 33% and 45% energy reduction respectively

for (a) and (b). As mentioned earlier, these figures can vary with different IoT use-

cases, micro-processors and RF transceivers, but the analysis presented in this work

indicates the trends in energy consumption, along with methods to increase energy

efficiency, for the typical IoT application.

For case (b), we observe that around 80% of the total energy is due to “Handshake

Compute”, even after our protocol optimizations. Most prospective IoT applications

consider authenticating the device (“handshake”) quite frequently, on the order of few

42

days to a week. Therefore, we realize that the handshake computations will contribute

largely to the energy consumption of such devices, and this motivates us to build

energy-efficient dedicated cryptographic hardware for DTLS, which will be discussed

in detail in Chapters 3 and 4.

43

44

Chapter 3

Design of Energy-Efficient

Cryptographic Hardware

In Chapter 2, we have seen that cryptographic computations contribute largely to

DTLS energy costs, especially when the communicating devices perform authentication

handshakes frequently. This motivates the next contribution of this thesis – design

of energy-efficient cryptographic hardware. This chapter presents implementation

details of cryptographic primitives, and the proposed architectures are compared with

previous work in literature.

3.1 AES-128-GCM

3.1.1 Encryption Algorithm

AES-128 uses 128-bit keys to encrypt 128-bit plain-text blocks, and involves 10 iteration

rounds. Each round mixes the data with a RoundKey, which is derived from the

original 128-bit encryption key. The cipher maintains an internal State of 128 bytes,

in the form of a 4-by-4 matrix, on which the operations are performed. The initial

value of the State is just the input plain-text block XOR-ed with the encryption key.

The encryption rounds consist of four steps – SubBytes, ShiftRows, MixColumns and

AddRoundKey, except for the last round which does not perform MixColumns.

45

Fig. 3-1 summarizes the round operations involved in AES encryption.

Figure 3-1: Overview of AES round operations [35].

∙ SubBytes is an invertible, nonlinear transformation, which uses a substitution

function (S-Box) to independently map each byte of the State into a new byte.

The S-Box output is generated by computing multiplicative inverse of the input

in the Galois Field 𝐺𝐹 (28) (with 0x00 being mapped to itself), and applying

the following affine transformation [12]:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏′7

𝑏′6

𝑏′5

𝑏′4

𝑏′3

𝑏′2

𝑏′1

𝑏′0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏7

𝑏6

𝑏5

𝑏4

𝑏3

𝑏2

𝑏1

𝑏0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊕

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

1

0

0

0

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where 𝑏𝑖 and 𝑏′𝑖 are respectively the 𝑖𝑡ℎ bits of a byte before and after the affine

46

transformation.

∙ ShiftRows involves cyclic left shifts of the second, third and fourth row of the

State by one, two and three bytes, respectively (Fig. 3-1).

∙ MixColumns transformation operates on the State column-by-column. Each

column is considered as a four-term polynomial over 𝐺𝐹 (28), and multiplied

modulo 𝑥4+1 with a constant polynomial 𝑎(𝑥) = {03}𝑥3+{01}𝑥2+{01}𝑥+{02}.

∙ AddRoundKey performs bitwise XOR of the State with the RoundKey generated

using a key expansion algorithm (Fig. 3-2).

Figure 3-2: Key expansion for AES-128 [11].

47

The key expansion involves S-box substitutions, word rotations, and XOR oper-

ations on the encryption key. It can be performed “on-the-fly”, that is, in parallel

with the encryption, without any additional storage requirements for the intermediate

round keys. After the final round, the State is copied to the output as cipher-text,

completing the encryption process.

3.1.2 S-Box Design

From Figs. 3-1 and 3-2, it can be clearly seen that the S-Box is an important part

of the AES algorithm – both encryption and key expansion, and each round of AES

involves 20 invocations of the S-Box function. The security strength of AES is largely

due to the non-linear part of the S-Box – inversion in Galois field 𝐺𝐹 (28). The

irreducible polynomial 𝑚(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1 is used for all 𝐺𝐹 (28) finite-field

arithmetic in AES.

Vincent Rijmen had observed that any element in 𝐺𝐹 (28) can be expressed as a

degree-1 polynomial with coefficients in 𝐺𝐹 (24), also known as the extension field

representation 𝐺𝐹 ((24)2). Multiplication of such elements is performed using a degree-

2 irreducible polynomial, say 𝑃 (𝑥) = 𝑥2 + 𝐴𝑥 + 𝐵, where 𝐴,𝐵 ∈ 𝐺𝐹 (24). Let

𝑏1𝑥 + 𝑏0 be an arbitrary element in 𝐺𝐹 ((24)2) and let 𝑑1𝑥 + 𝑑0 be its inverse, where

𝑏0, 𝑏1, 𝑑0, 𝑑1 ∈ 𝐺𝐹 (24). Then, by definition of multiplicative inverse in a finite field,

(𝑏1𝑥 + 𝑏0)(𝑑1𝑥 + 𝑑0) = 1 mod 𝑃 (𝑥)

⇒ 𝑏1𝑑1𝑥
2 + (𝑏1𝑑0 + 𝑏0𝑑1)𝑥 + 𝑏0𝑑0 = 1 mod 𝑥2 + 𝐴𝑥 + 𝐵

⇒ 𝑏1𝑑1(𝐴𝑥 + 𝐵) + (𝑏1𝑑0 + 𝑏0𝑑1)𝑥 + 𝑏0𝑑0 = 1

⇒ (𝑏1𝑑0 + 𝑏0𝑑1 + 𝑏1𝑑1𝐴)𝑥 + (𝑏0𝑑0 + 𝑏1𝑑1𝐵) = 1

Therefore, (𝑏1𝑑0 + 𝑏0𝑑1 + 𝑏1𝑑1𝐴) = 0 and (𝑏0𝑑0 + 𝑏1𝑑1𝐵) = 1.

Solving these two simultaneous equations, we get

𝑑1 = 𝑏1(𝑏
2
1𝐵 + 𝑏20 + 𝑏0𝑏1𝐴)−1 and 𝑑0 = (𝑏0 + 𝑏1𝐴)(𝑏21𝐵 + 𝑏20 + 𝑏0𝑏1𝐴)−1

⇒ (𝑏1𝑥 + 𝑏0)
−1 mod 𝑃 (𝑥) = 𝑏1𝛿𝑥 + (𝑏0 + 𝑏1𝐴)𝛿, where 𝛿 = (𝑏21𝐵 + 𝑏0(𝑏0 + 𝑏1𝐴))−1.

48

Figure 3-3: Decomposition of 𝐺𝐹 (28) inversion into 𝐺𝐹 (24) operations.

Hence, the inversion of an element in 𝐺𝐹 (28) can be decomposed into 2 additions, 6

multiplications and 1 inversion in 𝐺𝐹 (24) (Fig. 3-3). Similar decompositions can be

used to compute the 𝐺𝐹 (24) inverse in terms of 𝐺𝐹 (22) operations, and so on.

Composite field-based S-Box designs have been studied extensively in existing

literature. [34], [35], [36], [37] and [38] have all used such composite field structures.

The most comprehensive analysis of S-Box architectures, using different polynomial

and normal bases for 𝐺𝐹 (28) and its isomorphic fields, has been published in [64].

The S-Box can also be implemented using look-up tables, but they are not as efficient

as composite-field S-Box designs. In this work, we are going to use the low-power

low-area S-Box design proposed in [64].

3.1.3 Energy-Efficient AES

Serial 8-bit data-path implementations of AES can provide significant area savings

([35], [37] and [38]). However, they are not the most energy-efficient. The AES

algorithm operates on 128-bit blocks, but these serial designs process only 8 bits

at a time, thus increasing energy consumption due to additional multiplexing and

expensive register shifts. To verify this claim, we implemented three different AES

architectures (Fig. 3-4):

∙ 𝐴1, with an 8-bit data-path and one S-Box, processes the State and the RoundKey

on separate cycles, 8 bit at a time. Therefore, it takes 16 cycles to generate

49

the round key, and another 16 cycles to complete the encryption round, that is,

total 336 cycles to encrypt a block.

∙ 𝐴2, with a 128-bit data-path and 20 S-Boxes, can process the State and the

RoundKey together in a single cycle. It takes 11 cycles to encrypt a block.

∙ 𝐴3, with an unrolled pipelined 128-bit data-path containing 10 instances of AES

rounds, effectively takes 1 cycle to encrypt a block.

Figure 3-4: AES architectures – (𝐴1) Serial, (𝐴2) Parallel and (𝐴3) Pipelined.

Table 3.1: Comparison of our AES architectures at VDD = 1.0 V.
Architecture Area Power Cycles Throughput Energy

KGate mW Gbps pJ/bit
𝐴1 – Serial 3 0.24 336 0.04 6
𝐴2 – Parallel 9.2 1.76 11 1.16 1.52
𝐴3 – Pipelined 78.8 16.56 1 12.8 1.29

50

These three designs were synthesized in the TSMC 40nm LP low-leakage technology

node. They were clocked at 𝑓𝐶𝐿𝐾 = 100 MHz, and verified with a set of 1000 test

vectors. Table 3.1 shows the post-synthesis results. As conjectured, 𝐴1 is the least

energy-efficient, and the smallest in area. 𝐴3 is the most energy-efficient, due to the

absence of any multiplexing logic, but is also much larger than typical area budgets.

𝐴2 is very close to 𝐴3 in energy efficiency, while being much smaller in area, thus

making it a perfect fit for our application. Fig. 3-5 shows the breakdown of area and

power consumption of the different components of this design.

Figure 3-5: Area and power consumption distribution of the 11-cycle AES design.

Table 3.2 compares the energy consumption (pJ/bit) of our AES design (𝐴2) with

previous work. All reported results are at the nominal supply voltages (𝑉𝐷𝐷) for the

respective technology nodes.

Table 3.2: Comparison with previous work on AES-128 designs.
Design Tech VDD Area Freq Power Throughput Energy

nm V KGate MHz mW Gbps pJ/bit
[34]* 110 1.2 12.5 145 - 1.7 -
[35]* 130 1.2 3.2 130 3.9 0.1 37.5
[36]** 45 1.1 - 2100 125 53.8 2.36
[37]** 22 0.9 1.9 1133 13 0.4 31
[38]** 40 0.9 2.3 1300 4.39 0.5 8.85
This work* 40 1.0 9.2 100 1.76 1.16 1.52
*Synthesis results **Chip results

51

3.1.4 Authenticated Encryption/Decryption

AES-GCM uses the AES forward cipher for encryption/decryption and a Galois

multiplication-based special hash function, called GHASH, for authentication (Fig.

3-6). AES-GCM employs the counter mode of operation for encryption/decryption,

which concatenates a counter value with the IV, and encrypts it with K using the

AES forward cipher. The result of this encryption is then XOR-ed with the input

𝑋 to generate the output 𝑌 . For AES-GCM-Encrypt, 𝑋 = 𝑃 and 𝑌 = 𝐶, while

for AES-GCM-Decrypt, 𝑋 = 𝐶 and 𝑌 = 𝑃 , where 𝑃 is the plain-text and 𝐶 is the

cipher-text. Like all counter modes, this essentially acts as a stream cipher, therefore

it is important that a different 𝐼𝑉 is used for each stream that is encrypted.

Figure 3-6: Authenticated encryption and decryption in AES-GCM.

The input 𝑋 is divided into 128-bit blocks as 𝑋 = 𝑋1||𝑋2|| · · · ||𝑋𝑛−1||𝑋*
𝑛, where

𝑛 = ⌈𝑙𝑒𝑛(𝑋)/128⌉ and the last block 𝑋*
𝑛 may be less than 128 bits. The initial counter

block is 𝐶𝐵1 = 𝐼𝑉 ||0x00000002, when 𝐼𝑉 is 12 bytes long, and the inc function

increments the counter by one for each subsequent block. These counter blocks

𝐶𝐵1, 𝐶𝐵2, · · · , 𝐶𝐵𝑛 are encrypted using AES, denoted as 𝐴𝐸𝑆𝐾 . The output is 𝑌 =

𝑌1||𝑌2|| · · · ||𝑌𝑛−1||𝑌 *
𝑛 , where the output blocks are computed as 𝑌𝑖 = 𝑋𝑖⊕𝐴𝐸𝑆𝐾(𝐶𝐵𝑖),

and the final block is truncated accordingly.

The GHASH function uses Galois field multiplications (∙) to combine 𝐶 with

𝐴𝐴𝐷 = 𝐴1||𝐴2|| · · · ||𝐴𝑚− 1||𝐴*
𝑚, and produce an authentication tag 𝑇 that can be

used to verify the integrity of the data. The input to GHASH is computed as 𝑋 =

52

𝐴𝐴𝐷||0𝑣 || 𝐶||0𝑢 || [𝑙𝑒𝑛(𝐴𝐴𝐷)]64||[𝑙𝑒𝑛(𝐶)]64, where 𝑢 = 128 ⌈𝑙𝑒𝑛(𝐶)/128⌉ - 𝑙𝑒𝑛(𝐶),

𝑣 = 128 ⌈𝑙𝑒𝑛(𝐴𝐴𝐷)/128⌉ - 𝑙𝑒𝑛(𝐴𝐴𝐷), and [𝑙𝑒𝑛(𝑥)]64 denotes the length of 𝑥, in bits,

as a 64-bit quantity. The hash key 𝐻 = 𝐴𝐸𝑆𝐾(0128) is the output of encrypting the

“zero” block with 𝐾 using the AES forward cipher.

3.1.5 Galois Multiplier Design

The Galois multiplier is an important component of GHASH computations. The

algorithm below computes the Galois field product 𝑍 = 𝑋 ∙ 𝑌 :

Algorithm: Galois multiplication for GHASH

Input: 𝑋 = (𝑥0𝑥1 · · ·𝑥127)2 and 𝑌 = (𝑦0𝑦1 · · · 𝑦127)2
Output: 𝑍 = 𝑋 ∙ 𝑌

1. 𝑍0 ← 0128, 𝑉0 ← 𝑌

2. for 𝑖 = 0 to 127:

2.1 if 𝑥𝑖 = 0 then 𝑍𝑖+1 ← 𝑍𝑖 else 𝑍𝑖+1 ← 𝑍𝑖 ⊕ 𝑉𝑖

2.2 if LSB(𝑉𝑖) = 0 then 𝑉𝑖+1 ← 𝑉𝑖 >> 1 else 𝑉𝑖+1 ← (𝑉𝑖 >> 1)⊕ 11100001||0120

3. return 𝑍128

The Galois multiplier can be implemented in hardware using one or more copies

of the basic function which we denote as ℎ: 𝑍𝑖+1 = 𝑍𝑖 ⊕ 𝑥𝑖𝑉𝑖 and 𝑉𝑖+1 = (𝑉1 >> 1)

⊕ LSB(𝑉𝑖)(11100001||0120), that is, using loop unrolling (Fig. 3-7).

Figure 3-7: Implementation of Galois multiplier in hardware.

53

Multiple GHASH Galois multipliers were synthesized at 𝑓𝐶𝐿𝐾 = 100 MHz, and a

wide variety of area, latency and power figures were obtained (Table 3.3).

Table 3.3: Analysis of GHASH Galois multiplier architectures at VDD = 1.0 V.
Architecture Area Power Cycles Throughput Energy

KGate mW Gbps pJ/Op
1-cycle 60.1 5.77 1 12.8 57.7
2-cycle 31.3 2.98 2 6.4 59.6
4-cycle 16.9 1.74 4 3.2 69.6
8-cycle 9.7 1.03 8 1.6 82.4
16-cycle 6.1 0.64 16 0.8 102.4
32-cycle 4.3 0.43 32 0.4 137.6
64-cycle 3.6 0.33 64 0.2 211.2
128-cycle 3.3 0.27 128 0.1 345.6

Figure 3-8: Analysis of different Galois multiplier architectures.

Fig. 3-8 shows the variations in area and energy consumption of the different

Galois multiplier designs. The 8-cycle multiplier provides the perfect combination of

area and energy efficiency. Faster designs are much larger, but do not offer significant

energy benefits, while the slower ones are slightly smaller, but have much higher

energy consumption. The increased energy efficiency in faster designs is achieved

54

by reduction in the number of cycles required to perform the operation, along with

reduced multiplexing and registers shifts.

3.1.6 Energy-Efficient AES-GCM

The design techniques discussed earlier have been combined to implement an energy-

efficient AES-GCM unit. Table 3.4 compares synthesis results from our design with

previous work.

Table 3.4: Comparison with previous work on AES-128-GCM designs.
Design Tech VDD Area Freq Power Throughput Energy

nm V KGate MHz mW Gbps pJ/bit
[39]* 130 1.2 34 200 - 2.56 -
[40]* 65 1.2 630 613 101.2 19.6 5.16
This work* 40 1.0 27 100 1.63 0.53 3.06
*Synthesis results

3.2 SHA-256

3.2.1 Hash Algorithm

The SHA-256 hash algorithm can compress messages of arbitrary lengths (< 264 bits)

and generate a unique 256-bit message digest. Fig. 3-9 provides an overview of the

SHA-256 algorithm.

Since SHA-256 operates only on 512-bit blocks, it needs to pad the input message

to a multiple of 512 bits. This is done by appending a ’1’ bit at the end of the message,

followed by several ’0’ bits, and finally the 64-bit length of the message. The State of

the hash function is initialized according to the specifications in [15]. The Message

Schedule takes 512-bit blocks of the padded message and sends 32-bit words 𝑊𝑡 to

the main SHA-256 Round function, along with a round constant 𝐾𝑡. Each 512-bit

block is “digested” over 64 iterations of the round function, and the State is updated.

55

This process repeats till the entire message has been processed, and the final value of

the State is the output message digest.

Figure 3-9: Overview of SHA-256 hash algorithm.

Figure 3-10: SHA-256 round function.

Fig. 3-10 shows details of the SHA-256 round function. The State consists of 16

32-bit variables 𝐻0 −𝐻7 and 𝑎− ℎ. The 𝑀𝑎𝑗, 𝐶ℎ and Σ functions are specified in

[15]. The � symbol denotes 32-bit modulo 232 addition, that is, the final carry is

ignored. Each iteration of the round function updates the state variables (𝐻 ′
0 −𝐻 ′

7

and 𝑎′−ℎ′ are the updated values). Although the state of the hash function is defined

by 𝐻0 −𝐻7, 𝑎− ℎ and the message schedule, it is important to note that 𝐻0 −𝐻7

56

completely defines the SHA-256 state after every 64 iterations of the round, that is,

after every 512-bit block has been processed. This observation can be exploited to

implement efficient running hashes, as will be discussed in Chapter 4.

3.2.2 Energy-Efficient SHA-256

From Fig. 3-10, the critical path in the round function is: 𝑒 → 𝐶ℎ → � → � →

� → � → 𝑒′. This path was implemented using a combination of “carry-save” and

“ripple-carry” adders to reduce latency. The entire round function data-path was

implemented, with 𝑎′ − ℎ′ being computed in parallel, to reduce energy consumption

due to multiplexing, glitching and register shifts. Our final SHA-256 design takes

65 cycles to process a 512-bit input block, and a comparison with previous work is

presented in Table 3.5. All reported results are at the nominal supply voltages (𝑉𝐷𝐷)

for the respective technology nodes.

Table 3.5: Comparison with previous work on SHA-256 designs.
Design Tech VDD Area Freq Power Throughput Energy

nm V KGate MHz mW Gbps pJ/bit
[41]* 180 1.3 - 819 - 6.4 -
[42]* 130 1.2 15.3 333 - 2.4 -
[43]* 130 1.2 22 794 - 6.0 -
[44]** 45 1.1 - 1400 50 23 2.17
This work* 40 1.0 13.3 100 1.6 0.79 2.03
*Synthesis results **Chip results

3.3 ECC

The basics of elliptic curve cryptography (ECC) were discussed in Chapter 1, and

its applications, in context of the DTLS security protocol, were briefly presented

in Chapter 2. The measurement results presented in Chapter 2 revealed that ECC

implementations in software can be extremely power hungry. In this section, efficient

hardware implementations of modular arithmetic operations will be discussed, along

57

with point addition and doubling formulas for two types of elliptic curves – short

Weierstrass and Montgomery. Different algorithms for elliptic curve scalar multiplica-

tion (ECSM) will be compared on the basis of number of computations and security

implications. Finally, a highly energy-efficient reconfigurable ECC hardware design

will be presented, and compared with previous work in the field of prime-field ECC

implementations.

3.3.1 ECDH and ECDSA

As discussed in Chapter 1, the elliptic curve operations involved in ECDH are 𝑄𝐴 =

𝑘𝐴𝐺, 𝑄𝐵 = 𝑘𝐵𝐺 and 𝑆 = 𝑘𝐴𝑄𝐵 = 𝑘𝐵𝑄𝐴 = 𝑘𝐴𝑘𝐵𝐺, that is, scalar multiplications.

For ECDH, it is important to verify that 𝑘 ∈ [1, 𝑛− 1], where 𝑛 is the order of the

curve, before computing 𝑄 = 𝑘𝐺. Also, it is important to verify that 𝑄 is a valid

point on the curve, before computing 𝑆 = 𝑘𝑄.

A simplified explanation of ECDSA was provided in Chapter 1. Details of the

ECDSA-Sign and ECDSA-Verify algorithms are discussed below [27]:

ECDSA Parameters: Elliptic curve 𝐸(F𝑝) with base point 𝐺 and order 𝑛, and

cryptographic hash function 𝐻

Algorithm: ECDSA-Sign algorithm

Input: Private key 𝑑 ∈ [1, 𝑛− 1], and message 𝑚

Output: Signature (𝑟, 𝑠)

1. 𝑧 ← 𝐻(𝑚)

2. 𝑘 ∈𝑅 [1, 𝑛− 1]

3. (𝑥1, 𝑦1)← 𝑘𝐺

4. 𝑟 ← 𝑥1 mod 𝑛

5. if 𝑟 = 0 then go back to Step 2

6. 𝑠← 𝑘−1(𝑧 + 𝑟𝑑) mod 𝑛

7. if 𝑠 = 0 then go back to Step 2

8. return (𝑟, 𝑠)

58

Algorithm: ECDSA-Verify algorithm

Input: Public key 𝑄 = 𝑑𝐺, signature (𝑟, 𝑠), and message 𝑚

Output: VALID / INVALID

1. if 𝑄 =∞ or 𝑄 /∈ 𝐸(F𝑝) then return INVALID

2. if 𝑟 /∈ [1, 𝑛− 1] or 𝑠 /∈ [1, 𝑛− 1] then return INVALID

3. 𝑧 ← 𝐻(𝑚)

4. 𝑤 ← 𝑠−1 mod 𝑛

5. 𝑢1 ← 𝑧𝑤 mod 𝑛, 𝑢2 ← 𝑟𝑤 mod 𝑛

6. (𝑥1, 𝑦1)← 𝑢1𝐺 + 𝑢2𝑄

7. if 𝑟 ≡ 𝑥1 (mod 𝑛) then return VALID else return INVALID

The security of ECDSA relies on the fact that the same scalar 𝑘 is never used

to sign more than one message with the same private key 𝑑, otherwise the private

key 𝑑 can be easily computed from the signature values. For example, let us consider

two messages 𝑚 and 𝑚′ with signatures (𝑟, 𝑠) and (𝑟′, 𝑠′) respectively, generated using

the same scalar 𝑘. Then, 𝑠 − 𝑠′ = 𝑘−1(𝑧 − 𝑧′), where 𝑧 = 𝐻(𝑚) and 𝑧′ = 𝐻(𝑚′).

Since 𝑧 and 𝑧′ can be easily computed by anybody, an attacker can recover the scalar

𝑘 = (𝑧 − 𝑧′)(𝑠− 𝑠′)−1, and compute the private key 𝑑 = 𝑟−1(𝑠𝑘 − 𝑧). To prevent such

attacks, it is recommended to use the “Deterministic ECDSA” algorithm specified in

[66]. This modified algorithm generates the scalar 𝑘 from the input message hash 𝑧

and private key 𝑑. This binds the scalar to the message, and ensures that no two

messages use the same scalar. The TLS specification recommends using “Deterministic

ECDSA” for all ECDSA-based cipher suite implementations.

3.3.2 Modular Arithmetic

Modular arithmetic (addition, subtraction, multiplication and division) is an integral

part of prime-field ECC computations. The first operation that we are going to discuss

is prime-field addition:

59

Algorithm: 256-bit 𝐺𝐹 (𝑝) addition

Input: 256-bit integers 𝑥, 𝑦, and prime 𝑝

Output: 𝑧 = 𝑥 + 𝑦 mod 𝑝

1. (𝑐0, 𝑠0)← 𝑥 + 𝑦

2. (𝑏1, 𝑑1)← 𝑠0 − 𝑝

3. if 𝑐0 = 1 or 𝑏1 = 0 then 𝑧 ← 𝑑1 else 𝑧 ← 𝑠0

4. return 𝑧

This addition algorithm adds the inputs 𝑎 and 𝑏 to get the sum 𝑠0 with carry 𝑐0, and

subtracts 𝑝 from 𝑠0 to get the difference 𝑑1 with borrow 𝑏1. If 𝑐0 = 1 (⇒ 𝑎+𝑏 > 2256−1)

or 𝑏1 = 0 (⇒ 𝑎 + 𝑏 ≥ 𝑝), the correct result is 𝑑1, else it is 𝑠0. Prime field subtraction

can also be performed using a very similar algorithm:

Algorithm: 256-bit 𝐺𝐹 (𝑝) subtraction

Input: 256-bit integers 𝑥, 𝑦, and prime 𝑝

Output: 𝑧 = 𝑥− 𝑦 mod 𝑝

1. (𝑏0, 𝑑0)← 𝑥− 𝑦

2. (𝑐1, 𝑠1)← 𝑑0 + 𝑝

3. if 𝑏0 = 1 then 𝑧 ← 𝑠1 else 𝑧 ← 𝑑0

4. return 𝑧

Figure 3-11: Hardware implementation of modular adder.

Fig. 3-11 shows the hardware implementation of a prime-field modular adder. It

consists of one adder to add the inputs 𝑥 and 𝑦, and one subtracter to reduce the result

60

modulo the prime 𝑝. Although a single adder can be used to perform the addition

in one step and the reduction in the next step, it is not secure. This is because

the reduction step is executed only when 𝑥 + 𝑦 ≥ 𝑝, thus introducing a timing side

channel.

Table 3.6: Analysis of 256-bit modular adder architectures at VDD = 1.0 V.
Data-Path Area Power Cycles Energy

KGate 𝜇W pJ/Op
8-bit 5.0 53.46 32 171.1
16-bit 5.1 56.48 16 90.4
32-bit 5.3 61.51 8 49.2
64-bit 5.8 74.58 4 29.8
128-bit 6.7 95.72 2 19.1
256-bit 8.9 114.98 1 11.5

Figure 3-12: Analysis of different 256-bit modular adder architectures.

Although the inputs 𝑥, 𝑦 and 𝑝 to the modular adder are 256-bit quantities,

the addition and subtraction operations can be performed with smaller data-paths.

The modular adder shifts through appropriately sized words of the 256-bit inputs to

compute the output words over multiple cycles. 256-bit modular adders of different

61

data-path sizes were synthesized in the TSMC 40nm LP process at 𝑓𝐶𝐿𝐾 = 10 MHz,

and their areas and energy consumptions were compared (Table 3.6).

Fig. 3-12 shows the variations in area and energy consumption of the different

256-bit modular adders. Clearly, with reduction in data-path width, the energy

consumption increases rapidly, while the area (dominated by the sequential elements,

which are the same in all the adders) does not reduce significantly. Based on this

analysis, we choose the 256-bit data-path adder. It is important to note that fixed-

prime modular adders may use smaller data-paths to exploit special properties of the

prime 𝑝. However, our objective is to design reconfigurable ECC hardware, hence

the energy-efficient wide data-path modular adder architecture is ideal for supporting

random primes.

Integer multiplications can be expressed as repeated integer additions. Similarly,

modular additions can be used to perform modular multiplications. A straight-forward

way to compute 𝑎 · 𝑏 mod 𝑝 is to multiply the two 256-bit integers 𝑎 and 𝑏 to get

a 512-bit product, and then reduce it modulo the 256-bit prime 𝑝. This method is

particularly useful when the prime 𝑝 is fixed and has special structure that facilitates

easy reduction modulo 𝑝. For example, the NIST primes have such special properties,

as discussed in [27]. However, it is not efficient enough for hardware that can be

reconfigured with random primes, and we refer to [65] for an interleaved modular

multiplication algorithm that works for any prime 𝑝:

Algorithm: 256-bit 𝐺𝐹 (𝑝) interleaved multiplication

Input: 256-bit integers 𝑥 = (𝑥127 · · ·𝑥1𝑥0)2, 𝑦 = (𝑦127 · · · 𝑦1𝑦0)2, and prime 𝑝

Output: 𝑧 = 𝑥 · 𝑦 mod 𝑝

1. 𝑧 ← 0

2. for 𝑖 = 127 downto 0:

2.1 𝑧 ← 2 · 𝑧 + (𝑥𝑖 · 𝑦)

2.2 if 𝑧 ≥ 𝑝 then 𝑧 ← 𝑧 − 𝑝

2.3 if 𝑧 ≥ 𝑝 then 𝑧 ← 𝑧 − 𝑝

3. return 𝑧

62

Figure 3-13: Hardware implementation of interleaved modular multiplication.

Fig. 3-13 shows the implementation of this algorithm in hardware. The input

registers 𝑥, 𝑦 and 𝑝 are held constant throughout the multiplication process. The

𝑖𝑡ℎ bit of 𝑥, denoted 𝑥[𝑖] in Fig. 3-13, is obtained using a 256-to-1 multiplexer. This

method is used, instead of shifting the register 𝑥, in order to reduce the number of

cycles required to perform multiplication modulo primes of smaller length, as well as

to reduce energy consumption. The only register that gets updated every cycle is 𝑧,

which also holds the final output 𝑥 · 𝑦 mod 𝑝. The quantities 𝑢 = 2𝑧 + (𝑥[𝑖] · 𝑦), 𝑢− 𝑝

and 𝑢 − 2𝑝 are computed. Since 𝑦, 𝑧 ∈ [0, 𝑝) and 𝑥[𝑖] ∈ {0, 1}, we have 𝑢 ∈ [0, 3𝑝),

that is, 𝑢 mod 𝑝 must be one of the three quantities 𝑢, 𝑢− 𝑝 and 𝑢− 2𝑝. The updated

value of 𝑧 is decided based on the carry of the adder and the borrows of the two

subtracters. For a 𝑡-bit prime field, this design takes 𝑡 cycles to generate the result.

The final operation that will be discussed is modular division (and inversion).

Integer division does not work in the finite field F𝑝 because the result is a real number

which may not be an element of F𝑝. The equivalent operation in F𝑝 is the modular

division, which uses modular inversion and modular multiplication. Modular division

𝑏/𝑎 mod 𝑝, with 𝑎, 𝑏 ∈ F𝑝, is essentially 𝑏 ·𝑎−1 mod 𝑝, where 𝑎−1 is the modular inverse

of 𝑎. The inverse of an element 𝑎 ∈ F𝑝 is the quantity 𝑎−1 such that 𝑎 · 𝑎−1 = 1 mod

𝑝. According to Fermat’s Little Theorem, 𝑎𝑝−1 = 1 mod 𝑝 for all 𝑎 ∈ F𝑝. Therefore,

𝑎−1 can be easily computed as 𝑎−1 = 𝑎𝑝−2, that is, through repeated exponentiations.

63

Algorithm: 256-bit 𝐺𝐹 (𝑝) inversion using Fermat’s Little Theorem

Input: 256-bit integer 𝑥, and prime 𝑝 = (𝑝127 · · · 𝑝1𝑝0)2
Output: 𝑧 = 𝑥−1 mod 𝑝

1. 𝑧 ← 1

2. for 𝑖 = 127 down to 0:

2.1 𝑧 ← 𝑧2 mod 𝑝

2.2 if 𝑝𝑖 = 1 then 𝑧 ← 𝑧 · 𝑥 mod 𝑝

3. return 𝑧

This algorithm uses modular multiplications, hence doesn’t require any additional

hardware. However, it involves 384 multiplications on average, which can be a signifi-

cant overhead if a large number of inversions is required. An alternative method to

compute F𝑝 inversions is using the Extended Euclidean algorithm for integers [23]:

Algorithm: 256-bit 𝐺𝐹 (𝑝) inversion using Extended Euclidean algorithm

Input: 256-bit integer 𝑥, and prime 𝑝

Output: 𝑧 = 𝑥−1 mod 𝑝

1. 𝑢← 𝑥, 𝑣 ← 𝑝

2. 𝑡1 ← 1, 𝑡2 ← 0

3. while 𝑢 ̸= 0:

3.1 while 𝑢 even:

3.1.1 𝑢← 𝑢/2

3.1.2 if 𝑡1 even then 𝑡1 ← 𝑡1/2 else 𝑡1 ← (𝑡1 + 𝑝)/2

3.2 while 𝑣 even:

3.2.1 𝑣 ← 𝑣/2

3.2.2 if 𝑡2 even then 𝑡2 ← 𝑡2/2 else 𝑡2 ← (𝑡2 + 𝑝)/2

3.3 if 𝑢 ≥ 𝑣:

then

3.3.1 𝑢← 𝑢− 𝑣

3.3.2 if 𝑡1 > 𝑡2 then 𝑡1 ← 𝑡1 − 𝑡2 else 𝑡1 ← 𝑡1 + 𝑝− 𝑡2

64

else

3.3.3 𝑣 ← 𝑣 − 𝑢

3.3.4 if 𝑡2 > 𝑡1 then 𝑡2 ← 𝑡2 − 𝑡1 else 𝑡2 ← 𝑡2 + 𝑝− 𝑡1

4. return 𝑡2

Figure 3-14: Hardware implementation of modular inversion using Extended Euclidean
algorithm.

The steps 3.1 and 3.2 are never executed together, because the algorithm ensures

that 𝑢 and 𝑣 are never both even. The above algorithm can also be used to compute

𝑦 · 𝑥−1 mod 𝑝 by setting 𝑡1 ← 𝑦 in step 1. The algorithm has been modified slightly

from [23] to prevent the intermediate variables 𝑢, 𝑣, 𝑡1 and 𝑡2 from becoming negative.

Implementation of this algorithm definitely requires additional hardware, and our

implementation is shown in Fig. 3-14. It performs steps 3.1 and 3.2 together, and

then 3.3 in two cycles, using two subtracters and one adder (with one of the inputs 𝑝).

Table 3.7 analyzes the post-synthesis energy consumption of various 256-bit modular

arithmetic operations using the architectures discussed earlier.

Although Fermat’s Theorem-based inversion requires minimal hardware apart from

the modular multiplier, it is very slow and consumes a lot of energy. On the other hand,

inversion using Extended Euclidean algorithm is faster and far more energy-efficient,

but requires significant amounts of additional circuitry. Denoting F𝑝 multiplication by

𝑀 and F𝑝 inversion by 𝐼, we observe that 𝐼𝐹𝑒𝑟𝑚𝑎𝑡 ≈ 384𝑀 , while 𝐼𝐸𝑢𝑐𝑙𝑖𝑑 ≈ 4𝑀 . This

65

Table 3.7: Analysis of 256-bit modular arithmetic operations at VDD = 1.0 V.
Operation Area Cycles Energy

KGate nJ/Op
F𝑝 Addition/Subtraction 8.9 1 0.01
F𝑝 Interleaved Multiplication 11.6 256 2.36
F𝑝 Inversion (Fermat’s Theorem) 12.1 98304 906
F𝑝 Inversion (Extended Euclid) 21.5 720 9.5

observation will be very important in deciding the most efficient elliptic curve point

formulas.

3.3.3 Point Addition and Doubling

In this research, we are going to focus on prime-field ECC using only two types of

elliptic curves – short Weierstrass and Montgomery. The fundamental operations used

in ECC are point addition (𝑅 = 𝑃 + 𝑄), and point doubling (𝑅 = 𝑃 + 𝑃). The

corresponding formulas for these curves are listed as follows:

∙ For the short Weierstrass curve 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏,

Point addition: (𝑥1, 𝑦1) + (𝑥2, 𝑦2) = (𝑥3, 𝑦3)

where 𝑥3 = 𝜆2 − 𝑥1 − 𝑥2, 𝑦3 = 𝜆(𝑥1 − 𝑥3)− 𝑦1 and 𝜆 = 𝑦2−𝑦1
𝑥2−𝑥1

Point doubling: 2(𝑥1, 𝑦1) = (𝑥3, 𝑦3)

where 𝑥3 = 𝜆2 − 2𝑥1, 𝑦3 = 𝜆(𝑥1 − 𝑥3)− 𝑦1 and 𝜆 =
3𝑥2

1+𝑎

2𝑦1

∙ For the Montgomery curve 𝑏𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑥,

Point addition: (𝑥1, 𝑦1) + (𝑥2, 𝑦2) = (𝑥3, 𝑦3)

where 𝑥3 = 𝑏𝜆2 − 𝑎− 𝑥1 − 𝑥2, 𝑦3 = 𝜆(𝑥1 − 𝑥3)− 𝑦1 and 𝜆 = 𝑦2−𝑦1
𝑥2−𝑥1

Point doubling: 2(𝑥1, 𝑦1) = (𝑥3, 𝑦3)

where 𝑥3 = 𝑏𝜆2 − 𝑎− 2𝑥1, 𝑦3 = 𝜆(𝑥1 − 𝑥3)− 𝑦1 and 𝜆 = (3𝑥1+2𝑎)𝑥1+1
2𝑏𝑦1

where all operations are performed in the finite field F𝑝.

These formulas use the affine representation of point coordinates. For short

Weierstrass curves, point addition involves 2 ×𝑀 and 1 × 𝐼, while point doubling

66

involves 3×𝑀 and 1× 𝐼. Similarly, for Montgomery curves with 𝑏 = 1, point addition

involves 2×𝑀 and 1× 𝐼, while point doubling involves 3×𝑀 and 1× 𝐼. Modular

additions and subtractions are ignored for this analysis, because they are much cheaper

than multiplications (𝑀) and inversions (𝐼).

Projective coordinates represent the point (𝑥, 𝑦) as (𝑋, 𝑌, 𝑍), where 𝑥 = 𝑋/𝑍2 and

𝑦 = 𝑌/𝑍3. This prevents expensive modular inversions because this representation

keeps track of the denominator separately as the third coordinate 𝑍. Projective

coordinates avoid computing modular inversions at the cost of an increased number

of modular multiplications. For short Weierstrass curves, the following Jacobian

projective formulas are used:

∙ Point addition: 𝑅(𝑋3, 𝑌3, 𝑍3) = 𝑃 (𝑋1, 𝑌1, 𝑍1) + 𝑄(𝑥2, 𝑦2)

𝑋3 = (𝑦2𝑍
3
1 − 𝑌1)

2 − (𝑥2𝑍
2
1 −𝑋1)

2(𝑋1 + 𝑥2𝑍
2
1)

𝑌3 = (𝑦2𝑍
3
1 − 𝑌1)

2(𝑋1(𝑥2𝑍
2
1 −𝑋1)

2 −𝑋3)− 𝑌1(𝑥2𝑍
2
1 −𝑋1)

3

𝑍3 = (𝑥2𝑍
2
1 −𝑋1)𝑍1

∙ Point doubling: 𝑅(𝑋3, 𝑌3, 𝑍3) = 2𝑃 (𝑋1, 𝑌1, 𝑍1)

𝑋3 = 9(𝑋2
1 − 𝑍4

1)2 − 8𝑋1𝑌
2
1

𝑌3 = 3(𝑋2
1 − 𝑍4

1)(4𝑋1𝑌
2
1 −𝑋3)− 8𝑌 4

1

𝑍3 = 2𝑌1𝑍1

Therefore, point addition over mixed coordinates involves 11×𝑀 , while point doubling

over projective coordinates involves 8×𝑀 . For Montgomery curves with 𝑏 = 1, the

Montgomery ladder formula is used to compute point multiplications using projective

coordinates, and each double-and-add “ladder step” involves 10 ×𝑀 [57]. In the

next section, we will determine which set of formulas is best suited for our hardware

implementations of modular arithmetic.

3.3.4 Scalar Multiplication Formulas

The simplest algorithm that can be used to compute 𝑄 = 𝑘𝑃 for any elliptic curve

point 𝑃 is the “left-to-right double-and-add” method described below:

67

Algorithm: 𝐸(F𝑝) point multiplication using left-to-right double-and-add method

Input: 𝑡-bit scalar 𝑘 = (𝑘𝑡−1 · · · 𝑘1𝑘0)2, and point 𝑃 ∈ 𝐸(F𝑝)

Output: 𝑄 = 𝑘𝑃

1. 𝑄←∞

2. for 𝑖 = 𝑡− 1 downto 0:

2.1 𝑄← 2𝑄

2.2 if 𝑘𝑖 = 1 then 𝑄← 𝑄 + 𝑃

3. return 𝑄

This algorithm uses only one additional variable 𝑄, which also holds the final result.

Therefore, no additional registers are required apart from the input point, the output

point and the scalar.

An important observation here is that Step 2.2 is executed only when 𝑘𝑖 = 1, that

is, point doubling is always performed, while point addition is performed depending

on the corresponding bit in the scalar 𝑘. We have seen earlier that point addition and

point doubling are very different computations. The affine point doubling operation

uses one extra multiplication, compared to affine point addition. Therefore, an attacker

snooping on the target device can easily figure out the bits of 𝑘. This is called a

side-channel attack, and is a major concern regarding secure ECC implementations.

The execution time of the algorithm, in software or hardware, can be used as a

side channel. Another common side-channel is the power supply (𝑉𝐷𝐷) pin of the

device, and it is called a “Simple Power Analysis” (SPA) attack. We will discuss

countermeasures to prevent such side-channel attacks in the next section.

The 𝑡-bit scalar 𝑘 = (𝑘𝑡−1 · · · 𝑘1𝑘0)2 has 𝑡/2 ones on average. Therefore, point

multiplication using the simple double-and-add algorithm involves 𝑡 doublings (DBL)

and 𝑡/2 additions (ADD). There are different windowing methods that process multiple

bits of 𝑘 at a time, but they only reduce the number of additions [23]. The “comb”

method, discussed below, employs clever pre-computations to reduce the number of

doublings and additions [23]:

68

Algorithm: 𝐸(F𝑝) point multiplication using fixed-base comb method

Input: 𝑡-bit scalar 𝑘 = (𝑘𝑡−1 · · · 𝑘1𝑘0)2, window width 𝑤, 𝑑 = ⌈𝑡/𝑤⌉, and point

𝑃 ∈ 𝐸(F𝑝)

Output: 𝑄 = 𝑘𝑃

1. Pre-computations – For all bit-strings (𝑎𝑤−1, · · · , 𝑎1, 𝑎0), compute

[𝑎𝑤−1, · · · , 𝑎1, 𝑎0]𝑃 = 𝑎𝑤−12
(𝑤−1)𝑑𝑃 + · · ·+ 𝑎22

2𝑑𝑃 + 𝑎12
𝑑𝑃 + 𝑎0𝑃

2. Pad 𝑘 to the left with zeros, if necessary, and write 𝑘 = 𝐾𝑤−1|| · · · ||𝐾1||𝐾0, where

each 𝐾𝑗 is a bit-string of length 𝑑, and let 𝐾𝑗
𝑖 denote the 𝑖𝑡ℎ bit of 𝐾𝑗

3. 𝑄←∞

4. for 𝑖 = 𝑑− 1 downto 0:

4.1 𝑄← 2𝑄

4.2 if 𝑘𝑖 = 1 then 𝑄← 𝑄 + [𝐾𝑤−1
𝑖 , · · · , 𝐾1

𝑖 , 𝐾
0
𝑖]𝑃

5. return 𝑄

Considering 𝑡 = 256 and 𝑤 = 4 (⇒ 𝑑 = 64), the pre-computations involve 192

DBL and 16 ADD, while the ECSM computation involves 64 DBL and 64 ADD. This

is a significant improvement from the windowed double-and-add methods. The only

additional overhead is the storage requirement for the 2𝑤 pre-computed points.

While affine coordinate computations perform a modular inversion at the end

of every DBL and ADD, the projective coordinate computations perform only one

inversion at the end of the ECSM. Projective coordinates are preferred for software

implementations because conventional Fermat’s Theorem-based modular inversions

are extremely expensive. However, we have proposed a highly efficient Extended

Euclidean algorithm-based modular inversion architecture in a previous section, and

we are going to use our analysis of 𝐼𝐹𝑒𝑟𝑚𝑎𝑡 = 384𝑀 versus 𝐼𝐸𝑢𝑐𝑙𝑖𝑑 = 4𝑀 to prove that

affine coordinates are best suited for our implementation.

Table 3.8 compares the total amount of computations required for 𝑤 = 4 comb-

based 256-bit prime-field ECSM using both types of coordinates for the two types of

elliptic curves. Using affine coordinates with modular inversion based on Extended

Euclidean algorithm, we can reduce the ECSM computation costs by 48% for short

69

Table 3.8: Analysis of 256-bit prime-field ECSM using 𝑤 = 4 comb.
ECSM

Elliptic Curve Affine Projective
𝐼𝐹𝑒𝑟𝑚𝑎𝑡 𝐼𝐸𝑢𝑐𝑙𝑖𝑑 𝐼𝐹𝑒𝑟𝑚𝑎𝑡 𝐼𝐸𝑢𝑐𝑙𝑖𝑑

Short Weierstrass 49472×𝑀 832×𝑀 1600×𝑀 1220×𝑀

Montgomery (𝑏 = 1) 49472×𝑀 832×𝑀 1024×𝑀 644×𝑀

Weierstrass curves and 19% for Montgomery curves. Although projective coordinates

with our efficient modular inverter can provide 37% savings for Montgomery curves, we

choose to use only the affine form in order to avoid adding area overheads due to the

projective coordinate state machine and related circuitry. Another important benefit

of using affine coordinates is the reduction in the number of temporary registers. The

projective coordinate algorithms in [23] use up to 4 temporary registers (𝑇1, 𝑇2, 𝑇3,

𝑇4), which are no longer necessary in our hardware. This reduces area as well as

energy consumption due to register multiplexing.

3.3.5 Side-Channel Security

Side-channel security is particularly essential for public-key cryptography algorithms

like ECC, because of their long computation times. Although the comb method

processes multiple bits of the scalar 𝑘 simultaneously, it is not free from side-channel

attacks. A countermeasure has been proposed in [67] that can prevent SPA attacks on

ECSM using the comb method. This countermeasure uses a modified representation

of the scalar 𝑘, called “Zero-less Signed Digit” (ZSD) representation. The proposed

algorithm replaces every zero bit of the scalar 𝑘 by 1 or -1, depending of its neighbor

bits. Assuming that 𝑘 is odd, let 𝑘𝑖 be the first bit equal to 0. Then, 𝑘𝑖 is replaced by

𝑘𝑖 + 1 = 1, and 𝑘𝑖−1 is replaced by 𝑘𝑖−1 − 2 = −𝑘𝑖−1 = −1, which does not change

the value of 𝑘. Iterating this process, every bit of the bit-string will be non-zero and

the multiplication 𝑄 = 𝑘𝑃 will be SPA-resistant. Since the scalar does not contain

any zeros, this also reduces the number of pre-computed comb points from 2𝑤 to 2𝑤−1

[67]. It is to be noted that this process works only for odd integers 𝑘, that is, the

least significant bit 𝑘0 = 1. To prevent leaking any information about whether 𝑘 is

70

even or odd, we initially compute 𝑘′ = 𝑘 + 1 if 𝑘 is even, and 𝑘′ = 𝑘 + 2 if 𝑘 is odd.

Then, 𝑄′ = 𝑘′𝑃 is computed, and finally, we obtain 𝑄 = 𝑘𝑃 as 𝑄′ − 𝑃 if 𝑘 is even,

and 𝑄′ − 2𝑃 if 𝑘 is odd.

Side-channel attacks on ECC are not limited to simple SPA attacks. Another form

of attack, called “Differential Power Analysis” (DPA), uses statistical techniques to

extract the secret scalar 𝑘 from measurements taken over several point multiplications

𝑄 = 𝑘𝑃 . Such attacks can be prevented using some form of randomization [68], and

we generate another random scalar 𝑙 ∈𝑅 [1, 𝑛− 1]. Then, we compute 𝑄1 = 𝑘1𝑃 and

𝑄2 = 𝑘2𝑃 , where 𝑘1 = 𝑙 and 𝑘2 = 𝑘−𝑙 mod 𝑛. Finally, we compute 𝑄 = 𝑄1+𝑄2 = 𝑘𝑃 .

An implementation is DPA-secure only when it is also SPA-secure. Therefore, the

scalars 𝑘1 and 𝑘2 are converted to ZSD form to prevent SPA attacks on the point

multiplications. Clearly, the DPA-secure algorithm uses two point multiplications to

compute the result, therefore, it is twice as expensive as the SPA-secure algorithm.

3.3.6 Energy-Efficient ECC

The design techniques discussed earlier have been used to implement an energy-efficient

ECC hardware. It supports ECDH, ECDSA-Sign and ECDSA-Verify, along with

prime-field modular arithmetic. It can be reconfigured to support any short Weierstrass

or Montgomery curve over any prime field up to 256 bits.

The ECC module contains two major execution units – the serial modular multiplier,

which is also used to perform modular addition, and the modular inverter. Since all

elliptic curve operations can eventually be expressed as a combination of different

modular arithmetic operations, we have designed a hardware state machine along

with the necessary storage elements to execute the ECC operations using the modular

arithmetic units.

Fig. 3-15 shows the architecture of our reconfigurable prime-field ECC hardware.

The registers 𝑝 and 𝑛 store the prime and the curve order respectively. The registers 𝑥1

and 𝑦1 holds the final output point or signature value. The modular inverter, based on

the binary Extended Euclidean algorithm, contains the four registers 𝑢, 𝑣, 𝑡1, 𝑡2, and

supports division and inversion modulo either 𝑝 or 𝑛. During modular multiplication,

71

Figure 3-15: Architecture of the reconfigurable prime-field ECC hardware.

the multiplier value is stored in the register 𝑡 and the multiplicand is either 𝑡1 or 𝑡2.

The modular multiplier performs interleaved modular multiplication, as discussed

earlier, and stores the final value in the register 𝑧.

Point doubling (DBL) and point addition (ADD) are the basic operations used in

ECC, and they are combined with modular arithmetic to define the ECC functions

like ECDH and ECDSA. The state machines for the DBL and ADD operations are

based on carefully optimized micro instructions to reduce register multiplexing and

execution cycles, as described in Figs. 3-16 and 3-17. These micro-instructions have

been specifically designed for our ECC architecture. All micro-instructions are register-

based, and only the 𝑧 register is allowed to write back to the other registers (and the

register file). This reduces control complexity, thus reducing energy consumption of

the hardware. For a 256-bit short Weierstrass curve, DBL takes ≈ 1530 cycles and

72

Figure 3-16: Micro-code used for point doubling 𝑃3 = 2𝑃1 using the reconfigurable
prime-field ECC module.

ADD takes ≈ 1280 cycles. The point 𝑃1 is loaded into registers 𝑥1 and 𝑦1, which also

hold the output point 𝑃3. The second point for ADD is read from the register file.

For ECSM, the point (𝑃𝑥, 𝑃𝑦) is one of the 8 pre-computed comb points. The ECSM

secret scalar 𝑘 is loaded into register 𝑡 from the register file, and then shifted into the

comb registers COMB𝑖 (𝑖 ∈ [0, 3]). For SPA security, the scalar 𝑘 is converted to ZSD

form while being loaded into the COMB𝑖 registers. For easy “on-the-fly” conversion of 𝑘

from binary to ZSD, we use a special representation of ZSD where ‘1’ represents ‘1’ and

‘0’ represents ‘-1’. As discussed earlier, the binary scalar 𝑘 = (𝑘𝑡−1, 𝑘𝑡−2, · · · , 𝑘1, 𝑘0)2

73

Figure 3-17: Micro-code used for point addition 𝑃3 = 𝑃1 ± 𝑃2(𝑃𝑥, 𝑃𝑦) using the
reconfigurable prime-field ECC module.

needs to be odd to have a valid ZSD form, that is, the least significant bit 𝑘0 = 1. We

prove that ZSD*(𝑘) = (1, 𝑘𝑡−1, · · · , 𝑘2, 𝑘1), where ZSD* is our special representation:

(1, 𝑘𝑡−1, · · · , 𝑘2, 𝑘1) = 2𝑡−1 +
𝑘 − 1

2⏟ ⏞
+1 bits of (𝑘𝑡−1,··· ,𝑘1)

− (2𝑡−1 − 1− 𝑘 − 1

2
)⏟ ⏞

-1 bits of (𝑘𝑡−1,··· ,𝑘1)

= 𝑘

Therefore, no additional circuitry is required to convert 𝑘 to ZSD* form when shifting its

bits into the comb registers. Each comb is of length 𝑑 = ⌈𝑡/4⌉ bits (𝑡 ≤ 256⇒ 𝑑 ≤ 64),

and the combs are generated as:

74

𝑟 ← 0

for 𝑖 = 0 to 𝑡− 1:

for 𝑗 = 0 to 𝑑− 1:

shift 𝑖𝑡ℎ bit of ZSD*(𝑘) into COMB𝑟

𝑟 ← 𝑟 + 1

The ECSM control logic shifts all four COMB𝑖 registers, one bit at a time, and

selects the appropriate pre-computed point (𝑃𝑥, 𝑃𝑦) from the register file, based on the

4 bits obtained from the comb registers. Each iteration of the double-and-add process

is then executed as 𝑃1 ← 2𝑃1 followed by 𝑃1 ← 𝑃1 + (𝑃𝑥, 𝑃𝑦). ECDSA-Verify always

uses two ECSMs, and doesn’t involve any notion of side-channel security since all its

inputs are public values. ECDH and ECDSA-Sign use one ECSM when SPA-secure,

and two ECSMs when DPA-secure.

The reconfigurable ECC hardware was synthesized in the low-leakage TSMC 40nm

LP process, at a clock frequency of 𝑓𝐶𝐿𝐾 = 10 MHz. The total logic area occupied by

the ECC core is ≈ 50,000 gate equivalents, including the 256-bit modular multiplier

and inverter, several 256-bit registers (𝑝, 𝑛, 𝑥1, 𝑦1, 𝑡 and 𝑧), 64-bit COMB𝑖 registers,

and multiplexing and control logic. A 4KByte SRAM is used to store curve constants,

scalars, ECDSA inputs and comb pre-computed points (for up to 6 sets of base points),

and accounts for a large portion of the synthesized area. The area occupied by the

SRAM is TSMC proprietary information and cannot be reported in this thesis.

Table 3.9: Performance of our prime-field ECC hardware at VDD = 1.0 V.
Curve Pre-Computation SPA-Secure ECSM DPA-Secure ECSM
Size Cycles Energy Cycles Energy Cycles Energy
(Bits) (𝜇J) (𝜇J) (𝜇J)
160 136× 103 2.32 74× 103 1.26 151× 103 2.57
192 185× 103 3.33 102× 103 1.84 208× 103 3.75
224 246× 103 4.67 137× 103 2.60 280× 103 5.32
256 317× 103 6.34 179× 103 3.58 363× 103 7.26

Table 3.9 provides details of the number of cycles and energy consumed in comput-

75

ing ECSMs over elliptic curves of different sizes. Since our serial modular multiplier

takes 𝑡 cycles, and width-4 comb-based ECSM involves 𝑡/4 “double-and-add” iterations,

for a 𝑡-bit prime field, the execution time of ECSM is approximately 𝑂(𝑡2), as evident

from our results in Table 3.9. Our design also supports two side-channel secure modes

– SPA-secure and DPA-secure, which employ techniques that have been proven to be

side-channel secure in theory as well as in experimental results reported in literature.

As conjectured earlier, energy consumption of DPA-secure ECSM is double that of

SPA-secure ECSM. Table 3.10 compares our implementation with previous work.

Although our implementation is extremely energy-efficient, its area is much higher

than the “Tiny ECC” implementations in existing literature [68]. The total logic

and memory area for previous work is reported in Table 3.10. Our hardware has a

logic area of 50 KGates, excluding the SRAM, which is much larger than the other

implementations. This is primarily because of the energy-efficient modular inverter

reconfigurability features offered by our ECC core. Since we support any random

prime, without any special structure, it is necessary to have only 256-bit data-paths

Table 3.10: Comparison with previous work on prime-field ECC designs.
Design Tech VDD Curve Area Cycles/ Energy/ SPA/

Size ECSM ECSM DPA
nm V Bits KGate 𝜇J/Op Secure

[45]* 130 1.2 192 20 4.2× 106 - -
[46]* 350 3.3 256 31 1.1× 106 550 -
[47]* 350 3.3 192 24 0.5× 106 846 Both
[48]* 350 3.3 192 19 0.86× 106 1294 SPA
[49]* 350 3.3 160 18 0.51× 106 439 Both
[50]* 180 1.8 192 12 1.3× 106 148 SPA
[51]* 32 0.9 192 26 0.35× 106 3.15 -
[52]* 130 1.2 160 12 0.1× 106 4.40 Both
[53]* 130 1.2 256 12 6.2× 106 - -
This work* 40 1.0 256 50+ † 0.18× 106 3.58 SPA
This work* 40 1.0 256 50+ † 0.36× 106 7.26 Both
*Synthesis results
†Logic area only, excluding 4 KB SRAM

76

for energy efficiency. This adds to the area occupied by modular arithmetic units.

Also, we have used the Extended Euclidean algorithm-based modular inverter, which

is much larger than the other implementations described in Table 3.10. Therefore,

our ECC hardware is best suited for energy-constrained applications where logic area

is not a big concern. One such application is the DTLS co-processor presented in

Chapter 4. Other applications will be discussed briefly in Chapter 5.

77

78

Chapter 4

DTLS Co-Processor – Design and

Simulation Results

As discussed in Chapter 2, DTLS is one of the most suited protocols for securing the

IoT. Several protocol optimizations were proposed to make DTLS energy efficient

for energy-constrained IoT applications. In Chapter 3, energy-efficient hardware

implementations of AES, SHA and ECC were described, along with post-synthesis

simulation results. In this chapter, we are going to discuss the implementation of a

DTLS 1.3 co-processor, which combines the techniques discussed in Chapters 2 and 3

with dedicated hardware state machines to accelerate the complete DTLS 1.3 protocol.

4.1 Design of DTLS Hardware Accelerator

At the core of the (D)TLS protocol is its state machine, which controls all handshaking

protocols and related computations. Since (D)TLS supports a large number of

cipher suites and other configurations, this state machine is extremely complicated to

implement in software. As discussed in [70] and [71], all successful attacks on TLS

in the past have been due to implementation errors, weak ciphers or lack of client

authentication. In this design, we make sure to enable only a carefully chosen secure

subset of all the configuration options supported by DTLS. In our DTLS core, we

support only the following 2 cipher suites:

79

∙ TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

∙ TLS_PSK_WITH_AES_128_GCM_SHA256

Since these cipher suites are at 128-bit security level, we support NIST P-256 and

Curve25519 for ECDHE and NIST P-256 for ECDSA. Both server and client authenti-

cation are made mandatory when using the ECDHE_ECDSA cipher suite. The “Client

Certificate URL” [62] extension is used, and client certificates are not transmitted.

The “Cached Information” [63] extension is optional, and the server decides whether to

use it or not. CA public keys are cached by both parties, and CA certificates are never

exchanged. The handshake messages have been structured based on the requirements

of these cipher suites, while still complying with the TLS 1.3 standard [8]. Considering

BLE 4.2 to be the RF protocol, physical layer payloads must be smaller than 251

bytes. All handshakes messages, except the server certificate, exchanged by our DTLS

core are small enough to not get fragmented. Messages belonging to the same flight

are packed into the same record, whenever possible.

Figure 4-1: Architecture of the DTLS acceleration core.

Fig. 4-1 shows the overall architecture of our DTLS 1.3 hardware acceleration core.

80

The major components of the DTLS co-processor are:

∙ Cryptographic engines – AES, SHA, ECC

∙ DTLS 1.3 state machine

∙ Dedicated co-processor memory

∙ Packet FIFOs

The cryptographic engines are the energy-efficient implementations described in

Chapter 3, and can also be accessed separately to accelerate standalone cryptographic

computations. All data transfers between the cryptographic engines, the DTLS control

and the co-processor memory occur through the 256-bit register REG256. This helps

in minimizing multiplexing logic, thus saving area and power. An HMAC-based

Deterministic Random Bit Generator (DRBG) [69] is used as a substitute for a True

Random Number Generator (TRNG). The HMAC-DRBG is seeded with a 512-bit

input, and it can be used to generate pseudo-random numbers with the same seed for

up to 248 invocations [69]. This DRBG is also used for deterministic ECDSA-Sign.

The DTLS core can be accessed through a memory-mapped interface, which exposes

only a limited number of registers and memory locations to the external world. The co-

processor memory is a 2 KByte SRAM (64 × 256-bit words) which contains the “DTLS

Config” configuration values, the “DTLS Stack” for handshake computations, and a

set of “Crypto Registers” to allow standalone access to the cryptographic accelerators.

The 15 × 256-bit “DTLS Config” is used to store important DTLS security parameters

like the CA public key, server public key, client private key, CA and server identity

details, pre-shared key and certificate hashes. These values are meant to be externally

configured only when the device is first programmed, and are updated by the DTLS

core automatically, as will be discussed in a later section. The 39 × 256-bit “DTLS

Stack” is used to store temporary values used in handshake computations, DRBG

states and DTLS session keys. To preserve security, these memory locations are not

accessible through the memory-mapped interface. The “Crypto Registers” contain 10

81

× 256-bit dedicated memory locations for writing input operands and reading outputs

from standalone cryptographic instructions.

The DTLS handshake requires 8 MD (including those required for ECDSA) and 19

HMAC computations using SHA-256, as discussed in Chapter 2, while our DTLS core

has only one instance of the SHA-256 hardware. Therefore it is very important to

efficiently schedule access to the SHA-256 engine. The handshake involves 6 “Session

Hash” (also called “Transcript Hash”) computations, that is, hash of the concatenation

of all messages exchanged till that state. Software implementations of DTLS save all

handshake messages, and compute the hash over all of them every time a “Session

Hash” is required. As discussed in Chapter 2, the total handshake size can be more

than 2000 Bytes. Therefore, storing them will require an additional 2 KByte SRAM,

thus adding significantly to area and power overheads. The TLS specification [8]

recommends using a “running hash” to avoid saving all messages, and we use the

64-Byte HREG FIFO to implement this concept.

Figure 4-2: Efficient hardware implementation of “Session Hash” computations.

The SHA-256 input block size is 64 Bytes, and the SHA-256 internal registers

𝐻0 −𝐻7 completely define the SHA-256 hash state every time a complete block has

been digested. All handshake message bytes are pushed into HREG, and a byte

counter is incremented. Whenever the counter reaches 64, that is, the FIFO is full, the

block is sent to the SHA-256 engine. This ensures that “Session Hash” computations

always digest data in blocks of 64 Bytes, except for the last block. After every “Session

Hash”, the state of HREG, the counter value and the hash state 𝐻0 −𝐻7 are saved in

the “DTLS Stack”, so that the SHA-256 core can be used for other computations. For

82

the next “Session Hash”, the hash state is loaded back from the “DTLS Stack”, and

the above process is repeated. Since the 𝐻0 −𝐻7 state is not accessible outside the

DTLS core, there are no security concerns in implementing this scheme.

The DTLS core uses three FIFOs to fetch input messages (IN FIFO), send output

messages (OUT FIFO) and read application data packets (DATA FIFO). Each FIFO

is 256 × 1 Byte, implemented using 256 Byte SRAMs. The IN FIFO ensures that

the DTLS core starts parsing input messages only when a fully formed packet is

available, and sends out full output messages in to the OUT FIFO. The DTLS core

also verifies that the data in DATA FIFO does not exceed BLE 4.2 PDU limitations.

For encrypted application data, our DTLS core implements the packet optimizations

proposed in Chapter 2, with the option to enable AES-GCM tag truncation.

As discussed earlier, UDP channels are prone to packet loss and packet re-ordering.

The DTLS handshake has countermeasures to deal with both situations. For packet

re-ordering, DTLS recommends optionally caching fragmented messages (which will

require additional storage) based on their “Message Sequence” and “Fragment Offset”

values. The handshake packets in our DTLS implementation can easily fit in the BLE

4.2 PDU, except for the ServerCertificate, thus making the probability of re-ordering

negligible. Therefore, we do not cache fragmented messages, and recommend that the

DTLS 1.3 server transmits the fragments of its certificate at time intervals sufficient

to prevent re-ordering. For packet loss, DTLS requires the client to re-transmit

the previous flight of messages if it does not receive the next flight from the server

[6]. Our DTLS core uses a 64-bit counter retx_timer to implement the “DTLS

Retransmission Timer”. The time-out value can be configured externally, and the

state machine retransmits the previous flight (ClientHello, ClientHello + Cookie or

ClientCertificateURL* + ClientCertificateVerify* + ClientFinished) whenever the

timer expires. When the DTLS state machine is waiting for the next flight from the

server, and the timer is running, all other modules are clock-gated in order to reduce

dynamic power consumption. The DTLS control logic retransmits a flight up to a fixed

number of times, determined by the retry_limit register, which can be configured

externally.

83

A 48-bit seq_num register is used to keep track of the sequence number of transmit-

ted packets. The DTLS core stops accepting application data packets whenever the

sequence number reaches its maximum value – 215−1 or 248−1 depending on whether

truncated GCM tags are being used or not, respectively. To prevent replay attacks,

a 48-bit next_recv_seq_num register is used to store the next expected sequence

number of received packets. If the received packet has a sequence number smaller than

next_recv_seq_num, it is discarded. As recommended in [6], packets with invalid

GCM tags are discarded silently in order to prevent “error type oracle” attacks. For

valid packets, the next_recv_seq_num register is updated appropriately.

Figure 4-3: DTLS status register.

While most of the DTLS control logic is hidden from the external world, it is

important to be able to access some state information for debug and software control.

The memory-mapped 32-bit DTLS status register (Fig. 4-3) is used for this purpose.

The “Error Flag” is set whenever an error occurs. The “FIFO Ready Flags” are

set whenever the corresponding packet FIFO has a full packet. “Retry Max” is

the maximum number of retries in a single session, and this value can be used to

dynamically configure the retry limit. “State” indicates the phase of the handshake

that the DTLS core is in. “ECC Error”, “DTLS Alert” and “Flags” provide finer details

about error conditions for easier debug. The “System Update” and “System Message”

84

flags are related to the automatic security update feature of our DTLS core, which

will be discussed in a later section. The interrupt flag “INT” is raised whenever the

core has completed an instruction.

Figure 4-4: DTLS instruction.

Fig. 4-4 shows the 32-bit instruction used to perform DTLS operations. The

operations are divided into four phases – ECC pre-computations, start connection,

resume handshake or application data, and end connection. Various flags can be set in

the instruction to indicate the elliptic curve to be used for ECDHE, ECC security level

(SPA or DPA), GCM tag truncation and whether to use the non-forward-secret PSK

cipher suite. The retry limit (between 0 and 15) can also be specified through this

instruction. The pre-computations are meant to be performed once, and the points

stored in a secure non-volatile memory. Before issuing the “Start DTLS” instruction,

it is necessary to configure the memory-mapped “Date” (6 Bytes) and “Timeout” (8

Bytes) registers with the current date in YYMMDD format (for certificate validation)

and the handshake retransmit timeout value respectively. When the “Stop DTLS”

instruction is executed, the DTLS state machine generates an encrypted “Close Notify”

alert in the OUT FIFO to ensure that the connection is terminated correctly.

The DTLS handshake may involve up to 7 ECSM computations, and we have seen

in Chapter 3 that ECSM energy can be reduced by 65% if pre-computed comb points

are available. Our energy-efficient ECC module supports storing up to 6 pre-computed

base points, and we use this feature to minimize the energy consumption of the ECC

85

operations which account for majority of the ECDHE_ECDSA handshake. In the

“DTLS Pre-Computation” phase, comb points are generated for:

∙ NIST P-256 generator point 𝐺1

∙ Curve25519 generator point 𝐺2

∙ CA public key 𝑄𝐶𝐴

∙ Server public key 𝑄𝑆𝑅𝑉

The pre-computations for 𝐺1 and 𝐺2 are useful in the first half of ECDHE, while no

pre-computations can be done for the second half (since the server’s key share is a

random point on the curve). Pre-computation for 𝑄𝐶𝐴 helps with verifying the CA

signature in ServerCertificate, while that for 𝑄𝑆𝑅𝑉 helps with verifying the server

signature in ServerCertificateVerify when the “Cached Information” extension is used.

Therefore, our ECC pre-computation scheme reduces the total handshake ECC energy

by 58% when the “Cached Information” extension is used, and 51% otherwise, at the

cost of additional storage requirements. The two additional sets of available point

storage can be used to perform ECDH and ECDSA with random points without

corrupting the points required by DTLS. The pre-computation memory is internal to

the ECC core, and not accessible through the memory-mapped interface.

4.2 Over-the-Air Security Update

Security updates are a major concern for IoT systems. Traditional solutions involve

sending a signed security “patch” to the device, and having the on-device software verify

the signature and update its security parameters. This method is prone to security

issues because of software implementation bugs and the possibility of malicious software

setting attacker-chosen security parameters on the device. Our DTLS hardware can

seamlessly handle security updates through its secure system update state machine

(Fig. 4-5).

86

Figure 4-5: Over-the-air update of security parameters.

Once the handshake has been performed and a secure encrypted channel has

been established, the server can initiate a security update by sending an encrypted

system update message, which starts with the string “DTLS+”, followed by the byte

0x0A. The DTLS core in the client device then generates a new ECDSA private key

𝑑𝐶 ∈𝑅 [1, 𝑛 − 1], caches it in the “DTLS Config” section of its memory, computes

the corresponding public key 𝑄𝐶 = 𝑑𝐶𝐺 and sends it in an encrypted packet to

the server. The two parties continue exchanging application data as usual, while

the server prepares the security update. Finally, the server sends another encrypted

message containing the new CA public key, client certificate hash and URL, and

certificate identity parameters. The DTLS core then updates its “DTLS Config”,

performs pre-computations for the newly obtained ECDSA public keys, and sets the

“System Update” flag high in its status register to indicate that the connection must

be restarted to begin using the updated security configurations. Both parties also

update their pre-shared key (PSK) values by feeding them through a known DRBG.

Since all these computations occur inside the DTLS core, it is free from software-based

attacks. Also, no secret key values are transmitted through the encrypted channel,

thus preserving forward secrecy. It is recommended to appropriately pad all server

control messages to the full PDU limit to make them indistinguishable from each

other based on packet length, thus reducing the chances of DoS attacks on the system

update messages. This scheme only deals with DTLS-related updates, and device

firmware updates are not currently handled. However, an IoT device may integrate the

87

DTLS core with a micro-processor in privileged mode to implement secure firmware

updates.

4.3 Synthesis and Simulation Results

The DTLS 1.3 co-processor was synthesized at 𝑓𝐶𝐿𝐾 = 10 MHz in the TSMC 40nm

LP low-leakage process. The DTLS core has a total logic area of around 115 KGates

and Fig. 4-6 shows the area occupied by the individual components. The DTLS core

uses different SRAMs with a total size of 6.75 KBytes.

Figure 4-6: Area breakdown of DTLS core.

Table 4.1: Comparison of our energy-efficient reconfigurable DTLS core with integrated
cryptographic accelerators.

Design Tech Area AES SHA ECDH ECDSA DTLS
nm KGate

[56]* 1 350 22 Y Y - Y -
[57]* 2 130 15 Y - Y - -
This work* 40 115 † Y Y Y Y Y
*Synthesis results
1Supports only NIST P-192 ECDSA, AES-128-ECB and SHA-1
2Supports only Curve25519 ECDH and Salsa20-Poly1305
†Logic area only, excluding SRAMs

88

Table 4.2: Energy consumption of DTLS handshake implementations.
Implementation Crypto Control Handshake Energy (𝜇J)
Software Only S/W S/W 90,000
Software + Hardware H/W S/W 5,000
Hardware Only H/W H/W 70

Table 4.1 compares our DTLS core with other integrated cryptographic accelerators

in literature. Our design supports the largest number of operations, with the maximum

reconfigurability in ECC. [56] and [57] report only the mean power values for their

designs, hence it is very difficult to compare with our implementation since power for

such integrated accelerators will be a strong function of the operation being performed.

For the ECDHE-ECDSA-based cipher suite, our DTLS core consumes ≈ 45 𝜇J

to perform a handshake when the “Cached Information” extension is used, and ≈ 70

𝜇J otherwise. For the PSK-based cipher suite, the DTLS core consumes only ≈ 10𝜇J

for the handshake. These numbers also include the energy consumption in SRAM

accesses during handshake computations.

For a pure software-based implementation of the DTLS handshake, as much as

4-5 mJ of energy is used in executing the state machine, delegating data between

cryptographic functions and most importantly, reading and writing data from the

main memory. Our DTLS core reduces this energy by around 100 times by restricting

memory accesses only to the dedicated “DTLS Stack”, and scheduling SRAM accesses to

minimize energy consumption. Table 4.2 compares the energy consumption of different

implementations of the ECDHE-ECDSA-based DTLS handshake, using software

only, using hardware and software, and using hardware only. Energy consumption

of software-based DTLS control is based on analysis of the DTLS 1.2 handshake

using the mbedTLS stack [59] implemented on ARM Cortex M0+. Clearly, the full

hardware-based implementation provides maximum energy efficiency.

In Chapter 2, we had discussed that our proposed protocol optimizations lead to

45% reduction in total DTLS energy for IoT devices that authenticate once every

week and transmit 32 Bytes of data every hour. We had also claimed that energy-

efficient cryptographic hardware can provide further energy benefits for such frequently

89

Figure 4-7: Reduction in energy consumption of frequently authenticating DTLS
clients using energy-efficient DTLS hardware.

authenticating devices. Fig. 4-7 validates our claim, with further 82% reduction in

total DTLS energy when using our DTLS core.

4.4 Integration with RISC-V

RISC-V is an open instruction set architecture based on the reduced instruction set

computing (RISC) principles [72]. It is designed to be useful in computing applications

ranging from huge cloud infrastructures to the smallest embedded systems. Our

DTLS core was integrated with a 32-bit 3-stage pipeline RISC-V micro-processor,

based on the “RISCY” family of open-source processors published by the Computation

Structures Group from MIT CSAIL [73].

The processor can access the DTLS core through a memory-mapped interface,

as shown in Fig. 4-8. The DTLS instruction register, status register, configuration

registers, and cryptographic acceleration registers are assigned fixed 32-bit addresses

on this memory bus. There is also an interrupt line from the DTLS core that connects

90

to the interrupt controller inside the RISC-V core. Software can access the memory-

mapped registers for read and write operations, and monitor the interrupt line to

check if an instruction has completed execution.

Figure 4-8: Block diagram of DTLS core integrated with RISC-V.

Apart from the DTLS instructions, the following cryptographic functions can be

executed on the DTLS core:

∙ AES-128-ECB-Encrypt

∙ AES-128-GCM-Auth-Encrypt/Decrypt

∙ SHA-256 Message Digest

∙ SHA-256 HMAC

∙ SHA-256 HMAC-DRBG

∙ F𝑝 Modular Add / Subtract / Multiply / Divide / Invert

∙ 𝐸(F𝑝) ECSM / ECDSA-Sign / ECDSA-Verify over Short Weierstrass and

Montgomery curves

These standalone instructions can be used to implement custom protocols and novel

cryptographic primitives in conjunction with software.

The RISC-V processor issues an instruction to the core and waits for an interrupt

(WFI). While waiting for the interrupt, most of the processor logic is clock-gated to

91

save power. Similarly, the DTLS core can be clock gated, by writing to a memory-

mapped register, to save power when it is not being used. The DTLS core also has a

clock divider which can be configured, again by writing to a memory-mapped register,

to run at the system clock or logarithmically divided clocks. Appendix A provides

some details about programming the DTLS co-processor using the memory-mapped

register space.

Figure 4-9: Chip layout of RISC-V processor with DTLS security core.

The chip, with the RISC-V processor, data memory, instruction cache, the DTLS

core and peripherals, was taped out in the TSMC 65nm LP process. Fig. 4-9 shows

the layout of the chip.

92

Chapter 5

Conclusion

This research work presents several hardware and protocol architectures that can make

security affordable for low-power wireless sensor networks. The proposed techniques

can be used to secure the Internet of Things, while minimizing energy consumption

on the sensor node devices. This chapter summarizes the contributions of this thesis,

along with comparison with the state-of-the-art, and future work.

5.1 Thesis Contributions

This thesis presents energy-efficient protocols and cryptographic hardware architectures

for implementing Datagram Transport Layer Security (DTLS) in energy-constrained

IoT devices.

∙ Protocol optimizations are proposed that can reduce the overall energy costs

of DTLS. Packet optimizations reduce communication overheads by 91%, and

handshake optimizations are used to reduce the number of expensive ECDSA-

Verify operations. Overall, the optimized protocol provides as much as 45%

savings in the total energy consumption, both RF and computation, of a typical

duty-cycled wireless sensor node.

∙ Energy-efficient architectures for the standard cryptographic primitives AES,

SHA and ECC are discussed, along with post-synthesis results and comparison

93

with previous work. For all three primitives, our proposed designs provide

around 2,000-2,500 times reduction in energy consumption when compared with

software implementations on embedded micro-processors.

∙ A dedicated co-processor for the DTLS 1.3 protocol is also presented, which can

accelerate the complete DTLS state machine in hardware. This dedicated DTLS

core reduces energy consumption involved in memory accesses and delegation

of data between cryptographic accelerators, and reduces the total computation

energy of the DTLS handshake by several orders of magnitude. It also uses

clever pre-computations to reduce ECC computations, and hash architectures

to allow computing running hashes for the DTLS handshake.

∙ The DTLS core is integrated with a RISC-V processor through a memory-mapped

interface to allow accelerating a wide range of cryptographic functions. This

provides a flexible platform for implementing and evaluating custom security

protocols and cryptographic algorithms.

5.2 Comparison with State-of-the-Art

As discussed in Chapter 1, there is substantial amount of literature in the field of cryp-

tographic hardware design, and some existing work on security protocol optimizations.

There is no prior work on a completely hardware-based DTLS state machine, which

is first presented in this thesis. Also, existing literature on cryptographic hardware

mostly focus on low area implementations, while our proposed techniques reduce

energy consumption, often at the cost of area. Comparison of our hardware imple-

mentations with previous work, based on power, performance, area and other metrics,

has been presented in detail in Chapter 3. Table 5.1 summarizes the comparison with

the state-of-the-art.

94

Table 5.1: Comparison with the state-of-the-art.
References Key Ideas Published Our Contributions

AES
[34], [35], [37],
[38]

Low area and low power us-
ing highly serialized designs
and optimized S-Box

High energy efficiency using
parallel data-paths

[36] Energy efficiency through
pipelining

Energy efficiency through
parallelism

GCM
[39], [40] High throughput architec-

tures with large area
Energy efficient architectures
with small area

SHA
[41], [42], [43],
[44]

High throughput implemen-
tations

Low energy using round data-
path optimizations

ECC
[45], [46] Low-area dual-field modular

arithmetic for ECC
Energy-efficient prime-field
ECC

[47], [48], [49],
[50], [52], [56]

Low area and low power
ECDSA for RFID

Energy efficient ECDSA us-
ing optimized hardware state
machines

[51], [53], [57] Low area prime-field modu-
lar arithmetic for ECDH

Low energy hardware state
machine for ECDH

Integrated Accelerators
[56], [57] Low area integration of AES

and SHA with ECDH or
ECDSA

Highly reconfigurable co-
processor that integrates
AES, SHA and ECC along
with dedicated DTLS 1.3
state machine

5.3 Future Work

The test chip, with the DTLS core and RISC-V processor, will be used to evaluate

DTLS and related cryptographic computations. Energy consumption of software-based

implementations as well as the hardware-based primitives will be measured. This will

be especially useful because both the micro-processor and the cryptographic hardware

have been designed in the same technology node. The ECC implementations will

be tested for side-channel security, by recording multiple power traces and running

95

standard side-channel attack algorithms. Finally, a test system for DTLS connected

sensor nodes will be prepared to demonstrate the energy efficiency of the proposed

techniques.

Through a combination of hardware and software, the chip can be used to perform

several other investigations. Some directions of future research are mentioned below:

∙ Compare the energy consumption of memory accesses with AES or SHA opera-

tions to determine the limits of hardware optimizations.

∙ Implement elliptic-curve based protocols like bilinear pairings.

∙ Implement quantum-secure cryptographic schemes like Ring-Learning with Errors

using the modular arithmetic instructions.

∙ Profile software implementations of custom security protocols that utilize the

on-chip cryptographic accelerators.

96

Appendix A

Programming the DTLS Co-Processor

The 32-bit instructions used by the DTLS co-processor contain 8 bits of opcode in

their most significant byte. Table A.1 provides a list of opcodes for the different

instructions supported.

Table A.1: Instruction opcodes.
Opcode Instruction

00 No operation
01 DTLS
02 F𝑝 Arithmetic
03 F𝑝 ECC
04 AES-ECB
05 AES-GCM
06 SHA Message Digest
07 SHA HMAC
08 SHA HMAC-DRBG
FF Clear Interrupt

As discussed in Chapter 5, the DTLS co-processor uses a memory-mapped interface

for all communications with the master processor. Table A.2 provides a list of these

memory-mapped locations, along with their sizes and functions. The registers can be

accessed through software using the following C construct:

volatile unsigned long * const <variable_name> =

(unsigned long *) <memory_adress>;

97

Table A.2: Memory-mapped registers of DTLS co-processor.
Address Size Function

(Bits)
AAAA01C0 32 Instruction Register
AAAA01C4 32 Status Register
AAAA01C8 32 DTLS Packet Input FIFO
AAAA01CC 32 DTLS Packet Output FIFO
AAAA01D0 32 Application Data FIFO
AAAA01E0 256 ECC Prime 𝑝

AAAA0200 256 ECC Order 𝑛

AAAA0220 256 ECC Curve Parameter 𝑎 /
AES Key and IV

AAAA0240 256 ECC Curve Parameter 𝑏 /
AES AAD / Input Text / Input Tag

AAAA0260 256 ECC Secret Scalar 𝑘 /
ECC Input 𝑃𝑥

AAAA0280 256 ECDSA Message Hash 𝐻𝑚 /
ECC Input 𝑃𝑦

AAAA02A0 256 ECDSA Input 𝑟 /
HMAC Key Upper

AAAA02C0 256 ECDSA Input 𝑠 /
HMAC Key Lower

AAAA02E0 256 ECC Output 𝑄𝑥 or 𝑟 /
AES Output Text / Output Tag

AAAA0300 256 ECC Output 𝑄𝑦 or 𝑠 /
SHA Output

AAAAA000 32 Clock Divider Config
AAAAA004 32 Clock Gate Config

All the instructions need to write the input operands to the specified memory

locations, issue the instruction, wait for interrupt, and then read the output from the

corresponding memory address after an interrupt is received from the co-processor.

98

Bibliography

[1] D. Evans, “The Internet of Things - How the Next Evolution of the Internet Is
Changing Everything,” CISCO White Paper, April 2011.

[2] Symantec Corporation, “Internet Security Threat Report,” vol. 21, April 2016.

[3] E. Ronen, C. O’Flynn, A. Shamir and A. Weingarten, “IoT Goes Nuclear: Creating
a ZigBee Chain Reaction,” Cryptology ePrint Archive, Report 2016/1047, November
2016.

[4] S. Gollakota, H. Hassanieh, B. Ransford, D. Katabi and K. Fu, “They Can Hear
Your Heartbeats: Non-Invasive Security for Implantable Medical Devices,” in
Proceedings of the ACM SIGCOMM, August 2011.

[5] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.2,” IETF RFC, vol. 5246, August 2008.

[6] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security Version 1.2,”
IETF RFC, vol. 6347, January 2012.

[7] S. L. Keoh, S. S. Kumar and H. Tschofenig, “Securing the Internet of Things: A
Standardization Perspective,” in IEEE Internet of Things Journal, vol. 1, no. 3,
pp. 265-275, June 2014.

[8] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,” IETF
Internet-Draft, March 2017. [Online]. Available: https://tlswg.github.io/tls13-spec/

[9] E. Rescorla and H. Tschofenig, “The Datagram Transport Layer Security (DTLS)
Protocol Version 1.3,” IETF Internet-Draft, October 2016. [Online]. Available:
https://tools.ietf.org/html/draft-rescorla-tls-dtls13-00

[10] A. Menezes, P. van Oorschot and S. Vanstone, “Handbook of Applied Cryptogra-
phy,” CRC Press, 1996.

[11] C. Paar and J. Pelzl, “Understanding Cryptography – A Textbook for Students
and Practitioners,” Springer-Verlag, 2010.

[12] NIST, “Advanced Encryption Standard (AES),” NIST Technical Report, FIPS
PUB 197, November 2001.

99

[13] NIST, “Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC,” NIST Special Publication, vol. 800-38D, November
2007.

[14] A. Bogdanov, D. Khovratovich and C. Rechberger, “Biclique Cryptanalysis of
the Full AES,” in Advances in Cryptology Ű ASIACRYPT 2011, Lecture Notes in
Computer Science, vol. 7073, pp. 344-371, December 2011.

[15] NIST, “Secure Hash Standard (SHS),” NIST Technical Report, FIPS PUB 180-4,
March 2012.

[16] NIST, “SHA-3 Standard: Permutation-Based Hash and Extendable-Output Func-
tions,” NIST Technical Report, FIPS PUB 202, August 2015.

[17] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, Y. Markov, A. Petit Bianco
and C. Baisse, “Announcing the First SHA1 Collision,” Google Security Blog,
February 2017.

[18] D. Khovratovich, C. Rechberger and A. Savelieva, “Bicliques for Preimages:
Attacks on Skein-512 and the SHA-2 Family,” in Fast Software Encryption, Lecture
Notes in Computer Science, vol. 7549, pp. 244-263, 2012.

[19] M. Lamberger and F. Mendel, “Higher-Order Differential Attack on Reduced
SHA-256,” emphCryptology ePrint Archive, Report 2011/037, January 2011.

[20] NIST, “The Keyed-Hash Message Authentication Code (HMAC),” NIST Technical
Report, FIPS PUB 198-1, July 2008.

[21] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of Computation, vol.
48, no. 177, pp. 203Ű209, January 1987.

[22] V. Miller, “Use of Elliptic Curves in Cryptography,” in Proc. Advances in Cryptol-
ogy – CRYPTO 1985, Lecture Notes in Computer Science, vol. 218, pp. 417Ű426,
August 1985.

[23] D. Hankerson, A. Menezes, and S. Vanstone, “Guide to Elliptic Curve Cryptogra-
phy,” Springer-Verlag, 2004.

[24] D. J. Bernstein, “Curve25519: New Diffie-Hellman Speed Records” in Public Key
Cryptography – PKC 2006, Lecture Notes in Computer Science, vol. 3958, pp.
207-228, April 2006.

[25] R. C. Merkle, “Secure Communications over Insecure Channels.” Communications
of the ACM, vol. 21, no. 4, pp. 294-299, April 1978.

[26] W. Diffie and M. Hellman, “New Directions in Cryptography,” IEEE Transactions
on Information Theory, vol. 22, no. 6, pp. 644-654, November 1976.

[27] NIST, “Digital Signature Standard (DSS),” NIST Technical Report, FIPS PUB
186-4, July 2013.

100

[28] IEEE Computer Society, “IEEE 802.15.4 – Low-Rate Wire-
less Personal Area Networks (LR-WPANs).” [Online]. Available:
http://standards.ieee.org/about/get/802/802.15.html

[29] Bluetooth SIG, “Bluetooth Specification 4.2.” [Online]. Available:
https://www.bluetooth.com/specifications/bluetooth-core-specification

[30] J. Hui and P. Thubert, “Compression Format for IPv6 Datagrams over IEEE
802.15.4-Based Networks,” IETF RFC, vol. 6282, September 2011.

[31] J. Nieminen, T. Savolainen, M. Isomaki, B. Patil, Z. Shelby and C. Gomez, “IPv6
over BLUETOOTH (R) Low Energy,” IETF RFC, vol. 7668, October 2015.

[32] S. Raza, D. Trabalza and T. Voigt, “6LoWPAN Compressed DTLS for CoAP,"
IEEE International Conference on Distributed Computing in Sensor Systems, pp.
287-289, May 2012.

[33] A. Capossele, V. Cervo, G. De Cicco and C. Petrioli, “Security as a CoAP Resource:
An Optimized DTLS Implementation for the IoT,” 2015 IEEE International
Conference on Communications (ICC), pp. 549-554, September 2015.

[34] A. Satoh, S. Morioka, K. Takano and S. Munetoh, “A Compact Rijndael Hard-
ware Architecture with S-Box Optimization,” in Proc. Advances in Cryptology –
ASIACRYPT 2001, Lecture Notes in Computer Science, vol. 2248. pp. 239-254,
November 2001.

[35] P. Hamalainen, T. Alho, M. Hannikainen and T. D. Hamalainen, “Design and
Implementation of Low-Area and Low-Power AES Encryption Hardware Core,”
EUROMICRO Conference on Digital System Design (DSD ’06), pp. 577-583,
September 2006.

[36] S. K. Mathew, F. Sheikh, M. Kounavis, S. Gueron, A. Agarwal, S. K. Hsu,
H. Kaul, M. A. Anders and R. K. Krishnamurthy, “53 Gbps Native 𝐺𝐹 (24)2

Composite-Field AES-Encrypt/Decrypt Accelerator for Content-Protection in 45
nm High-Performance Microprocessors,” in IEEE Journal of Solid-State Circuits,
vol. 46, no. 4, pp. 767-776, April 2011.

[37] S. Mathew, S. Satpathy, V. Suresh, M. Anders, H. Kaul, A. Agarwal, S. Hsu,
G. Chen and R. Krishnamurthy, “340 mVŰ1.1 V, 289 Gbps/W, 2090-Gate NanoAES
Hardware Accelerator With Area-Optimized Encrypt/Decrypt 𝐺𝐹 (24)2 Polynomi-
als in 22 nm Tri-Gate CMOS,” in IEEE Journal of Solid-State Circuits, vol. 50,
no. 4, pp. 1048-1058, April 2015.

[38] Y. Zhang, K. Yang, M. Saligane, D. Blaauw and D. Sylvester, “A Compact
446 Gbps/W AES Accelerator for Mobile SoC and IoT in 40nm,” 2016 IEEE
Symposium on VLSI Circuits, pp. 1-2, June 2016.

101

[39] A. Satoh, “High-Speed Parallel Hardware Architecture for Galois Counter Mode,”
2007 IEEE International Symposium on Circuits and Systems, pp. 1863-1866, May
2007.

[40] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “Efficient and High-Performance
Parallel Hardware Architectures for the AES-GCM,” in IEEE Transactions on
Computers, vol. 61, no. 8, pp. 1165-1178, August 2012.

[41] L. Dadda, M. Macchetti and J. Owen, “The Design of a High Speed ASIC Unit
for the Hash Function SHA-256 (384, 512),” in Proc. Design, Automation and Test
in Europe Conference and Exhibition, vol. 3, pp. 70-75, February 2004.

[42] A. Satoh and T. Inoue, “ASIC Hardware Focused Comparison for Hash Func-
tions MD5, RIPEMD-160, and SHS,” International Conference on Information
Technology: Coding and Computing (ITCC ’05), pp. 532-537, April 2005.

[43] Y. K. Lee, H. Chan, I. Verbauwhede, “Iteration Bound Analysis and Throughput
Optimum Architecture of SHA-256 (384,512) for Hardware Implementations,”
in Information Security Applications – WISA 2007, Lecture Notes in Computer
Science, vol. 4867, pp. 102-114, August 2007.

[44] R. Ramanarayanan, S. Mathew, F. Sheikh, S. Srinivasan, A. Agarwal, S. Hsu,
H. Kaul, M. Anders, V. Erraguntla and R. Krishnamurthy, “18Gbps, 50mW
Reconfigurable Multi-Mode SHA Hashing Accelerator in 45nm CMOS,” in Proc.
European Solid-State Circuits Conference – ESSCIRC 2010, pp. 210-213, September
2010.

[45] A. Satoh and K. Takano, “A Scalable Dual-Field Elliptic Curve Cryptographic
Processor,"” in IEEE Transactions on Computers, vol. 52, no. 4, pp. 449-460, April
2003.

[46] J. Wolkerstorfer, “Scaling ECC Hardware to a Minimum,” Cryptographic Advances
in Secure Hardware – CRASH 2005, September 2005.

[47] F. Furbass and J. Wolkerstorfer, “ECC Processor with Low Die Size for RFID
Applications,” 2007 IEEE International Symposium on Circuits and Systems, pp.
1835-1838, May 2007.

[48] M. Hutter, M. Feldhofer and T. Plos, “An ECDSA Processor for RFID Authenti-
cation,” in Radio Frequency Identification: Security and Privacy Issues – RFIDSec
2010, Lecture Notes in Computer Science, vol. 6370, pp. 189-202, June 2010.

[49] E. Wenger, M. Feldhofer and N. Felber, “Low-Resource Hardware Design of
an Elliptic Curve Processor for Contactless Devices,” in Information Security
Applications – WISA 2010, Lecture Notes in Computer Science, vol. 6513, pp.
92-106, August 2010.

102

[50] T. Kern and M. Feldhofer, “Low-Resource ECDSA Implementation for Passive
RFID Tags,” 2010 IEEE International Conference on Electronics, Circuits and
Systems, pp. 1236-1239, December 2010.

[51] S. S. Roy, B. Yang, V. Rozic, N. Mentens, J. Fan and I. Verbauwhede, “Designing
Tiny ECCProcessor,” Workshop on Elliptic Curve Cryptography – ECC 2013,
September 2013.

[52] P. Pessl and M. Hutter, “Curved Tags – A Low-Resource ECDSA Implementation
Tailored for RFID,” in Radio Frequency Identification: Security and Privacy Issues
– RFIDSec 2014, Lecture Notes in Computer Science, vol. 8651, pp. 156-172, July
2014.

[53] J. Bosmans, S. S. Roy, K. Jarvinen and I. Verbauwhede, “A Tiny Coprocessor for
Elliptic Curve Cryptography over the 256-bit NIST Prime Field,” International
Conference on VLSI Design – VLSID 2016, pp. 523-528, January 2016.

[54] D. Carlson, D. Brasili, A. Hughes, A. Jain, T. Kiszely, P. Kodandapani, A. Vard-
harajan, T. Xanthopoulos and V. Yalal, “A High Performance SSL IPSEC Protocol
Aware Security Processor,” 2003 IEEE International Solid-State Circuits Con-
ference, Digest of Technical Papers – ISSCC 2003, vol. 1, pp. 142-483, February
2003.

[55] J. Goodman and A. P. Chandrakasan, “An Energy-Efficient Reconfigurable
Public-Key Cryptography Processor,” in IEEE Journal of Solid-State Circuits, vol.
36, no. 11, pp. 1808-1820, November 2001.

[56] M. Hutter, M. Feldhofer and J. Wolkerstorfer, “A Cryptographic Processor for
Low-Resource Devices: Canning ECDSA and AES Like Sardines,” in Information
Security Theory and Practice: Security and Privacy of Mobile Devices in Wireless
Communication – WISTP 2011, Lecture Notes in Computer Science, vol. 6633, pp.
144-159, June 2011.

[57] M. Hutter, J. Schilling, P. Schwabe and W. Wieser, “NaCl’s crypto_box in
Hardware,” in Cryptographic Hardware and Embedded Systems – CHES 2015,
Lecture Notes in Computer Science, vol. 9293, pp. 81-101, September 2015.

[58] NXP Semiconductors, “Kinetis KL25 Sub-Family: 48 MHz Cortex-
M0+ Based Microcontroller with USB,” Data Sheet, Rev. 5, August
2014. [Online]. Available: http://www.nxp.com/assets/documents/data/en/data-
sheets/KL25P80M48SF0.pdf

[59] ARM Holdings, ARM mbedTLS. [Online]. Available: https://tls.mbed.org

[60] M. Siekkinen, M. Hiienkari, J. K. Nurminen and J. Nieminen, “How Low Energy
is Bluetooth Low Energy? Comparative Measurements with ZigBee/802.15.4,”
2012 IEEE Wireless Communications and Networking Conference Workshops
(WCNCW), pp. 232-237, April 2012.

103

[61] Texas Instruments Inc., “CC2540: 2.4GHz Bluetooth Low En-
ergy System-on-Chip,” Data Sheet, June 2013. [Online]. Available:
http://www.ti.com/lit/ds/symlink/cc2540.pdf

[62] D. Eastlake, “Transport Layer Security (TLS) Extensions: Extension Definitions,”
IETF RFC, vol. 6066, January 2011.

[63] S. Santesson and H. Tschofenig, “Transport Layer Security (TLS) Cached Infor-
mation Extension,” IETF RFC, vol. 7924, July 2016.

[64] D. Canright, “A Very Compact Rijndael S-Box,” Naval Postgraduate School
Technical Report, NPS-MA-04-001, 2004.

[65] J. Guajardo, T. Guneysu, S. S. Kumar, C. Paar and J. Pelzl, “Efficient Hard-
ware Implementation of Finite Fields with Applications to Cryptography,” Acta
Applicandae Mathematica, vol. 93, no. 1, pp. 75Ű118, September 2006.

[66] T. Pornin, “Deterministic Usage of the Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA),” IETF RFC, vol. 6979,
August 2013.

[67] M. Hedabou, P. Pinel and L. Beneteau, “Countermeasures for Preventing Comb
Method Against SCA Attacks,” in Information Security Practice and Experience –
ISPEC 2005, Lecture Notes in Computer Science, vol. 3439, pp. 85-96, April 2005.

[68] J. Fan, X. Guo, E. De Mulder, P. Schaumont, B. Preneel and I. Verbauwhede,
“State-of-the-Art of Secure ECC Implementations: A Survey on Known Side-
Channel Attacks and Countermeasures,” IEEE International Symposium on
Hardware-Oriented Security and Trust – HOST 2010, pp. 76-87, June 2010.

[69] NIST, “Recommendation for Random Number Generation Using Deterministic
Random Bit Generators,” NIST Special Publication, vol. 800-90A, rev. 1, June
2015.

[70] C. Meyer and J. Schwenk, “Lessons Learned From Previous SSL/TLS Attacks
– A Brief Chronology Of Attacks And Weaknesses,” Cryptology ePrint Archive,
Report 2013/049, January 2013.

[71] K. Bhargavan, A. D. Lavaud, C. Fournet, A. Pironti and P. Y. Strub, “Triple
Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS,”
IEEE Symposium on Security and Privacy, pp. 98-113, May 2014.

[72] RISC-V, “The RISC-V Instruction Set Manual,” May 2016. [Online]. Available:
https://riscv.org/specifications/

[73] MIT CSAIL Computation Structures Group, “Riscy Processors - Open-Sourced
RISC-V Processors,” April 2017. [Online]. Available: https://github.com/csail-
csg/riscy

104

