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Abstract

Spectrally unentangled biphotons with high single-spatiotemporal-mode purity are
highly desirable for many quantum information processing tasks. We generate bipho-
tons with an inferred heralded-state spectral purity of 99%, the highest to date with-
out any spectral filtering, by pulsed spontaneous parametric down-conversion (SPDC)
in a custom-fabricated periodically-poled KTiOPO4 (PPKTP) crystal under extended
Gaussian phase-matching conditions. The high purity achieved is made possible by
the Gaussian phase-matching function of our custom PPKTP crystal. Without ap-
plying spectral filtering and using a standard PPKTP crystal, the highest previously
reported purity is 93%. We characterize the joint spectral density of the generated
biphoton by converting the spectral content to temporal information via dispersion
through a 42-km SMF28 fiber. To characterize the JSD at high spectral resolution
and more efficiently, we employ a commercially available dispersion compensation
module (DCM) with a dispersion equivalent to 100 km of standard optical fiber and
with an insertion loss of only 2.8 dB. Compared with the typical method of using
two temperature-stabilized equal-length fibers that incurs an insertion loss of 20 dB
per fiber, the DCM approach achieves high spectral resolution in a much shorter
measurement time. We also verify the indistinguishability of the SPDC signal and
idler photons via Hong-Ou-Mandel interferometric measurements. The near perfect
interference visibility confirms that they are indeed indistinguishable.

Thesis Supervisor: Franco N.C. Wong
Title: Senior Research Scientist, Research Laboratory of Electronics
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Chapter 1

Introduction

1.1 Background and Motivation

Quantum computation can, in theory, solve certain problems much faster than classi-

cal computation. Such problems include prime number factoring [1], quantum system

simulations [2, 3], and database searching [4]. In principle, quantum computation

utilizes quantum mechanical features, such as entanglement and superposition, to

perform computation in a massively parallel fashion and boost performance exponen-

tially. Although quantum computation is still in its infancy today, its unfathomable

potential in computational power offers a promising outlook.

A non-universal approach to demonstrate the computational advantage of quan-

tum computation is boson sampling [5, 6, 7, 8]. Boson sampling targets a specific

sampling problem of calculating the output probability of N identical photons when

they are sent into a M -input, M -output linear optical circuit. Even though this seems

to be a suitable mathematical problem for today’s powerful computer, the actual so-

lution involves calculating the permanent of a complex matrix, which is extremely

hard to compute with a classical computer. The quantum solution for this problem

is relatively straightforward. By physically performing the task, sending N identical

photons through a series of beam splitters, the probability distribution at the output

can be obtained by monitoring the exit ports of the system with photodetectors. The

physical simulation automatically takes into account the computationally complex

interference mechanism that occurs at every beam splitter.
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To perform this experiment, a source that generates identical single photons is re-

quired. However, getting all photons to be identical in every aspect is difficult. Some

photon features are easy to control and maintain, such as selecting polarizations with

wave plates and polarizers, and spatial modes with single-mode fibers or waveguides.

Other aspects, such as photon spectra and times of arrival at the interference loca-

tions, are not as simple to manipulate. In this thesis, a biphoton source that can

yield indistinguishable heralded single photons is considered. This potential source of

single-spatiotemporal-mode photons can be adopted in many other photonic quantum

information processing (QIP) applications besides boson sampling, such as quantum

computation [9, 10] and quantum repeaters for long-distance quantum communica-

tion networks [11, 12], whose measurement-based protocols rely on high-interference

visibility between individual indistinguishable photons.

Consider the widely used method of generating heralded single photons by pulsed

spontaneous parametric down-conversion (SPDC) in a nonlinear optical crystal. Typ-

ical SPDC outputs consist of pairs of spectrally entangled signal and idler photons

whose biphoton state has a Schmidt number greater than 1 under Schmidt decompo-

sition [13, 14]. The detection of the idler photon of the spectrally entangled biphoton

heralds the presence of the signal photon; however, the heralded signal photon is in

a spectrally mixed state [15], as dictated by the biphoton’s Schmidt mode structure.

Therefore, interference of two such heralded photons, even with the same spectral

mixture, does not produce high visibility because of their low spectral purity. Recent

research in overcoming the low heralded-state spectral purity of SPDC outputs has

been focused on methods of generating spectrally factorable biphoton state with an

ideal Schmidt number of 1 [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. A spectrally

factorable biphoton state is frequency uncorrelated, and upon heralding, the signal

photon has a well-defined and definite spectrum. By adopting the same generation

method for all interacting photons, high-visibility interference measurements in pho-

tonic QIP tasks become achievable.

In this thesis, periodically-poled KTiOPO4 (PPKTP) is the nonlinear crystal of

choice for its type-II phase matching with outputs at telecom wavelengths. More im-

portantly, PPKTP can be operated under extended phase matching [16, 27, 28] that

allows the joint spectral amplitude (JSA) of the biphoton state to be controlled by

14



two independent parameters: the pump spectrum and the PPKTP phase-matching

function. A previous experiment applied the extended phase-matching technique

to a standard PPKTP crystal and obtained an ∼88% heralded-state purity with-

out filtering [18]. It was pointed out that the standard sinc-function shape of the

phase-matching function was the limiting factor for achieving higher purity, and that

a Gaussian phase-matching function should in principle allow the purity to reach

100% without the need for spectral filtering. To fully optimize the biphoton state’s

heralded-state spectral purity, a PPKTP crystal was subsequently fabricated to yield

a Gaussian-shaped phase-matching function [29], but no experimental characteriza-

tion of its heralded-state purity was performed.

We employ the crystal design in [29] and fabricate a crystal with a longer length

with an optimized Gaussian phase-matching function [30]. Theoretical analysis of the

longer crystal shows a ∼99% achievable heralded-state purity without filtering. The

major task in this master thesis work is to fully characterize the performance of the

custom-fabricated Gaussian phase-matched crystal and verify a heralded-state purity

of ∼99% as theoretically predicted. First, we perform a difference frequency genera-

tion measurement to ensure the phase-matching function has a Gaussian shape. Next,

we characterize the joint distribution of the generated biphoton state by converting

its spectral content to temporal information via a dispersion-based measurement. We

also investigate two different configurations for the dispersion-based measurement.

Previously, this is done using two long and equal-length fibers [19]. We implement

two novel experimental configurations to achieve better performance: one that uses

only one fiber and the other employs a low-loss dispersion compensation module.

Finally, we test the indistinguishability of signal and idler photons by performing

Hong-Ou-Mandel (HOM) interferometric measurements. Part of this thesis is pub-

lished in [31].

1.2 Thesis Organization

This thesis studies several techniques for characterizing the generated biphoton state

from a custom-fabricated Gaussian phase-matched PPKTP crystal. In chapter 2, we

review the basics of the SPDC process. Standard phase-matching conditions and ex-
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tended phase-matching conditions are reviewed. The joint spectral amplitude distri-

butions of symmetric and asymmetric factorable SPDC biphoton states are discussed.

We also review the calculation procedure of herald-state purity. Chapter 3 reviews

the duty cycle modulation technique in fabricating the PPKTP crystal to yield its

Gaussian-shape phase-matching function in periodically-poled crystals. The experi-

mental verification of the Gaussian-shape phase-matching function is also discussed.

Chapter 4 discusses the dispersion-based joint spectral density measurements of the

SPDC biphoton output. The indistinguishability between signal and idler photons

is studied in chapter 5. HOM interference and single-photon coherence time mea-

surements are discussed in detail. Chapter 6 concludes this thesis and comments on

possible future research.

16



Chapter 2

Extended Phase Matching Review

Spontaneous parametric down-conversion (SPDC) is a second order nonlinear process

that converts a pump photon into a pair of signal and idler photons in a χ(2) nonlinear

crystal. The conversion process satisfies the phase-matching condition:

kp = ks + ki, (2.1)

and the energy conservation condition:

ωp = ωs + ωi, (2.2)

where p, s, and i denote the pump, signal, and idler photons, respectively. kp,s,i ≡
ωnp,s,i (ω)/c is the wave vector, which we write as scalar here by assuming collinear

propagation for all three fields, even though in the general case the generated photons

can be either collinear or noncollinear with respect to the pump beam. The SPDC

process is said to be type-I, if the signal and idler photons have identical polarizations,

or type-II, if they have orthogonal polarizations.

From Eq.(2.2), we see that the frequency sum of signal and idler photons is equal

to the pump frequency. This condition also manifests that energy is conserved in

this process. If ωp is fixed, the signal and idler frequencies are anti-correlated. The

signal and idler, however, are not monochromatic. Their center frequencies are set

by the momentum conservation in Eq.(2.1) and their bandwidths are determined by

the phase-matching function of the nonlinear crystal. Typically, any type of signal-
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idler frequency correlation implies that the detection of signal photon projects the

idler photon into a spectrally mixed state. In other words, frequency correlated

biphotons cannot produce spectrally identical heralded photons. To obtain heralded

pure-state photons, the frequency correlation between signal and idler photon needs

to be eliminated. By imposing extended phase-matching conditions, which requires

the group velocity mismatch to be zero in a nonlinear crystal, we are able to generate

spectrally factorable biphoton state in which there is no frequency correlation between

signal and idler. In this chapter, we start with reviewing the SPDC process under

either monochromatic or pulsed pump. In section 2.3, we discuss how to achieve

spectrally factorable state with an appropriate pump bandwidth. Finally, a review

on calculating heralded-state purity is given.

2.1 Collinear SPDC with Monochromatic Light

If we consider the down-conversion event in a crystal with length L, we can write the

biphoton output state as [28, 32]:

|Ψ〉 =

∫
dωs
2π

∫
dωi
2π

A(ωs, ωi)â
†
s(ωs)â

†
i (ωi) |0, 0〉 , (2.3)

where A(ωs, ωi) is the frequency spectrum of the biphoton state. If we integrate

the squared modulus of A(ωs, ωi) over the frequency of one of the two modes, we

obtain the fluorescence spectrum of the other mode. To get a better idea about the

biphoton state, we will neglect the inconsequential normalization constants. Under

the condition of collinear plane wave propagation of pump, signal, and idler photons,

A(ωs, ωi) can be written as [27, 28]:

A(ωs, ωi) = α(ωs, ωi)ΦL(ωs, ωi), (2.4)

α(ωs, ωi) ≡
√
ωsωi

ns(ωs)ni(ωi)
ξp(ωs + ωi), (2.5)

where ns and ni are the refractive indices of the signal and idler modes in the nonlinear

crystal, and the pump fluorescence spectrum, |ξp(ω)|2, is centered at ωp and has a

bandwidth Ωp. The factors before ξp(ω) can in general be treated as constants over

18



the effective pump spectrum. And the phase matching function ΦL(ωs, ωi) is:

ΦL(ωs, ωi) ≡
sin[4k(ωs, ωi)L/2]

4k(ωs, ωi)L/2
, (2.6)

where 4k is the phase mismatch defined as 4k(ωs, ωi) = kp(ωp)− ks(ωs)− ki(ωi). If

the SPDC process is operating under the frequency degenerate condition, the center

frequencies of signal and idler are the same and equal to half of the pump frequency.

Because of the phase-matching conditions, the pump, signal, and idler indices have

to obey:

np(ωp) =
ns(ωp/2) + ni(ωp/2)

2
. (2.7)

We can then Taylor expand the phase mismatch 4k in ωs and ωi around wp/2, and

obtain:

4k(ωs, ωi) = (ωs − ωp/2)γs + (ωi − ωp/2)γi, (2.8)

where γs = k′p(ωp) − k′s(ωp/2), and γi = k′p(ωp) − k′i(ωp/2). Note that k′ denotes the

derivative of k with respect to ω. With this result, and the newly defined variables

ω̃s = ωs − ωp/2 and ω̃i = ωi − ωp/2, which represent the signal and idler frequency

detunings from the degenerate frequency, the biphoton state in Eq.(2.3) can be ex-

pressed as:

|Ψpm〉 =

∫
dω̃s
2π

∫
dω̃i
2π

α(ω̃s + ω̃i + ωp)

sin[(γsω̃s + γiω̃i)L/2]

(γsω̃s + γiω̃i)/2
|ωp/2 + ω̃s〉s |ωp/2 + ω̃i〉i .

(2.9)

In the case where the pump beam is monochromatic, which is Ωp → 0, α(ω) becomes

δ(ω − ωp). Then the biphoton state becomes:

|TB〉 =

∫
dω̃

2π

sin(2πω̃/Ωf )L

2πω̃/Ωf

|ωp/2 + ω̃〉s |ωp/2− ω̃〉i , (2.10)

where Ωf = 4π
L|γs−γi| is the bandwidth of the fluorescence spectrum of signal and

idler photons, and TB stands for twin-beam state. In the degenerate operating

regime, signal and idler photons have the same spectra. However, this twin-beam state

expression is valid only for type-II phase matching, since in type-I phase matching
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an additional second order terms in Taylor expansion of the phase mismatch function

4k is needed. This is because in the case of type-I phase matching, signal and idler

photons have the same polarization and the first order expansion terms cancel [28].

For simplicity, we will only focus on the type-II phase matching case where Eq.(2.8)

is valid.

From the biphoton bandwidth expression, Ωf = 4π
L|γs−γi| , an increase of crystal

length reduces the biphoton bandwidth. In the case where the crystal is infinitely

long, the signal and idler photons have a very narrow bandwidth and can be considered

essentially monochromatic. On the other hand, a longer crystal increases the down-

conversion rate and yields a brighter entangled source.

As we can see in the twin-beam state expression, the frequencies of signal and idler

photons are anti-correlated. In other words, if the frequency of signal photon ωs is

known, which may or may not equal to ωp/2, the frequency of idler photon is certain

to be ωp−ωs. The sum of signal and idler frequencies is fixed and equal to the pump

frequency. This twin-beam state is a maximally frequency entangled state. Therefore,

the biphoton state is entangled in such a way that a frequency measurement of the

signal photon will also determine the idler photon’s frequency. Furthermore, the

signal and idler photons are also correlated in time as they are always generated at

the same time. This correlation, which exists both in frequency and time domains,

exceeds the limit that classical physics permits. This is often called time-energy (or

time-frequency) entanglement for the SPDC outputs, which has no correspondence

in classical physics.

The assertion that signal and idler have identical spectra under degenerate opera-

tion holds for the case of a monochromatic pump laser, or when the pump bandwidth

is small relative to the phase-matching bandwidth. For pump bandwidths that are

comparable or larger than the phase-matching bandwidth, the two spectra do not

usually match. If we consider a pump with a large bandwidth as made up of multiple

monochromatic pumps, then the down-conversion process under most of the pumps

are frequency-nondegenerate. The absence of signal and idler symmetry about the

frequency-degenerate location (which is certainly true for type-II phase matching)

implies that the two spectra are generally different. This is clearly shown experi-

mentally for pulsed SPDC with a large pump bandwidth [33]. The distinguishability
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in signal and idler spectra under broadband pumping is unfavorable to experiments

or applications that rely on quantum interference, because quantum interference re-

quires indistinguishable photons to yield high interference visibility [34]. In the next

section, we discuss how to restore indistinguishability of signal and idler in the case

of broadband pump.

2.2 Extended Phase-Matching Conditions

Under traditional type-II phase matching condition, the SPDC biphoton state is anti-

correlated in frequency. Using Eq.(2.8), we can express the phase-matching function

in terms of the inverse of group velocities γs and γi. If we express the two variables in

polar coordinates, we have γs = γ cos(θ) and γi = γ sin(θ). The parameter γ controls

the width of the phase matching function ΦL and therefore determines the biphoton

bandwidth. The parameter θ controls the symmetry axis ω̃i = −ω̃stan(θ) of the

phase matching function ΦL and therefore determines the structure of the biphoton

spectrum. By manipulating the variable θ, we can effectively control the frequency

correlation between the signal and idler photons [28].

In order to produce the spectrally indistinguishable signal and idler photons with

positive frequency correlation, we want the biphoton spectrum A(ωs, ωi) to be sym-

metric with respect to ωs and ωi. For type-II phase matching, this condition can be

achieved when γs = γi and θ = π
4
. This imposes an additional requirement, which is

the group velocity matching condition:

k′p(ωp) =
k′s(ωp/2) + k′i(ωp/2)

2
. (2.11)

When both Eq.(2.7) and Eq.(2.11) are satisfied, the biphoton state is phase matched

over the entire pump fluorescence spectrum. Together they are known as the extended

phase matching conditions [28]. If both conditions are satisfied, the biphoton spectral

amplitude is of the form: A(ωs, ωi) = α(ωs+ωi)Φ(ωs−ωi), which means α is a function

of ωs + ωi and Φ is a function of ωs − ωi. The symmetry axis of the pump spectral

function α(ωs + ωi), which has a θ value of π/4, is perpendicular to the symmetry

axis of the phase-matching function, which has a θ value of −π/4. Comparisons of
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the biphoton spectral amplitude |A(ωs, ωi)| in both traditional phase matched and

extended phase matched cases are shown graphically in Fig. 2-1. We note that when

the group velocity condition in Eq. (2.11) is not satisfied, the phase-matching function

does not have a requirement for any particular θ value.

Under extended phase-matching conditions, the biphoton state becomes:

|Ψepm〉 =

∫
dω̃s
2π

∫
dω̃i
2π

α(ω̃s + ω̃i + ωp)

sin[π(ω̃s − ω̃i)/Ωf ]L

π(ω̃s − ω̃i)/Ωf

|ωp/2 + ω̃s,〉s |ωp/2 + ω̃i,〉i .
(2.12)

If the pump is broadband and the crystal is infinitely long, L→∞, we can write the

difference beam state in which the signal and idler frequencies are the same:

|DB〉 =

∫
dω̃

2π
α(2ω̃ + ωp) |ωp/2 + ω̃〉s |ωp/2 + ω̃〉i . (2.13)

Compare to the |TB〉 state, the biphoton spectrum of |DB〉 state is completely de-

termined by the pump spectral characteristics. If we look at both states from a

Fourier optics standpoint, the properties of |TB〉 and |DB〉 states are complimentary

of each other. If the crystal is pumped by a cw laser, the average time needed for

the generated photons to travel across the crystal (∼ L/c) is much smaller than the

laser coherence time. Furthermore, the two photons generated in this |TB〉 state are

time correlated, and by Fourier duality, they are frequency anti-correlated. On the

contrary, in the |DB〉 state, although the two photons are generated together, the

two photons see different indices and travel at different speeds. However, the group

velocity matching condition guarantees that the mean position of the two photons is

always centered at the pump pulse location. Therefore, they are time anti-correlated

and frequency correlated. This idea is illustrated in Fig.2-2. An important thing to

note is that although the two photons are frequency correlated, it does not violate

energy conservation. The understanding of this counter-intuitive phenomenon is that

these photons are generated by a broadband pulse, which has many frequency com-

ponents, and the photons can be generated with respect to any frequency components

within the pulse.

For the case of a monochromatic pump, Ωp → 0, we again obtain the twin beam
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Figure 2-1: Plots of |A(ωs, ωi)| of crystal length L and pump bandwidth Ωp (repro-
duced from [28]). In each plot the white line is the symmetry axis of ΦL(ωS, ωi) and
the black line is the symmetry axis of α(ωS+ωi), which is chosen assuming a Gaussian
pump spectrum exp[−(ω − ωp)2/Ω2

p]. (a) Only standard phase-matching condition is
satisfied. The two symmetry axes are not orthogonal but at an angle determined by
the nonlinear crystal used (The parameters used for plotting are θ = π/20, L = 1 cm,
and Ωp = 4 × 1013 s−1). (b) Extended phase-matching conditions are satisfied. The
two symmetry axes are orthogonal (The parameters used for plotting are θ = −π/4,
L = 1 cm, and Ωp = 4× 1013 s−1).

Figure 2-2: Time domain pictorial representation of parametric down-conversion (re-
produced from [28]). The signal and idler photons are created simultaneously within
a coherence time of time inside the crystal. The |TB〉 state is shown on the left,
where the crystal is pumped by a cw pump. The two photons are shown as two dots.
The two photons are time correlated and frequency anti-correlated. The |DB〉 state is
shown on the right, where the crystal is pumped by a pulsed pump. The two photons
are time anti-correlated and frequency correlated.
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state |TB〉 from |Ψepm〉. Therefore this extended phase matching is the same as the

standard phase matching if the crystal is cw pumped. Furthermore, both |Ψpm〉 and

|Ψepm〉 depend on the particular shape of the pump bandwidth Ωp and the biphoton

spectrum Ωf , which depends on the phase-matching function of the nonlinear crys-

tal. By controlling these two parameters, we can manipulate the output spectrum

of the biphoton state. In the case where the crystal length is finite, the condition

that yields a maximally entangled state no longer holds. However, the positive fre-

quency correlation between signal and idler are intact, and their spectra remain the

same. Therefore, the indistinguishability is preserved when the pump has a large

bandwidth and high visibility in Hong-Ou-Mandel (HOM) type quantum interference

experiments for all values of pump bandwidth can still be observed [35].

If the second order contributions of the Taylor expansion of the phase mismatch

function 4k cannot be neglected, for instance, in the case of type-I phase matching,

we can still achieve the extended phase-matching condition and obtain a frequency

correlated state. In addition to Eq. (2.7) and Eq. (2.11), we will need the second order

terms to satisfy:

k′′s (ωp/2) = k′′i (ωp/2) = 2k′′p(ωp). (2.14)

If contributions of higher order are presented, the above requirement can be extended

to:
∂nkp
∂ωn

(ωp) =
1

2n
[
∂nks
∂ωn

(ωp/2) +
∂nki
∂ωn

(ωp/2)]. (2.15)

However, in reality, it is hard to find a material that satisfies this extended phase-

matching condition. This is because the extended phase-matching condition requires

the group velocity of one of the generated photon to be smaller than the group velocity

of the pump, which has a shorter wavelength. Nonetheless, we can utilize the quasi-

phase-matching technique to satisfy the tradition phase-matching condition shown in

Eq. (2.7). Finally, we should note that extended phase matching is called the zero

group-velocity mismatch regime in ultrafast optics.
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2.3 Factorable Biphoton JSA

A spectrally factorable biphoton state can be formed typically with one of two possible

JSA profiles, an asymmetric configuration or a symmetric configuration. The asym-

metric JSA [36, 37] has an elongated profile (like a long rectangle) with the long side

oriented along the idler (ωi) frequency axis. This is often achieved in a periodically-

poled KD2PO4 (KDP) crystal, where the extended phase-matching conditions are

satisfied when the pump beam is propagating at an angle of 67.8◦ to the optical axis.

Furthermore, the pump (extraordinary beam) is set to be 415 nm and the generated

signal and idler (ordinary beam) are both centered at 830 nm, in which wavelength

range where high-efficiency silicon avalanche photodiodes (APDs) are available. In

this asymmetric configuration, detecting the idler photon yields a signal (ωs) photon

in a narrow single frequency mode, regardless of the idler frequency measurement.

The asymmetric JSA has been demonstrated [17] showing good results that agree

with theoretical predictions.

The second JSA profile for a factorable biphoton has a circularly symmetric shape

and is based on extended phase-matching in which the JSA is the product of the

pump spectrum at (ωs + ωi) and the crystal phase-matching function that can be

approximated by a (ωs − ωi) dependence for a reasonably long crystal with type-II

phase matching [28, 37, 38]. The pump and phase-matching parameters are oriented

at +45◦ and −45◦ with ωs and ωi axes so that the controls using ωs ± ωi parameters

allow for orthogonal and convenient adjustments of the JSA. This approach follows the

extended phase-matching technique that has been applied successfully in a number

of experiments [18, 19, 21, 22, 23, 24, 25, 26, 39, 40]. The extended phase matching

condition is satisfied by periodically poled KTiOPO4 at a pump wavelength of 791

nm with a grating period of 46.1 µm when propagation is along the crystal’s X axis.

The pump and idler photons are Y polarized (ordinary beam), and the signal photon

is Z polarized (extraordinary beam) [41].

When we multiply the pump spectrum intensity and the phase-matching function

intensity, we obtain the biphoton joint spectral density (JSD) profile. Taking the

square-root of the JSD gives us the JSA, assuming that the biphoton state has a flat

phase. Both JSD profiles obtained from asymmetric and symmetric configurations
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are shown in Figure 2-3.

Both configurations for achieving factorable JSA are equally valid. In order to use

many existing technologies in the telecommunication wavelength, this thesis focuses

on the symmetric configuration where the generated signal and idler are both in

the telecommunication wavelength. Furthermore, the symmetric configuration gives

orthogonal control of the JSA via pump envelope and phase-matching function, which

are used to design a circularly symmetric JSA.

2.4 Biphoton Heralded-state Purity

Frequency correlation between signal and idler photons is undesirable in the heralded

generation of pure-state single photons. To quantify the correlation that exists be-

tween the signal and idler photons, we need to perform Schmidt decomposition [13]

on the biphoton wavefunction in two orthonormal bases denoted as |ψsn〉 and |ψin〉.
Therefore, the biphoton wavefunction in Eq. (2.3) can be written as [42]:

|Ψ〉 =
∑
n

√
λn |ψsn〉 |ψin〉 , (2.16)

with
∑

n λn = 1. The purity of the heralded photon state can be derived from the

biphoton state. For instance, if the idler photon is detected, the signal photon state

can be calculated using the reduced density operator:

ρ̂s = Tri(|Ψ〉 〈Ψ|) =
∑
n

λn |ψsn〉 〈ψsn| . (2.17)

The purity of the heralded signal photon is given by:

Ps = Tr(ρ̂2s) =
∑
n

λ2n =
1

K
, (2.18)

where K is the Schmidt number defined as K = 1/
∑

n λ
2
n. If K = 1, the biphoton

state can be written as the product of a signal photon state and an idler photon state.

In this case, the signal and idler are uncorrelated in frequency and can be treated

individually. If K > 1, the biphoton state cannot be written as the product of signal
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Figure 2-3: Simulation of factorable biphoton state JSD. Asymmetric configuration
(plots reproduced from [37]):(a) PPKDP phase-matching function intensity, (b) pump
envelope spectrum intensity, (c) joint spectral density of signal and idler photons.
Symmetric configuration:(d) PPKTP phase-matching function intensity, (e) pump
envelope spectrum intensity, (f) joint spectral density of signal and idler photons.
Both JSD profiles result in a factorable biphoton state where signal and idler photons
are independent of each other.
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and idler states. A larger K value indicates a stronger correlation.

However, it is not easy to calculate K based on the measured joint spectral density

data, because there may not be an analytic method of finding the Schmidt number

for a general set of biphoton states. Therefore, an alternative method is needed

to decompose the joint spectrum information into the density matrix form. This

method is known as single value decomposition (SVD) which can be used to calculate

the purity from any arbitrary joint intensity [37]. Define a square matrix F for

the measured state |Ψ〉, where Fmn is the matrix element representing A(ωm,s, ωn,i)

and ωm,s and ωn,i are the discrete frequency components of signal and idler photons,

respectively. The SVD of F is defined as the decomposition of F into two unitary

matrices, U and V †, and a diagonal matrix, D, such that:

F = UDV †. (2.19)

The unitary matrices contain the modes into which the measured state has been

decomposed. U depends only on ωs and its jth column, Umj represents the signal

photon Schmidt mode |ψsj 〉. Similarly, V † depends only on ωi and its jth row, and

V †jm describes the idler photon Schmidt mode |ψij〉. The diagonal elements of D are

the singular values of F , which are non-negative and appear in descending order. If

the initial state |Ψ〉 is normalized, the singular values are identical to the Schmidt

magnitudes. Therefore, the trace of matrix D gives us the purity of the heralded

photons. This method can be evaluated numerically efficiently even for relatively

large matrices. It is extremely useful for a biphoton state where there is no analytic

solution for its Schmidt decomposition.
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Chapter 3

Spectral Engineering of

Phase-Matching Function

In an earlier experimental attempt to generate biphotons with high heralded-state

spectral purity by SPDC under extended phase-matching conditions, a purity of 88%

was obtained without any spectral filtering [18]. It was pointed out that the standard

sinc-function shape of the phase-matching function was the limiting factor, and that

a Gaussian phase-matching function should in principle allow the (spectrally unfil-

tered) purity to reach 100%. The limitation of the sinc-function shape stems from

the presence of its side lobes that break the circular symmetry of the JSA profile.

Later experiments that also utilized extended phase matching show similar purity

measurement results [21, 22, 23, 25, 26, 40]. Generally, spectral filtering is undesir-

able partly because of insertion loss due to the filters. In addition, when we consider

interference between independent heralded single photons from different sources, it

can be difficult to match the spectral shapes of the different filters used to elimi-

nate all the side lobes while passing a Gaussian-shaped main lobe of the sinc-shaped

phase-matching function. More problematic is the uncertainty of the relative tem-

poral positions of the heralded photons. Because the unfiltered biphoton state has

a Schmidt number greater than 1, the heralded single photon is in a mixed state of

two or more eigenstates that may have different temporal locations. Spectral filtering

of the biphotons’ signals and idlers does not affect their relative temporal locations

such that interference measurements which require precise timing of the independent
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photons are degraded.

A better way than spectral filtering the outputs is to modify the ferroelectric do-

main structure of the periodically-poled nonlinear crystal to yield a phase-matching

function that has a Gaussian shape instead of the usual sinc-function shape. In stan-

dard crystals, the domains are aligned in the same direction, whereas in periodically-

poled crystals the domains are alternately aligned and oppositely-aligned with a 50:50

duty cycle, each occupying half of a poling period Λ.

Two methods have been proposed and demonstrated for realizing a Gaussian

phase-matching function. One is to change the poling period along the length of

the crystal, with periods equal to integer multiples of Λ and with the duty cycle

remaining at 50:50 [43]. The higher order periods yield lower effective nonlinearity

that can be used to tailor the phase-matching function to have a Gaussian shape.

The second method keeps the poling period at Λ but varies the duty cycle along the

length of the crystal which also lowers the effective nonlinearity [29]. Both methods

are expected to achieve similar results in purity measurements of ∼97% without any

filtering and greater than 99% with a mild spectral filter to further suppress the

residual side lobes. In this chapter, we first review the second method of modifying

the duty cycle along the length of the crystal, which is described in detail in [29]. With

some optimizations of the custom grating structure, we fabricated a PPKTP crystal

which has an achievable heralded-state spectral purity of ∼99% without filtering [30].

Finally, in Sec. 3.2, we show the measurement result of the phase-matching function

of the custom-fabricated crystal.

3.1 Modification of Grating Structure

In quasi-phase matching, the phase-matching function G(4k) is given by [29, 44]:

G(4k) =
1

L

∫ L

0

g(z)exp(−i4kz)dz, (3.1)

where g(z) = d(z)/deff is the signed fractional nonlinear coefficient whose value is

either +1 or −1, deff is the effective nonlinearity of the nonlinear crystal, and 4k is

the wave number mismatch. g(z) is 1 for one polarization of the ferroelectric domain,
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and −1 for the opposite polarization. In the first order poling case, the alternating

equal length segments of g(z) = 1 and g(z) = −1 within each grating period Λ yields

the maximum efficiency.

From Eq. (3.1), we see that G(z) and g(z) are a Fourier transform pair. Therefore,

the phase-matching function G(z) can be modified by changing g(z). Given that g(z)

is constant within each ferroelectric domain segment and it changes sign across the

poling boundary, we can express g(z) as:

g(z) =
N∑
j=0

(−1)j[H(z − zj)−H(z − zj+1)], (3.2)

where N is the number of domain segments with z0 = 0 and zN+1 = L, zj is the jth

poling boundary, and H(z) is the unit step function. Therefore, the phase matching

function can be evaluated using:

G(4k) =
2

4kL

N∑
j=0

(−1)jsin[
4k(zj+1 − zj)

2
]

× exp[
−i4k(zj+1 + zj)

2
].

(3.3)

From Eq. (3.3), we can calculate the desired grating period Λ ≡ 2(zj+1 − zj) = 2π
4kc ,

where 4kc is the wave vector mismatch at the center operating wavelength. The

Fourier transform of a Gaussian function is also a Gaussian. Therefore, if we want

the phase matching function G(z) to be Gaussian, we need the function g(z) to be a

Gaussian as well. The above equation suggests that this is achievable via manipulating

the poling boundaries zj. In this approach, we hold the spacing between the even

numbered boundaries to be constant at the fixed grating period Λ = 2π
4kc , while

changing the odd numbered boundaries with z2j+1 = (j + rj)Λ. rj is the duty cycle

and is defined to be 0 ≤ rj ≤ 1. Therefore, specific duty cycle can be selected

through numerical calculation so that the phase matching function G(k) approximates

a Gaussian.

To operate under extended phase matching and therefore to achieve the group

velocity matching condition in Eq. (2.11), we chose periodically-poled KTP with a

broadband pump centered at 791 nm and a degenerate output wavelength of 1582
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nm. Our PPKTP crystal was 18 mm long with a poling period Λ = 46.1 µm chosen to

yield type-II phase-matched outputs. In the custom-fabricated PPKTP we designed

the crystal with the duty cycle r(z), which was calculated numerically from a Gaussian

function, ranging from a ratio of 10:90 to 90:10 [30]. The crystal was anti-reflection

coated at both 791 and 1582 nm wavelengths.

3.2 Phase-matching Function Measurement

Efficient three-wave mixing process only occurs if the three waves are phase-matched

inside a nonlinear crystal. In principle, we can express the three-wave mixing signal

as a function of the phase-matching function. For a nondepleted pump and laser

probe input, the amplitude of the generated difference frequency signal is:

E3 = 0.62 ∗ −iω3E1E
∗
2

n3c
deffLGnorm(4k), (3.4)

where this equation is obtained from coupled-mode equations for a difference fre-

quency generation (DFG) process and Gnorm(4k) is the normalized phase-matching

function G(4k) for a periodically poled crystal with a 50:50 duty cycle. The factor

0.62 is the expected reduction in nonlinearity due to the Gaussian poling pattern [29].

The input pump is E1 with a fixed frequency ω1 and the probe beam is E2 with a

tunable frequency ω2. L is the crystal length, nj is the index of refraction for the

corresponding electric field Ej, and 4k = k1−k2−k3 is wave vector mismatch inside

the crystal with all beams collinearly propagated.

3.2.1 Experiment Setup and Results

To obtain the DFG signal, a continuous-wave pump at 791 nm with ∼100 mW of

power was combined with a tunable ∼3-mW probe laser centered at 1582 nm to

serve as inputs to the PPKTP crystal. The crystal was type-II phase-matched and

both inputs propagated along the crystal x-axis. The pump laser was horizontally

polarized along the crystal’s y-axis and the probe laser was vertically polarized along

the crystal’s z-axis. The pump was focused onto the center of the crystal with a beam

waist of 50 µm, and the probe was focused to a beam waist of 60 µm. We note that
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Figure 3-1: Schematic of DFG measurement setup. DM, dichroic mirror; f1 = 20 cm;
f2 = 13 cm; f3 = 10 cm; PBS, polarization beam splitter; LPF, long-pass filter.

this is not the optimal probe focus beam waist. The optimally focused probe beam

should have a beam waist of 71 µm. The DFG signal was horizontally polarized with

a frequency given by the frequency difference between the pump and probe inputs. A

polarization beam splitter and a long-pass filter were used to remove the vertically-

polarized probe and the 791-nm pump. The leftover DFG signal was focused onto

a low-noise InGaAs photodetector (Thorlabs model PDA-255). The output of the

photodetector was sent to a lock-in amplifier that was synchronized to the pump

chopping frequency at 600 Hz. A schematic of this measurement setup is shown in

Fig. 3-1.

The crystal’s temperature was maintained at 26.4◦C so that the peak DFG output

occurred at the probe wavelength of 1582 nm, or twice the pump wavelength. The

probe laser wavelength was scanned and the DFG signal was recorded, as shown in

Fig. 3-2 in linear scale and Fig. 3-3 in log scale. The measurements show a significant

reduction in the usual sinc-function side lobes and a phase-matching function that

is Gaussian to a large extent. Figure 3-3 shows a weak sideband signal at 1578 nm

that we believe is mostly caused by noise in our measurement system. As we will

see in Chapter 4, the side lobe suppression can be measured to be much better than

that shown in Fig. 3-3. With 100 mW pump and 2.5 mW probe inputs, 27 nW DFG

signal was detected. Using Eq. (3.4), we found the deff of the PPKTP crystal used

to be 2.06 pm/V. We note that custom duty-cycle modulated crystal experiences a

38% decrease in effective nonlinearity compare to standard uniformly poled crystal.

This factor was taken into consideration when deff was calculated.

A major contribution to the background noise was from the residual probe light.
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Linear scale

Figure 3-2: Difference-frequency generation outputs as a function of the probe wave-
length to confirm Gaussian-shaped phase-matching function based on duty-cycle mod-
ulation [29, 30] in linear scale. DFG outputs are normalized to the peak value. The
blue dots are measured data and the black dashed line denotes the fitted Gaussian
curve.
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Log scale

Figure 3-3: Difference-frequency generation outputs as a function of the probe wave-
length to confirm Gaussian-shaped phase-matching function based on duty-cycle mod-
ulation [29, 30] in log scale. DFG outputs are normalized to the peak value. The blue
dots are measured data and the black dashed line denotes the fitted Gaussian curve.
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The polarization beam splitter in the setup had a finite extinction ratio at 30 dB and

was not able to eliminate the probe beam completely. Furthermore, as the probe laser

wavelength was tuned, its output experienced a slight polarization drift, which also

contributed to a higher background noise. The signal to noise ratio of this experiment

could be further improved if a higher extinction ratio polarization beam splitter, or

two standard polarization beam splitters were used. The improvement on eliminating

probe beam would result in a lower background noise.

3.2.2 Alignment Procedure

The alignment of this three-wave mixing experiment is tricky. This section describes

the alignment and output signal optimization procedures. The main difficulty is

overlapping the pump beam and the probe beam. One way for overlapping them

is to pass both of them through two widely separated pinholes placed along the

propagation path. Before we put the crystal and lenses in the setup, we fixed the

pump beam path and recorded its beam path using two pinholes that were placed

before and after the intended crystal location. The two pinholes should be placed as

far apart as possible to make the alignment more precise. Once the pump beam path

was set and all mounts were securely fastened, we could start the overlapping process.

We used two mirrors to steer the probe beam until the two beams were overlapped

at both pinhole locations.

Focusing lenses were then put into the pump and probe beam paths. A Thorlabs

beam profiler was used to check their minimum beam waist locations and to make

sure that they were the same. After the lenses were put in, the two beams should still

overlap at both pinhole locations. We then positioned the crystal so that the foci of

the pump and probe beams were at the crystal center. The pump or the probe beam

might move slightly during this process. However, they should still overlap. Then we

could see the DFG signal after the pump and probe were filtered. If no signal was

detected, then the overlapping of the pump and probe beams was not good enough.

One could try to redo the alignment procedure with the two pinholes placed further

apart.

If the pump beam was not completely filtered, it could also be picked up by the

lock-in detection because the pump was modulated at the same chopping frequency.
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To determine if it was the real DFG signal, one could turn off the probe laser. If there

was still signal from the detector, then it was not the real DFG signal. If the DFG

signal was confirmed to be real, we could then walk either the pump or the probe

beam, but not both, to improve the beam overlap and to maximize the detected DFG

signal.
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Chapter 4

Biphoton Joint Spectral Density

To quantify the spectral purity of the SPDC output, one can measure the signal-idler

joint spectral density distribution and apply the Schmidt decomposition procedure

shown in Section 2.4 to calculate the heralded-state purity of the biphoton state, as-

suming that the state is transform limited. The most common method of making JSD

measurements is to send the pulsed SPDC outputs through two equal-length optical

fibers, one for signal and the other for idler, to disperse them before measurement by

time-correlated coincidence detection. Fiber dispersion serves to perform frequency-

to-time conversion and allows one to easily measure the frequency correlation of pho-

ton pairs based on their arrival times [45]. The resolution of the fiber spectrometer

depends on the length of the fibers and the timing resolution of the single-photon

detectors. A typical setting with 20 km of standard single-mode fibers (dispersion

coefficient of ∼17 ps/nm/km) and superconducting nanowire single-photon detectors

(SNSPDs) with a timing resolution of 100 ps yields a spectral resolution of 0.3 nm.

To obtain a higher spectral resolution requires longer fibers with the drawback that

the coincidence detection rate is reduced by the combined insertion loss of the two

fibers (∼0.2 dB/km at telecom wavelengths). To reach 0.12 nm resolution requires

50 km of fiber that reduces the coincidence detection rate by a factor of 100 when

compared with the detection rate without the fibers. In practice the two individual

fibers should be of the same length and temperature stabilized to avoid timing errors

caused by their relative length change.

Our approach to JSD characterization aims to simplify the measurement setup and

39



to obtain enhanced performance. Two configurations are utilized: one uses a single

optical fiber with counter-propagating beams to ensure signal and idler see the same

fiber length and dispersion, and the second one employs a commercially available low-

loss dispersion compensation module to achieve higher resolution without sacrificing

coincidence detection rates.

4.1 Generation of SPDC photon pairs

4.1.1 Experiment Setup

The SPDC pump laser was an 80-MHz mode-locked, horizontally-polarized, ∼100

fs Ti-sapphire laser centered at 791 nm. The optical bandwidth of the pump is one

of the parameters for controlling the SPDC biphoton output. To modify the pump

bandwidth we implemented a linear spectral filtering system using a pair of identical

diffraction gratings (Richardson Gratings 53-*-230H) in a 4f dispersion-free optical

configuration [46, 47]. Two identical lenses L1 with focal length f = 20 cm were

placed 2f apart, and the two diffraction gratings were located a distance f from the

lenses, as shown in Fig. 4-1(a). The first grating dispersed the collimated pump beam

spectrally and the first lens focused the spectrally dispersed components at the focal

plane located at a distance f from L1. We placed an adjustable rectangular aperture

at the focal plane to control the transmission of the parallel spectral components

and therefore the bandwidth of the transmitted pump. The second lens and second

grating recombined the transmitted spectral components into one collimated beam

with the desired bandwidth. With the aperture wide open, the output of the 4f

system had the same spectrum as the input’s.

We focused the pump to a beam waist of ∼124µm at the center of the PPKTP

crystal that was temperature stabilized at 26.4±0.1◦C to yield wavelength degenerate

signal and idler outputs at 1582 nm. The orthogonally polarized signal and idler were

coupled into a single-mode polarization-maintaining (PM) fiber with beam collection

optics designed to optimize the symmetric heralding efficiency in single-mode fiber

coupling [48, 49]. As shown in Fig. 4-1(a) the pump was rejected before fiber coupling

by a long-pass filter with a cutoff wavelength of 1300 nm, and the signal and idler

40



polarizations were aligned with the PM fiber’s fast and slow axes using the combina-

tion of a quarter-wave plate and a half-wave plate. For a pump bandwidth of 5.6 nm

and at a pump power of 27 mW, we measured singles of ∼95,800/s and ∼108,000/s,

and ∼30,000 coincidences/s, which yields an average system efficiency of ∼29%. The

system efficiency is determined by the following factors: detector efficiency, optical

components losses, fiber coupling efficiency, and the single-mode coupling efficiency.

In our experiment, the detector efficiency was measured to be ∼ 80%, and the optical

components losses were measured to be ∼ 77%. The single-mode coupling efficiency

was then found to be ∼ 50%.

Detector efficiency and losses from optical components can be improved by getting

more efficient detectors and lower loss optical hardware. The fiber coupling efficiency

can be improved by matching the input and coupled spatial modes. The single-

mode coupling efficiency, however, is the intrinsic source efficiency that can only be

optimized by setting appropriate pump and collection beam waists. The single-mode

coupling efficiency is defined as the probability of the idler photon being coupled

into a single-mode fiber, given that signal photon is coupled into the same fiber. To

have a higher single-mode coupling efficiency, the pump should be loosely focused. A

theoretical model predicting heralding efficiency based on pump and collection beam

waists can be found in [48, 49]. However, because a loosely-focused pump generates

more modes and the total number of generated signal and idler pairs is proportional to

the pump power, the pair generation rate at a particular collection mode decreases as

the pump gets focused more loosely. Proper pump focusing beam waist and collection

beam waist should be chosen depending on the specific application.

4.1.2 Alignment Procedure

Once the desired focusing beam waist and the collection beam waist were known,

we used a back-propagation technique to align the system. We sent a 1582-nm fiber

coupld laser beam from the fiber to back-propagate towards the pump laser. By

overlapping the 791-nm pump and the 1582-nm beam with pinholes, we successfully

coupled the pump beam into the fiber. Because of mode mismatch, the fiber would

not be able to collect much pump light, but the power was still sufficient to be detected

by a regular fiber-coupled InGaAs detector. Once the pump beam was detected in
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Figure 4-1: Schematics of experiment setups. (a) SPDC photon pairs generation and
collection. Pump spectrum is controlled using a pair of diffraction gratings (DGs)
in a 4f optical configuration. (b) Single-fiber spectrometer with counter-propagating
signal and idler and coincidence detection by SNSPDs D1 and D2. (c) DCM spec-
trometer providing high resolution JSD measurements. A, rectangular aperture; L1,
f = 20 cm lens; L2, f = 40 cm lens; L3, f = 10 cm lens; LPF, long-pass filter; PBS,
polarization beam splitter.
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the fiber, we achieved the initial alignment from the pump to the SPDC collection

fiber. The pinhole was left in place for the aligned system so that any beam path

drifts could be monitored.

The next step would be putting the crystal at the minimum pump beam waist

location. We connected the collection fiber to a fiber-based polarization beam splitter

whose outputs were connected to two WSi SNSPDs. Photon-pair arrivals would be

detected if the crystal was positioned correctly relative to the pump beam. However,

the crystal angle relative to the input pump beam was critical. If the incident angle

of the pump was not normal to the crystal, the effective poling period would not

be 46.1 µm, which might result in a lower temperature for wavelength-degenerate

operation. Therefore, a fine adjustment of the crystal orientation was important to

obtain a degenerate temperature near room temperature. This orientation could be

roughly estimated by finding the orientation that generated the maximum number of

photon pairs.

4.1.3 Chirped pump Characterization

The spectral filter system can either perform like a pulse stretcher or pulse com-

pressor depending on the orientations and the positions of the two diffraction grat-

ings. For our purpose of generating pure-state heralded single photons, we require

a transform-limited pump at 0.95 nm bandwidth. In this section, we quantify the

amount of dispersion introduced by the spectral filter system and show that the

pump is transform-limited at 0.95 nm bandwidth.

In our experiement, the positions of the diffraction gratings were adjusted to

minimize the broadening of the pump temporal duration after the gratings. The

pulse duration was measured using an APE pulseCheck autocorrelator. When the

input pump spectrum had a FWHM of 6.25 nm, we measured the pump duration

before and after the spectral filter system to be 141 fs and 166 fs, which corresponded

to a pulse broadening ratio of 1.2. The autocorrelation measurements are shown in

Fig. 4-2. Based on the autocorrelation measurements, we found that our spectral filter

system introduced a dispersion of 4289 fs2. At 0.95 nm pump bandwidth, this small

amount of dispersion can be neglected and the pump is essentially transform-limited.

This was verified by comparing the Fourier transform of the measured spectrum of the
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Before After

Figure 4-2: 6.25-nm pump autocorrelation measurements before and after the spectral
filter system. The left figure shows the pump pulse duration before the spectral filter
system and the right figure shows the pump pulse duration after the spectral filter
system. A factor of 1/

√
2 exists between the real pulse width and the measured

quantity.

0.95-nm pump and its measured pulse duration. The calculated pulse duration from

the measured spectrum was 2.13 ps. The convolution process in the autocorrelation

measurement was taken into account in this calculation. The measured pulse duration

is 2.07 ± 0.07 ps. We see that the two numbers are in good agreement.

Figure 4-3: Autocorrelation measurement of 0.95-nm pump. The average measure-
ment results of 3 measurements is 2.07 ± 0.07 ps.

We notice that some amount of higher order dispersion is introduced by the 4f

system. This is evident from the non-Gaussian pulse shape measured after the spectral

filter system. However, this only shows up when the pump bandwidth is large. In

the case of 0.95-nm pump, the introduced higher order dispersion can be neglected.
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An autocorrelation measured result at 0.95-nm pump is shown in Fig. 4-3.

4.2 Fiber-based JSD measurements

4.2.1 Experiment Setup

Fig. 4-1(b) shows the single-fiber spectrometer setup for characterizing the joint spec-

tral density of the SPDC output from our custom-fabricated PPKTP. We first sep-

arated the fiber-coupled signal and idler with a fiber polarization beam splitter and

sent them through a 42-km SMF28 fiber from its opposite ends. Two fiber circulators

were used to provide input/output isolation for both signal and idler light before de-

tection by two SNSPDs with detection efficiencies of ∼80%, timing jitter of ∼200 ps,

and dark count rates of ∼400/s. The dark count rates were low enough that no back-

ground subtraction adjustment was needed for all measurements. The use of a single

fiber ensures that the counter-propagating signal and idler see the same amount of

dispersion. The fiber was thermally shielded to reduce variations in length and dis-

persion due to ambient temperature fluctuations during measurements. The arrival

times of signal and idler photons were recorded relative to the trigger pulses from the

mode-locked pump laser. Due to fiber dispersion the propagation times of different

spectral components propagate at different speeds resulting in different arrival times,

therefore allowing the JSD to be reconstructed based on the measured coincidence

timing information.

4.2.2 Experiment Results

The spectral resolution of our 42-km fiber spectrometer is set by the dispersion im-

posed by the fiber and the temporal measurement resolution given by the SNSPDs’

timing jitter of 200 ps. The dispersion of the 42-km fiber was measured to be

0.78 ± 0.07 ns/nm at 1582 nm, in line with manufacturer’s published data. Therefore

our single-fiber spectrometer had a spectral resolution of ∼0.25 nm for both signal and

idler. The spectrometer’s insertion loss was ∼10 dB per channel that was primarily

due to the fiber, suggesting a reduction of 100 fold in the coincidence detection rate

when compared to measurements without the spectrometer. Fig. 4-4 shows the mea-
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sured log-scale JSD distribution at six different pump bandwidths without the use of

any spectral filtering. The wavelength range was 16 nm centered at 1582 nm that was

set by the pump’s mode-locking repetition period of 12.5 ns and the fiber’s dispersion

of 0.78 ns/nm. The peaks of the JSD distributions for all cases are set to center at

1582 nm that corresponds to the signal and idler degenerate wavelength, thereby set-

ting the correct timing delay we applied relative to the trigger pulses. We then used

the dispersion we had measured (0.78 ns/nm) to map the detected arrival times to

the corresponding wavelengths. We only use a linear relation between frequency and

time of arrival because any nonlinear adjustment is not significant compared with the

relatively large detector timing jitter.

It is known that PPKTP under extended phase-matching and pulsed pumping

generates coincident-frequency entangled photon pairs [18, 27, 28, 39]. That is, signal

and idler have the same frequencies and their JSD profile is diagonal, as shown in

Fig. 4-4. We see that the wavelength extent of the signal and idler outputs (along

the diagonal) is reduced as the pump bandwidth varies from 5.6 nm to 0.74 nm, as

expected. The pump spectrum remained approximately Gaussian for the different

measurements and the pump bandwidths reported are Gaussian fitted measurements.

Overall, the JSD measurements match our theoretical expectations very well. Two

particular features of Fig. 4-4 are worth mentioning. The first is that the strongest

side lobe of the profiles is at least 24 dB below the central peak, which corresponds to

an 11 dB suppression of the side lobes of the standard phase-matching sinc function.

This is a more sensitive and therefore more accurate measurement of the residual side

lobes than the DFG measurements of Fig. 3-3, suggesting that the Gaussian profile

of our custom fabrication design is quite good. The second feature is the nearly

circularly symmetric profile of the central lobe in Fig. 4-4(e) that is consistent with

a factorable biphoton output at the pump bandwidth of 0.95 nm.

To quantify the spectral correlation of the generated biphoton states in Fig. 4-4, we

assume that the biphoton state is transform limited so that we can perform a singular

value decomposition for continuous variables on the square root of our measurement

results to obtain the Schmidt number. The heralded-state purity is given by the

inverse of the Schmidt number. The Schmidt number and the corresponding purity

at different pump bandwidths are listed in Table 1:
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Figure 4-4: JSD measurements from single-fiber spectrometer in log scale. From (a)
to (f), the pump bandwidths are 5.6 nm, 3.6 nm, 2.4 nm, 1.6 nm, 0.95 nm, and 0.74 nm,
respectively.
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Table 4.1: Inferred heralded-state spectral purity of Fig. 4-4 measurements
Pump bandwidth (nm) Schmidt number Purity

5.6 2.56 39%
3.6 1.92 52%
2.4 1.41 71%
1.6 1.13 88%
0.95 1.01 99%
0.74 1.03 97%

As expected, the purity improves as the JSD profile goes from highly elliptical

for broad pump bandwidths to the circularly symmetric case for a pump bandwidth

of 0.95 nm, at which a biphoton state of 1.01 Schmidt number with a corresponding

heralded-state purity of 99% is achieved. A biphoton state yielding high heralded-

state purity such as that shown in Fig. 4-4(e) indicates very little frequency correlation

between signal and idler, and that such a biphoton state can be ideally suited for gen-

erating heralded pure-state single photons. Note that the purity calculation is based

on the assumption that the joint distribution of signal and idler amplitudes are trans-

form limited in frequency and time. Therefore, our calculated purity can only serve

as an upper limit at this point. To verify this assumption, additional measurements

of the biphoton state in the time domain, or Hong-Ou-Mandel interferometric mea-

surements between photons from independent sources [50, 51] are needed. However,

previous measurements have suggested that the biphoton state generated from SPDC

is transform limited based on indirect evidence [18].

4.2.3 Fiber Dispersion Calibration

The resolution of our JSD is entirely determined by the amount of dispersion, given a

fixed detector timing jitter. Therefore, measuring the amount of dispersion introduced

by the 42-km of fiber is important.

The key to measuring the fiber dispersion is to utilize a reference marker. For

standard SMF28 fibers, 1310 nm is the zero-dispersion wavelength and can be used

as a reference. To perform the measurement, we first combined a tunable cw beam

set at the desired wavelength and a 1310-nm cw beam. Both beams were then sent to

an intensity modulator which produced 1-ns sharp pulses at 10 MHz repetition rate.

Both pulses were then sent through the 42-km fiber. A fast detector with sufficient
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bandwidth was used to detect the pulses. By scanning through the desired wavelength

range and monitoring the arrival time difference between the desired-wavelength beam

and the 1310-nm beam using an oscilloscope, we were able to measure the total time

delay due to dispersion. The relative delay per nm was then calculated to be 0.77 ±
0.11 ns/nm.

There was another reference that could be used besides the 1310-nm beam. We

used the electrical trigger that drove the intensity modulator for pulse generation as

our reference and the measured relative time delay per nm was 0.78 ± 0.09 ns/nm.

There is no reason for preferring one reference to the other since they give the same

measurement results.

4.2.4 Pump, Signal, and Idler Bandwidths

There is a relationship between the pump bandwidth and the generated signal or idler

bandwidth when the JSD is circularly symmetric. Under extended phase matching,

the pump frequency is along the anti-diagonal ωs + ωi = constant axis in JSD plot.

If we perform a coordinate transformation, we can see that the diagonal axis unit

vector is
√

2 times the ωs or ωi axis unit vector. Therefore, the pump bandwidth is

equal to
√

2 times the signal and idler bandwidth in frequency.

Alternatively, we can try to understand this relation from an energy perspective.

Let us assume the signal and idler are independent of each other, the total variance

of signal and idler spectral distribution will be the sum of the individual variance.

Because the energy is always conserved, the variance sum of signal and idler spectral

distribution is equal to the variance of the pump spectral distribution. Therefore, the

bandwidth of the pump is
√

2 times larger than the bandwidth of signal or idler. This

relation can be used for checking whether the JSD measurement results obtained are

reasonable.
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4.3 JSD Measurements using Dispersion Compen-

sation Module

To measure the JSD profile more efficiently and with higher resolution, we imple-

mented a different spectrometer based on a commerically available dispersion com-

pensation module (DCM) instead of a long optical fiber. The DCM uses reflective

chirped fiber Bragg gratings to compensate fiber dispersion in long-distance fiber-optic

transmission with low insertion loss and low latency. Most relevant to our application

is that it has a fixed insertion loss regardless of the amount of its dispersion. Our

DCM from Proximion is specified to have a dispersion of 1.88 ns/nm at 1585 nm and

an insertion loss of 2.8 dB. For comparison, 100 km of fiber gives the same amount

of dispersion but incurs an insertion loss that is 50× higher. Furthermore, the DCM

is insensitive to ambient temperature fluctuations and hence thermal stabilization is

unnecessary.

4.3.1 Experiment Setup

We chose to use a single DCM for the spectrometer and intended to send the orthogo-

nally polarized signal and idler through the DCM before separating them with a fiber

PBS for subsequent detection. Unfortunately, the DCM had a wavelength dependent

polarization mode dispersion of ∼0.6 ps such that the output signal and idler polar-

izations would be elliptical and no longer orthogonal. In other words, signal and idler

cannot be separated based on their polarizations after passing through the DCM. To

work around this technical issue, we applied a fixed time delay between signal and

idler as identification tags, as shown in the DCM spectrometer configuration of Fig. 4-

1(c). After separating signal and idler with a fiber PBS, we added an optical delay

of 11.7 ns to the signal path before recombining them with a second fiber PBS and

sending them through the DCM. We sent the combined outputs through a 50:50 fiber

beam splitter so that about half of the time the signal and idler would be separated

and detected by the two WSi SNSPDs. The time separation between signal and idler

is much less than the SNSPD recovery time of ∼80 ns and their detection on the same

side of the beam splitter output would not be possible. The time-delay scheme incurs
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effectively a 3 dB insertion loss but allows us to use a single-DCM implementation.

In principle, we could use two DCMs to avoid the 3 dB penalty, one for signal and

the other for idler, as long as the DCMs have identical dispersion or if they are well

calibrated [52, 53].

4.3.2 Experiment Results

Figure 4-5 shows the JSD profile and the marginal distributions for the biphoton

state for a pump bandwidth of 0.95 nm using the DCM spectrometer, with a spectral

resolution of 0.11 nm that is more than two times better than that of the single-

fiber spectrometer. Because the coincidence measurement interval was limited by

the pump repetition period of 12.5 ns, the wavelength range of Fig. 4-5 is limited

to ∼6.6 nm. The higher resolution measurement of the JSD distrbution of Fig. 4-

5(a) clearly displays a highly symmetric profile, much like the lower resolution profile

of Fig. 4-4(e). We note that because the wavelength range is limited to 6.6 nm, the

residual side lobes that are visible in Fig. 4-4(e) are mostly out of range. Based on this

higher-resolution profile, we obtain a purity estimate of 99.3% that is slightly higher

than that measured with the single-fiber spectrometer of Fig. 4-4(e). The slightly

higher value is due to the exclusion of the residual side lobes in the smaller wavelength

range of the DCM spectrometer, suggesting that the degradation due to the highly

suppressed side lobes is very small. The high purity we have achieved without the use

of any spectral filtering is entirely the result of the Gaussian phase-matching function

of our custom PPKTP cyrstal. We confirm that the marginal distributions shown in

Fig. 4-5(b) are Gaussian as a result of the custom phase-matching function.

It is useful to recognize the role played by the Gaussian phase-matching function

by comparing our results with previous JSD measurements based on PPKTP cyrstals

with the standard sinc-function phase matching. Table 2 shows the comparison.

Without applying spectral filtering none of these measurements with the standard

sinc-shaped phase matching achieved purity higher than 93%. Weston et al. obtained

an inferred purity close to 100% using an 8-nm filter applied to the SPDC outputs

with a FWHM bandwidth of 15 nm [26]. That is, near-unity purity has only been

achieved by strong spectral filtering unless the standard phase matching is modified

to assume a Gaussian shape as done in our work [31].
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Figure 4-5: JSD and marginal distributions of biphoton state for 0.95 nm pump band-
width. (a) High-resolution JSD measurements with 0.11 nm resolution in log scale.
(b) Signal (idler) marginal distribution is shown in blue (red) in linear scale per
0.11-nm bandwidth. Dashed line is Gaussian for comparison.
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Table 4.2: Comparison of spectral purity measurements
References Spectral filter Purity
Kuzucu et al. [18] None 88%
Gerrits et al. [19, 24] None 93%
Yabuno et al. [21] None 83%
Jin et al. [22] None 82%
Harder et al. [23] 8 nm 84%
Kaneda et al. [25] None 91%
Weston et al. [26] 8 nm ∼100%
This thesis None 99%

4.3.3 Hydraharp Time Tagging

For all experiments, we used the hydraharp from PicoQuant to time tag all events.

In this section, we digress from the main topic and briefly discuss the time tagging

method using the hydraharp.

Hydraharp offers three different time tag modes. There are the histogram mode,

ht2 mode, and ht3 mode. The histogram mode produces a histogram of event arrival

times of the input channel relative to the sync channel. An event is registered in the

histogram when there is a sync signal and an input signal received. And the arrival

time is the time difference between the input and sync signal (input signal should

arrival later than sync signal). The timing resolution and a constant timing offset

can be set in the hydraharp. The integration time of each measurement can also be

adjusted. For coincidence measurements, we used a 2-ns timing resolution, which

corresponded to a 2 ns coincidence window; and a 45-ns input signal delay, which

centered the coincidence peak at 45 ns instead of 0 ns relative to the sync signal.

Unfortunately, the histogram mode does not work for more than one input channel.

It is worthwhile to note that the hydraharp also calculates a sync and input channel

count rates and displays them as channel count rates. The displayed channel count

rates are not the true counts received each second and are not trustworthy.

The ht2 mode records all event arrival times for all connected channels from start

to finish at 1 ps resolution. Therefore, no sync input is required in the ht2 mode.

Furthermore, a sync input in this mode will be no different from a regular input.

Although the timing resolution cannot be changed, a constant timing offset can still

be added to each individual inputs. The ht2 mode outputs a binary file that contains
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all the events’ arrival times. However, it is not directly accessible. It has to be

converted into a .txt file for viewing and reading purposes. The suggested program

used for conversion is C or C++. Conversion using MATLAB is very slow and may

result in many errors. After the raw file is converted to a readable format. It can be

further analyzed by one’s program of choice.

The ht3 mode records all events’ arrival times for all input channels relative to the

sync signals. The resolution and timing offset of each channel are both adjustable in

this mode. Similar to ht2, it outputs a binary file that needs additional processing in

order to view or read the recorded data. Unlike the ht2 mode, in which all event arrival

times are recorded, ht3 mode records the number of sync it received sequentially and

the input arrival times with respect to the latest received sync signal. Therefore, for

all cases, a periodic sync signal is desired in order to know the absolute arrival time

information of the input signals. Unfortunately, all hydraharp channels cannot receive

a high flux input more than 12.5 MHz. For a sync channel that has a repetition rate

higher than 12.5 MHz, we need to use the divider option to match the actual input

sync rate and the internal logic sync rate of the hydraharp. If the sync rate is random

or lower than 1 MHz, the divider option should be turned off.
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Chapter 5

Photon Pairs Indistinguishablility

and Spectral Entanglement

5.1 Photon Pairs Indistinguishablility

Extended phase matching is a technique that generates coincident-frequency entan-

glement such that it restores signal and idler indistinguishability in pulsed SPDC that

can be confirmed with Hong-Ou-Mandel interference measurements. In this section,

we examine the indistinguishability between the signal and idler photons.

5.1.1 Hong-Ou-Mandel Interference

Hong-Ou-Mandel interference [54] is a quantum phenomenon that can be used for

measuring photon bandwidth, biphoton coherence time, and input photons’ indistin-

guishability. This phenomenon occurs when two photons interfere at a 50:50 beam

splitter. If the two input photons are indistinguishable in all their properties includ-

ing spatial, spectral, and temporal modes, they always exit together at one of the two

output ports.

Generally, when two photons enter a 50:50 beam splitter, there are four different

possible ways for them to exit the beam splitter. Both photons can exit from different

ports, meaning they both get transmitted or reflected. Or both photons can exit from

the same port of the beam splitter. In the case they exit the same port, one photon

gets transmitted while the other one gets reflected. Here, we analyze this phenomenon
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Figure 5-1: The inputs to a beam splitter with transmissivity η are â†s and â†i . The
outputs from the beam splitter are â†1 and â†2.

from a quantum mechanical point of view.

Consider a lossless beam splitter with power transmissivity η and reflectivity 1−η
with two photons with single-mode creation operators, â†s and â†i . The outputs from

the beam splitter are â†1 and â†2, as illustrated in Figure 5-1. We can write the beam

splitter input-output relations as:

â†1 =
√
η â†s +

√
1− η â†i , (5.1)

â†2 = −
√

1− η â†s +
√
η â†i . (5.2)

Because we assume the beam splitter is lossless, and the energy is conserved, the

input and output operators obey:

â†1â1 + â†2â2 = â†sâs + â†i âi. (5.3)

Using Eqs. (5.1) and (5.2), we can write the beam splitter’s input-output relation in

matrix form: a†1
â†2

 =

 √
η

√
1− η

−
√

1− η √
η

a†s
â†i

 (5.4)
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Because we know the input state is:

|ψ〉in = a†sa
†
i |00〉 = |11〉 . (5.5)

Therefore, we can calculate the output state to be:

|ψ〉out =

 √
η

√
1− η

−
√

1− η √
η

 |ψ〉in (5.6)

= (
√
η â†s +

√
1− η â†i )(−

√
1− η â†s +

√
η â†i ) |00〉 (5.7)

=
[
(2η − 1)â†sâ

†
i +

√
η(1− η)(â†i â

†
i − â†sâ†s)

]
|00〉 (5.8)

= (2η − 1) |11〉+
√

2η(1− η)(|02〉 − |20〉), (5.9)

where the terms |02〉 and |20〉 correspond to the cases in which both photons exit

together. The |11〉 term corresponds to the case in which photons exit from different

ports, resulting in a coincidence count. If the beam splitter has a 50:50 splitting ratio

(η = 1
2
), the coincidence term (2η − 1) |11〉 in Eq. (5.9) becomes zero. The leftover

term is
√

2η(1− η)(|02〉 − |20〉). The beam splitter output state then becomes:

|ψ〉out =
1√
2

(|20〉 − |02〉). (5.10)

The state is normalized because (â†)n |0〉 =
√
n! |n〉. We notice that the output in

Eq. (5.10) state only has |02〉 or |20〉 state, therefore, the photons always exit together

and there is no coincidence event. If the beam splitter does not have a 50:50 splitting

ratio, there are chances where two photons exit from different ports of the beam

splitter. If the beam splitter transmissivity is η, then the cross term in Eq. (5.9) is

(2η − 1) |11〉. The probability of occurrence is thus (2η − 1)2.

In a typical HOM interference measurement where the goal is to measure the two

inputs’ indistinguishability, the two inputs are first sent in with a constant relative

time delay. Because of the timing difference, the two photons are distinguishable.

Two single photon detectors are placed at each output of the beam splitter. If each

of the two detectors detects a photons at the same time, we know the photons exit

from different ports. If only one detector gets a detection, either they exit from the
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same port or one of the photons does not get detected. In either case, it is considered

that there is no coincidence. By performing this coincidence counting, we can tell

how often they exit from different ports. As the relative time delay decreases, the

two inputs become more and more indistinguishable. A drop in coincidence is then

observed.

To quantify the photons indistinguishability, we define the HOM interference vis-

ibility as:

V =
Nmax −Nmin

Nmax +Nmin

(5.11)

where Nmax is the maximum coincidence observed when the two identical photons

are not overlapped in time, and Nmin is the minimum coincidence observed when

the two photons are overlapped in time. The visibility will have a value of 1 if the

two photons are indistinguishable and a value of 0 if the two photons are completely

distinguishable.

We can then estimate the decrease in visibility caused by an imperfect 50:50 beam

splitter, given the two inputs are perfectly identical. If there are 1000 singles at each

input port, then the maximum coincidence count will be 500. Assuming we have 49:51

beam splitter, the resulting coincidence probability will be (2× 0.49− 1)2 = 0.0004,

which is about 0.4 counts. Using the definition in Eq. (5.11), we see the maximum

visibility achievable is 99.8%.

5.1.2 HOM Interference Measurement Setup

We made the HOM interference measurements with SPDC signal and idler as inputs

for a pump bandwidth of 5.6 nm. To minimize multi-pair emission, the applied pump

power was set to 0.25 nJ per pulse and the mean generated photon pair per pulse

was ∼0.3%. After the signal and idler were separated by a fiber PBS, they were sent

to interfere at a 50:50 fiber beam splitter with an adjustable air gap delay for one

of the input arms. The coincidence counts were detected by two SNSPDs. A setup

schematic is shown in Fig. 5-2.

The relative time delay between signal and idler is crucial for this experiment.

When the relative time delay is large, there should be no drop in coincidence counts.

We used a superluminescent diode (SLD) at 1550 nm to find the zero path length
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Figure 5-2: Schematic of Hong-Ou-Mandel interference measurement setup. PBS,
polarization beam splitter; BS, beam splitter; D1, SNSPD 1; D2, SNSPD 2.

difference location, which is also the zero time delay location. We used the SLD as

the input to the PBS and monitored one output of the BS with an InGaAs detector.

Because the SLD has a large bandwidth (over 50 nm) and a short coherence length,

interference of SLD would only be observed if the path lengths were equal. Therefore,

the path length difference of signal and idler can be determined within an accuracy

of 15 µm without measuring the fiber length.

Once the equal-path-length location is found, the idler’s polarization is changed

to match the signal’s polarization. The crystal temperature was then maintained at

the degenerate temperature to ensure a frequency degenerate signal and idler. If the

polarization and the crystal temperature are set correctly, the coincidence should be

close to zero at the equal-path-length location.

5.1.3 HOM Interference Measurement Results

For standard type-II phase matching, the sinc-shaped function leads to an inverted

triangular interference dip in HOM interference. For Gaussian-shaped phase match-

ing, it is expected that the HOM interference should exhibit a Gaussian shape instead

[25]. The detected coincidence counts per second versus the air gap delay without

and with a 10-nm bandpass filter centered at 1582 nm for a pump bandwidth of 5.6

nm are shown in Fig. 5-3 and Fig. 5-4.

As expected, the measured data follow the Gaussian shape shown as the dashed
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Figure 5-3: HOM interferometric measurements without filtering. The Gaussian
shape dip has a visibility of 92%. Markers are data points with error bars of one
standard deviation and dashed curves are Gaussian fits. The pump bandwidth is 5.6
nm and no background subtraction is applied.
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Figure 5-4: HOM interferometric measurements with a 10-nm bandpass filter. The
Gaussian shape dip has a visibility of 96%. Markers are data points with error bars
of one standard deviation and dashed curves are Gaussian fits. The pump bandwidth
is 5.6 nm and no background subtraction is applied.
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curve in Fig. 5-3. The HOM interference visibility is found to be 92% (without back-

ground subtraction). The high visibility implies a high degree of indistinguishability

between signal and idler, but it does not reach its asymptotic value of unity visibility

that is expected under ideal extended phase-matching conditions [28]. By applying

a mild filter of 10 nm bandwidth, the HOM interferometric measurement of Fig. 5-4

shows an improved visibility of 96%, suggesting that removing the residual side lobes

are useful in improving the signal-idler indistinguishability. The measured visibility

of 96% is actually quite close to the expected value of 97.8%, given that we estimate

a visibility degradation of 2.2% owing to imperfect PBS (1% leakage of the wrong

polarization) and a fiber beam splitter with a splitting ratio of 49:51. Additional

degradation could be caused by polarization drifts during measurements. A Gaussian

fit of our measured data, as shown in Fig. 5-3, gives a visibility of 94 ± 2% without

filter, and a visibility of 98± 2% with the filter. The stated uncertainty corresponds

to the 95% confidence fitting bounds.

From the HOM interferometric measurement of Fig. 5-3 we obtain a biphoton co-

herence time (FWHM) of 1.92±0.06 ps, which yields a biphoton coherence bandwidth

(FWHM) of 1.92±0.06 nm for a Gaussian time-frequency transform limited pair with

a time-bandwidth product ∆f∆τ = 2 ln 2/π ≈ 0.44, where ∆f (∆τ) is the full-width

at half-maximum of frequency bandwidth (time duration). Under extended phase

matching, this biphoton coherence bandwidth should also equal the SPDC phase-

matching bandwidth that we can obtain from the DFG measurements in Fig. 3-2 to

be 2.2± 0.4 nm. The two values are in reasonable agreement and that the difference

is possibly due to deviation from ideal extended phase-matching conditions and the

relatively large measurement uncertainty of the DFG measurement. In the ideal case

[28], the biphoton coherence bandwidth is only a function of the signal-idler frequency

difference and hence the phase-matching function, and does not depend on the pump

bandwidth. Indeed, one observes in Fig. 4-4 that the widths of the JSD distributions

along the anti-diagonal axis are more or less the same for pump bandwidths ranging

from 5.6 nm to 0.74 nm.

Furthermore, the HOM interference does not change at different pump bandwidths

as we have discussed in Chapter 2. The HOM interferometric measurement results

at various bandwidths are shown in Fig. 5-5. It is also worthwhile to briefly discuss
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0.95-nm 2.4-nm

Figure 5-5: HOM interferometric measurements at various pump bandwidths. Mark-
ers are data points with error bars of one standard deviation and dashed curves are
Gaussian fits. The interference visibilities obtained from Gaussian fitted results are:
92.0% at 0.95-nm pump; 91.9% at 2.4-nm pump; 92.6% at 3.6-nm pump; 91.2% at
5.6-nm pump.
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the effect of dispersion on the HOM dip bandwidth. We examined the change of

HOM dip width due to dispersion when signal and idler pairs were both sent through

a long fiber with large amount of dispersion (∼ 200 m standard SMF28 fiber). We

observed that the HOM dip bandwidth did not change. The biphoton coherence time

is insensitive to dispersion experienced by both signal and idler. For anti-correlated

SPDC photon pairs, their resultant HOM dip width is unchanged even if one goes

through a dispersive medium while the other one does not [55].

5.2 Spectral Entanglement

5.2.1 Spectrally Entangled Photon Pairs

At a pump bandwidth of 5.6 nm the JSD measurement of Fig. 4-4(a) clearly shows that

the signal and idler are correlated in frequency. However, the JSD alone is insufficient

for one to conclude that they are frequency entangled. Imagine a joint state that is a

low-flux mixture of different types of photon pairs with the following characteristics:

the photons in each pair are orthogonally polarized; the photons in each pair type

have the same center frequency and the same bandwidth as the HOM interference

bandwidth (which is much smaller than the JSD bandwidth); and different types

of photon pairs have different center frequencies such that the combined frequency

coverage spans the bandwidth given by the JSD. Such a mixed state of frequency-

unentangled photon pairs would give the same JSD and HOM interference results of

Fig. 4-4(a) and Fig. 5-3, respectively. To show that the pulsed SPDC output state

generated under 5.6 nm pump bandwidth is frequency entangled, we made a signal

(idler) field-autocorrelation measurement showing a time duration of 0.36 ± 0.04 ps

(0.38 ± 0.04 ps) with a corresponding spectral bandwidth of 10.2 nm (9.69 nm). Our

field-autocorrelation measurement uses a fiber-based Mach-Zehnder interferometer

with a single-photon input of either signal or idler and yields the input’s spectral

bandwidth. The measured spectral widths are much larger than the phase-matching

bandwidth, which proves that the joint state could not be a mixture of low-bandwidth

photon pairs and confirms that the SPDC output was indeed frequency entangled [56].

We note that the marginal distributions for signal and idler from Fig. 4-4(a) yield
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spectral bandwidths of 10.15± 0.1 nm and 10.27± 0.1 nm, respectively, which are in

good agreement with the field-autocorrelation measurements.

To verify the SPDC spectral bandwidth at 0.95 nm pump bandwidth, we follow

the same steps as those taken for confirming the spectral entanglement of the bipho-

ton state when the SPDC was pumped with a pump bandwidth of 5.6 nm. Field-

autocorrelation measurement for signal (idler) at 0.95 nm pump bandwidth yields a

time duration of 1.45±0.02 ps (1.41±0.01 ps), which corresponds to the spectral band-

width of 2.54± 0.04 nm (2.61± 0.02 nm). From Fig. 4-5(b) we calculate the spectral

bandwidth of signal and idler to be 2.62± 0.04 nm and 2.60± 0.03 nm, respectively,

which are in good agreement with the field-autocorrelation results.

5.2.2 Field-autocorrelation Measurement

We used a modified HOM interference setup to complete the field-autocorrelation

measurement. The originally horizontally-polarized signal photons were rotated 45◦

in polarization and sent into the polarization beam splitter. Because the polarization

beam splitter could only separate horizontal and vertical polarizations, it became

effectively a 50:50 beam splitter for 45◦ polarized input. An SNSPD was used to

detect the count rate of one beam splitter port as the relative path difference was

scanned. The idler coherence time was measured using the same procedure with the

polarization rotated idler input.

The signal photon interferes with itself if the two path lengths are equal or their

difference is within the photon’s coherence length. The interference incurs rapid

fluctuations in single counts at the BS output because the path difference is not

stabilized. To capture these rapid fluctuations, ten measurements were taken each

second. Results of a signal photon autocorrelation measurement at 5.6-nm and 0.95-

nm pump are shown in Fig. 5-6 and Fig. 5-7, respectively. A pump beam with broader

bandwidth generates signal photon with a larger bandwidth and a shorter coherence

time, which agrees with our experimental results. The idler coherence time was

measured with the same procedure. The idler coherence time was found to be identical

to the signal coherence time which is as expected because they are indistinguishable.

The FWHM of the signal and idler coherence time is calculated from the envelope

of the count rate fluctuations. The count rate fluctuations are defined by the difference
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between the maximum count rate detected and the minimum count rate detected.

Background fluctuations due to dark counts or other electronic noises are subtracted

from the envelope before calculation.
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Figure 5-6: Autocorrelation measurement of signal photon coherence time with a 5.6-
nm pump. The relative path length is zero at 400 µm air gap position. The single
photon coherence time measured is 0.36 ps (FWHM).

Figure 5-7: Autocorrelation measurement of signal photon coherence time with a
0.95-nm pump. The relative path length is zero at 800 µm air gap position. The
single photon coherence time measured is 1.45 ps (FWHM).
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Chapter 6

Conclusion and Outlook

6.1 Summary

In this thesis, we have generated and characterized the SPDC biphoton output state

under pulsed pumping and extended phase-matching conditions using a custom-

fabricated PPKTP crystal that features a Gaussian phase-matching function. Joint

spectral density measurements confirm that the Gaussian phase-matching function

suppresses to a large extent the side lobes that hinder the generation of a circularly

symmetric biphoton state. With the side lobes removed, the SPDC biphotons gen-

erated under a pump bandwidth of 0.95 nm can be inferred to have a heralded-state

purity of 99% without the use of any spectral filtering in the generation or measure-

ment process, representing the highest purity to date.

Our JSD characterization utilizes two innovative dispersion-based methods to fa-

cilitate the measurement procedure. The first is a single-fiber spectrometer that uses

a single optical fiber with counter-propagating light, which eliminates the need for

two fibers that must be temperature stabilized to maintain equal lengths. The second

technique utilizes a commercially available dispersion compensation module with a

dispersion amount that can be easily customized and that has low insertion loss of

only 2.8 dB. With dispersion equivalent to 100 km of fiber, we were able to obtain the

JSD with high resolution and a short acquisition time that should be useful for many

spectral analysis tasks in quantum information processing.

Our results demonstrate the unique advantage of SPDC operation under extended
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phase-matching conditions that allow orthogonal controls of the joint spectral ampli-

tude of the output biphoton state. We were able to modify the crystal’s phase-

matching function to have a Gaussian shape, and utilize the pump bandwidth to

control the spectral property of the SPDC outputs. At a pump bandwidth of 5.6 nm,

we generated strong frequency entanglement between signal and idler that may be

useful for photon-efficient quantum communications using high-dimensional frequency

encoding [57]. When the pump bandwidth is reduced to 0.95 nm, and assuming the

biphoton is transform limited, we obtain signal and idler photons that are ideally

suited for generating heralded single photons for many quantum photonic applica-

tions that rely on interference between single photons in a single spatiotemporal

mode.

In summary, we have completely characterized the spectral properties and the

indistinguishablility of the biphotons generated from the custom-fabricated Gaussian

phase-matching crystal. We measured a Gaussian-phase matching function as ex-

pected and obtained a spectrally factorable state with 99% heralded-state purity at

0.95 nm pump bandwidth. Finally, we showed that the signal and idler are indistin-

guishable via HOM interferometric measurements.

6.2 Future Research

With the current pump bandwidth control scheme, we used a hard aperture to select

the desired frequency components in the frequency domain. The output spectrum

resulted from such filtering technique was only approximately Gaussian. To be more

specific, when the pump bandwidth was frequency filtered to 0.95 nm, the overlap

between the measured pump spectrum and its best fitted Gaussian curve was around

90%, which is shown in Fig. 6-1. For future research, we will investigate how to make

the frequency-filtered pump more Gaussian by using a custom-designed apodized

filter with semi-transparent regions. The goal of this future research is to have the

Gaussian frequency-filtered pump at the 0.95 nm bandwidth, so that 100% heralded-

state purity biphoton state can potentially be achieved.

We will also investigate a different experimental setup for JSD measurement where

two DCMs are used instead of one. The usage of two DCM eliminates the additional
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Figure 6-1: Measured spectrum of 0.95-nm pump. The measured data are shown as
the blue dots and the best fitted Gaussian is shown as the red curve. ∼ 90% of the
area under the fitted curve overlaps the area under the measurement data.

time delay component in the JSD measurement we performed, and reduces the system

insertion loss by 3 dB. DCMs with tunable dispersion and a fixed low loss are com-

mercially available and may be worth studying to allow adjustable temporal spread

and spectral resolution.

The direct measurement of indistinguishability between individual photons from

different SPDC pulses is required to demonstrate the real performance of the heralded

single photon source. We will start with interfering heralded single photons from

independent SPDC pulses of the same crystal. The first heralded photon will go

through a time delay loop while waiting for the second heralded photon. Both photons

will then be sent to a 50:50 beam splitter so that their arrival times at the beam

splitter are the same. The indistinguishability can then be determined by performing

a HOM interference experiment.

Because of fabrication variations, there are differences in performance between

different crystals. To exclude any discrepancy caused by the difference in crystals

from our experimental results, we restrict our future research plan to using a time

multiplexing scheme with only one crystal. However, using two or more crystals for

generating independent heralded single photons without time multiplexing should

yield a higher photon generation rate. Therefore, the possibility of using more than
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one crystal is worth considering. In the future, we would also like to characterize

the performance difference between individual crystals as careful characterization of

crystal performance variations will be beneficial for scalable implementation of our

SPDC heralded single-photon source.
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