
A Model-Adaptive Universal Data Compression

Architecture with Applications to Image

Compression

by

Joshua Ka-Wing Lee

B.A.Sc. in Engineering Science, University of Toronto (2015)

Submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 19, 2017

Certified by. .
Gregory W. Wornell

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Committee on Graduate Theses

2

A Model-Adaptive Universal Data Compression Architecture

with Applications to Image Compression

by
Joshua Ka-Wing Lee

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2017, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

In this thesis, I designed and implemented a model-adaptive data compression system
for the compression of image data. The system is a realization and extension of the
Model-Quantizer-Code-Separation Architecture for universal data compression which
uses Low-Density-Parity-Check Codes for encoding and probabilistic graphical models
and message-passing algorithms for decoding. We implement a lossless bi-level image
data compressor as well as a lossy greyscale image compressor and explain how these
compressors can rapidly adapt to changes in source models. We then show using these
implementations that Restricted Boltzmann Machines are an effective source model
for compressing image data compared to other compression methods by comparing
compression performance using these source models on various image datasets.

Thesis Supervisor: Gregory W. Wornell
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to extend my sincerest thanks to the many people without whose support
this work would not have been completed.

First and foremost, I would like to thank my advisor Professor Gregory Wornell for
his guidance and teaching throughout my journey here at MIT. His advice has led me
to the discovery of new ideas and fields that I would never have encountered otherwise.
I owe much of my knowledge and passion for machine learning and information theory
to him, from lessons learned in the classroom to those gleaned from our meetings,
and without his inspiration this project would never have existed in the first place.
I am grateful beyond words for all he has done for me to help me grow as a student
and a researcher.

Much of the early work done is this thesis has been done in partnership with
Angus Lai. As a research partner, he has helped me greatly both in developing the
ideas that are central to the workings of the project as well as in implementing the
project, especially in improving the runtime of our code. I would like to thank him
for being a great research partner who has always been willing to do what needs to
be done to make the project a success, and for helping make this project greater than
the sum of its parts.

The inspiration for this work comes directly from Dr. Ying-Zong Huang, whose
2015 PhD dissertation forms the basis of our project. Dr. Huang has always been
willing to provide us with advice that has opened our eyes to new possibilities and
new ways of problem-solving, in addition to providing insights and data related to
his previous work on his dissertation, and for that I will always be grateful.

In the later parts of my research, I had the opportunity to speak with Dr. Jerry
Shapiro multiple times about his research into image modeling. Dr. Shapiro was
generous enough to meet with me several times over the course of a few months to
discuss my research, and his experience with image modeling has provided me with
vital advice needed to move forward with my project many times, for which I am
thankful.

In the process of our exploratory research, Angus and I had the opportunity to
speak with Dr. Ulugbek Kamilov about his work on message-passing dequantization,
which proved to be an important part of our research. His insights led to an important
breakthrough in our research, and I would like to thank him for that.

I am also grateful to the SIA community for their support and advice, and for
providing me with a friendly and intellectually-stimulating environment that has given
me the drive and knowledge needed to complete this project.

Finally, I extend my deepest thanks and love to my parents, who have guided me
along my path to achieving my dreams and given me the love, support, and teachings
that has allowed me to persevere through hardships and find myself where I am today.

5

6

Contents

1 Introduction 13
1.1 Motivation . 13

1.1.1 Example: A Tale of Two Standards 13
1.1.2 A Universal Problem . 14
1.1.3 Types of Compression and Joint Design 14
1.1.4 Image Compression . 16

1.2 Previous Work . 16
1.2.1 The Model-Quantizer-Code Separation Architecture 16
1.2.2 Image Modeling . 17

1.3 Contributions . 17
1.4 Thesis Organization . 18
1.5 Notation . 18

2 Background 19
2.1 Probabilistic Graphical Models . 19

2.1.1 Undirected Graphical Models 19
2.1.2 Factor Graphs . 20
2.1.3 Inference in PGMs: Belief Propagation and Loopy Belief Prop-

agation . 20
2.2 Low Density Parity Check Codes . 22

2.2.1 Modeling LDPC Codes . 23
2.3 Image Models . 24

2.3.1 Gaussian Graphical Models 24
2.4 Image Models . 25

2.4.1 Restricted Boltzmann Machines 25
2.4.2 Ising Models . 27

3 The Model-Quantizer-Code Separation Architecture 29
3.1 The Binary Lossless Model-Code Separation Architecture 29
3.2 Non-Binary Alphabets: the Complete Model-Code Separation Archi-

tecture . 31
3.3 Lossy Compression: the Model-Quantizer-Code Separation Architecture 32
3.4 Benefits of the Separation Architecture 33
3.5 Practical Considerations . 35

3.5.1 Doping . 35

7

3.5.2 Threshold Rates . 36
3.6 Summary . 37

4 Image Compression 39
4.1 Bi-Level Image Compression . 39

4.1.1 RBMs for Bi-Level Image Compression 39
4.1.2 Message Passing in BRBMs 39
4.1.3 Compression of the MNIST Database 41

4.2 Greyscale Image Compression . 43
4.2.1 RBMs for Greyscale Image Compression 45
4.2.2 Message Passing in GRBMs 45
4.2.3 Compression of the Cifar-10 Database 47

4.3 3D Image Compression . 50
4.3.1 Compression of 3D Tomographic Data 51

4.4 Summary and Remarks . 53

5 Conclusions and Future Work 55
5.1 Summary . 55
5.2 Future Work . 55

5.2.1 Quantizer Selection . 55
5.2.2 Full-Resolution Image Compression 56

5.3 Concluding Remarks . 57

8

List of Figures

1-1 The joint design paradigm, where the data model is required in the con-
struction of the encoder, and the processing, quantization, and coding
steps are intertwined. 15

1-2 The separation paradigm, where the processing, quantization, and cod-
ing steps of the encoder are independently designed from one another
and from the data model, with the data model used only to facilitate
decoding. 16

2-1 A factor graph of a LDPC code where 𝑘 = 3 and 𝑛 = 5. The associated
factor potential functions are as follows: 𝑓1(𝑣2, 𝑣4) = 1{𝑥1 == 𝑣2+𝑣4},
𝑓2(𝑣1, 𝑣4, 𝑣5) = 1{𝑥2 == 𝑣1+𝑣4+𝑣5}, 𝑓3(𝑣2, 𝑣3, 𝑣5) = 1{𝑥3 == 𝑣2+𝑣3+𝑣5} 23

2-2 A pairwise graphical model representing a Gaussian distribution. . . . 25

2-3 A pairwise graphical model representing a Restricted Boltzmann Ma-
chine. 25

2-4 An 𝑛×𝑚 lattice graph, which is the structure of the pairwise graphical
model representing an Ising distribution. 27

3-1 The Model-Code-Separation graphical model for binary alphabet sources
used by the decoder, containing both the source and code subgraphs . 30

3-2 The Model-Code-Separation graphical model for non-binary alphabet
sources used by the decoder, containing both the source and code sub-
graphs as well as the translation layer 32

3-3 The Model-Code-Quantizer-Separation graphical model with uniform
quantization for continuous alphabet sources used by the decoder, con-
taining both the source and code subgraphs as well as the translation
and quantization layers . 34

3-4 Plot of decoding errors as a function of compression rate illustrating
the three regimes of operation in a typical application of the MQCS
system. 36

4-1 Decoding graph with BRBM source subgraph used for compressing
MNIST database images. 43

9

4-2 Threshold compression rate results of compressing 100 randomly se-
lected images from the MNIST database using the separation archi-
tecture under the Ising model and under the BRBM model with 2000
hidden nodes with a dope rate of 0.05. The message-passing decoder
was run for a maximum of 100 iterations. Note that the BRBM model
almost always provides better compression than the Ising model. . . . 44

4-3 Threshold compression rate results (right) of compressing one ran-
domly selected image from the MNIST database (left) under the BRBM
model with varying number of hidden nodes with a dope rate of 0.05.
The message-passing decoder was run for a maximum of 100 iterations.
Note that the BRBM model performs better with more hidden nodes
up until a saturation point. 44

4-4 Sample images of the Cifar-10 image dataset. 48
4-5 Decoding graph with GRBM source subgraph used for compression of

Cifar-10 database images. 49
4-6 Average rate-distortion curve for the lossy compression of ten images

drawn randomly from the Cifar-10 database, compressed using the
MQCS Architecture with a GRBM source model with 1500 nodes
(RBM-1500), a GRBM source model with 500 nodes (RBM-500), a
GRBM source model with 1500 nodes (RBM-1500), an independent
Gaussian source model (Indep), and compressed using the JPEG algo-
rithm (JPEG). For the separation architecture, we allowed the message-
passing algorithm to run up to 100 iterations for the decoder and used
an optimal dope rate of 1 bit per pixel. 50

4-7 Five adjacent slices sampled from the X-ray tomography data used for
the 3D compression experiment. Note the strong continuity is the third
dimension. 51

4-8 A 3 × 3 × 3 three-dimensional lattice graph (left) and three 3 × 3
two-dimensional lattice graphs stacked on top of each other (right),
which are examples of the two structures of the pairwise graphical
models representing their respective Ising distributions. Note that in
the stacked 2D case, each layer is independent of all other layers. . . . 52

10

List of Tables

1.1 Types of Data Compression Problems 14

4.1 Compression results for 60x60x40 3D tomography image. For the
MQCS Architecture, threshold rates were used with a 0.125 doping
rate and a maximum of 300 message-passing iterations. 53

11

12

Chapter 1

Introduction

Data Compression is a long-studied problem of great importance, with applications
in many fields. In recent years, developments in the field of machine learning has al-
lowed for novel breakthroughs in solving this problem. One such breakthrough is the
development of the Model-Quantizer-Code Separation (MQCS) Architecture for uni-
versal compression. In this thesis, we extend the concept of the MQCS Architecture
to the problem of lossy compression of continuous-alphabet sources and explore the
applications of this archiecture to the compression of images. We will also illustrate
the benefits this architecture has over other methods of data compression.

1.1 Motivation

We begin with a motivating example to illustrate the necessity of the MQCS Archi-
tecture.

1.1.1 Example: A Tale of Two Standards

In 1987, the Joint Photographic Experts Group (JPEG) released an image compres-
sion standard for the lossless and lossy compression of natural images. The JPEG
standard used a perceptual model of image fidelity to design a quantization scheme
centered around the discrete cosine transform (DCT) [33]. This standard soon become
the most used method for compressing image data, used in most computer systems
as well as most digital cameras [31].

In 2000, the JPEG2000 standard was released by the same group [28]. The new
standard used an improved image model exploited by the wavelet transform to provide
compression ratios and reconstruction fidelities superior to that of the original JPEG
standard as well as providing additional features such as scalability and progressive
decoding.

However, the standard format used for image compression in most modern com-
puter systems is still JPEG, with few cameras even supporting JPEG2000 encod-
ing, despite the improvements that JPEG2000 provides [1]. One main reason why
JPEG2000 never become a replacement for JPEG is the lack of backwards compati-

13

bility. JPEG and JPEG2000 use two completely different coding schemes, and as such
require two different encoders and decoders. Switching over to the JPEG2000 stan-
dard would require re-encoding all existing JPEG images using the new codec and,
in addition, most imaging software would need to continue to support both formats
for a period of at least several years in the event that they encountered unconverted
files. In general, the benefits provided by JPEG2000 was not considered to be worth
the trouble of switching over to the new system.

Since the creation of the JPEG standard, many advances have been made in the
field of image analysis and compression, and yet none of these advances have been
leveraged in modern computer systems, with JPEG remaining the standard. The
same reasons that prevented the proliferation of JPEG2000 continues to make JPEG
the format of choices for image compression, as few wish to have to re-encode their
images each time a better image model is developed.

1.1.2 A Universal Problem

The phenomenon observed in the history of image compression is not an isolated
incident. In many applications where data must be compressed without a complete
knowledge of the source from which the data is drawn from, it is difficult to leverage
additional knowledge discovered about the source model ex post facto. Attempts to
do so either lead to the creation of new standards which are only adapted by a small
number of users, or which clutter decoding programs that need to be backwards-
compatible with multiple formats.

1.1.3 Types of Compression and Joint Design

To get a better idea of where this problem comes from and where a solution might be
found, let us briefly discuss the modern state of data compression. Most compression
systems that exist today or are being researched can be divided into one of four
domains based on two categories: model specificity and fidelity of reconstruction.
Table 1.1 outlines the four categories.

Fidelity/specificity Model Specific Model Independent

Lossless Entropy Coding Universal Entropy Coding
Lossy Rate-Distortion Coding Universal Rate-Distortion Coding

Table 1.1: Types of Data Compression Problems

Lossless compression algorithms achieve compression with prefect reconstruction
via entropy coding, while lossy compression uses rate-distortion coding for imperfect
compression.

Model specific compression methods use domain knowledge in order to design
compression algorithms specially tailored to the data model. Examples of this include
image compression algorithms such as JPEG, JPEG2000, and PNG, as well as most
audio and video codecs. In general, model specific compression methods use some

14

form of data processing followed by an entropy coding step (e.g. Huffman coding,
arithmetic coding), with an additional quantization step for lossy compression that
are often integrated with the coding and processing steps. (e.g. EZW coding, Lloyd-
max quantization).

Model independent (universal) coding does not require any prior knowledge about
the source of the data being compressed, instead relying on universal methods of
entropy coding (e.g. LZW coding, CTW coding).

Both model specific and model independent compression have their advantages
and disadvantages. Model specific compression is, in general, very effective at com-
pressing the type of data it is designed to compressed, and uses domain knowledge
to greatly improve compression performance. However, model specific compression
is hampered by the concept of joint design, where the data-processing, quantization,
and coding steps must be designed jointly for maximum performance based on the
source model. Figure 1-1 illustrates the concept of joint design.

Figure 1-1: The joint design paradigm, where the data model is required in the construction

of the encoder, and the processing, quantization, and coding steps are intertwined.

We can see this paradigm in action in JPEG coding, where the pre-processing
step of transforming the data into the DCT domain is done because it can be coupled
with a quantization procedure based on perceptual models of vision, which allows
for effective run-length coding, which in turn can be effectively compressed using
Huffman coding. Each part of the system is effective only because the other parts
of the system are designed to work specifically with it and the overall source model.
This makes the system rigid and makes is often impossible or very difficult to include
new domain knowledge into an existing system. In addition, to design model-specific
systems, one must already possess the domain knowledge, which means that the data
cannot be encoded until enough data has been collected to understand the source
model, which is not always optimal.

Model independent coding avoids these issues by using a universal code, which
allows for the encoding of data without any prior knowledge of the source. However,
universal codes are unable to leverage knowledge of the source model, and for complex
models, require very long bitstreams to achieve effective compression.

Ideally, we would like to be able to leverage the benefits of both types of coding. To
wit, we would like a universal encoding system that allows for data to be compressed
without knowledge of the source model, and would also like a system that is able
to integrate varying amounts of domain knowledge in order to improve compression

15

performance.

1.1.4 Image Compression

One particular domain where this type of universal coding would be useful is in
the compression of images. Image data tends to be highly structured in complex,
non-linear ways and, given the ubiquity of this type of data and its importance in
many applications, work is constantly being done to improve our ability to analyze
and model images. As discussed in the motivating example, however, much of this
work has not be used to benefit image compression systems, with JPEG continuing
to dominate decades after its release despite all the advances in the field. With a
universal, easily-upgradable system, it would be possible to finally create an image
compression algorithm that can leverage current advances in imaging as well as future
developments without sacrificing backwards-compatibility.

1.2 Previous Work

1.2.1 The Model-Quantizer-Code Separation Architecture

The problem of eliminating joint design from compression architectures was studied
in-depth by Huang and Wornell [17] [16] and later by Lai [21]. Huang and Wornell
proposed a source-agnostic universal data compression architecture known as the
Model-Quantizer-Code Separation (MQCS) Architecture.

This system separates the data modelling aspects of the compression from the
coding aspects, which allows for the use of universal codes for compression while still
being able to integrate different source models in the decoding step for improved
performance. The system also includes an optional quantization component that is
independent from both source model and code which allows for lossy compression.
An illustration of the separation paradigm can be found in Figure 1-2.

Figure 1-2: The separation paradigm, where the processing, quantization, and coding steps

of the encoder are independently designed from one another and from the data model, with

the data model used only to facilitate decoding.

The key contribution of the MQCS Architecture is its ability to repurpose any
source model which can be formulated as a graphical model and leverage it to improve

16

decoding performance and thus compression performance. A more detailed outline of
the functionality of the MQCS Architecture will be given in Chapter 3.

1.2.2 Image Modeling

All image compression algorithms rely on some underlying model of how the image
is generated. In this thesis, we focus on natural images; that is, pictures from the
real world, which is the same subset that most image compression systems focus on,
including JPEG and JPEG2000. Over the course of the past thirty years, many
advances have been made in this regard.

The original JPEG standard used an image model whereby low-frequency com-
ponents of the Discrete Cosine Transform (DCT) of the image were more significant
than the high-frequency components [33]. The JPEG2000 standard refined this model
with the wavelet transform, allowing some important high-frequency components to
be conserved as well [28]. Later models were then developed, though never leveraged
for practical image compression applications.

Gaussian and Laplacian image pyramids provide simple hierarchal methods for de-
composing an image into component parts, allowing for image analysis and processing
at multiple resolution levels [5]. Later, Restricted Boltzmann Machines (RBMs) were
developed to model images using mixture models and perform feature detection on
them [22]. More recently, significant work has been done in the field of deep learning
with regard to the classification and generation of images [7] [27].

Deep Neural Networks have been used extensively for image classification [6], and
the idea of stacking multiple layers of nodes have been extended to RBMs to create
Deep Belief Networks, which consist of stacks of RBMs [13]. Finally, to provide
scalability of these systems, convolutional networks have been developed for both
Deep Neural Nets [20] and Deep Belief Nets [24], enforcing certain patterns in the
connections between layers to reduce complexity.

1.3 Contributions

In this thesis, we extend the work done by Huang and Wornell and Lai in the de-
velopment of the MQCS Architecture into practical applications of compression of
continuous or large-cardinality alphabet sources. Specifically, we will look at the
compression of natural image data. We will show how the MQCS Architecture can
be used to compress image data using different source models for both bi-level and
greyscale images.

We will begin by modeling the pixels of the image as being drawn from a Gaussian
or Gaussian mixture distribution and explore different methods for determining this
distribution and how the resulting model can be used in the MQCS Architecture.
In particular, we will focus on the Restricted Boltzmann Machine and its variations,
showing how these models can connected to the MQCS Architecture and deriving
approximate expressions for message-passing in these models. Finally, we will explore
the model-adaptive potential of the MQCS Architecture by looking at the compression

17

of 2D and 3D bi-level image data and showing how the MQCS Architecture can be
quickly modified with new source models to improve compression performance.

1.4 Thesis Organization

This thesis will cover both the overall design of the MQCS Architecture as well as its
implementations on real-world data. In particular, the organization of the thesis will
be as follows:

Chapter 2 will provide a brief overview of various basic concepts that serve as the
basis of the MQCS Architecture, as well as an overview of the image models that will
be used in the thesis. Chapter 3 will provide a description of the MQCS Architecture,
including its use as an encoder or decoder for various types of data and how to leverage
information about source models to improve compression performance via graphical
modeling. Chapter 4 will explore the applications of the MQCS Architecture to
the problem of image compression, including discussions of the results of experiments
performed on various datasets. Finally, Chapter 5 will conclude the thesis and discuss
potential for future work that can be done with the MQCS Architecture.

1.5 Notation

While we have endeavored to use the standard notations and terminology, the multi-
disciplinary nature of the system coupled with the fact that some of the fields in
question are quite new and developing quickly mean that there will often be multiple
competing or contradicting sets of notation that we will encounter. As such, the
following list outlines the notation we have chosen for this thesis unless otherwise
noted.

∙ We use lower case 𝑠 to denote a scalar or vector variable. For a vector variable,
we denote the length using superscripts (e.g. 𝑠𝑛) when introducing the variable,
with subscript indexing (e.g. 𝑠𝑛𝑖 is the 𝑖th element of 𝑠𝑛). We also use the
backslash to indicate all other elements in a vector (e.g. 𝑠∖(𝑖,𝑗) are all elements
in 𝑠𝑛 except for the 𝑖th and 𝑗th element).

∙ We use upper case 𝐴 to denote a matrix, with size specified by superscripts
𝐴𝑛×𝑚 and indexing done using subscripts (e.g. 𝐴𝑖𝑗 is the (𝑖, 𝑗)th entry of 𝐴).

∙ For iterative algorithms, we use bracketed superscripts to denote iteration num-
ber (𝑚(𝜏) is the value of 𝑚 at the 𝜏th iteration).

∙ We use R to denote the set of real numbers and Z𝑝 to denote the set of integers
𝑚𝑜𝑑 𝑝.

∙ For algorithms, we use doubles slashes // to indicate the beginning of a com-
ment.

∙ We use 1{𝑥} to denote the indicator function, which evaluates to 1 if the state-
ment 𝑥 is true, and zero otherwise. We also use 𝑒𝑥𝑝(𝑥) to denote the exponential
function 𝑒𝑥.

18

Chapter 2

Background

The development and implementation of the MQCS Architecture is an undertaking
that spans multiple fields of study. The fundamental concepts behind the quanti-
zation and compression of data come from the field of information theory, with the
actual codes used coming from coding theory. The developments of the decoder and
decoding algorithms are drawn from the field of inference and probabilistic model-
ing. And finally, the models used for compression are mainly drawn from the field of
machine learning. In this chapter, we will provide an overview of the key concepts
needed for the understanding of the MQCS Architecture, including relevant defini-
tions and results. Chapter 3 will expand on this background, showing how all the
pieces discussed can be put together to form the compression architecture.

2.1 Probabilistic Graphical Models

Probabilistic Graphical Models (PGMs) are powerful tools used to model conditional
dependencies between variables in a probabilistic distribution. A PGM represents
a distribution as a graph, with nodes representing variables and edges representing
relations between variables. There are a few types of graphical models, but in this
thesis the focus shall be on undirected graphical models and factor graphs.

2.1.1 Undirected Graphical Models

An undirected graphical model is an undirected graph 𝐺 = (𝑉,𝐸) in which each node
𝑣𝑖 ∈ 𝑉 represents a variable, and each edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 represents a conditional
dependency. That is, for any two variables:

(𝑣𝑖, 𝑣𝑗) /∈ 𝐸 =⇒ 𝑣𝑖 á 𝑣𝑗|𝑣∖(𝑖,𝑗) (2.1)

By the Hammersley-Clifford theorem [18, Thm 4.2], any strictly positive prob-
ability distribution can be represented using this form, and the probability density
function can be factored out into a product of functions over the cliques of the graph.

19

𝑝(𝑣) ∝
∏︁
𝐶∈𝒞

𝜓𝐶(𝑣𝐶) (2.2)

Where 𝜓𝐶(𝑣𝐶) is the potential function of clique 𝐶 and 𝒞 is the set of all cliques
in 𝐺.

One useful subset of undirected graphical models are pairwise graphical models. In
a pairwise graphical model, the largest clique size is two, and as such the probability
density function can be factored into a product of functions of two nodes:

𝑝(𝑣) ∝
∏︁

(𝑖,𝑗)∈𝐸

𝜓𝑖,𝑗(𝑣𝑖, 𝑣𝑗) (2.3)

Pairwise models are especially attractive due to their simplicity and the ease
in which inference can be performed over them, as well as the fact that each edge
represents a distinct potential function.

2.1.2 Factor Graphs

In addition to undirected graphical models, another PGM of interest is the Factor
Graph (FG) [18, Sec 4.4]. A factor graph is a bipartite graph 𝐺 = (𝑉, 𝐹,𝐸) with two
sets of nodes. Variable nodes 𝑣1, ..., 𝑣𝑁 ∈ 𝑉 represent variables in the distribution
and factor nodes 𝑓1, ..., 𝑓𝑀 ∈ 𝐹 represent functions. The probability density function
of the distribution represented by a factor graph is given by:

𝑝(𝑣) ∝
𝑀∏︁
𝑖=1

𝑓𝑖(𝑣𝑁(𝑓𝑖)) (2.4)

Where 𝑁(𝑓𝑖) is the neighborhood of 𝑓𝑖 or the set of variable nodes adjacent to 𝑓𝑖.
Both undirected graphical models and factor graphs are useful tools for represent-

ing probability distributions, and both will be used in this thesis.

2.1.3 Inference in PGMs: Belief Propagation and Loopy Belief

Propagation

Once a model for the probability distribution has been determined, the next step is
to perform inference over the model to extract the necessary information from it. In
this case, our goal is to determine the marginal distribution of a variable or multiple
variables. In the case where the variables are drawn from a discrete alphabet source,
marginalization can be computed using a brute-force method by summing over all
variables except for the variable being isolated:

𝑝(𝑣𝑖) =
∑︁
𝑣∖𝑖

𝑝(𝑣1, ..., 𝑣𝑁) (2.5)

For continuous alphabets, the summation would be replaced by integration over
the variables. Direct computation of this marginal is exponential in the number of

20

nodes, and is thus impractical for the purposes of this thesis. As such, approximate
methods must instead be used. One such method is Loopy Belief Propagation (LBP),
also known as message passing [18, Sec 10.3]. LBP is an iterative algorithm in which
each node sends a "message" along its edges to its adjacent nodes, with these messages
updated each iteration. Messages are local functions of the incoming messages into
the node from the previous iteration of the algorithm as well as any potential functions
between the node and its adjacent nodes. The LBP algorithm for factor graphs and
pairwise models are given in Algorithms 1 and 2. Note that since each message is
only a function of the messages into the source node, the potential of the source and
destination nodes, and the potential between the source and destination nodes, this
algorithm can easily be expanded to graphical models that contain a mixture of factor
graphs and pairwise models by simply using the appropriate message computation
for each pair of node.

Algorithm 1: Loopy Belief Propagation for Factor Graphs

Input: Graph 𝐺 = (𝑉, 𝐹,𝐸)
Output: Marginal probabilities 𝑝𝑖(𝑣𝑖) for all nodes 𝑣𝑖 in 𝑉

Initialize messages 𝑚
(0)
𝑖→𝑗(𝑣𝑗) ∀(𝑖, 𝑗) ∈ 𝐸 to some nonzero values.

𝑛← 0
repeat

𝑛← 𝑛+ 1
for all edges (𝑖, 𝑗) ∈ 𝐸 do

if 𝑖 ∈ 𝑉 and 𝑗 ∈ 𝐹 then

𝑚
(𝑛)
𝑖→𝑗(𝑣𝑖)←

∏︀
𝑘∈𝑁(𝑖)∖𝑗

𝑚
(𝑛−1)
𝑘→𝑖 (𝑣𝑖) //Variable to Factor message update

else if 𝑖 ∈ 𝐹 and 𝑗 ∈ 𝑉 then

𝑚
(𝑛)
𝑖→𝑗(𝑣𝑗)←

∑︀
𝑣𝑘∈𝑁(𝑖)∖𝑗

(︃
𝑓𝑖(𝑣𝑁(𝑖))

∏︀
𝑘∈𝑁(𝑖)∖𝑗

𝑚
(𝑛−1)
𝑘→𝑖 (𝑣𝑘)

)︃
//Factor to

Variable message update
end

until convergence of messages ;
//Combine final messages and compute marginal probabilities
for all variables 𝑣𝑖 ∈ 𝑉 do

𝑝𝑖(𝑣𝑖)←
∏︀

𝑗∈𝑁(𝑖)

𝑚
(𝑛)
𝑗→𝑖(𝑣𝑖)

Normalize 𝑝𝑖(𝑣𝑖) to sum to one
end
return 𝑝𝑖(𝑣𝑖) ∀𝑖 ∈ 𝑉

Once again, for continuous-valued variables, summations would be replaced by
integration.

Given enough iterations of the computation of these messages, a reasonable ap-
proximation of the marginal distribution can be computed from the incoming mes-
sages into a node. In addition, if the graph is a tree, then this algorithm reduces

21

Algorithm 2: Loopy Belief Propagation for Pairwise Undirected Graphical
Models
Input: Graph 𝐺 = (𝑉,𝐸) and node and edge potential functions

𝜑𝑖(𝑣𝑖) ∀𝑖 ∈ 𝑉, 𝜓𝑖,𝑗(𝑣𝑖, 𝑣𝑗) ∀(𝑖, 𝑗) ∈ 𝐸
Output: Marginal probabilities 𝑝𝑖(𝑣𝑖) for all nodes 𝑣𝑖 in 𝑉

Initialize messages 𝑚
(0)
𝑖→𝑗(𝑣𝑗) ∀(𝑖, 𝑗) ∈ 𝐸 to some nonzero values.

𝑛← 0
repeat

𝑛← 𝑛+ 1
for all edges (𝑖, 𝑗) ∈ 𝐸 do

𝑚
(𝑛)
𝑖→𝑗(𝑣𝑗)←

∑︀
𝑣𝑖

(︃
𝜑𝑖(𝑣𝑖)𝜓𝑖,𝑗(𝑣𝑖, 𝑣𝑗)

∏︀
𝑘∈𝑁(𝑖)∖𝑗

𝑚
(𝑛−1)
𝑘→𝑖 (𝑣𝑖)

)︃
end

until convergence of messages ;
//Combine final messages and compute marginal probabilities
for all variables 𝑣𝑖 ∈ 𝑉 do

𝑝𝑖(𝑣𝑖)←
∏︀

𝑗∈𝑁(𝑖)

𝑚
(𝑛)
𝑗→𝑖(𝑣𝑖)

Normalize 𝑝𝑖(𝑣𝑖) to sum to one
end
return 𝑝𝑖(𝑣𝑖) ∀𝑖 ∈ 𝑉

to the Belief Propagation or Sum-Product algorithm, and converges in a number of
iterations equal to the width of the tree minus one.

The time complexity of one iteration of LBP is 𝒪(|𝐸||𝒳 |𝑑*) for Factor Graphs and
𝒪(|𝐸||𝒳 |2) for Pairwise Models, where |𝒳 | is the alphabet size and 𝑑* is the maximum
degree of any factor node in the graph [18, Sec 10.3]. Thus, with a reasonable bound
on the degrees of the factor nodes and a source model that converges reasonably
quickly (such as the ones used in this thesis), LBP can be computed very efficiently
compared to the exponential time of exact inference.

2.2 Low Density Parity Check Codes

Low Density Parity Check (LDPC) codes were originally developed by Gallager for
use in channel coding. LDPC codes are examples of error-correcting linear codes,
which use parity check bits to correct for corruption in the codewords [9].

In the binary case, a linear code maps a source sequence of length (𝑛 − 𝑘) into
a codeword of length 𝑛 by adding 𝑘 parity check bits to the sequence, where 𝑘 < 𝑛.
These codes are defined by a linear transform

𝐿 : Z𝑛−𝑘
2 → Z𝑛

2 (2.6)

This transform may be characterized by a generator matrix 𝐺 ∈ Z(𝑛−𝑘)×𝑛
2 such

22

that

𝐿(𝑠) = 𝐺𝑇 𝑠 (2.7)

An equivalent characterization is the parity-check matrix 𝐻 ∈ Z𝑘×𝑛
2 satisfying

𝐻𝐺𝑇 = 0 (2.8)

From which the parity-check bits 𝑥𝑘 can be computed from the codeword 𝑠𝑛 by

𝑥 = 𝐻𝑠 (2.9)

LDPC codes are linear codes with sparse parity check matrices 𝐻, that is, the
row and column weights of 𝐻 are negligible as 𝑛 grows to infinity. LDPC codes have
been shown to approach capacity and are thus popular for use in channel coding [15].

2.2.1 Modeling LDPC Codes

LDPC codes can be modeled as bipartite graphs, with one set of nodes represent-
ing the initial source sequence, and the other representing the parity check bits [2].
Specifically, we can model LDPC codes as a factor graph, with each bit in the source
sequence represented by a variable node and each parity-check bit represented by a
factor node. An edge exists between a factor node 𝑓𝑖 and a variable node 𝑣𝑗 if the vari-
able node is involved in the computation of the parity-check bit; that is, the (𝑖, 𝑗)th
entry of 𝐻 is non-zero. The functions 𝑓𝑖 of the factor nodes impose the parity-check
constraints on the source sequence.

𝑓𝑖(𝑣𝑁(𝑖)) = 1{𝑥𝑖 ==
∑︁

𝑗∈𝑁(𝑖)

𝑣𝑗} (2.10)

Where 𝑥 = 𝐻𝑣 are the parity-check bits. Figure 2-1 shows an example of an
LDPC code and its associated factor graph.

Figure 2-1: A factor graph of a LDPC code where 𝑘 = 3 and 𝑛 = 5. The associated factor

potential functions are as follows: 𝑓1(𝑣2, 𝑣4) = 1{𝑥1 == 𝑣2 + 𝑣4}, 𝑓2(𝑣1, 𝑣4, 𝑣5) = 1{𝑥2 ==
𝑣1 + 𝑣4 + 𝑣5}, 𝑓3(𝑣2, 𝑣3, 𝑣5) = 1{𝑥3 == 𝑣2 + 𝑣3 + 𝑣5}

23

2.3 Image Models

When attempting to create a suitable model for image data, the first challenge faced
is invariably the problem of alphabet size. A truecolor image specifies the color of
each pixel using twenty-8four bits, for an alphabet size of 224 ≈ 1.68× 107 and even
greyscale images use eigth bits per pixel, for an alphabet size of 28 = 256. Even with
a pairwise model, Message Passing scales quadratically with alphabet size, and the
complexity of modeling interactions between individual bits in an image can often
blow-up, to say nothing of the fact that differences in how intensities are coded can
lead to vastly different relationships between bits.

As such, it is often more useful to model pixels as continuous alphabet sources, and
to apply parameterizable continuous probability distributions to model them. This
can greatly reduce the complexity of analysis, and in addition, for natural images,
continuous-alphabet distributions fit the image data distributions better since natural
images are representations of a continuous, real-world phenomena. They also provide
a more intuitive understanding than bitwise modeling.

2.3.1 Gaussian Graphical Models

The simplest and easiest to implement a model for continuous image data is to assume
that the data is normally distributed and use aGaussian Graphical Model [18, Sec 7.3].
In a Gaussian Graphical Model, we assume that the variables (pixels) 𝑣1, ..., 𝑣𝑛 obey
a Gaussian distribution 𝑁(𝜇,Σ) with mean 𝜇 ∈ R𝑛 and covariance matrix Σ ∈ R𝑛×𝑛.
If we rewrite the distribution in information form 𝑁−1(ℎ, 𝐽), where 𝐽 = Σ−1 and
ℎ = 𝐽𝜇, we have the following conditional independence statement:

𝐽𝑖𝑗 = 0 ⇐⇒ 𝑣𝑖 á 𝑣𝑗|𝑣∖(𝑖,𝑗) (2.11)

From this, we can easily construct a pairwise undirected graphical model for any
Gaussian distribution as follows. Let 𝐺 = (𝑉,𝐸) be the undirected graphical model
for the Gaussian distribution 𝑝𝑣𝑛 with information form parameters ℎ, 𝐽 . Then

(𝑣𝑖, 𝑣𝑗) ∈ 𝐸 ⇐⇒ 𝐽𝑖𝑗 ̸= 0 (2.12)

And the potential functions are

𝜑𝑖(𝑣𝑖) = 𝑒𝑥𝑝(ℎ𝑖𝑣𝑖 −
1

2
𝐽𝑖𝑖𝑣

2
𝑖) (2.13)

𝜓𝑖,𝑗(𝑣𝑖, 𝑣𝑗) = 𝑒𝑥𝑝(−1

2
𝐽𝑖𝑗𝑣𝑖𝑣𝑗), ∀𝐽𝑖𝑗 ̸= 0 (2.14)

In this thesis, we will only be using pure Gaussian graphical models from inde-
pendent distributions, and as such all graphs of 𝑝𝑣𝑛 will be empty graphs (i.e. have
no edges).

24

Figure 2-2: A pairwise graphical model representing a Gaussian distribution.

2.4 Image Models

2.4.1 Restricted Boltzmann Machines

In many cases, a purely Gaussian model may be a poor model for image data. One
class of models which can capture a more complex class of distributions are Restricted
Boltzmann Machines (RBMs) [18, Sec 4.4], which have been used extensively as both
generative and discriminative models for image classification, feature detection, and
denoising [30] [22] [29]. An RBM is a bipartite graph consisting of two sets of variable
nodes: visible nodes 𝑣1, ..., 𝑣𝑛, which generally correspond to observed data, and
hidden nodes ℎ1, ..., ℎ𝑚, which are used to model latent factors that determine the
value of the visible nodes. Since the graph is bipartite, visible nodes are independent
of one another conditioned on the hidden nodes and vice-versa, which allows for very
easy Gibbs sampling of the model, since one can alternately sample the hidden and
visible layers conditioned on the other set until convergence.

Figure 2-3: A pairwise graphical model representing a Restricted Boltzmann Machine.

There are multiple types of RBMs, but in this thesis we will focus on Gauss-
Bernoulli RBMs (GRBMs) and Bernoulli-Bernoulli RBMs (BRBMs). In a GRBM,
the visible variables are continuous-valued and the hidden variables are binary-valued,
with the following distribution:

𝑝(𝑣𝑛, ℎ𝑚) ∝ 𝑒𝑥𝑝 (−𝐸((𝑣𝑛, ℎ𝑚))) (2.15)

𝐸(𝑣𝑛, ℎ𝑚) =
1

2

𝑛∑︁
𝑖=1

(𝑣𝑖 − 𝑏𝑖)2

𝜎2
𝑖

−
𝑚∑︁
𝑗=1

𝑐𝑗ℎ𝑗 −
𝑛,𝑚∑︁
𝑖,𝑗

𝑊𝑖𝑗𝑣𝑖ℎ𝑗 (2.16)

Where 𝜎𝑛, 𝑏𝑛, 𝑐𝑚,𝑊 𝑛×𝑚 are parameters of the model and 𝐸(𝑣𝑛, ℎ𝑚) is the energy
function of the RBM [30]. The conditional distributions of 𝑣 and ℎ are

𝑝(𝑣𝑖|ℎ) ∼ 𝑁(𝜇𝑖, 𝜎
2
𝑖) (2.17)

25

𝜇𝑖 = 𝑏𝑖 + 𝜎2
𝑖

∑︁
𝑗

𝑊𝑖𝑗ℎ𝑗 (2.18)

𝑝(ℎ𝑗 = 1|𝑣) =
1

1 + 𝑒𝑥𝑝 (−
∑︀

𝑖𝑊𝑖𝑗𝑣𝑖 − 𝑐𝑗)
(2.19)

That is, the GRBM models a Gaussian Mixture Model with parameters defined
by the GRBM parameters and each configuration of hidden nodes creating a different
Gaussian distribution.

In a BRBM, the visible variables and the hidden variables are binary-valued, with
the following distribution:

𝑝(𝑣𝑛, ℎ𝑚) ∝ 𝑒𝑥𝑝 (−𝐸((𝑣𝑛, ℎ𝑚))) (2.20)

𝐸(𝑣𝑛, ℎ𝑚) = −
𝑛∑︁

𝑖=1

𝑏𝑖𝑣𝑖 −
𝑚∑︁
𝑗=1

𝑐𝑗ℎ𝑗 −
𝑛,𝑚∑︁
𝑖,𝑗

𝑊𝑖𝑗𝑣𝑖ℎ𝑗 (2.21)

Where 𝑏𝑛, 𝑐𝑚,𝑊 𝑛×𝑚 are parameters of the model. The conditional distributions
of 𝑣 and ℎ are

𝑝(𝑣𝑖 = 1|ℎ) =
1

1 + 𝑒𝑥𝑝
(︁
−
∑︀

𝑗 𝑊𝑖𝑗ℎ𝑗 − 𝑏𝑖
)︁ (2.22)

𝑝(ℎ𝑗 = 1|𝑣) =
1

1 + 𝑒𝑥𝑝 (−
∑︀

𝑖𝑊𝑖𝑗𝑣𝑖 − 𝑐𝑗)
(2.23)

In this case, hidden variables can be used to model underlying features that affect
the values of the visible variables [30].

For both types of models, the standard method for training RBMs is to use a
gradient descent method. The update rules for the parameter set Θ = (𝑏𝑛, 𝑐𝑚,𝑊 𝑛×𝑚)
is

Θ(𝑡) = Θ(𝑡−1) + 𝜂
𝑑𝐿(Θ; 𝑣)

𝑑Θ

⃒⃒⃒
Θ(𝑡−1)

(2.24)

Where 𝜂 is the learning rate and 𝐿(Θ; 𝑣) is the average log-likelihood of the data
𝑣 and the parameters Θ. Using the Constrastive Divergence technique, we have that

𝑑𝐿(Θ; 𝑣)

𝑑Θ
= −E𝑑𝑎𝑡𝑎(𝐸(𝑣, ℎ, ; Θ)) + E𝑚𝑜𝑑𝑒𝑙(𝐸(𝑣, ℎ; Θ)) (2.25)

E𝑑𝑎𝑡𝑎(·) is the expectation of the data over the model, which can be evaluated
by taking an empirical average of the energy function over all the training data, and
E𝑚𝑜𝑑𝑒𝑙(·) is the expectation over the model, which can be calculated by performing
Gibbs sampling on the RBM a finite number of times to produce an "average" re-
alization of the data and then evaluating the expression using that realization [12].
This algorithm can be used to train both BRBMs and GRBMs by using the correct
energy functions and parameter sets.

26

2.4.2 Ising Models

For the compression of bi-level image data, one model which has been shown to be
somewhat effective at modeling certain classes of images is the Ising Model, an exten-
sion of the Markov Chain to higher dimensions used to model interactions between
adjacent nodes in space. The homogeneous Ising Model in two dimensions 𝑣𝑛×𝑚 is
defined over a lattice grid 𝐺 = (𝑉,𝐸) of size 𝑛 ×𝑚 (see Figure 2-4), with potential
functions

𝜑𝑖(𝑣𝑖) = [1− 𝑝; 𝑝](𝑣𝑖) (2.26)

𝜓𝑖,𝑗(𝑣𝑖, 𝑣𝑗) =

[︂
𝑞 1− 𝑞

1− 𝑞 𝑞

]︂
(𝑣𝑖, 𝑣𝑗), ∀(𝑖, 𝑗) ∈ 𝐸 (2.27)

Where 𝑝 and 𝑞 are model parameters characterizing the individual probabilities
of each variable as well as the transition probability between adjacent variables, re-
spectively [18, Sec 4.4]. We also note that this is a pairwise undirected graphical
model, which makes message passing simple, with the maximum node degree and the
maximum clique size both being very small constants (4 and 2, respectively).

Figure 2-4: An 𝑛×𝑚 lattice graph, which is the structure of the pairwise graphical model

representing an Ising distribution.

27

28

Chapter 3

The Model-Quantizer-Code

Separation Architecture

Equipped with the fundamental concepts underlying the MQCS Architecture, we are
now prepared to describe its operation. Since the MQCS Architecture is modular,
this chapter will show its full construction component by component, from a simple
lossless binary compressor to a complete architecture which can be used to compress
almost any type of data.

3.1 The Binary Lossless Model-Code Separation Ar-

chitecture

We begin by looking at the problem of losslessly compressing a stream of binary digits.
Without any prior knowledge of where this data stream comes from, we cannot design
a specific compression scheme for it, and must thus default to using universal codes
such as LZW coding, which is guaranteed to eventually reach entropy but may require
unrealistically long bitstreams before achieving a compression rate close to the best
possible rate. On the other hand, if we know the source of the data, we can use
more efficient coding techniques such as Huffman Coding. However, for most of these
techniques, if more information is ever gained about the source, the entire compression
system must be redesigned from scratch.

To solve this issue of flexibility, the Model-Code Separation (MCS) architecture
uses LDPC codes for universal compression, followed by Message Passing for decoding.
Specifically, the encoder and decoder are designed as follows.

The encoder requires an input sequence 𝑠𝑛 ∈ Z𝑛
2 to compress and a randomly-

generated parity-check matrix 𝐻 ∈ Z𝑘×𝑛
2 . The output of the encoder are the parity-

check bits:

𝑥𝑘 = 𝐻𝑠𝑛 (3.1)

𝑥𝑘 comprises the compressed output of the encoder. Thus, we see that the encoder
compresses 𝑛 bits to 𝑘 bits, for a compression rate of 𝑘/𝑛.

29

The decoder attempts to reconstruct the original sequence 𝑠𝑛 given the parity-
check bits 𝑥𝑘. Since the mapping from 𝑠𝑛 to 𝑥𝑘 is many-to-one for a given 𝐻, the
decoder requires additional information in order to determine the correct reconstruc-
tion. This is provided in the form of a source or data model 𝑝𝑠𝑛 , which gives the
probabilities of each source sequence occurring. 𝑝𝑠𝑛 , as a probability distribution, can
be modeled using a PGM of some sort and thus, by combining 𝑥𝑘, 𝐻, and 𝑝𝑠𝑛 , we can
construct a single graphical model to model the information present in the decoder
(see Figure 3-1).

Figure 3-1: The Model-Code-Separation graphical model for binary alphabet sources used

by the decoder, containing both the source and code subgraphs

In particular, we can divide the graph into two distinct subgraphs: the code sub-
graph and the source subgraph. The code subgraph is a factor graph which imposes
the parity-check constraints set by 𝐻 and 𝑥𝑘, forcing the source sequence to hash to
the correct parity-check values.

The source subgraph contains the information about the data model given in 𝑝𝑠𝑛 .
Depending on the form 𝑝𝑠𝑛 takes, we may use a factor graph, undirected graphi-
cal model, or pairwise graphical model to represent the distribution. In each case,
this portion of the graph provides information on which configurations of the source
sequence are more likely to occur, which is important in disambiguating between
possible reconstructions.

When both subgraphs are combined, we obtain a distribution whose probabilities
are nonzero only for certain valid sequences depending on the code graph, and where
the likelihood of the valid source sequences differ based on the source graph. Our
goal, then, is to determine the source sequence of highest probability which satisfies
the parity-check constraints. This can be achieved by running LBP on the graph until
convergence, then taking the output marginal probabilities 𝑝𝑖(𝑠𝑖), and outputting the
maximal probability sequence

𝑠𝑖 = arg max
𝑠𝑖

𝑝𝑖(𝑠𝑖), 𝑖 = 1, ..., 𝑛 (3.2)

30

Given that 𝑘/𝑛 exceeds the entropy rate of 𝑝𝑖(𝑠𝑖), and with sufficiently well-
designed𝐻, each instance of 𝑥𝑘 should map to only one typical sequence of 𝑠𝑛 [15], and
thus the maximal probability sequence 𝑠𝑛 returned will almost certainly be the correct
source sequence, thus achieving perfect reconstruction and thus lossless compression
at rate 𝑘/𝑛.

3.2 Non-Binary Alphabets: the Complete Model-

Code Separation Architecture

While the compressor described in Section 3.1 can achieve universal lossless compres-
sion with source-adaptive decoding of binary-alphabet data, it is still unable to handle
sequences drawn from larger-alphabet sources. To compensate for this, we introduce
a translator 𝑇 (𝑠𝑛) into our architecture.

Consider a source sequence 𝑠𝑛 of length 𝑛 where each element is drawn from a
finite alphabet 𝒳 of size 𝑝 (WLOG, we can assume that 𝒳 = Z𝑝, so that 𝑠𝑛 ∈ Z𝑛

𝑝).
Then the translator is an element-wise operator which maps each element 𝑠𝑖 in 𝑠

𝑛 to
a sequence of 𝑏 bits 𝑧𝑏𝑖, 𝑧𝑏𝑖+1, ..., 𝑧𝑏𝑖+𝑏−1. For this thesis, we will assume that 𝑝 is a
power of 2, and thus can be represented with 𝑏 = log 𝑝 bits. Thus, 𝑇 maps 𝑠𝑛 ∈ Z𝑛

𝑝

to 𝑧𝑛𝑏 ∈ Z𝑛𝑏
2 , and

(𝑧𝑏𝑖, 𝑧𝑏𝑖+1, ..., 𝑧𝑏𝑖+𝑏−1) = 𝑡(𝑠𝑖) (3.3)

Where 𝑡(𝑠) is a single instance of the function 𝑇 (𝑠𝑛) applied to a single scalar
element. Examples of 𝑡(𝑠) include binary codes and Gray codes. Because 𝑇 (𝑠𝑛) is
an element-wise operator, we can easily model it using a factor graph. Specifically,
we can add a series of factor nodes 𝑡1, 𝑡2, ..., 𝑡𝑛, with each factor node imposing the
translator constraints in a similar fashion to how the factor nodes in the code graph
enforce the parity-check constraints. That is, for a factor node 𝑡𝑖 connected to 𝑠𝑖 and
{𝑧𝑏𝑖, 𝑧𝑏𝑖+1, ..., 𝑧𝑏𝑖+𝑏−1},

𝑓𝑡𝑖(𝑠𝑖, 𝑧𝑏𝑖, 𝑧𝑏𝑖+1, ..., 𝑧𝑏𝑖+𝑏−1) = 1{𝑡(𝑠𝑖) == {𝑧𝑏𝑖+𝑘}𝑏−1
𝑘=0} (3.4)

With the addition of this translator, we can now provide an updated system for
the lossless compression of data drawn from any finite alphabet. The encoder now
takes in an input sequence 𝑠𝑛 ∈ Z𝑛

𝑝 , passes it through 𝑇 (𝑠𝑛) to produce 𝑧𝑛𝑏 ∈ Z𝑛𝑏
2 . 𝑧𝑛𝑏

is then passed through the parity-check matrix 𝐻 ∈ Z𝑘×𝑛𝑏
2 to produce the parity-check

bits 𝑥𝑘, which is the compressed output of the encoder.

The decoder attempts to reconstruct the original sequence 𝑠𝑛 given the parity-
check bits 𝑥𝑘 in much the same way as in the binary case, except this time there
are an extra layer of translator factor nodes to account for, as shown is Figure 3-2.
In any case, the decoding algorithm functions the same way, running LBP over the
entire graph until convergence, calculating the output marginal probabilities 𝑝𝑖(𝑠𝑖),
and outputting the maximal probability sequence

31

Figure 3-2: The Model-Code-Separation graphical model for non-binary alphabet sources

used by the decoder, containing both the source and code subgraphs as well as the translation

layer

𝑠𝑖 = arg max
𝑠𝑖

𝑝𝑖(𝑠𝑖), 𝑖 = 1, ..., 𝑛 (3.5)

Once again, given that 𝑘/𝑛 exceeds the entropy rate of 𝑝𝑖(𝑠𝑖), and with sufficiently
well-designed 𝐻 and 𝑇 , each instance of 𝑥𝑘 should map to only one typical sequence
of 𝑠𝑛, and thus the maximal probability sequence 𝑠𝑛 returned will almost certainly be
the correct source sequence, thus achieving perfect reconstruction and thus lossless
compression at rate 𝑘/𝑛.

This system is thus able to compress any discrete source in a lossless manner
with no prior knowledge of the data model required at the encoder. In addition, the
decoder is modular and, in the event that a better source model is discovered that
better models the source distribution, it can be easily integrated into the decoder
to improve compression performance by replacing the existing source graph with the
newly-discovered source graph and eliminating parity-check bits to account for the
increased compression rate.

3.3 Lossy Compression: the Model-Quantizer-Code

Separation Architecture

While the above system is able to universally compress data in a lossless manner,
it does not support lossy compression. In order to extend the MCS Architecture to
lossy compression, we add one more component to the system: the quantizer.

We define a quantization function 𝑄(𝑠𝑛) that maps the source sequence 𝑠𝑛 to a
quantized sequence 𝑢𝑚 in a many-to-one fashion. In general, the quantization function
can be broken down into a set of scalar functions 𝑞𝑗(𝑠

𝑟) of a small number of elements
of the source sequence. That is:

32

𝑢𝑗 = 𝑞𝑗(𝑠
𝑟
𝑞𝑗

), 𝑗 = 1, ...,𝑚 (3.6)

Where 𝑠𝑟𝑞𝑗 is a subset of 𝑠
𝑛 and 𝑟 ≪ 𝑛. Depending on the choice of 𝑄(𝑠𝑛), we can

see how this quantization function can achieve lossy encoding. And then, by applying
an appropriate translator 𝑇 to 𝑢𝑚 we can produce a binary sequence 𝑧𝑚𝑏, which can
then be used as the input to the parity-check matrix 𝐻 to produce a compressed
output 𝑥𝑘, we can achieve lossy compression.

In order to decode, we once again model the entire system as a PGM and run
message passing to determine an estimate 𝑠𝑛 of the source sequence which maps to
the given parity check bits. To model the quanitzer, we add an extra layer of nodes 𝑄
between the translator 𝑇 and the source model 𝑝𝑠𝑛 , which consists of a set of factor
nodes 𝑞1, ...𝑞𝑚 that impose the quantizer constraints of the system

𝑓𝑞𝑖(𝑠
𝑟
𝑞𝑖
, 𝑢𝑖) = 1{𝑞𝑖(𝑠𝑟𝑞𝑖) == 𝑢𝑖} (3.7)

For the case of binary lossy compression, one choice of 𝑄(𝑠𝑛) that has been shown
to be effective is the Low Density Hashing Quantizer (LDHQ) [8]. The LDHQ 𝑄(𝑠𝑛)
consists of a set of independent functions 𝑞1(𝑠

𝑟
1), ..., 𝑞𝑚(𝑠𝑟𝑚), with each 𝑠𝑟𝑖 consisting of

a random subset of 𝑠𝑛 of size 𝑟. The encoding function is a geometric hash

𝑞𝑖(𝑠
𝑟
𝑖) = 1{𝛿(𝑠𝑟𝑖 , 𝑣𝑟𝑖) ≤

𝑟

2
} (3.8)

Where 𝛿(𝑢, 𝑣) is the Hamming distance between 𝑢 and 𝑣 and 𝑣𝑟𝑖 is a randomly
drawn binary vector of length 𝑟. By setting 𝑚 < 𝑛, we can achieve lossy compression
at a rate 𝑛

𝑘
and a distortion determined by 𝑚.

For the case of compressing a real-valued source sequence, we have shown in joint
work with Lai [21] that the uniform quantizer is an effective model-free quantizer. The
uniform quantization function is an element-wise quantizer which, for each element
of the source sequence 𝑠𝑖, outputs a uniformly quantized output

𝑢𝑖 = ⌊𝑠𝑖
𝑤
⌋ (3.9)

Where ⌊𝑥⌋ is the floor function (the largest integer smaller than 𝑥), and 𝑤 is a
width parameter used to control the rate and distortion of the reconstruction, with
larger 𝑤 corresponding to lower rate and higher distortion [10, Sec 3.2]. This quantizer
has been shown to be effective for compressing iid and markov Gaussian sources [21].
An example of the complete decoder graph for the case of the uniform quantizer can
be found in Figure 3-3.

3.4 Benefits of the Separation Architecture

Having described the architecture we are using for compression, we can now list the
benefits provided by this system.

∙ Model-independent encoding : The MQCS Architecture requires only the source

33

Figure 3-3: The Model-Code-Quantizer-Separation graphical model with uniform quantiza-

tion for continuous alphabet sources used by the decoder, containing both the source and

code subgraphs as well as the translation and quantization layers

sequence, parity-check matrix, and, if necessary, the translator and quantiza-
tion functions in order to achieve compression. The parity-check matrices can
be generated independently of the source, and the translator and quantizer re-
quire only knowledge of the source’s alphabet size to design. Thus, we see that
the MQCS Architecture is able to compress any type of data without knowledge
of the source model, which is useful in applications for which data may be gen-
erated from an unknown system, such as experimental data from an experiment
for which there has not yet been a reasonable hypothesis for how the data is
produced.

∙ Model-adaptive decoding : While the encoder does not require any knowledge of
the source model, the decoder does require this knowledge in order to complete
the message-passing graph and disambiguate different source sequences that
map to the same parity-check bits. However, since the source model is only
required in the construction of the source graph, it can be easily be swapped out
with a different source graph to better reflect the source model. This allows for
easy upgrading of the system to include improved knowledge about the source
model to improve decoder performance. The increase in decoder performance
can allow us to discard parity-check bits, thus allowing us to store the data in a
smaller-sized file and thus realize a better compression rate. In addition, it also
allows for a single decoder to decode multiple sources of data, simply by using
the appropriate source graph for each sequence to decode.

∙ Modularity and flexibility : The separated natured of the encoding and decoding
systems also makes it much easier to redesign parts of the system. For example,
if we are currently using a gray code to encode the source alphabet, and wish to
switch to a different binary code, we can simply swap out the translator function

34

in the encoder and decoder without altering any other part of the system. Or,
if a better class of codes arise that outperforms LDPC Codes for compression,
the code graph can easily be updated to use the new code. Thus, we never
have to worry about "locking in" any part of the compression system, and we
can quickly alter the encoder or decoder to work with different types of data
or different variations on the system without altering the core algorithms being
implemented.

∙ Robustness : As discussed by Lai [21], the MQCS Architecture also provides
robustness to errors, since each parity-check bit is independent of the others.
By adding more parity-check bits (i.e. decreasing the compression rate), we can
allow for some of these bits to be corrupted while still correctly decoding the
message with near certainty.

∙ Speed and efficiency : Compared to other compression methods, the compression
of binary sources in this architecture is very fast, requiring only multiplication
by a sparse matrix, which can be performed in linear time on a CPU or even
faster on a dedicated chip with support for LDPC Codes. Depending on the
choices of translator and quantizer functions, compressing a source sequence
can be done extremely quickly, and since message-passing is a series of local
updates, it can be computed in a distributed fashion for very rapid decoding as
well.

3.5 Practical Considerations

Now that we have described the theoretical operations of the MQCS Architecture,
there are some practical considerations that need to be discussed which will affect the
implementation of this system in code.

3.5.1 Doping

As discussed in [15], often times the decoder cannot converge without some non-
trivial initialization of the messages. One method of ensuring a good initialization is
doping, in which a subset of the bits (the doped bits) are transmitted uncompressed,
thus initializing the probabilities of these bits to zero or one. This provides a few
points to "anchor" the message-passing algorithm and ensure that it converges to the
correct reconstruction. We define the doping rate 𝑟𝑑𝑜𝑝𝑒 as the fraction of uncompressed
bits sent.

𝑟𝑑𝑜𝑝𝑒 =
𝑜𝑓 𝑑𝑜𝑝𝑒 𝑏𝑖𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑏𝑖𝑡𝑠
(3.10)

In general, different models require different doping rates, with more complex mod-
els requiring more doped bits. Practically, we can run the encoder and decoder using
different rates to determine empirically what doping rate is optimal for convergence.
The actual compression rate 𝑟𝑡𝑜𝑡𝑎𝑙 is thus

35

𝑟𝑡𝑜𝑡𝑎𝑙 = 𝑟𝑑𝑜𝑝𝑒 + 𝑟𝑐𝑜𝑑𝑒 (3.11)

Where 𝑟𝑐𝑜𝑑𝑒 is the code rate, or the fraction of parity-check bits to uncompressed
bits.

3.5.2 Threshold Rates

When running the encoder/decoder at different rates, we observe three regimes in the
decoder, summarized in Figure 3-4.

Figure 3-4: Plot of decoding errors as a function of compression rate illustrating the three

regimes of operation in a typical application of the MQCS system.

∙ In the first regime, at low rates, LBP does not converge or has a high probability
of converging to an incorrect reconstruction, due to not having enough parity-
check bits to properly disambiguate between different possible reconstructions,
and thus compression is not possible at these rate.

∙ In the second regime, at high rates, the system possesses a sufficient number of
parity-check bits and LBP almost certainly converges to the correct reconstruc-
tion, thus making compression possible at these rates.

∙ The third regime is a transitional phase between the low-rate regime and the
high-rate regime, in which some but not all instances of the system can be
decoded correctly, due to variations in source sequences or parity-check matrix

36

patterns at a certain rate. In this regime, compression is sometimes possible, and
with better codes or algorithm implementations, it is possible that compression
could almost certainly be possible at these rates.

From these observations, we observe two rates of interest:

∙ 𝑟𝑡ℎ𝑟𝑒𝑠ℎ, the threshold rate at which compression first becomes possible (the tran-
sitional rate between the first and third regime). Practically, we define it as the
point at which we observe a 10% success rate in compression.

∙ 𝑟𝑐𝑜𝑛𝑣𝑔, the rate at which compression is almost always possible (the transitional
rate between the third and second regime). Practically, we define it as the point
at which we observe a 90% success rate in compression.

For the purposes of this thesis, we will be using 𝑟𝑡ℎ𝑟𝑒𝑠ℎ as the compression rate, as
it reflects the potential ability of the system to compress data at a certain rate [15].

3.6 Summary

In this chapter, we have described the construction and operation of the MQCS
Architecture for the compression of data. We have explained each component of the
system and how to adapt the system to compress any type of data drawn from any
source alphabet in either a lossy or a lossless fashion. We have also described the
benefits of the system, which motivate our reasons for pursuing the investigation of
this system. Finally, we touch on a few implementation details which will later be
relevant. In the next chapter, we will explore the application of this architecture to
the compression of image data.

37

38

Chapter 4

Image Compression

Now that we have described the MQCS Architecture and summarized its features
and previous uses, we are now prepared to explore the usage of this architecture in
practical applications. Specifically, we focus on one common use of data compression
systems: image compression. Natural images tend to have very complex properties
which also allow for a high degree of redundancy and thus can be greatly compressed.
Furthermore, as discussed in Chapter 1, image compression systems tend to be very
"locked-in," with almost no ability to adapt to new developments in image modeling,
of which there are many.

4.1 Bi-Level Image Compression

We begin our investigation by looking at image data drawn from a small finite alpha-
bet, in this case a binary alphabet where pixels can only take on a value of 0 (black)
or 1 (white). Huang [15] has already shown that the 2D homogeneous Ising model is
somewhat effective as a source model for compressing binary images. We extend this
work by investigating an alternative source model which better captures the source
model for images: the Restricted Boltzmann Machine.

4.1.1 RBMs for Bi-Level Image Compression

The RBM is a natural choice of a model to use for images, as previous work has
shown it to be an effective generative model for images, with its ability to capture
features of images with its latent nodes [30]. Since the pixels are binary valued, we
use the BRBM as a source model for the images.

4.1.2 Message Passing in BRBMs

In order to use the BRBM in the MQCS Architecture, we must first develop the
message passing equations for the model. Recall that for a BRBM with visible nodes
𝑣𝑛, hidden nodes ℎ𝑚, and parameters 𝑏𝑛, 𝑐𝑚,𝑊 𝑛×𝑚, the associated probability distri-
bution is

39

𝑝(𝑣𝑛, ℎ𝑚) ∝ 𝑒𝑥𝑝

(︃
𝑛∑︁

𝑖=1

𝑏𝑖𝑣𝑖 +
𝑚∑︁
𝑗=1

𝑐𝑗ℎ𝑗 +

𝑛,𝑚∑︁
𝑖,𝑗

𝑊𝑖𝑗𝑣𝑖ℎ𝑗

)︃
(4.1)

From which we can derive the potential functions

𝜑𝑣𝑖(𝑣𝑖) = 𝑒𝑥𝑝(𝑏𝑖𝑣𝑖), 𝑖 = 1, ..., 𝑛 (4.2)

𝜑ℎ𝑗
(ℎ𝑗) = 𝑒𝑥𝑝(𝑐𝑗ℎ𝑗), 𝑗 = 1, ...,𝑚 (4.3)

𝜓𝑣𝑖,ℎ𝑗
(𝑣𝑖, ℎ𝑗) = 𝑒𝑥𝑝(𝑊𝑖𝑗𝑣𝑖ℎ𝑗), 𝑖 = 1, ...𝑛, 𝑗 = 1, ...,𝑚 (4.4)

Using these potentials, we can easily evaluate the message passing equation

𝑚
(𝑡)
𝑣𝑖→ℎ𝑗

(ℎ𝑗) =
∑︁
𝑣𝑖

⎛⎝𝜑𝑣𝑖(𝑣𝑖)𝜓𝑣𝑖,ℎ𝑗
(𝑣𝑖, ℎ𝑗)

∏︁
ℎ𝑘∈𝑁(𝑣𝑖)∖ℎ𝑗

𝑚
(𝑡−1)
ℎ𝑘→𝑣𝑖

(𝑣𝑖)

⎞⎠ (4.5)

By inserting the appropriate potential functions, explicitly evaluating the summa-
tions, and normalizing the messages, we obtain

𝑚
(𝑡)
𝑣𝑖→ℎ𝑗

(ℎ𝑗) =
1 + 𝑒𝑊𝑖𝑗𝑝𝑣𝑖→ℎ𝑗

2 + (1 + 𝑒𝑊𝑖𝑗)𝑝𝑣𝑖→ℎ𝑗

(4.6)

𝑝𝑣𝑖→ℎ𝑗
= 𝑒𝑥𝑝

⎛⎝𝑏𝑖 +
∑︁

𝑘∈𝑁(𝑣𝑖)∖ℎ𝑗

𝑙𝑜𝑔

(︃
𝑚

(𝑡−1)
𝑘→𝑖 (1)

𝑚
(𝑡−1)
𝑘→𝑖 (0)

)︃⎞⎠ (4.7)

Similarly, the message passing equation from the hidden to the visible nodes is

𝑚
(𝑡)
ℎ𝑖→𝑣𝑗

(ℎ𝑗) =
1 + 𝑒𝑊𝑗𝑖𝑝ℎ𝑖→𝑣𝑗

2 + (1 + 𝑒𝑊𝑗𝑖)𝑝ℎ𝑖→𝑣𝑗

(4.8)

𝑝ℎ𝑖→𝑣𝑗 = 𝑒𝑥𝑝

⎛⎝𝑐𝑖 +
∑︁

𝑘∈𝑁(ℎ𝑖)∖𝑣𝑗

𝑙𝑜𝑔

(︃
𝑚

(𝑡−1)
𝑘→𝑖 (1)

𝑚
(𝑡−1)
𝑘→𝑖 (0)

)︃⎞⎠ (4.9)

However, while these are the exact message-passing equations, in practice, they
do not perform well in our compression system due to numerical issues, as many of
the messages tend to take on values very close to 0 or 1, making it difficult to retain
precision even in the log domain as the number of edges grows large.

As such, we use an approximate energy-based method which is much more robust
to precision errors. Looking at the energy function for the BRBM, we observe that
by conditioning on the visible layer

𝐸(ℎ𝑗|𝑣𝑛) = −𝑐𝑗ℎ𝑗 −
𝑛∑︁

𝑖=1

𝑊𝑖𝑗𝑣𝑖ℎ𝑗 (4.10)

If we know the independent marginal probabilities of each visible node 𝑝𝑣1(𝑣1),
𝑝𝑣2(𝑣2), ..., 𝑝𝑣𝑛(𝑣𝑛), then by taking a weighted average we can obtain the estimate of

40

the energy of ℎ𝑗

𝐸ℎ𝑗
(ℎ𝑗) ≈

∑︁
𝑣𝑛

𝐸(ℎ𝑗|𝑣𝑛)
𝑛∏︁

𝑖=1

𝑝𝑣𝑖(𝑣𝑖) = −𝑐𝑗ℎ𝑗 −
𝑛∑︁

𝑖=1

𝑊𝑖𝑗𝑝𝑣𝑖(1)ℎ𝑗 (4.11)

Then, we can compute the marginal probability 𝑝ℎ𝑗
(ℎ𝑗) by noting that an approx-

imation of the probability of a node is given by

𝑝(ℎ𝑗) ∝ 𝑒𝑥𝑝(−𝐸ℎ𝑗
(ℎ𝑗)) (4.12)

And then normalizing to obtain

𝑝ℎ𝑗
(ℎ𝑗 = 1) ≈ 1

1 + 𝑒𝑥𝑝(−𝐸ℎ𝑗
(1))

=
1

1 + 𝑒𝑥𝑝(−𝑐𝑗 −
∑︀𝑛

𝑖=1𝑊𝑖𝑗𝑝𝑣𝑖(1))
(4.13)

Similarly, for the visible nodes

𝑝𝑣𝑖(𝑣𝑖 = 1) ≈ 1

1 + 𝑒𝑥𝑝(−𝐸𝑣𝑖(1))
=

1

1 + 𝑒𝑥𝑝(−𝑏𝑖 −
∑︀𝑚

𝑗=1𝑊𝑖𝑗𝑝ℎ𝑗
(1))

(4.14)

Thus, we have the following approximate message passing algorithm for the BRBM
source subgraph given in Algorithm 3.

This algorithm is much more robust and has shown to work much more effectively
in empirical tests performed on the MNIST Database (described in the next section).

4.1.3 Compression of the MNIST Database

We demonstrate the effectiveness of the BRBM as a source model for compression by
using it to compress data drawn from the MNIST Database, a database of images
of handwritten digits of size 28x28 [23]. As a database of images which have clear
patterns and shared features but still have a very large set of possible realizations, it
is a natural choice for compression using the BRBM.

Experimental Setup

Since the MNIST Database is a greyscale image database, we begin by thresholding
the values at the midpoint between black and white to create a binary image database.
We then train a model on a subset of the dataset using the Contrastive Divergence
method outlined in [12] in order to obtain the model parameters. Once we have our
model, we test its effectiveness in the MQCS Architecture by constructing the encoder
and decoder for our data source.

The encoder takes in the binary data and applies a randomly-generated LDPC
code of some specified size to generate a sequence of parity-check bits which serve as
the compressed output of the encoder. We also output a small percentage of the bits
uncompressed as doped bits.

n.b. We used code provided in [25] for generating LDPC codes which removes
4-cycles in the code graph. Our previous work [21] has shown that 4-cycles interfere

41

Algorithm 3: Message Passing Updates for BRBM

Input: Parameters Θ = (𝑏𝑛, 𝑐𝑚,𝑊 𝑛×𝑚), aggregate messages into subgraph

from rest of graph 𝑚
(𝑡−1)
𝐺′→𝑣1

,𝑚
(𝑡−1)
𝐺′→𝑣2

, ...,𝑚
(𝑡−1)
𝐺′→𝑣𝑛

, normalized marginal

probabilities from previous iterations 𝑝
(𝑡−1)
ℎ1

(ℎ1), 𝑝
(𝑡−1)
ℎ2

(ℎ2), ..., 𝑝
(𝑡−1)
ℎ𝑚

(ℎ𝑚)

Output: Marginal probabilities 𝑝
(𝑡)
ℎ𝑗

(ℎ𝑗) for all hidden nodes ℎ𝑖 in ℎ
𝑛, output

messages from visible nodes to rest of graph
𝑚

(𝑡)
𝑣1→𝐺′ ,𝑚

(𝑡)
𝑣2→𝐺′ , ...,𝑚

(𝑡)
𝑣𝑛→𝐺′

//Update visible node probabilities
for 𝑖 = 1, ..., 𝑛 do

𝑝𝑣𝑖(1)← 1

1+𝑒𝑥𝑝(−𝑏𝑖−
∑︀𝑚

𝑗=1 𝑊𝑖𝑗𝑝
(𝑡−1)
ℎ𝑗

(1))

𝑝𝑣𝑖(1)←
𝑝𝑣𝑖 (1)𝑚

(𝑡−1)

𝑣𝑖→𝐺′ (1)

𝑝𝑣𝑖 (1)𝑚
(𝑡−1)

𝑣𝑖→𝐺′ (1)+(1−𝑝𝑣𝑖 (1))(1−𝑚
(𝑡−1)

𝑣𝑖→𝐺′ (1))

end
//Update hidden node probabilities
for 𝑗 = 1, ...,𝑚 do

𝑝
(𝑡)
ℎ𝑗

(1)← 1
1+𝑒𝑥𝑝(−𝑐𝑗−

∑︀𝑛
𝑖=1 𝑊𝑖𝑗𝑝𝑣𝑖 (1))

end
//Update visible node probabilities again and set them as output messages
for 𝑖 = 1, ..., 𝑛 do

𝑚
(𝑡)
𝑣𝑖→𝐺′(1)← 1

1+𝑒𝑥𝑝(−𝑏𝑖−
∑︀𝑚

𝑗=1 𝑊𝑖𝑗𝑝
(𝑡)
ℎ𝑗

(1))

end

return 𝑝
(𝑡)
ℎ𝑗

(ℎ1), 𝑗 = 1, ...,𝑚 and 𝑚
(𝑡)
𝑣𝑖→𝐺′(𝑣𝑖), 𝑖 = 1, ..., 𝑛

with message-passing performance and reduce the effectiveness of compression.
The decoder takes in the parity-check and doped bits, the parity-check matrix,

and the BRBM model parameters and uses them to construct a graphical model of
the data as in Figure 4-1. We then run loopy belief propagation to decode the original
data, using the doped bits to initialize our messages. We run the algorithm for one
hundred iterations or until it converges (that is, the marginal probability of any one
bit does not change by more than a small threshold value between iterations) and
threshold the output probability at 0.5 to obtain an estimated binary reconstruction
of the data. In order to determine the compression rate, we run the encoder and
decoder for multiple parity-check matrices at a variety of different coding rates and
doping rates, with 10 different parity-check matrices tested for each image at each
rate. We then extract the threshold and convergent compression rates by looking for
the total rates at which the source sequence can first be successfully decoded 1/10
and 10/10 times, respectively.

We compare these values with the same system but with the source model in
the decoder replaced with the non-homogeneous Ising Model (where each edge has a
different potential instead of sharing a single potential parameter), which has been
shown to outperform the general compression algorithm GZIP. We estimate the Ising

42

Figure 4-1: Decoding graph with BRBM source subgraph used for compressing MNIST

database images.

Model parameters using an approximate Maximum Likelihood estimate based on the
empirical ratios of transition pairs to total pairs of adjacent nodes. [32, Sec 6.1].

Results and Discussion

Figure 4-2 shows a comparison of the compression rate achieved for one hundred
images randomly sampled from the non-training subset of the MNIST Database. We
see that using the BRBM as a source model provides a modest but consistent gain
in compression performance, thus showing that the decoder is able to leverage the
additional information about the image provided by the features of the BRBM to
improve its performance.

We can also see the compression benefits from the additional information provided
by the features of the BRBM by comparing compression performance using different
BRBM source models with varying quantities of latent variables, as illustrated in
Figure 4-3. Up until a saturation point, more hidden nodes improve compression
performance, suggesting that the decoder is able to utilize extra information stored
in the additional nodes to improve compression performance.

As an aside, we note that since the testing set was separate from the training set,
this model can in theory be used to compress an unlimited number of handwritten
digit images, and thus the cost of storing the model itself in the memory per image
compressed approaches zero.

4.2 Greyscale Image Compression

Having shown the effectiveness of our system for compressing bi-level images, we now
move on to more complex images that better describe the types of images encoun-
tered commonly in real-life applications. In particular, we look at the compression of
natural greyscale images. While not as complex as colored images, greyscale images

43

Figure 4-2: Threshold compression rate results of compressing 100 randomly selected images

from the MNIST database using the separation architecture under the Ising model and under

the BRBM model with 2000 hidden nodes with a dope rate of 0.05. The message-passing

decoder was run for a maximum of 100 iterations. Note that the BRBM model almost

always provides better compression than the Ising model.

Figure 4-3: Threshold compression rate results (right) of compressing one randomly selected

image from the MNIST database (left) under the BRBM model with varying number of

hidden nodes with a dope rate of 0.05. The message-passing decoder was run for a maximum

of 100 iterations. Note that the BRBM model performs better with more hidden nodes up

until a saturation point.

still possess a great deal of complexity and contain richer features than bi-level im-

44

ages. They also allow us to explore the regime of lossy compression, as full-resolution
greyscale images tend to require a large amount of memory to store losslessly.

4.2.1 RBMs for Greyscale Image Compression

Once again, in order to capture the complex features of natural greyscale images, we
look to the RBM, this time utilizing the GRBM as a source model. While in theory
it would be possible to use a BRBM to model the relationships between all the bits
used in encoding all the pixels, a GRBM is a far better model to use due to the nearly
continuous nature of the pixel distributions and the fact that GRBMs have a much
lower complexity compared to modeling each individual bit of the image rather than
the pixels.

4.2.2 Message Passing in GRBMs

As with the BRBM, we must first develop the message passing updates for the GRBM
before we can use it in our compression scheme. However, unlike the BRBM, the
exact message update expressions quickly becomes intractable due to an exponential
scaling in time complexity with respect to the number of hidden nodes in message
computation.

To see where this scaling arises, we begin by computing the messages from the hid-
den nodes to the visible nodes. Recall that for a GRBM with visible nodes 𝑣𝑛, hidden
nodes ℎ𝑚, and parameters 𝑏𝑛, 𝑐𝑚, 𝜎𝑛,𝑊 𝑛×𝑚, the associated probability distribution is

𝑝(𝑣𝑛, ℎ𝑚) ∝ 𝑒𝑥𝑝

(︃
−1

2

𝑛∑︁
𝑖=1

(𝑣𝑖 − 𝑏𝑖)2

𝜎2
𝑖

+
𝑚∑︁
𝑗=1

𝑐𝑗ℎ𝑗 +

𝑛,𝑚∑︁
𝑖,𝑗

𝑊𝑖𝑗𝑣𝑖ℎ𝑗

)︃
(4.15)

Which gives the following potentials

𝜑𝑣𝑖(𝑣𝑖) = 𝑒𝑥𝑝

(︃
−1

2

(𝑣𝑖 − 𝑏𝑖)2

𝜎2
𝑖

)︃
, 𝑖 = 1, ..., 𝑛 (4.16)

𝜑ℎ𝑗
(ℎ𝑗) = 𝑒𝑥𝑝(𝑐𝑗ℎ𝑗), 𝑗 = 1, ...,𝑚 (4.17)

𝜓𝑣𝑖,ℎ𝑗
(𝑣𝑖, ℎ𝑗) = 𝑒𝑥𝑝(𝑊𝑖𝑗𝑣𝑖ℎ𝑗), 𝑖 = 1, ...𝑛, 𝑗 = 1, ...,𝑚 (4.18)

The associated message passing equation for hidden nodes to visible nodes is:

𝑚
(𝑡)
ℎ𝑗→𝑣𝑖

(𝑣𝑖) =
∑︁
ℎ𝑗

⎛⎝𝜑ℎ𝑗
(ℎ𝑗)𝜓𝑣𝑖,ℎ𝑗

(𝑣𝑖, ℎ𝑗)
∏︁

𝑣𝑘∈𝑁(ℎ𝑗)∖𝑣𝑖

𝑚
(𝑡−1)
𝑣𝑘→ℎ𝑗

(ℎ𝑗)

⎞⎠ (4.19)

By inserting the appropriate potential functions, explicitly evaluating the summa-
tions, and rescaling the messages, we obtain

𝑚
(𝑡)
ℎ𝑗→𝑣𝑖

(𝑣𝑖) = 𝑝ℎ𝑗→𝑣𝑖(0) + 𝑝ℎ𝑗→𝑣𝑖(1)𝑒𝑥𝑝(𝑊𝑖,𝑗𝑣𝑖) (4.20)

Where

45

𝑝ℎ𝑗→𝑣𝑖(𝑥) =
∏︁

𝑣𝑘∈𝑁(ℎ𝑗)∖𝑣𝑖

𝑚
(𝑡−1)
𝑣𝑘→ℎ𝑗

(𝑥), 𝑥 ∈ {0, 1} (4.21)

Using these messages, we can now attempt to compute the message updates from
the visible to the hidden nodes.

𝑚
(𝑡)
𝑣𝑖→ℎ𝑗

(ℎ𝑗) =

∫︁
𝑣𝑖

⎛⎝𝜑𝑣𝑖(𝑣𝑖)𝜓𝑣𝑖,ℎ𝑗
(𝑣𝑖, ℎ𝑗)

∏︁
ℎ𝑘∈𝑁(𝑣𝑖)∖ℎ𝑗

𝑚
(𝑡−1)
ℎ𝑘→𝑣𝑖

(𝑣𝑖)

⎞⎠
=

∫︁
𝑣𝑖

⎛⎝𝑒𝑥𝑝(︃−1

2

(𝑣𝑖 − 𝑏𝑖)2

𝜎2
𝑖

+𝑊𝑖𝑗𝑣𝑖ℎ𝑗

)︃ ∏︁
ℎ𝑘∈𝑁(𝑣𝑖)∖ℎ𝑗

(𝑝ℎ𝑘→𝑣𝑖(0) + 𝑝ℎ𝑗→𝑣𝑖(1)𝑒𝑥𝑝(𝑊𝑖,𝑗𝑣𝑖))

⎞⎠
(4.22)

Expanding this expression out yields an exponential number of squared exponen-
tial terms, making the message computation intractable. Thus, we instead derive
a close approximation of the message passing updates by looking at estimates of
marginal probabilities of nodes

We begin by approximating the visible node distributions as Gaussian distribu-
tions, an approximations which holds very well when there is a high degree of certainty
as to which features are on or off. For the hidden nodes, we note that the probability
of a single node is

𝑝ℎ𝑗
(ℎ𝑗) ∝

∫︁
𝑣𝑛
𝑒𝑥𝑝(−𝐸(ℎ𝑗, 𝑣

𝑛)) =

∫︁
𝑣𝑛
𝑒𝑥𝑝

(︃
𝑐𝑗ℎ𝑗 +

𝑛∑︁
𝑖=1

(︃
−1

2

(𝑣𝑖 − 𝜇𝑣𝑖)
2

𝜎2
𝑣𝑖

+𝑊𝑖𝑗ℎ𝑗𝑣𝑖

)︃)︃
(4.23)

Where 𝜇𝑣𝑖 , 𝜎
2
𝑣𝑖
are the marginal mean and variance of the visible node 𝑣𝑖. Evalu-

ating this integral for ℎ𝑗 = 0 and ℎ𝑗 = 1 and then normalizing the terms yields

𝑝ℎ𝑗
(ℎ𝑗 = 1) =

1

1 + 𝑒𝑥𝑝
(︀
−𝑏𝑖 −

∑︀𝑛
𝑖=1

(︀
𝑊𝑖𝑗𝜇𝑣𝑖 +𝑊 2

𝑖𝑗𝜎
2
𝑣𝑖

)︀)︀ (4.24)

For the visible nodes, we can use an analogous energy argument as in the BRBM
case. The average energy of a visible node is given by

𝐸𝑣𝑖(𝑣𝑖) ∝
∑︁
ℎ𝑚

𝐸(𝑣𝑖|ℎ𝑚)
𝑚∏︁
𝑗=1

𝑝ℎ𝑗
(ℎ𝑗) =

1

2

(𝑣𝑖 − 𝑏𝑖)2

𝜎2
𝑖

−
𝑚∑︁
𝑗=1

𝑊𝑖𝑗𝑝ℎ𝑗
(1)𝑣𝑖 (4.25)

As in the BRBM, we approximate the distribution of 𝑣𝑖 by

𝑝(𝑣𝑖) ∝ 𝑒𝑥𝑝(−𝐸ℎ𝑗
(ℎ𝑗)) (4.26)

By completing the square on the energy function and then extracting the scale

46

Algorithm 4: Message Passing Updates for GRBM

Input: Parameters Θ = (𝑏𝑛, 𝑐𝑚, 𝜎𝑛,𝑊 𝑛×𝑚), aggregate means and variances of
the Gaussian messages into subgraph from rest of graph
𝜇
(𝑡−1)
𝐺′→𝑣1

, 𝜇
(𝑡−1)
𝐺′→𝑣2

, ..., 𝜇
(𝑡−1)
𝐺′→𝑣𝑛

, 𝜎
2(𝑡−1)
𝐺′→𝑣1

, 𝜎
2(𝑡−1)
𝐺′→𝑣2

, ..., 𝜎
2(𝑡−1)
𝐺′→𝑣𝑛

,, normalized
marginal probabilities from previous iterations
𝑝
(𝑡−1)
ℎ1

(ℎ1), 𝑝
(𝑡−1)
ℎ2

(ℎ2), ..., 𝑝
(𝑡−1)
ℎ𝑚

(ℎ𝑚)

Output: Marginal probabilities 𝑝
(𝑡)
ℎ𝑗

(ℎ𝑗) for all hidden nodes ℎ𝑖 in ℎ
𝑛, output

means and variances of the Gaussian messages from visible nodes to
rest of graph 𝜇

(𝑡)
𝑣1→𝐺′ , 𝜇

(𝑡)
𝑣2→𝐺′ , ..., 𝜇

(𝑡)
𝑣𝑛→𝐺′ , 𝜎

2(𝑡)
𝑣1→𝐺′ , 𝜎

2(𝑡)
𝑣2→𝐺′ , ..., 𝜎

2(𝑡)
𝑣𝑛→𝐺′

//Update visible node probabilities
for 𝑖 = 1, ..., 𝑛 do

𝜎2
𝑣𝑖
← 1

1

𝜎2
𝑣𝑖→𝐺′

+ 1

𝜎2
𝑖

𝜇𝑣𝑖 ←
(︂

𝜇𝑣𝑖→𝐺′

𝜎2
𝑣𝑖→𝐺′

+ 𝑏𝑖
𝜎2
𝑖

)︂
𝜎2
𝑣𝑖

𝜇𝑣𝑖 ← 𝜇𝑣𝑖 + 𝜎2
𝑣𝑖

∑︀𝑚
𝑗=1𝑊𝑖𝑗𝑝

(𝑡−1)
ℎ𝑗

(1)

end
//Update hidden node probabilities
for 𝑗 = 1, ...,𝑚 do

𝑝
(𝑡)
ℎ𝑗

(1)← 1

1+𝑒𝑥𝑝(−𝑐𝑗−
∑︀𝑛

𝑖=1(𝑊𝑖𝑗𝜇𝑣𝑖+𝑊 2
𝑖𝑗𝜎

2
𝑣𝑖))

end
//Update visible node probabilities again and set them as output messages
for 𝑖 = 1, ..., 𝑛 do

𝜇
(𝑡)
𝑣𝑖→𝐺′ ← 𝑏𝑖 + 𝜎2

𝑖

∑︀𝑚
𝑗=1𝑊𝑖𝑗𝑝

(𝑡−1)
ℎ𝑗

(1)

𝜎
2(𝑡)
𝑣𝑖→𝐺′ ← 𝜎2

𝑣𝑖

end

return 𝑝
(𝑡)
ℎ𝑗

(ℎ1), 𝑗 = 1, ...,𝑚 and 𝜇
(𝑡)
𝑣𝑖→𝐺′ , 𝜎

2(𝑡)
𝑣𝑖→𝐺′ , 𝑖 = 1, ..., 𝑛

factor, we obtain
𝑝(𝑣𝑖) ∼ 𝑁(𝑣𝑖;𝜇𝑣𝑖 , 𝜎

2
𝑖) (4.27)

𝜇𝑣𝑖 = 𝑏𝑖 + 𝜎2
𝑖

𝑚∑︁
𝑗=1

𝑊𝑖𝑗𝑝ℎ𝑗
(1) (4.28)

Thus, we obtain the message passing algorithm for a GRBM given in Algorithm
4.

4.2.3 Compression of the Cifar-10 Database

We demonstrate the effectiveness of the GRBM as a source model for compression by
using it to compress data drawn from the Cifar-10 Database, a database of labeled
natural greyscale images of size 32x32 [19].

47

Figure 4-4: Sample images of the Cifar-10 image dataset.

Experimental Method

As with the MNIST Database, we begin by training the GRBM on a training subset
of the images in the dataset to determine the model parameters using Constrastive
Divergence. Once we have our model, we test its effectiveness in the MQCS Archi-
tecture by constructing the encoder and decoder for our data source.

The encoder takes in the greyscale image data and applies a uniform quantizer
to the pixel values with a pre-determined quantizer width (the independent variable
in our experiment). The bin labels produced are encoded using a gray code in order
to produce a binary sequence, which is then passed through a randomly-generated
LDPC code of some specified size to generate a sequence of parity-check bits which
serve as the compressed output of the encoder. We also output a small percentage of
the gray-coded bits uncompressed as doped bits.

The decoder takes in the parity-check and doped bits, the parity-check matrix, the
gray coder and uniform quantizer functions, and the GRBM model parameters and
uses them to construct a graphical model of the data as in Figure 4-5. We then run
loopy belief propagation to decode the original data, using the doped bits to initialize
our messages and approximating messages into the GRBM as Gaussian distributions,
as in [21]. We run the algorithm for one hundred iterations or until it converges (that
is, the mean value of any one pixel does not change by more than a small threshold
value between iterations) and output the mean values of the pixel distributions as an
estimated reconstruction of the data. In order to determine the compression rate, we
run the encoder and decoder for multiple parity-check matrices at a variety of different

48

coding rates and doping rates, with 10 different parity-check matrices used for each
image at each rate. We then extract the threshold and convergent compression rates
by looking for the total rates at which the source sequence can first be successfully
decoded 1/10 and 10/10 times, respectively.

Figure 4-5: Decoding graph with GRBM source subgraph used for compression of Cifar-10

database images.

Once we have a convergent reconstruction, we compare its value to the that of the
original image in order to determine the reconstruction MSE. This gives us a (rate,
distortion) pair for a specific image given a specific quantizer width. By altering the
width of the quantizer, we can produce different pairs and thus generate an estimate
for the rate-distortion curve of a single image under a certain model.

We compare our results to MQCS compression using a model where the pixels
are distributed as independent Gaussians (using empirical means and variances of
the data) as well as with compression using the JPEG standard (that is, by encoding
the data as JPEG images using MATLAB’s built-in imwrite() function at various
qualities, then determining the file size and distortions of the resultant images).

Results and Discussion

Figure 4-6 shows a comparison of the average rate-distortion curves achieved for ten
images randomly sampled from the non-training subset of the Cifar-10 Database. We
see that using the GRBM as a source model provides a consistent gain in compression
performance compared to an independent Gaussian model, thus showing that the

49

Figure 4-6: Average rate-distortion curve for the lossy compression of ten images drawn

randomly from the Cifar-10 database, compressed using the MQCS Architecture with a

GRBM source model with 1500 nodes (RBM-1500), a GRBM source model with 500 nodes

(RBM-500), a GRBM source model with 1500 nodes (RBM-1500), an independent Gaussian

source model (Indep), and compressed using the JPEG algorithm (JPEG). For the separation

architecture, we allowed the message-passing algorithm to run up to 100 iterations for the

decoder and used an optimal dope rate of 1 bit per pixel.

decoder is able to leverage the additional information about the image provided by
the features of the GRBM to improve its performance, especially at higher rates.

We also see the compression benefits from the additional information provided
by the features of the GRBM by comparing compression performance using different
GRBM source models with varying quantities of latent variables, as illustrated in the
same graph. Clearly, adding more hidden nodes up to a saturation point improves
compression performance as it provides more features for the GRBM to model the
images with, thus providing more information to the system.

As an aside, we note that, as with the MNIST case, since the testing set was
separate from the training set, this model can in theory be used to compress an
unlimited number of images, and thus the cost of storing the model itself in the
memory per image compressed approaches zero. We also note that while we have
outperformed the JPEG compression, the JPEG standard is designed to work with
larger-sized images and thus could not bring the full benefits of its underlying source
model to bear on this trial.

4.3 3D Image Compression

So far, we have focused on the compression of traditional two-dimensional image
data. We now illustrate another benefit of the MQCS Architecture by extending the
system to the compression of higher-dimensional data. Specifically, we will look at

50

the compression of 3D bi-level image data.
As previously discussed, image compression algorithms are generally designed with

a very specific underlying model in mind. In almost all cases, this model is specific
to the dimensionality of the data; that is, images compression algorithms designed to
compress 2D images (such as JPEG and PNG) can only compress 2D images, and do
not support images of a different dimensionality. Since our compression algorithm is
model-adaptive with model-independent encoding, it should be much easier to extend
our system to compress 3D data in additional to 2D data in a way that allows us
to leverage the benefits associated with the third dimension instead of treating the
problem as one of compressing a set of independent 2D image "slices," as a purely
2D model of 3D data would do.

4.3.1 Compression of 3D Tomographic Data

We demonstrate our extension by compressing tomographic data. Tomographic imag-
ing is a common imaging technique used to create 3D scans of physical volumes by
imaging many 2D "slices" of the volume at various depths, creating a 3D grid of
pixel values [11, Sec 2.1]. Specifically, our data is a volume of density measurements
generated from a 3D X-ray tomography scan of a rat’s femur. This type of image is a
good example of a natural 3D image that is used in real-world applications. In order
to apply bi-level image compression models to this data, we quantize the image data
to one bit, thresholding at the median pixel intensity value to create a bi-level 3D
scan showing key major features of the femur.

This data, as with most natural images, exhibits the property of having large,
solid "patches" of black and white values, thus making it suitable for compression
with the Ising model.

Experimental Method

We attempt to compress a 60x60x40 volume sampled from the center of a 10µm
resolution scan of a femur bone of a one-day-old mouse taken from [4]. We compress
this data in the same way as in Section 4.1, with a randomly-generated parity-check
matrix of the appropriate size.

Figure 4-7: Five adjacent slices sampled from the X-ray tomography data used for the 3D

compression experiment. Note the strong continuity is the third dimension.

Our decoder also functions similarly, constructing a PGM from the parity-check
matrix, parity-check bits, and source graph, and then using message-passing to at-

51

tempt to reconstruct the original image. To illustrate the added benefits of including
a third dimension of correlation, we compare two different source models: a 3D ho-
mogeneous Ising Model and a series of 2D homogeneous Ising Models.

For the 3D Ising Model, we assume a homogeneous model similar to the 2D
case described in Section 2.4.2, except over a 3D lattice (see Figure 4-8 (left)). The
potentials remain the same; that is:

𝜑𝑖(𝑣𝑖) = [1− 𝑝; 𝑝](𝑣𝑖) (4.29)

𝜓𝑖,𝑗(𝑣𝑖, 𝑣𝑗) =

[︂
𝑞 1− 𝑞

1− 𝑞 𝑞

]︂
(𝑣𝑖, 𝑣𝑗), ∀(𝑖, 𝑗) ∈ 𝐸 (4.30)

Where we use ML methods once again to determine the parameters 𝑝 and 𝑞 [32, Sec
6.1]. Since the same "patchy" property extends in the third dimension, we believe
this extension of the Ising model would also be effective for 3D images of this type.

Our comparison model is a series of independent homogeneous 2D Ising Models,
with the width and depth dimensions correlated but the height dimension indepen-
dent (see Figure 4-8 (right)). For fairness, we assume that all layers share the same
parameters, so that both the 2D and 3D models have the same amount of param-
eter information available to describe the models. We attempt compression of this
volume using both these sources, as well as using the GZIP algorithm (using MAT-
LAB’s built-in gzip() function on a zig-zag scan of the pixels), a universal compression
algorithm.

Figure 4-8: A 3×3×3 three-dimensional lattice graph (left) and three 3×3 two-dimensional

lattice graphs stacked on top of each other (right), which are examples of the two structures

of the pairwise graphical models representing their respective Ising distributions. Note that

in the stacked 2D case, each layer is independent of all other layers.

Results and Discussion

As seen in Table 4.1, the 3D Ising Model produces the best compression, beating out
both the 2D Ising Model and the GZIP algorithm. Thus, we have shown for this

52

Compression Type Compression Rate

MQCS with 3D Ising Model 0.305
MQCS with 2D Ising Model 0.339
GZIP 0.582

Table 4.1: Compression results for 60x60x40 3D tomography image. For the MQCS Ar-

chitecture, threshold rates were used with a 0.125 doping rate and a maximum of 300

message-passing iterations.

example that the extra information provided by the extra correlation in the third
dimension can be leveraged by our architecture to improve compression performance.

However, despite the heavy degree of correlation between pixels in the third di-
mension (𝑞 ≈ 0.92), the compression gain between the two Ising Models is quite
small. The primary reason for this is likely the limitations of the LDPC code when
used as a data compressor. Lai [21] has noted that the optimal node degree for each
parity-check bit is 3, but at low rates (specifically, rates below 1

3
), it is impossible

to construct a code that has an average factor degree of 3 and where each bit to be
compressed is connected to at least one parity-check factor node. Thus, as the com-
pression decreases, the average node degree must by necessity increase, thus making
the LDPC code less effective [26]. From this data, we believe that the code rate
soft limit where the LDPC code begins to severely under-perform for compression is
around 0.17 to 0.18.

4.4 Summary and Remarks

In this chapter, we have explored three different realizations of the MQCS Architec-
ture for three different applications. In the first two, we have shown that Restricted
Boltzmann Machines are effective source models for compression due to their abil-
ity to store information about image features in its latent variables. In the third,
we showed how our architecture was able to easily leverage additional dimensional
information in order to improve compression performance.

In these three applications, we have illustrated the flexibility and adaptability of
this compression architecture. We were able to modify the architecture to compress
each data source using only minor modifications or additions to the encoder and de-
coder, none of which altered the fundamental algorithms used in the system (hashing
for encoding and message-passing for decoding). Within each application, we were
able to rapidly "upgrade" the system by simply swapping out the old source graph
with a newer, more effective one, never needing to change the encoder (such that both
the old and new decoder could reconstruct using the same compressed data) or any
other part of the decoder outside of the source graph.

There are still many questions that need to be answered about the effectiveness
of these models. The Restricted Boltzmann Machine has been shown to be more
effective than the Ising Model for compressing images drawn from the MNIST and
Cifar-10 databases, but it is difficult to pinpoint the exact properties that make it

53

more effective and, by extension, what types of datasets would be more suited to
the RBM compared to the Ising Model. Since RBMs extract global features and
Ising Models only model local (adjacent) dependencies, it follows logically that any
image in which distant pixels are correlated would benefit greatly from using the
RBM over the Ising Model, especially in cases where the pixels in between might not
be correlated with one another. For example, a database of faces would not have
the "patchy" property that makes Ising Models useful, but distant correlations for
features such as eyes or hair could easily be captured using RBMs. More work will
need to be done in determining when these models are most useful and ultimately
when they can outperform existing compression algorithms.

As for the 3D data, since RBMs do not make any dimensionality assumptions,
it should be possible to obtain the same gains in the 3D case as in the 2D one.
The primary issue is in the number of visible and hidden nodes such an RBM would
require. Since the number of pixels scales with the cube of the length of the 3D
volume being compressed instead of the square as in the 2D case, even a small image
(such as the 60x60x40 volume used in Section 4.3.1) can have a very large number
of pixels, making training a very time-consuming problem. In addition, since the
RBM is a complete bipartite graph, the number of edges in the model would be very
high, and as such decoding would take much longer and be more prone to numerical
errors from the sheer number of computations required. However, this scaling also
presents a great opportunity; since 3D images tend to be much larger than 2D images,
there is a greater need for effective compression of these types of data. This can be
seen in the ease of which these types of data can be shared: while it is relatively
simple to download large amounts of 2D images from various databases available
online, many 3D image databases are still locked behind permission systems due to
the strain of transmitting the large amounts of data associated with 3D images. There
is a real need for effective compression of these kinds of data for the sake of better
dissemination of information vital in many fields of study, ranging from medicine to
geology [4] [3].

54

Chapter 5

Conclusions and Future Work

We finish this thesis with a brief summary of the work presented, followed by a
discussion of possible extensions for our current work. We will then conclude with
some remarks about the current state of research in this field.

5.1 Summary

In this thesis, we have presented a number of applications for the Model-Code-
Quantizer Separation Architecture. We have described the operation of the MQCS
Architecture, including practical considerations affecting the implementation of the
system. We then presented three examples which illustrate the benefits of this system,
showing how the architecture can quickly be modified to adapt to different data mod-
els in order to provide effective, source-adaptive compression of image data. We also
demonstrate the effectiveness of the RBM as a compression tool by leveraging its abil-
ity to act as a feature-based generative model to store information about the source
model and use that information to increase the effectiveness of data compression.

5.2 Future Work

While our examples have illustrated the potential of these systems, there is still much
work to be done in realizing this potential. Some of these have already been discussed
in Section 4.4, but there are still many other theoretical questions about the effective-
ness of the system to be answered, as well as implementation-based optimizations to
create more efficient realizations of the architecture. Finally, there are still a wealth of
models and data sources to be explored, each offering the opportunity for significant
gains in compression.

5.2.1 Quantizer Selection

In the greyscale-image case, we utilized the uniform-quantizer to quantize the data
by treating it as a continuous source. While this may be effective, in the lower bit
regime uniform quantizers have been shown to perform much worse compared to other

55

methods for compressing Gaussian sources, and it follows that this deficit would be
reflected in image compression applications. The main benefit that is provided by the
uniform quantizer is that it is universal, and thus can be used for any source without
any prior knowledge of the model. There are two approaches to mitigating this loss.

∙ Using a Low-Density Hashing Quantizer - while the Gaussian-based models
naturally arise when studying natural images, it is also possible to use the bit
representations of the pixels as the source sequence instead of the overall pixel
value. Then, the source sequence would be purely binary, allowing us to use the
LDHQ as a quantizer, which does not have the gap that the uniform quantizer
possesses [15]. To mitigate the issues of complexity associated with modeling
individual bits, we can use a sequential decoding method, in which we encode
each bit plane separately, limiting the edges of the graphical model so that
bits can only be connected other bits in the same bit plane or pixel. Thus, we
can decode each bit plane individually, using the known values of the previous
bitplanes as source model inputs for decoding the next bit plane [21].

∙ Using a specialized quantizer - If we are willing to break the Model-Quantizer
separation paradigm, we could also use a quantizer more specially designed for
compressing images. For example, the JPEG standard defines a DCT-based
non-uniform quantizer as part of its encoding scheme [33], while the JPEG2000
uses a wavelet transform followed by EZT coding [28]. By using these pre-
processing and quantization schemes, we can better extract important features
of images, possibly allowing for more efficient encoding and decoding. Since the
JPEG scheme is based on linear transformations and and uniform quantization,
it is easy to model in our system and allows for relatively simple message-
passing. The JPEG2000 scheme would lend itself better to bit-based models
due to the nature of the EZT coding, but could still yield models that expose
complex interactions between pixel values which can be leveraged for better
coding. However, this would violate the separation of model and quantizer,
and forces a "lock-in" of the quantizer, which may be undesirable since better
quantizer structures may emerge in time.

5.2.2 Full-Resolution Image Compression

The images compressed in this thesis are all "thumbnail-sized" images, of sizes smaller
than 50x50 pixels. In most applications, images tend to be much larger, on the order
of hundreds or thousands of pixels wide. At these scales, RBMs begin to become
impractical, as they generally require a number of hidden nodes on the same order
of magnitude as that of the number of visible nodes, which would results in graphs
with trillions of edges, making training and storage of these models incredibly costly
in terms of time and memory. There are a few methods for effectively scaling the
concepts of RBMs for full-resolution image compression.

∙ We can split the image into individual "thumbnail-sized" patches and then train
the RBM on all the patches instead of all the images. Then, the decoder can

56

decode the image using a model in which each patch is an independent RBM.
This provides a great deal of scalability, with model complexity and decode time
scaling linearly with image size, but loses the ability to capture relationships
between patches.

∙ We can use a Convolutional Deep Belief Network (CDBN) to model the im-
age. The CDBN is an extension of the RBM to large, spatially-correlated data,
providing the same scaling and feature advantages as other types of deep con-
volutional models [24]. A CDBN consists of multiple stacked layers of "sliding"
RBM filters which are much smaller than the image size. These filters relate a
patch in the image with a set of hidden nodes, and by overlapping many copies
of these filters across the entire image, we can model small features such as edges
at any locations in the image in an efficient manner. Stacking multiple layers
of these filters on top of one another also allows for deeper feature modeling,
though at the cost of increased complexity. These models can be trained using
similar Contrastive Divergence techniques as those used for training RBMs [14].

5.3 Concluding Remarks

It is well-known that the amount of data being generated worldwide is growing at
an explosively fast rate, demanding a need for storage capacity that physical device
technologies cannot keep up with. In order to bridge this gap, it will be necessary to
develop better compression algorithms to store the data and make up the difference.

However, it is also the case that the data being created tends to be very structured,
but in vastly different ways. While it may be clear that genetic sequencing data will
be very different from the text of a novel, even small differences in data sources can
result in very different data sets. Images of faces are very different from images
of landscapes, for example, despite both being natural images. As we increase the
granularity of the partitioning of our data, we find more and more classes of data,
each with a unique underlying model. Trying to fit a general model over all these
data sources will naturally lead to losses in compression effectiveness, a cost which
we have borne without complaint for decades due to a lack of resources that could be
devoted to designing a compression algorithm for each type of data and redesigning
the system each time a better model arose. If we are to adapt to the rapid growth of
data generation, we must acknowledge this cost and work towards mitigating it.

With this new model-free paradigm, we can finally begin to achieve that goal,
providing a universal framework in which arbitrarily small classes of data may be
compressed by leveraging the maximum amount of domain knowledge available. With
our framework making developing new compression methods inexpensive, we may
finally be able to treat the world of data not with a wide net designed to catch
as many sources as possible, but with a series of precise hooks to perfectly capture
the individual models at play. Only then will we able to stay afloat in the age of
information.

57

58

Bibliography

[1] Michael Archambault. JPEG 2000: The Better Alternative to JPEG That Never
Made it Big, Sep 2015.

[2] L Barnault and D Declercq. Fast decoding algorithm for ldpc over gf (2/sup q/).
In Information Theory Workshop, 2003. Proceedings. 2003 IEEE, pages 70–73.
IEEE, 2003.

[3] Doug Blankenship. Fallon forge 3d geologic model, 2016.

[4] Emely L Bortel, Georg N Duda, Stefan Mundlos, Bettina M Willie, Peter Fratzl,
and Paul Zaslansky. High resolution 3d laboratory x-ray tomography data of
femora from young, 1-14 day old c57bl/6 mice, 2015.

[5] Peter Burt and Edward Adelson. The laplacian pyramid as a compact image
code. IEEE Transactions on communications, 31(4):532–540, 1983.

[6] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep neural
networks for image classification. In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, pages 3642–3649. IEEE, 2012.

[7] Howard B Demuth, Mark H Beale, Orlando De Jess, and Martin T Hagan. Neural
network design. Martin Hagan, 2014.

[8] Simone Ercoli, Marco Bertini, and Alberto Del Bimbo. Compact hash codes
for efficient visual descriptors retrieval in large scale databases. arXiv preprint
arXiv:1605.02892, 2016.

[9] Robert Gallager. Low-density parity-check codes. IRE Transactions on infor-
mation theory, 8(1):21–28, 1962.

[10] Robert G Gallager. Principles of digital communication, volume 1. Cambridge
University Press Cambridge, UK:, 2008.

[11] Gabor T Herman. Fundamentals of computerized tomography: image reconstruc-
tion from projections. Springer Science & Business Media, 2009.

[12] Geoffrey E Hinton. Training products of experts by minimizing contrastive di-
vergence. Neural computation, 14(8):1771–1800, 2002.

[13] Geoffrey E Hinton. Deep belief networks. Scholarpedia, 4(5):5947, 2009.

59

[14] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algo-
rithm for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[15] Ying-zong Huang. Model-Code Separation Architectures for Compression Based
on Message-Passing. PhD thesis, Massachusetts Institute of Technology, 2014.

[16] Ying-zong Huang and Gregory W Wornell. A class of compression systems with
model-free encoding. In Information Theory and Applications Workshop (ITA),
2014, pages 1–7. IEEE, 2014.

[17] Ying-zong Huang and Gregory W Wornell. Separation architectures for lossy
compression. In Information Theory Workshop (ITW), 2015 IEEE, pages 1–5.
IEEE, 2015.

[18] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and
techniques. MIT press, 2009.

[19] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute
for advanced research). 2009.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[21] Wai Lok Lai. A Probabilistic Graphical Model Based Data Compression Archi-
tecture for Gaussian Sources. Master’s thesis, Massachusetts Institute of Tech-
nology, 2016.

[22] Hugo Larochelle and Yoshua Bengio. Classification using discriminative re-
stricted boltzmann machines. In Proceedings of the 25th international conference
on Machine learning, pages 536–543. ACM, 2008.

[23] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[24] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convo-
lutional deep belief networks for scalable unsupervised learning of hierarchical
representations. In Proceedings of the 26th annual international conference on
machine learning, pages 609–616. ACM, 2009.

[25] Radford M. Neal. Sparse matrix methods and probabilistic inference algorithms.
In IMA Program on Codes, Systems, and Graphical Models, 1999.

[26] Hosung Park, Seokbeom Hong, Jong-Seon No, and Dong-Joon Shin. Construc-
tion of high-rate regular quasi-cyclic ldpc codes based on cyclic difference families.
IEEE Transactions on Communications, 61(8):3108–3113, 2013.

[27] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

60

[28] Athanassios N Skodras, Charilaos A Christopoulos, and Touradj Ebrahimi.
Jpeg2000: The upcoming still image compression standard. Pattern Recogni-
tion Letters, 22(12):1337–1345, 2001.

[29] Nitish Srivastava and Ruslan R Salakhutdinov. Multimodal learning with deep
boltzmann machines. In Advances in neural information processing systems,
pages 2222–2230, 2012.

[30] Yichuan Tang, Ruslan Salakhutdinov, and Geoffrey Hinton. Robust boltzmann
machines for recognition and denoising. In Computer Vision and Pattern Recog-
nition (CVPR), 2012 IEEE Conference on, pages 2264–2271. IEEE, 2012.

[31] W3 Techs. Usage of JPEG for websites. Usage Statistics of JPEG for Websites,
May 2017, 2017.

[32] Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential
families, and variational inference. Foundations and Trends R○ in Machine Learn-
ing, 1(1–2):1–305, 2008.

[33] Gregory K. Wallace. The jpeg still picture compression standard. Communica-
tions of the ACM, pages 30–44, 1991.

61

