
AdaptDB: Adaptive Partitioning for Distributed

Joins

by

Yi Lu

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c© Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 12, 2017

Certified by. .
Samuel R. Madden

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

AdaptDB: Adaptive Partitioning for Distributed Joins

by

Yi Lu

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 2017, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Big data analytics often involves complex join queries over two or more tables. Such
join processing is expensive in a distributed setting both because large amounts of
data must be read from disk, and because of data shuffling across the network. Many
techniques based on data partitioning have been proposed to reduce the amount of
data that must be accessed, often focusing on finding the best partitioning scheme
for a particular workload, rather than adapting to changes in the workload over time.

In this thesis, we present AdaptDB, an adaptive storage manager for analytical
database workloads in a distributed setting. It works by partitioning datasets across
a cluster and incrementally refining data partitioning as queries are run. AdaptDB
introduces a novel hyper-join that avoids expensive data shuffling by identifying stor-
age blocks of the joining tables that overlap on the join attribute, and only joining
those blocks. Hyper-join performs well when each block in one table overlaps with few
blocks in the other table, since that will minimize the number of blocks that have to
be accessed. To minimize the number of overlapping blocks for common join queries,
AdaptDB users smooth repartitioning to repartition small portions of the tables on
join attributes as queries run. A prototype of AdaptDB running on top of Spark
improves query performance by 2-3x on TPC-H as well as real-world dataset, versus
a system that employs scans and shuffle-joins.

Thesis Supervisor: Samuel R. Madden
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to give great thanks to my advisor Samuel Madden for introducing me

to research and helping me find an interesting problem to work on. Sam has always

been a source of encouragement and inspiration since the early days of writing the

idea on a white board.

I would like to extend my thanks to Anil Shanbhag and Alekh Jindal. Anil

explained the motivation of adaptive data partitioning and gave me guidance on how

to build a distributed query execution engine. Alekh gave many insights on the exiting

limitation and encouraged me to think out of the box to solve it.

I would also like to thank all my friends at MIT and outside of school for making

my life enjoyable. I wish I could thank each of you by name individually, but the list

will be too long.

Finally, I thank my parents for giving me for their unconditional encouragement

and support.

5

6

Contents

1 Introduction 11

2 System Architecture 17

3 Background 19

3.1 Upfront Data Partitioning . 19

3.2 Adaptive Re-partitioning . 21

4 Adaptive Distributed Joins 23

4.1 Hyper-join . 23

4.2 Analysis of Shuffle Join and Hyper-join 28

4.3 Joins Over Multiple Relations . 30

5 Partitioning for Hyper-join 33

5.1 Two-phase Partitioning . 33

5.2 Smooth Repartitioning . 35

5.3 Key Benefits . 37

5.4 Putting it All Together . 38

6 Implementation 39

7 Evaluation 41

7.1 Experimental Setup . 41

7.2 Effect of Hyper-join Algorithm . 42

7.3 Performance of Adaptive Repartitioner 44

7.4 Parameter Sensitivity . 47

7

7.5 Approximation Algorithm vs ILP . 50

7.6 AdaptDB on a Real Workload . 51

8 Related Work 53

9 Conclusion 55

8

List of Figures

1-1 Shuffle vs co-partitioned joins . 12

2-1 AdaptDB architecture . 17

3-1 Upfront partitioning in Amoeba . 19

4-1 Illustrating hyper-join . 23

4-2 An approximate partitioning algorithm 26

4-3 A bottom-up solution . 28

4-4 Varying data locality . 28

4-5 Varying dataset size . 28

5-1 Illustrating two-phase partitioning . 33

5-2 Illustrating smooth repartitioning . 35

5-3 The smooth repartitioning algorithm 36

7-1 Execution time for queries on TPC-H 43

7-2 Execution time for changing workload on TPC-H 45

7-3 Effect of varying size of memory buffer 47

7-4 Execution time on varying length of query window 48

7-5 Effect of varying # of levels for join attributes 49

7-6 Varying buffer size on TPC-H with scale 10 50

7-7 Execution time on CMT dataset . 51

9

10

Chapter 1

Introduction

Data partitioning is a well-known technique for improving the performance of database

applications. By splitting data into partitions and only accessing those that are

needed to answer a query, databases can avoid reading data that is not relevant to

the query being executed, often significantly improving performance. Additionally,

when partitions are spread across multiple machines, databases can effectively par-

allelize large scan operations across them. The traditional approach to partitioning

has been to split each table on some key, using hashing or range partitioning. This

helps queries that have selection predicates involving the key go faster, but does not

affect the performance of queries without the key attribute. Likewise, for queries with

joins, queries will benefit when the database is partitioned on attributes involved in

the join, i.e., if the tables are co-partitioned on the join attribute. If one or both

tables are not partitioned in this way, a shuffle join, where tables are dynamically

repartitioned so that partitions that join with each other are on the same machine,

is typically performed instead.

Partitioning can dramatically improve the performance of database applications,

particularly when expensive shuffle-joins can be avoided. To illustrate, Figure 1-1

shows that co-partitioned joins can be almost 2 times faster than shuffle joins (here

we are joining lineitem and orders tables from TPC-H, a popular decision support

benchmark, at scale-factor 1000 in Spark [1] on 10 nodes). Because of these perfor-

mance gains, many techniques have been proposed to find good data partitionings for

a query workload. Such workload-based data partitioning techniques typically assume

11

0 2000 4000 6000 8000 10000

Shuffle	Join

Co-partitioned	Join

Running	time	(seconds)

Figure 1-1: Shuffle vs co-partitioned joins

that the query workload is provided upfront or collected over time [2, 3, 4, 5, 6, 7, 8],

and try to choose the best partitioning for that workload.

However, in many cases there may be no single static partitioning that is good

for all workloads. For example, data science often involves looking for anomalies and

trends in data. There is often no representative workload for this kind of ad-hoc,

exploratory analysis, and the set of tables and predicates of interest will often shift

over time. To illustrate this point, we obtained a workload trace from the analytics

engine of a local startup company, which shows that even after seeing the first 80% of

the workload, the remaining 20% of the workload still contains 57% new queries (i.e.,

only 43% of the queries are similar to previous ones). Besides not necessarily being

representative of what analysts want to do, collecting a workload upfront inhibits

data scientists from starting to explore the data; instead they must perform a tedious

and time consuming data collection task before they can even ask their first query.

In previous work [9], we proposed a system called Amoeba that ameliorates some

of these problems using a technique we call hyper-partitioning. Specifically, it first

performs an initial partitioning of a dataset on as many attributes as possible, such

that we create a number of small partitions, each of which contains a hypercube of

the data, potentially from a different subset of attributes. This is done without any a

priori workload. For example, partition 1 of the lineitem table from TPC-H might

be partitioned first on product id, then on price, finally on quantity and partition

2 might be partitioned on price, then on order id. In this way, the system is able

to answer any query by reading a subset of partitions. Second, as more and more

queries are observed, hyper-partitioning adaptively repartitions the data to gradually

perform better on queries over frequent attributes and attribute ranges.

A key limitation of hyper-partitioning is that it does not adapt in response to

12

join queries. Instead, tables are simply adapted based on the range predicates issued

over them. Consider TPC-H, where lineitem can join with three dimension tables:

orders, part and supplier. A dimension table can also join with another dimen-

sion table. For example, orders can join with customer on custkey. Nearly all data

warehouse workloads involve similar joins between the fact table and multiple dimen-

sion tables. Because each table adapts differently in Amoeba, tables end up being

partitioned on different attributes and ranges, such that joins often involve moving

large portions of the table from one machine to another. As a result, shuffle-join is

frequently the only sensible choice for a distributed join algorithm in the Amoeba

system. Such shuffle-joins typically dominate query processing time in distributed

databases, and so represent a missed opportunity for adaptive partitioning.

In this thesis, we describe AdaptDB, which adaptively repartitions datasets to get

good performance on frequent join queries. As two tables are joined over and over

again, AdaptDB smoothly repartitions these two tables based on the join attribute

using a technique we call two-phase partitioning. The key idea is that data is divided

into a number of partitioning trees, with one tree per frequent join attribute per table.

Blocks of data are incrementally moved from one tree to another as join frequencies

vary. Each partitioning tree is split into two levels: in the top-most level data is

partitioned according to the join attribute, and in the bottom levels it is partitioned

according to frequent selection attributes (as in Amoeba). In AdaptDB, these blocks

are spread across many different nodes in a cluster (we implemented AdaptDB on

HDFS in Spark [1]).

As a result of this new partitioning approach, tables may end up partially parti-

tioned on several different attributes, such that when two tables A and B are joined,

a partition in A may join with several partitions in B, each located on HDFS. One

option is to simply perform a shuffle join, repartitioning both A and B so that each

partition of A joins with just one partition of B. However, this can be suboptimal

if each partition of A only joins with a few partitions on B; instead, building a hash

table over some partitions of A (or B) and probing it with partitions from B (or

A) can result in significantly less network and disk I/O. Interestingly, building hash

tables over different partitions of A or B can significantly affect the total cost, as we

show in the next example:

13

Example 1. Suppose table A has 3 partitions and table B has 3 partitions. Suppose

A1 joins with B1 and B2, A2 joins with B1, B2 and B3, and A3 joins with B2 and

B3, and each machine Mi has memory to hold 2 partitions to build hash tables on A.

Consider building a hash table over A1 and A3 on M1; we will need to read B1, B2

and B3. We then build another hash table over A2 on M2 and again read B1, B2 and

B3. In total, we read 6 blocks. As an alternative, building a hash table over A1 and

A2 onM1 and another one over A3 onM2 requires reading just B1, 2∗B2, 2∗B3 = 5

blocks.

Thus, building hash tables over different subsets of partitions will result in different

costs. Unfortunately, as we show, finding the optimal collection of partitions to read

is NP-Hard. Instead, we develop a new join algorithm called hyper-join that solves

this problem heuristically, providing significant performance gains over shuffling in

practice. To obtain these gains, partitions must be constructed such that, for a join

between tables A and B, each partition of A only joins with a subset of the partitions

of B. To do this, we develop several partitioning techniques that adapt partitioning

trees to provide this property for commonly occurring joins.

In summary, we make the following major contributions:

• We introduce the hyper-join algorithm, which does not require shuffling datasets

across the cluster. The challenge of hyper-join is to find optimal splits to mini-

mize the total amount of disk I/O. We formulate this as an optimization problem

based on mixed integer programming and give a proof of the hardness of the

problem. An approximate algorithm is also proposed, which runs in much less

time.

• We introduce several techniques to incrementally generate partitionings that

are good for hyper-joins: two-phase partitioning and smooth repartitioning.

AdaptDB’s optimizer makes the decision to smoothly repartition part of the

data with two-phase partitioning based on the queries in the query window.

• We describe an implementation of AdaptDB on top of HDFS and Spark and

report a detailed evaluation of the AdaptDB storage manager on both synthetic

and real workloads. We demonstrate that hyper-join can significantly reduce

14

the cost of joins versus shuffle join, and that our incremental repartitioning

techniques can yield partitionings that are good for hyper-join. Overall we

show that hyper-join can be 2x faster than shuffle join on TPC-H and a real

workload, and that it can effectively adapt as the mix of queries changes.

Before describing how these algorithms work, we present the architecture of the

AdaptDB system.

15

16

Chapter 2

System Architecture

AdaptDB is a table-oriented relational storage manager. It provides support for

predicate-based data access and efficient data analytics based on joins. The primary

goal of AdaptDB is to adapt to changes in the underlying workload using incremental

repartitioning to ensure that join performance is good (i.e., does not require shuffle

joins), and that sequential scans of entire tables can be avoided.

Sampled
records

Query
logs

Block	0
Block	1

Block	2

…

Raw
data

Optimizer

Query
planner

Query
executor

Query

Result

Adaptive	repartitionerStorage	engine

Upfront
partitioner

Update	index

Repartition
data

…

Figure 2-1: AdaptDB architecture

AdaptDB is a self-tuning storage system that can adapt itself to a specific workload

and does not require manual effort or configuration from users. Figure 2-1 shows the

key components of AdaptDB. The upfront partitioner creates an initial partitioning of

17

the data using the method of Amoeba [9], described in the next chapter. This results

in a collection of blocks (typically 64 MB or larger, as in HDFS), spread across the

nodes of a distributed storage engine. Each of these blocks is partitioned on one

or more attributes. This up-front partitioning is done according to a partitioning

tree, where the root splits the data in two partitions according to a randomly selected

attribute, and each of these partitions is itself randomly partitioned (each on different

attributes). This recursion repeats until blocks are less than the desired block size

(Amoeba uses a sample of data to compute these splits and then loads data into

blocks in a single pass). In addition to storing these blocks and samples, we store

meta-data that tracks the split points for the data in the tree, and query logs for use

in making repartitioning decisions.

They key contribution of AdaptDB is that, for join queries over multiple tables,

we can execute joins using hyper-join. Hyper-join is preferred over a conventional

shuffle join when the partitioning of the two tables is such that the number of blocks

that would have to be moved to complete the join would be less than the number of

blocks required in a shuffle join. This will be the case when the number of blocks in

each table overlap with only a few blocks in the other table. Once it has chosen to

use a hyper-join, AdaptDB employs an optimization algorithm to build hash tables

optimally.

To provide good performance, AdaptDB repartitions blocks as queries are run. For

selection predicates, it employs the adaptation method of Amoeba (also described in

the next chapter). For join predicates, it employs a technique which we call smooth

repartitioning, where it uses the first few levels of the tree to split on join attributes,

and maintains multiple trees, one for each common join attribute on a particular table.

As joins are executed, blocks are incrementally repartitioned from one partitioning

tree to the other. AdaptDB uses a cost model and query log to make decisions about

which blocks to move, and when.

18

Chapter 3

Background

In this chapter, we briefly describe the Amoeba storage system [9]. AdaptDB builds

on top of Amoeba by adding support for adaptive joins. Amoeba exposes a storage

manager, consisting of a collection of tables, with support for predicate-based data

access, i.e., scan a table with a set of predicates and return matching records. By

partitioning data, Amoeba can often access a subset of blocks of data.

3.1 Upfront Data Partitioning

𝐶

𝐵 𝐵

𝐴

𝐶 𝐶 𝐶 𝐶

𝐵 𝐵

𝐴

𝐶 𝐷 𝐷

(a)	Partitioning	 tree (b)	Heterogeneous	branching
Figure 3-1: Upfront partitioning in Amoeba

In Amoeba, a new block is created for every B bytes. Amoeba also considers the

attributes of the dataset when creating blocks. As noted in the previous chapter, a

19

dataset is split into data blocks on the underlying storage system using a partitioning-

tree based on attributes. Amoeba recursively divides a dataset on different attributes,

until the partition size is smaller than the block size of the storage system.

Amoeba represents the partitioning tree as a balanced binary tree i.e., it recur-

sively partitions the dataset into two parts until it reaches the minimum partition size.

Each node in the tree is denoted as Ap where A is the attribute being partitioned on

and p is the cut-point. All records with attribute A ≤ p go to the left subtree and

the rest of records go to the right subtree. The leaf nodes in the tree are data blocks,

each with a unique identifier. An attribute can appear in multiple nodes in the tree.

Having multiple occurrences of an attribute increases the number of ways the data is

partitioned on that attribute.

Figure 3-1(a) shows such a partitioning tree. Here, it first partitions the dataset

over attribute A, and then on attributes B and C recursively. In the end, 8 data blocks

are created in total. As a result, queries with predicates on any attribute of A, B,

and C can skip up to 50% of the data. The partitioning tree in Figure 3-1(a) can only

accommodate as many attributes as the depth of the tree. Given a dataset with of size

D and minimum block size p, the partitioning tree can only contain blogn
D
P
c attributes

when using n way partitioning. For example, for n = 2, D = 1TB, and P = 64MB, the

tree can only accommodate 14 attributes. However, many real-world schemas have

many attributes. To accommodate more attributes, Amoeba employs heterogeneous

branching in the partitioning tree, i.e., it puts different attributes on the same level

in the tree as shown in Figure 3-1(b). This sacrifices optimal performance on a few

attributes to achieve improved performance over more attributes. In Figure 3-1(b),

Amoeba is now able to accommodate 4 attributes, instead of 3. However, attributes

C and D are each partitioned on 50% of the data. Heterogeneous branching is based

on the premise that, in the absence of a workload, there is no reason to prefer one

attribute over another.

Amoeba uses a top-down algorithm to initially assign different attributes to differ-

ent nodes in the tree while trying to ensure the average number of ways each attribute

is partitioned on is almost the same. The resulting balanced binary partitioning tree

is used to partition the data into blocks which are then saved on HDFS. Real world

datasets tend to be skewed or have correlation among attributes. In order to generate

20

almost equally sized blocks, the system collects a sample from the data and uses it

to choose the appropriate cut points.

3.2 Adaptive Re-partitioning

As users query the dataset, the goal of Amoeba is to adapt the partitioning based

on the observed queries. Amoeba maintains a query window denoted by W . Each

incoming query q is added into the query window. After each query, Amoeba looks at

the current query window and considers alternative partitioning trees that could be

generated by repartitioning on one or more blocks. These alternatives are generated

by using a set of transformation rules on the current partitioning tree (i.e., merge

two existing blocks partitioned on A and repartition them on B.) The system uses a

bottom-up algorithm to compute the set of alternatives trees efficiently, using query

predicates as hints to generate them. Among the set of alternative trees generated,

it switches to the tree T that maximizes the total benefit using a simple cost formula

based on the number of blocks read and an estimate of the repartitioning cost.

21

22

Chapter 4

Adaptive Distributed Joins

We now turn our attention to the hyper-join algorithm, which avoids expensive data

shuffling whenever possible.

𝑟"

𝑟#

𝑟$

𝑠"

𝑠#

𝑠$

[0,100)

[100,200)

[200,300)

[0,150)

[150,250)

[250,350)

𝐴"'(

𝐴$'(

𝐴#'(

𝑟) 𝑠)[300,400) [350,400)

𝐴"((

𝐴$((

𝐴#((

Figure 4-1: Illustrating hyper-join

4.1 Hyper-join

Hyper-join is designed to move fewer blocks throughout the cluster than a complete

shuffle join when tables are not co-partitioned. In the rest of this section, we first

give the problem definition and formulate it as an optimization problem. We then

introduce an optimal solution based on mixed integer programming. Finally, we

present our approximate algorithm which can run in a much shorter time.

23

Problem definition

Suppose we have two relations R and S, which can join on attribute t. Let R =

{r1, r2, . . . , rn} and S = {s1, s2, . . . , sm} be the collection of data blocks obtained

from AdaptDB.

V = {v1, v2, . . . , vn} is a collection of m-dimensional vectors, where each vector

corresponds to a data block in relation R. The j-th bit of vi, denoted by vij, indicates

whether block ri from relation R overlaps with block sj from relation S on attribute

t (these are the blocks that must be joined with each other). Let Ranget(x) be a

function which gives the range (min and max values) of attribute t in data block x and

1(s) be a function which gives 1 when statement s is true. Given two relations R and

S, and for each block ri fromR and sj from S, let vij = 1(Ranget(ri)∩Ranget(sj) 6= ∅).
A straightforward algorithm to compute V has a time complexity of O(nm). The

Ranget values for each block are stored with each block in the partitioning tree.

Let P = {p1, p2, . . . , pk} be a partitioning over R, where P is a set of disjoint

subsets of the blocks of R and its union is all blocks in R. We constrain each pi to

be able to fit into memory of the node performing the join. We use ṽ(pi) to denote

the union vector of all vectors in pi, i.e., ṽ(pi) =
∨
rj∈pi vj, where vj is the vector for

block rj. Let δ(vi) =
∑m

k=1 vik indicating the number of bits set in vi.

Given a partition pi, we define the cost C(pi) of joining pi with all partitions in S

as the number of bits set in in ṽ(pi), i.e., C(pi) = δ(ṽ(pi)). This corresponds to the

number of blocks that will have to be read to join pi in a hyper-join. Next, we define

the cost function C(P) over a partitioning, which is the sum of C(pi) over all pi in P :

C(P) =
∑
pi∈P

C(pi)

Thus, the problem of computing hyper-join is finding the optimal partitioning P

of relation R.

Consider the example in Figure 4-1, with table R = {r1, r2, r3, r4} and table

S = {s1, s2, s3, s4} and we assume |P | = 2, i.e., that we have sufficient memory to store

|R|/|P | = 4/2 = 2 blocks of R in memory at a time. The interval on each partition

indicates the minimum and maximum value on the join attribute from all the records.

The arrows in the figure indicate the two corresponding partitions overlapping on the

24

join attribute. As we can see from the figure, r1 needs to join with s1, r2 needs to

join with s1, s2, etc. Therefore, we have V = {v1 = 1000, v2 = 1100, v3 = 0110, v4 =

0011}. We can build a hash table over multiple yellow partitions to share some disk

access of green partitions. For example, we can build a hash table over the first two

yellow blocks (r1 and r2) and another one over the last two yellow blocks (r3 and r4),

so that only 5 green blocks need to be read from disk, assuming only one green block

is in memory at a time. In this way, the partition P = {p1 = {r1, r2}, p2 = {r3, r4}},
which is optimal. The overall cost C(P) = 5, since ṽ(p1) = 2 and ṽ(p2) = 3.

Intuitively, the objective function C(P) is the total number of blocks read from

relation S, with some blocks being read multiple times. From the perspective of a

real system, we have to constrain the size of pi, both due to memory limits and to

ensure a minimum degree of parallelism (the number of partitions should be larger

than a threshold). If memory is sufficient to hold B blocks from relation R, then we

need c = dn/Be partitions. We now define the Minimal Partitioning.

Problem 1. Given a set of data blocks from relation R, find a partitioning P over

R such that C(P) is minimized, i.e.,

arg min
P

C(P)

subject to |P | = c,

|pi| ≤ B, ∀pi ∈ P.

Optimal algorithm

We now describe a mixed integer programming formulation which can generate the

minimal partitioning. Since the algorithm takes a long time, it’s not practical for

real-world deployment. Instead, it provides a baseline with which to compare the

faster approximation algorithm that we present in the subsequent section.

Given the maximum number of data blocks B that we can use to build a hash table

due to available worker memory, we need to build c = dn/Be hash tables in total. For

each data block ri from relation R and each partition pk, we indicate the assignment

of ri to partition pk with a binary decision variable xi,k ∈ {0, 1}. Likewise, for each

data block sj from relation S, we create a binary decision variable yj,k ∈ {0, 1} to

25

indicate if the j-th bit of ṽ(pk) is 1.

The first constraint requires that the size of each partition pk is under the memory

budget B,

∀k,
n∑
i=1

xi,k ≤ B

The second constraint requires that each data block ri from relation R is assigned

to exactly one partition, so for each ri,

∀i,
c∑

k=1

xi,k = 1

Given a partitioning P , for each partition pk, we need to guarantee every over-

lapping data block from relation S is also in partition pk. Let Jk be the set of data

blocks from relation R which overlaps with data block sk from relation S.

∀i,∀k,∀j ∈ Jk, yi,k ≥ xi,j

We seek the minimal input size of relation S,

min
m∑
j=1

c∑
k=1

yj,k

Solving integer linear programming (ILP) of this form is generally exponential in

the number of decision variables; hence the running time of this algorithm may be

prohibitive.

Approximate partitioning

We now consider a heuristic algorithm to partition R into partitions of size B. The

algorithm is given in Figure 4-2.

R← {r1, r2, . . . , rn}, P ← ∅
while R is not empty:

generate P from min(B, |R|) blocks with smallest δ(ṽ(P))
remove all blocks in P from R and add P to P

return P

Figure 4-2: An approximate partitioning algorithm

26

The algorithm starts from an empty set of partitions P . It iteratively generates a

partition P by taking at most B data blocks from relation R with smallest δ(ṽ(P))

and adds P into P until P contains all blocks from relation R.

NP-Hardness

We now prove that problem of taking B data blocks from relation R with smallest

δ(ṽ(P)) is NP-hard by reduction from maximum k-subset intersection [10].

Given a maximum k-Subset intersection instance I = (C,E), where C = {c1, c2,
. . . , cn} subsets over a finite set of elements E = {e1, e2, . . . , em}, and a positive integer

k. The maximum k-Subset intersection problem finds exactly k subsets cj1 , cj2 , . . . , cjk

from C whose intersection size |cj1 ∩ cj2 ∩ · · · ∩ cjk | is maximum.

We construct an input to maximum k-Subset intersection problem from an in-

stance to our problem as follows. For each bit vector vi, we construct a flipped bit

vector v̄i, i.e., ∀k, v̄ik = 1− vik . Let C = {v̄1, v̄2, . . . , v̄n} be a set which consists of all

flipped bit vectors from relationR. Each flipped vector v̄i from C denotes which blocks

from relation S that v̄i does not overlap with. Therefore, we let E = {s1, s2, . . . , sm}
consist of all blocks from relation S and k = B. Since

∧
v̄i =

∨
vi, minimizing

|v̄j1 ∧ v̄j2 ∨ · · · ∨ v̄jk | is equivalent to maximizing |vj1 ∨ vj2 ∨ · · · ∨ vjk |. Therefore, an

optimal solution to our problem solves the maximum k-Subset intersection problem

on I.

A bottom-up solution

Since taking B data blocks from relation R with smallest δ(ṽ(P)) is NP-hard and

there is no algorithm for n1−ε-approximation for any constant ε > 0, we developed a

simple bottom up algorithm with practical runtimes for use in AdaptDB. It is shown

in Figure 4-3.

The algorithm starts from an empty set of partitions P and an empty partition

P . It iteratively adds a data block ri into P with smallest δ(ri ∨ ṽ(P)) until we have

B blocks in partition P or no data block left in relation R. It then adds P into P

until P contains all blocks from relation R. A straightforward implementation of this

algorithm has a time complexity of O(n2) (where n is the number of blocks of R),

27

R← {r1, r2, . . . , rn}, P ← ∅, P ← ∅
while R is not empty:

merge P with data block ri with smallest δ(ri ∨ ṽ(P))
if |P| = B or ri is the last one in R:

add P to P and P ← ∅
remove data block ri from R

return P

Figure 4-3: A bottom-up solution

0
100
200
300
400
500
600

100% 71% 46% 27%

Response	 Time	(seconds)	

Figure 4-4: Varying data locality

0

2000

4000

6000

8000

10000

175G 320G 453G 580G

Running	Time	(seconds)	

Figure 4-5: Varying dataset size

since we have to compute the minimum cost block (requiring a scan of the non-placed

blocks) n times.

4.2 Analysis of Shuffle Join and Hyper-join

We consider a theoretical model here which analyzes the cost of shuffle join and hyper-

join in a distributed database. The model focuses on the number of blocks read (I/O

cost), as the time to process a join is directly proportional to the number of blocks

accessed. Each block incurs approximately the same amount of disk I/O, network

access, and CPU (hashing/joining) costs.

One concern might be that local I/O is cheaper than remote (network I/O).

However, recent improvements in datacenter network design have resulted in designs

that provide full cross-section bandwidth of 1 Gbit/sec or more between all pairs of

nodes [11], such that network throughput is no longer a bottleneck. Recent research

has shown that accessing a remote disk in a computing cluster is only about 8% lower

throughput than reading from a local disk [12].

To verify this in a real system, we ran a micro-benchmark on Hadoop, in which

28

we measured the runtime of a map-only job (per-forming simple aggregation in the

combiner) while varying the locality of data blocks on HDFS. Figure 4-4 shows the

results from a 4-node cluster with full duplex 1 Gbit/sec network. Note that even

with locality as low as 27%, the job is just 18% slower than with 100% data locality.

We leverage these new hardware trends and the fact that the cost of remote disk

access is essentially the same as local disk access in our cost analysis below.

We now analyze the cost of shuffle join and hyper-join. Suppose we have a query

q over two relations R and S.

Shuffle Join. There are two phases in shuffle join. In the first phase, map tasks

are created to read data blocks from HDFS. For each record in the dataset, it uses

a partitioning function to find a corresponding partition it belongs to and write it

to a file on local disk. In the second phase, each machine is responsible for some

key space of the partitioning function and reads partitions either locally or from

remote machines before joining two tables. In summary, each record is read from

disk, partitioned by a partition function and written to disk, and read from disk

again to compute join result. We use Cost-SJ to denote the cost of shuffle join over

two tables.

Cost-SJ(q) =
∑

b∈lookup(TR,q)

CSJ · |b|+
∑

b∈lookup(TS ,q)

CSJ · |b| (4.1)

Where TR and TS are the partitioning trees for relation R and S, and the function

lookup(T, q) gives the set of relevant data blocks for query q in T . The value of CSJ is

obtained empirically by modeling the disk access and the cost of data shuffling, which

is set to 3 in our evaluation. To verify Cost-SJ(q) is linear with the number of data

blocks read from disk, we ran a micro-benchmark in Spark, in which we measured the

runtime of joining table lineitem and orders from TPC-H while varying the size of

tables. Figure 4-5 shows the results from 175G to 580G; note that the running time

increases linearly with the size of dataset.

Hyper-join. In hyper-join, data blocks from one table are read through HDFS to

build a hash table. It then probes the hash table with all overlapping data blocks

from the other table. Without loss of generality, a hash table is built on relation R in

the analysis. We use Cost-HyJ to denote the cost of hyper-join over two tables and

29

hash tables are built on table R.

Cost-HyJ(q) =
∑

b∈lookup(TR,q)

|b|+
∑

b∈lookup(TS ,q)

CHyJ · |b| (4.2)

Here CHyJ is a measure of the number of times (on average) a data block from

relation S needs to be read from disk – this depends on the quality of the partitioning

in the two tables. For a completely co-partitioned table, CHyJ will be 1, as each block

in relation R joins with exactly one block in relation S. In Section 7.4, we show

that our algorithms can achieve an CHyJ of around 2 on real query workloads using a

memory size of 4GB on a 1 TB dataset.

Depending on the values of Cost-SJ(q) and Cost-HyJ(q), hyper-join can be sub-

stantially more efficient in terms of the communication cost than shuffle join. How-

ever, in order for this to be true, data sets must be partitioned on the join attribute.

It’s difficult to achieve this by adaptively repartitioning a tree based solely on se-

lection predicates, as it’s unlikely to have the join attribute in very many nodes in

the tree, and it’s highly possible that every partition will overlap with a large num-

ber of partitions. To tackle this challenge, AdaptDB employs a technique we call

smooth repartitioning with two-phase partitioning to push the join attribute into the

partitioning tree. We describe this in the next section.

4.3 Joins Over Multiple Relations

We have so far restricted our discussion on hyper-join to two relations but our tech-

niques extend to multiple inputs as well. Consider TPC-H query 3. If the join order

is (lineitem ./ orders) ./ customer and the intermediate result of the first two ta-

bles is denoted by tempLO, then the relation customer needs to join with tempLO on

custkey. If custkey is the join attribute in the customer partitioning tree, AdaptDB

only needs to shuffle tempLO based on custkey, and can then use hyper-join instead

of an expensive shuffle join, in which both tempLO and customer need to be shuffled.

When there are more relations to join, shuffle join over two intermediate relations

from hyper-join could be more efficient. Consider TPC-H query 8. If the join order

is ((lineitem ./ part) ./ orders) ./ customer, then the intermediate result with

30

relation lineitem needs to be shuffled twice. Instead, we can change the join order

to (lineitem ./ part) ./ (orders ./ customer) and use hyper-join twice and a shuffle

join over the intermediate results.

31

32

Chapter 5

Partitioning for Hyper-join

In this chapter, we describe how we build and maintain partitioning trees to support

the hyper-join algorithm running in AdaptDB. Specifically, we introduce the idea

of two-phase partitioning, where partitioning trees have join predicates injected at

their root, and smooth repartitioning where we maintain multiple partitioning trees

and migrate blocks between them. AdaptDB’s optimizer automatically applies these

techniques as appropriate to achieve better performance without the need for manual

tuning.

5.1 Two-phase Partitioning

Two-phase	
partitioning

Figure 5-1: Illustrating two-phase partitioning

A key limitation of the adaptive repartitioning technique used in Amoeba is that it

does not adapt in response to join queries. Instead, each table adapts independently

and tables end up being partitioned on different attributes and ranges, such that

33

hyper-join would not provide a performance advantage over shuffle joins. Hence a key

goal is to adapt partitioning trees in a way that facilitates joins while maintaining

the performance advantages of partitioning for selection queries.

Each AdaptDB tree is designed to support a single join attribute. We choose

to build a new partitioning tree when a new popular join attribute is seen (this is

described in more detail in the next chapter), or if requested to do so by the user

(because he or she believes a particular join will be common).

AdaptDB uses two-phase partitioning to inject the join attribute into the tree, as

depicted in Figure 5-1. In the first phase, splitting is done join attributes, and in the

second it is done on selection attributes.

In Figure 5-1, the join partitions are depicted in orange, and partitioning nodes

in support of selections are shown in blue. Median values of the join attribute are

used to split the dataset into two subsets during the first phase. This median-based

partitioning is further applied in lower-levels of the tree, splitting each partition on

its median (we do this efficiently by sorting all values of the attribute in the sample

at the root, and recursively computing medians for each subtree over this sorted

list). During the second phase, the join partitions are further partitioned using the

adaptive partitioning technique of Amoeba. There is a trade-off between the number

of levels reserved for the join attribute and the number of levels reserved for selection

attributes. We evaluate the number of levels that should be reserved for the join

attribute in our evaluation.

Consider the left partitioning tree in Figure 4-1 as an example. There are two

levels in the tree which are reserved for the join attribute, which, assuming data is

uniformly distributed in the range [0, 400], leads to four disjoint partitions with range

[0, 100), [100, 200), [200, 300), and [300, 400). The same procedure is also applied to

the right partitioning tree, which creates four disjoint partitions with range [0, 150),

[150, 250), [250, 350), and [350, 400).

As an alternative to partitioning the top levels of the tree on the median value,

we could have used hashing or range-based partitioning. The disadvantage of hash-

based co-partitioning is that it cannot answer queries with range queries on the join

attribute. Such joins may occur, for example, in social network applications, where

we may wish to join on some geographic or temporal range, e.g., users who have been

34

(1)	A	partitioning	tree	on	A
(2)	Smooth	repartitioning	from	A	to	B

A	new	partitioning	tree	B	is	created.	Some	data	blocks	under	tree	A	are	repartitioned	after	running	each	query. (3)	Repartitioning	completes

Figure 5-2: Illustrating smooth repartitioning

in a lat/lon region within some time frame. Likewise, data skew is prevalent in social

networks, and using simple range-based co-partitioning can lead to imbalanced data

blocks; medians help avoid this skew.

5.2 Smooth Repartitioning

A partitioning tree created through two-phase partitioning is only optimized for a

single join attribute. However, a table with multiple foreign keys may join with mul-

tiple tables. For example, in TPC-H, queries join lineitem and orders on order key

and lineitem and supplier join on supplier key. We observe multiple instances of

this kind of multi-join pattern in the real workloads we use to evaluate AdaptDB.

Our goal is that, when AdaptDB observes new incoming queries containing a new

join attribute, it should shift to the new join attribute. However, repartitioning all

of the data immediately would introduce a potentially very long delay, and, when

the workload is periodic, could lead to oscillatory behavior where it switches from

one partitioning to another. In addition, during the shift to the new join attribute,

AdaptDB should provide good performance for both types of queries instead of always

using shuffle join.

To tackle these challenges, AdaptDB introduces smooth repartitioning, which

smoothly adapts to the new join partitioning attribute, providing reasonably good

performance for both types of queries during the transition. For the sake of simplicity,

we restrict our discussion to shifting from one join attribute to another attribute in

this section, but our techniques generalize naturally to multiple join trees.

AdaptDB keeps all queries in a recent query window. When AdaptDB observes

a query with a new join attribute, it creates a new partitioning (initially empty)

tree. The new tree’s join attribute comes from the new query and the its predicates

35

W ← Query window, q ← New incoming query
T ← Old partitioning tree, T ′ ← New partitioning tree
W ← W ∪ {q}
if q’s join attribute t is as the same as T ′’s:
n← |{q|q ∈ W ∧ q’s join attribute = t}|
p← n

|W | −
|T |

|T |+|T ′|
if p > 0, repartition p percent of the data from T to T ′

Figure 5-3: The smooth repartitioning algorithm

are used to build the lower levels of the tree. AdaptDB also repartitions 1/|W | of

the dataset from the old tree to the new tree, where |W | is the length of the query

window. This is accomplished by randomly choosing 1/|W | of the blocks in the

old tree, and inserting them into the new tree (because files are only appended in

HDFS, it is possible to do this without affecting the correctness of any concurrent

queries). To avoid doing repartitioning work when rare queries arrive, AdaptDB can

be configured to wait to create a new partitioning tree until the query window contains

some minimum frequency fmin of queries for a new join attribute; in this case once

the tree is created, fmin/|W | of the blocks will be moved.

As AdaptDB starts seeing more and more queries with the new join attribute, it

repartitions more data into the new partitioning tree using the following algorithm.

It first calculates the percentage of two types of query in the query window and

how much data each partitioning tree has. If the incoming query’s join attribute is

the same as the newly created partitioning tree and the fraction of data in the new

partitioning tree is less than the fraction of its type in the query window, AdaptDB

moves data from the old partitioning tree to the new one, again by randomly selecting

blocks and moving them. Pseudo-code of the algorithm is shown in Figure 5-3, where

|T | denotes the size of data under the partitioning tree T .

Consider the example in Figure 5-2. The algorithm starts from a partitioning

tree optimized for join attribute A. When a query with new join attribute B comes

into AdaptDB, AdaptDB creates a new partitioning tree for B with two-phase par-

titioning and repartitions 1/|W | of the dataset from the old partitioning tree. The

color of nodes from the lower levels of the partitioning trees indicate the size of data.

The darker the color is, the larger the size of data is. After the new tree is cre-

ated, AdaptDB maintains two partitioning trees with different join attributes during

smooth repartitioning. As more and more queries with join attribute B appear in

36

the query window, AdaptDB repartitions more data from the old partitioning tree to

the new one. AdaptDB iterates the above procedures until the query window only

includes queries with join attribute B. After the dataset finishes repartitioning, the

old partitioning tree for join attribute A is removed and AdaptDB only maintains

the partitioning tree for join attribute B, which is depicted by the last sub-figure in

Figure 5-2. (Of course, in many applications there will not be a complete shift from

one join to another, in which case multiple trees will be preserved.)

5.3 Key Benefits

The key benefits of two-phase partitioning and smooth repartitioning are as follows:

Avoiding shuffle join. It’s not uncommon for multiple tables to be involved in

data analytics. 18 out of 22 queries from TPC-H need to join multiple tables, such

as lineitem, orders, customer and supplier. However, it’s prohibitively expensive

to shuffle a dataset across a cluster of machines, especially, when there is no selective

predicate on a large dataset. For example, consider TPC-H query 3, the selectivity

of predicate l shipdate > date ‘[DATE]’ is from 75% to 90%. As another example,

TPC-H queries 5 and 8 do not have any predicate on lineitem at all. We would like

to fine-grained partition a dataset based on the join attribute. After partitioning,

each partition only needs to join with a few partitions from the other dataset, so

hyper-join will be very effective. Without using partitioning on the join attribute, it

may not be possible to get any performance benefit from partitioning. For example,

in the case of TPC-H queries 5 and 8, no matter how many queries arrive, it’s still not

possible to reduce the number of records to read by simply partitioning with selection

predicates. In contrast, partitioning on join attributes and employing hyper-join can

provide a significant speedup.

Smooth shift to other join attributes. When queries with a new join attribute

arrive in AdaptDB, it shifts the partitioning of the dataset from the old join attribute

to the new one. Meanwhile, it can use a combination of hyper-join and shuffle to

execute a query. Consider the case of a mix of TPC-H queries 12 and 14. Query 12

joins lineitem and orders on order key, and query 14 joins lineitem and part

37

on part key. As more and more queries from query 14 arrive, the partitioning will

shift from order key to part key smoothly. Even when maintaining two partitioning

trees for lineitem (one on order key and the one on part key), AdaptDB can use

a combination of shuffle join and hyper-join to execute queries from both queries,

performing much better than using full shuffle joins.

5.4 Putting it All Together

AdaptDB manages partitioning trees using the smooth-repartitioning approach, con-

tinuously migrating blocks as join queries arrive to ensure a proper balancing of data

across partitioning trees. To execute joins, AdaptDB uses a simple cost model based

on equations 4.1 and 4.2. First, it estimates CHyJ for the two tables being joined. It

does this by using the hyper-join algorithm (Section 4.1) to compute the schedule of

blocks to read, and counts the total number of block reads that would result if the

schedule were run. Then, using the two equations, it decides whether to actually run

hyper-join or shuffle join based on the sizes of the two tables and the estimated CHyJ

value.

38

Chapter 6

Implementation

In this chapter, we describe AdaptDB’s implementation1. AdaptDB runs on HDFS

and Spark [1]. We choose HDFS as it’s a popular open source distributed file system,

but our ideas can be implemented on any other distributed file system. Likewise,

AdaptDB’s query executor can also be built on any other data-parallel computing

system, e.g., Hadoop [13].

The AdaptDB storage manager consists of two modules: (1) the upfront par-

titioner, which generates an upfront partitioning from raw data and writes initial

partitions. (2) the adaptive repartitioner, which adaptively repartitions the underly-

ing data according to query workload. When a query is submitted to AdaptDB, it

first goes to the optimizer, then to the query planner and finally to the query executor

for query execution.

Optimizer. This component is responsible for adjusting the partitioning tree(s)

for each table in AdaptDB. It decides how much data should be repartitioned. If

there are multiple partitioning trees for a table, some blocks may be repartitioned

based on the percentages of each type of query in the query window. If there is only

one partitioning tree but the optimizer decides it can be refined, some blocks also

need to be repartitioned.

The optimizer yields two disjoint sets of data blocks: (1) Type 1 blocks that will

only be scanned, and (2) Type 2 blocks that will be scanned and repartitioned to

generate new data blocks using the new partitioning tree. Either one of these sets

1The source code is available at: https://github.com/mitdbg/AdaptDB

39

https://github.com/mitdbg/AdaptDB

above may be empty.

Query Planner. This component decides how to join two tables in AdaptDB.

There are three cases: (1) both tables have only one partitioning tree and each table is

partitioned on the join attribute; in this case, hyper-join can be used instead of shuffle

join; (2) one table has one partitioning tree on the join attribute and the other table

has multiple partitioning trees, which could happen during smooth repartitioning

– in this case, AdaptDB uses a combination of hyper-join and shuffle join for query

execution; (3) both tables have multiple partitioning trees, or none of the partitioning

trees are on the join attribute – in this case, AdaptDB will generally fall back to shuffle

join for query execution (although its possible hyper-join could still be beneficial if

the up-front partitioning happens to work out.)

Query Executor. AdaptDB executes queries in Spark. A Spark job is con-

structed from the two sets of data blocks returned by the optimizer. We create file

splits from these data blocks. The size of each file split is less than a user-supplied

threshold; we use a 4GB split size in our experiments.

A Spark task is created on each file split; the task reads the data blocks from

HDFS in bulk and iterates over the records in memory. Tasks created for Type 1

blocks run with a scan iterator which simply reads all records and filter out ones that

cannot pass the predicates in the query. Tasks created for Type 2 blocks run with a

repartitioning iterator. Besides reading and filtering records as in the scan iterator,

the repartitioning iterator also looks up each record in the new partitioning tree to

find its new partition id and re-partitions the record accordingly. The repartitioning

iterator maintains a buffered writer. Once a buffer is full, the repartitioner flushes the

records in the buffer into HDFS. Several repartitioners across the cluster may write

to the same file. As a result, repartitioners need to coordinate while flushing the new

partitions. We use ZooKeeper for distributed coordination.

Tasks are scheduled by the Spark scheduler and executed across the cluster in

parallel. The result exposed to users is a Spark RDD. Users can conduct more complex

analysis on top of the returned RDDs using the standard Spark APIs, e.g., run an

aggregation.

40

Chapter 7

Evaluation

In this chapter, we analyze the performance of AdaptDB focusing on the following

key questions:

• How much performance gain can AdaptDB’s hyper-join algorithm achieve over

a traditional shuffle join algorithm?

• Does AdaptDB eventually converge when a particular workload is seen more

often?

• How sensitive is AdaptDB to different parameters?

• Is AdaptDB’s ILP formulation for choosing which blocks to join necessary for

achieving good performance under a space constraint? How does the heuristic

block selection algorithm perform?

• What is AdaptDB’s performance on real workloads, in addition to TPC-H?

7.1 Experimental Setup

We ran our experiments on a cluster of 10 machines, each with 256 GB RAM and

four 2.13 GHz Intel(R) Xeon(R) E7-4830 CPUs running 64-bit Ubuntu 12.04 with

Linux kernel 3.2.0-23. The AdaptDB storage system runs on top of Hadoop 2.6.0 and

uses ZooKeeper 3.4.6 for synchronization. We ran queries in Spark 1.6.0 with Java 7.

All experiments were conducted with cold caches.

TPC-H . The TPC-H benchmark is a decision support benchmark. We ran the

benchmark with scale factor 1000 (1TB) on AdaptDB. There are 22 query templates

41

in TPC-H. We chose eight query templates (q3, q5, q6, q8, q10, q12, q14, q19) from the

TPC-H workload. The reason that the other 14 query templates were not chosen is

twofold. First, five of the query templates (q2, q11, q13, q16 and q22) do not involve the

lineitem table, which is the largest table in TPC-H. Second, nine query templates

(q1, q4, q7, q9, q15, q17, q18, q20 and q21) do not have selective filters, so will not benefit

from any partitioning technique. This choice of workload is common to other papers

that evaluate partitioning techniques in distributed databases [14].

CMT. The CMT data consists of anonymized logs of user trips obtained from

a MA-based startup that specializes in processing mobile sensor data for telematics.

The data consists of a single large fact table with 115 columns and several dimension

tables with 33 columns in total. Each entry in the dataset has attributes of a trip from

users, such as user ID, average velocity, trip start time and end time. Due to privacy

concerns, we generated a synthetic version of the data according to the statistics

collected by the company. The total size of the data is 205GB. A production query

trace collected from 04/19/2015 to 04/21/2015 was also obtained from the company

(103 queries were issued by data scientists when performing exploratory analysis on

the data). Each query sub-selects different portions of the data based on different

predicates, e.g., user ID and trip time range.

Unless otherwise stated, we set the length of AdaptDB’s query window to 10, the

split size of Spark [1] to 4GB, and used half of the levels of the partitioning tree for

join attributes.

7.2 Effect of Hyper-join Algorithm

We first look at how much benefit we can get from hyper-join over shuffle join. For

this experiment, we ran seven sets of queries (q3, q5, q8, q10, q12, q14, q19) from TPC-H

using both shuffle join and hyper-join and show the results in Figure 7-1. We do not

report the performance of TPC-H query 6, since there is no join involved in it. For

each query template, we ran the smooth partitioning algorithm for several iterations

until just one tree with the join attribute existed for the target query. We then report

the average runtime of 10 runs of each query, using both hyper-join and shuffle join.

Both types of joins benefit from the Amoeba adaptive parititoning algorithm in this

42

0

1000

2000

3000

4000

5000

6000

7000

8000

Q3 Q5 Q8 Q10 Q12 Q14 Q19

Ru
nn
in
g	
tim

e	
(s
ec
on
ds
)

AdaptDB	w/	Hyper-Join AdaptDB	w/	Shuffle	Join Amoeba Predicate-based	Reference	Partitioning

Figure 7-1: Execution time for queries on TPC-H

case.

From Figure 7-1, we observe that hyper-join is more efficient than shuffle join

whether or not there are selective predicates in a query. For example, there are se-

lective predicates on shipinstruct, quantity and shipmode in TPC-H query 19. In

this case, AdaptDB has a 33% performance gain. In cases with no selective predi-

cates, e.g. TPC-H query 5, AdaptDB has a 76% performance gain due to the more

efficient hyper-join algorithm. Overall, we can observe that the hyper-join is consis-

tently faster than shuffle join in all seven query templates. AdaptDB achieves a 1.60x

performance gain on average over shuffle join (maximum 2.16x).

To better understand the significance of our adaptive join techniques, we com-

pared AdaptDB with Amoeba [9]. Amoeba does not include join attributes in the

partitioning tree and uses shuffle joins. From Figure 7-1, we observe that AdaptDB

with hyper-join is always much faster than Amoeba. AdaptDB with shuffle join has

almost the same performance as Amoeba in q3, q5, q8, q10 and q14. Amoeba has better

performance than AdaptDB with shuffle join in q12 and q19, since these two queries

have more selective predicates and fewer nodes in AdaptDB are used for selection

predicates. In effect, AdaptDB trades some of the levels in a partitioning tree for

more efficient hyper-join algorithm, which, at least for these TPC-H queries, is a

good tradeoff.

We also compared against a static data partitioning technique, specifically predicate-

based reference partitioning (or PREF [7] for short). To provide a fair comparison, we

partitioned the TPC-H dataset by the PREF partitioner provided by its authors and

43

ran queries using the Spark-based executor as AdaptDB. We tried different numbers

of partitions in PREF. Fewer partitions result in less data redundancy but also has

lead to lower parallelism in query execution. We report the performance of PREF

with 200 partitions across 10 machines (we tried a number of different settings for

the number of partitions and found 200 to be optimal). Figure 7-1 shows AdaptDB

with hyper-join always outperforms PREF, often significantly. This is due to the

fact that, in order to avoid shuffle joins, PREF replicates data, which often results in

significantly more I/O than AdaptDB. We do see that, compared to AdaptDB’s with

shuffle join, PREF outperforms AdaptDB in q3, q5 and q8, because these queries do

not have selective predicates. In q10, q12, q14 and q19, AdaptDB is much faster than

PREF no matter what join algorithm AdaptDB uses since the predicates here are

selective.

In summary, these experiments show that when partitioning is good, hyper-join

performs well, usually better than competing techniques. Next we show that the

adaptive partitioning can generate good partitionings over time.

7.3 Performance of Adaptive Repartitioner

We now study how AdaptDB adaptively repartitions the dataset over different work-

load patterns on TPC-H. Initially, each table is randomly partitioned by the upfront

partitioner. We constructed queries with different predicate values from each query

template and ran query templates in the order: q3, q5, q6, q8, q10, q12, q14, q19.

We consider two types of workloads:

• switching workload: We run 20 queries for each query template and switch from

one query template to another immediately. For example, we start from q3 and

switch to q5 after 20 queries. We next switch to q6 again after 40 queries again.

In total, there are 160 queries in this workload.

• shifting workload: We gradually shift from one query template to another one.

For example, we start from query template q3. As more queries are run, the

workload shifts to query template q5 smoothly and the transition finishes in

20 queries. Specifically, the probability of running query q5 (q3) is increased

(decreased) by 1/20th after each query. We next shift the workload from query

44

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Ru
nn
in
g	
tim

e	
(s
ec
on
ds
)

Full	Scan Repartitioning AdaptDB

Q3					 				 				 		Q5			 				 				 				 	Q6				 			 				 				 	Q8				 				 				 		Q10 Q12						 			 				Q14					 				 				Q19

(a) Switching workload

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Ru
nn
in
g	
tim

e	
(s
ec
on
ds
)

Full	Scan Repartitioning AdaptDB

Q3	→Q5						 	Q5	→Q6				 		Q6	→Q8					Q8	→Q10				Q10	→Q12		Q12	→Q14		Q14	→Q19

(b) Shifting workload

Figure 7-2: Execution time for changing workload on TPC-H

template q5 to query template q6, and so on. In total, there are 140 queries in

this workload.

We compare AdaptDB with two different baselines: (1) Full Scan, where no par-

titioning tree is used, and full scans and shuffle joins are run and (2) Repartitioning,

where smooth repartitioning is disabled, and AdaptDB does a complete repartitioning

of the data when half of the queries in the query window have a new join attribute.

hyper-join is used in this baseline whenever possible (e.g., after repartitioning).

Figure 7-2(a) shows the switching workload. Here we see the benefit of AdaptDB

over both repartitioning and full scan. Repartitioning incurs very long partitioning

times in queries 5, 25, and 65, whereas AdaptDB spreads out the repartitioning over a

longer period during which performance is only moderately degraded. In both cases,

45

after repartitioning completes, the repartitioned system is much faster than full scans

with shuffle joins.

Note that the aggregate benefit of repartitioning is dependent on the amount of

time each query is active – if a query is run more than 10 times, the benefit will

be larger. Also, note that the rate of adaptation of AdaptDB is dependent on the

window size; faster and more disruptive partitioning can be achieved by using a

smaller window, and slower and less disruptive partitioning can be achieved by using

a larger window.

Figure 7-2(b) shows the shifting workload, where a mix of queries are active at

each point. The overall performance trends are harder to see because at each point

one of two active queries is chosen, and the performance of one query can be quite

different from the other (most of the spikes in the AdaptDB and Full Scan line

are due to this effect, not the overhead of repartitioning). Here we can see that

repartitioning approach performs major reorganizations at queries 6, 14, 56 and 72.

As in the switching workloads, AdaptDB takes longer to adapt but has much less

pronounced spikes. Again, the overall benefit of partitioning depends on the time

each query template is active for, but generally reaches a 2x or greater improvement

over full scan with shuffle join. In addition, as in the switching workload, the rate of

adaptation of AdaptDB depends on the window size; we could further dampen the

overhead of repartitioning by using a bigger window.

We observed a performance degradation on query 5, queries 11-14, queries 17-

18 and queries 20-22 when AdaptDB repartitions the data. The same phenomenon

also happens from query 21 to query 30 in the switching workload. We found the

performance of Spark degrades when writing large amounts of data into HDFS as

there is no predicate the 5th query template from TPC-H. We think this is a problem

with the Spark executor; we have reported to the issue and hope it will be fixed in a

future Spark release.

Overall, we can observe as AdaptDB runs more queries of a particular type, the

query runtime approaches the ideal runtime. This shows AdaptDB has the ability to

adapt to changes in the workload.

46

7.4 Parameter Sensitivity

We now study how sensitive AdaptDB is to the size of the memory buffer for hyper-

join, the size of query window as well as the number of levels in the partitioning tree

for the join attribute.

Effect of varying size of memory buffer. In order to quantify the effect

of memory buffer size, we joined the lineitem and orders tables without selection

predicates. As we introduced in Section 4.1, more disk accesses are shared and less

data is read when we have more memory for buffers.

0

10000

20000

30000

40000

50000

60000

(a) Running time (seconds)

0

20000

40000

60000

80000

100000

120000

140000

160000

(b) # of data blocks

Figure 7-3: Effect of varying size of memory buffer

Here, both tables are partitioned using two-phase partitioning. In other words,

l orderkey and o orderkey appear in the upper level of the trees. We build hash

tables over the lineitem table and probe them with the orders table. We vary the

size of the memory buffer from 64 MB to 16 GB and report the query’s running time

and the number of data blocks read from the orders table.

Figure 7-3(a) shows that better performance is obtained as we increase the size of

the memory buffer up to 4 GB. Increasing the buffer size beyond 4 GB does not help

since the amount of data read from disk is no longer significantly reduced, as shown

in Figure 7-3(b).

Effect of varying the query window. We now study how the size of the

query window affects AdaptDB’s adaptive repartitioner. As discussed in Section 3.2,

47

AdaptDB uses the queries in the query window to decide when and how frequently

to adapt the tree.

We used a different shifting workload over TPC-H queries q14 and q19. We chose

q14 and q19 instead of other query templates for two reasons. First, both join the

lineitem and part tables, so AdaptDB does not need to use adaptive repartitioning

to adapt to a new join attribute when shifting queries, which is not the focus of this

experiment. Second, both queries have selective selection predicates on the lineitem

table, so we can see how AdaptDB’s adaptive repartitioner works more clearly.

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70

Ru
nn
in
g	
tim

e	
(s
ec
on
ds
)

Window	size	(5) Window	size	(35)

Q14																	Q14	→Q19																	Q19																Q19	→Q14															Q14

Figure 7-4: Execution time on varying length of query window

There are 70 queries in this workload. We first run 10 queries from query template

q14. In the following 20 queries, We then gradually shift the query from q14 to q19. The

probability of running query q19 (q14) is increased (decreased) by 1/20th after each

query. We then run 10 queries from query template q19. In the following 20 queries,

we then gradually shift the query from q19 back to q14 as we did before. Finally, we

run 10 queries from query template q14.

We run the above workload using two different window sizes: 5 and 35. 5 is a

small window size but still sufficient for AdaptDB’s optimizer to estimate the benefit

over repartitioning, while 35 is a big window size which is the half of the number

of queries in the workload. From Figure 7-4, we can observe that AdaptDB adapts

the partitioning more quickly if the window size is smaller. For example, the blue

line is always the first to converge to the best performance in the figure. The blue

line also exhibits larger spikes, e.g., at query 21, whereas the yellow line spreads the

repartitioning cost out over more time. Besides being more volatile, faster convergence

48

can lead to overfitting the recent workload, adapting significantly even when only a

few queries of a particular type arrive.

Effect of varying the number of levels for the join attribute in parti-

tioning trees. We now study how the number of levels for the join attribute in

partitioning trees affects the performance of AdaptDB’s hyper-join algorithm. We

handcrafted a query based on q10 from TPC-H where table customer is discarded.

We chose q10 instead of other query templates because there are selective predicates

on both tables we are interested in. We varied the number of levels for the join at-

tribute from 0 to 14 in the lineitem partitioning tree, since there are at most 214 data

blocks. Likewise, we adjusted the number of levels from 0 to 11 in the partitioning

tree of orders. The size of memory buffer is set to 4GB. Without loss of generality,

we build hash tables over the lineitem table and probe them with the orders table.

We report the number of data blocks scanned from orders in Figure 7-5 as we probe

the hash tables using AdaptDB’s hyper-join algorithm.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
of levels for the join attribute in Lineitem

11
10

9
8

7
6

5
4

3
2

1
0#
of

 le
ve

ls
 fo

r t
he

 jo
in

 a
ttr

ib
ut

e
in

 O
rd

er
s

of

 b
lo

ck
s

fro
m

 O
rd

er
s

103

104104

(a) TPC-H 10 w/o Customer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
of levels for the join attribute in Lineitem

11
10

9
8

7
6

5
4

3
2

1
0#
of

 le
ve

ls
 fo

r t
he

 jo
in

 a
ttr

ib
ut

e
in

 O
rd

er
s

of

 b
lo

ck
s

fro
m

 O
rd

er
s

104104

105

(b) Lineitem ./ Orders

Figure 7-5: Effect of varying # of levels for join attributes

From Figure 7-5(a), we observed that when we set the number of levels for the

join attribute to 0 in both tables, a large number of data blocks were scanned when

probing the hash tables even though some data blocks are filtered by the partitioning

trees. When every level is reserved for the join attribute in orders but no levels for

the join attribute in lineitem, the performance is even worse because no data block

from orders is filtered by the query’s predicates. From the figure, we can see that the

number of data blocks achieves its minimum when around half of levels are reserved

for join attributes in both tables, which is why we chose this as the default in our

49

experiments.

For the sake of completeness, we also report the result when there are no predicates

on either table in Figure 7-5(b). We can see that the more levels we reserve for join

attributes, the fewer data blocks need to be scanned when probing the hash tables

since both tables are partitioned on the join attribute. In real scenarios, this is would

not like to occur, since it is unusual to join large tables without predicates. It does

suggest, however, that a future exploration of adapting the number of join levels in

the tree could be worthwhile for some non-selective workloads.

7.5 Approximation Algorithm vs ILP

When using the hyper-join algorithm, AdaptDB builds hash tables over the first

table and probes them with the second one. The main challenge for our approximate

grouping algorithm is to generate a grouping scheme which minimizes the amount of

data read from the second table. For this experiment, we run TPC-H scale-factor

10, since the mixed integer programming solver does not scale to TPC-H scale-factor

1000. The lineitem and orders tables are joined as they are the largest tables in

TPC-H. We set the number of blocks in lineitem to 128 and the number of blocks

of orders to 32. In this way, each block size is around 64MB.

0

20

40

60

80

16 32 64 128

#	
of
	b
lo
ck
s	
fro

m
	o
rd
er
s

Buffer	size	(#	of	blocks)
ILP Approximate

(a) Optimizer’s performance

>	96	hours

1.16E+06

989.722

6.717

1.E+00

1.E+03

1.E+06

1.E+09

16 32 64 128

Ru
nn
in
g	
tim

e	
(m

s)

Buffer	size	(#	of	blocks)
(b) Optimizer’s runtime

Figure 7-6: Varying buffer size on TPC-H with scale 10

We implemented the ILP-based grouping algorithm in AdaptDB using the GLPK

50

solver1. We build hash tables on lineitem and probe it with orders. We report

the number of blocks read from orders in Figure 7-6(a); the approximate algorithm

performs reasonably well but runs much faster, as shown in Figure 7-6(b). Here,

when we set the buffer size to 32 blocks, the ILP solver needs around 20 minutes. If

we set the buffer size to 16 blocks, it cannot find the optimal solution in 96 hours.

In contrast, our approximate algorithm always give a reasonably good solution in a

millisecond.

7.6 AdaptDB on a Real Workload

We next study the performance of AdaptDB on a real dataset, which is obtained from

Cambridge Mobile Telematics (CMT), a Boston-area startup company. We ran the

queries on a synthetic version of the dataset, but used an actual query trace. The

dataset consists of three tables (a list of trips recorded, a table of historical processed

results for each trip, and a table of the most recent processed result for each trip).

Most queries in the workload either lookup a trip, or a combination of metadata

about the trip and its historical processing, although a few look up the most recent

processed result as well.

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70 80 90 100

Ru
nn
in
g	
tim

e	
(s
ec
on
ds
)

Full	Scan Repartitioning "Best	Guess"	Fixed	Partitioning AdaptDB

Figure 7-7: Execution time on CMT dataset

There are 103 queries in the workload. Figure 7-7 shows the runtime of each single

query. AdaptDB spent 9 hours and 51 minutes running all the queries compared to

1http://www.gnu.org/software/glpk/

51

http://www.gnu.org/software/glpk/

20 hours and 47 minutes when using full scan with shuffle joins. AdaptDB with full

repartitioning (and hyper-join) spent 9 hours and 11 minutes running all queries. Even

though the overall running time of AdaptDB with full repartitioning is 40 mins faster,

the latency of the fifth query is greatly increased. The spike at query 5 corresponds to

the full repartitioning, which took 2945 seconds, which greatly increases the latency

of the 5th query. Using the adaptive repartitioner, AdaptDB can finish adapting the

dataset according to the join attribute in the first 10 queries with an overhead in each

query of around 400 seconds (note that the green and yellow lines totally overlap

between queries 10 and 100). The spikes between at queries 30 and 50 correspond to

a batch of queries that fetch a large fraction of data from the database; many of the

other queries are fetching on a small subset of records.

We also compared the performance of AdaptDB’s adaptive repartitioning with

a hand-tuned fixed partitioning on the CMT workload. Specifically, we selected at-

tributes appearing in the 103 queries to build a partitioning tree for each table by

hand. As we can see from Figure 7-7, as AdaptDB runs more queries from the CMT

workload and adapts the underlying partitions to the ones that fit the workload,

the query runtime of AdaptDB approaches the runtime of the this hand-tuned fixed

partitioning, occasionally doing slightly better as the mix of queries in the workload

changes.

This experiment shows that AdaptDB can effectively improve the performance of

real query workloads by a significant margin.

52

Chapter 8

Related Work

It is well known that join performance can be improved significantly by co-partitioning

the tables being joined. This allows tables to be joined as map-only tasks without any

intermediate shuffling. Hadoop++ [15] and CoHadoop [16] proposed to co-partition

datasets in HDFS to speed up join performance by avoiding shuffle joins. This ap-

proach works for well for two tables and fails if multiple tables need to joined to a

single table. Reference partitioning [17] allows to co-partition multiple tables that

are linked via foreign keys and predicate-based reference partitioning [7] generalizes

this further to allow co-partitioning tables linked with different join keys by allowing

tuples to replicate in different partitions. However, these approaches still require prior

knowledge of the workload. Also, when tables are not properly co-partitioned, they

fallback to shuffle joins, which are expensive. AdaptDB is able to instead use partial

partitioning and hyper-joins to get good performance on multiple join attributes at

the same time.

Adaptive online joins [18] are proposed in an online or streaming setting where

static partitioning schemes are infeasible. New tuples coming to AdaptDB can be ap-

pended to the corresponding data blocks based on the partitioning trees and AdaptDB

can adapt the underlying partitioning scheme based on workloads in an online man-

ner. Flow-Join [19] is designed to detect load imbalance during data shuffling, which

can be incorporated into AdaptDB when shuffle join is used. In hyper-join, the

query planner can generate a balanced query plan when the philosophy of flat storage

model [20] is adopted. BFHM Rank-Join [21] leaves repartitioning up to the underly-

53

ing key-value store (HBase) and deals with identifying joinable tuples from the joined

tables using a new statistical data structure based on Bloom filters and histograms.

The same idea can also be applied to hyper-joins for better cardinality estimation.

Database cracking [22, 23] is designed to adaptively index data without requiring

an upfront query workload. Crack joins [24] extends the idea of cracking to joins.

Crack join does dynamic physical reorganization of the join column based on the

input queries. Cracking has been used extensively in single node in-memory column-

stores. However, cracking cannot be applied directly to distributed data stores as

the cost of re-partitioning is very high. Unlike cracking, where every query triggers

re-organization, AdaptDB does careful planning for each round of re-partitioning to

amortize its cost. Also, AdaptDB adapts the layout of the primary copy of the

data while cracking maintains secondary data structures, which can be expensive to

maintain in a distributed setting.

Scheduling the data blocks for computing joins on a single machine is also inves-

tigated by many researchers [25, 26]. Merrett et al. [25] designed an algorithm to

minimize the page access when the size of buffer pool is limited to 2 pages. Pramanik

et al. [26] proposed a solution to give an upper bound of page access on condition

that each page is accessed once. Both of these works are focused on scheduling the

reads on a single node; in contrast, in hyper-join, our objective is to figure out groups

of partitions that should be read together on multiple nodes. Besides the single node

vs multi-node objective, the hyper-join problem is different from the problem in [26]

because in their work the groups are known in advance and the goal is to order the

reads of pages to minimize I/Os. Our problem boils down to solving minimum k-

subset union problem, which is not the problem solved in this prior work. In this

sense, the two algorithms above are orthogonal approaches for computing joins on a

single machine and AdaptDB benefits from them when memory on each machine is

limited.

54

Chapter 9

Conclusion

In this thesis, we presented AdaptDB, a system for adaptively parititoning data to

provide good performance for distributed joins. Specifically, we showed that our new

hyper-join algorithm can avoid data shuffling by identifying blocks of data in the

joined tables that overlap on the join attribute, and then joining just those blocks.

We showed that optimally solving the problem of ordering hyper-join blocks is NP-

hard, and developed an approximate algorithm that runs in a millisecond or less for

reasonably sized datasets. In addition, we described how AdaptDB maintains several

partitioning trees, and employs smooth repartitioning to move blocks from one tree

to the other without immediately repartitioning the whole data set. Our results

on both real and synthetic workloads show that AdaptDB provides improved query

performance over shuffle joins, and effectively adapts to changes in workloads over

time.

55

56

Bibliography

[1] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster comput-
ing. In NSDI, pages 15–28, 2012.

[2] Sanjay Agrawal, Vivek R. Narasayya, and Beverly Yang. Integrating vertical and
horizontal partitioning into automated physical database design. In SIGMOD
Conference, pages 359–370, 2004.

[3] Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel Madden. Schism:
a workload-driven approach to database replication and partitioning. PVLDB,
3(1):48–57, 2010.

[4] Rimma V. Nehme and Nicolas Bruno. Automated partitioning design in parallel
database systems. In SIGMOD Conference, pages 1137–1148, 2011.

[5] Andrew Pavlo, Carlo Curino, and Stanley B. Zdonik. Skew-aware automatic
database partitioning in shared-nothing, parallel OLTP systems. In SIGMOD
Conference, pages 61–72, 2012.

[6] Abdul Quamar, K. Ashwin Kumar, and Amol Deshpande. SWORD: scalable
workload-aware data placement for transactional workloads. In EDBT, pages
430–441, 2013.

[7] Erfan Zamanian, Carsten Binnig, and Abdallah Salama. Locality-aware par-
titioning in parallel database systems. In SIGMOD Conference, pages 17–30,
2015.

[8] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy M. Lohman, Adam J. Storm,
Christian Garcia-Arellano, and Scott Fadden. DB2 design advisor: Integrated
automatic physical database design. In VLDB, pages 1087–1097, 2004.

[9] Anil Shanbhag, Alekh Jindal, Yi Lu, and Samuel Madden. Amoeba: A shape
changing storage system for big data. PVLDB, 9(13):1569–1572, 2016.

[10] Raphaël Clifford and Alexandru Popa. Maximum subset intersection. Informa-
tion Processing Letters, 111(7):323–325, 2011.

57

[11] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zama-
nian. The end of slow networks: It’s time for a redesign. PVLDB, 9(7):528–539,
2016.

[12] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. Disk-
locality in datacenter computing considered irrelevant. In HotOS, 2011.

[13] Apache hadoop. http://hadoop.apache.org.

[14] Liwen Sun, Michael J. Franklin, Sanjay Krishnan, and Reynold S. Xin. Fine-
grained partitioning for aggressive data skipping. In SIGMOD Conference, pages
1115–1126, 2014.

[15] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kargin, Vinay
Setty, and Jörg Schad. Hadoop++: Making a yellow elephant run like a cheetah
(without it even noticing). PVLDB, 3(1):518–529, 2010.

[16] Mohamed Y. Eltabakh, Yuanyuan Tian, Fatma Özcan, Rainer Gemulla, Aljoscha
Krettek, and John McPherson. Cohadoop: Flexible data placement and its
exploitation in hadoop. PVLDB, 4(9):575–585, 2011.

[17] George Eadon, Eugene Inseok Chong, Shrikanth Shankar, Ananth Raghavan,
Jagannathan Srinivasan, and Souripriya Das. Supporting table partitioning by
reference in oracle. In SIGMOD Conference, pages 1111–1122, 2008.

[18] Mohammed Elseidy, Abdallah Elguindy, Aleksandar Vitorovic, and Christoph
Koch. Scalable and adaptive online joins. PVLDB, 7(6):441–452, 2014.

[19] Wolf Rödiger, Sam Idicula, Alfons Kemper, and Thomas Neumann. Flow-join:
Adaptive skew handling for distributed joins over high-speed networks. In ICDE,
pages 1194–1205, 2016.

[20] Edmund B. Nightingale, Jeremy Elson, Jinliang Fan, Owen S. Hofmann, Jon
Howell, and Yutaka Suzue. Flat datacenter storage. In OSDI, pages 1–15, 2012.

[21] Nikos Ntarmos, Ioannis Patlakas, and Peter Triantafillou. Rank join queries in
nosql databases. PVLDB, 7(7):493–504, 2014.

[22] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Database cracking. In
CIDR, pages 68–78, 2007.

[23] Martin L. Kersten and Stefan Manegold. Cracking the database store. In CIDR,
pages 213–224, 2005.

[24] Stratos Idreos. Database cracking: Towards auto-tuning database kernels. CWI
and University of Amsterdam, 2010.

[25] T. H. Merrett, Yahiko Kambayashi, and H. Yasuura. Scheduling of page-fetches
in join operations. In VLDB, pages 488–498, 1981.

58

http://hadoop.apache.org

[26] Sakti Pramanik and David Ittner. Use of graph-theoretic models for optimal rela-
tional database accesses to perform join. ACM Trans. Database Syst., 10(1):57–
74, 1985.

59

	Introduction
	System Architecture
	Background
	Upfront Data Partitioning
	Adaptive Re-partitioning

	Adaptive Distributed Joins
	Hyper-join
	Analysis of Shuffle Join and Hyper-join
	Joins Over Multiple Relations

	Partitioning for Hyper-join
	Two-phase Partitioning
	Smooth Repartitioning
	Key Benefits
	Putting it All Together

	Implementation
	Evaluation
	Experimental Setup
	Effect of Hyper-join Algorithm
	Performance of Adaptive Repartitioner
	Parameter Sensitivity
	Approximation Algorithm vs ILP
	AdaptDB on a Real Workload

	Related Work
	Conclusion

