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Abstract

The field of quantum computing investigates the extent to which one can design a quan-
tum system that outperforms all known classical hardware at a certain task. But, to what
extent can a human being, capable only (perhaps) of classical computation and of ob-
serving classical bit-string messages, verify that a quantum device in their possession is
performing the task that they wish? This is a fundamental question about the nature of
quantum mechanics, and the extent to which humans can harness it in a trustworthy man-
ner. It is also a natural and important consideration when quantum devices may be used
to perform sensitive cryptographic tasks which have no known efficient classical witness
of correctness (Quantum Key Distribution, and Randomness Expansion are two examples
of such tasks). It is remarkable that any quantum behavior at all can be tested by a ver-
ifier under such a constraint, without trusting any other quantum mechanical device in
the process! But, intriguingly, when there are two or more quantum provers available in
an interactive proof, there exist protocols to verify many interesting and useful quantum
tasks in this setting.

This thesis investigates multi-prover interactive proofs for verifying quantum behavior,
and focuses on the stringent testing scenario in which the verifier in the interactive proof
is completely classical as described above. It resolves the question of the maximum at-
tainable expansion rate of a randomness expansion protocol by providing an adaptive
randomness expansion protocol that achieves an arbitrary, or infinite rate of randomness
expansion [29]. Secondly it presents a new rigidity result for the parallel repeated magic
square game [24], which provides some improvements on previous rigidity results that
play a pivotal role in existing interactive proofs for entangled provers, QKD, and ran-
domness expansion results. This new rigidity result may be useful for improving such
interactive proofs in the future.

The second half of this thesis investigates the problem of bounding the role of quantum
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entanglement in non-local processes. This is important for understanding the upper limit
on the power of multi-prover interactive proof systems with entangled provers. In par-
ticular it establishes that, assuming the Strong Kirchberg Conjecture, one can provide a
doubly exponential upper bound on the class MIP* [25] (for comparison, the best known
unconditional upper bound on MIP* is that its languages are recursively enumerable!).
Finally this thesis presents a result which characterizes the type of entanglement that is
useful in entanglement assisted quantum communication complexity by showing that
any communication protocol using arbitrary shared entanglement can be simulated by a
protocol using only EPR pairs for shared entanglement. Therefore all quantum communi-
cation protocols can be approximately simulated by a protocol using only the maximally
entangled state as a shared resource.

Thesis Supervisor: Peter W. Shor
Title: Morss Professor of Applied Mathematics
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Chapter 1

Introduction

The field of quantum computing promises to provide both hardware and algorithms

which are capable of vastly outperforming any previously known algorithm at certain

tasks (factoring numbers, hidden shift problems, non-abelian hidden subgroup problems,

database search, etc). Furthermore, while the construction of a quantum computer is a

large scale effort spanning decades, there are already a number of functioning special

purpose quantum devices, which exceed what is achievable classically, and can be con-

structed in the laboratory today. For example, devices for performing quantum key dis-

tribution, as well as the experimental apparatus for the violation of Bell's inequality with

"no loopholes" [39] have already been built! With a growing number of quantum devices

being constructed for a variety of applications, from cryptographic to computational, it is

fundamentally important to develop tools which an experimenter can use to verify that

untrusted (or imperfectly constructed) systems are indeed performing the tasks that they

claim. Yet, the task of testing and controlling untrusted systems in this manner poses a

unique difficulty in the context of quantum mechanics. All devices which have a quan-

tum advantage over classical technology must make use of entangled quantum states,

which are delicate and may "collapse" upon observation. One cannot merely look "un-

der the hood" of a quantum device during it's operation without potentially ruining the

entangled state resource on which the device relies, and thus compromising it's function.
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Furthermore, in the absence of such methods of direct observation the very complexity

which gives proposed quantum systems their power could also make it extremely diffi-

cult to test them for errors or flaws. Therefore, the design of protocols to test untrusted

quantum devices for particular behavior, under the weakest possible assumptions, and

in a computationally efficient manner, is an inherently important component of the push

for more powerful quantum technology.

The simple test of running a quantum machine and it's classical counterpart side by side

and comparing them directly is an important benchmark in the context of computation,

but even in that context this test only provides a small fraction of the information that one

might need to inform future development of a complex quantum machine. Furthermore,

in other contexts, such as quantum cryptography, this sort of test is entirely insufficient

to address subtle aspects of the security of quantum devices. To design a more strin-

gent type of test it is useful to think of the quantum devices being tested as untrusted

"provers", and to imagine that the experimenter ("verifier") may only interact with these

provers as "black-boxes", merely providing inputs and observing their corresponding

outputs. This model arises naturally within quantum computation/information, where

the experimenter cannot look inside a device in their possession without potentially ru-

ining it, but it is also an extension of the notion of an Interactive Proof from theoretical

computer science. Among other advantages, the interactive proof approach to verifying

quantum behavior is capable of guaranteeing a level of cryptographic security which may

not be achievable, even in principle, by simply inspecting the hardware very carefully be-

fore operation (for example). Remarkably, several important and natural open problems

about interactive proofs for quantum behavior are closely related to longstanding open

problems in quantum information and mathematical physics (see Sections 1.3, 1.4.2 for

more).
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1.1 Concrete Examples

Interactive proofs in quantum information are protocols through which a verifier can in-

teract with an untrusted quantum system (modeled by the untrusted "prover(s)" in the

interactive proof), and certify that a particular quantum task is being performed by that

system. Concrete examples of such interactive-proofs include: protocols for delegating

quantum computation to untrusted devices [82], protocols for device independent ran-

domness expansion [22, 78, 93], and protocols for device independent quantum key dis-

tribution [94, 37, 58], as well as any interactive proof providing non-trivial bounds for

the complexity class MIP*, or QMIP. These topics are related to each other by many

shared mathematical and conceptual techniques, and thus the term "interactive proof"

used here does not only refer to complexity classes such as MIP*, but also to a broader set

of techniques which have an important practical impact in Quantum Cryptography, and

the delegation of Quantum Computation, in addition to importance in Quantum Com-

plexity.

1.2 Concepts

There is a fascinating interplay of different ideas in the study of interactive proofs in quan-

tum information: On one hand the study employs and inspires techniques from compu-

tational complexity theory, quantum information and operator theory. On the other hand

it focuses on tests which serve a basic practical purpose for any researcher running exper-

iments related to the elusive properties of quantum computing or quantum mechanics.

That is, these protocols allow a human observer (the "verifier"), to draw mathematically

certifiable conclusions from an experiment run on untrusted quantum devices, often with

error bounds that are suitable for cryptographic applications. For example, these un-

trusted devices may be prototype devices which a scientist has constructed (imperfectly)

in their laboratory, or devices they may have purchased from some untrusted source.
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The concrete examples, in Section 1.1, of interactive proofs for testing quantum systems,

will be discussed in greater detail in sections below, along with related mathematical

techniques. For now, it is amazing to note that in most of these examples the verifier is

only required to exchange classical bit string messages with the quantum devices, and

perform standard polynomial time classical computations. This means that these proto-

cols allow the verifier to control the quantum behavior of the untrusted quantum system,

even though the verifier does not ever handle or observe any quantum states! The mere intuition

that such a stringent test of untrusted quantum devices is even conceivable is itself a non-

trivial observation in quantum mechanics, and is drawn from the famous Bell's inequality

[10]. Bell's inequality, and the more general concept of a non-local entangled game that it

inspired (the CHSH game [17], the Magic Square game [67, 77], etc.), form the conceptual

basis upon which the theory of interactive proofs for testing quantum systems is built.

This conceptual basis provides a precedent showing that it is possible to circumvent one

of the most fundamental requirements in all of science: The requirement that an exper-

imenter must trust the devices in their own laboratory to obey certain rules defined by

their construction (or else the experimental result is invalid). Astoundingly, the intuition

inspired by Bell's inequality, together with mathematical tools from quantum information

and computer science, make it is possible to design protocols which do not have this require-

ment. Almost all of the concrete examples listed above allow the verifier to interact with

the quantum devices as black-boxes, observing only the classical bit strings which form

inputs and outputs to the devices, and assuming nothing about the construction of the

devices, except that they obey the laws of physics (they cannot communicate faster than

the speed of light, or violate the laws of quantum mechanics, etc). Indeed, these protocols

are sound even in the case that the quantum devices were purchased or acquired from a

possibly-malicious adversary, or were constructed in a manner that may have unforseen

imperfections.

A key concept in the use of non-local entangled games in interactive proofs is the notion of

the "Rigidity" of certain games. A non-local entangled game is said to exhibit "Rigidity"
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if it has the property that any nearly optimal measurement strategy used by the players

must be nearly equal to one unique "ideal" strategy (up to isometry, say). In other words,

we say that a non-local entangled game is rigid if it has a unique optimal winning strategy

that is robust in the sense that any nearly optimal strategy must be close to the unique

optimum. Both the CHSH game, and the Magic Square game have this property. Rigidity

was first discovered and proved for the CHSH game, and that is one of the biggest reasons

that CHSH plays such a central role in the results in Section 1.1, and many more.

Rigidity in entangled games is a powerful tool because it effectively provides us with a

type of interactive proof that the players (which we think of as untrusted provers) are

performing specific quantum operations. In particular, if one observes that Alice and Bob

have nearly optimal performance on repeated rounds of the CHSH game, then one can

show that (up to isometry) Alice and Bob must be performing high-fidelity versions of

the ideal CHSH measurements corresponding to their inputs. Formally proving certain

variants of this fact, and achieving nearly optimal, cryptographically useful parameters

is a central goal in quantum key distribution, device independent randomness expansion

and many interactive proofs in quantum information. In the case of delegating quan-

tum computation, or tasks in MIP*, one can employ a second technique. Now that the

two untrusted provers, Alice and Bob, can be constrained to perform particular quantum

measurements on command, the verifier can leverage the fact that Alice and Bob cannot

communicate, and play them against each other during the protocol. The following is

a common high-level protocol structure (variations are used in [82], and in a number of

subsequent works): The verifier begins the protocol by asking the two provers to play

many independent rounds of the CHSH game. At some randomly chosen point dur-

ing the protocol Alice is instructed by the verifier to perform some more complicated

task rather than simply playing CHSH (perhaps the task is to apply some more complex,

multi-qubit unitary, etc). Bob, on the other hand, is told that both players are still playing

yet more rounds CHSH and given his inputs for the next games. By leveraging a number

of techniques from the theory of interactive proofs and quantum information, it is often
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possible to use the specific measurements that Bob must perform in CHSH to force Bob

to unwittingly check Alice's actions in carrying out her new more complicated task. Tests

based on non-local entangled games in this manner have exciting potential to aid in over-

coming both conceptual and logistical challenges of harnessing the power of a quantum

computer, and other complex quantum systems.

1.3 Focus

This thesis is focused on establishing bounds on the types of quantum behavior that can

be tested by a classical verifier: The first half (the "lower bound" half) studies the design of

new interactive proofs in quantum information, and the sharpening of related techniques.

The second half (the "upper bound" half) is focused on investigating and quantifying

the role of quantum entanglement, which is a key resource in interactive proofs. This

leads immediately to the need to quantify the role of entanglement in non-local entangled

games, which is a problem closely related to providing a satisfactory upper bound on the

class MIP* (the best currently known upper bound is that its languages are recursively

enumerable!).

1.4 Results

1.4.1 Interactive Proofs with a Classical Verifier

Device Independent Randomness Expansion First proposed by Colbeck [21] in 2006,

as a type of interactive proof by which a classical verifier can certify that untrusted quan-

tum devices are producing new random bits (in an information theoretic sense), "device-

independent randomness expansion" has flourished into an active area of research [22,

78, 93, 34, 26, 1, 88, 90, 79, 92, 36, 56, 3, 55, 87]. In joint work with Thomas Vidick and

Henry Yuen [26], we showed the first upper bounds on randomness expansion proto-
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cols, establishing that non-adaptive protocols that are robust to noise cannot surpass dou-

bly exponential randomness expansion, and that techniques robust against non-signaling

strategies (such as those in the state-of-the-art paper [93]), could not surpass (singly)-

exponential randomness expansion.

Arbitrary Randomness Expansion With the above upper bounds in place, a fundamen-

tal conceptual open question in the field of randomness expansion was whether an adap-

tive protocol could exceed these established upper limits on non-adaptive protocols. In

joint work with Henry Yuen [29], we showed that indeed this is possible, and more sur-

prisingly, that adaptive randomness expansion protocols could provably achieve an arbi-

trarily high rate of randomness expansion. Through a novel application of a sequential

rigidity result from [821 we designed a protocol using additional provers to "launder"

the randomness produced by the provers in the [93] protocol and feed it back to those

original provers who produced it. The result was an adaptive protocol that achieves in-

finite (or arbitrarily large) certifiable randomness expansion, using a constant number of

non-signaling quantum devices! This result addressed a lack of understanding in the

field about the extent to which the outputs of provers could be adaptively reused as in-

puts to those same provers, while provably maintaining the soundness of the protocol.

It also solves an open problem of [34], which proposed a more direct scheme for adap-

tive randomness expansion, but required, for its analysis, the assumption that certain

pairs of devices do not share any entanglement (an assumption that we do not require).

Our protocol works even in the presence of arbitrary entanglement between the devices

and an eavesdropper, and is sound against devices that can employ any physically im-

plementable adversarial strategy, including simple tactics such as memorizing their own

previous inputs and outputs, etc.

Rigidity Results for Parallel Repeated Games: The notion of Rigidity of Nonlocal En-

tangled Games is one of the most important and widespread tools used to study the com-

plexity class MIP*, as well as many other topics, including self-testing quantum states
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and device independent protocols. There has been a growing interest in improving these

techniques to further basic goals in self-testing quantum states, and to improve bounds

on MIP* [63, 95, 64, 70, 65]. In joint work with Anand Natarajan [24] we proved a rigidity

result for the parallel-repeated magic square game, which shows that any e-optimal strat-

egy for the n-round game must have the property that the provers' measurements are

poly(n, E)-close (in expectation) to the ideal Pauli product operators on 2n qubits. For the

purposes of certifying this measurement structure, this is an exponential improvement

over the previous best result [64], which had an exponential (in n) error dependence.

This work allows a verifier to test that the untrusted provers are applying specific Pauli-

product measurements on all of the rounds of the game, which is a task that, if properly

optimized, may have a number of potential uses in lower bounding MIP*, and improv-

ing protocols for device-independent delegation of quantum computation. Ideas in these

directions are the object of our future research. For now it is interesting to note that one

can use the main result of [24] to replace the role of [82] in the arbitrary randomness ex-

pansion protocol of [29], and this results in decreasing the runtime of the protocol from at

least n 16 to 0(n2 ).

1.4.2 Entanglement in Non-Local Games and Communication Complex-

ity

On the role of Entanglement in Nonlocal games It is a major open problem to upper

bound the amount of entanglement required by a pair of players to win even relatively

small nonlocal games. The heart of our lack of understanding on this matter is that there

is no known bound on the dimension of the entangled state that the provers may need to

share in order to implement a nearly optimal strategy to a general entangled game. There-

fore, the dimension of the Hilbert space used by the provers is potentially unbounded,

and the space of strategies available to the provers is not even known to be compact. This is

the reason that there is no obvious "brute force" attempt at computing the winning prob-

20



ability of a general non-local entangled game, for example, by constructing an epsilon-net

over the space of the provers' potential strategies, and evaluating every representative of

the net, etc, etc. This lack of understanding is the very same issue that stands in the way

of providing a more stringent upper bound for the complexity class MIP* (by perhaps

improving over the best currently known upper bound, which is that its languages are

recursively enumerable).

In joint work with Thomas Vidick [25], we show that by assuming a mathematical con-

jecture known as the Strong Kirchberg Conjecture, one can provide an upper bound for

the amount of entanglement required in such games. If this conjecture were to hold, our

result would provide a concrete upper bound on the dimension of entanglement needed

to approximate a non-local game (as a function of the number of inputs and outputs of

the game, and the approximation error E) , and would also show that MIP* is contained in

doubly-exponential time, which is a vastly better upper bound than is currently known.

The main contribution of our work is a novel rounding scheme for the proposed Semidef-

inite Programing (SDP) hierarchy of [71, 31], by which we show that one can round an

SDP certificate for an entangled game to produce an actual measurement strategy for two

provers to play that game, with the caveat that the measurements for the two different

provers will not commute exactly, as they should in any non-local strategy, but rather

they will be -- close to commuting in the operator norm (where L is the level of the SDP
VT

hierarchy which is used to produce the certificate). The task of further "rounding" such an

approximately cormmating measurement strategy to an exactly commuting measurement

strategy is exactly the content of the Strong Kirchberg Conjecture, and so, that is the miss-

ing piece needed to prove an upper bound on MIP* itself via this approach. However,

even without the Strong Kirchberg Conjecture, our result shows that MIP* is contained

in doubly-exponential time, where MIP* is an analog of MIP*, in which the soundness

condition is relaxed to allow 3-commuting strategies for the provers. Furthermore, we
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establish the lower bound

NEXP C U MIP q (2,1,1 - P),
p,qcpoly

which provides a direct analogue of the same lower bound for MIP* [41], and is proven

using the same technique. This demonstrates that our rounding scheme is accomplishing

a non-trivial task, as it provides an unconditional upper bound on the complexity class

MIPg, which also has a non-trivial lower bound.

Entanglement-Assisted Communication Complexity Another complexity-theoretic lens

through which to study the power of prior entanglement is provided by the notion of

Entanglement-Assisted Communication Complexity. For reasons closely related to our

lack of understanding of entanglement in non-local games (see above), there is no known

general bound on the amount of shared entanglement that may be required by two provers

in order to perform a given communication protocol optimally (that is, to compute some

joint function f(x, y), when Alice is given only x and Bob is given only y). However,

in joint work with Aram Harrow, we show that it is possible to characterize the type of

entanglement necessary for a given communication protocol, at least up to some error.

In particular, we show that every quantum communication protocol using Q qubits of

communication and arbitrary shared entanglement can be e-approximated by a protocol

using O(Q /c) qubits of communication and only EPR pairs as shared entanglement. Note

that this conclusion is opposite of the common wisdom in the study of non-local games,

where it has been shown, for example, that the 13322 inequality has a non-local strategy

using a non-maximally entangled state, which surpasses the winning probability achiev-

able by any strategy using only a maximally entangled state, regardless of the dimension

[96]. This hints that the notion of entanglement-assisted communication complexity, even

with very small amounts of allowed communication (and thus perhaps "approximating"

the non-local games setting), may provide a setting in which it is easier to bound the

22



role of entanglement. As one of the tools in our analysis, we prove that any shared en-

tangled state between two provers may be transformed into any other shared entangled

state using a communication protocol the requires an amount of communication equal to

the ft:-Earthmover Distance between the two states. This may be of independent interest.

23



24



Chapter 2

Arbitrary Randomness Expansion

In this chapter we present a device-independent randomness expansion protocol, involv-

ing only a constant number of non-signaling quantum devices, that achieves unbounded

expansion: starting with m bits of uniform private randomness, the protocol can produce

an unbounded amount of certified randomness that is exp(-(ml/3 ))-close to uniform

and secure against a quantum adversary. The only parameters which depend on the size

of the input are the soundness of the protocol and the security of the output (both are

inverse exponential in m). This settles a long-standing open problem in the area of ran-

domness expansion and device-independence.

The analysis of our protocols involves overcoming fundamental challenges in the study of

adaptive device-independent protocols. Our primary technical contribution is the design

and analysis of device-independent protocols which are Input Secure; that is, their output

is guaranteed to be secure against a quantum eavesdropper, even if the input randomness

was generated by that same eavesdropper!

The notion of Input Security may be of independent interest to other areas such as device-

independent quantum key distribution.
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2.1 Introduction

Bell's Theorem states that the outcomes of local measurements on spatially separated sys-

tems cannot be predetermined, due to the phenomenon of quantum entanglement [10].

This is one of the most important "no-go" results in physics because it rules out the pos-

sibility of a local hidden variable theory that reproduces the predictions of quantum me-

chanics. However, Bell's Theorem has also found application in quantum information as

a positive result, in that it gives a way to certify the generation of genuine randomness: if

measurement outcomes of separated systems exhibit non-local correlations (e.g. correla-

tions that violate so-called Bell Inequalities), then the outcomes cannot be deterministic.

While Bell's Theorem does give a method to certify randomness, there is a caveat. The

measurement settings used on the separated systems have to be chosen at random! Nev-

ertheless, it is possible to choose the measurement settings in a randomness-efficient

manner such that the measurement outcomes certifiably contain more randomness (as

measured by, say, min-entropy) than the amount of randomness used as input. This is

the idea behind randomness expansion protocols, in which a classical experimenter, starting

with m-bits of uniform randomness, can interact with physically isolated devices to certi-

fiably generate g(m) bits of (information theoretic) randomness (ideally with g(m) > m).

Furthermore, these protocols are device-independent: the only assumption made on the

devices is that they cannot communicate, and obey the laws of quantum mechanics. In

particular, there is no a priori assumption on the internal structure or dynamics of the

devices. Indeed, the devices may even have been manufactured by an adversary!

First proposed by Colbeck [21] in 2006, device-independent randomness expansion has

flourished into an active area of research [22, 78, 93, 34, 27, 1, 92, 36, 69]. Its study has syn-

thesized a diverse array of concepts from quantum information theory, theoretical com-

puter science, and quantum cryptography, including generalized Bell inequalities [78, 1,

79, 34], the monogamy of entanglement [93, 84], randomness extractors [85, 52, 30], and

quantum key distribution [9, 58, 94, 69]. Randomness expansion has even been experi-
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mentally realized by [78], who reported the generation of 42 bits of certified randomness

(over the course of a month).

The fundamental problem in analyzing a randomness expansion protocol is in demon-

strating a lower bound on the amount of certified randomness, usually measured by

min-entropy. There have been a couple of different approaches. A line of works, start-

ing with [78], gives bounds on the min-entropy by analytically relating the extent to

which a Bell inequality is violated to the "guessing probability" of the protocol's out-

put [78, 34, 1, 79]. Another approach, developed in [93], is to utilize the operational def-

inition of min-entropy in a "guessing game", which establishes that a low min-entropy

output implies that the non-signaling devices must have communicated during the pro-

tocol (a contradiction). This latter approach yields a protocol (which we will refer to as

the Vazirani-Vidick protocol in this chapter) that not only achieves the state-of-the-art ex-

pansion factor g(m) = exp(ml"3 ), but is also quantum secure: that is, the output contains

high min-entropy even from the perspective of a malicious eavesdropper that may be en-

tangled with the protocol devices. Recently, a work by [69] not only achieves quantum

security, but randomness expansion that tolerates a constant level of noise in the devices.

The original protocol of [21, 22] obtained g(m) = 0(m), or linear expansion. This was im-

proved by Pironio et al. [78] to achieve quadratic expansion g(m) = 0(m2 ). The protocols

of [93, 34, 69] achieve exponential expansion. Perhaps the most tantalizing open question

in randomness expansion is: how large an expansion factor g(m) can we achieve? For

example, is there a protocol with expansion factor g(m) that is doubly-exponential in m?

Is there any upper bound on randomness expansion in general?

The only known upper bounds on randomness expansion apply to non-adaptive protocols

with two devices (i.e., where the referee's inputs to the devices do not depend on their

previous outputs) [27]. There the authors showed that noise robust, non-adaptive proto-

cols must have a finite bound on their expansion factor1 . With the exception of [34], ran-

domness expansion protocols prior to our work were non-adaptive, and hence the results

1They showed that g(m) < exp(exp(m)), or a doubly-exponential upper bound.
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of [27] suggest those protocols have a bounded expansion factor. Thus, going beyond the

the finite expansion barrier appears to require adaptivity - but it could, a priori, be the

case that even adaptive protocols are inherently limited to finite randomness expansion.

We present an adaptive protocol that achieves infinite certifiable randomness expan-

sion, using a constant number of non-signaling quantum devices. The output length

of our protocol depends only on the number of rounds performed in the protocol (which

can be arbitrarily large), and not on the size of the initial random seed! This shows that

there is no finite upper bound on the expansion factor of adaptive protocols. Our pro-

tocol involves a constant number - eight, specifically - of non-communicating black-box

quantum devices, and guarantees that the output of the protocol is close to uniformly

random, even from the point of view of a quantum eavesdropper (where the closeness

to uniformity is determined by the initial seed length). Our protocol works even in the

presence of arbitrary entanglement between the devices and an eavesdropper.

The key technical component of the analysis of the InfiniteExpansion protocol is to show

that a sub-protocol, which we call ClusterExpansion, is Input Secure: it generates uniform

randomness secure against a quantum adversary, even if that adversary generated the seed

randomness earlier in the protocol! Since the ClusterExpansion sub-protocol is Input Secure,

composing ClusterExpansion with itself in sequence (i.e. using the outputs of one instance

of the protocol as the inputs of another instance) yields another randomness expansion

protocol, this time with much larger expansion factor. Our InfiniteExpansion protocol is the

infinite composition of the ClusterExpansion sub-protocol.

In Section 2.2.2, we discuss two relevant and enlightening results about randomness ex-

pansion [16, 69], which were announced after the original posting of this work (though

these results were discovered independently and, unbeknownst to the authors, devel-

oped in parallel with this work).

We note here that any exponential randomness expansion protocol with security against a

quantum eavesdropper (such as the Vazirani-Vidick protocol, for example) readily yields

a protocol using 2N devices, which has a randomness expansion given by an exponential
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2N

tower function of N (i.e. 222 ): after running such a quantum-secure expansion protocol

on one pair of devices, the devices are discarded, and their outputs are fed into a fresh

pair of devices (that did not communicate with any previous devices used in the protocol).

This "exponential tower" protocol terminates when all 2N devices have been used. This

was first observed by [101], and in [69] it is noted that the robust exponential expansion

protocol given therein can be used to obtain an analogous "tower" randomness expansion

protocol, which is also robust.

For all practical intents and purposes, a "tower" expansion protocol can certify much,

much (... muchmuchmuchc) more randomness than would ever be needed in practice, so

one might consider it effectively an "infinite" randomness expansion protocol. However,

such a protocol avoids the need to reuse devices, and hence sidesteps the need for Input

Security - but secure device reuse is the key conceptual issue that we find interesting!

Finally, the work [16] serves as one very interesting example (discovered independently

of this work) of how the concept of Input Security is relevant to problems other than

infinite randomness expansion. We note that our result can be combined with a quantum-

secure randomness amplification protocol (for example [16], or [14]) to produce an infinite

randomness amplification protocol.

2.1.1 Barriers to infinite randomness expansion

Here we identify the inherent technical challenges in analyzing any adaptive randomness

expansion protocol. In Section 4.1 we discuss how to overcome these challenges. Some of

the technical issues discussed here have been identified in previous work (e.g., [34]) and

in randomness expansion folklore.

The Extractor Seed and Input Security Problems

In any adaptive randomness expansion scheme there is a stage when intermediate out-

puts of the protocol are used to generate "derived" inputs for some devices in future

stages of the protocol. This creates an inherent difficulty in analyzing adaptive protocols,
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because the devices involved in the protocol may adversarially take advantage of mem-

ory and shared entanglement to attempt to create harmful correlations between interme-

diate outputs and the the internal state of the devices that receive the "derived" inputs.

To prove the correctness of an adaptive randomness expansion protocol, one must show

that the devices receiving these "derived" inputs cannot distinguish them from inputs

generated by a truly private random seed. Because of this fundamental challenge, there

are very few analyses of adaptive randomness expansion protocols (or key distribution

protocols for that matter) in the existing literature. Prior to our work, [34] gave the only

analysis of an adaptive randomness expansion protocol. However, their analysis requires

the assumption that entanglement is only shared between certain pairs of devices, but

otherwise that the devices are unentangled.

In the general case where devices can share arbitrary entanglement and may be entan-

gled with an eavesdropper, we face the issue of the quantum security of the intermediate

outputs against devices that will receive the derived inputs2 . This issue manifests itself

in two different forms: the Input Security Problem and the Extractor Seed Problem.

Generally, a randomness expansion protocol is comprised of two components: an expan-

sion component and an extractor component. The expansion component will generate an

output string that, while not necessarily close to uniformly random, will be guaranteed

to have high min-entropy. The extractor component will then take this high min-entropy

source, as well as a small polylogarithmic-sized uniformly random seed (taken, for ex-

ample, from the initial seed of the randomness expansion protocol), and convert the high

min-entropy source into a string that is close to uniform.

The Input Security Problem. In an adaptive protocol, we require that the output of the

expansion component contains high min-entropy relative to a quantum eavesdropper (i.e.

high conditional min-entropy) - where we treat the other devices in the protocol, collec-

tively, as the eavesdropper. However, the Vazirani-Vidick protocol - an quantum-secure

2 We say that a string X is quantum secure, or simply secure, against an eavesdropper E if the joint state
of the string and eavesdropper PXE is approximately equal to Ux1 & PE, where Un denotes the uniform
distribution on IXI bits.
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exponential randomness expansion protocol that produces an output with high condi-

tional min-entropy3 - uses, in its analysis, an assumption that the initial seed to the pro-

tocol is secure against the eavesdropper [93]. This is a condition that cannot be satisfied

in an adaptive protocol. Suppose in an adaptive protocol some device D produced an

intermediate output X, which we use as the derived input to some other device D' as in-

put randomness. Note that X is not secure against D. Hence, we cannot use the analysis

of [93] as is and treat D as an eavesdropper, and argue that D' produces an output Y that

is secure against D. We refer to this issue as the Input Security Problem.

The Extractor Seed Problem. Even supposing that we had an expansion component that

was immune to the Input Security Problem (i.e. produces output that contains high con-

ditional min-entropy despite the input being known to the eavesdropper), we would still

suffer from a similar problem with the extractor component. Here, we need to use a small

polylogarithmic-sized uniform extractor seed to convert a source of high conditional min-

entropy into a string that is nearly uniform, relative to a quantum adversary.

First, note that we cannot always take the extractor seed from the original random seed

to the protocol, because this would limit us to exponential randomness expansion. Thus

to achieve super-exponential expansion, the extractor seed must eventually be generated

by intermediate outputs of the protocol.

Secondly, the existing quantum-secure extractors in the literature (e.g., see [30, 52, 85])

require that the extractor seed be secure against the quantum eavesdropper. As pointed

out by [34], provably satisfying this requirement in an adaptive randomness expansion

protocol involves overcoming a technical difficulty similar to that of the Input Security

Problem. We refer to this technical barrier as the Extractor Seed Problem.

To summarize, in order to obtain quantum security of the output against an eavesdropper

E, current quantum-secure expansion protocols and extraction procedures require the

strong assumption that the joint state of the seed, the devices, and the eavesdropper PsDE

3 Recent work by [69] gives another such protocol with quantum security. See Section 2.2.2 for more
information.
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is such that PsDE 1_s_ 0 PDE, where Uls denotes the uniform distribution on IS bits,

and PDE denotes the internal state of the devices and adversary. In order to solve the

Input Security and Extractor Seed Problems, we require randomness expansion protocols

and extraction schemes that work with the weaker assumption that PSD ~ Us 0 PD -

with no mention of the eavesdropper! - while still obtaining the same quantum-security

guarantees. We call this property Input Security, and say that protocols with this property

are Input Secure.

It is interesting to note that extractors, by themselves, cannot satisfy a property like Input

Security (i.e. we cannot guarantee that an extractor will produce private randomness

when the seed is prepared by the adversary)4 .

The primary conceptual contribution of this chapter is the design and analysis of the first

randomness expansion protocols and extraction schemes that are (provably) Input Secure.

The Conditioning Security Problem

The output guarantees of a randomness expansion protocol only hold conditioned on the

protocol succeeding (i.e. conditioned on the event that the referee does not abort). Thus,

the analysis of the security properties of the output of a protocol must take into account

the fact that conditioning can skew the distribution of the output. Adversarially designed

devices may, for example, coordinate to pass the protocol only when the first bit of the

output is "1". This alone does not harm the min-entropy of the output by much, but sug-

gests that there could be other strategies employed by adversarial devices to significantly

weaken the security of the output. In [93], they show that such a collusion strategy would

imply that the eavesdropper and the devices could communicate with each other, a con-

tradiction. However, this analysis again relies on the assumption that the initial seed is

secure against the eavesdropper. When analyzing an Input Secure protocol, we cannot

4Here's a counter-example: let D be an n-bit source that is uniformly random. Let S be a O(log n)-bit
seed that is uniform and independent of D. Let E denote the string (S, first bit of Ext(D, S)). The min-
entropy of D with respect to E is at least n - 1, and S is uniform and independent of D. However, the
output of the extractor is not secure against E.
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use this assumption, so resolving this Conditioning Security Problem requires different

techniques.

The Compounding Error Problem

Another technical concern is the problem of error accumulation in an adaptive protocol.

When using intermediate outputs to generate derived inputs for later stages in the pro-

tocol, we can only assume, at best, that the derived inputs are approximately secure and

uniform. Furthermore, these errors will accumulate over the course of the protocol, and

in an infinite expansion protocol, this accumulation could grow so large that the proto-

col will fail to work at some point. Depending on how one measures the security of a

string against an quantum eavesdropper, errors may not accumulate in a linear fashion -

as pointed out by [51], even if the accessible information of a string relative to an eavesdrop-

per (which has been used as a standard security measure in quantum key distribution) is

small, a tiny piece of classical side information could completely break the security of the

string. Such an ill-behaved measure of quantum security would severely complicate the

analysis of an adaptive randomness protocol.

2.2 Results

We present a protocol that attains infinite randomness expansion. Our protocol, which we

denote the InfiniteExpansion protocol, involves a constant number of non-signaling devices

(eight, specifically) that, with m bits of seed randomness, can produce an arbitrarily large

amount of certified randomness. In particular, starting with m bits of random seed, if

InfiniteExpansion is run for k iterations, the output of the k iterations is a random string

that is exp(-O(ml/ 3 ))-close to uniform, and has length

*2(m 
1 /3)

k
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i.e., a k-height tower of exponentials in m. The initial seed length m controls soundness

parameters of the protocol, but has no bearing on the amount of certified output randomness!

Our protocol uses as subroutines the exponential expansion protocol of [93] (which we

denote VV) 5 , and the sequential CHSH game protocol of Reichardt, et al. [84] (which we

denote RUV). See Section 2.4 for more detail on these sub-protocols. We describe the

protocol below, both algorithmically and schematically (see Figure 2-1).

S

VV VV

RUV RUV

X Y

Ti Ti+1

Figure 2-1: The InfiniteExpansion protocol. All arrows indicate classical operations performed by
the referee. S denotes the initial seed to the protocol, and Ti denotes the output of the protocol at
the ith iteration. Each of the VV and RUV boxes involve two devices, for a total of eight devices
used in the protocol.

5We implicitly include the extraction procedure as part of the VV protocol, where the extractor seed is
taken from the input seed of the VV protocol.
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Non-signaling devices: D 1,... ,D 8.

Initial seed randomness: S ~ U.

1. Let X1 +- S.

2. For i = 1, 2, 3, ...

(a) Yi +- VV(D 1 , D 2 , Xi).

(b) Zi + RUV(D 3, D4 , Yi).

(C) Wi <-VV(D5, D6, Zi).-

(d) Xj+1 <- RUV(D 7,D 8 ,Wi).

Figure 2-2: The algorithmic specification of the InfiniteExpansion protocol. VV(A, B, X) (resp.
RUV(A, B, X)) denotes executing the VV (resp. RUV) sub-protocol with devices A and B using
seed randomness X (for more details about these sub-protocols see Section 2.4). The Xi, Yi, Zi, and
Wi registers are all classical, and managed by the referee.

The main result of this chapter is the following theorem, stated informally here (for the

formal version see Theorems 12 and 11):

Theorem 1 (Infinite randomness expansion, informal). Let D {D,. .. , D8 } denote eight

non-signaling quantum devices. Let E be an arbitrary quantum system that may be entangled

with the Di's, but cannot communicate with them. Suppose that a classical referee executes the

InfiniteExpansion protocol with the {Dj} devices, using an m-bit random seed S that is secure

against the devices { Di}. Then, for all k G N, if Pr(Protocol has not aborted by round k) =

exp(-O(m1 / 3 )), then the output Tk of the protocol, conditioned on not aborting after k rounds,

is exp(-(ml/ 3 ))-secure against E, and has length 0 (g(k) (M)), where g(k) denotes the k-fold

composition of the function g : N -+ N, defined as g(m) = exp(0 (m 1/ 3 )).

Furthermore, there exists a quantum strategy for the devices such that, with high probability, they

do not abort the protocol at any round.

The analysis of the InfiniteExpansion protocol overcomes the challenges described in the
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previous section. We now give an overview of how we solve them.

2.2.1 Our proof strategy

Solving the Extractor Seed and Input Security Problems. The key technique for solving

both the Extractor Seed and Input Security Problems is a powerful result of Reichardt,

Unger, and Vazirani [84], which is based on the phenomenon of CHSH game rigidity. The

CHSH game is a two-player game in which a classical referee chooses two input bits x

and y uniformly at random, and gives them to non-communicating players Alice and

Bob. Alice and Bob produce binary outputs a and b, and they win the game if a f b =

x A y. If Alice and Bob employ classical strategies, they cannot win the CHSH game with

probability exceeding 75%, but using shared quantum entanglement, there is a quantum

strategy that allows them to win the game with probability cos2 (7r/8) ~ 85%. The CHSH

game is frequently used in the study of quantum entanglement and non-locality. More

relevantly, it also serves as the basis for many randomness expansion protocols in the

literature: protocols will often test for Bell inequality violations by measuring how often

devices win the CHSH game.

The famous Tsirelson's Theorem states that cos 2 (?T/8) is the optimal winning probability

using quantum strategies. Even more remarkable is that the CHSH game is rigid: there

is essentially a unique quantum strategy that achieves this optimum. That is, any quan-

tum strategy that achieves cos2 (?r/8) winning probability must be, in a specific sense,

isomorphic to the "canonical" CHSH strategy which involves Alice and Bob making

specific measurements on separate halves of an EPR pair6 (which we will call the ideal

CHSH strategy). Furthermore, CHSH game rigidity is robust: any strategy that achieves

cos2 (n/8) - e winning probability must be isomorphic to a strategy that is O(Ve-)-close

to the ideal CHSH strategy. A form of CHSH game rigidity was first proved by Mayers

and Yao in the exact case [60] and later made robust by [61, 68].

6The EPR pair state is defined as Ip) = (100) + 11)).
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Reichardt et al. proved a far-reaching generalization of CHSH game rigidity to the situ-

ation where Alice and Bob play N independent CHSH games in sequence. This can be

viewed as a larger game CHSHON, where Alice and Bob win CHSH N if they win approx-

imately cos 2 (7r/8)N games. Reichardt et al. prove the following theorem, stated infor-

mally here (for the precise version see [84] Theorem 5.38, or Theorem 2.8 in this chapter),

which they call sequential CHSH game rigidity:

Theorem 2 (Sequential CHSH game rigidity, informal version). Suppose Alice and Bob play

N instances of the CHSH game, where the inputs to Alice and Bob in each instance are uniform

and independent of each other. Divide the N instances into N/t blocks of t games each, where

t = N 11a for some universal constant a > 1. If Alice and Bob use a strategy that, with high prob-

ability, wins approximately cos2 (mr/8)N instances, then in most blocks, Alice and Bob's strategy

is approximately isomorphic to the ideal sequential strategy, in which the ideal CHSH strategy is

applied t times in sequence to t EPR pairs that are in tensor product with each other.

Sequential CHSH game rigidity is a powerful tool that allows one to characterize the be-

havior of separated quantum devices, simply from observing the correlations between

their (classical) inputs and outputs. Reichardt et al. use sequential CHSH games as a

primitive in a more general protocol that allows a classical computer to command non-

signaling quantum devices to perform arbitrary quantum computation - and verify that

this computation has been performed correctly! Here, in contrast, our goal is much more

modest: we simply want to command non-signaling quantum devices to generate uni-

formly random bits.

The CHSH®N game already yields a protocol that produces certified randomness. In par-

ticular, we have two non-signaling devices play N games of CHSH. The referee will check

whether the devices won approximately cos2 (7r/8)N games. If so, the referee will select

a block of t games at random, and use the output of one of the devices in that block of t

games be the protocol's output - call this the RUV protocol.

We know from Theorem 2 that, with high probability, the outputs of the RUV protocol

were generated by a strategy approximating the ideal sequential strategy. The ideal se-
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quential strategy is the ideal CHSH measurement repeatedly applied to a tensor product

of EPR pairs, so the measurement outcomes are necessarily in tensor product with an

eavesdropper. Thus the outputs of RUV are approximately secure against a quantum ad-

versary. The problem, of course, is that the amount of randomness needed by the referee

to run this RUV protocol is much greater than the amount of certified randomness in the

output (O(N) versus N1/). So we can't use RUV by itself as a randomness expansion

scheme.

However, sequential CHSH game rigidity offers more than just the guarantee of secure

uniform randomness; observe that it does not need to assume that the inputs to the N CHSH

games were secure against an eavesdropper - only that it was secure against the devices play-

ing the CHSH games! This is precisely the Input Security property.

Thus, we can use the RUV protocol as a "scrambling" procedure that transforms an in-

put that may not be secure against an eavesdropper into a shorter string that is secure

against an eavesdropper. Recall that, because of the Input Security and Extractor Seed

Problems, the output of the VV sub-protocol in the InfiniteExpansion protocol may not be

secure against other devices (namely, the devices that produced the input to the VV sub-

protocol). However, if we invoke the RUV protocol on the outputs of VV, we obtain secure

outputs that can be used as input randomness for another VV instance.

Furthermore, observe that we still have achieved randomness expansion: the VV protocol

attains exponential expansion, and the R UV protocol will only shrink that by a polynomial

amount.

Solving the Conditioning Security Problem. The main technical contribution of this

chapter is solving the Conditioning Security Problem. While combining the VV and RUV

protocols conceptually yields an Input Secure randomness expansion protocol, there still

is the technical issue of whether this protocol is Input Secure when we condition on the

RUV protocol succeeding. There are simple examples that show that adversarial devices

can, via conditioning, skew the distribution of their outputs, and even introduce entan-

glement between some bits of their outputs and an eavesdropper, despite most outputs
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having been produced by an ideal strategy. The Sequential CHSH Game Rigidity Theo-

rem of [84] does not take conditioning into account, because it is assumed that the devices

pass the RUV protocol with probability extremely close to 1.

Here, we assume the RUV protocol passes with some small probability that is inverse

polynomial in the number of games played, and show that the RUV protocol manages

to obtain an approximately secure output conditioned on the protocol succeeding. We

prove this in Lemma 15, and our proof employs tools from quantum information theory.

Our approach is reminiscent of that used in the proofs of the classical Parallel Repetition

Theorem (see, e.g., [40]).

Solving the compounding error problem. We use the strongest definition of the quan-

tum security of a string against an eavesdropper: namely, a string X is (approximately)

secure against an eavesdropper E iff the trace distance between the joint state PXE and

the ideal state UIX, 0 PE is small, where where UIX, denotes the uniform distribution on

IXI bits. To solve the compounding error problem, we first show that the errors incurred

at each iteration of the InfiniteExpansion protocol accumulate linearly - this is because the

trace distance satisfies the triangle inequality. Then, we show that the error added at iter-

ation k is exponentially smaller than the error of iteration k - 1. Thus, the infinite sum of

errors converges to a constant multiple of the error incurred by the first iteration, which is

exponentially small in the seed length m. Hence we avoid the potential problems raised

by [51].

2.2.2 Related work

Here we discuss some relevant recent developments in the area of randomness expansion

and amplification, which were announced after the original posting of this work. We

note, however, that the results in the following works were discovered independently

of the results in this work, and their relationship to each other was only realized after

both works were essentially complete. In the following description we will occasionally
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use the terminology of this chapter to restate results of these other works, though those

papers used different terminology in the original statements.

In independent work by Chung, Shi, and Wu [16], the problem of Input Security was also

studied, and played a key role in their construction of a device-independent protocol to

amplify randomness, starting with any min-entropy source. The authors require an Input

Secure randomness expansion protocol to use as a building block for their amplification

protocol. They prove an elegant result called the Equivalence Lemma, which may be

informally summarized as follows (see [16] for a formal statement):

Consider a device-independent randomness expansion protocol P, that starts with a seed

S, uniform and in tensor product with the devices D involved in the protocol, as well

as a quantum adversary E, and produces an output string X that is certifiably close to

uniform and in tensor product with E and S. The Equivalence Lemma states that any

such protocol P also certifies output randomness X with the same security guarantees,

without requiring that S is in tensor product with E - in other words, any such protocol P

is also Input Secure. In particular, this proves that the Vazirani-Vidick protocol (when

implemented in composition with a strong quantum extractor) is, in fact, Input Secure,

and can be composed with itself to perform unbounded randomness expansion in the

same manner as we do here, without requiring the use of the RUV protocol.

Secondly, another independent work of Miller and Shi [69] gives the first provably robust

protocol for randomness expansion (and, in fact, gives robust exponential expansion).

Combining the main result of [69] with Equivalence Lemma of [16], allows one to obtain

a provably robust infinite expansion protocol requiring only four non-communicating de-

vices.

It is interesting to note that extractors (which have a similar input-output structure to ran-

domness expansion protocols) cannot possess an analogous Input Security. Thus, there

is no natural analogue of the Equivalence Lemma which will work for extractors. In this

sense, the Equivalence Lemma represents an interesting phenomenon or property which

is possessed by device independent (quantum) protocols, but not by (classical) protocols
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such as extractors.

2.3 Preliminaries

2.3.1 Notation

We write [N] for the set of integers {1,..., N}. For a Hilbert space 71, let D(N) denote the

set of density matrices on X. The classical state px corresponding to a discrete classical

random variable X is defined as J: Pr(X = x) x)(xI (where x ranges over the computa-

tional basis states). For a discrete classical random variable X, we use IX to denote X's

length in bits. A classical-quantum state (or cq-state) PXB C D (-x 0 NOB) is a density ma-

trix where PXB Px px x)(x1 p, where px are probabilities and { x) } is an orthonormal

basis for W-x. We write IN to denote the N x N identity matrix. We write U to denote the

density matrix 2-12m (i.e. the completely mixed state of dimension 2m). For an arbitrary

matrix A, we let ||A ltr := 1trV/AtA denote its trace norm (also known as its Schatten

1-norm).

Definition 3 (Secure cq-state). Let E be an arbitrary quantum system. Let PXE be a cq-state.

For state PXE, X is c-secure against E iff

||PXE - UIXI 9 PE tr -

2.3.2 Quantum information theory

For completeness we present a few key definitions and facts of quantum information

theory that will be useful for us later. For a more comprehensive reference we refer the

reader to, e.g., [74, 98].

For a density matrix p, its von Neumann entropy is defined as H(p) -tr(p log p). For

a density matrix PAB c D(A 0 RB), the conditional von Neumann entropy is defined
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as H(A|B)9 := H(AB)9 - H(B)9 where H(AB)9 = H(PAB) and H(B)9 = H(pB). The

quantum mutual information between A and B of PAB is defined as I(A : B)p := H(A)p -

H(A IB),. The conditional quantum mutual information I(A : B C)p for a tripartite state

PABc is defined as H(A IC)p - H(AIB, C)9 . We will usually omit the subscript p when the

state is clear from context.

We now list a few useful facts about these quantum information-theoretic quantities.

Proofs of the following facts can be found in, e.g., [98].

Fact 4. 1. Let X be a discrete random variable, and let px be its associated classical state. Then

H(px) = H(X), where H(X) is the Shannon entropy of X.

2. (Conditioning reduces entropy) Let PAB E D(NA 0 WB). Then H(A|B)p < H(A) p .

3. (Chain rule) Let PABC E D(WA 0 NB 0 7c). Then

I(A: BC)p = I(A : B)p + I(A: C|B)p.

4. (Pinsker's inequality) Let PAB E D(WA 0 71B). Then

IPAB - PA 0PB 112 < 21(A -B).

Finally, we define quantum min-entropy. Let PAB be a bipartite density matrix. The min-

entropy of A conditioned on B is defined as

Hmin(A B)p := max{A E R: lo-B E D(NB) s.t. 2AIA 0 0 B PAB}-

Let e > 0. Then E-smoothed min-entropy of A conditioned on B is defined as

H ij.(A|B p := max
pABEB(PABE)

where B (PAB, E) is the set of sub-normalized density matrices within trace distance E of
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PAB. For a detailed reference on quantum min-entropy, we refer the reader to [85].

2.3.3 Modelling protocols and input robustness

In this chapter we will consider several different randomness expansion procedures (e.g.,

the Vazirani-Vidick protocol, or the RUV protocol); a crucial element of our analysis is

that these protocols are all input robust in the sense that slight deviations from uniformity

in their input seed only mildly affect the expansion guarantees that we get when assum-

ing the seed is perfectly uniform. To make this input robustness property formal, we

introduce the quantum operation description of randomness expansion protocols.

In general, a randomness expansion protocol is an interaction between a classical referee

R and a quantum device D, that is entirely unconstrained, except that D consists of two

or more isolated, non-signaling sub-devices (but the sub-devices may be entangled).

The important Hilbert spaces we will consider are:

1. (Pass/No Pass Flag). WF denotes a two-dimensional Hilbert space that the referee

will use to indicate whether it accepts or rejects the interaction.

2. (Protocol seed). WS denotes the 2"-dimensional Hilbert space that corresponds to

the (private) m-bit seed randomness that the referee will use for its interaction with

the device D.

3. (Protocol output). 7 x denotes the Hilbert space that corresponds to the output of

the device D ".

4. (Device internal state). WD denotes the Hilbert space corresponding to the internal

state of the device D.

5. (Eavesdropper). WE denotes the Hilbert space corresponding to a potential quan-

tum eavesdropper, which may be entangled with device D.
7 Since D always consists of non-signaling subdevices, we will arbitrarily declare one of the sub-devices'

output to be the output of the overall device D.
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We can view a randomness expansion protocol as a quantum operation S acting on states

in the space HF 0 WS 0 -X 0 HD- Of the Hilbert spaces listed above, device D only

has access to the Hilbert space -D; the other Hilbert spaces get updated by the referee's

interaction with D (except for HE which is controlled by the eavesdropper). For example,

the referee, by interacting with D, will write D's outputs to register X. The states in the

Hilbert spaces HF, WS, and HX will always be classical mixed states (i.e. diagonal in the

computational basis).

More precisely, let P be a randomness expansion protocol. We will model P as a quan-

tum operation S acting on an initial state p'SXD in the space HF 0 H1S 0 X 0 HD, where

p' is the internal state of D before the protocol starts, and p'sX is prepared by the ref-

eree. S will be some unitary map Vp applied to the joint state piSXD. Now, define the

quantum operation F that takes a state PFSXD, and produces the post-measurement state

of PFSXD conditioned on measuring 1) in the F register, and then traces out the F and S

registers, leaving PXDIF=1. We define FS to be the composition of the two quantum op-

erations S, followed by F. Throughout this chapter, we will decorate density matrices by

superscripts i and f to denote the states before and after the protocol, respectively. For

example, we will often let pfSXD denote the state of the FSXD system after the execution

of the protocol, conditioned on the protocol succeeding (i.e. F = 1).

The completeness and soundness of protocol P are statements about the post-measurement

state 7F 0 t E (PFSXDE) (where 1 E is the identity on HE), argued only with respect to an

ideal initial state pisXDE such that piSXD : )(O F 0 )(O 0 ph, (or, depending

on the analysis, the stronger assumption that pisXDE O)(O F 0 U O)(O 0 phE)

In other words, the initial seed is assumed to be perfectly uniform and unentangled with

the device D. However, we also have a form of input robustness: if the initial state were

instead 3-close in trace distance to the ideal initial state defined above, then we would

obtain the same output parameters as P, up to an 9/A additive factor in trace distance,

where A is the probability that 1) is measured in the F register. We prove this formally in

Lemma 5 below.
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Lemma 5. Let D be a device, and E an arbitrary quantum system that may be entangled with

D. Let 0FSX := |0)(0|F 0 U1S 0 (0XO X. Let the quantum operations F, 8, and FS be defined

as above. Supposefor all states 0 FSXDE such that cFSXD - 0 FSX 0 UD, there exists a state TXDE

such that TXE = UIq 0 oE and

11E 0 IIETFSXDE) - TXDE I i <E.

Let 5, A > 0. Let plSXDE be such that |P<SXDE -FSXDE 6tr for a state 0 FSXDE where

JFSXD 0)(O1F 0 0 0)KIX 0 O-D. Suppose that the probability of measuring 1) in the

F register for the state I 0 1E (PFSXDE) is at least A. Then, there exists a state YXDE such that

pXE UX| 0 TE and

IPfXDE - YXDE 1tr < E + 6/A,

where pfXDE E p sxDE).

The proof of Lemma 5 is deferred to Appendix A.1.

2.3.4 The Vazirani-Vidick protocol and quantum-secure extractors

Vazirani and Vidick exhibit a protocol that involves two non-signaling quantum devices

and a classical referee, that achieves randomness expansion that is secure against a quan-

tum eavesdropper [93, Protocol B]. We record a formulation of their result as it will be

used by us here:

Theorem 6 (Vazirani-Vidick protocol [93]). There exists a protocol P with the following prop-

erties. Let D1 and D2 be arbitrary non-signaling quantum devices. Let E be an arbitrary quantum

system, possibly entangled with D1 and D2, but cannot communicate with D1 and D 2 once the

protocol begins. The protocol, executed with devices D1 and D2, has the following properties:

1. (Output length). The output of the protocol has length n(m) = exp(Cm 3 ), for some

constant C;
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2. (Completeness). There exists a non-signaling quantum strategy for D1 and D2 to pass the

protocol with probability 1 - exp( - (m2/3 ));

3. (Soundness). If the initial joint state piDDE of the seed S, devices D 1, D2, and eavesdropper

E is such that piD1D2 E U 0 PD1D2 E, then f Pr(Protocol succeeds) > E, we have that

Hoco(X|IE), Pf hm,

where e E (m), and pX E denotes the joint state of device D1's output and E, conditioned

on the protocol succeeding.

where h(m) := exp(C'm 1/ 3) and E(m) = 1/h(m),for a universal constant C'.

Another important primitive we will use is a quantum-secure extractor.

Definition 7 (Quantum-secure extractor). A function Ext : {o,1}" x {0, 1}d - {0, 1i}r

is a (h, E)-quantum-secure extractor iff for all cq-states PXE classical on n-bit strings X with

Hoo(X|E)p > h, and for uniform seed S secure against X and E (that is, the joint state PXES is

such that PXES = PXE 0 Ud), we have

PExt(X,5)ES - Ur ® PES tr < E,

where PExt(X,S)ES denotes the joint cqc-state on the extractor output, quantum side information E,

and the seed S.

Theorem 8 ([30]). For all positive integers n, r, there exists afunction QExt : {0, 1} x {0, 1} 

{0, }T that is a (r + O(log r) + O(log 1 /e), E)-quantum-secure extractor where d = 0(log 2 (n/E) log r).

2.3.5 Sequential CHSH game rigidity

We can view a sequence of N CHSH games, played by non-signaling quantum devices

D 1, D2, as a protocol CHSH®N, where the referee uses a private random seed S to generate
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inputs Ai, Bi E {0, 1} to the devices D1 and D2, and obtains their respective outputs

Xi, Yi E {0, 1} for each round i e [N]. The protocol succeeds if W, the number of rounds

i such that Xi D Yi = Ai A Bi, is at least (cos 2 (Tr/8) - 0(__))N.

Divide the N rounds of the CHSH 0 N protocol into blocks of t consecutive games each,

where t - LN1/*J for some fixed constant a. Let X be the output register of device D1 .

Let Xi denote the t-qubit register of the ith block of X.

We paraphrase the sequential CHSH game rigidity theorem of [84] here. In the theorem,

we imagine that for each block of games, the devices D1, D 2 apply some local quantum

operation on their respective systems to produce outputs for the block. We call the quan-

tum operation applied in each block i their block strategy for i. We say that a block strategy

is c-ideal if there is a local isometry I under which their quantum operation S and the

state acted upon by S are together c-close to the ideal CHSH strategy (for a precise def-

inition of c-ideal strategies, see [84]). The main property of c-ideal strategy that we will

use is the following:

Lemma 9. Let D 1, D2 be non-signaling quantum devices. Suppose that D1 and D2 participate

in the CHSH®N protocol. Let E be an arbitrary quantum system that may be entangled with D 1,

D2, but cannot communicate with them once the CHSH®N protocol begins. Let Ii be the indicator

random variable denoting whether D1 and D 2 's block strategy for block i is c-ideal. Let Xi be the

output of block i. Then,

||PXiElI.=1 - Un 9 PE|izi=1 1tr < C,

where PxEgi 1 denotes the joint state of Xi and E, conditioned on the event Ii = 1.

Proof. This is straightforward given the definition of c-ideal strategy. See [84, Definitions

5.4, 5.5 and 5.37] for more detail. E

Theorem 10 (Sequential CHSH game rigidity; Theorem 5.38 of [84]). Let D1, D2 be non-

signaling quantum devices. Suppose that D1 and D2 participate in the CHSHON protocol. Let

E be an arbitrary quantum system that may be entangled with D 1, D2, but cannot communicate

with them once the C H S H N protocol begins. Let W be the total number of CHSH games that D1
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and D2 win in the protocol. Let X be the output of Di. Fix E > 0, and let G < N/t be the total

number of blocks i such that the strategy employed by D1 and D2 in block i is K*t-K*ideal, where

i* > 1 is a universal constant. Then,

1 1
Pr(W > cos2 (7/8)N - VN logN and G < (1 -v)N/t)

2 t2

where v = (12/ V2) VlogNt / N' /4 , and t > 85.

Proof. This is Theorem 5.38 of [84], instantiated with the parameter settings used in The-

orem 5.39. El

2.4 The Protocol

In this section we formally define the protocol for infinite certifiable randomness expan-

sion, which we call the InfiniteExpansion protocol. The protocol uses eight non-signaling

devices, which may all share entanglement, but cannot communicate with each other.

The devices are partitioned into two Expansion Clusters Co and C1 with four devices each.

In each iteration, the InfiniteExpansion protocol alternates between clusters Co and C1, per-

forming a sub-protocol called ClusterExpansion. The output of one cluster is used as seed

randomness for the next invocation of the ClusterExpansion sub-protocol with the other

cluster. Only the first iteration requires some seed randomness, to "jumpstart" the ran-

domness expansion process.
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InfiniteExpansion Protocol

Non-signaling Clusters: CO, C1.

Initial seed randomness: S - U,.

1. Let X1 +- S.

2. For i = 1, 2, 3,..

(a) Xj+1 <- ClusterExpansion (Ci, Xi).

(b) If ClusterExpansion aborts, then abort the entire protocol, otherwise

continue.

Figure 2-3: The InfiniteExpansion protocol. The classical registers Xi are maintained by the ref-
eree, and Ci denotes cluster Ci mod 2. Xj+1 +- ClusterExpansion(Ci, Xi) denotes executing the
ClusterExpansion sub-protocol with the devices in cluster Ci, using Xi as the seed randomness,
and storing the sub-protocol output in register Xi+1

We now specify the sub-protocol ClusterExpansion (C, S) for a 4-device cluster C and seed

randomness S. As discussed earlier, two devices of a cluster C will be used to perform the

Vazirani-Vidick near-exponential randomness expansion protocol, and the other two will

be used to perform a variant of the CHSH 0 N protocol, which we call the RUV protocol.
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ClusterExpansion(C, S) Sub-Protocol

Input Non-signaling Devices: C := {D 1, D2, E1, E2 }.

Input seed randomness: S

1. Y +-VV (D1, D2, S).

2. Z +- RUV(E1 , E2, Y)-

3. If either of the above instances of VV or RUV aborts, then abort

ClusterExpansion. Otherwise continue.

4. Output Z.

It is important that no subset of these devices can communicate with (signal to) any other

subset of the devices throughout the course of the subroutine. We now give precise defi-

nitions of the VV and RUV sub-protocols.

2.4.1 The VV sub-protocol

The VV sub-protocol consists of performing Protocol B from [93], and then applying a

randomness extractor to the output of Protocol B. For any s, Protocol B takes in a uni-

formly random s-bit seed, and conditioned on the protocol succeeding, produces a string

of length n(s) = exp(F(s1 /3 )) with h(s) = exp(f)(s 1 / 3 )) bits of (smoothed) min-entropy

(see Theorem 6). We give a detailed account of the particular parameter settings we use

for Protocol B in Appendix A.3.

We use the QExt randomness extractor given by Theorem 8. More formally, by QExtn,r,E

we denote the (r + O(log r) + O(log 1/E), E)-quantum-secure extractor mapping {0, 1}n X

{0,1}d to {0,l}r, where d = d(n,r,e) = O(log2 (n/E) logr).

For all s, the VV sub-protocol takes in a s-bit seed S, and outputs v(s) bits, where v(s)

exp(0)(s1 / 3 )) (for more detail, see Appendix A.3).
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VV(A, B, S) Sub-Protocol

Input Non-signaling Devices: A, B

Input Seed: S

1. Let S1 be the first [s/2J bits of S, and S2 be the last Ls/21 bits of S, where

s := IS1.

2. Perform Protocol B of [93] with devices A and B, using S1 as seed random-

ness, and store Protocol B's output in register Y.

3. If Protocol B aborts, then abort VV. Otherwise, continue.

4. Output Q Extn,E (, S 2 ), wheren n(Ls/21),r , and e = 1/h([s /2j).

Figure 2-4: The VV sub-protocol. The functions n(s) and h(s) denote the output length and min-
entropy lower bound of Protocol B in Theorem 6 on s bits of seed.

2.4.2 The RUV sub-protocol

The RUV sub-protocol, using a random seed S, has two devices (call them A and B) play a

number N of sequential CHSH games, where N is a function of IS , and the inputs to the

devices in each of the CHSH games are determined by half of S. The RUV sub-protocol

aborts if they do not win nearly ~ cos2 (7/8) fraction of games. Then, the other half of S is

used to select a random sub-block of A's outputs in the N CHSH games, and the sub-block

is produced as the output of RUV.

More precisely, let X e {0, I}N denote A's outputs. Divide X into blocks of t consecutive

bits, and further subdivide each block into vI sub-blocks of VI bits each. We set t

LN /Lj, where a := [16K] and K, is the constant from [84, Theorem 5.7].

For all s, the R UV sub-protocol takes in a s-bit seed S, and outputs r(s) bits, where r(s)

(s /4)1/(2,)]
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RUV(A, B, S) Sub-Protocol

Input Non-signaling Devices: A, B

Input Seed: S

1. Let S, be the first Ls/2i bits of S, and S2 be the last Ls/2i bits of S, where

s := iSi.

2. Let a, b E {0, 1} [s/4J be the first and last halves of S1, respectively.

3. For i =1,. .. , N, whereN:= [s/4]:

(a) Input ai, bi to devices A and B respectively, and collect outputs xi, yi C

{0, 1} from A and B respectively.

4. Let W be the number of indices i such that xi T ye = ai A bi. If

1
W < cos 2 (7r/8)N - I =

2 v 2

then abort RUV. Otherwise, continue.

5. Output Z, the V'1-bit string that is the jth sub-block of the ith block of X,

where X is the register that holds the outputs (xi), and i and j are selected

uniformly from [NIt], [Vt-], respectively, using the seed S2 -
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I

Figure 2-5: The RUV sub-protocol. All arrows indicate classical operations performed by the ref-
eree.

2.5 Analysis of the InfiniteExpansion Protocol

We now analyze the InfiniteExpansion protocol. As discussed in the Preliminaries (Sec-

tion 4.2), we will use the notation pi and pf (or some variant thereof) to denote the state

of the registers, devices, eavesdroppers, etc., before and after the execution of a protocol,

respectively. We will use the following functions throughout this section: v(s) and r(s) to

denote the output lengths of the VV and RUV sub-protocols on inputs of length s, respec-

tively (defined in Section 2.4). The output length of the ClusterExpansion sub-protocol on

an s-bit seed is g(s) := r(v(s)). We will use g(k)(s) to denote the k-fold composition of

g(s) (i.e. g(l) (s) = g(s), g(2) (s) - g(g(s)), etc.).

Theorem 11 establishes that there exists a quantum strategy by which the devices, with

high probability, do not abort the InfiniteExpansion protocol. Theorem 12 establishes the

soundness of the InfiniteExpansion protocol.

Theorem 11 (Completeness of the InfiniteExpansion protocol). There exists a non-signalling
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quantum strategy for devices D1 ,..., D8, such that the probability that the referee aborts in any

round i in the execution of the Infinite Expansion(C1, C2, S) protocol is at most exp(-O(m 1/ 3)),

where C1 ={ D1,... , D4 } and C2 = { D 5,.. , D8}, and S is a uniformly random m-bit seed that

is secure against D 1, . . . , D8.

Proof. We group the devices into pairs {D 1, D2}, {D 3, D4 }, {D 5 , D 6}, and {D 7, D8}, where

pairs {D 1, D2} and {D 5 , D6 } will instantiate the ideal devices for the VV protocol (see [93]

for more details), and the pairs {D 3, D4 } and {D 7, D8} will instantiate the ideal devices

for the RUV protocol (i.e. use the ideal CHSH strategy in every round). Fix a round i and

assume, without loss of generality, that the referee interacts with the pairs {D 1, D2} (used

for the VV protocol) and {D 3, D4 } (used for the RUV protocol) in round i. The probability

that {D 1, D2} abort the VV protocol is at most exp(- (m21 3 )), and the probability that

{D 3, D4 } abort the R UV protocol is at most exp(-)(m, 1 3 )), where mi = g(') (m). Thus, by

the union bound, the probability of aborting any round i is at most exp(-O(m1 / 3)). E

Theorem 12 (Soundness of the InfiniteExpansion protocol). Let Co and C1 be non-signaling

Expansion Clusters. Suppose that a classical referee executes the InfiniteExpansion (Co, C1, S) pro-

tocol, where S denotes the referee's classical register that holds an m-bit seed. Let WINi to be

the event that the referee did not abort the InfiniteExpansion protocol in the ith round, and let

WIN<;; = WIN1 A -A WINi. Let E be an arbitrary quantum system that may be entangled

with Co and C1, but cannot communicate with Co and C1 once the protocol has started. Let po

denote the initial joint state of the seed and the clusters. If pscoc1 = Um 0 pcOc 1, then we have for

all k c N that if Pr(WIN<k) > A > exp(-C'm1 / 3 )for some universal constant C', then

|PXkE - Ug(k)(M) pltr < 4exp(-C"m/A 2

where

" C" is the universal constant from Theorem 13, and

* PkE denotes the joint state of the referee's Xk register and E after k rounds of the InfiniteExpansion(Co, C1
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Protocol, conditioned on the event WIN<k-

Before presenting the proof of Theorem 12, we wish to direct the reader's attention to the

Input Security of the InfiniteExpansion protocol: the assumption on the initial seed is that it

is in tensor product with the cluster devices only, and not the eavesdropper E - however,

the output at each iteration is close to being in tensor product with the eavesdropper E.

The proof of Theorem 12 assumes the correctness of the ClusterExpansion sub-protocol

(Theorem 13), and shows that the InfiniteExpansion protocol maintains the property that

at each iteration i, the output of X of cluster Ci (where Ci denotes Expansion Cluster

Ci mod 2) is approximately secure against the other cluster C+1. Thus, the the execution

of the ClusterExpansion sub-protocol with C+ 1, conditioned on not aborting, will continue

to produce a nearly uniform output. Furthermore, the errors accumulate linearly with

each iteration.

Proof. Define C := C mod 2. Divide the overall probability of success, Pr(WINgk), into

conditional probabilities: let p = Pr(WINgk) and let pi = Pr(WINiJWINgi_1). Observe

that we have p = F pi > A. We prove the claim by induction.

The inductive hypothesis: Recursively define (i) := EEC (() (m), pi) + 5(i - l)/pi,

where 3(1) := EC(m, p1) and EEC(-) is the error bound given by Theorem 13. For all

i = 1, .. ., k - 1, there exists a state yXCiCi.1 such that &XiC 1E g(i)(m) + and

P iCiCi-1E YXiCiCi+1E tr < 6(),

where p iCiCi 1E is the joint state of the Xi register, both clusters Ci and Ci+ 1 , and E after

the ith round, conditioned on WIN<i.

Let k = 1. Then, by invoking Theorem 13 with C = C1, and treating the quantum

eavesdropper as C2 and E together, we obtain that there exists a state YX 1 C1 C2 E such that

YX1C2E Ug(m) 9 Y 2 E, and

1PX11C1C2 E - YX 1C1C2E tr EC(mp1) = 3(1))
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This establishes the base case.

Now, suppose that we have run k - 1 rounds of the InfiniteExpansion protocol for some

k > 1. Using our inductive assumption for i = k - 1, we invoke Theorem 13 along with

Lemma 5 to conclude that there exists a state ykk E such that yUkE Ug(k) (M)0YXkCkCk+,E suhta XkCk+lE go

YCk lE and

PXkCkCklE PXkCkCk+lE tr EC (k Pk) + J(k - )Pk := 6(k).

This completes the induction argument. We now bound 6(k):

6(k) =_ Ek - ~ Ek-1
Pk (

1
+ 1 (Ek-2 ~

Pk-1

< Ek -+ Ek-1 + - El)

<7E,

where we write ei := EEC(g(i)(m),pi), and use the facts that -pi >

exponentially smaller than Ei_1.

Finally, for every k, we have that

A and each ei is

PXkE - Ug(k)(m) OE1tr < PXE YXkE1tr - I7XkE

3(k) + JU (k)(M) 0 Y-

-Ug(k) (i) PE Htr

U E(k)(M) (01tr

3(k) + lyk - ktr

< 23(k).

Next, we argue that the ClusterExpansion sub-protocol is an Input Secure randomness ex-

pansion scheme. The correctness of the ClusterExpansion sub-protocol assumes the correct-

ness of VV and RUV protocols (Lemmas 14 and 15, respectively).
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Theorem 13. Let C be an Expansion Cluster. Suppose that a classical referee executes the

ClusterExpansion(C, S) protocol, where S denotes the referee's classical register that holds an m-bit

seed. Let E be an arbitrary quantum system that may be entangled with C, but cannot communi-

cate with C once the protocol has started. 'fpSC = Um &pC, and Pr(ClusterExpansion(C, S) succeeds) >

A > exp(-C'm1 / 3) for some universal constant C', then there exists a state TXCE such that

TXE Ug(m) 0 TE and

PXCE - TXCE11tr EEC(m, A),

where EEC(m, A) exp(-C"ml/3) /A for some universal constant C", and pX is the joint

state of the protocol's output X, the cluster C, and E conditioned on the protocol ClusterExpansion (C, S)

succeeding.

Proof. Let A 1 denote the probability that Step 1 of ClusterExpansion(C, S) succeeds, and

let A 2 denote the probability that Step 2 of ClusterExpansion (C, S) succeeds, conditioned

on Step 1 succeeding, so that A 1A 2 > A. Let C consist of devices D = {D 1, D2 } and

G ={G 1, G2 }, where the Di's are used for execution of the VV protocol, and the Gj's are

used for the execution of the R UV protocol. Let Y be the output of VV(D 1, D2, S) (which

is Step 1 of ClusterExpansion(C,S)). By definition of the VV protocol, JYJ = v(m). By

Lemma 14 and our assumption on S (in particular, that piDG = Ur ®PG), there exists a

state TYDGE such that Tyg = UV(m) 0 TG and

PvYDGE - TYDGE tr EVV (m), (2.1)

where pV denotes the state of the system after running the VV protocol (and conditioned

on it succeeding) but before executing the RUV protocol, and Evv(-) is the error bound

given by Lemma 14. Let X be the output of R UV(G 1, G2, Y) (which is Step 2 of Cluster Expansion (C, S)).

By definition of the RUV protocol, JXJ = r(JYJ) = r(v(m)).

Imagine that we executed the RUV protocol on the "ideal" input TYVDGE. By Lemma 15,
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we would get that there existed a state TXDGE such that rE Uf
XDGE XE Ug(m)®9TE, and

PXDGE XDGE1 tr ERUV(V(m),A2),

where ERUV(,) is the error bound given by Lemma 15. However, we only have the

approximate guarantee on Y given by (2.1). So, by Lemma 5, we instead get that there

exists a state TXGE such that TXE Ug(m) 0 Tf, and

11P DGE- CVV (in)
PXDGE XDGE11tr E RUV(v(m),A2) +EV A2

Plugging in the expressions for ERUV and EvV, we get that this is at most

1 92Vm)/) + 3exp(-C'm1 / 3)) exp(-C"m /A

for some universal constant C". E

2.5.1 Analysis of the VV protocol

In the next two sections, we analyze that the VV and the R UV components of the ClusterExpansion

sub-protocol. As discussed in the introduction, the VV protocol in a cluster C will provide

near-exponential randomness expansion, although the analysis of [93] does not allow us

to conclude that the output is secure against the other cluster C' (i.e. the Input Security

Problem) 8. The RUV protocol in C will be used to transform the output of VV to be se-

cure against C'. Observe that, qualitatively, the RUV protocol solves the Input Security

Problem because in Lemma 15, the random seed is not required to be secure against an

eavesdropper, yet the output is guaranteed to be! On the other hand, Lemma 14 below

requires the assumption that the seed to the VV protocol is secure against the protocol's

devices and the eavesdropper simultaneously.
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Lemma 14. Let D 1, D2 be non-signaling quantum devices. Suppose that a classical referee ex-

ecutes the VV(D 1, D 2, S) protocol, where S denotes the referee's classical register that holds an

m-bit seed. Let E be an arbitrary quantum system that may be entangled with D1 and D2, but

cannot communicate with them once the protocol begins. If the initial joint state of S, D1, D2 , and

E is p0D 1D 2 E ~rn pD D2 E' and if Pr(VV(D1, D2, S) succeeds) > exp(-C'm1 /3 ) for some

universal constant C', then there exists a state TXDE where TXE UV(m) pE and

PXDE - TXDE tr < EVV(m),

where PXDE is the joint state of E, the devices D {D 1, D2 }, and the output X of the proto-

col conditioned on the VV (D1 , D 2, 5) protocol succeeding, EvV(m) 3 exp(-C'm 1 / 3 ), and

v(m) = exp(C'm1 / 3 )/2.

Proof. The VV protocol consists of two parts, executing Protocol B of [93] using half of the

seed S (which we denote by Si) to produce an output Y of length exp(0 (mi 1 /3)) which

contains high min-entropy (conditioned on Protocol B not aborting), and then applying a

randomness extractor using Y as the source, and the other half of S (which we denote by

S2) as the extractor seed, to produce an output X that is close to uniform.

Let pyE denote the joint state of the output of Protocol B (Step 2 of the VV protocol) and

the eavesdropper E, conditioned on Protocol B not aborting. Then, by our assumption

on S and by Theorem 6, we get that H'(YIE)v > h(m), where h(m) = exp(C'm1 /3) and

E (m) 1/h(m) for a universal constant C'.

The VV protocol then applies a quantum-secure randomness extractor to the source Y,

with seed S 2 . The protocol uses the QExt : 0,1}1I x {0, 1}d(m) + {0, 1}h(m)/2 random-

ness extractor promised by Theorem 8, where d(m) = 0(m). Let jOYE be a cq-state that is

E-close to pYE in trace distance, and is such that H (Y| E) p > h(m) 9. Then, since Q Ext is

9Although the definition of smoothed min-entropy quantifies over all density states in the E-ball around

PYE, there exists a cq-state with high min-entropy in the E-ball - see, e.g., [85].
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a (h(m), E)-quantum-secure extractor, we have that

HPXE - Uv(m) 0PE 1tr < E, (2.2)

where PXE is the joint state of the output X of the extractor QExt and E, with py as the

source. View the application of QExt to the Y and S2 register as a trace-preserving quan-

tum operation 8, which takes states p's2 and outputs states pfExt(Y, 2 ). Then, by the

triangle inequality, we have

S E(PVYS2E) - Uv(m) EOPE tr <1180 lE(PVS 2E) - 1 1E(PYS 2E)I0tr+

0 1E (PYS 2 E) - Uv(m) 0PE Itr+

llUv(m) OPE - Uv(m) 0Pf E tr.

Since 8 is trace-preserving, we can bound the first term by E. The second term is bounded

by E via equation (2.2). The third term is bounded by E because the trace distance is non-

increasing with respect to the partial trace. Thus,

pXE - Uv(m) ( PfE tr ~~ 9 1 E (PV S2E) - Uv(m) OPEI tr < 3e.

We then apply Lemma 18 to obtain that there exists a state TXDE such that TXE Uv(m) 0

p and

IPXDE - TXDE Itr < -.

which proves the claim. E

2.5.2 Analysis of the RUV protocol

In this section, we analyze the R UV protocol. Before stating Lemma 15, it will be necessary

to give formal and precise definitions of several (classical) random variables, and how

they interact with the relevant quantum states.
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Let S be an m-bit seed used in the RUV protocol, performed with non-signaling devices

D1 and D2 . Half of S, call it S1, is used for N CHSH games, where N = m/4. Recall that

we divide the N CHSH games into blocks of t = N11' consecutive games. Define the

following random variables:

1. Let F denote the indicator variable that is 1 iff the RUV protocol doesn't abort in Step

4 (i.e. the devices win ~ cos2 (7/8)N CHSH games). Note that F is a deterministic

function of the devices' outputs and S1.

2. For all i E [N/t], let Ii denote the indicator variable that is 1 iff the devices D1 and

D2 used a c-ideal strategy to produce their outputs in the ith block of CHSH games,

where := K t-K* (see Section 4.2 and [84] for more details about ideal strategies).

3. Let H denote the indicator variable that is 1 iff G > (1 - v)N/t, where G := 3Ii

and v := (12/v') VlogNt/N /4 < t-x/8.

In our proof of Claim 15, we will consider states such as PFIiXDE, where X denotes the

output of device D1 after N CHSH games, D denotes the devices D1 and D2 together, E

denotes an arbitrary quantum system, F will contain the classical bit indicating whether

the devices aborted the RUV protocol or not, and I; will contain a classical bit denoting

whether the devices used a c-ideal strategy for block i. Because F and Ii are classical

variables, PFIiXDE is a cccqq-state, and thus there is an ensemble {pff} that represents

the states of the D and E systems conditioned on the classical events F = f, I; = q, and

X = x, where

PFIiXDE := 3 Pr(F = f,11 = q, X = x) f)(fIF 0 Iq)(qli 9 x)(xlX 9 pE '.
f,q,x

Thus, we can meaningfully condition the state PFIiXDE on various values of F and Ii. For

example, when we refer to the state PXEIF=1, we mean the state that is, up to a normaliza-
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tion factor,

LPr(F = 1, 1i = q, X = x)Ix)(X XpD
q

In particular, we will make use of the fact that PXEJF=1 Pr(i 0F = 1)pXEI=0,F=1 +

Pr(I = 1F = 1)pXE Ii=1,F=1, where pXEJ1i=q,F=1 is defined similarly to PXEIF=1-

Lemma 15. Let D 1, D 2 be non-signaling quantum devices. Suppose that a classical referee ex-

ecutes the RUV(D 1, D2, S) protocol, where S denotes the referee's classical register that holds an

m-bit seed. Let E be an arbitrary quantum system that may be entangled with D1 and D2, but

cannot communicate with them once the protocol begins. If the initial joint state of S, D 1, and D 2

is PiD1 D2 = U& PD1 D2 , and Pr(RUV(D1, D2, S) succeeds) > A, then, we have that there exists

a state TZDE where TZE = Ur(m) TE, and

p ZDEF - TZDE 1 tr ERUV (m, A),

where ERUv(m, A) 192(m/4)-1/(8x) /A, and where pZDE|F1 is the joint state of E, the de-

vices D = { D1, D2 }, and the output Z of the protocol, conditioned on F = 1 (i.e. the RUV(D 1, D 2, S)

protocol does not abort).

Proof. Let PiDFE be the joint state of the X, D, F, and E registers before the N CHSH games

are played (so X and F are initialized to the all 0 state). For this proof, we will assume that

E is such that piDFE is a pure state. This is without loss of generality, because we can take a

non-pure state p'DFE and augment it with some extension E' D E such that p'DFE' is pure

(e.g. via a purification of the state piDFE). Observe that fIpZE'|F1 r(m) 0 f tr E

implies fpfZEF1 -r(m) 0 pE|F1 tr E, because the trace distance is non-increasing

under discarding the augmented system E'\E.

For notational clarity, we shall omit the superscripts i and f, because we focus on the

state PFSXDE of the system after the N CHSH games (i.e. the X register holds the output

of device D1 ), but before conditioning on F = 1 and before using the seed S 2 to select a

sub-block. The ith block of X will be denoted Xi, and the jth sub-block of the ith block will
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be denoted Xij.

There are two main components to this proof.

1. We argue that, for the state PXEIF.1, there is a 1 - J fraction of sub-blocks Xij such

that

PXiE|F=l - Ufi ( PEIF=41tr q,

where we set rq and 3 later in the proof. We say that such sub-blocks are q-good with

respect to E.

2. We argue that the string S 2 (substring of the seed S used to select the sub-block

that RUV(D 1, D2, S) will output) is in tensor product with a string describing the

locations of the r-good sub-blocks of the state PXEjF=1-

In particular, let Z := Xs2 denote the sub-block selected by string S2. From the above two

components, it follows that, for the state PXEIF=1, the the random variable Z is (q + 3)-

good with respect to E, i.e.,

IPZEIF=1 - Ulti 0 PEIF=1 H1tr < / + 3.

We then invoke Lemma 18 to argue that there exists a state TZDE such that TZE = U"rt 0

PEIF=1 and

PZDEIF=1 - TZDE11tr < / + 3,

and we are done. We now proceed to proving the first two components.

There are many good sub-blocks. By the definition of I; and Lemma 9,

PXiEjIi=1 - Ut 0 PEIi=1 tr < .

It follows by Proposition 16 that, for at least a 1 - t- 1 /4 fraction of sub-blocks j of block i

we have that

IIPXijEFIIi=1 - Ufit 0 PEFIji=1 11tr Y1
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where y :=- 2( + t 1 /8 ). If we then condition on the event F 1 it follows that

PXijE I=1,F=1 - U 0- 0 PEIi=,F=1 tr < 1 (2.3)

We wish to establish the above statement for the state PXijEIF=1 rather than the state

PXijEjIi=1,F=1- The key to making this transition is to establish that, for many values of

i, the event F =1 is approximately a sub-event of the event Ii = 1. To do so, it is helpful

to consider the event H = 1.

Let M := N/t denote the number of blocks of CHSH games. It follows from the definition

of H that E[M] E[I; = 0H = 1] < vM. Thus, by Markov's inequality we have that at

most a \/i7 fraction of blocks i E [M] are such that Pr (Ii = 0 H = 1) > /Fv. Thus, at least

a 1 - \7i7 fraction of blocks i E [M] have Pr(Ii = 01H = 1) < -\/i.

Consider such a block i. Note that by Theorem 10, Pr(H = 0, F = 1) < t- 2 . Thus

Pr(Ii = 0, F = 1) = Pr(Ii = 0H = 1, F = 1) Pr(H = 1, F = 1) + Pr(I; = 01H = 0, F = 1) Pr(H = 0, F

" Pr(Ii 01 H = 1, F = 1) + Pr(Ii = H F = 1)t-2

" Pr(Ii = 0H = 1) -2
-- Pr(F = 1)

T + t-.
-A

Since Ii = 1 is a classical event, we have PXE IF- = (1 - T)PXEII;=1,F=1 + TPXEIi=O,F=1,

where T := Pr(Ii = 01F = 1). Thus,

IIPXiEIF=1 - PX;ElI;=1,F=1 11tr - 1 (-T)PXjEjII=1,F=1 + TPX;E|I;=O,F=1 11tr

< T( 1PXE|I;=1,F=1 11tr + IIPXiElIi=O,F=1 1tr)

< 2T.
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By definition, T-= Pr(Ii = 0, F = 1)/ Pr(F = 1). Thus,

V + A t- 2

PEXiE|Ij=1,F=1 - PXi EF=1 ftr < 2 A 2

By tracing over all except the jth sub-block we get

IpXijElIi=,F= PXijEAF=1 2  (2.4)
~PxEI~lF-1- P~1EF-1~tr-~" A2

By tracing over the entire Xi register we get

|1PEjIi=1,F=1 - PEIF=1 tr < 2 Vi At 2  (2.5)
_ A 2

Thus, at least a (1 - t- 1/ 4 ) (1 - v/i7) of all the sub-blocks Xij have the property that equa-

tions (2.3), (2.5), and (2.4) all hold. It follows by the triangle inequality that

PXijEjF=1 - U1 0 PE|F=1 tr IIPXijEIF=1 - PXijEHIi=1,F=1 tr + IIPXij ElIi=1,F=1 - U 0 & PEIIi=1,F=1 tr

+ 0 Ul 9 pEIIi=1,F=1 - Ufj 0 PEIF=1 H1tr

V/- + At-2
* 2 A2A + A + |p EjIi=1,F=1 - PEIF=1 Htr

<4 V + At-2
A2A

96
< A-/8.(2.6)

Define rj 96t-1/ 8 /A. Thus, we have that at least a 1 - J fraction of the sub-blocks

Xij are r-good with respect to E, where 3 := t-1/ 4 + v/iv 2t-1/ 4 . It is easy to see that

, + < 2'j = 192(m/4)-1/(8')/A.

S2 is secure against the location of good sub-blocks. Although we have established that

most of the sub-blocks of X are r-good, we need to show that the seed S2 used to select

the sub-block for the output of the RUV protocol is independent of the locations of the

good sub-blocks (i.e. the indices i, j such that Xij is ri-good with respect to E). A priori,
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since S2 is entangled with the eavesdropper E (because S2 was the output of a different

expansion cluster), it could be that S2 was somehow adversarially generated to select a

bad sub-block. Here, we show that this cannot happen, because the locations of the good

sub-blocks can be locally computed by the devices D = {D 1, D2 }. Since PiD U 0 P

(where pi :=PD1D2), S2 is independent of the good sub-block locations.

Consider the following thought experiment: the system D = {D 1, D2} is augmented with

a classical description A of the state P'FD, and a register A that will store the locally com-

puted location of the good sub-blocks, so that we have a new system D' = {D 1, D2, A, A}.

Throughout the RUV protocol, the D' system cannot communicate with the eavesdropper

system E. At the beginning of the RUV protocol, we have that PSD' = Uis| 0 PD. Imagine

that we have measured the Si register (but the S2 register remains unmeasured), so that

it is now a deterministic value s1 . Let 9s, denote the quantum operation that acts on the

systems D1, D2 , F that represents the strategy employed by devices D1 and D 2, on the

inputs determined by si, for the N CHSH games (Step 3 of the RUV protocol). That is,

PXFD Es 1(pFD)

As part of this thought experiment, we imagine that, after the N CHSH games, the A sys-

tem performs a quantum operation Ss, on the A, and A systems (but not D1 and D2 !) to

classically simulate the strategy used by the devices D 1, D2 on input s, in the N CHSH

games, and compute the location of the good sub-blocks. The A will then contain a classi-

cal description of the state pXFD. Note that at this point, S2 is still secure against D'; that

is, we have

Ss 1 (S, (p 2XFDAA)) LlS21 0D SS1 (As (PFDAA))

We elaborate on the classical simulation S. Given the classical description A of pXFD, the

location of the good sub-blocks can be computed by using A in the following way:

1. Compute the classical description of a purification -X'FDE, of the state P' FD. Note

that in general, OXiFDE' is different from the "real" state PFDE because the A system

has no knowledge of the external system E.

66



2. Classically simulate the devices' strategy S on the state OXIFDE" ie.,

XFDEI s1 FE

Note that O-FD PXFD'

3. Compute the indices i, j, such that

C iE'|F=l 1 t( E'|F=1ltr< I'

and store those indices in a register A.

We now argue that A will contain an accurate description of the locations of the a-good

sub-blocks in the "real" state pXFDE. From this, sincep = pS ®pD, it follows that S 2 is

independent of the good sub-block locations.

Here we will use the assumption, stated at the beginning of this proof, that P'FDE is a

pure state. Let piFDE := Ip)(z 1, and let -I' : p)(p1. There exists a unitary V that

takes the E system to the E' system and acts as the identity on all other systems, such

that |p) = Vlp). Since V and S,1 act on different systems, they commute, and hence

OXFDE' VP DEV. Furthermore, V commutes with the projector IF=1 that projects

onto the F =1 subspace, and thus

of VPI~Ef Vt.
CDEIIF=1 XDEIF=1

Thus,

SE'= F=1 ftr E t(i,),D (VPXDEIF=l - 0 trXD (VPXDEIF=1  Kr

- V (trA(ij),D (PXDEIF1 - trXD (PDEF=1)) tr

tr#(iJ),D(PXDEF=1) trXD(pXDEF=l) tr

=pXijEF=1 EF=1 Kr,
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where tr(i,j),D indicates tracing out over all sub-blocks except for the jth one in the ith

block, and the system D. The second equality follows from the fact that V and the partial

trace commute. The third equality follows because the trace norm is unitarily invariant.

Thus, the indices i, j where IoiE/F1 E'F= 0 -1 tr < are exactly those sub-blocks

that are r-good in the state pXFDE'
XFDED

Proposition 16. Let i C [N / t] be the index of a block. If

PXEI=1 - Ut PEII=1 <

then for at least a 1 - t-1/ 4 fraction of sub-blocks j of block i we have that

IIPXijEFIIi=1 - Ut 0 PEFI1;=1 < 2( + t 1 / 8).

Proof. By Lemma 18, there exists a state OTXiFE such that eXiE = Ut 0 PEJIi=1, and pXFE= --

0 XiFE tr < V - Let R :V denote the number of sub-blocks in a block. We now prove

the Proposition by showing that, for the state CTXiFE, at least 1 - t-1 4 fraction of sub-block

indices j C [R] satisfy I(Xij : FE), < 2t-1/ 4 . For such j, we obtain:

IPXijFEIi=1 - Ur/ (&PFEjIi=1 I tr < IIPXijFEIh,=1 -C-XijFE I tr I0kXijFE - UI 0 FElltr

+ HUfi09FE - Ut ( PFEIIi=1 1 tr

< + V4-1/4 + .

The bound on the second term in the second inequality is given via Pinsker's Inequality

(see Fact 4), which states that IImXijFE - U 0 OFE 2I(Xi : FE). The bounds on

the first and third terms come from the fact that the trace distance is non-increasing with

respect to the partial trace.

Thus we focus on analyzing the state 0 XiFE for the remainder of this proof. We apply the
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chain rule to obtain I(Xi : FE), = -' I (Xij : FEIX ),7. This is equivalent to

Ej[I(Xij : F EIXi,<j)o-] = 1I(Xi :F E),,

where Xi,<j denotes all the Xik such that k < j. We will omit the subscript o- because the

underlying state is clear from context. We upper-bound the quantity I(Xi : FE) via the

following calculation:

I(Xi : FE) H(Xi) - H(XiIFE) (2.7)

H(Xi) - (H(XiFE) - H(FE)) (2.8)

H(Xi) - (H(XiFE) - H(E) - H(F IE)) (2.9)

= H(Xi) - (H(XiE) + H(FXiE) - H(E) - H(FIE))

H(Xi) - (H(Xi) + H(E)

H(FIE) - H(FIXiE)

+ H(FIXiE) - H(E) - H(FIE))

< 2H(F)

< 2

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

Equation (2.7) is the definition of mutual information. Equations (2.8), (2.9), and (2.10)

follow from the definition of conditional mutual entropy. Equation (2.11) follows from our

assumption that LTXiE = ox, 0 o0 E Equation (2.13) follows from the fact that conditioning

can only reduce entropy, and that -H(F I XiE) < H(F).

We now lower bound the individual terms of the expectation I (Xij : FE Xi,<j).

I(Xij: FEIXi,<j) = H(XijlXi,<j) - H(XijIFEXi,<j)

> H(Xij) - H(XijFE)

= I(Xij : FE).

(2.15)

(2.16)

(2.17)

Equation (2.15) is the definition of conditional mutual information. Equation (2.16) fol-
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lows because ax, = Ut (hence 0-xi is in tensor product with o-x ), and conditioning can

only reduce entropy. Finally, equation (2.17) is again the definition of mutual information.

Thus,
2

Ej [I(Xij : FE)] <

and by Markov's inequality, we get that 1 - y fraction of j's are such that I(Xij : FE) < .

Setting y = t- 1 14 completes the proof. D

2.6 Conclusion

We have presented a randomness expansion protocol that achieves infinite expansion:

starting with m bits of uniform seed, the protocol produces an arbitrarily long output

string that is exp(-0(m3))-close to uniform. Furthermore, this protocol only requires

eight non-signaling quantum devices (and can be performed with just six devices using

a simple modification). In order to accomplish this we design an Input Secure adaptive

randomness expansion protocol, which is then used as a sub-protocol in the infinite ex-

pansion protocol. We suspect that the existence of Input Secure randomness expansion

protocols is also of independent interest. As evidence of their independent interest we

note that Input Secure protocols play a key role as a building block in [16], where they

were discovered independently from this work, and used to design a protocol for seedless

randomness amplification from any min-entropy source (see Section 2.2.2).
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Appendix A

A.1 Proof of Lemma 5

Proof of Lemma 5. Define YXDE to be the state TXDE as given by the assumption in the

lemma on input 0 FSXDE where 0 FSXD 0 FSX 0 0 D- By the triangle inequality, we have:

IPXDE - YXDEjtr 5 IT 0-1E(PZFSXDE) ~~0 E(FSXDE)ltr (A.1)

+ 11FS 0 IIE(LFSXDE) - YXDE tr.

We bound the first term on the right hand side:

1TS 0E (PFSXDE) ~S 0 1E(JFSXDE) 1tr A E(PFSXDE) - 0E((FSXDE) tr

<1
- APSXDE - OFSXDE tr

6/A.

Let A' denote the probability that the F register of the state 8 0 LE (OFSXDE), when mea-

sured, has outcome 1). Note that max{A, A' } > A, so the first inequality follows from

Lemma 17. The second inequality follows because trace-preserving quantum operations

are contractive with respect to the trace distance. The final inequality comes from our

assumption on piSXDE'
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The second term on the right hand side of (A.1) is bounded by e from our assumption on

the quantum operation FE. E

A.2 Useful lemmata

Lemma 17. Let PFQ, oFQ be cq-states on the same classical-quantum Hilbert space 7WF 0 Q-

Let E be a set of outcomes of the F register such that min{ Prp (E), Pr, (E) } > 0, where Prp (E),

Pr,(E) denote the probabilities of obtaining outcome E when measuring PF and 0 F in the compu-

tational basis. Then,

< PFQ - JFQI0tr
PFQ|E -- FQ|E tr max{Prp(E),Pro(E)}'

where PFQ|E and O'FQ|E denote the post-measurement state of PFQ and I7FQ, respectively, condi-

tioned on E.

Proof. We use the operational interpretation of the trace norm of two quantum states,

namely, that IP 0-O-11tr = maxA Pr(A (p) = 1) - Pr(A (cr) = 1), where p and o- are arbitrary

density matrices, and the maximization is over all possible 0/1-valued POVMs A.

Let Ap and A, denote Prp(E) and Pr,(E) respectively. We consider two cases: A 9 > A.

and AP < A. Take the first case.

Consider the following two-outcome experiment A that tries to distinguish between PFQ

and o-FQ. We first measure the F register in the computational basis. If the outcome E

does not occur, we output "0". Suppose outcome E does occur. Let B be the optimal two-

outcome POVM such that Pr(B(pFQIE) = 1) - Pr(B(GFQIE) = 1) = IIPFQIE ~ OFQI E I tr- We

then make the measurement dictated by B on the post-measurement state (which is either
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PFQJE or JFQjE), and output "1" iff B outputs "1". Then, we have that

fPFQ - EFQ tr > Pr (A (PFQ) = 1) - Pr(A (o-FQ) = 1)

= AP Pr(B(PFQIE) = 1) - A- Pr(B(OFQIE) = 1)

= Ap (IIPFQIE - oFQIE tr Pr(B(FQIE) 1))

Solving for IIPFQIE - 0_FQIE I tr, we get that

PFQ IE - FQIEItr 5 PFQ - FQ11tr - (Ap - Ao-)
AP

- A, Pr(B(O~FQIE) -

IPFQ -FQ tr < PFQ - FQltr

P maxAp, A04

where / := Pr(B(FQIE) = 1). In the other case, we have that A. < AG. We can then

switch the order of PFQ and oFQ in the previous argument, and obtain that

PQE -FQEItr < PFQ - OFQ trFE - EA~
PFQ -- UFQIOtr
max{Ap, Ao-}

Lemma 18. Let PA1 A2 B C DQ(7-A 1 09A2 0 NB), and -A1 A 2 G ( N A1 0 NA 2 ) be such that

PA1A 2B is a cqq-state, 0 A1 A 2 is a cq-state, and IPA 1 A 2 - 0 A 1 A 2 tr < E. Then there exists a cqq-state

TA1A2B c D(NA1 0 NA 2 0 NB) such that T A 1A 2 = 07A 1A 2 and ||PA1 A 2 B - TA1A2BI~tr < V-

Proof. For notational brevity we will let A = {A1 , A 2} soPAB := PA1A2B and TA 0 A1 A 2 -

Let F(p, o-) denote the fidelity between two quantum states p and o-. By Uhlmann's

Theorem, there exists purifications PAQ

respectively, such that F(pA,C"A)

:= )(ip and oAQ

- b( 10)| [98].

:= 1f)01 Of PA and uA,

But by the Fuchs-van de Graaf in-

equalities, we also have that F(pA,0 A) > 1 - ||PA - A tr/2 > 1 - e/2 [98].

||PAQ -- AQ11tr = 1 k- p($)|2, wehavethat

S PAQ - "AQ tr I -

Let PABR =)(0 be a purification of the state PAB. Since PABR and PAQ are both purifica-
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tions of the state PA, there exists a unitary map V that takes the Q space to the BR space

such that PABR VPAQWV. Define TABR := VoVAQV. Then, by the unitary invariance of

the trace norm, we have that

IIPABR - TABRI tr IVPAQV - VTZQV 'Itr

= V(PAQ T A)V'|ltr

= I PAQ - T AQ|tr

Since the trace norm cannot increase when discarding subsystems, we obtain PAB -

TA B I tr < Vi. TAB = TA1A 2 B is not guaranteed to be a cqq-state, but we can apply the trace-

preserving quantum map S that measures the A1 system in the computational basis and

forgets the measurement outcome. Let TA1A2 B : - (TA1 A2 B), and observe that this is a cqq-

state. Since PA1 A2 B is already a cqq-state, PA1 A 2B = E(PA1A 2B). Because trace-preserving

quantum maps are contractive under the trace norm, we obtain I PA1A 2 B - T A 1 A 2 B 11tr < xf,

and we are done.

A.3 Parameter settings for the VV sub-protocol

For the sake of concreteness, we specify the settings of parameters to be used in the instan-

tiation of Protocol B of [93] in our VV sub-protocol (see Section 2.4). We choose constants

a, -y > 0 such that -y 1/(10 + 8a). These constants are part of the definition of VV and

will remain unchanged for every instance of VV throughout the InfiniteExpansion protocol.

In [93, Theorem 2], the parameter h specifies the min-entropy lower bound of Protocol

B, which in turn governs the length of the seed to Protocol B and length of the output.

By definition Protocol B implemented with parameter h requires at most K1 'Y- 3 log 3 (h)

bits of seed for some fixed constant K1 (this constant may depend on a, but since a is

a global constant here, we ignore this). When Protocol B is invoked by VV(A, B, S), we
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will set h =L27)(L/2/K1 ,where s := ISI, and it follows that Protocol B, with these

parameters, will require no more than [s/2J bits of seed.

We will now discuss parameters relevant to the quantum extractor which will be used in

VV. Let us now define t := h-, C := [100 ] and E 1 The output of Protocol B is a

bit string of length n 10 log2 (t)] . [Ct log2 (t)] . By Theorem 8 there exists a function

QExt : {O,1}" x {Oi}d -+ {O,1} that is a ( + O(log (j)) +
secure extractor as long as d > 0 (log2 (n/E) log ( - 0 (log,

That is, as long as d > K4? 3 Ls /2 for some fixed constant K4.

0(log 1/e), E)-quantum-

(h)) - 0 (r3 [s/2J y).

Thus, in specifying the VV sub-protocol and throughout the chapter, we will set the fol-

lowing functions, where s is the length of input to the VV sub-protocol:

o Min-entropy lower bound of Protocol B:

h(s):= 1*
* Output length of Protocol B:

n(s):=
S 4/3

10C
(2K1)

" Seed length of the extractor:

d(s) := 73 s/2j

" Output length of the extractor /VV sub-protocol:

v(s) := [h(s)/21.
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Chapter 3

The Parallel-Repeated Magic Square

Game is Rigid

In this chapter we show that the n-round parallel repetition of the Magic Square game of

Mermin and Peres is rigid, in the sense that for any entangled strategy succeeding with

probability 1 - E, the players' shared state is O(poly(nE) )-close to 2n EPR pairs under a

local isometry. Furthermore, we show that, under local isometry, the players' measure-

ments in said entangled strategy must be O(poly(nE) )-close to the "ideal" strategy when

acting on the shared state.

3.1 Introduction

Nonlocal games have long been a fundamental topic in quantum information, starting

from Bell's pioneering work in the 1960s. In the langauge of games, Bell [10] showed

that for a certain two-player nonlocal game, two players sharing a single EPR pair be-

tween them can win with substantially higher probability than they could by following

the best classical strategy. In Bell's original game, the messages between the players and

the referee were real numbers, but soon afteward, Clauser, Horne, Shimony, and Holt [17]
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discovered a game (called the CHSH game) with similar properties, but with messages

consisting of just one bit. The CHSH game can be viewed as a test for the "quantum-

ness" of a system, with good soundness: that is, the probability of a non-quantum system

fooling the test is at most 3/4. However, the test lacks the property of so-called perfect

completeness: as shown by Tsirelson [91], even the optimal quantum strategy succeeds

with probability at most (2+ V/Z) /4 ~ 0.854. To remedy this drawback, Mermin [67] and

independently Peres [77] independently introduced the Magic Square game: a two-player

game with two-bit inputs and outputs, and for which the best classical strategy succeeds

with probability 8/9, but there exists a quantum strategy using only two shared EPR pairs

succeeding with probability 1.

Later, Mayers and Yao [59] realized that the CHSH game could be used not only to test

for "quantumness," but to test for a specific quantum state: namely, the EPR pair. Such

a test is often called a "self-test." Mayers and Yao showed that in any optimal quantum

strategy for CHSH, the players' shared state is equivalent under a local isometry' to an

EPR pair. This result was not robust in that it required the CHSH correlations to hold

exactly: however, the subsequent work of McKague, Yang, and Scarani [62] was able to

achieve a robust self-test based on CHSH for a single EPR pair. That is, they showed that

for any strategy that wins CHSH with probability > Pmax - E, there exists an isometry V

mapping the players' state ip) to a state Ip) which is O(fIE)-close to the EPR pair state in

2-norm. Moreover, they showed that the measurements applied by the players must also

be close to the measurements used in the ideal strategy, as measured in a state-dependent

distance: for instance, if X is the operator applied by player 1 when asked to measure a

Pauli X, then under the same isometry V, IIV(X Ip)) - 0rx 1) 1 <; 0(/s), where o-x is the

Pauli X-matrix. Such a result is called a rigidity result, because it shows that any strategy

that is close to optimal must have the same structure as the ideal strategy. We refer to

the bound that appears in the right-hand side of the norm inequalities (here VI) as the

robustness of the test. More recently, Wu et al. [99] showed rigidity for Mermin and Peres's

'Since either player could apply a local unitary to their half of the state and their measurements, without
affecting their winning probability, equivalence under local isometry is the best one could hope for.
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Magic Square game, demonstrating that it serves as robust self-test for a single EPR pair.

In recent years, self-testing has found applications to quantum cryptography (QKD, de-

vice independent QKD, and randomness expansion), as well as to multiprover quantum

interactive proof systems (the complexity class MIP*) [83]. However, these applications

all rely on testing multi-qubit states, whereas known robust self-testing results are directly

applicable only to states of a few qubits. A natural strategy to obtain a multi-qubit test is

to repeat the single-qubit tests, either in series (i.e. over many rounds) or in parallel (i.e. in

one round)-for instance, the work of Reichardt, Unger, and Vazirani [83] uses a serially

repeated CHSH test, and McKague [64] gives a parallel self-test based on CHSH. The lack

of perfect completeness considerably complicates the analysis of these tests, since one

cannot demand that the players win every repetition of the test-rather, one has to check

whether the fraction of successful repetitions is above a certain threshold.

In this chapter, we circumvent these issues by studying the n-round parallel repetition

of the Magic Square game. We achieve a proof of rigidity, showing that if the players

win with probability 1 - E, their state is 0(poly(nE))-close to 2n EPR pairs, under a lo-

cal isometry. This is an exponential improvement in error dependence over the strictly

parallel self-testing result of [64], which has error depedence O(exp(n) poly(E)) 2, and is

the previous best known result for rigidity of strictly parallel repeated non-local games

(McKague's result is stated for the parallel repeated CHSH game with a threshold test,

rather than the parallel repeated Magic Square game). We note that McKague's result

has 0(log(n))-bit questions, whereas our game has 0(n)-bit questions and answers, but

additionally robustly certifies all n-qubit measurement operators. This means that our

result is a strictly parallel test, that can be used to "force" untrusted provers to apply all

n-qubit Pauli operators faithfully (in expectation), which is a new feature that we believe

will be valuable in the context of complexity applications.

As a fundamental building block for our result, we make use of the rigidity of a single

2Note that, by repeating the test in section 4 of [64] a polynomial number of times, one can achieve a
self-test for n EPR pairs with polynomial error dependence. However, the test given in section 4 is not a
strictly parallel test, and does not robustly certify n-qubit measurement operators, as our result does.
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round of the Magic Square game, which was established in [99]. A key observation of our

work is that, by leveraging a "global consistency check" which occurs naturally within

the parallel repeated Magic Square game, we can establish approximate commutation be-

tween the different copies (or "rounds") of the game in the parallel repeated test. This then

allows us to extend the single round analysis of [99], to a full n-round set of approximate

anti-commutation relations for the provers measurements, which is expressed in Theo-

rem 25. A second important technical tool in our proof is a theorem (Theorem 26) which,

given operators on the players' state that approximately satisfy the algebraic relations of

single-qubit Pauli matrices, constructs an isometry that maps the players' "approximate

Paulis" close to exact Pauli operators acting on a 2n-qubit space. The proof of Theorem 26

relies on an isometry inspired by the works of McKague [63, 65], but is designed to take

the guarantees produced by Theorem 25 and conclude closeness of the players "approx-

imate Paulis" to exact Pauli operators in expectation, where all 2n-qubit Pauli operators

are handled simultaneously, with polynomial error dependence.

Very recently, we became aware of two independent works achieving related results in

this area. The first is an unpublished paper of Chao, Reichardt, Sutherland, and Vidick [15],

which proves a theorem similar to our Theorem 26. The second is a paper by Coladan-

gelo [20], which proves a self-testing result for the parallel repeated Magic Square game

that is similar our own, albeit with slightly different polynomial factors. Furthermore,

the robustness analysis of the results in [20] makes use of the same key theorem of [15],

which is, in turn, similar to our own Theoren 26. The theorem of [15] (and consequently

the robustness result of Coladangelo) achieve a robustness of n3 / 2 v/e for for all single-

qubit operators (i.e., to achieve constant robustness, E must scale as 1/n3). On the other

hand, our Theorem 26 achieves a robustness of nE1 /4 (i.e. e ~ 1/n), but for operators

acting on all 2n qubits simultaneously. It is natural to ask whether one can prove a single

result which combines the strengths of these two different error dependencies. We expect

that this is possible, but leave it for future work.
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3.2 Preliminaries

We use the standard quantum formalism of states and measurements. An observable is

a Hermitian operator whose eigenvalues are 1, and encodes a two-outcome projective

measurement (the POVM elements of the two outcomes are the projections on to the +1

and -1 eigenspaces). Throughout this chapter, we make use of the Pauli matrices. These

are 2 x 2 Hermitian matrices defined by

0 1 1 0 0 -i

They satisfy the anticommutation relation

xZ = -ZX.

3.3 The Magic Square game

In this section we introduce the nonlocal game analyzed in this chapter: the n-round

parallel repeated Magic Square game. We also introduce notation to describe entangled

strategies for the game and state some simple properties they satisfy.

The parallel repeated Magic Square game is played between players (which we will refer

to as Alice and Bob), and a verifier. First, let us define the single-round Magic Square

game, originally introduced by Mermin [67] and Peres [77]. The rules of the game are

described in Fig. 3-1.
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The magic square game is a one-round, two-player game, played as follows

1. The verifier sends Alice a question r G {0, 1, 2} and Bob a question c C {0, 1, 2}.

2. Alice sends the verifier a response (ao, ai) C {0, 1}2, and Bob sends a response

(bo, bi) E {0,1}2.

3. Let a 2 := ao ( a1 and b2 := 1 e bo D b 1. Then Alice and Bob win the game if ac = br

and lose otherwise.

Figure 3-1: The magic square game

Any entangled strategy for this game is described by a shared quantum state IP)AB and

projectors Prao~ai for Alice and Qco'bl for Bob. It can be seen that the game can be won with

certainty for the following strategy:

ij)A ( ii)B1 

{01

2~eo1

paoai = (1+ (-1)aoZ)A1 0 (I +

paoai = (1 + (-1)a1X)A1 0 (I +

bobl 1IO I _lb
0 'A 0 (I + (-1)boZ)B1 0

b-'i IA 0 (I + (-1)b1X)Bl 0

(-1)a1Z)A2 0 'B

(-1)aoX)A2 0 IB

(I + (-1)b1X)B 2

(I + (-1)boZ)B 2

This strategy is represented pictorially in Fig. 3-2, where each row contains a set of simultaneously-

measurable observables that give Alice's answers, and likewise each column for Bob.
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ZI IZ ZZ

IX XI XX

-zx -xz YY

Figure 3-2: The ideal strategy for a single round of magic square. Alice and Bob share the state
EPR)®2

The game we study in this chapter is the n-fold parallel repetition of the above game.

Definition 19. The n-fold parallel repeated Magic Square game is a game with two players, Alice

and Bob, and one verifier. The player sends Alice a vector r e {0, 1, 2 } and Bob a vector c C

{ 0, 1, 2 }", where each coordinate of r and c is chosen uniformly at random. Alice responds with

two n-bit strings ao, a1, and Bob with two n-bit strings bo, b1 . The players win iffor every k C [n],

the kth components of Alice and Bob's answers ao,k, ak, bok, bl,k satisfy the win conditions of the

Magic Square game with input rk and ck.

Throughout this chapter we will refer to the non-local entangled strategy applied by the

players according to the following definitions:

Definition 20. Let { pao~a1ao,a1 denote the set of orthogonal projectors describing Alice's mea-

surement when she receives input r.

Likewise, let { Q b1}0 1 ,b1 denote the set of orthogonal projectors describing Bob's measurement

when he receives input c.

Definition 21. Define a2 - ao + a, (mod 2) an b2 _ bo + +1 (mod 2).

Definition 22. Define the column-c output observablesfor Alice as Ac = Eao,a1 ( -1)a pprao/a1.

Where ac is defined to be the n dimensional vector whose ith component is defined by (ac)i - (aci )i.

Similarly, define the row-r observables for Bob as Bq b 1)bcq ob1

Remark 3.3.1. By definition, it follows that Ac = Ac' if c and c' differ only on rounds

where the coordinate of p is 0, and likewise for B and r.
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The win conditions for magic square:

Fact 23. Suppose Alice and Bob win the magic square game with probability ;> 1 - e.

holds that

Vp, Erc(l Ap Ber > 1 - E.

Then it

(3.1)

In Remark 3.3.1, we noted that we can freely change the output column for Alice (resp.

row for Bob) on the "ignored" rounds. In the following lemma, we show that we can also

change the input row (resp. column), up to an O(e) error, provided that the strategy is E

close to optimal.

Lemma 24. Suppose Alice and Bob have an e-optimal strategy. Then, Vi, r, c,

1 - Er,r ri-r(P|ArC AS', 1 iJ) < 36e

Proof. To start we define an extended state 10-) =p) 0 1) Er. Jr-) 0 _(nl) Er'_ r'_ )

3(n1E E, s-i) as well as extended operators:

T =EAe& o r-)(r-i 010 = L ZANsI , ri)(ri 01 s)(s i
r-i- r-i s_

Note that, by Remark 3.3.1, these two definitions are equivalent because Ac,., is identi-

cally equal to Ac'.lue- by definition, regardless of the value of s-i. Further define

0 I r'_i)(r'l 0I = ZA rS I ir' )(r'il 0 |s-i)(s-il
rt S-i-i
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and

S 0 r-i)(rji 10 s-i)(s-i
r-2 s~i

B e2
r_ s~i E Br'Ur'_

r/ S-i
-l

9 r-i)(r-Il ®E r'_i)(r'_il
r2

o r-i)(r i®

0 si)(s<I

i) (s iI

Bu ej' -910 r'_) (r'_i 0 sj) (s-i

Where, to conclude equivalence of the different versions of the last definition, we are

using Remark 3.3.1 as well as the fact that ri = r' = r, some fixed value.

Now, note that:

( (I p
1 )

23- (n-i)

1

0 3-(-1) r'i
-2

r- 2

1

3-(-1)

x (T) )(ri 0 I0 s-
r-i s-i

( Br us,ej 2 ri) (r_
r-i s-i

X ( 0
r_i)

1
-( _/3 ( - )r'

(n-1) L.. A(F r Aiue usu eik t),'

1
rj) 0 /3-(n -1)

v3-(n-1)
(r') ( 3-(nl-1)

I)s-i

i 0 10Isi)(s

r '_ i

13 2 - , I.Acl Us Bc rUr ei Er /Is- A siA B ilU B> 1 -9
3 -2(n-1) L..s- r~e r1 1 us1\lPI r,ei ciUs-i,ej > 9,S
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Where the last line follows by Fact 23. Similarly,

(ur|T' - So-) =

( 410
1 1 1

L:: D ri~ 10 Z- (r' i 1®-i
3-(TFl-1) r- v3-(nl1 D -f-) Si

( EA c-us 1 Irr' )(r'_ 1s0)1(s0ij [ u I r'_) (r'_ 09 si) (s-Ir'A ei 0( sEiuse
r/_ S-ir -

1 1

3 -(n-1) r(-1

(plAc -/Br3ur -(n -1)

S 3- -1) s)

) ( 3-(n-1) z: Iri))

/-(l1 E (1)p1AC' si-rz~rsej I) lEr s-i rAC Us-i~jP
= -2(n-1) ( /$eA B i ' ,_(j) A u1 1B uu -'ei lI ) > I - 9E

r'_,si

Where the last line again follows by Fact 23. It follows by Lemma 47, that

(o-T - T o) > 1 - 36E

Noting that

(o-IT - T'Io-) = 1
N #3-(n-1) r_

10

3-(f-1) 
(r'

Ar,ei 0 |r)(rf _0| 0 ) 9A 010
/ r

x ( 10 _ _1 _1

0 3 -( f-1) Vri) 0 3-( f- 1 r'_ ) 0 3-( f-1) I s

1 ~ 1PI AC AC, I -~ E 1AC ACS3-2(n-1) {...d |Ar,eAr,ei l = 10 ri,r r::=ri=r( |A ,e Ar,e eil)
r-i,rI
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So, we have,

1 - E r,r/-r ri( 1| A ' - Aci|P) = |1 - (o-|T- T'o-) I< 36E

3.4 Results

In this section, we state and prove our technical results on the structure of strategies for

the parallel repeated Magic Square game. We first give an overview of the proof and then

fill in the technical details.

3.4.1 Overview

Our result has two main technical components. The first is a theorem that, given a near-

optimal strategy, shows how to construct observables on each players' Hilbert space that

approximately satisfy a set of pairwise commutation and anticommutation relations. For

a single round of Magic Square one expects to be able to derive these results directly

from previously existing rigidity results. The novelty of our result is to produce a rigidity

statement which shows that individual rounds of the parallel repeated game must nearly

commute with each other, where the commutation bound is polynomial in the number of

rounds. That is the key to proving the following theorem.

Theorem 25. Suppose that two players Alice and Bob have an entangled strategy for the n-round

parallel repeated Magic Square game, which wins with probability at least 1 - E. Then, if we adjoin

an ancilla register to Alice's space in the appropriate state |ancilla) A (and similarly for Bob in the

appropriate state |ancilla)B), there exist observables A-k indexed by r, c C {0, 1, 2} and k E [n]
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acting on Alice's space such that

V k, r, c, r', c, d Ai A krr(-) rr,~'
r r k k(3.2)

Vk k1, r, c,r', C, dq), (A 'k,k'l,k'~ ,

where |p') = |p) 0 |ancilla)A 0 |ancilla)B denotes the state together with the ancilla registers,

and f (r, r', c, c') = 1 if r 3 r' and c 3 c', and 0 otherwise.

Likewise, there exist observables BC on Bob's space such that
r,k

V k, r, c, r', c , d C k Cfk, (_ 1 f (r,r', C / ) < c/ ) 3 3

V k k1, r, c, r, , dvp (P ,e At rk C 1 ck I-

Moreover, the following consistency relations hold in expectation:

n
Vc,p, E rdip'(Acp 0 IancillaI(A )Pk) 2 < 0(n V) (3.4)

k=1
n

Vr, p, EcdV, (BC 0P 9 Iancilia,7I (P Ck) k) O(nV) (3.5)
k=1

Proof of Theorem 25. The single-round phase relations in Equations (3.2) and (3.3) follow

from Lemma 30. The commutation relations between rounds follow from Lemma 31. The

consistency relations (Equations (3.4) and (3.5)) follow from Lemma 35. El

Having constructed these observables, we use them to build an isometry that "extracts"

a 2n-qubit state out of the shared state of Alice and Bob. This isometry is local: it does not

create any entanglement between Alice and Bob. Moreover, it maps the measurements in

the players' strategy to 2n-qubit measurements that are close to the ideal strategy.

Theorem 26. Suppose that two players share an entangled state in a Hilbert space W and op-

erators Ac, fr,k satisfying Equations (3.2) and (3.3). Then there exists an isometry V : W -
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'- 0 C 2n g C 2n g c2n (& C2n , and for every s, t G {0, 1 }2n, there exists an operator WAst on

Alice's space (which is a polynomial in the Ac), and for every u,v E { 0 , 1 }2n there exists an

operator WBu,v on Bob's space (which is a polynomial in the Pr, such that

Va, b, c, d, (p ok (s)o (t)o-(u)o- (v) p) - (Vp WAS,,WBu,'vp) < O(n 2 fE), (3.6)

where |p) V |p)), oA, o2- are Pauli operators acting on the second output register of V, and

O-B O-B are Pauli operators acting on the fourth output register of V.

The proof of this theorem is deferred to Section 3.4.3. As a corollary, we show that the

output state of the isometry has high overlap with the state |EPR) 02n consisting of 2n

EPR pairs shared between Alice and Bob.

Corollary 27. Suppose that two players have an entangled strategy for the n-round parallel

repeated Magic Square game, which wins with probability at least 1 - E. Then, letting

V(|p)) as in Theorem 26,

(q1 EPR)(EPRJ 02n 0 Iunkkt) > 1 - O(n)2

whwere the identity operator Ijuk acts on the first, third, and fifth register of the isometry output.

Proof. This follows from Lemma 42 and Lemma 39. E

3.4.2 Single-round observables

Definition 28. Let k G [n] be the index of a round, and denote the single round observables

associated with that round by Ak := Ark and Bk := B , where c and r are any vectors

whose kth coordinates are r and c respectively, and ek is the vector with a 1 in the kth position and

Os elsewhere.

Definition 29. For each round k, define the state |ancillak)k -1 Tre{-,1,2}n-1 rk).
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Define the dilated state

9p') : ) 0 ancilla1 )0 0 ... 0 1ancillan)A 0 Iancilla1 )B 0... 0 ancillan)B

and define dilated observables on Alice's side

Ak 3 L(- )(ac)Praoa1 0 -- -9 Ik-i 0 |r-k)(r-k| 9 Ik+1 ... In
r-k a0 ,al

A e k I ... Ik0rk)(rk| Ik+1 ... 0 In
r-k

Where c in the last line can be any c satisfying Ck = c, and wherever we write a sum over rk it is

implicit that rk is fixed to be rk = r.

Observe that the operators Ak are true observables, i.e. they are Hermitian and square to I.

Moreover, Ack simulates the two-outcome POVM whose elements are given by Mac 'pac

Similarly, define dilated observables on Bob's side

f~ ( l)(br)kQbo~bl ®911 0... 09 Ik-i 09 rk(k 0 k-i..0I
sc,k -C -(') " -- @ I - k ) (r-k| 1( Ik+1 -.-. In

C-k b0,b1

= B 9,e I1 0 ... 0 Ik-1 0 |r-k)(rk 0 Ik+1 . ..0 In
C-k

Where r in the last line can be any r satisfying rk = r, and wherever we write a sum over C-k it is

implicit that ck is fixed to be Uk = c.

Observe that the operators Br are true observables, i.e. they are Hermitian and square to I.c,k

Moreover, Ck simulates the two-outcome POVM whose elements are given by Mbc IE pbr

Lemma 30. For all k, r, r', c, c', it holds that

A c , - (r,r',c,c') AC ,

The analogous statement also holds for Bob operators.
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Proof. Follows from single round analysis. See Appendix B.2. Replacing the operators A'

in that analysis with A, and replacing Br in that analysis with Br, one may observe that

the analysis in Appendix B.2 still holds.

Lemma 31. For all k 34 k', r, r', c, c', it holds that

rA '-Ar A,) 04Y)1 < O(V"E).

The analogous statement also holdsfor Bob operators.

Proof. Let c be any choice of columns such that ck C, Ck' = C'.

Recall that by equation (3.1) we have that

Vp, Erc(iPjAp Br > - E.>

Setting p = ek gives that, for all fixed values of rk and ck,

Vk, Erk,Cke _PA, ek Ber ek) > 1 - 9e.

(3.7)

(3.8)

So,

Vk, Erk,Cd -k, (Ar,ekBCek) 2 < 18E (3.9)

Further, recall that A e= Ac' as long as the kth coordinate of c and c' agree. Denotebn rm d r,ek

by JEclkk the uniform distribution over choices of column vector c such that Ck - c and
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Ck c'. Then

( r,k A ',k' I ACr Ac,k) = c k,k', ( Arcek A ,, 0 |-k, r'_k') (r-k, r-k' k,k'r
rk-k r'- kl

LEAS A,,Ac e9|r-k,r'k}{-k, rkkk'rYA ek A~ek0 k'k) (rk I k,k')
r-k r'-k'

Note that the column vector c is common to both A operators. Also, as a convention,

wherever there is a sum or expectation over r-k or r'k, in this proof, it is implicit that the

values of rk and r', are fixed to be rk = r and r , = r'. Now, we apply Lemma 44 to move

the leftmost A operator to Bob.

clk,k' Ld' (ekBe, 0 |r-k, rk' Kr -k, r'_k',k'r
r-k r,-k

Z 3Ac Ae ,0 r-k, r/_k') (r-k, rk,k') +
r-k r' ,

Ace k rk)(rk| 0 Ik' A,,e, 9 Ik 0 |r'_k)
r~~~ek ~r, . lek ,I rd (1(

r-k

L Ar,ek
r-k

0 r k(rk k Iki( Be, 0 Ik 0 r'kI )(I'k,
cr ek . ,k0 1-l r k

Note that -r9k A 1ek 0 r-k) (r-k 0 Ik'fl < 1. Hence, applying Lemma 45 and Lemma 46,

we get

Eclk,k' ' ( I A'eB'ek, 0 |r-, r-k') (r -k, Ik'k,
r-k r'-k1

E Ae Ac k9 |r-k,r'-k')r-k, rJ-Ikk,k')+
r-k r' k, k 

'kk ~

E f -k d { A ' , , B eI , ,
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By performing the same steps on the other A operator, we obtain

B 'ek Brek r--k, r'_k') -(k, r' k k,k",
r-k r'

LL Arek, Ar,ek 0 rk, rki) (rk, r_k' k,k') +
r-k r'-k,

Erkdp(Ar,ek, Be,ek) kP(r,,eB'e,)

Now the B operators can be commuted exactly since they share the same input c.

d B r Bcr e B 0 r-k, r/kI) (rk, kk,k,

ZZkA~ I ek ,ek 0 r_, r'_k,) (r-k, r'-k' k,k')+
r k k k

r-k d(r,ek' Bcek) Srk rek/ ' 'ek,

We move the Bs back to Alice by reversing the previous steps, again using Lemmas 44,

45, and 46

SckdV AC, A rk, rk,) (r-k, r kk
OX--k r'-k1

EASekArek 0 |r- k ,r~k') (rk, r'k'kk') +
r-k r'-k,

2Er dd l(AC r, Be,) + 2 E r ,,( Ace Bre/)

clk,k' (2Evr _k r,ek , Bek ) ' +I 2r , ,d;A ,ek,,B
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Finally, we bound this by Equation (3.9). Note that Equation (3.9) is stated with Er k,ck,

but this implies the same statement with Eclk,k]Er_kwith an additional constant factor of

3. Similarly for Eclk,klErk,, So, continuing our computation:

< 4 -3 -3v '= 36v 2.

FD

Lemma 32.

Proof. In the argument below, let r be the row vectors agreeing with r on index k and r-k

on the remaining indices; likewise for c (note that r-k is stored in Alice's register and and

C-k in Bob's). The main trick is to use the freedom of choice of c on Alice's operators to

pick c agreeing with Bob's ancilla register c-k.

1
L A ,ek |I)AB 0 rk k 0C-k k~

1
L- Bej),,|p) 0 |r-k$ 0 |C-kkkB

r-k,C-k

By Lemma 46 with i = (rk, c-k),

= E -_,C- _r i ,,k, Bc,k )

This is bounded by the probability that round k of the test succeeds with inputs r and c

< O(E).

Lemma 33. Vr, c, p and Vi C [n]
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i+1 i-1
(if' (17 (~,kPk)~,(T7Akk (1p') I (fl 7 (FTk)Pk)Acp(I7[

C,kn k ,k I ,k r,
k=n k=1 k=n k=1

Proof. Fixing r, c, p, and fixing i c [n] we have

i i
Pk)Acp(1 'k ( ( ,k)

k=1 k=n

i-1
Pk) Ac (f7 Ak)'

k=1

i+1 i-1

A+k )pri lp') + (r-T (prk Pk) A Ac(VT
rkk)k n k=Ckk1

k~n k=1

Ak - prc L, '

A r k) )Ck,k kP
k=n k=1

Pk)Ac(7r-1
k=1

rkk c, i

i-1
A ,P(=

k=1

i+1 i-i

Ck,k k rip k=n k=1

'Ackk) (A,
rk,k

rk,k) Pc i

,(rk Pk ) Ac p ACk
k=n k=1

r -

C,k ) p(
k=n k=1

0+ 0 0
O +OO~fi)= O(V E).

Here the last inequality uses Lemma 32, and the second to last inequality uses that Pr

commutes with all Alice operators, and that (-Ii+1 (k ) Pk)A ('- k) is a unitary

so that

i-i
)Pk) (L

k=1

Akk Ai - ,)i c i c i'

ED
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i+1

Ck,k
k=n

i+1

1 n Pk)
k-n

Acp(
k=1

)

i+1

SCk,k
k=n

+
i+1

O(, I (7J(Brk )Pk)
Ck,k

k=n

k)k )

A rk,kk

i+1

Ck,k
k=n

r C



Lemma 34.

i+2 i+1

JEr (K IJ(B3 ,k Pk)(7J ,pk-ek 0
kzn k=n

(3.10)k C k,k k
k=n k=n

and

Er 1 - (' pn-en(r",n)LP')) O(VE) (3.11)

Proof.

Er i+2 iA1
\ k(Bkk)n k An ef 0 I)

i+1

-(K Bck,k
k=n

i+2

Er ( p (fl ck k
k=n Ck

i+1

(H
k~n

ArPk.ek C r , i+1

i+2 i+1

7 gBckk)(J4
k=n k=n

i 2 i+1

+ | ,k H
k=n k=n

i+1

Ac 0 j)(r ,i+ c)jq/) - ('"H rk)( A,.e ) (Acr,pk.ek Ci1C2' ,P~k0 1 r
k n k=n

i+2

< r 414
k=n

i+1

ck k) (H Arpk-ek 0 ,i+1
k=n

i+2 i+1

- ck)(17 Ac 0
k=n k=n

I) (,i+1

41Cn,k)(f A
k=n k=n

ckk H
k=n k=n

Ac 01) (Ac .r,pk~e

i+1 i+1 i+1

(H A 1 Ak
k=n k=n k=n

Er (d (A+i+,1' ri+1) + Er ( (Ii(Ar,pi-ei 0 d)

Where the second to last inequality uses the fact that ( 'P' (H + c +k, ( 1 Ac .e 0

I) = 1, and the third inequality uses that fact that ('p,, (Ht+ prk) (+1 +1 A c.e 0
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+ Er (
i+1

( ck,k)
k=n

. JEW

Arke idIV I) (i < O0e)

Ac o )(c

Ake Ci0 ,i+1

i

C i+1
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1) 1 = 1. Now, applying Lemma 32, we have

(E2ck)( Ap 0)C i+

k=n k=n

i+1

k~n
Ck,k) Ar,pkek

k=n

Er dg ( ,i+'c ,ri+)) + Er di (I, (Acppej I)A

< O(fi) +Er(dv I,(Ac 0I)

And we note that

Er (d (I, (Arcp.ei 0 I) - )2

= Er (|||a') - ( A,pi.e i

Er (2 - 2 )'| (A y,.e, I) -A )

= Er (2-2 ( np 1 r-k|) ( A,p.ej 0 I) ACe 0 |r'_i) (r'_i
r-k ({,1,2}n-1

1
1)0 31-

r-kE{
L r-k)
0,1,2}n-1 )

) x ...

=Er 2-2 - 31 r (P I Ac-pie - r e,
r':rl=ri

= Er (2 - 2 - Er r=rj | A,,C

< 2 -3 -36e

Ac, | ))

(3.14)

Where the last inequality follows from Lemma 24. Furthermore, by Jensen's inequality it

follows that:
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(3.13)

r'f:r I=riT~

p) - (r'_ i IIr'_ j) (r' -_i IIr' -_i))

= 2 (1- Er,r/-r ;-rj I{ |AC,,e -Act,,|)



Er (dvi(I, (Ac,pj-ej 0 I) - ( 
i)

Now, resuming the calculation in equation (3.12), we have that

i+1

(Hl Acke
k~n

ik1

k~n

I) -r )) < O(V'F)

Finally, note that, since Equation 3.14 is valid for every i, it follows by the same calcula-

tion, with i = n, that:

Er (I - ' 0(E) 0(V'c)

D

Lemma 35.
n

Vc, p, Erdv, A ,C II k
k=1

2

)Pk 
)

< 0(n fi)

The analogous statement also holds for Bob operators

Proof. For simplicity of notation, throughout this proof, we will denote A' 0 I simply by

Ac. Start by noting that we have the following exact property:

Ar A ,, = AC,p+p'-

As a consequence, we may decompose each observable Ac into a product of single-round

observables
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k~n
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k~n
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< r dv (I, (Ac, . 0 I).- 2 

Ci i)2
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... A p.

So, fixing any value of c , and p, we have

Erdp AC

= Er (1

n

2

k=1 
k

Act Ac ,I|')+

- (ip'| (,7J(A k)Pk) t

k=1

n n n

(p'| (I J(A ,k Pk)r( (Ar k)Pk) L')| -P'|A (I(Ak)Pk
k=1 k=1 k=1

=2Er (1
n

- Kp' A p(J(A Ck )Pk) I'))

Where, in the second equality we are using the fact that A is Hermitian to get that

' A p( ( k P') =K{ '| Atp ( (Ak)Pk) p')
k=1 k=1

Continuing, we have

Erdp Ar p'

2

k=(A1 k)Pk

k=1 r~

1' n
-2lEr (I - (lI'jAc,p(I7(A~k )Pk)j~p')

k=1

=2Er 1-

1 /

< 2Er (I

1

i=n\

(' ( ( ,k)Pk)Ap(A ,) P)
k~n

i+1

H Br,k P k(A k Pk) !)
k=n k=1

{ n e k)?) 1 )

( p /
i+1

H k Pk)
k=n

_ (_ (JJ k Pk)AC p(1 ( kPk)Lk P)
k=n k=1

i i i-1

Acp(IJ(A kk Pk) IP') - K1p, I (IlJ( ,k Pk)A p( r(A ,k
k=1 k-n k=1
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We now apply Lemma 33 inside the expectation:

<2Er (1-

- 2Er (I-

- 2Er (I-

k-n

2~

(1, n ( Pk) (
k n k=n

i+2 i+1
Er I (1 ( , )Pk) (

1 k=n k-n

1
2 Er (1-{P'A nn)|" +2

linn -

i+1

k~n

< 2 - .0(v) + 2(n -1)0(v) + 0(nVI) = 0(n4v)

Where the last inequality follows by Lemma 34.

F

3.4.3 The Isometry

Definition 36. Define the single round "approximate Pauli" operators on Alice's space by:

X2k-1 -- A,k

X2k= A1,k

Z2k-1 - 0 ,k

Z2k A ,k-
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Likewise define the single round approximate Pauli operators on Bob's space by

XV k - -1,

"2k-1 B0,k

XVB Bik
'2k 1,k

B P

Z2k O,k-

Lemma 37 (Approximate single-round Pauli relations). Suppose Alice and Bob share an en-

tangled strategy that wins with probability 1 - e. Then the single-round Pauli operators as defined

above satisfy the following relations:

Vi, dj)(Xi, XB ) V E_

Vi, dp(Zi, Zp ) < vE

Vi, dp(XiZi, -ZiXi) < /E (3.15)

Vi 7 j, dp(X;Xj, XjXi) < V/E

Vi / j, dq (ZiZj, ZjZi) < VEI.

Proof. The consistency relations follow from Lemma 32. The other relations come from

Theorem 25. E

We will now build up multi-round Paulis from products of these.

Lemma 38 (Approximate Pauli relations). Suppose Xi, Zi are observables on Alice and Xf, ZP

are observables on Bob indexed by i c [n] satisfying Equation (3.15). Let Xa : 1 Xai and

Zb := U 1 Z ", and likewise let (XB)a :=JB__(Xpyai and (ZB)b :- (Zp)bi. Then

Va, b, a', b', dp((XaZb)(Xa'Zb'), (-)a'.bXa ~a'Zb+b') On2V') (3.16)

Va, b, dp ((Xa Zb), (Z B) b(X) )a) < 0 (n Vle). (3.17)
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Proof. Equation (3.17) is an immediate consequence of Lemma 48. We obtain Equation (3.16)

in two steps. First, by Equation (B.1) of Lemma 51, we have that

d,(XaZb, (- 1)a.bZbXa) < O(n2 VE).

Further, by Equation (B.2) of Lemma 51 we have that

d,(xaxa', xa+a') < O(n2 4)

de(ZbZb',Zb+b') O(n2VE-).

Hence,

d,(XaZbXa'Zb', (-)a'.bXa+a'Zb+b') < de (XaZbXa'Zb, (ZB)b'XaZbXa')

+ dp ((ZB)b'XaZbXa', (_ 1)a'.b(ZB)b'XaXa'Zb)

+ de ((-1)a'b (ZB)b'XaXa'Zb, (- 1 )a'.b(ZB)'(ZB)bXaXa')

+ d 1 ((-)a'-b(ZB)b'(ZB)bXaXa', (_)a'.b (ZB)b'(ZB)bXa+a

+ d ((1)a'b (ZB)b'(ZB)bXa+a', (_ 1) a'-bXa+a'ZbZb')

+ d 1p (-)a'.bXaa'ZbZb', (-l)a'.bXa+a'Zb+b')

O(n2 V/).

Proof of Theorem 26. Let WA a,b := XaZb and WBa,vb (XB)a(ZB)b, and let 7N be the

provers' Hilbert space, together with the ancillas adjoined in Section 3.4.2. Then we define

the isometry V : 71 -+ 7- 0 C 2n g c2n 0 c2n 0 c2n by

V(p)) = 3 (-1)b(a+c)()e(d+f)WA a,b 0 w d,e Jp) 0 Ja + c, c) 0 Id + f, f).
a,b,c d,e,f

102



Here the second and the fourth register are the "output register" of the isometry, and the

third and fifth register are "junk." This isometry was introduced by McKague [65], and

has an alternate description in terms of a circuit that "swaps" the input into the output

register, which is initialized to be maximally entangled with the junk register.

We now show the expectation value of any multi-qubit Pauli operator on the output of

the isometry is close to the corresponding expectation value of approximate Paulis in the

isometry input. In the equations below, |0) = V(|ip)), the Paulis o , OA act on output

register 2, and o-, o- on output register 4.

P = (a(s)of (t)o (u)o-(v)|p)

L 
(( 0 (a'+ c', c' 0 (d' + f', f'W Ata',bI 0 W d',e'(-1)b'-(a'+c')+e'-(d'+f')

a,b,c a(,b',c' d,es( d',e',00

X o (S) 0-7A (t) 0o, (U) 0 (V) (- 1) b-(c)-(d) Aa,b Bd,e fp) & Ja + c, c) 0 Id + f, f)

1 ' ((ipJ®(a' c',c' 0 (d/+f/,f/WAt

a,b,c a',b',c' d,e,:f d',e'f!
a',b' 0 VBtd',e' (_I)b'- (a+c') (_) e'-(d'+f'

a,b

X (-1)(b+t)(a+c)(_1)(e+v)(d+f)WA ab 0 WBd,ep) 0 a + c + s, c)Id + f + uf))

(zWAt a+sb 0 WBtd+u,e' ( 1 )b'(a+s+c) (_)e'.(d+u+f)
,b',c d,e,e',f

X (--l)(b+t).(a+c) (1)(e+v)-(d+f) WAab 0 WBd,e P)) -

Now we do the sum over c and f to force b' = b + t and e' = e + v:

__ 1
ET ( 1)(b+)-s(_ (e+v).uAt
a,b d,e

a+s,b+t W a,b 0 WB d+u,e+vWBd,e|0) -

Finally, we apply Lemma 38 to merge the WA and WB operators, picking up an error of

O(n2 /Ex) in the process.

.O(n/) KJAs,tWBu,v lI).
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Lemma 39. Let M, be the 4n-qubit operator defined by

Mn =

IIII + (IXIX + XIXI + XXXX + ZIZI + IZIZ + ZZZZ + XZXZ + ZXZX + YYYY) n.
2 18

Then if a density matrix p satisfies Tr[Mnp] > 1 - J, (EPR|2npEPR)0 2  > 1 -

Proof. Observe that the highest eigenvalue of M1 is 1, with unique eigenvector IEPR)®2.

Moreover all other eigenvalues of M1 have absolute value at most 5/9. Hence, the highest

eigenvalue of Mn is also 1 with the unique eigenvector is IEPR) 02n, and all other eigen-

values have absolute value at most 5/9. Hence

5
Mn |EPR)(EPRI02n + (I - IEPR)(EPR| 2n ).

9

So

1 - 3 Tr[Mnp]

< 4Tr[p EPR)(EPR 02n] +
9 9

- - 6 < 4 Tr[pEPR)(EPR02n ]9 9

1 - 9 < Tr[pIEPR)(EPR I 92n
4

Lemma 40. For every single round operator Ac, let XaZb be approximate Pauli operator formed

by taking the row-r, column-c entry in the Magic Square (Figure 3-2), and converting X and Z on

the first and second qubits to the approximate Paulis on qubits 2k - 1 and 2k, respectively. Then

d ,(A ,k, XaZb) < O(v ).
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Likewise,for Bob,

d ce,k,(X

Proof. First consider Alice. Then the conclusion follows by definition of the approximate

Paulis for r E {0, 1}. When r = 2, use the fact that dlp(A2k, 5,2) O(f). By definition,

P2 _P1 gk. Each of these two operators can be switched back to Alice, to yield
ck ck ck

d(A2,k/ - kkk) O(V)-

This establishes the result for single round operators. For the Bob, we follow the same

argument, interchanging the role of the row and column indices. E

Lemma 41. For every product of single-round operators FJna (Ak) Pk, let XaZb be the approxi-

mate Pauli operator formed by applying the procedure of Lemma 40 to each single-round operator.

Then

dj(H7(Ack)Pk, XaZb) < O(n Vl).
k=1

The analogous statement holds for B.

Proof. This is a consequence of Lemma 40 and Lemma 49. 1

Lemma 42. Suppose Alice and Bob win the test with probability 1 - e. Then for the operator

Mn defined in Lemma 39. (1 |Mn1p) > 1 - O(n2 Vfi), where p) V(|Ip)) is the output of the

isometry in Theorem 26 applied to Alice and Bob's shared state |p).

Proof. Recall from Fact 23, we know that

Vp, Erc lA),Br ) > E.

By applying the consistency relations Equation (3.4) and Equation (3.5) guaranteed by
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Theorem 25, we obtain that

n n

Vp, Er,cpl (PI1(A ,k)P)k l(jc ,Pkjp) > 1 - O(nVE).
k=1 k=1

Now, by Lemma 41, we can switch the A and B operators to approximate Paulis:

Vp, Er,c (lI(XaZb)((XB)c(Z B))dP) > 1 - 0(n I).

Applying Theorem 26, we obtain that

Vp, ( lEr,c(> (a)o- (b)o-B(c)o (d))|p) > 1 - O(n2V/e).

In particular, taking an expectation over uniformly random choices of p, we obtain that

(01ErPcrpA (a) - (b) o (c) -B(d)) 1) > 1 - 0(n2

It is not hard to see that Er,c,p (or (a)o-' (b)oB(c)o- (d)) is precisely the operator Mn, cor-

responding to the magic square test performed on an unknown state 1p) using the mea-

surement operators of the ideal strategy. E

3.5 Discussion and open questions

The reader familiar with previous self-testing results may notice that our Theorem 26

gives a robustness bound on the expectation value of operators without explicitly charac-

terizing the state, whereas previous works often state a bound on the 2-norm I V( p)) -

Ig') 9 junk)|1, where Ip') is a fixed target state. While it is possible to translate from one

to the other by means of the techniques in Lemma 42, we think the guarantee on expecta-

tion values is more natural in applications where one does not want to test closeness to a

fixed target state, but rather to test whether the state satisfies a certain property described
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by a measurement operator.

Self-testing and rigidity have been very active areas of research in recent years, and we be-

lieve that many more interesting questions remain to be answered. One open question of

interest is to reduce the question and answer length of the test without sacrificing the error

scaling. This is especially interesting from the perspective of computational complexity,

where self-testing results have been used to show computational hardness for estimating

the value of non-local games [45, 70]. Rigidity has also been applied to secure delegated

computation and quantum key distribution: in particular, the work of Reichardt, Unger,

and Vazirani [83] achieves these applications using a serial (many-round) version of the

CHSH test; it would be interesting to see if their results could be improved using the

Magic Square test.

A further way to generalize our result would be to adapt it to test states made up of

qudits, with local dimension d :A 2. As our techniques relied heavily on the algebraic

structure of the qubit Pauli group, this may require significant technical advances. In fact,

a variant of the Magic Square game for which the ideal strategy consists of "generalized

Paulis" (i.e. the mod d shift- and clock-matrices) was recently proposed by McKague [66],

and it would be interesting to see if our analysis could extend to the parallel repetition of

this game. Likewise, it would be interesting to extend our analysis to states other than

the EPR state-for instance, could we do something like McKague's self-test for n-qubit

graph states [65], but with only two provers instead of n?
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Appendix B

B.1 Properties of the State-Dependent Distance

Definition 43. Given a state Ip) and two operators A, B, the state-dependent distance d (A, B)

between A and B is defined to be

dp(A, B) := ||AJip) - Bhp)||.

Lemma 44. The state-dependent distance satisfies the triangle inequality

V A,B, C, dgp(A, C) < dgp(A,B) + dg(B.,C).

Lemma 45. Let A, B, C, D be bounded operators. Then

d,(DA,DC) < dp(DA,DB) + |D||dp(B,C).

Proof. By Lemma 44,
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Expand the second term:

dI jDB, DC) = ||D(Bjp) - CJ P))|12

DI - ||BJp) - Cp)1 2

= |D||d P( BC).

The following lemma tells us that guarantees on the state-dependent distance on average

can be made "coherent."

Lemma 46. Let { Ai} and { Bi} be two sets of operators indexed by i C [N], and suppose that

EA id(Ai, Bi )2 -

Define the extended state |p') = I V ]) 9 |i), and the extended operators A= E Ai 0

|i)(i| and =i Bi 0 |j)(j|. Then

d (A, ,B)2

Proof.

dvi (A, 3) = flAJ|p') - p )2

1 Aijp) 0 i)

J: P ( AtAi + Bt

= Ed( Ai ,Bi)2

-1 Bijlp) 0 ji)11 2

Bi - A Bi - B7Ai)|p)

0

110



Lemma 47. Given three Hermitian, unitary operators T, T', S, and a unit vector |o-), if: (o-i T

S o-) ;> 1 - and (o- T' - S o-) ;> 1 - , then (o-IT -T'|o-) > 1 - 49.

Proof. Note that

|l(T-S|o-)|2 = 2-2(o-|T-Sjo-) <26

and, similarly,

11(T' - S)jo-) 11

So, by the Cauchy-Schwarz inequality,

(o-|r(T - S)(T'- S Io-)| | 1) T - S |o-)|| - ||(T'- S)o-)| 11 < 236

Expanding out the Left Hand Side, now gives

- v 26 = 26.

- T'o-) + (o-S -Sjo-)|2J > |{c-| ( T - S) ( T' - S) |o-)| = I|o-| T - T'|o-) - {o-| T - S jo-) - (c-| S

= (o-T -T'|o-) - (o|T -Sjo-) - (o-|S -T'|o-) + 1

So,

- 2 < {tr|T - T'|o-} - (o-|T -So-} - o-JS - T'|o-) + 1

and

(o-|T - T'|o- q (o-iT - Syo) + uo-|S - T'-) - 1 - 26 f (1 - D) + (I - J) - I - 2J = I - 46,

where the last inequality again uses the assumption of this lemma. D
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We now state and prove some "utility" lemmas, about what happens when we commute

words of operators past each other.

Lemma 48. Let A 1,.. ., Ak be Hermitian operators on Alice's space, and B 1,

operators on Bob's space, such that

k 1
dip(H Ai, H Bj)

i=j1 i-k

... , Bk be Hermitian

k

i=1

k 1
d(H Ai,H

i=1 i=k
Ak, BkA1 ... Ak_1) +d,(BkA1 ... Ak-1, BkBk--A1..

+--+AdkB (B) ... B2A1,Bk ... B1)

< dgp(Ak, Bk) + dg(Ak-1, Bk-1) +--+ dl(A1, B1)

D

Lemma 49. Let A 1,. .. Ak and A',... A' be operators on Alice, and B 1,... Bk be operators on

Bob, such that

Then
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Then

Proof.

Ak-2)

Vi, dip( Ai, Bi) < Ej.

Bj) < dp( A1..

Vi, d ( Ai., Bi < E E1

Vi, dip(A, ,Bij 2



Proof. This is a straightforward application of the Lemma 48.

d4(A1... Ak, A'... A') < dg(A1... Ak,Bk ... B1) +d(Bk ... B1, A' ... A')

< nE1 + nE2-

Lemma 50. Let A 1,... Ak be Hermitian operators on Alice's space, and B 1,..., Bk be Hermitian

operators on Bob's space. Suppose that

Vi, dgp( Ai, Bij) < El

and

Vi, j {1,...,k - 1},j e {k}, dl (AiA 1, aijA1 Ai) < E2

where a C { 1} for each choice of i, j. Then

dp ( A1 ... Ak,c&1ka2k ... agk1,kAkA1A2 ... Ak-1) < 2(k - 2)-I + (k - I)E2-
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Proof.

k-1

d4p(A1 ... Ak, (]Faik)AkA1 ... Ak-1)
i=1

< d (A1 ... Ak, ak-1 A1 ... Ak-2AkAk-1)

+ d ,(04k1,kA1 ... Ak-2AkAk_1,ak_1,k Bk-1A1 ... Ak-2Ak)

+ dp (Ok- 1,kBk-1 A1 ... Ak--2 Ak, Ctk-1,k tak-2,kBk- A1 ... Ak-3AkAk_2)

+ d4, (ak-1,kak-2,kBk_1 A 1 ... Ak-3AkAk-2, k-1,ka k-2,k B_1Bk-2A1 ... Ak-3Ak)

k-i
+ dip(fl CiBk-1

i=2

k-1

+ dip( i ikBk-1
i=1

k-1
... B2A1Ak,fl aikBk-1...B2AkA1)

i=1

k-1
... B2AkA1, c CkiAkA1 ... Ak-1)

< di (Ak-1Ak,ik - 1,kAkAk_1) + dq (Ak_1, Bk-1) + - - - + dy)(A2Ak, a2kAkA2) +d (A 2, B2 )

+dp(AlAk,alkAkAl) +d 14(B 2,A 2) +

< 2(k - 2)E 1+ (k - 1)E2

--- +dp(Bk,Ak)

0

As a consequence of the preceding lemma

Lemma 51. Let S 1,..., Sk, T1,..., Tk be Hermitian operators on Alice's space and let SB,.

be Hermitian operators on Bob's space, satisfying

Vi, d(SiS ) <E

Vi, dip(TbTjB) <E2

Vifj, dep(SjTjaijTSi) <E3-
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Then

k

d1(Sl...SkTl...Tk, H xijT1...
i,j=1

Likewise,

k i-i

Tk,H aijSTlS2T2
k

(7(2(j
j=2

(B.2)

Proof. We first prove Equation (B.1).

(B.1)

k

SkT1 ... Tk, H cijT1..
i,j=1

TkS1 ... Sk)

<d p(S1 ... SkT1 ... Tk, Tk .. T - S 1... SkT1)
k

+dg(T ... TS1 ... Sk T1, ai1T... T2T11.1

k

+ dip (tiTk
+gi1T . .. T2T1S 1 ..

k

Sk, CilT..
ji=1

TTlS1...SkT 2 )

k

+ dp(H ai1Tk..

+

k k-i

+ dp(f H & 1TBT1...
i=1 j=1

k k-i

T_1S1 ... Sk,f7H aJij T1
i=j 1 =i

... Tk_1S1... SkTk)

k k-i k

+ dip( 1 aijT1... Tk_1S1...1SkTk, H aijT1...
i=1 j=1 i,j=1

TkS1... Sk)

<2(k - 1)E2 + k(2(k - 1)El + kE3)-

The derivation of Equation (B.2) is very similar. The only difference is that the number

of commutations of S with T is different. E
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TB T1 SI ... S k T2, 1& i2 T
i-=1:

TkS1 ... SO) < 2(k -1I)E2 + k(2(k - 1)El + kE3).

dgp(S1 ... SkT1 - - - SkTk ) < 2(k -1I)E2 +

... T3B T1T2 S1 ... SkO



B.2 The Single Round Case

In this section, we review the self-testing result of [99] on the single-round magic square

game, and write out the measurement definitions concretely for use in our setting. The

rules of the game are described in Fig. 3-1. Any entangled strategy for this game is de-

scribed by a shared quantum state IP)AB and projectors pa o,ai for Alice and Q oIbl for Bob.

It can be seen that the game can be won with certainty for the following strategy:

1 Ii)A 9ii)B
ijE{O,1}

paoai = (I + (-1)aOZ)A1 0 (I +

o,l =I A+ (-1)a1X)A1 0 (I +

Qob1 = JA 0 (I+ (-1)boZ)Bl 0

Q1 'A 0 (I+ (-1)b1X)B1 0

(-1)a1Z)A2 0 IB

(-1)aOX)A2 0 IB

(I + (-1)b1X)B 2

(I + (-1)boZ)B 2

This strategy is represented pictorially in Fig. 3-2, where each row contains a set of simultaneously-

measurable observables that give Alice's answers, and likewise each column for Bob.

Inspired by this ideal strategy, for any strategy we can define the following induced ob-

servables on Alice's system:

X1= L (-1)aiPo~alx 37,o41

X (-1)alpoal =A

= (-i1)opao,ai A

1

Z oa1

ao,a1
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and on Bob's system:

X3 = E (-1)"Q bo'6bl B1
bo,b1

X4 = (1) 'bQbo0b B 1
bob1

=3(_l)boQo,bl B
Z3 =E () Q0,b =0

bo,b1

Z4 (-l)boQbobi BO.

bo,b,

The X and Z observables correspond to the first two rows and columns of the square.

From the third row and third column, we obtain four more observables; two for Alice:

= ( =

W2 =y(_)a, aoa= A'
a0,1

and two for Bob:

W3= ( 1 )boQboibl =B

bo,b l

W4 = - bi QbO,b1= B1.
bo,b1
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There are nine consistency conditions implied by winning the game with probability 1 - E:

( P Z1 Z3 II)

(ip|Z2Z4 I )

(Zp ZlZ2W3 |p)

(ipIX2X 4 p)

(~p lXX 3 |p)

(V) X 1X 2 W4 zp)

-( PJW1Z3X41P)

-(pJW 2Z4 X 3 1|p)

-(Jp W1W2W3W 4 |p)

From this we obtain anticommutation conditions

- 9e

- 9E

- 9E

- 9e

- 9E

- 9E

- 9E

-- 9E

- 9E.

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

X1 Z2W3

W3X1Z2

W3X1Z4

W3Z4X3

-W 3 W2

W3W1W3W4

W1W4

-W 4Z3X4

-Z 1W4 X4

-Z 1 X2 W4

-Z 1 X2X2X1

-z 1 x1 .

(by (B.5))

(by (B.4))

(by (B.7))

(by (B.10))

(by (B.11))

(by (B.9))

(by (B.3))

(by (B.6))

(by (B.8))
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We can also get commutation relations on different qubits:

X 1Z2  X1Z4

~ Z4X3

X3 Z4

~ X3 Z2

~ Z2X1

(by (B.4))

(by (B.7))

(by construction)

(by (B.4))

(by (B.7)).

The other cases follow similarly. See [99] for further details.
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Chapter 4

Interactive proofs with approximately

commuting provers

The class MIP* of promise problems that can be decided through an interactive proof

system with multiple entangled provers provides a complexity-theoretic framework for

the exploration of the nonlocal properties of entanglement. Very little is known in terms

of the power of this class. The only proposed approach for establishing upper bounds is

based on a hierarchy of semidefinite programs introduced independently by Pironio et al.

and Doherty et al. in 2006. This hierarchy converges to a value, the field-theoretic value,

that is only known to coincide with the provers' maximum success probability in a given

proof system under a plausible but difficult mathematical conjecture, Connes' embedding

conjecture. No bounds on the rate of convergence are known.

In this chapter we introduce a rounding scheme for the hierarchy, establishing that any

solution to its N-th level can be mapped to a strategy for the provers in which measure-

ment operators associated with distinct provers have pairwise commutator bounded by
o (f2 / /N) in operator norm, where f is the number of possible answers per prover.

Our rounding scheme motivates the introduction of a variant of quantum multiprover

interactive proof systems, called MIP*, in which the soundness property is required to
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hold against provers allowed to operate on the same Hilbert space as long as the com-

mutator of operations performed by distinct provers has norm at most J. Our rounding

scheme implies the upper bound MIP* C DTIME(exp(exp(poly) /J2)). In terms of lower

bounds we establish that MIP* , with completeness 1 and soundness 1 - 2- Po'Y, con-

tains NEXP. The relationship of MIP* to MIP* has connections with the mathematical lit-

erature on approximate commutation. Our rounding scheme gives an elementary proof

that the Strong Kirchberg Conjecture implies that MIP* is computable. We also discuss

applications to device-independent cryptography.

4.1 Introduction

In a multiprover interactive proof system, a verifier with bounded resources (a polynomial-

time Turing machine) interacts with multiple all-powerful but non-communicating provers

in an attempt to verify the truth of a mathematical statement - the membership of some

input x, a string of bits, in a language L, such as 3-SAT. The provers always collaborate to

maximize their chances of making the verifier accept the statement, and their maximum

probability of success in doing so is called the value w = w (x) of the protocol. (We will

sometimes refer to a given protocol as an "interactive game".) A proof system's complete-

ness c is the smallest value of w(x) over all x E L, while its soundness s is the largest value

of w(x) over x V L; a protocol is sound if s < c.

The class of all languages that have multiprover interactive proof systems with c > 2/3

and s < 1/3, denoted MIP, is a significant broadening of its non-interactive, single-prover

analogue MA, as is witnessed by the characterization MIP = NEXP [7]. This result is one

of the cornerstones on which the PCP theorem [6, 5] was built, with consequences ranging

from cryptography [11] to hardness of approximation [35].

Quantum information suggests a natural extension of the class MIP. The laws of quan-

tum mechanics assert that, in the physical world, a set of non-communicating provers

may share an arbitrary entangled quantum state, a physical resource which strictly ex-
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tends their set of strategies but provably does not allow them to communicate. The cor-

responding extension of MIP is the class MIP* of all languages that have multiprover

interactive proof systems with entangled provers [50].

Physical intuition for the significance of the prover's new resource, entanglement, dates

back to Einstein, Podolsky and Rosen's paradoxical account [32] of the consequences of

quantum entanglement, later clarified through Bell's pioneering work [10]. To state the

relevance of Bell's results more precisely in our context we first introduce the mathe-

matical formalism used by Bell to model locality. With each prover's private space is

associated a separate Hilbert space. The joint quantum state of the provers is specified

by a unit vector j-f) in the tensor product of their respective Hilbert spaces. Upon re-

ceiving its query from the verifier, each prover applies a local measurement (a positive

operator supported on its own Hilbert space) the outcome of which is sent back to the

verifier as its answer. The supremum of the provers' probability of being accepted by

the verifier, taken over all Hilbert spaces, states in their joint tensor product, and local

measurements, is called the entangled value w* of the game. The analogue quantity for

"classical" provers (corresponding to shared states which are product states) is denoted

CO.

Bell's work and the extensive literature on Bell inequalities [18,4] and quantum games [19]

establishes that there are protocols, or interactive games, for which w* > w. This simple

fact has important consequences for interactive proof systems. First, a proof system sound

with classical provers may no longer be so in the presence of entanglement. Cleve et

al. [19] exhibit a class of restricted interactive proof systems, XOR proof systems, such that

the class with classical provers equals NEXP while the same proof systems with entangled

provers cannot decide any language beyond EXP. Second, the completeness property of

a proof system may also increase through the provers' use of entanglement. As a result

optimal strategies may require the use of arbitrarily large Hilbert spaces for the provers

- no explicit bound on the dimension of these spaces is known as a function of the size

of the game. In fact no better upper bound on the class MIP* is known other than its
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languages being recursively enumerable: they may not even be decidable! This unfortu-

nate state of affairs stems from the fact that, while the value w* may be approached from

below through exhaustive search in increasing dimensions, there is no verifiable criterion

for the termination of such a procedure.

Bounding entangled-prover strategies. The question of deriving algorithmic methods

for placing upper bounds on the entangled value w* of a given protocol has long frus-

trated researchers' efforts. Major progress came in 2006 through the introduction of a

hierarchy of relaxations based on semidefinite programming [31, 71] that we will refer to

as the QC SDP hierarchy.1 These relaxations follow a similar spirit as e.g. the Lasserre

hierarchy in combinatorial optimization [53], and can be formulated using the language

of sums of squares of non-commutative polynomials. In contrast with the commutative

setting, this leads to a hierarchy that is in general infinite and need not converge at any

finite level.

The limited convergence results that are known for the QC SDP hierarchy involve a

formalization of locality for quantum provers which originates in the study of infinite-

dimensional systems such as those that arise in quantum field theory. Here the idea is

that observations made at different space-time locations should be represented by op-

erators which, although they may act on the same Hilbert space, should nevertheless

commute - a minimal requirement ensuring that the joint outcome of any two measure-

ments made by distinct parties should be well-defined and independent of the order in

which the measurements were performed.

For the case of finite-dimensional systems this seemingly weaker condition is equivalent

to the existence of a tensor product representation [31]. In contrast, for the case of infinite-

dimensional systems the two formulations are not known to be equivalent. This question,

known as Tsirelson's problem in quantum information, was recently shown to be equiva-

lent to a host of deep mathematical conjectures [86, 47], in particular Connes' embedding

1Here "QC" stands for "Quantum Commuting".
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conjecture [23] and Kirchberg's QWEP conjecture [49]. The validity of these conjectures

has a direct bearing on our understanding of MIP*. The QC SDP hierarchy is known to

converge to a value called the field-theoretic value wf of the game, which is the maximum

success probability achievable by commuting strategies of the type described above. A

positive answer to Tsirelson's conjecture thus implies that w* = Wf and both quantities

are computable. However, even assuming the conjecture and in spite of strong interest

(the use of the first few levels of the hierarchy has proven extremely helpful to study a

range of questions in device independence [8, 100] and the study of nonlocality [76]) ab-

solutely no bounds have been obtained on the convergence rate of the hierarchy. It is only

known that if a certain technical condition, called a rank loop, holds, then convergence is

achieved [72]; unfortunately the condition is computationally expensive to verify (even

for low levels of the hierarchy) and, in general, may not be satisfied at any finite level.

Beyond the obvious limitations for practical applications, these severe computational dif-

ficulties are representative of the intrinsic difficulty of working with the model of entan-

gled provers. Our work is motivated by this state of affairs: we establish the first quanti-

tative convergence results for the quantum SDP hierarchy. Our main observation is that

successive levels of the hierarchy place bounds on the value achievable by provers em-

ploying a relaxed notion of strategy in which measurements applied by distinct provers

are allowed to approximately commute: their commutator is bounded, in operator norm, by

a quantity that tends to zero as the number of levels in the hierarchy grows.

A rounding scheme for the QC SDP hierarchy

Our main technical result is a rounding procedure for the QC SDP hierarchy of semidefi-

nite programs. The procedure maps any feasible solution to the N-th level of the hierarchy

to a set of measurement operators for the provers that approximately commute. For sim-

plicity we state and prove our results for the case of a single round of interaction with two

provers and classical messages only. Extension to multiple provers is straightforward; we
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expect generalizations to multiple rounds and quantum messages to be possible but leave

them for future work.

Definition 52. An (m, f ) strategyfor the provers is specified by two sets of m POVMS { Aia e

and { Bb}1 b< with f outcomes each, where x,y C {1,... ,m}.

A strategy is said to be -AC iffor every x, y, a and b, |lAaBb - BbAa|| < 6, where denotes

the operator norm.

Our main theorem on the QC SDP hierarchy can be stated as follows. (We refer to Sec-

tion 4.2.2 for a definition of the hierarchy.)

Theorem 53. Let G be a 2-prover one-round game with classical messages in which each prover

has e possible answers, and wCSDP(G) the optimum of the N-th level of the QC SDP hierarchy.

Then there exists a 6 = 0 (2 / VN) and a -AC strategy for the provers with success probability

WQNCSDP(G) in G. 2

Our result is the first to derive the condition that the operator norm of commutators is

small. In contrast it is not hard to show that a feasible solution to the first level of the

hierarchy already gives rise to measurement operators that exactly satisfy a commutation

relation when evaluated on the state (corresponding to the zeroth-order vector provided

by the hierarchy). While the latter condition can be successfully exploited to give an

exact rounding procedure from the first level for the class of XOR games [19], and an

approximate rounding for the more general class of unique games [48], we do not expect

it to be sufficient in general. In particular, even approximate tightness of the first level

of the hierarchy for three-prover games would imply EXP = NEXP [95]. We will further

show that the problem of optimizing over strategies which approximately commute, to

within sufficiently small error and in operator norm, is NEXP-hard (see Section 4.1 for

details).

2 Due to the approximate commutation of the provers' strategies the success probability of b-AC strate-
gies may a priori depend on the order in which the measurement operators are applied. In our context the
parameter J will always be small enough that we can neglect this effect. Moreover, for the particular kind
of strategies constructed in our rounding scheme the value will not be affected by the order.
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The proof of Theorem 53 is constructive: starting from any feasible solution to the N-

th level of the QC SDP hierarchy we construct measurement operators for the provers

with pairwise commutators bounded by 3 in operator norm, and which achieve a value

in the game that equals the objective value of the N-th level SDP. Recall that this SDP

has o(mC)N vector variables indexed by strings of length at most N over the formal al-

phabet {P,, Qb} containing a symbol for each possible (question,answer) pair to any of

the provers. Our main idea is to introduce a "graded" variant of the construction in [72]

(which was used to show convergence under the rank loop constraint). Rather informally,

the rounded measurement operators, {P,} for the first prover and {Qb} for the second,

can be defined as follows:

1 N-i N-1

p N - 1 f H<ifpaH<i and Q E N - 1 E 5/HG ~II N =1 N =1

Here flx and HQb are projectors as defined in [72], i.e. as the projection onto vectors

associated with strings ending in the formal label Pa, Qb of the corresponding operator.

The novelty is the introduction of the H<i, which project onto the subspace spanned by

all vectors associated with strings of length at most i. Thus Px itself is not a projector, and

it gives more weight to vectors indexed by shorter strings.

The intuition behind this rounding scheme is as follows. The winning probability is un-

changed because it is determined by the action of the measurement operators on the

subspace Im(Hi). On the other hand, the rounded operators approximately commute

in the operator norm because the original operators commuted exactly on the subspace

Im(H N-1), and we have now shifted the weight of the operators so that they are sup-

ported on that subspace. Furthermore, while truncating the operators abruptly at level

N - 1 (by conjugating by H<N-1 for example) could result in a large commutator, we

perform a "smooth" truncation across vectors indexed by strings of increasing length.

127



Interactive proofs with approximately commuting provers

Motivated by the rounding procedure ascertained in Theorem 53 we propose a modi-

fication of the class MIP* in which the assumption that isolated provers must perform

perfectly commuting measurements is relaxed to a weaker condition of approximately com-

muting measurements.

Definition 54. Let MIP* (k, c, s) be the class of promise problems (Lyes, Ln0 ) that can be decided

by an interactive proof system in which the verifier exchanges a single round of classical messages

with k quantum provers P1,..., Pk and such that:

" If the input x c Lyes then there exists a perfectly commuting strategy for the provers that is

accepted with probability at least c,

" If x C Ln, then any -AC strategy is accepted with probability at most s.

Note that the definition of MIP* requires the completeness property to be satisfied with

perfectly commuting provers; indeed we would find it artificial to seek protocols for

which optimal strategies in the "honest" case would be required to depart from the com-

mutation condition. Instead, only the soundness condition is relaxed by giving more

power to the provers, who are now allowed to apply any "approximately commuting"

strategy. The "approximately" is quantified by the parameter ,35 and for any 3' < 3 the

inclusions MIP* C MIP*, C MIP* trivially hold. It is important to keep in mind that while

3 can be a function of the size of the protocol it must be independent of the dimension of

the provers' operators, which is unrestricted.

3-AC strategies were previously considered by Ozawa [75] in connection with Tsirelson's

problem. Ozawa proposes a conjecture, the "Strong Kirchberg Conjecture (I)", which if

true implies the equality MIP* = Uj>o MIP*. We state and discuss the conjecture further

as Conjecture 80 below. Unfortunately the conjecture seems well beyond the reach of
3As a first approximation the reader may think of 5 as a parameter that is inverse exponential in the input

length x 1. In terms of games, this corresponds to 6 being inverse polynomial in the number of questions in
the game, which is arguably the most natural setting of parameters.
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current techniques (Ozawa himself formulates doubts as to its validity). However, in our

context less stringent formulations of the conjecture would still imply conclusive results

relating MIP* to MIP*; we discuss such variants in Section 4.5.

Further motivation for the definition of MIP* may be found by thinking operationally

- with e.g. cryptographic applications in mind, how does one ascertain that "isolated"

provers indeed apply commuting measurements? The usual line of reasoning applies the

laws of quantum mechanics and special relativity to derive the tensor product structure

from space-time separation. However, not only is strict isolation virtually impossible to

enforce in all but the simplest experimental scenarios, but the implication "separation

-= tensor product" may itself be subject to questioning - in particular it may not be

a testable prediction, at least not to precision that exceeds the number of measurements,

or observations, performed. Relaxations of the tensor product condition have been previ-

ously considered in the context of device-independent cryptography; for instance Silman

et al. [89] require that the joint measurement performed by two isolated devices be close,

in operator norm, to a tensor product measurement. Our approximate commutation con-

dition imposes a weaker requirement, and thus our convergence results on the hierarchy

also apply to their setting; we discuss this in more detail in Section 4.5.2.

Theorem 53 can be interpreted as evidence that the hierarchy converges at a polynomial

rate to the maximum success probability for MIP*c provers. More formally, it implies

the inclusion MIP* C TIME (exp(exp(poly)/2)) for any 3 > 0, thereby justifying our

claim that the class MIP* is computationally bounded. This stands in stark contrast with

MIP* = MIP, for which no quantitative upper bound is known (We note, however, that

MIP* is known to be recursively enumerable).

Having shown that the new class has "reasonable" complexity, it is natural to ask whether

the additional power granted to the provers might actually make the class trivial - could

provers that are 3-AC be no more useful than a single quantum prover, even for very small

? The following theorem shows that this is not the case.

Theorem 55. Every language in NEXP has a 2-prover MIP* protocol in which completeness 1
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holds with classical provers and soundness 2- P ly holds even against provers thate are 2- P lY-AC.

More formally,

NEXP C U MIP*-q(2, 1,1 - 2-P).
p,qEpoly

Theorem 55 provides a direct analogue of the same lower bound for MIP* [41], and is

proven using the same technique. We conjecture that the inclusion NEXP C MIP2-poi (3, 1,2/3)

also holds, and that this can be derived by a careful extension of the results in [42, 95].

Organization. Section 4.2 contains some preliminaries, including the definition of MIPa*

and the QC SDP hierarchy. In Section 4.3 we present and analyze our rounding scheme for

the hierarchy. In Section 4.4 we prove our lower bound on MIP*. We end in Section 4.5

with a discussion of the relevance of the study of MIP*c for that of MIP* and closely

related results from the mathematical literature.

4.2 Preliminaries

Notation. Given an integer N, we use [N] to refer to the set {1,..., N}. We use the

symbol - to mark a definition. 1k is the set of all permutations o: [k] -- [k]. poly

denotes the set of all polynomials. We write ||XJ| for the operator norm of a matrix X.

Given matrices A, B, [A, B] - AB - BA denotes their commutator.

4.2.1 Approximately commuting provers

In this section we define the class MIP* for J > 0 and state some basic properties. We

assume the reader is familiar with quantum interactive proof systems and the definition

of the class MIP*; we refer to e.g. [50] for details. Throughout we will use k to denote the

number of provers and c, s the completeness and soundness parameters. Although one

could define the class more generally, we restrict our attention to protocols involving a
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single round of interaction between the verifier and the provers. As is customary we will

also call such one-round protocols games.

Definition 56. A k-prover game G is specified by thefollowing: integers Q1,..., Qk, representing

the number of possible questions to each prover, and a distribution 7C on [Q1 x ... x [Qkl; integers

A1, . . , Ak, representing the number of possible answers from each prover; a mapping V : ([Q1 ] x

... x [Qk]) x ([A 1 ] x ... x [Ak]) -* {0, 1} representing the referee's acceptance criterion.

Next we introduce a notion of approximately commuting strategies for the provers.

Definition 57. Given a game G, a strategyfor the provers consists of thefollowing:

" A finite-dimensional Hilbert space R,

* For every i E [k] and q E [Qj], a POVM {(A(')f aa[Aj], where each ((AAi))a E Pos (71)

and La(A())a - Id,

" A density matrix p E D (R-1).

For any 6 > 0 we say that the strategy ( (A (1) ) a,..., (A(k)4a, p) is 3-AC if 1| [(A(i))a, (Ai))]1| <

6for every i # j G [k] and q e [Qj], q' E [Qj], a E [Ai] and a' e [A1 ].

Finally we define the success probability, or value, achieved by a given strategy in a game.

Definition 58. Let G be a game and ((A( 1))a,...., (A(k))a,p) a strategy in G. The strategy's

value is defined as

w A a (A) , p); G) max
00k

7T(qj)
gj z Qj

T,
al,...,ak

The --AC value w* (G) of the game G is the supremum over all 3-AC strategies of the strategy's

value in G.

In the above definition the introduction of the supremum over all permutations of the

provers amounts to allowing the provers to choose the order in which their respective
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POVM are applied to the shared state (the ordering should be the same throughout, in-

dependently of the questions asked). Since POVM elements applied by distinct provers

do not necessarily commute the choice of ordering may affect a strategy's value. Nev-

ertheless, for J-AC strategies it is easy to see that any two orderings will result in val-

ues that differ by at most k2j; for our purposes the parameter 5 will always be small

enough that different choices of orderings would not matter and we will mostly ignore

this issue throughout. Since we consider only finite-dimensional strategies, for J = 0 the

value w* (G) reduces to what is usually called the entangled value w* (G), corresponding

to strategies that are perfectly commuting, or equivalently strategies that can be put in

tensor product form.

Having introduced games, strategies, and values, we are ready to define the class MIP*.

Definition 59. Let J, c, s : N - [0,1] be computable functions and k e poly. A language L

is in MIPS (k, c, s) if and only if there exists a polynomial-time computable mapping from inputs

x G {0, 1}* to k-prover games Gx such that:

" In the game G, the distribution r can be sampled in time polynomial in x |, and the predi-

cate V can be computed in time polynomial in |x

" (Completeness) If x e L then w* (Gx) ;> c, i.e. there exist a k-prover strategy that is 0-AC

and has value at least c in Gx,

* (Soundness) If x 0 L then w* (Gx) < s, i.e. every 3-AC k-prover strategy has value at most

s in GX.

Throughout this chapter we use poly to represent any polynomial in |x|, or equivalently, any

polynomial in the length of the messages passed in the protocol.

Since for every J < 5' a Y'-AC strategy is also 5-AC, it follows that MIP*, (k, c, s) C

MIPS (k, c, s). A choice of parameter J that is inverse exponential in the input length seems
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to be the most natural, and we define

MIP*c (k, c, s) := U6 2 - po 1yMIP (k, c, s).

We end this subsection with a simple claim on -AC strategies that is well-known to hold

for the case of perfectly commuting strategies: -up to a small loss in the commutation

parameter we may without loss of generality restrict ourselves to strategies that apply

projective measurements.

Claim 60. Let (Aa, B,, p) be a -AC strategy with success probability p in a certain game. Then

there exists a (|A| fA'|J)-AC strategy in which all POVM are projective and that achieves the

same success probability p.

Proof. We can make (Aq, B4', p) (which is defined on some Hilbert space N) into a projec-

tive strategy ( q1 ', p) on an extended Hilbert space ' = N® ClA| ® C A'I by extending

p to p 0 0)A (0 100) (0K1, and defining the norm preserving maps:

UA: JlP)0)A O)B -> J( FAiP))Ja)A O)B
a

and

B :4')0)AJO)B -+ T( FB P))O)A la')B
a'

Since the maps are norm-preserving they can be extended to unitary maps 0A 0 IB and

B 0 'A respectively on N® CIAR 0 CIA'l (note that the unitary for each prover acts as the

identity on the ancilla for each other prover). We now define the new POVM operators as
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and

q1 (U 0 IA) (IH 0 IA | a') (a') ( 0 IA)

The new operators now form projective POVM strategies, and the transformation clearly

preserves the strategy's success probability Since different provers act on distinct ancilla

qubits, and as the identity on the ancillas for all other provers, we see that: [Aa, Pa'

|A||A'|5. L

4.2.2 The QC SDP Hierarchy

Fix a two-prover game G. Let X = [Q1] (resp. Y = [Q2]) be the first (resp. second)

prover's input alphabet, and A = [A 1 ] (resp. B = [A 2]) the first (resp. second) prover's

answer alphabet. Let V : X x Y x A x B -+ {0, 1} be the referee's decision predicate, and

y : X x Y -- [0,1] the distribution on inputs. Consider the alphabet of formal symbols

A {Px : Vx, a} U {Qb : Vy, b}, 4 and let Wm, UM '1A' U Qp} be the set of all words of

length at most m on the alphabet A (here 0 is a formal symbol representing the empty

string). The Nth level of QC SDP hierarchy for G defines an optimization problem over

the space of positive semidefinite matrices rN E C WNIxjWN with entries FN indexed

by words s, t E WN. As in [73], we will let { vs) : s C WN} be vectors in C WNI such

that yN (VI Vt). We can find such vectors by computing, for example, the Cholesky

decomposition of rN, which can be done in time polynomial in IWN

Definition 61. The Nth level of QC SDP hierarchy is defined to be the following optimization

4Although this is a formal alphabet, Pa (resp. Qy) is meant to represent the first (resp. second) provers'
POVM element associated with input x (resp. y) and answer a (resp. b).
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problem:

maximize 1: y(xy)F"Qb V (x, y, a, b)
(x,y,a,b)

subject to:

r N

r = 1

VC E A,Vs,t C WN-1, Nt = rC

Vpa,Q c A,Vs,t (E WN-4. 1Na Q t N)

rN yNVx G X,s C WN-1,t C WN, T rspat st (4.2)
aEA

Vy c Y,s G WN-1,t E WN, BsQ,t s t

Vx E X,Vs, t E WN-1,andfor a a, FNP 0 (4.3)

Vy c Y,Vs,t E WN-1,andfor b b',T rN 'Qbt =0

Note that, in order to make the constraints intuitive, we use the non-standard notation

that, whenever as vector Ivs) is transposed, the result of the transpose is written as (vs

(| vs ) ) t, where st is the string written in the reverse order. That is, we use the convention

that transposing vectors also reverses the order of their labels.

From here on we let USt = (vs vt) represent an optimal solution to the Nth level of the QC

SDP hierarchy. By definition,

WQCSDP(G) = y p(xy) paQb V(x,y,a,b) = Y y(x,y)(vpv Qb)V(x,y,a,b).
(x,y,a,b) (x,y,a,b)

Definition 62. Let V = Span{ vs) s c W} denote the vector space spanned by all the vectors
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with labels of length < j. Note that, for a solution to the Nth level of the QC SDP hierarchy, VN

is the entire space spanned by all the vectors in the Cholesky decomposition of 1 N.

Observation 63.

Vx E X,s G WN-l,t E WN,I (Vspa =(vs (4.4)
aeA

Vy E Y,s G WN-1,t G WN, T (vSQb (vS (4.5)

Proof. We give the proof of equation (4.4). The proof for equation (4.5) is completely

analogous. Consider the vector Iz) IvS) - EaEA Vspa). By definition we have that

Iz) c VN. On the other hand, for every vector Ivt) (for any t C WN), it follows from

equation (4.2) that (zIvt) = (vsIvt) - EaEA sPva IPvt) = 0. Thus we must have Iz) = 0, and

the claim follows. D

Definition 64. As in [731, for each Pa E A, let Hpxa denote the projector onto Span{ vpxa,)

s E WN-1}. Similarly, for each Q E A, let HIb denote the projector onto Span{ vQbS) s S

WN-1}-

Observation 65. Note that, as observed in [73,for each Pxa' G A, and for all s C WN-1 we have

that:

H pa IvS) = al vpa S) =Hpa vpai) = vpa s) (4.6)
aEA

This follows from equation (4.3) and Observation 63. The analogous statement holds for Qb' c A,

and HQbI.

Definition 66. For each j < N, let Il<; denote the orthogonal projector onto V, and 1 1, -

I -H 1 .
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4.2.3 Useful identities

The following identities involving the projection operators defined in the previous section

will be used in the analysis of our rounding scheme in Section 4.3.

Proposition 67. Vi, j E [N]:

Furthermore,for i > j c [N],

_<ir-< = Ugjrsi =H<min(ij)

ri , = HiH-i =I .

H<f D ji = H i-H 1<j = 0,

Proof. All three equations follow trivially from the definition of H<i as the orthogonal

projector on Vi and the inclusion Vj C Vi for j < i. E

Proposition 68. V(x, y,a,b) E X x Y x A x B, and Vi, j < N,

H<iHpHrQbH<j = H<iHpQbrHP<j.

Proof. Consider any two vectors Iz), w) (E VN. By definition, we have that H<ilz) E

Im (H<;i) =Vi Span{ v,) : s E Wi}, so we can expand them in this vector space:

H <iz) -- EsEW, AsIvs). Similarly, H <jIw) L tEW) 7t Ivt). So,

(Z|H<iHpga1Qb;F =W)( EWsEWi
A*KVolp)npQb ( E

tEW

= E 1 A*yt(vstpxaVQbt)
sEWi tEWi

sEWi tEWi

'Yt IV))

I I:
sEWi tEW1

A*7t(vfIH I gQb v) - ( I
sEW

sGWi tEW

A*<Yt(v tQb JVpt)

A*Kv 5 l )HQbHl

(vst IHpHQb Vt)

Lt IVt)

= (zlH<;iH bpaJ<;~W)
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In (4.10), since we know that s C Wi, t G Wj and Wi, Wj C WN-1, the third equality

follows by Observation 65, the fourth equality follows by equation (4.1), and the fifth

equality follows by Observation 65 again.

Since this holds for arbitrary 1z), w), it follows that H<iHpaHQbIH <j

as claimed.

Proposition 69. For any j < N, and any P, E A, or Qb c A we have that

Im(HpH<j) C Im(H<j+l)

H4;HpQbp H
LI~ - j

and Im(HQb H<j) C Im(H<j+1 )

Proof. Let jz) be an arbitrary vector in VN. By definition, H<jlz) C Im (H <) - j
Span{ vs) : s E Wj}. So, there exist coefficients As E C such that H<jIz) = Es W AIvs).

Now, by invoking Observation 65 we see that

FlpgH<jlz) = E AsHpxavs)
sE Wj

AsI Vpxs) C Im (H1<j+ 1) j+ = Span{Ivs) : s c Wj+1}T,
se Wi

HlQby F<;z) AsHQb Ivs)= EW
s EWj

ASIVQbS) C Im (=j+1 j+1 = Span{Iv s )= sE
se EW

Since this is true for arbitrary Iz), the desired result follows.

4.2.4 Some bounds

In this section we collect a few identities that will be useful in the proof of Theorem 55.

We first note the bound

(4.11)

valid for A; B > 0 and 0 < r < 1, that will be useful in our analysis. See Problem X.5.3

in [13] for a tighter bound from which (4.11) follows.
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Claim 70. For i = 1,.. .,M let Ai, Bi > 0 be such that (Ai) and (Bi) are -AC, and Li Tr(Ai- /Bp 1B) >

1 - e. Then

LTr((Al/2 - B1/2 )p) < 2e + 0Q5 18 M) (4.12)

and

A- B B 2; 2 + 0(51 / 16 M 1/ 2), (4.13)
il1~ 1 p1 <2 E+0(.3

Proof. We first evaluate

Tr (A' 2 B / 2 p) = Tr(A B ' 2Ahp) - Tr ([A' Bi*,1 A' 4p)

> Tr(A 4 BiA 4 p) -25 11 8 M

- ETr(A' / 2Bip) - Tr (A 4 [A 4 , Bi]p) -261M
i i

> Tr(B/ 2A /2 B/ 2 p) - Tr([B,1/ 2,A /2]B / 2p) -4V /8M

Tr(B 2 AiB/ 2 p) - 651 / 8M (4.14)

where we repeatedly used the bound (4.11). To obtain (4.12) it suffices to expand the

square in (4.12) and use the assumption Li Tr(Aiv1pv/I) > 1 - e together with (4.14).

Finally, (4.13) follows easily from (4.12) (see e.g. Claim 36 in [43]). E

4.3 A rounding scheme for approximately commuting provers

We introduce a rounding scheme for the QC SDP hierarchy which, given the optimal Nth_

level QC SDP solution for a certain game G, constructs an 0 (A2)-AC strategy for the

provers (here A is the number of possible answers in G, which for simplicity we assume

to be the same for each prover). The resulting strategy for G has value equal to the value
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of Nth level of the QC SDP hierarchy, which we denote ONCSDP(G) (see Definition 61

below for a precise definition). To the best of our knowledge this is the first proposal

of a rounding scheme for the QC SDP hierarchy for which one is able to provide any

quantitative error estimate whatsoever.

In [73] and [31] it is shown that WgCSDP (G) is an upper bound on the value of 0-AC strate-

gies, that is, wQCsDP(G) ;> w*(G). Our rounding result implies that for all 6 = 0 (r)
the quantity QCSDP (G) is also a lower bound on the optimal success probability achiev-

able by any 6-AC strategy. This additional result allows us to place an upper bound on

the complexity class MIP* introduced in Section 4.2.1. Precisely, we obtain the following:

Theorem 71. For any 6 > 0, k e N and c, s : N -+ [0,1] such that c - s = 0 (2-Poy) it holds

that MIP* (k, c, s) C TIME (exp (exp (poly) / 62)). Furthermore, the upper bound can be brought

down to TIME (exp(poly /62)) when considering only protocols with constant answer size.

Combining Theorem 71 with Theorem 55 we obtain that for any constant k it holds that

NEXP C U MIP*c(2,1,1 -2-P) C TIME(22 )
pepoly

4.3.1 Rounding Scheme

In this section we introduce a rounding scheme for the QC SDP hierarchy. First we briefly

argue that the most natural rounding scheme suggested by the definition of the hierar-

chy, which was first proposed in [71], is actually not the best for our purposes. In [72] it

is proposed that any solution, FN, to the Nth level of the QC SDP hierarchy be rounded

to a strategy consisting of state p = Iv)(voj, and projective measurement operators HPa

for the first prover and HQb for the second. It is further proved that, assuming a technical

condition called the "rank loop" condition, this rounded strategy gives valid POVMs for

the two provers, and that those POVMs are exactly commuting ([Hp, HQ] = 0). Unfor-

tunately, the "rank loop" condition is computationally difficult to verify, and in general it

may not hold at any level of the hierarchy. Even without assuming the "rank loop" condi-
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tion, it is true that, for all j < N, H 1jHp HQbH H H sJQbH -pxH j (see Proposition 68).

However, while this tells us that [p, 1 2b] = 0 exactly when restricted to the space VN-1,

it is hard to control the size of [Hp, H]Q| on the space VL m ( lN-1 ) without

making additional assumptions about the structure of G, etc. Furthermore, when using

this rounding scheme, it is not clear that there is any quantitative benefit from increasing

the number of levels N of the QC SDP hierarchy.

We introduce a rounding scheme which will ultimately allow us to control the operator

norm of commutators of the rounded strategy on the entire space VN, without making

any assumptions whatsoever about the structure of G.

Definition 72 (Rounding Scheme for the QC SDP hierarchy). Fix probability distributions

{ piY} 0, and {q 1j} l. In what follows we will assume that po q qo = PN = qN = 0. Given a

solution IN to the Nth level of the QC SDP hierarchy for G, the probability distributions pi and

qj specify a rounding scheme as follows. The state shared by the provers is p = |v) (vo|. Their

measurement operators, { P } for the first prover and { Qb} for the second, are defined as

pxa a,-p<,,_ pgarbage - p

aEA

b qH]QHJ Cyarbage - 7)
I beS

We first verify that the rounding scheme defined in Definition 72 defines valid POVM

measurements, and leads to a strategy whose value in G exactly matches WNCSDP(G).

(As we defined it, it may seem that the strategy sometimes outputs a symbol "garbage".

As we show below this has probability 0, and we can safely ignore the event.)

Claim 73. The strategy defined in Definition 72 has value exactly WNCSDP (G) in G.

Proof. First we note that the Px and Qy define valid POVM. Indeed, using that each H<i,

Hpx and HQb is a projector, it is clear that the Px (resp. Qy) are positive semidefinite.

Furthermore, using Ea Hpa < Id (since the projectors are, by definition, orthogonal),

Yi pi = 1 and <i < Id for every i we get La Px < Id and hence pgarbage > 0 as well.
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Next we evaluate the strategy's success probability in the game. From the definition,

(vIPX Q, v ) (p . p(ji<iHypa .a q( H; < Qbn ) vp)

pi E j (v < IH e H pa FI< I<I7)QbHjIVO)
i I

= [ i[g~g|p v4,)
1 ]

= jp (vpI|H<iH<jlvQ )
i I

(vpalVQb).

Here the third equality follows since Ivp) is in the image of H<;i for all i, the fourth equality

follows from observation 65 and the last from the definition of H< (using i, j > 1 wlog

since po = qo = 0). Furthermore,

(vq| p1 garbage v ) = (p(I- E 9 ) vc)
acA

= (v| |vI) - L (vpavq, )
acA

(VJ4VQb) - (aE a Vp
YacA A

= 0,

where the fourth equality follows by equation (4.15), and the third equality follows by

reasoning very similar to that used to prove equation (4.15). Using similar arguments one

can verify that (vq, p (garbage I v,) = 0 and (vq pgarbage Cgarbage vo) = 0 as well. Hence

the "garbage" outcomes have probability zero of occurring (given the shared state is p =

Iv) (vp1) and we may ignore them. E
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4.3.2 Commutator Bound

Theorem 74. Suppose the pi, qj are such that

max p 2
(

1/(N - 1) for 0

2
qj, piqi) 0

< i, j < N). Then, for each value of a, b, x, y c

A x B x X x Y, we have that

Proof. Fix (a, b, x, y) E A x B x X x Y. In order to simplify notation within this proof

we write P for Px, P for Hpa, Q for Qb, and Q for IQ. For any 1 < i < N let Hi=

(Id -T<i )H ;i(Id -H<i). Using that Hei <; H<; for each i, we get that the H=i are or-

thogonal projectors and, taking the convention that H<;o = 0, Ei<N L=i= H<N-

Proposition 69 immediately implies that for any i < N and k > i + 1 it holds that

H-=kPH<;i = 0. Thus H<iPH<i = (Id -H=i+ 1 )PH<;i and similarly for Q. Expand

[P,Q] = piqj [H<iPH
ij

<i, H 1QH 1<j

- Epiqj (H<iP(Id --H=i+1 )(Id - 1 =j+1 )QH<j - H<jQ(Id -H 1=j+)(Id -Hi+ 1 )PH<i)
ij

= piqj (H<[PQ] i
i~j

<j1+ (HJ<iPFL~i+ 1 1 +1 QH ~j - H 1 QHJj 1 FIiPH ~i)

- (n1<iP(I7L~i+1 + HI~j~1 )QH 1 ~ - H 1<Q(H 1-i + FL1i 1 )PH I)).- (4.16)

The second equality above follows by using Propositions 67, and 69. We bound each of

the four terms in (4.16) separately. Using i, j < N terms of the form H< i[P, Q] H<; evaluate
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to zero by Proposition 68. The second term

Lpiqj (H<iPH=i+1n=j+QH j - <; jQ =j+1 r=i+1 PH<)
iii

piqj U< -=i+1 ~ Ql=i+1 P) i,

which using ||PH=i+1 Q - Ql=i+1P| < 2 and Ei piqj = O(N- 1 ) has norm O(N-1). It

remains to bound the last two terms in (4.16). Towards this we first claim that

H7 <iH il H 11 o( 1).

This can be seen by evaluating

1-

p P<iPH=+1PH<i

p H<,Prl<;

< EpId,

from which the bound (4.17) follows since &i p? = 0(1/N). Together with the fact that

11 ZjpiPH<i < 1, and using analogous bounds for Q, the last two terms in (4.16) each

has norm at most O(N- 1/ 2 ). This concludes the proof. El

Corollary 75. Let us specify pi = qj = Ni when 0 < i, j < N (and po = qo pN = qN = 0).

Then, for each value of a, b, x, y E A x B x X x Y, we have that

[| parbage b 0

[ia5, Qgarbage 2 0

parbage (garbage 2

( v)
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Yjpi1-<i'P1-i+1)E pi1-<iP1-=i+1)

< Y'
i



[Pxgarbage Ob]

[pa, (garbage

pxa) ] - ] [pa,1 (b] =o- [pa
a c A acA

- pa, I] +
beB beB

aeA bEB

beB
- L

aeA beB

[pxaQb1)= 1- E
ac A

ac.A4bc13

Using the triangle inequality and Theorem 74 then gives

(- [ , 1]
bEB

xarbage o

[pxa, Qgarbage]

- A
acA

[pa Ob I < pa ,

[pa Qb ]
b eB

< AJO(1

B O
bcB

acA bet aEA beB1

| A|B|O ( /)i7 0 |A B

This is the desired result. E

4.4 A lower bound on MIP*

In this section we give a detailed sketch of the proof of Theorem 55. The proof closely fol-

lows the lines of Theorem 2 in [?], where the same result is proved for the case of provers

that are restricted to be perfectly commuting. Most of the work consists in carefully going

through the argument in [?] and verifying that the commutation condition, provided it is

145

Proof.

[garbage 0garbage]

Spxa, Qb] = 0 +b
beB

xgarbage Qgarbage

0ocJA)
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satisfied for a sufficiently small 5, suffices to preserve soundness. Although intuitively

one expects this to be the case, one still has to be a little careful in order to avoid any

dimension dependence coming into the argument.

4.4.1 Proof outline

Our starting point is a non-adaptive 3-query PCP for NEXP with perfect completeness

and soundness bounded away from 1 and in which the alphabet size is a single bit. Fix an

input x, let N be the length of the PCP and m: [N] 3 - [0,1] the distribution on queries.

We may assume that the marginal distribution of 7T on any of its three coordinates is

uniform. Let V : [N] 3 x {0,1}3 -+ {0, 1} be the acceptance predicate. We consider the

following protocol in which the verifier interacts with two provers only:

1. The verifier chooses a triple (ii, i2, i3 ) according to 7, i E {ii, i2 , i3 } uniformly at

random and j C [N] uniformly at random. He sends (lexicographically ordered)

tuples {ii, i2, i3} to the first prover and {i, j} to the second.

2. A replies with three bits ail, ai2, ai3 . B replies with two bits bi, b.

3. The referee accepts if and only if V(ii, i2, i3 , ail, ai2, a 3 ) = 1 and ai = bi.

This protocol is obtained through the standard oracularization technique, except for the

additional question j sent to the second prover. This is called a "dummy question" in [?]

and it plays an important role in the analysis.

First we note that the completeness property of the protocol trivially holds. Hence it

remains to establish soundness. This is done in the following lemma, which is proved in

the following section:

Lemma 76. There exists a universal constant c1 > 0 such that the following holds. Let (A 1ia
3 , B b

be a 2-prover 6-AC projective strategy that succeeds with probability at least 1 - E in the protocol.

Then there exists an assignment to the variables [N] that satisfies the PCP verifier's queries with

probability at least 1 - O(N 2 (E1 / 2 + cl)).
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Theorem 55 follows immediately from the above lemma (using Claim 60 to argue that the

assumption that the provers' measurements are projective is without loss of generality).

4.4.2 Soundness analysis

In this section we sketch the proof of Lemma 76. Given a strategy for the provers for

every i E [N] we define the following POVM with outcomes in {0, 1}:

C := E[N] Bcc', (4.18)I:
C'fE{0,1}

where the expectation is taken with respect to the uniform distribution. Define a (proba-

bilistic) assignment (ci)iE[N to the PCP proof according to the distribution

Prob((ci)) Tr ( -C... C1pC1 ... (4.19)

We will show that this assignment satisfies the acceptance predicate with good probabil-

ity. First we prove the following claim, which gives a simpler form for the marginals of

the distribution on assignments to any three fixed variables.

Claim 77. There exists a constant c1 > 0 such that the following holds for any i, j, k G [N]:

Tr( Cic Cj p Jk cj C)
a,b,c

Tr ( -CC*.. -Cp -C 1p - -C = o(N2(2 1/2 + 6c,1)) (4.20)

ef{i,j,k}

Proof sketch. First we note that the bound (4.20) follows by an easy induction once the
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following has been established: for any t and 1,... jit E [NI,

Tr( ct ...

-Tr( c t
... C clCclc~11 1

To prove (4.21), for any i C [N] and a c {0, 1} we introduce the POVM element

= Ej,k L A ak
apak

where the expectation is taken according to the conditional distribution (- (,i). Note

that Ea Ai = Id, and success in the consistency check of the protocol implies

EiETr(A Cap ) ;> 1-E (4.22)

This justifies applying Claim 70, and from (4.13) we get

Cip C-
a

Aap Aa

Using (4.23) we obtain

Ei LTr( CJc
C1,...,Ct a

-- C- p -C c.11 I C11/

-- Tr( cat -It
~ap lAi Cc.

I1 -C) - O(E1/2

Applying the (43)-AC condition (together with (4.11) in order to apply it to the square

roots) between A and C (2t) times leads to (4.21). To conclude the proof of (4.20) we start

from the second term in the absolute value and apply (4.21) (N - 3) times to eliminate

the C that are being summed over. ED
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c1 C91p C- V t- )

C t) = (t (El/2 1/16 (4.21)

(4.23)

C t

_61/16).

(4.24)

- (EI/2 _+,51/16.



Our second claim relates the marginal computed in Claim 77 to the original provers' strat-

egy.

Claim 78. There exists a constant c1 > 0 such that the following holds:

abc\ / (1/21/6

EijkL Tr c cj Ckp Ca Cb - Tr (A p) OE + /16), (4.25)
a,b,c

where the expectation is taken according to the distribution 7T used in the protocol.

Sketch. We first proceed as in the proof of Claim 77 and note that success in the consis-

tency check of the protocol implies, through Claim 70, the bound

EiJk p C- kp - O( 1 /2-_c5 1 / 1 6). (4.26)

Note however the slightly different formulation from (4.23), where we left the expectation

on j and k outside, and slightly abused notation to write Aqk for Eb,c Aab. Applying (4.26)

thrice, using the (45)-AC condition between A and C and the fact that we assumed the

Aijk to be projective measurements, we get

Eijk p Cb C CE /-2 AcpA 6116
a,b,c a,b,c

The claimed bound (4.25) follows by noting that the Aabc are orthogonal for differentijk

outputs, and using the following pinching inequality: for any X and projection P, PXP +

(1 - P)X(1 - P)il <1 Xfl 1 . E

Let (ci) iE[N] be sampled according to the distribution (4.19). Combining the bounds

from Claim 77 and Claim 78 we see that for any query (i, j, k) made by the PCP ver-

ifier the marginal distribution on assignments induced by (ci) is within statistical dis-

tance O(N 2 (e1 / 2 + 6c,)) from the distribution on assignments obtained from the entan-

gled provers' answers in the protocol. Since by assumption the latter satisfies the PCP
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predicate with probability 1 - e, we deduce that the assignment (Ci)c [NJ satisfies a ran-

domly chosen query of the PCP verifier with probability (over the sampling of (ci) as

well as over the PCP verifier's random choice of query) at least 1 - O(N 2 (E/1 2 + C

This completes the proof of Lemma 76, from which Theorem 55 follows easily.

4.5 Discussion

The rounding scheme for the QC SDP hierarchy in Section 4.3, and our introduction of the

corresponding class MIP*c in Section 4.4, are motivated by a desire to develop a frame-

work for the study of quantum multiprover interactive proof systems that is both com-

putationally bounded and relevant for typical applications of such proof systems. Our

main technical result, Theorem 53, demonstrates the first aspect. In this section we dis-

cuss the relevance of the new model, its connection with the standard definition of MIP*,

and applications to quantum information.

4.5.1 Commuting approximants: some results, limits, and possibilities

While we believe MIP* is of interest in itself, we do not claim that approximately com-

muting provers are more natural than commuting provers, or provers in tensor product

form; the main goal in introducing the new class is to shed light on its thus-far-intractable

parent MIP*. In light of the results from Section 4.3 the relationship between the two

classes seems to hinge on the general mathematical problem of finding exactly commut-

ing approximants to approximately commuting matrices.

Limits for commuting approximants

The main objection to the existence of a positive answer for the "commuting approxi-

mants" question is revealed by a beautiful construction of Voiculescu who exhibits a sur-

prisingly simple scenario in which commuting approximants provably do not exist [97].
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The following is a direct consequence of Voiculescu's result.

Theorem 79 (Voiculescu). For every d G N there exists a pair of unitary matrices U1, U2 G

Cdxd with 11 [U 1, U2] 0(1), such thatfor any pair of complex matrices A, B E Cdxd satisfying

[ A, BI] = 0, max(\\ U1 - A l|\U2 - B\ = 0(1).

In Voiculescu's example U1 is a d-dimensional cyclic permutation matrix, and U2 is a diag-

onal matrix whose eigenvalues are the dth roots of unity. The proof draws on a connection

to homology, in particular using a homotopy invariant to establish the lower bound on

the distance to commuting approximants. A succinct and elementary proof of the result

is given by Exel and Loring [33].

In the context of entangled strategies one is most concerned with Hermitian matrices

representing measurements, rather than unitaries. However, as a consequence of Theo-

rem 79 we see that if one considers the Hermitian operators Mj - (--)'(Uk + (-i)1U-)

(jE {0, 1}) we have that [Mi, MI] - 0 (), and yet any exactly commuting set of ma-

trices must be a constant distance away in the operator norm. Thus Theorem 79 rules

out the strongest form of a "commuting approximants" statement, which would ask for

approximants in the same space as the original matrices, and with a commutator bound

that does not depend on the dimension of the matrices.

Thus Theorem 79 invites us to refine the "commuting approximants" question and dis-

tinguish ways in which it may avoid the counter-example; we describe some possibilities

in the following subsections.

Ozawa's conjecture

Motivated by the study of Tsirelson's problem [86] and the relationship with Tsirelson's

conjecture, Ozawa [75] introduces two equivalent conjectures, the "Strong Kirchberg Con-

jecture (I)" and "Strong Kirchberg Conjecture (II)" respectively, which postulate the exis-

tence of commuting approximants to approximately commuting sets of POVM measure-

ments and unitaries respectively. The novelty of these conjectures, which allows them
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to avoid the immediate pitfall given by Voiculescu's example, is that Ozawa considers

approximants in a larger Hilbert space than the original approximately commuting oper-

ators. Precisely, his Strong Kirchberg Conjecture (I) states the following:

Conjecture 80 (Ozawa). Let m, ; > 2 be such that (M, f) $ (2,2) 5. For every K > 0 there

exists e > 0 such that, if dim H < co and (PC), (Q ) is a pair of m projective f-outcome POVMs

on W satisfying || [Pr, Q] 1| e, then there is a finite-dimensional Hilbert space I containing W

and projective POVMs Pk, Q on R such that ||[Pf, Q]| = 0 and ||(1 5 ) - | xand

||-H(Q ) - Q | K. Here D- denotes the compression to W, defined by 4)- (M) =P MPH,

where P is the projection onto W.

Ozawa gives an elegant proof of a variant of the conjecture that applies to just two ap-

proximately commuting unitaries, thereby establishing that extending the Hilbert space

can allow one to avoid the complications in Voiculescu's example. He also establishes

that the conjecture is stronger than Kirchberg's conjecture (itself equivalent to Tsirelson's

problem and Connes' embedding conjecture [47]), casting doubt, if not on its validity, at

least on its approachability.

Nevertheless, we can mention the following facts. First, it follows from Theorem 74 that

Conjecture 80 implies the equality MIP*C = MIP*; in fact it implies that MIP* = MIP* for

small enough 5, depending on how the parameter E in Conjecture 80 depends on K, m and

d. For this it suffices to verify that a state p optimal for a strategy based on POVMs P and

Q in a given protocol can be lifted to a state P on 7 such that the correlations exhibited by

performing the POVMs Pk, Qj on P approximately reproduce those generated by P, Q on

p; this is easily seen to be the case provided K is small enough. Therefore, Theorem 74 may

be seen as an elementary proof that Conjecture 80 implies that MIP* is computable (this

result was previously known, but previous methods use a series of reductions connecting

Kirchberg's Conjecture to Tsirelson's problem, see [75]).

5The case (m, f) = (2,2) is the only nontrivial setting for which we have some understanding. In par-
ticular nonlocal games with two inputs and two outputs per party can be analyzed via an application of
Jordan's lemma [57].
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Second, Conjecture 80 can be weakened in several ways without losing the implication

that MIP*C MIP*. For instance, it is not necessary for the exactly commuting Pk, -~

to approximate Pk, Q in operator norm - in our context of interactive proofs, only the

correlations obtained by measuring a particular state need to be preserved, and this does

not in general imply an approximation as strong as that promised in Conjecture 80.

Dimension dependent bounds

An alternative relaxation for the "commuting approximants" question is to allow the

approximation error to depend explicitly on the dimension of the matrices. A careful

analysis of the rounding scheme from Theorem 53 shows that it produces d-dimensional

POVM elements with an 0(1/ Vlog(d)) bound on the commutators (this is because the

dimension of the subspace Im(H<N1) is exponential in N). Unfortunately, Voiculescu's

result (Theorem 79) shows that one can only hope for good approximants in the operator

norm if the commutator bound is o(1/ d). It remains instructive to find any explicit ex-

istence result for commuting approximants in the general case, regardless of dimension

dependence. Concretely, we conjecture that Conjecture 80 may be true with a parameter K

that scales with the dimension d of the operators {P , Q } as K = E' poly(d)(,1) for some

constant 0 < c < 1.

An alternative norm

Another relaxation of the "commuting approximants" question, which would be suffi-

cient to imply MIP*c = MIP*, is to allow for any set of commuting approximants which

approximately preserves the winning probability of the game. For concreteness we in-

clude a precise version of a possible statement along these lines:

Conjecture 81. There exists a function f(E, k) : R+ x N -+ R+ satisfying lim>o f(e, k) = 0

for all k e N, such that for every game G and (m,f) strategy (Aa, Bb, p) which is 6-AC, there
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exists a 0-AC strategy (Aa, Pb, p) for G satisfying

w* (((Aa,Bb p);G) - w*((Aa,B ,p);G) < f(j,m?).

4.5.2 Device-independent randomness expansion and weak cross-talk

A device-independent randomness expansion (DIRE) protocol is a protocol which may

be used by a classical verifier to certify that a pair of untrusted devices are producing

true randomness. Under the sole assumptions that the devices do not communicate with

each other, and that the verifier has access to a small initial seed of uniform randomness,

the protocol allows for the generation of much larger quantities of certifiably uniform

random bits; hence the term "randomness expansion". This conclusion relies only on

the assumption that the two devices do not communicate, and in particular does not

require any limit on the computational power of the devices, as is typically the case in

the study of pseudorandomness. The precise formalization of DIRE protocols is rather

involved, and we direct the interested reader to the flourishing collection of works on the

topic [22, 78, 93, 34, 1, 92, 36, 69, 16]. In particular the precise formulation of the model is

a focus of [28].

Our definition of MIP*c is directly relevant to the notion of devices with weak cross-talk

introduced in [89] as a model which relaxes the assumption that the devices must not

communicate, leading to protocols that are more robust to leakage than the traditional

model of device-independence. [89] proposes the use of the QC SDP hierarchy in order to

optimize over the set of "weakly interacting" quantum strategies that they introduce, but

no bounds are shown on the rate of convergence. This is where MIP*c becomes relevant.

Our notion of -AC strategies is easily seen to be a relaxation of weak cross-talk, and

thus the analogue of the approach in [89] when performed with a -AC constraint is at

least as robust as the weak cross-talk approach. Our rounding scheme for the QC SDP

hierarchy thus provides a specific algorithm and complexity bound that applies to both

J-AC strategies and strategies with weak cross-talk.
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Chapter 5

The Communication Cost of State

Conversion, with application to

Entanglement-Assisted Communication

Complexity

In this chapter we present a series of results about communication complexity that culmi-

nate in a proof that any Entanglement-assisted communication protocol can be simulated

by a communication protocol using only EPR pairs as an entangled resource. Our first re-

sult concerns an old question in quantum information theory: how much quantum com-

munication is required to approximately convert one pure bipartite entangled state into

another? We give a simple and efficiently computable bound in terms of the earth mover

or Wasserstein distance. We show that the communication cost of converting between

two pure states is bounded (up to a constant factor) by the f, Earth Mover distance be-

tween the distributions of the negative logarithm of the Schmidt coefficients of each state.

Here the &, Earth Mover distance may be informally described as the minimum, over all

transports between the two distributions, of the maximum distance that any amount of

mass must be moved in that transport.
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Using this result we consider the nature of entanglement-assistance in quantum commu-

nication protocols. Maximally entangled states are known to be less useful than partially

entangled states such as embezzling states for tasks that involve quantum communication

between players and referee, for nonlocal games, and for simulating bipartite unitaries

or communication channels. By contrast, we prove that the bounded-error one-way or

two-way quantum entanglement-assisted communication complexity of a partial or total

function cannot be improved by more than a constant factor by replacing maximally en-

tangled states with arbitrary entangled states. In particular, we show that every quantum

communication protocol using Q qubits of communication and arbitrary shared entan-

glement can be c-approximated by a protocol using O(Q/e) qubits of communication

and only EPR pairs as shared entanglement. Note that this conclusion is opposite of the

common wisdom in the study of non-local games, where it has been shown, for exam-

ple, that the 13322 inequality has a non-local strategy using a non-maximally entangled

state, which surpasses the winning probability achievable by any strategy using only a

maximally entangled state of any dimension [96].

This leaves open the question of how much maximally entangled states can reduce the

quantum communication complexity of functions.

5.1 Introduction

5.1.1 Communication cost of state transformations

Suppose that Ix) and Iv) are bipartite pure quantum states, with vectors of Schmidt coef-

ficients denoted respectively by X and v. In this setting it is known that lx) can be exactly

converted into Iv) using LOCC if any only if x is majorized by v. But the communica-

tion cost of this transformation is known only in a few special cases. If 1x) IXo) On and

Iv) = IVO)@" for some states IXo), vo), then this cost is O(/nH) or less in some special cases

(e.g. Ivo) is maximally entangled). More generally there is, in principle, an exact charac-
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terization of the communication cost of state transformation using the Schubert calculus

due to Daftuar and Hayden [quant-ph/0410052], but in practice it is difficult to extract

concrete bounds from their main theorem.

We give a simple bound of the amount of quantum communication required to transform

|X) to Iv) that is based on the f, earth mover (or Wasserstein) distance, which is defined

as follows:

Definition 82 (t Earth Mover's Distance ). Let |x) =EiX I ii) 0 i) and Iv) = Ejy lvj 1j) 0

\j) be two states. Let px be the distribution of a random variable taking value lnXi with prob-

ability Xi, and pv be defined analogously. We define d (|X),|v)) to be the f" Earth Mover's

distance between |x) and |v), which is equal to the minimum y > 0 such that there exists a joint

distribution w (x, y) on X x Y with x and y marginals equal to px and pv respectively, and such

that w (x, y) = 0 whenever |x - y| > y.

In particular we show that there is a quantum communication protocol which can trans-

form the shared state JX) to a shared state |v) using O(dc( x), Jv))) communication and

only EPR pairs as an additional entangled resource.

5.1.2 Entanglement-assisted communication complexity

In classical communication complexity, Newman's theorem states that arbitrarily large

amounts of shared randomness can be replaced with a distribution with only O(log n/E)

bits of entropy while only reducing the success probability of a protocol by E. (Here n is

the input size of each party.) Is there a quantum analogue to this result?

In one sense the answer is no. Given a two-party entanglement-assisted protocol for, say,

computing the value of some function, we cannot replace the shared entanglement with

some different, less entangled, state, without causing large errors [44, 2]. It is an open

question whether it is possible to replace a large entangled state with a less entangled one

while also changing the communication protocol.
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However, we can prove that non maximally entangled states can be replaced, without

loss of generality, by maximally entangled states. The protocol is nearly oblivious in

the following sense. Given a protocol P using Q qubits of entanglement and a shared

entangled state Ip), we can replace Ip) with a state I p) at the cost of error e. This state I p)

can then be prepared from a maximally entangled state using O(Q/E) communication.

For constant E this implies that the EPR-assisted communication complexity is at most

0(1) times the arbitrary-entanglement-assisted communication complexity.

This contrasts with channel simulation [12], nonlocal games [46, 81], unitary gate simula-

tion [38], and communication tasks involving quantum communication between referees

and players [54]. In each of those cases there are large asymptotic separations between

the EPR-assisted costs and the general-entanglement-assisted costs.

5.2 Results

The first result is an upper bound on the amount of communication required for two par-

ties to begin with shared state Ix), and transform it into shared state Iv). As discussed

in the introduction, one appealing property of this bound, which is given by the Earth-

mover distance between the two state, is that it is easy to produce from the definition of

the states, in contrast to the more exact characterization of the communication complexity

of this task, using Schubert calculus. The usefulness of such a bound will later be exhib-

ited in the second result, where the relationship to Earthmover distance is utilized, along

with other techniques, to prove a new result about entanglement assisted communication

complexity.

Theorem 83. Let |x) LiEx VI-jji) 0 |i) and |v) = LEjy -vj ) 0 1j) be two states. There is

a protocol M which can prepare Iv) from x), while using 0(dco(|X),| v))) classical communica-

tion, and using only EPR pairs as an entangled resource.

The main result of this chapter, below, is a statement about the way that entanglement
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assisted communication complexity depends on the type of entangled shared state that

the two parties may share. In particular, using the first result, above, together with other

techniques, our main result establishes that every entanglement assisted communication

with any shared state, can be simulated by a protocol using only EPR pairs as the shared

state.

Theorem 84. Consider a one-way or two-way quantum communication protocol P whose goal

it is to compute a joint function f(x,y) E {0, 1}. Suppose that P uses an arbitrary entangled

state |p) AB (of unbounded size), as well as Q qubits of communication total, in either direction.

Then, for every E > 0, there exists a communication protocol P' which simulates P with error e,

while using only EPR pairs as an entangled resource (rather than |<P) AB or any other state), and

using O(Q/e) qubits of communication. Thus, if P computes f with error E it follows that P'

computes f with error e + e', while using only a maximally entangled state of some dimension,

and O(Q /e) qubits of communication.

5.3 Earth Mover's Distance and State Transformation

In this section we will give a proof of Theorem 83. The proof is divided into two parts

which are proved separately in Lemma 87, and Lemma 90 together with Corollary 91. At

a high level Lemma 87 tells us that one can map the Schmidt coefficients of JX) directly

onto the Schmidt coefficients of Jv) using a series of bipartite "flows" that have small

degree (defined below). Lemma 90 and Corollary 91 then tell us that any such "flow",

which has small degree can be implemented as an actual bipartite state transformation,

with correspondingly small communication required.

We prove Lemmas 87 and 90, which, together, prove the desired theorem. We begin by

defining the concept of flows, as we use it here.

Definition 85 (Right (Left) Index-1 Flow ). Given two states Ix) = EiEX Vi) &0i) and

|v ) = Ej(ye ,1y j) 0 |j) we say that there is a Right Index-1 Flow from Ix) to Iv) if there exists

a bipartite graph Gx,y with vertices given by X U Y, and edge set Exy, such that:
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e Each vertex in j e Y has index 1 in Gxy.

* For all i E X, xi = EYi ,j)EEXy Vj

If the roles of |x) and |v) are reversed in the above, then we say that there is a Left Index-1

Flow from |v) to |x) (equivalently, there is a Left Index-1 Flow from |v) to |x) exactly when

there is a a Right Index-1 Flow from |x) to |v)).

Definition 86 (Degree of a Right (Left) Index-1 Flow ). We define the degree of a Right (Left)

Index-1 Flow from |x) = LicX /X i) 0 i) to |v) = EjEy Vvj1j) 0 |j) to be the maximum

index of any vertex in the bipartite graph GX,y.

Lemma 87. Given two states |x) = Eicx X/i) 0 |i) and |v) = ELjy v-Jj) 0 1j) , there

exist two "intermediate" states |-y) and |p), such that there is a Right Index-1 Flow from |x)

to 1y) of degree at most 2 0([do(x)Av"))]) , a Left Index-1 Flow from 1Y) to |p) of degree at most

2 0([d.(KX),Av))1) , and a Left Index-1 Flow from |p) to Jv) of degree at most 20( d_(|x),|vW)]

Proof. Given two states Jx) = Eiex IIi) 9 i) and Jv) = EjEy Vljlj) 0 1j), and an arbi-

trary E > 0, let w (i, j) : X x Y -+ R>O be the joint distribution on X x Y which satisfies the

f, Earth Mover conditions for Ix) and Iv), and acheives the optimal earth mover bound

d,( x), v)). That is, for all i E X, EjEy o(i,j) = Xi, for all j E Y, EieX w(ij) v1, and

w(i, j) = 0 whenever I In(Xi) - ln(vj)| > d,(x), I)) .

Define

1p) - vj/2Fdo(X),v))1+2Jj) 0 k) 0 1j) 0 k)
jEY kE [2[d.(X),v))1 +2]

In other words, we define Ip) =]Ey LkE 2[d.(x),v))] 0ere

Pj,k = vj/2[d.(Jx),|v))]+2

We now define the intermediate state:
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|-) =- T T kclj) (9 k) (9 Ic) (9 j) (9 k)lc)
jeY ke [2[d.(|X),v))1 +2] cE{0,1}

Where we will leave the Schmidt coefficients Y],kc unspecified for now.

In order to specify the Schmidt coefficients of the intermediate state 'y) as well as the

Right Index-1 Flow from Ix) to I-), and the Left Index-1 Flow from IY) to Ip) we will first

define "bins" for the Schmidt coefficients of Iv) as follows:

For l E N U {O} let Yj - {j E Y : e1 > v > e-(+')} and X; {i E X : e-1 > Xi >

e-(+ 1 )}. Define w(Xm, Y7) -- (i,)EXmxY, w(ij).

Fact 88. IfIm - l > do(IX), Iv)) + 1, then W(Xm, Y) = 0

Proof. Given i E Xm, and j E Yj we have by definition that e-1 > v1 > e-(+l+), and

e- m > xi > e-(m+l), and therefore that Iln(Xi) - ln(vj)I > Im - l - 1 > do(Ix), v)),

where the last equality follows by assumption. It follows by definition of d, ( x), v)) and

of w, that w (i, j) = 0. Since this is true for all (i, j) E Xm x Y1, the claim follows. E

Definition 89. For a set of indices S C N we define min(S) = min{i E S}.

We will now specify an iterative, "greedy" procedure to define the Schmidt coefficients

-Yj,k,c as a function of the Ix) and Ip).

For each (m, 1) c N U {0} x N U {0} such that w (Xm, Yj) > 0 we first note that by Fact

88 that Im - 11 < do(|X), v)) + 1. Thus, for each (i, j) c Xm x Y1,

Xi > 2-(m+1) > 2 -1-d (\x),\v))-2 > 2-1/2 [dx(x),\v))1+2 > vj/ 2[d.(\x),\v))1+2 pj,k

for all k C [2 d (IX),Iv))]+2]

One may check that Algorithm 1 defines Schmidt coefficients -rj,k,r , satisfying

T T[ )1 r2 j,k,r = i X
jC-YkEE[2 Edx( x),jv))1+2] rE [2 d.(|x),jv))1+2] iEx
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1
1: For all i set tempi = Xi
2: Set im = min{Xm} for all m
3: for l E NU{O} do
4: Set j : min{Y1};
5: Set k 0;
6: Set overflow = 0
7: form E N U {O} do
8: if 0(Xm, Yi) > 0 then
9: Set temp, = w(Xm, YI)

10: while temp, > 0 do
11: if Lr overf low ?j,k,O,overf low # Pj,k then
12: while temp, Pjk - Er<overf low TY,k,O,overflow do

13: if k = 2Fd.(Ix),Iv))]+2 then
14: Setj = j+1
15: Set overflow = 0
16: Set k = 0
17: end if
18: if tempim < Pj,k - Er<overflow 7j,k,O,overflow then
19: Set 7j,k,O,overflow+1 = tem pim
20: Set temp. = temp, - tem pi,
21: Set temPim = 0
22: Add an edge in the flow graph from im to (j, k, 0, overflow +1)
23: Set im = im + 1
24: Set overf low = overf low + 1
25: end if
26: if tempim > Pj,k - Ersoverflow rYj,k,,overf low and tempw Pj,k -

Lr overf low 7j,k,0,overf low then
27: Set rYj,k,,overflow+1 = Pj,k - Er overf low 7'j,k,0,overf low
28: Set temp, = temp, - 'Yj,k,,overflow+1
29: Set tem pim = tem pim - 'Y,k,,overflow+1
30: Add an edge in the flow graph from im to (j, k, 0, overflow +1)
31: k = k + 1
32: Set overflow = 0
33: end if
34: end while
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My algorithm (continued)

35: if k = 2Ed.(IX),Iv))1+2 then
36: Setj = j+ 1
37: Set overflow = 0
38: Set k = 0
39: end if
40: if temp, < Pj,k - Er<overflow ' j,k,O,overflow then
41: if tempim < temp. then
42: Set Tj,k,0,overflow+1 = tem pi,
43: Set temp, = temp, - tem pi,
44: Set tempi,, = 0
45: Add an edge in the flow graph from im to (j, k, 0, overflow +-1)
46: Set im = im + 1
47: Set overf low = overf low + 1
48: end if
49: if tempi, > temp, then
50: Set 'j,k,,overflow+1 - temp,

51: Set temp, = 0
52: Set tempi tempim - temp,
53: Add an edge in the flow graph from im to (j, k, 0, overflow +

1)
54: Set overflow = overflow + 1
55: end if
56: if k - 2 [do(IX),v))]+2 then
57: Set j = j+1
58: Set overflow = 0
59: Set k = 0
60: end if
61: end if
62: end if
63: end while
64: end if
65: end for
66: end for
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as well as a Right Index-1 Flow from IX) to Jy), with degree at most 2FdO(x),v))+2.

2 [d.(X),v))1+2 - 2 2[do(x),v))]+4. Furthermore,

SYj,k,r Pj,k
rE [2 do(x),Iv))] +2]

So that there is a Left Index-1 flow from I}) to Ip) defined by a bipartite graph between

the Schmidt coefficients of Iy) and Ip) respectively, in which, for every (j, k, r) E Y x

[2 d.(X),v))]+2 X [2Fd.(X),I))]+2], there is an edge from 7j,k,r to Pj,k of weight '},k,r. This

Left Index-1 flow then clearly has degree 2 [d.(Ix),v))] +2.

Finally, recall that,

XI Pj,k = vj1/ 2 Fd_(x),v))]+2 I .

k e [2[d.(|x ,jv))] +2] kE [2[d.(jX),|v))] +2]

So, by very similar reasoning, there is a Left Index-1 flow from Ip) to jv) with degree

exactly 2 [do(x),Iv))]+2.

Lemma 90. Given two states |T) = LjEX V'TIi) 0 1 i) and K ) = LEy yKi-j j) 0 |j) such that

there is a Right Index-1 Flow from IT) to |K) with degree at most 2Q, then,for two parties sharing

entangled state |T), there exists a two-way quantum communication protocol 'P, which uses Q

qubits of communication (in total, in either direction ), and converts the shared state |T) to the

shared state | K).

Proof. By assumption there is a Right Index-1 Flow from IT) to IK) with degree at most

2Q, so there exists a bipartite graph Gx,y with vertices given by X U Y, and edge set Ex,y,

such that:

* Each vertex in j c Y has index 1 in Gx,y.

* For all i C X, Ti = EjCY: (i,)CExy K1 .
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e The maximum degree of any vertex i c X in Gx,y is 2Q.

The protocol for Alice and Bob to start with shared state IT) and end up with shared

state IK) will proceed as follows: Beginning with the state IT) shared between Alice and

Bob, we will refer to the register containing the Alice half of IT) as A, and the register

containing the Bob half as B. Alice will append two additional registers, of Q qubits each,

and initialize each of them to the all zeros state. We will call these two new registers C1

and C2 respectively. Alice will then perform a controlled unitary operation between A

and the registers C1 and C2. She will then pass the register C2 to Bob using Q qubits of

quantum communication to do so. Bob will then perform a controlled unitary between

B and C2, Alice will perform a controlled unitary between A and C 1, and after that Alice

and Bob will share the state IK).

To describe the protocol more precisely we will define the specific controlled unitaries

performed by Alice and Bob at each step. Beginning with a shared state IT), after Alice

appends the two additional Q-qubit registers to her side of IT), the shared state looks as

follows:

IT) = E v/iO0 Q)cl & 10 ")c 2 0 Ii)A 0 ')B
iEX

Where, initially, Alice holds the registers A, C1, and C2. Alice now performs a controlled

unitary operation, acting on registers C1 and C2 and controlled on register A. To describe

this controlled unitary concisely we will need to imagine that there is some total order

on the elements j C Y (any total order will do, one can simply imagine that the j's are

indexed by bit strings which encode integers), and we will define sij -- I{j' E Y : j' <

j, and (i, j') C Ex,y} . Note that, since every i C X has degree at most 2Q, sij is always

an integer between 0 and 2Q, so it can always be expressed in binary as a Q-bit binary

number. We will take this convention in the following argument.

Now to define Alice's controlled unitary: When controlled on i) A Alice's unitary moves

the state 10@Q)cI 0 10@Q)c 2 to the state ji-controlled)c 1 c 2 EjEY:(ij)EEx,y Kj/TiSij)C 1 0
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SiOC2. -Note that since sij is always a Q-bit binary string, it can always be contained in the

Q-qubit registers C1 and C2. Further note that, since Ti = EieY:(ij)EEx'y Kj by assumption,

Ii-controlled)c1 c 2 is a normalized pure state. Thus there exists a unitary operation that

moves OO®Q)c &0 oQ)C 2 to ji-controlled)c 1 c 2 and Alice need only perform this specific

unitary when the control register is in state li)A. So, when Alice applies this controlled

unitary to her registers C1, C2 and A (where A is the controlling register), the resulting

new shared state between Alice and Bob is:

IT) = i-controlled)cic 2 0 i)A 0 JOB EKj TiI sij)C1  sij )C 2 0 I)A 0 J)B
iEX iEX jcY:(ij)cEx,y

(5.1)

KASij)CI 0&sij)c2 0 I)A 0 J)B (5.2)
i EX j Y:(ij) EEx,y

At this point Alice uses Q-qubits of communication to pass the Q-qubit register C2 to Bob.

The resulting shared state is:

K1jSij)c1 0 i)A 0 i)B | Isij)c2
i6zX j EY:(i,j)cEEx,y

Where Alice owns registers C1 and A, and Bob owns registers C2 and B. Now it is not

hard to see from the definition of sij and the fact that every j E Y has degree exactly 1 in

the graph Gx,y, that there is a bijection mapping each j E Y to the tuple (i, sij). Alice and

Bob both know this bijection since they know the description of Gx,y, and since bijections

are invertible, Alice and Bob can now both apply a local unitary which relabels the basis

element |i) 9 sij) to the basis element j. The resulting shared state is:

E1j)A 9j)B = Kjlj)A0 Ij)B -K)
iEXjeY:(i,j)eExy ]EY
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Where the first equality follows because each j E Y appears in the initial sum exactly once

(because j has degree exactly one in Gx,y).

This completes the protocol.

Corollary 91. Given two states IT) and |K) such that there is a Left Index-1 Flow from |K) to |T)

with degree at most 2Q, then, for two parties sharing entangled state K ), there exists a two-way

quantum communication protocol 'P, which uses Q qubits of communication (in total, in either

direction ), and converts the shared state |K) to the shared state |T).

Proof. By definition, if there is a Left Index-1 Flow froml K) to |T), then there is a Right

Index-1 Flow from |T) to IK) (which is the starting assumption of Lemma 90). One can

check that, in the proof Lemma 90, every operation performed by Alice and Bob was re-

versible. Therefore, the proof of this corollary is simple the start at the end of the proof

of Lemma 90, and "reverse" every step of the proof in order from end to beginning (in-

cluding the communication step...now communication goes from Bob to Alice rather than

Alice to Bob). The result is the desired quantum communication protocol, which converts

the shared state IK) to the shared state IT) using Q-qubits of communication. El

Proof of Theorem 83

Proof. The proof follows by applying Lemma 87, followed by Lemma 90 and Corollary

91. E

5.4 Main Result

Lemma 92. Given two (sub-normalized) quantum states Ip) and |v) on WA 0 RB (that is,

I||p)||,|||v I|| < 1), such that the Schmidt coefficients of ip are upper bounded by Amax, and those

of v are upper bounded by Vmax, we have:
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|{'|v)| I rkSchmidt(L'P)) AmaxVmax

Proof. For brevity let r = rkschmidt ( )). Schmidt decompose ip) and Iv) as O) _ j i)A

B, as Iv) = E VIj)A 0 1j)B. Define the matrix Mv Ej VvjIj)A (jI*, and note that

(V) Aivj(iA IjA) 09 (iB fIB) EL Ail'1(OA I A) 09 ((jB IiB))*

r-1 r-1r-B= B =- - /j ) jB J

= ZZ i ji) 0 (j*Ii* ) - Ai(iA j)A 0 /|B) Ai(iAMvi)
i=0 j i=O \=B

Now, by definition of a Schmidt Decomposition, we know that the maximum singular

value of Mv is vmax. Thus, for all i we have that I(iA IMv Ii*)f I vmax (since IA) and IiB)

are normalized vectors by definition). It then follows that:

( = Ai(iAIMvji*) - Amax I(iAIMvfi*)I < r Amaxvmax
i=O i=O

= rkschmidt ( I0) VAmaxVmax

E

Theorem 93 (Main Result). Consider a one-way or two-way quantum communication protocol

R whose goal it is to compute a joint function g(x, y) E {0, 1}. Suppose that R uses an arbitrary

entangled state |T) AB (of unbounded size), as well as Q qubits of communication total, in either

direction. Then, for every e > 0, there exists a communication protocol R' which simulates R

with error c, while using only EPR pairs as an entangled resource (rather than |P)AB or any

other state), and using O(Q/e) qubits of communication . Thus, if R computes f with error E

it follows that R' computes f with error C + E', while using only a maximally entangled state of

some dimension, and O(Q /c) qubits of communication.
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Proof. Schmidt decompose ip) as Ei V/Ai i, i)

Let N be an integer, which will be specified later. Define a function f : [0, 1] -+ N given

by

and define a new state Ip) El ...,(i)j (i,j), (i,j)), where vi~j - . Note that

Eij viJ = 1, so that Ip) is a normalized pure state. Furthermore, every Schmidt coefficient
1n(1/Ai)

vij of Iq) is within one multiple of e2 of the integer power e N N.

because

This follows

- In(f (Ai)) [ln(1/Ai)]

[ 1N-ln(1/

~ln(1/Ai)1
Nj

Ai) ) -lIn((M) +H In

N -ln(1/A ) -
ln (1/Ai)

N

AN) -ln (e

N - n(1/A

Ai))

1< 2

+ [ln(1/ A') N

(5.3)

Finally, note that, VA E [0,11, f(A) < e2 N, and it follows that dco(Iip), IT)) < 2N (since

one can move the mass at vij to Ai). Therefore, by Theorem 83, there is a protocol M by

which Alice and Bob can prepare Ip) from ip), using 0(do( x), v))) 0 0(N) classical

communication, and using only EPR pairs as an entangled resource.

Define C - R o M to be the composed protocol in which Alice and Bob start with shared

state Ip), first use protocol M to convert Ip) to IV), and then perform protocol R using

shared state ip) and inputs x and y, to compute the joint function g(x, y) . It is evident

that C has exactly the same success probability as R, and, since M uses 0(N) qubits of

communication and R together uses 0(Q) qubits of communication, C can be performed

with O(Q + N) qubits of communication. For the remainder of this proof we will con-

sider protocol C, which uses shared state Ip), and how it may be "rounded" to produce
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a protocol R'. For simplicity of notation we will continue the proof as if C uses exactly

Q + N qubits of communication, rather than O(Q + N), but the analysis is easy to adapt

to the case of O(Q + N).

For j a nonnegative integer, define I {i e-jN+ 2  A > e-jN-2. It follows from

the calculation in Equation (5.3) that Uj1I contains all of the Schmidt coefficients of p).

So, defining the subnormalized states I I) ie iV Ii, i), we have that I ) = Lj I p1 ).
Furthermore, by the definition of Ij, it follows that Ip ) has spread at most 4 (note that the

spread of Iq1 ) does not depend on whether the state is normalized or not).

The idea of the proof is that different Ipy) are not only orthogonal, but must remain ap-

proximately orthogonal even after a small amount of quantum communication. In partic-

ular, observe that if U is a unitary transform using M qubits of communication, then, for

any j, rkschmidt (U I j)) 2mrkschmidt (pj)) < 2MejN+2 )12 . Also, for all k we have, by

definition, that the Schmidt coefficients of IOk) are bounded above by e-kN+2. It followS

by Lemma 92, that Vj, k,

2 __;:- 2k
(k IUM ) 2Memin(j,k)N+2 Pmin(j,k)) 2 -N+2 . e-kN+2 2Me-N I+4 + min(,k))

(5.4)

To apply this to our problem, we observe that the entire communication protocol can be

expressed as performing C and then measuring the first qubit. Thus, the probability that

the protocol outputs b E {0, 1} is

Pr[b] = ( p|C'(|b)( b| 9 I)CIT),

where I acts on all qubits except for the one being measured. Define P - Ct (o-r I)C =

Ct(10)(010 I)C - Ct (11)(11 0 I)C. Then
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Pr[0] - Pr[1] =- (p lp) = (pj lP|k) (5.5)
j,k

Additionally, observe that P is a unitary operator that can be constructed using O(Q + N)

qubits of communication.

We now seek to replace p = (qjk Ij)(PkI with a density matrix p that (a) is close to a

mixture of states with small spread so that it can be efficiently produced starting from the

maximally entangled state, and (b) has the property that the protocol P, when run with

shared state p, has nearly the same success probability as when it is run with p. It is clear

that if we establish both (a) and (b) then we will be done.

Part (a) Let us first establish part (a). Towards this end, we consider the state p

Zk,l:lk- 1<20+2 ln(/) Pk) (Pl. It is not clear whether p itself is a mixture of states of small

spread, but we can use p to determine how to "cut" p down into a mixture of states of

small spread.

The intuition behind this is that we can argue that there is a simple way to project p

into a block diagonal matrix (a union of submatrices of p), with block sizes of O(N/e +

ln(1/c)/c), such that this block diagonal matrix only differs from p by c in the trace

norm. It will then follow, in the second part of the argument, that projecting p down

into these same blocks produces a state which is a mixture of states with spread at most

O(N/e + ln(1/c) /c), and has the property that the communication protocol P acting on

this new mixture is only e different from P acting on p.

The first part proceeds as follows:

Define a nested sequence of projectors Pi, where each Pi is the projection onto the span of
2i -(20 +2 ni/ )

{pi) }I= [ 1 (and Pc = I - Pi). Consider the matrices Mi - PipP[ + PfpPi. Note

the following two properties:

Fact 94. p - Mi = PipPi + Pf pPf, which is block diagonal, and is a state (PSD and trace 1,
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because it is a union of submatrices of p containing the diagonal of p).

Fact 95. The matrix M = L', Mi is block diagonal with each Mi lying in a different block.

This is because p is a banded matrix by definition, and the support of the projectors Pi increases in

increments of 2- (20 +2 [ ), which is twice the width of the bandwidth of p.

Now, for k E [1,...., F1/El] define Sk U0 Mi.-[1/,1+k. It follows from Fact 94 and from

the fact that Pi are strictly nested projectors (so (Pi - PPil 1 is a projector), that

E=1 PiP- 1pPPipY-1  P - EL1 Mi = P - M = p- E k-

So, we have that:

[1/El

L Sk =IP
k=1

00

-- PiPic_11piPi_1 1
-= EPppPp | |p||1

00

j Pifp iPf_1I1

=|p1 + 1PiPf_1 pPiP_1 1 = 2
i=1l

Where the first inequality follows from trace inequality, and the last equality follows from

the fact that the set of projectors {PiP_ 1 }1 is an orthonormal set of measurements span-

ning the support of p.

Now, by Fact 95 we know that E]

bound on E Le Sk , gives
k1

Sk 1 -1 'IIISkfl1, so combining this with our

[1/el

I Sk1I < 2
k=1

Thus, there must exist a k such that IISk I1 2/ [1/E e 2c. Fix k' to be the particular k

with this property. Consider the matrix p - Ski.

First note that, by Facts 94 and 95 above, we have that

00

P - 8 k' = : P(Ci-1k)[/l(i+k)[1/ E1PP("l-1k)-/el](i+k)[1/1
ji=1
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Recall that P(i-1+k') [1/E1e (i+k') [li] is a projector (since the Pi are strictly nested projectors).

Thus, we know that

P0- (i-+k')[/ell (i-1+k')[l/e] (i+k')[1/el

is an un-normalized state, for every i, and the new state

00

P Pip=1

00

(i--+k')[1/E] 1(i+k')[1/E i-l k') rl/ E 1 e

is a normalized mixture of these states (since {PiPc_ 11 is an orthonormal set of mea-

surements spanning the support of q). Note that we are now defining p' as a projection of

p, not of p. The purpose of studying p was to obtain the projectors Pc- /

and the matrix Sk', which will play a role in establishing part (b) below.

For now we note that the states pi are pure states since:

Pi - (i-1+k') [1/el P(i+k') [1/el PP(i-1+k') [l/e]

and, defining index limits Bs = 2((i + k' - 1) Fl/e])(20 + 2 ln(Ve)

k') l/E ) (20 + 2 ln(l/e) ), we have

PC+ P
(i-1 k)[r1E] P(i~k')[1/e P

Bs<I<Bb

and Bb - 2((i +

I PI)

We know by definition that the Ipl) are orthogonal to each other, and that each I p) has

Schmidt coefficients bounded by e-jN+ 2 > A > e-jN- 2 . Thus, it is immediate that p/

(and the pure state P(i-1k')[1/el (i+k') [1/e] Ip)) have spread at most (Bb - Bs)N + 4 =

21/E] (20 + 2 n )N + 4 = O(N/e + ln(1/e)/e). It follows that p' is a normalized
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mixture of states with spread at most O(N/e + ln(1/e) /).

Consider the normalized version of p', which is still a pure state of spread at most 0 (N/c +

ln(1 /c) /e) it is clear that this state has Earthmover distance at most 0(N/c ln(1 /c) /e)

from the nearest maximally entangled state (simply move all of the weight onto Schmidt

coefficients of the size of the smallest Schmidt coefficient, which can be done by mov-

ing all the weight a distance less than or equal to the spread). It follows easily, by using

Theorem 83 that there is a protocol which prepares the normalized version of p' from EPR

pairs, with only 0(N/c + In(1/e) /c) bits of communication. Now the state p' = Ei p can

be prepared by applying this same protocol in superposition over i (with the probability

tr(p ) assigned to each i), and then tracing out over the i register. Thus p' can be pre-

pared starting from EPR pairs with 0(N/e + ln(1/c) /e) bits of communication (exactly

because it is a mixture of states with spread at most 0(N/c ln(1/e) e) ).

This establishes part (a).

Part (b) We will now establish property (b), that the difference between the success bias

for protocol P when run with shared state p' and the success bias when run with shared

state p is 0(c). To prove this we will consider the intermediate matrix p' + Ski, where Ski is

defined above in the argument for part (a). We already know from part (a) that |Sk I i

2e. Furthermore, we know that the non-zero elements of the matrices p' and Sk, are dis-

joint. More precisely, for a matrix 0, define To = {(l,k) : (Pk101pl) : 0}. It follows from

the argument in part (a) that the sets Tpi, and Tsk, are disjoint. Moreover, again according

to the construction in part (a), we have that for every (1, k) c TpI+sk,, (Pk I(p' + Sk) PI)

(PkI pIp). Finally, recalling the original definition p = Ek,1:Ik-lJ<20+2[ Pk) (P1 , we

have from part (a) that {(l, k) Ik - < I 20 + 2 [n( } =T Tp'+sk,-

We can now bound the difference between the protocol P acting on p versus the protocol

acting on p', following equation 5.5 as follows:
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(Pr,[0] -Pr,[1]) - (Prp/[O] -Prp,[1]) = |Tr(P(p-p'))l r

(PkVIPI)I +2c < I(PkIPIP)l +2c < k
(k)l) Tp

kPI JPI) 2e

(PkO Pil)I + 2c
k,l: k-i >20+2 [n(I/e)

The first inequality follows because IISk'I1 2e. The rest of the above follows because

k|(p' I+ Sk ) pI) - (PkK| P P P) for (l, k) E Tpt+s, and (KPk p' + Sk) Il ) = 0 elsewhere,

and finally because T. _ Tp'+sk,-

Now, by using equation 5.4, we have that:

(Pr,[0] - Pr,[1]) - (Pr,/[0] - Pr,[1]) -2e

2

-2

n>20+2

min(1, 2
2 (Q+N)e -N 1k-lI+4)

k>l+20+2 [n(1/e)

min(1, 2
2 (Q+N)e N+4)

-2 T
n>20+2 II 1

min(1, 2
2 (Q+N)eNI4 ) 2(Q+N)e -ON+4-ln(1/e) -N

n=1

- 2 2 2(Q+N) 6 10N+4-ln(1/e) ( e-2

1-2 ) < 4 2
2 (Q+N)e-lON+4-n(1/e)

So, setting N = Q (and assuming Q > 1 to avoid the trivial case), we have that:
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(k)) -T(p,+S kI) (k))iT('1+s 
l)

min (1, 22(Q+N)e -N Ik1+4) min (k,l))
I N



(Pr,[0] - Pr,[1]) - (PrP/[0] - PrP,[1]) - 2e < 4. 2 2(Q+N)e 10N+4-n(1/e) < 4 . 2 4Ne-6N-ln(1/e)

< 4 e-2N-1n(1/e) < e

So,

(Pr,[0] - Pr,[1]) - (Prp, [0] - Prp, [1]) < 3e = O(c)

This establishes property (b), that the protocol P, when run with shared state p', has

nearly the same success probability as when it is run with p (up to error e).

Since we have already shown, in part (a), that p' can be produced from EPR pairs using

0(N/e + In(1/c)/ = 0(Q /e + n(1/c) /e) communication, it follows that we can define

a communication protocol R, in which the two parties start with shared EPR pairs, use

0(Q /c + ln(1/c) /e) communication to produce p' (Note that this preparation is exact.

The c in this part comes from the definition of p'.), and then use 0(Q + N) = 0(Q) com-

munication to apply P to p', which we have shown, in part (b), approximates the output

of applying P to cp, up to error e. This gives a protocol R' which uses only shared EPR

pairs, and 0(Q/c + In(1/c) /e) communication, and approximates the original protocol

R up to O(c). This is the desired result.

El
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