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Abstract

We consider top-quarks produced at large energy in e+e- collisions and address the
question of what top-mass can be measured from reconstruction. The production
process is characterized by the center-of-mass energy, Q, the top mass, m, the top
decay width, It, and also AQCD. These scales are well separated and can be dis-
entangled with effective theory methods such as the Heavy-Quark Effective Theory
and Soft-Collinear Effective Theory. We compute a top mass observable for future
e+e- colliders to next-to-next-to-leading-logarithmic order + O(a2) (NNLL+NNLO),
which goes beyond previous next-to-leading-logarithmic + 0(a,) (NLL+NLO) anal-
ysis. We use the two-loop heavy quark jet-function, O(a2) corrections to the partonic
hemisphere soft function, and hard matching for boosted tops at two loops. We find
that the higher order corrections exhibit good convergence and reduced uncertainty
in this cross section.
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Chapter 1

Introduction

1.1 The Standard Model and the Top Quark

The Standard Model (SM) is currently the simplest model of particle physics which

has successfully stood the precision experimental tests performed at particle colliders.

It contains fermions which constitute the matter particles, gauge bosons, the force

carrier particles, and the scalar Higgs boson that is responsible for giving mass to

a majority of the particles. The fermions are categorized into leptons and quarks.

There are six leptons and quarks, organized in three generations, with every gener-

ation consisting of successively heavier particles (with the possible exception of the

neutrinos).

The top quark is not only the heaviest quark, but it is also the heaviest of all

the known elementary particles in Standard Model (SM). Its existence was predicted

in 1973 by Makoto Kobayashi and Toshihide Maskawa to explain the observed CP

violations in kaon decay [1]. The top quark was the last quark to be discovered of all

the six and was first observed in 1995 at the CDF and DO experiments at Fermilab,

leading to Kobayashi and Maskawa receiving the Nobel prize in 2008 [2-4]. Today,

experimentalists still continue to study properties of the top quark produced at the

CMS and ATLAS experiments at the LHC, CERN.

Interest in top phenomenology is driven mainly because of its large mass. It has a

mass mtop of about 173 GeV, and weighs roughly the same as a gold nucleus. In fact,

11



the next heaviest quark is its weak isodoublet partner, the bottom quark, weighing

in at much smaller mass of 4.2 GeV [5]. The large mass of the top quark can also

be understood in terms of Yukawa coupling to the Higgs boson being of 0(1) 15].
As a result, it provides a means to not only constrain SM physics, but also plays an

important role in many new physics (NP) searches. A precision top mass determi-

nation is important for precision electroweak measurements, constraining extensions

to the standard model like supersymmetry, and determination of the stability of the

electroweak vacuum (which put in another words determines the 'fate of our uni-

verse') [6,7].

The top quark, like other quarks in second and third generations, is unstable

through weak interactions. The top has a large decay width Ft = 1.4 GeV. Since

quarks interact strongly they bind into hadrons, a process called confinement. The

scale of confinement AQCD is about the mass of proton - 1 GeV. Since Ft > AQCD

the top quark decays before it hadronizes, unlike other quarks which decay after

they bind into a hadron. It decays through weak interaction into a real W boson

and a down type quark [5], almost entirely t -÷ Wb. The W boson can in turn

decay semileptonically into a lepton and a neutrino, or hadronically into two lighter

quarks. This unique property of top quark plays a very important role in collider

phenomenology. For example, the case of a boosted top, where W decays hadronically,

we observe three-prong substructure which can be isolated using jet substructure

techniques, such as N-subjettiness [8,9]. An example of this event is shown in Fig. 1-

1. The semileptonic decays requires one to look for a bottom quark, or b-jet, and a

lepton in the same event [10,11] and such decays are useful for tagging top-events.

1.2 Top Quark Mass Measurements

The current combined measurement of the top mass from the Tevatron and LHC

is 173.34 0.27(stat) 0.71(syst) GeV [12]. Measurement of mtop can be broadly

classified into two main categories: direct and indirect determinations of mnop.

Indirect determinations of mt0 p are based on the comparison of total or differential

12



tf production cross-section to the corresponding theory calculations. Indirect deter-

minations have the advantage in that they allow direct comparison between theory

and experiment, and a clearer theoretical interpretation of the measured mt,, [13],

however they have significantly larger experimental uncertainties.

Direct mt,, measurements exploit information from the kinematic reconstruction

of top-quark decay products [13]. Examples include the 'template method' [2, 3],

'matrix element method' [14], and the 'ideogram method' [15].

Direct measurements are the most precise and natural methods for top mass de-

termination. However, problems arise because its mass is a priori not directly ob-

servable, as the top is a parton carrying non-vanishing color charge. In fact, the top

mass should be considered as a renormalization scheme-dependent coupling in the

quantum chromodynamics (QCD) Lagrangian rather than a physical object, just like

the strong coupling a, [16]. Moreover, since the top mass is not a unique physical

quantity, the reconstruction method and prescription also affects the mass obtained.

Measured top masses are assumed to be measurements of the pole mass, and the

relation between Monte Carlo generator mass and the pole is uncertain at the level

of 1GeV [17], which is now comparable to the measurement uncertainty [5].

A main goal of our study of kinematically sensitive top cross-sections directly from

QCD, rather than Monte Carlo, is to eliminate this uncertainty. In this context certain

top quark mass renormaliation schemes are more suitable for precision measurements

than others since the choice of scheme can affect the higher order behavior of the

perturbative corrections as well as the organization of power corrections. Suitable

quark mass schemes are compatible with the power counting and also lead to an

optimal behavior of the perturbative expansion. Such schemes can be identified and

defined unambiguously if the precise relation of the observable to a given Lagrangian

top quark mass scheme can be established. For finite order perturbative calculations

the choice of the scheme can impact the accuracy of the mass measurement, and

amongst various commonly used schemes only a class of schemes called 'short distance

schemes' are suitable As a result, it is useful to study an observable which allows us

to extract top-mass in a precisely defined short distance scheme.
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There does exists a well studied systematic analytic framework where the mea-

sured top mass and the Lagrangian top mass parameter m can be related: A threshold

scan of the line-shape of the total hadronic cross section in the top-antitop threshold

region, Q ~ 2m at a future Linear Collider, where Q is the c.m. energy [18-20].

Unfortunately, this cannot be applied at the LHC. This is because the threshold scan

uses the rise of the line-shape of the cross section near a center of mass energy that is

related to a toponium-like top-antitop bound state [21-23], and at the LHC, the top

anti-top invariant mass cannot be determined with a relative uncertainty sufficient

enough to resolve the top-antitop threshold region [24].

1.3 Problem Statement

With the absence of a threshold scan, our current goal is to measure mt at the LHC,

which is a proton proton (pp) collider. To begin with, as protons are composite

objects, not only is there more radiation in the beam than in e- collisions, there

is also added complexity from the parton density functions (PDFs), that determine

the fraction of quarks and gluons in a proton. Additional complications at the LHC

include radiation induced from multi-parton-interactions (MPI's), and pileup that

occurs because we are colliding bunches of protons. These measurements necessarily

involve jets and hence depend on the choice of jet definition and parameters like the

jet radius. In this thesis, we study the simpler scenario of an e+e- a top-jets, which

allows us to study some issues in great detail with high precision, while postponing

other issues to the eventual extension to the pp -+ top-jets case. The e+e- results can

also be used to calibrate Monte Carlo programs which are then applied to pp [25].

Through the use of Effective Field Theories (EFTs) it is possible it devise ob-

servables which satisfy certain factorization properties that allow us to extract a top

mass while satisfying the constraints of having a kinematic sensitivity and control of

the top mass scheme. The production of top quarks at high energies in e+e- colli-

sions is characterized by well separated scales such as the center-of-mass energy, Q,

the top mass, m, the top decay width, Ft, and also AQCD, in the following manner:

14



Hemisphere-a Thrust axis

n -collinear

h-collinear Soft particles

Hemisphere-b

Figure 1-1: Six jet event initiated by a top quark pair, tI -+ bWbW -+ bqq'bqq'.
The plane separating the two hemispheres is perpendicular to the thrust axis and

intersects the thrust axis at the interaction point. The total invariant mass inside
each hemisphere is measured. We do not consider leptonic decays of top here.

Q > m > I > AQCD. The appropriate EFT for this problem is the Soft Collinear

Effective Theory (SCET) [26, 27]. SCET is an effective theory that describes the

interactions of soft and collinear degrees of freedom in the presence of a hard inter-

action. It describes QCD in the infrared, but allows for both soft homogeneous and

collinear inhomogeneous momenta for the particles [26,27].

In Ref. [16], it was proposed that the kinematic measurement of the double differ-

ential invariant hemisphere mass distribution, (d ,in the peak region around

top resonance, provides an event shape which is sensitive to the top mass and also

a framework to yield the mass in a definite scheme. In Refs. [16,28], this has been

computed and discussed in detail. Following the prescription set out in Refs. [16,28],

we consider boosted tops so that its decay products will be in one hemisphere. In

Fig. 1-1, we show a sketch of such an event. We treat the evolution and decay of the

top close to mass shell using Boosted Heavy Quark Effective Theories (bHQET) [29]

for the interactions of the heavy quark with the soft degrees of freedom.

In this thesis, we compute a top mass observable for future e+e- colliders to

NNLL+NNLO (next-to-next-to-leading-logarithmic order + O(a2)), which goes be-

yond the NLL+NLO analysis in Ref. [28]. We will use the two-loop heavy quark

15
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jet-function in the heavy quark limit and the relations of the jet-mass to the pole and

MS at two-loop order [30]. We will include O(a') corrections to the partonic hemi-

sphere soft function that sums large logarithmic terms, -2- and ! (where A = I mMt Amt

encodes the measurement and mt is the short-distance top quark mass) and sepa-

rates perturbative from nonperturbative effects [31-34]. These are ingredients that

still need to be systematically combined in the factorized cross-section, and this non-

trivial task is the goal of this thesis.

In Section 2, we present the factorization theorem along with its ingredients that

allow us to compute the cross section to NNLL+NNLO. In Section 3, we describe how

these ingredients are combined mathematically, and then discuss the implementation

method in Section 4. In Section 5, we summarize the results.
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Chapter 2

The Cross Section

We calculate the double differential invariant hemisphere mass distribution dd

In Ref. [28], it was shown that at leading order in the expansion in ' and - this
Q m

distribution can be factorized into the form

da
dMt dM,

= o HQ (Q, p) H, m, -, /

xJ ddl-B+ St _ Qlrn+ 1, 6m, A)
Q1-
m

F, 6m A)

X Shemi(1+11,iA)1 (2.1)

where:

1. Mt2f are the invariant masses defined from all particles in each of the two hemi-

spheres that are determined by the plane perpendicular to the event's thrust

axis.

2. o is a normalization factor, referred to as the tree level Born cross section.

3. Q ~ 0.5 - 1TeV is the center of mass energy of the e+e- collision

4. m is the Lagrangian top mass parameter in a chosen scheme, m = m

5. 6m = mpole - mscheme. Perturbative corrections that depend on the choice of

17
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the scheme which are encoded by the difference to the pole mass

6m( R, p) = 67ni = R ank sG)I 22
n=1 47r n=1 k=O - -

where R is a dimension 1 parameter that specifies as an infrared (IR) cut off

related to the scheme, and ank are scheme dependent numbers.

6. HQ and Hm, known as the hard functions, are matching corrections that are

derived from matching between QCD and SCET at Q, and SCET and bHQET

at m, respectively. HQ and Hmare independent of &t and f and do not affect the

form of the invariant mass distribution, but only act as normalization factors.

7. st =, - 2~F <in, shifted variables introduced for convenience, as

it is only the invariant mass distribution close to the peak we wish to predict.

This is also the most sensitive region for mass measurements in the peak region.

8. The jet functions B (A, F, 6m, p) describe the QCD dynamics of collinear radi-

ation in the top/antitop direction, and the decay of the top and antitop quarks

near mass shell within the top/antitop jets. They can be computed perturba-

tively at the scale yL > F since the top width F provides an infrared cutoff from

hadronization. At tree level, they are simply Breit-Wigner (BW) functions:

1 F
Bj(s, F, m,1) = I 2 + 0(a) (2.3)

gM s2 + F2

where the ellipses indicate QCD corrections that distort the BW. Further, we

can express the bHQET jet function for the physical unstable top B (s, F, 3m, p)

as a convolution of the stable jet function B (., F = 0, 3m, p) with a BW func-

tion of width F [28],

B (A, F, 3m, p) = df'B (s - s', F = 0, 6m, [L) IF (2.4)
_-So 7r(s 2 + ]F2)

Note that the upper limit . of integration can be replaced by +00 since the

stable jet function only has support for positive values of its energy variable.

18



We use the two-loop heavy quark jet-function in the heavy quark limit computed

in Ref. [301.

9. The soft function Shemi(+, 1-, M) describes the physics of the soft perturbative

and nonperturbative gluons through which the top and antitop jets can com-

municate. The partonic part, Spart, of the hemisphere soft function Shemi can

be computed in perturbation theory at scale [PA > AQCD- We account for the

nonperturbative corrections from hadronization using a model function F. We

first observe that the corrections are enhanced in the peak region, as compared

to the tail region. This feature can be realized by modeling the soft function

as 135],

Shemi(1+ 1- +00 dT- +00 dUSpart (I+ _ 1 -11

x F(I+ _ A, _- - A) , (2.5)

where the parameters of F can be determined from experimental data. Further-

more, we have included a gap parameter A to account for minimum hadronic

deposit in each hemisphere.

Additionally, we can define unitary evolution functions Ui, for the various hard,

jet and soft functions. For example, the renormalization group evolution for the jet

function is given by

B (, F, 6m, u) J ds'UB, (. - , y, r)B (', F, 6m, pr) . (2.6)

This equation allows us to express B at its natural scale pr - . - F. Substituting

Eq. (2.5), and Eq. (2.4) into our factorization theorem Eq. (2.1), and using evolution

19



HQ

Hm

B

S

Figure 2-1: Scales together with
appearing in the formula for the

the corresponding matching
invariant mass distribution.

and evolution functions

equations like Eq. (2.6) we obtain,

du
dM2 dM2 = O-OHQ (Q, pQ)

x dl+ Jdl-

xJ
xJ

t J

UHQ (Q, [Q, [Lm)Hm ( I , [ Hm

ds'4UB ( t - St, M, A) UB (sf - sT, [r, [PA)

Ql+ _ /
M

Pt =0,
Q1- -/'

S fn
m~

dT+ di-Spart (l+ - T+ 1- - ,p)F(i+, [-) I f I .
7r( 'r'+ ]p2) 7r(s't' + ]p2)

In the rest of this section, we give explicit representations of the hard functions

HQ and Hm, the stable jet functions B , the partonic soft function Spart as well as

the model function F.

2.1 Common Definitions

We provide a list of definitions that appear in the following sections:

1. CA =N, = 3 is the adjoint Casmir of QCD.

2. CF =N2  = I is the fundamental Casmir of QCD.

3. TF = 1, appearing from a trace of QCD color generators tr [T TB] = TF6AB

20

Matching
Functions

UHQ

_Hm

UB

Scales

Q

m

SF

m
A - s

ds'

ds'B+ -

(Q
m, [A)

(20,.

(2.7)

B _ ' -



4. n. is the number of light quarks.

5. (, is the Riemann zeta function or Euler Riemann zeta function defined as

6. 10= 4CF cusp anomolous dimension at one-loop order. FP = loop at i + 1 loop

order

7. /0 noncusp anomolous dimension at one-loop order.

order.

8. YE ~ 0.577 is the Euler-Mascheroni constant.

-y = loop at i + 1 loop

9. 1o = 1CA- 4nfTF, is the one loop /-function coefficient, where nf is the

number of active quarks (which is often equal to nj).

2.2 The Hard Functions

We obtain the hard function HQ from the relation with the Wilson coefficient via

HQ = jCQj 2 . (2.8)

In the following, we abbreviate the appearing logarithms as

Lm = log ( 2)
M ( P 2

LQ In (Q2 - io
Lo P 2 -

21



The two-loop expression for CQ, widely used in the SCET literature, and obtained

with the aid of the massless form factor calculation of Refs. [36,37], is given by

.1) (IP)CF L 2

4wT

P))2 {2 L4
pCF - LQ

+3LQ -8+

+ -24(3 LQ2
255 772

+8 2 -30(3

11

9 Q
( 233

18
51157 3377 2  313(3

648 108 9

(2545
54

4

45

117r2
+9 -26( 3 ) LQ

(nl+1)(,\ 2

+ (as 4 )CFF(l+
4 38 2 418
9L Q 9L2 27

4085 237r2  4(3

+162 27 9

22

(nia8C~n+g1

+ ( a

a nl+l 2

+ as 4 CCF{

837r4

360 5
7r 2 L

3) L2+

+ 47r 2 LQ
9 L)

(2.9)

- 3 + --5 2 2

1) -



The hard function Hm in the nl-flavor scheme with the top-mass in the pole scheme

asn') = (as)) [38], is given by

Hm') (i, ) = 1 +
ne) (C)

a 4 7 C F 2L - 2Lm +8+

+ as C,{ 2L 4 - 4L 3 + 18+ 2w2)L2 10wF2

3
+48(3) Lm

+ + 107r2 - 167r2 log 2 - 12(3

1287
324

+ (167-

7 3237r 2

54

9

3 - L +

27F2)

+ 8-F2 log 2 +

(308 16w 2
+

27 9

(260 4wr2

27 3

80 L + 29 27/

- 97r 
}

1165

178(3
9

)

)

567w
2

+9 - 60(3) Lm

477-4

90 f
1541

LM - -
L +81

Lm+5106
L+81

log })

74wr2  1 04(31
27 9 f

827r2  8(3
27 9

(2.10)

23

) 2( (ne) (
4wr C CF - 93"

( a(ne) (
4wr

9L

CFniTF

CFTF -

(n)i) 2

4w7)

- L 2

- (19 -



2.3 The Heavy Quark Jet Function

The stable heavy quark jet function for a (fictitious) top quark having zero width was

computed in of Ref. [301 at two loop order:

mB(, 6m, p) = 6(s) +

+a 2

CFas(/) 2LC

- 3C + 3 -
1w +)

-_1 + +4(3 L4

5w-x2  13w 4

-24 57600

+CFCA -

+ 54-

+ CFOSO ~- +
4

2 23w4

-144 2880

L! 4

12 4/ S

5(.3) 6(.)

- L) + (-759wr2

576

- 2 (p) 6m26(s) - (6mi) 2 6"(s) + 6 rn1CF [2(C!)' (LC)' ( 1

17(3
48

- W

}
(2.11)

where we refer to A.1 for the definition of the log plus-functions 's7. To be consistent,

we use the notation for the plus functions L (A) defined in Appendix B of Ref [391 as

L(i) = [6() In"'] (2.12)

The C' in Eq. (2.11) is related to C,(s) of Eq. [2.121 by

0(6) lnk(/I)
/P .1+

1I .'
=- L I-

P 1 t )jt

2.4 The Partonic Soft Function

In Eq. (2.5) the convolution transfers the gap to give li > A.

(2.13)

This allows for an

hadronic interpretation for these variables. However, in perturbation theory there is a

24
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renormalon ambiguity of O(AQCD) at the partonic threshold. Following Ref. [31,35],

we remove the renormalon contributions in the partonic soft function by explicit

subtractions. This can be achieved by writing

(2.14)

where 6A is a perturbative series in a,

6A = 6A1+ + +A, + + .. (2.15)

that contains exactly the same O(AQCD) renormalon as the soft function. Eq. (2.5)

for the soft function now can be expressed as

Shemi(l+-, (I) - d j +
dI+ dI-Spart(l+ _ -_ , 6A - -_ ,p)

x F(I+ _ kj 1- - A) . (2.16)

To cancel the renormalon between the partonic soft function and the series 6A order-

by-order in a, expansion we now have to expand Eq. (2.5) in the 6Aj simultaneously

with the expansion for the partonic soft function Spart = part + Sart + S 1 rt + ... , so

that

Spart (l+ - 5A I) = part(l* f) + [Sart(i*, i)

S52art(l)

d 2

+dl_2

d
dl+

1 d + d )Spart(1 ,- d1l+ +dl_ prt

+ dl_ poA2Spart(l* +) + 1 iSpart(

+ 2 J2

dldl 2 Spart(liI1),

25

duD]

1 ,P)I

(2.17)

A =-A+ 6A ,I

+ dl +2



where JzX and S~art are of order O(ac), and 6A 1 and JA2 are defined as [LP -

ln(p/R), a, = a,(p)],

4(7r) + 2rL] =

( ()2 [2t,1/0 + 7 + 2 (Aoyo + Fs)LR + 2,3o F2L )] Re7E

The partonic soft function, Spart, in momentum space is defined as 131],

Spart(ll+ )- + 6( -)

- CFTjf3
][6(

6
8L1

6

1 :2 + 6(-) 2

7F2) + 1603 CF9 h

2 2
)I2

--)

+ 32C [6(1+) L3 + 6(1) LC3

]
-28(3) + CFTrf

[6(l+) 11 + 6(-) Li]

224
\ 27

2)

+ [ 7r 4CF2 +
+ 40rC+

2 176 )
_ 9 3CACF 2 + CFTfJ (

where

x 26(l+)6(1-) + 2t2 (l+, --) ,

1n -I (,,)lnn(l1/-)
L = (l- ~

(2.18)

(2.19)

To be consistent, again we have that Ln in Eq. (2.18) is related to L of Eq. (2.12)

by

Ln - [O(l )ln(li/) 1+
p (1 /P) I.+

1 ( .) (2.20)

t2 (+, -) in Eq. (2.18) represents the non-global part of the soft function and is

calculated in Ref. [32]. We give an approximate formula for t 2 in Eq. (3.14) below.
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2.5 The Model Function

Following Ref. [391, the model function is implemented as follows:

F(l+, -) = E - f((2.21)
i,j=o i() j(

where A is a dimension 1 parameter that specifies the scale of the nonperturbative

corrections and are fixed such that they are normalized. The f, 's above are defined

as follows:

fn(x)= 8 2x3 P(n + 1) 2xP, [y(x, 3)1 , (2.22)
3

where

y(x, 3) 1 - 2(1 + 4x + 8X 2 + 2X3 e-4x, (2.23)
3

Here fn(x) are a complete set of orthonormal functions,

dxfm(x)fn(x) = ,mn, (2.24)

and Pn(y) are the normalized Legendre polynomials

1 d*
Pn (y) = 2In! dy (Y2 _ I)n. (2.25)

Eq. (2.21) is completely general with the coefficient's cij specifying the model to be

used. In practice the sum on i and j are truncated and the basis has been chosen so

that the first few terms provide an accurate description of functions whose large 1'

is governed by confinement.
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Chapter 3

Computing the Cross Section

In Chapter 2, we showed that the cross section can be factorized as,

dM2 dM2 = UO HQ (Q, 4Q) UH (Q, PQ, im) Hm

x

xf

xJ

dl+ Jdl- J

UH(m Q
U M , PA)

ds'J ds'yUB (t -- stP, PA) UB (AT - A', Pr, PA)

-t =- 0, r)

(3.1)

Combining all the terms above and carrying out the integrals represent the main task

of this thesis. In this section, we outline the computation procedure used.

3.1 Combining perturbative Jet and Soft Functions

From the formula above we see that the -o and the hard functions only affect the

normalization. The shape of the differential cross section is determined by the jet and

soft function. These functions involve non trivial plus distributions. The focus of this

section is to combine plus distributions in both B and S and turn them into analytic

29
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G, functions, defined later. Thus, we restrict ourselves to the following integral,

dpart Oc dl+ dl- ds ' dA' UB (s, - s, fr, [PA) UB (AT - A', r, [A)

ds'/ ds'B+ ( Q - '',t =0,pr B_ (s'-- -s ' =r'= 0,[r

x Spart (1+ 11- i ) FT i . (3.2)xSTg +7 F2 (.2

3.1.1 Combining Plus Distributions

We see that B contains -- , - and Spart contains 1 4,, Hence, the

product above contains convolution of plus distributions of the form:

f 1s- -Qj+ 1 Al +

dl+ 1 Ln .M t)14(U (3.3)
j r Pr )a /-A A

The plus distributions can be combined by either using convolution identities or by

going to the position space. Note that these functions are at different scales and it is

easier to combine them when they are at the same scale. Hence, we define a change

of variables ' - A', and then apply the following rescaling identity (A > 0),

d"lnfl+1 A *(rn lnfl+1
ALn(A) = dnA L'(x) + 6(x)= Zkn In k A n1() -n- 6(X)

danO n+1 k n)+
(3.4)

where in this case, we take A =nt.

The convolution is easier to execute in position space. Thus, we apply a Fourier

transform to position space, compute the convolution, and then perform an inverse

Fourier transform back to momentum space. To achieve this, we first shift s' and s'
to include s+ and s-,

t + A+ A sl, (3.5)

s + s+ - ', (3.6)
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and so our integral now has the form,

d+ I d-B+ (A/

We apply the Fourier transform A.4 as follows

B+ (A' - - +

B- (A' - / -

J d27r -
2w et b+ (yt),

dyf eKE f(yf)
27

Substituting these in the equation above, we get

dyt ~'A-+Y
-e t t b27r y 2-(y)S(+, -)

-''f+(Yt)-(t) x

dA+ d-e-i+Yt -eiftS (A+ A-) = 5 (yt, y),

so the above equation becomes

I dyti
2 e '-'w ''-g")Yi5+(wt)5-(yT) x 5(yt,yf)

or

FT [f+(y) f-(y) (yt, yi)] (Al - All, A' - A'l)

This allows us to simply multiply the series expansion of the b and S functions in the

position space without having to deal with the complicated V" coefficients described

in A.2. One can also write down a simple expression for the approximation of the

non global part t2 in Eq. (2.18) in position space:

t2(yt, yf) = sng [0] + sng [2] In
2 4

Yt + sg [4] In +...
yT (YT
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(3.8)

(3.9)

I ds-

dftJ-Ij
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(3.10)

(3.11)

(3.12)

(3.13)

-s/ _ A+) B- (A'l - s'" - A-) S(s+, A-) .

dA+ Ids-e-' t Ye -iTts (s+, A-)



where the first few terms are

sng[0] = CFTFn 40

sng[2] = -CFTFnI -

sng [4] = CFTFnI (10

777r 2  52 \
27 3 

CACF(1 +

- CACF

CACF (
1070 8712 74 143 \

81 108 15 9 J'
1 2

2 -w

(3-14)

We summarize the information above by defining E =0 such that

dlBj (s - Q, _ t = 0, Pr, PA SPart (l, PA) .
M

3.1.2 Including the Width

Now that we have combined the plus distributions in B with those in S, we consider

integration over the variable s". Note that this involves the BW, and so, the integrals

take the form

J00

We define E such that

E - s,1

ds"- 1 n
Pr

Q
iPr, PA)

Pr

= Im 0

1

(A +St 12)

using the identity [30]

In'(- - iO)

Im 7r(-x - io) I

+ : (j(-1)jn!7r2-

_=0 (2j + 1)! (n - 2j - 1)!

9(X) 1n 2j- 1 (X)~
X I +

where [[p]] on the sum is the greatest integer not exceeding p.
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, ,pr,PA),1Q (3.17)

COs2 (7) (-7r2)n/26(X)
n +1

(3.18)



Thus, the general result of integration over A" takes the form

+00
Q r t

m )I ir(s"2 + f~t)
Im A + ir -,"I .

(3.19)

Note that the integral is simple since it results in a shift of the invariant mass variable

into the positive complex plane.

3.1.3 Including the Evolution

The final integration variable we consider is A'. We must convolute the remaining

terms with the evolution UB. The relevant computations read

+o iIn' 0-ir

J d ' UB(s - s', [, pr)- r _ -G,(A,
_00 7 +ir t

Ft, [PA, [F) , (3.20)

where, from A.5,

G= -Im [ .(e-YE)wr(+ In
7r (-s - ilt)l+w Pr

(3.21)

Hence we see that the plus distributions turn into analytic functions when convoluted

with the BW and evolution factors.

The result of these processes yield an equation of the form

do-part 4 4

dM2 dM = - dopart Z S c"'G(st, Pt, [, [A)Gm(S, FI, [F, PA) .
t2 n=O m=O

(3.22)

This can be easily generalized for derivative terms that are induced by the sub-

tractions. Using integration by parts the derivatives on B can be transformed in to

overall derivatives of st and sT. For example, for a mass subtraction term:

UB+ (t - .t 16M
d
(IB+ t

Q+
M

- g') j +,
1 F~

-) ( +
(s'/')2 + ]p2

6m - UB+
dst

(st - ') B+
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Similarly, since S contains derivative terms such as 6A 1 ,2 ( d + d-) S0'1  + p), in-

tegration by parts yields terms of the form

B+ Qt _ -+B dso (g,1+ 1-) = B+ _ d + SO,1+ 1-, p) (3.24)
M dl+ m dst M,

3.2 Including the Model Function

The final integral remaining is that over the variables di . Including the combinations

done above, our integral now takes the form

do- Jci dI+d-Gj +_Qi+ Gj s_ - i- F(I+, -). (3.25)
dMt2 dM2 .c, . M Im

At this point, the code has achieved an analytic results for the Gi functions and the

final i+ and I- integration must be carried out numerically. Note that our defini-

tion of the model function from Eq. (2.21), reduces the problem to products of one

dimensional integrals, such as

fdi+G s+ _ +) fm  Jd-G (_ - Qi-) f( , (3.26)

instead of complicated 2 dimensional integrals. These one dimensional integrals are

carried our with standard GSL integrations packages available through SCETlib.
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Chapter 4

Structure of the Code

The computations in this thesis were executed in C++ as part of a developing library

called SCET-library (SCETlib). SCETlib is a C++ package for numerical calculations

in QCD and SCET. Working in such a framework allowed us to borrow features

universal to QCD and SCET, for example

" Running coupling for fixed number of flavors

)n+1* Anomalous dimensions 'y = Z o ̂ / (a)n

" MS beta function for nf fermions and general compact simple Lie group

" Constants such as CF, CA, Tf etc.

Moreover, the framework provides access to the GNU Scientific Library (GSL) [40],

that allowed us to take advantage of predefined mathematical features such as

" Complex Numbers

" Integration

" Legendre Polynomials

This thesis contributed to the 'topjets' directory of SCETlib, which consisted of

writing the files

* bHQETCoeffs: Encodes the coefficients of Eq. (2.11).
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" MassScheme: Defines an enumeration type encoding the jet, pole and MSR

scheme.

" MassSchemeCoeffs: Returns 6m1 and 6m 2 according to the mass scheme.

" SCETHardFunction: Encodes the function in Eq. (2.9).

" bHQETHardFunction: Encodes the function in Eq. (2.10).

" ShemiCoeffs: Encodes Eq. (2.18).

* FourierTransform: Provides workspace to execute A.4.

" Evolution: Implements evolution of 1 and 2 dimensional series of plus functions

with and without convolution with the BW. Also implements rescaling of plus

functions.

* PFunctions: Combines all perturbative pieces of cross section, implements rescal-

ing, evolution and renormalon corrections.

" Ifunc: Encodes the information in Eq. (A.14).

" CrossSection: Computes the cross section by combining the perturbative part

with the model function.

Furthermore, some mathematical features of our own were implemented to con-

tribute to the packages of SCETlib, specifically the Fourier Transform that was de-

scribed in Section 3 and A.4. As an example, Fig. 4-1 highlights the code structure

of the Pfunctions.
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Ifunc FourierTran Math BetaRGESolverAnalytic

AnomDimMSbar
bEToeffs

RunningCoupling

MassScheme -Pf unc n AnomDim

ISCETHardFunction
In GammaintAnalytic

BHQETHardFunction
Order GammaLogintAnalytic

ShemiCoeffs Evolution

Figure 4-1: The Pfunctions are located in the topjets directory and depend on the
other classes defined within topjets. The Pfunctions are able to access global SCETlib
features defined in core, and are also capable of handling complex variables through
GSL.
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Chapter 5

Results
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Figure 5-1: Perturbative convergence and uncertainty for the dijet invariant mass

distribution.

In Fig. 5-1, we display the perturbative uncertainty of the normalized cross section

at different orders for comparison. For simplicity we project the two dimensional

distribution do2 / dMt' dMT2 along the diagonal with Mt = ME = m. We show our

latest calculation NNLL'(=NNLL + O(ac) matrix elements) along with NLL' and
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LL results. The bands show at each order an estimate of perturbative uncertainty in

the cross section due to the higher orders ignored in the calculation. This uncertainty

is estimated by varying the various pi scales appearing in the cross section. The

physical cross section does not depend on these renormalization scales, however, a

calculation at a finite order in perturbation theory does vary with the pi scales and

hence gives us a handle on estimating the uncertainty. We observe reduction of

uncertainty as we go from LL to NLL' to NNLL' calculation. Furthermore, the fact

that the bands are contained within each other shows convergence of perturbation

theory.

The various renormalization scales that appear in the cross section are:

SALA : The soft scale ~ AQCD,

Mr : The jet function scale - Pt,

/ urn : Scale for matching bHQET to SCET at mt,

*p : Scale for matching SCET to QCD at Q.

The last two scales corresponding to the hard matching corrections, however, do not

contribute to the uncertainty when we study normalized cross sections. These scales

must take values consistent with the physics encoded by the corresponding functions.

We noticed above that the convolution between the jet function and the soft function

had the boost factor of Q/rn. This produces logarithms of the form:

In myr (5.1)

This implies that we should have a hierarchical relation between the [r and the A

scale of the form:

Ar ~ AA , (5.2)
m

in addition to the constraints listed above.
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We also find that we have logs which have the form ln(4t/pir). To minimize these

logs we need make the p scales dependent on the .t parameter. The constraints that

we listed above hold for the peak region, however, in the tail region we replace IF - st
to obtain corresponding scaling. These st (or Mj) dependent scales are referred in the

literature as profile functions. We follow the model of [411 to implement the profile

scales. The uncertainty bands in Fig. 5-1 are generated from varying the profile scales

about central values which satisfy the above constraints.

The plot shown in Fig. 5-1 contains pole mass as the input (6mj = 0) and the

renormalon corrections in the gap parameters have been also turned off (6Aj = 0).

In general there will be additional dependence from these renormalon subtraction

parameters. These parameters are

" R, : Scale for renormalon subtraction in the soft gap parameter,

* r : Scale for mass renormalon subtractions,

and the renormalization scales for evolution of these renormalon subtractions. The

expected impact of these subtraction parameters is to improve the convergence for the

peak location of Fig. 5-1 in going from LL-+NNL' - NNLL' order. While these sub-

tractions have been included in the code, at this time they have not been fully tested

and calibrated. We leave exploration of constraints on these subtraction parameters,

and associated uncertainties to future work.

41



42



Chapter 6

Conclusions

The reconstruction of the top quark invariant mass distribution is one of the major

methods for measuring the top mass m at present and future colliders. Recent results

of effective theory methods have presented an analytic factorization approach for

the top invariant mass distribution in the peak region i.e. the double differential

top/antitop invariant mass distribution d2 -/ dMt dMT in e+e- collisions for center of

mass energies Q >> m, where MtT are defined as the total invariant masses of all the

particles in the two hemispheres determined with respect to the event thrust axis.

In this thesis we use the results of EFTs to compute d2 -/ dMt dMT to NNLL

+ NNLO, which goes beyond previous NLL+NLO analysis. We use the two-loop

heavy quark jet-function, O(a') corrections to the partonic hemisphere soft function,

and hard matching for boosted tops at two loops. We execute this computation in

SCETlib, to borrow already implemented features and also to develop new features

for use by physicists in the future.

We observe convergence of perturbation theory of d2 ./ dMt dMT as we go from

LL-+NNL' -+ NNLL' order and also reduction of uncertainty, thus achieving the main

goal of this calculation. Although this has been computed for the pole mass, the code

contains the necessary ingredients implementing short distance mass schemes that are

expected to improve convergence in the peak region going from LL-+NNL' -+ NNLL'.

In the future, we intend to extend the work presented here to include the analysis of

these subtractions.
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Appendix A

Background Formulas

A.1 Plus Distributions Definitions

The plus distributions are defined as

.C(x) -[ I - + 6(x- ) Xa 'I

Ln = ()n"[O(X) Inn X

L - +

d
c-*O dx

[(X - E) X]

d a+b( W

dbn b=O

A.2 Convolution in momentum space

The convolutions of the plus distributions in momentum space can be achieved by [39],

- y) Ln(y) =

- y) Ln(y) =

m+n+1

SV Lk (x)
k=-1

n+1

a Vk(a) L'(x) -
k=-1
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(A.1)

(A.2)

(A.3)

dy J m(x

dy LJ(X -L(x)
a

(A.4)

(A.5)



where Vn" and Vk"(a) are defined as

d" dn V(a,b)
da" dbn a+b

a=b=m

Ep"=o J0"=0 6p+q,k (")( -a -d V(a, b)

1 + 1

ad V(a,b)
dbn a+b

b=01

V,"(a)= a(")kdb- V(,b)+6kn

a
n2+1

if k = -1,1

a=b=O

if 0 < k < m+n,

if k = m+n+1.

(A.6)

if k = -1,

if 0 < k < n,

if k = n+ 1.

(A.7)

V~ b) - (a)F(b)
', -(a+ b)

1a1

a b

A.3 Rescaling Identity

L a(x) satisfies the rescaling identity (for A > 0) [39],

A La(Ax) =
d

lim d
E O dx L (x

(Ax)a - 1
C) a 1=

from which we can obtain the rescaling identity

A Ln(Ax) = A
danA

La (X) +lnn+1 A
() + S(x)1

a- n+1

"= E ln k(k / A2n._() +
lnn+l Ax

n+1 1()

(A.10)

A.4 Fourier Transform

The Fourier transforms are defined as [31] (Position Space:

dimensionless like the momentum space variable x).

LY = ln(iye'E); y is
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Momentum to Position:

I
I
I
I
I

dtei6(t) = 1

dte-ty L= -L=

dte-ty Ll =

dte-ty Lt =

dte-ty L =

- L 3

7F2 2

6~ 3

L* + -L2
4 y 4 y

Position to Momentum:

dye ty
2w

I
I
I
I

dy Y -Ldy etL, = -
27r

dyetyL 2 2L1 -

dyetyL3 =-3L
27w y

dye"L3
27w

2 t)

+ -23()

= 4 L - 27r2 L + 8(3 L +

A.5 G Functions

The functions G, = Gn(s, Ft, PA, pr) are defined as

Gn= -Im [ek('uu&YE)WF( +)I
S 7r I (- - iFt)1+w

+prt
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Here w W(PuA,pr) and K = K(PA, pir), are described below [30] and

Io(x, w) = 1,

Ii(x, w) = ln(-xi0) - H(w),

12(x, w) = [ln(-x - i-) - H(W)]2 + 0)(1 + w) - (2,

13 (x, w) = [ln(-x - iO) - H(W)13 + 3 [0)(1 + w) - (2] [ln(-x - iO) - H(w)]

+ 0()(1 + w),

14 (x, w) = [ln(-x - iO) - H(w)]4 + 6 [4/)(i+ w) - (2] [ln(-x - iO) - H(W)]2

- 4 [V)(2) (1 + w) - V,(2)(1)] [ln(-x - iO) - H(w)] + 0(3)(1 + W) - V3)(1)

+ 3 [01)(1 + w) - (2] 2 , (A.14)

with H(w) the harmonic-number function, and 4 (k) (X) the kth derivative of the

digamma function or equivalently the (k + 1)th derivative of the log of the gamma

function. Also the NNLL approximations of w(p, Mo) and K(p, po) are given by

-- In(r) +
00 L FCO /00)

-32 + )

2n]r'0 (r - rlnr)

#02 ras (PO)

a4(po)(r - 1)

a2 2-(flo) r +
327r2(r -

lYO nr +
4,ir

)}

1 31(1 -r+lnr)

J02 47r

0 (r/-)

(r - 1) Inr -

1) +

F31F 2 012 (1- r)21

/30FC i30 + /32 ) 2j }
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In2 r +
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+ r ln r)
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