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Abstract

In this thesis, we aim to calculate the non-renormalized axial charge gA of a heavy
nucleon made out of quarks at the physical mass of the strange quark. We present the
framework of Lattice QCD which makes the calculation of such observables attainable
from first principles. The data used for the estimation of gA were obtained on a 243 x64
hypercubic lattice with lattice spacing a - 0.12 fm and pion mass m, = 0.450 GeV.
Three different source-sink seperations were used, tsink = [12a, 14a, 16a]. For each
timeslice seperation signal we perform a correlated x2 fit and obtain the following
values for gA: 0.551, 0.564 and 0.556. The unrenormalized value value for gA is
extracted taking the limit as tsink - oc and is shown to be 9A = 0.558. We discuss
how the accuracy of this result is compromised by the small number of tsink values,
by excited state contamination and by the increase of statistical noise with time.
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Title: Assistant Professor
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Chapter 1

Introduction

1.1 The Strong Force

The strong force was developed historically from the study of nuclei. By the 1930's,

scientists were more than familiar with protons and electrons and had a deep un-

derstanding of electromagnetic interactions. However, there was no successful model

that explained what keeps positively charged protons bound together in nuclei. This

suggested new force was named strong force as it had to be stronger than the electro-

magnetic force. It also had to have a short range since it was not observed anywhere

else besides within the nucleus [1].

There was also a disrepancy between the proton content of a nucleus and its

mass, implying the existence of another particle. In 1932, Chadwick first discovered

this particle, called neutron [2]. The neutron is slightly heavier than the proton

and electrically neutral; however it interacts through the nuclear force in a very

similar way as the proton. Moreover, a neutron can decay into a proton and vice

versa through / decay, the second being energetically possible only inside a nucleus.

These observations, as well as the analogy to isotopes in atomic physics, motivated

Heisenberg to come up with the idea of isospin. He proposed that isospin is a quantity

that is conserved in strong interactions; the proton and the neutron correspond to

opposite z-component eigenvalues of the same isospin state [31. That meant that

the underlying symmetry behind the strong force would be an SU(2) group and all
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strong interactions would have to be symmetrical under SU(2) rotations. All that

was missing for a complete theory was a mediator for the strong force, analogous to

the photon for the electromagnetic force.

In 1934 Yukawa took into consideration the strength and short range of the nuclear

force and proposed a theory for the strong force. He predicted the mass of the

mediator and, since it was lighter than the nucleon (baryon) and heavier than the

electron (lepton), he called it the meson. Such a particle had not been observed at the

time. A few years later though, experiments revealed that cosmic rays contain such

a middle-weight particle. It was initially considered a good candidate for Yukawa's

meson. However, its lifetime did not match his predictions. It also interacted with

nuclei very weakly, in complete disagreement with its assumed role in the strong force.

In 1947 it was established that cosmic rays actually contain two types of middle-weight

particles, the muon (p) and the pion (7). Most of the pions produced in the upper

atmosphere decay by the time they reach sea-level, and one of the decay products is

the muon [4]. The pion's properties made it an appropriate candidate for Yukawa's

meson.

In 1947 the relative completeness of Yukawa's theory was doubted after the dis-

covery of the kaon (KO) [5]. It was first observed to be produced from cosmic rays

incident on a lead plate and it decayed as:

K a 7r+ 7r-- (1.1)

Soon afterwards several similar particles were discovered, K+, p, 0 and others. Since

they behaved like heavier pions, they were categorized as mesons. Around the same

time, a new family of particles that behaved like heavier nucleons was discovered too.

The first one, observed in 1950, was named A [6]. Its decay channel is:

A --+ p -(1.2)

All these new particles confused the scientific community and were rightfully

named "strange" particles. One puzzling characteristic was that even though their
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production was really fast (10-2 seconds), many of them decayed much slower(10-10

seconds). That implied that they were produced via the strong interaction but often

decaying via the weak interaction. Many strong reactions that should not be pro-

hibited from either baryon number conservation or meson number conservation were

simply not happening. That seemed to be violating another rule, attributed to either

Feynman or Gell-Mann: "Everything not forbidden is compulsory"!

To offer an explanation to that, physicists gave hadrons a new quantum number,

called strangeness, and proposed that strangeness was conserved in electromagnetic

and strong interactions but not necessarily conserved in weak interactions 171. Gell-

Mann and Ne'eman proposed to combine strangeness with isospin by an SU(3) group

symmetry that categorized the mesons and the baryons into octets and decuplets [8].

In 1964 both Gell-Mann and Zweig independently introduced a model that ex-

plains why hadrons can be organized in such patterns [9,101. They suggested that

there exist three particles, now called up, down and strange, with charge 2 -and -
3, 3 3

respectively, as well as their three corresponding antiparticles with opposite charge.

Baryons are then bound states of three such particles (quarks), antibaryons of three

antiparticles (antiquarks) and mesons and antimesons of a quark and an antiquark.

All quarks are fermions with spin 1. In later years it was discovered that there are

actually six different flavors of quarks, in analogy with the six types of leptons.

There were two most obvious problems with the quark model. The first was that

no individual quarks were ever observed. The second was that the existence of the

A++ baryon with quark content uut violates Pauli's exclusion principle. To address

these problems, Greenberg introduced the idea that all quarks carry one out of three

possible colors, 'red, 'green' or 'blue' 1111. All bound states detected have to be

colorless, which explains why quarks are not detected. Baryons and mesons contain

quarks the colors of which combine to give a colorless state.

The quark model was not immediately taken seriously by the physics commu-

nity. A substructure for the proton was expected since 1933, when Stern measured

the proton magnetic moment to be different than what was predicted for a point-

like particle [12]. In later years, deep inelastic scattering experiments (high-energy
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electron-nucleon scattering) at SLAC showed that nucleons did have a substructure,

and their constituents were called partons [13]. The Gargamelle bubble chamber re-

sults showed that the charge of the constituents were the same as those predicted by

the quark model [14]. There was no clear explanation about why quarks are confined

in hadrons or why they do not radiate when highly accelerated. Intuition from elec-

tromagnetism and gravity suggest that interactions are stronger at short distances.

The coupling constant of the strong force seemed to be smaller at short distances, a

phenomenon now called 'asymptotic freedom'.

In 1973, Gross, Wilczek and Politzer showed that certain types of gauge theories

demonstrate asymptotic freedom. Their proposed theory of the strong force is called

Quantum Chromodynamics (QCD) and it demonstrates asymptotic freedom as long

as 11N, > 2Nf, where N, is the number of colors and Nf is the number of flavors

[15,16]. This is consistent with the experimental evidence of 3 colors and six flavors

in strong interactions. QCD demonstrates SU(3) group symmetry in color space.

Note that this differs from the earlier proposed SU(3) group in flavor space. The

mediators of the strong force in QCD are bosonic particles called gluons. In constrast

to the uncharged photons, gluons carry two color indeces which make self-interactions

possible. In this theory, quarks interact with each other via gluon fields. In order

to increase the seperation between them, one needs to do work which is stored as

potential energy. As the distance increases, the energy needed increases too, making

it more energetically favorable to create quark-antiquark pairs out of vacuum and

make more bound hadronic states instead of seperating the quarks.

Multiple experiments have supported QCD as a candidate theory for strong in-

teractions, like the discoveries of the charm [18], bottom [191 and top [20] quarks

and the discovery of quark jets [21]. Another example is the agreement of the mea-

surements of the coupling constant a, from the LEP and the DIS experiments [22].

The two kinds of experiments involve different processes but they take place in the

same energy scale. Figure 1-1 presents experimental data verifying the running of the

coupling constant oz in different energy regimes.

12



0.5 July2009

Sa ADeep Inelastic Scatering

0.4 . 9s etAnnihilation
on Heavy Quarkonia

0.3

0.1

- QCD ot(Mz) --0.1184 0.0007

10 QGeV 100

Figure 1-1: Measurements of a, as a function of the energy scale Q. The curve is the
QCD prediction of the running of a, [17].

1.2 Lattice QCD

Part of the complexity of QCD calculations lays in the fact that the running of the

coupling constant requires different approaches to be adopted for different energy

regimes. Bound hadronic states are associated with lower energies, where the nature

of the strong interaction is non-perturbative, something that follows from asymptotic

freedom. QCD calculations in that regime are not dealing with elementary point-

like particles, but with composite hadrons. Their constituents interact via gluonic

fields, which carry two color indeces and are therefore matrices in color space, making

computations of hadronic observables particularly challenging.

In 1974, Wilson introduced a method that would allow such calculations to be

made, called Lattice QCD [23]. Lattice QCD is a discrete gauge theory, with its

lagrangian defined on a 4-dimensional hypercubic lattice. The fermionic quark fields

of QCD are placed on the sites of the lattice and the gluon fields are matrices as-
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signed as the links connecting neighbouring lattice sites. The discretization allows

to make calculations of hadronic quantities from first principles and extrapolate to

the physical quantities by taking the limit where the volume of the lattice is infinite

and the lattice spacing is zero. These quantities are expressed using a lattice path

integral formulation, as it will be explained in Chapter 2. For the size of a lattice

used in actual calculations, the integrals over gluonic fields are too many to perform

deterministically. For that reason, they are build through Markov chain processes and

importance sampling is used to correctly weigh the probability of each configuration.

These calculations are intensive and require petaflops of supercomputing power 1241.

The kinds of observables that most of lattice calculations focus on are related with

current experimental projects, like the scattering of electrons with hadrons through

the the electromagnetic force and the weak interactions of hadrons. When hadrons

interact with the respective currents, the vector and the axial vector, their behavior

deviates from that of point-like particles. Studying the dependencies of the scattering

amplitude on quantities like the energy, polarization and momentum experimentally

makes it possible to relate the two through quantities called the form factors. The

form factors contain information on the structure of hadrons and one can use them

to extract unknown quantities like the charge distribution, the charge radius, the

magnetic spin and tha axial charge radius. The same dependencies can be derived

from first principle Lattice QCD calculations and, with the help of the path integral

formulation, one can access the same unknown quantities through lattice simulations

[251.

The conservation of the vector current and the axial vector current correspond to

two important symmetries of QCD: the isospin symmetry and the chiral symmetry.

The isospin symmetry requires that the up quark and the down quark have the same

mass, a valid assumption in hadronic physics. Chirality requires that the mass of

quarks is zero. The mass of hadrons is much larger that that of the two lightest

quarks, which makes chirality an approximate symmetry in hadronic physics. Chiral

symmetry is spontaneously broken in strong interactions, which means that while

the Hamiltonian pocesses the symmetry, the ground state does not. The Goldstone

14



bosons of chirality are the pions, which acquire mass with the spontaneous breaking.

In the low energy regime, pions dominate hadronic interactions and it is possible to

express observables in terms of pion properties [261. One example is the axial vector

charge gA, which in the chiral limit can be written as:

9A = 
(1.3)

mN

where f, is the decay constant of the pion, gYrNN the pion-nucleon coupling constant

and mN the mass of the nucleon. Eq. 1.3 is also known as the Goldberger-Treiman

relation [27].

Lattice methods have evolved a lot in the past decades through the improvement

of algorithms and the increase of computational power. They have been successful

in calculating benchmark observables of the nucleon and the pion, like their masses

and axial charges [281. These calculations, done from first principles, can be directly

compared with experimental results to test for consistency and provide evidence for

the validity of QCD in low energy scales, just like DIS experiments did for high energy

scales. They can also be used to predict quantities not yet observed experimentally

and thus contribute to the planning of future experiments, but also reveal informa-

tion on the nature of hadrons that are unstable and particularly hard to observe in

experiments. Lattice groups around the word are collaborating to solve problems like

the experimental inconsistency between seperate measurements of the proton radius,

known as the proton radius puzzle. Another problem that might be solvable through

lattice techniques is calculating how much of the ! spin of the nucleon is carried by2

quarks and how much by gluons.

There are a number of subtleties and limitations in the setting up of lattice cal-

culations. The finite lattice size provides with an ultraviolet cut-off since it dictates

which energies are available, but it also creates unphysical terms with a dependency

on the size of the lattice. This can be dealt with by making calculations for different

lattice sizes and extrapolating to zero. Most hadron ground state structure measure-

ments require a very large time, however signal to noise ratio increases with time.
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Moreover at lower times there is more contamination by excited states. Therefore

one needs to carefully tune the time parameters in order to get reasonable results.

Last, the finite volume of the lattice makes it hard to make calculations at masses

as low as the physical ones (m, = 0.135GeV). The spatial size of the lattice box

must be much larger than the Compton wavelength of the pion, m-1, to account for

the effects of the pion cloud in the hadron structure [291. However there have been

significant improvements and many projects today use physical mass configurations

in their simulations.

1.3 Goals of Thesis

In this project we will focus on a heavy version of the nucleon, with its constituent

quarks having the physical mass of strange quarks instead of the light u and d quarks.

We will attempt to estimate its axial charge, gA. The axial charge is of crucial

importance as it dictates how hadrons couple with the axial vector current. It is also

a measure of the spontaneous chiral symmetry breaking in the low energy regime.

A good understanding of the axial charge is essential for the future of experiments

taking place at SLAC and at the LHC. The current experimental result for the axial

charge is gA = 1.26(95).

Through a large sample of gauge field configurations on a 243 x 64 sized lattice and

the consideration of three time seperations we aim to give a statistical approximation

of the non-renormalized heavy nucleon axial charge. We also aim to carefully consider

the effects that excited state contamination and finite volume effects have on the

accuracy of the result.
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Chapter 2

Background

In the beginning of this chapter, we will outline the theoretical formulation and

algebraic tools of Lattice Quantum Chromodynamics. This is only a brief review and

serves the purpose of demonstrating how Lattice calculations are built. For a more

complete review of each section, we refer the reader to the corresponding chapters

of Gattringer & Lang's Quantum Chromodynamics on the Lattice: An Introductory

Presentation.

2.1 Lagrangian Formulation of Lattice QCD

2.1.1 On Lagrangians and Gauge invariance

In classical mechanics, an alternative to applying Newton's laws is the Lagrangian

formulation. One can define the Lagrangian as:

1
L(x, v) = -mv 2 - U(x) (2.1)

2

where m is the mass of the object, v is its velocity and U(x) is the potential. The

action is defined as:

s= dt L(x,v) (2.2)
Tt t

The equations of motion are recovered by taking 6S = 0. The Lagrangian ap-
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proach is very powerful and it can easily be generalized to classical field theory and

quantum field theory. In this section, we will explore Lattice QCD by constructing a

lagrangian for the strong force and then defining it on a discrete spacetime lattice.

Another important concept that we will use in this derivation is that of gauge

invariance. The word gauge refers to a lagrangian having redundant degrees of free-

dom. We can then define a gauge transformation that leaves the lagrangian invariant.

Gauge invariance is a key part of all quantum field theories of the forces of nature,

like the electromagnetic force and the strong force.

Gauge transformations form Lie groups. The field theory behind the electromag-

netic force, quantum electrodynamics, manifests U(1) symmetry. That means that

the Lagrangian is invariant under local transformations of the form:

V$(x) -+ io(x) (2.3)

where the word local refers to the fact that the introduced phase is spacetime depen-

dent.

In QCD, the equivalent Lie group corresponds to an SU(3) symmetry. That means

that the fermion fields, which are now vectors with three components, are invariant

under transformations of the form:

Vb(X) -4 e-iO(xa) AG2 O(x) (2.4)

where now A, is a set of 3 x 3 matrices.

Before starting the formulation, we note that we will be working on Euclidean

space. Rotating from Minkowski to Euclidean space takes the time t to -it. This

makes the relative sign between the time component and the space components of

the spacetime metric to disappear. Therefore there is no difference between covariant

and contravariant vectors in Euclidean space. This seems like an arbitrary decision

right now but its benefits for the formulation of Lattice QCD will manifest later.

18



2.1.2 Lagrangian formulation of Quantum Chromodynamics

Just like in classical field theories, we can describe QCD by defining a Langrangian

and integrating it with respect to time to find the corresponding action of the strong

force. The relevant fields are the quark field, the antiquark field and the gluon field:

of, jf (x), A(xc (2.5)

Therefore we can break the action into two separate terms, one for the gluon-quark

interactions and one for the gluon-gluon interactions.

To motivate the form of the fermionic action, we can think analogously to the case

of a charged particle in an EM field. We can derive the Hamiltonian of a charged

particle in an EM field by taking the Hamiltonian of a free particle and making the

substitution p -+ p - eA:

Hree = + eq5

HEM + ed (2.6)

where p is the momentum, m is the mass, e is the charge, # is the particle scalar field

and A is the vector EM potential.

Since now we have relativistic fermions, we need to start from the Dirac action in

Eucliduan space and make the equivalent transformation 0, -+ 0j, + igA,1 (x), where

g is the strong force coupling constant, equivalent to e for EM. We also need to sum

over all quark flavors.

SDira-[0~b ] J d 4 X'O(x) (y. 0/, +P mn)(x)

Sf [0, V), A] = >'fd xyf(x)(- ,(O, +ig A,(x)) +Tm/)ol(x) (2.7)
f=1

where -y,, are the Dirac matrices and g is the the coupling constant. Note that we

have suppressed the color and Dirac indices .

19



Just like for EM fields, we require the fermion action to be invariant under a gauge

transformation of the form O(x) -+ Q(x)4,(x). This means that D,(x) - ,+igA,(x)

transforms as D,(x) - Q(x)D,(x)Q(x)f.

To construct the gluonic action, again motivated by EM theory, we define

G, (x) -- - i[D,(x), D,(x) ]

G,,(x) - ,A,(x) + i[A,(x), A,(x)] (2.8)

Under gauge transformations, this becomes G,,,(x) -- Q(x)G,,,(x)Qt(x). Note

that there is an extra term compared to the electromagnetic field tensor, since A(x)

are now matrices in the color space. We can now construct the gluonic action:

Sg[A] =Jd x tr[Gv(x)Gw()] (2.9)

The trace over color is taken to make the action gauge invariant.

Taking the sum of Eq. 2.7 and Eq. 2.9, we have now the classical action that

describes the strong force. For convenience, we can rescale A __ A and write:
g

Nf

S[O4, V, A] = d f x() (-,(, + iA,(x)) + m/)#f(x)
f=1 (2.10)

+1 d4X tre[G,,(x)Gjv(x)]2g2

Let's move now to define the theory described by this action on a discrete space-

time lattice.

2.1.3 Lattice QCD naive action

Switching to field theory, we are not dealing with operators anymore but with fields

that represent infinitely many degrees of freedom since they are defined everywhere

in the space time. We can define a 4D lattice of fixed volume with lattice spacing a,

20



so that the spacetime vector can only take discrete values:

(2.11)

For this to make physical sense, it must be that at the limit as the volume goes

to infinity and a goes to zero we recover the continuum field theory.

The analogy between our previous strong force action (Eq. 2.10) and its lattice

discretized version is not necessarily straightforward. The logic behind building both

of them is the same though. We start with the fermionic action without an external

field, so the Dirac action in Euclidean space including the flavors of the quarks is:

Nf

s[ee [ ] = J d4 r/>(x)( ( + m()) f (x)
f=1

(2.12)

On a lattice, the derivative will no longer be continuous. There is no unique way to

distretize a derivative. Both of the following are valid options:

aPOW - (n + A) - b(n)
a

a(n + A) - 0(n - )
2a

(2.13)

(2.14)

In the limit as a

corrections, while Eq.

definition of Eq. 2.14.

- 0, Eq. 2.13 gives the continuum derivative up to 0(a)

2.14 up to 0(a2) corrections. For that reason, we choose the

Our free fermionic action then becomes:

Nf

Siff[ - a3 E bf(n)
nEA f=1

(n + A) 0(n - A) + Mf (x))
1/,=2a

(2.15)

where a3 has been added in front to keep the action unitless.

The next step is to impose gauge invariance to the discretized action. Under our

usual transformation O(x) -+ Q(x)k(x) and O(x) -+ O(x)Qt(x), the first product of

21

XA = an., p = 0, 1, 2, 3



spinors transforms as:

(n)O(n + A) -+ 4 (n)Qt(n)Q(n + ^)O(n +4) (2.16)

To make this invariant, we introduce a gauge field U,,(n) between the two spinors

that transforms as:

U,(n) - Q(n)U,(n)Q(n + A) (2.17)

Similarly, we can squeeze a Ut(n - A) between the two spinors in the second

product (/(n)O(n - 4)). This field will have the transformation property:

U (n -) U_,(n) -÷ Q (n)U_,(n)Qt (n -4) (2.18)

Because of the directional nature of the U,, fields, they are called link variables. We

can use them to write our discretized, gauge invariant fermionic action as:

Sf[?,/,,U] = a3 (n)/( U,(n)(n +) 2U-,(n)(n - A)
nEA f =1 )(Z'j2a

(2.19)

In order to be able to recover Eq. 2.7 from Eq. 2.19, as well as to make physical sense

of the link variables, we need to establish a relationship between U,1 (n) and A,1(x).

The continuum equivalent of the link variable, Uc(x, x') , must transform in the same

way under gauge transformations:

Uc(x,x ') -+ Q(x)Uc(x, X)Q(X') (2.20)

A quantity that satisfies this property is the so called gauge transporter:

G(x, y) = ei f Cxx, Ads (2.21)

where in the exponential we have a path integral from x to x'.
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Motivated by that, we define on the lattice:

U,(n) = eiaA,(n) (2.22)

Taylor expanding Eq. 2.22, we can easily show that Eq. 2.19 recovers Eq. 2.7 up

to second order in a.

In order to find the form of the gluonic part of the action, let us now write down

the smallest possible loop on the lattice starting from point n and using link variables:

U,,(n) = U,(n)U,,(n + A)U,(n + A + )U-,(n + i')

U,,(n) = U(n)U,(n + A)U,((n + A)t U.(n)t

(2.23)

(2.24)

Using the transformation properties of U,(n) (Eq. 2.17) it is clear that the trace

of U,,,(n) is gauge ivariant. Let's sum over all possible such loops and define the

gluonic action as:

Sg[U) = Re tr(1 - U,,(n))
g nEA A<v

(2.25)

This gives the desired continuum limit of Eq. after Taylor expanding A,(n + 4)
up to O(a2 ) and expanding U,, using the Baker-Campbell-Hausdorff formula:

eAB e A+B+![A,B|+. (2.26)

This concludes the formulation of the strong force action on the lattice. Its form

is:

+44
41 U,(n) (n +

tt=O

- U_,(n)(n - 4)
2a

+ Re tr(1 - U,,(n))
nEA I<v

(2.27)

This is called the naive lattice action because it does not take account for the
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fermion doubling and Fermi statistics. We will resolve that in the section 2.1.5 by

introducing the Wilson term, but first we will review the crucial concept of the path

integral.

2.1.4 Path integral and observables

In quantum mechanics there are a number of ways to calculate expectation values

of observables. For example, if we want to calculate the expectation value of some

operator 0 acting on the ground state of a system, we write:

(010 10) = J *(x)O~o(x)dx (2.28)

where 0 0(x) is the wavefunction of the ground state. This is the Schrodinger approach,

but it does not work well in quantum field theory since we are dealing with an infinite

number of degrees of freedom.

Another approach is the path integral formulation:

(0| 0 0) = Dx O(O)es[x] (2.29)

where Dx H 0, dx(t) integrates over all possible paths x(t), S[x] is the action that

corresponds to the Hamiltonian and Z = f DxeS[x].

The direct equivalent of the path integral formulation in QCD is:

(A O[0, , A] Q) = - D@ De DA O[$, ', Aleis[eaA] (2.30)

where IQ) is the QCD vacuum state, Z = f Do Do DAeis, 0 is an observable

combination of fields and operators, Do = J7,J d4'(x), DA = FJX H>0 dAv(x) and

S is the QCD action defined in Eq. 2.10.

Before discussing the lattice equivalent, we notice that moving from Minkowski

to Euclidean space (t -> -it) switches all the exponentials eis a e-S.

Moving to a lattice of discretized spacetime x,- = an,, p = 0, 1, 2, 3 results in the
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following changes:

DODODA -+ d4(an,)dO'(an,)dU(an,) (2.31)
n,,i

S[, 4, A] -+ S[4, 4, U] (2.32)

where S[O, 0, U] is given by Eq. 2.27.

To understand the kind of observables that can be extracted from this formulation

let's pick O[0, 0, U] = x(t)xt(0), where xt is the creation operator of a hadron and X

is its annihilation operator. The hadron creation operator is a combination of quark

fields and Dirac matrices that creates a state with the quantum numbers of a hadron.

More details about this will be given in section 2.2.3. We write:

(SI X(t)Xt(0) IQ) = E (Q X(t) In) (nj Xt( 0 ) IQ)
n

= Q (De'tX( -Ht In n t()I)2.3

I (nI Xt IQ) |2 e-(En-EQ)t

where in the first line we have inserted a complete set of eigenstates of the hamiltonian

and in the second line we have used the time evolution of the operator x in the

Heisenberg picture. In the final result, (nx t IQ) is non zero when only In) is a state

with the quantum numbers of the ground or excited states of the handron, Ih), jh')

etc. Using that and setting the vacuum energy EQ = 0 we get:

(Qf X(t)xt(0) IQ) = I (hI x' IQ) 12 e-Eot (hI t Q 2  l +-Ed + (2.34)

As t - oc, only the energy of the ground state becomes relevant:

lim (A x(t)x(O) IQ) = (h X Q) 2 Eot (2.35)

As shown before, we can write the left hand side of Eq. 2.35 as a path integral on
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the lattice. We can therefore extract the ground state energy of the hadron looking

at the exponential decay of the correlatorl as t -+ oc. Note that in Euclidean space t

is not the physical time, just a useful mathematical tool that enables our formulation.

2.1.5 Fermi statistics and the Wilson term

The fermion term of the lattice action involves fermionic fields and thus one needs to

make sure that the formulation obeys the Pauli exclusion principle: no two fermions

can occupy the same quantum state. This requires that the total wavefuntion is an-

tisymmetric under the interchanges of quantum numbers of the fields. The fermionic

and antifermionic fields can then be described as Grassman variables, rh, ii, that

satisfy anticommuting properties:

qi = -r / T, T i p= -I /i = -= jr7 (2.36)

An implication of Grassmanian algebra is the following identity, also known as

Wick's theorem:

k=1 (2.37)
(-1)" sign(P)DJ D- 1 D-.

P(1,..m)

where P(il, ..., iN) stands for all permutations of i1 , ... , iN, sign(P) for the correspond-

ing sign and Z for the equivalent of a Gaussian integral in Grassmanian algebra, which

can be shown to equal:

Z = J ydln...dIIdq1 eZ2=1 s = det(S) (2.38)

Now let's look back to the lattice path integral, except only considering the
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fermionic part of the integral:

(0), = ZO d(an/,) do(an,,) 0[0, ] yk, U~es[a1 (2.39)
ni-

where Sf[4', b, U] is the fermionic term of the action:

Nf 4 U, (n) V)(n + A) -U (n) V)(n -A
Sf [, 0, U] = a 3 Z ZY(n) : 42a mf 2a )

nEA f=1 =0

(2.40)

We can write Eq. 2.40 as a product of the form:

Nf

4 V- (n)D(n, mn)of(m) (2.41)
nEA f=1

with:

D(n, m) = -Un)6n Lm 2U_,(n)6n-,m + m/n,m (2.42)

p=0

where we've omitted the Kronecker deltas with color and Dirac indeces for simplicity.

Now the form of the fermionic path integral bares great resemblance to the first

line of Eq. 2.37, as long as the operator 0 is a product of fermion fields. The inverse

of Eq. 2.42 is then the same as D- 1 in the second line of Eq. 2.37 up to powers of a.

With the aid of Wick's theorem, we have written the path integral in terms of the so

called Dirac operator D(n, m).

We now want to investigate how this new quantity behaves in momentum space

with a trivial gauge field U,, = 1. Doing a standard discrete Fourier transformation

and inverting the matrix we find:

1) m - a J 7,sin(pa) (2.43)
m 2 + a - sim2 (pla)

In the continuum limit this will give a pole for just one value of p. However on the

lattice, the periodicity of the denominator creates multiple unphysical poles, called

doublers. This becomes more apparent if one takes the fermion mass to be zero. In
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order to remove these poles, we need an extra term, called the Wilson term, in the

Dirac operator and, therefore, in the ferrnionic action.

Dwiison(p) = (1 - cos(p,1a)) (2.44)
a

Fourier transforming the full Dirac operator, we now get (defining -y., = -Y):

4 1
D(n, m) = (m + )6n,m 2 (1 - ,i)U,i(n)6n 4,m (2.45)

a 2a

where again we have omitted obvious any obvious Kronecker deltas in Dirac and color

space.

2.2 Hadron Structure with Lattice Methods

The composite nature of mesons and hadrons creates a lot of questions about their

energy spectrum as well as their internal structure. Many possible events can happen

inside a hadron; the composite quarks interact with each other via gluons, pairs of

quarks and antiquarks are created and annihilated, momentum and charge are dis-

tributed in complex ways. In this section we will explore how to shed light into the

hadron structure by taking advantage of their interactions through the electromag-

netic and the weak force. We will then discuss how one can express and calculate

observables on the lattice. For more details we refer the reader to Chapter 3 of Lattice

QCD for Nuclear Physics and to Chapter 11 of Gattringer & Lang.

2.2.1 Elastic ep --+ ep scattering and the electromagnetic Form

Factors

A useful way to study any sorts of particles, from both an experimental and an

analytical point of view, is to bombard them with electrons. The way point-like

charged particles, like leptons and quarks, interact with the electromagnetic field is

well understood from Quantum Electrodynamics. For example, one can implement
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the famous Feynman rules to calculate the cross section for the scattering of leptons.

For the elastic scattering of electrons off positively charged heavier nuclei, assuming

point-like nuclei, one ends up with the Mott cross section:

da - (Za)2 E2  k2
S 

Mott 4k2si4((/2)/) (2.46)
where Z is the atomic number, Ce = |2 is the fine structure constant, E is the incident47r

energy, k in the incident momentum and 0 is the scattering angle.

If the heavier particle is not a point charge but is described as a spinless charge

cloud with normalized charge density p(x), it can be shown that the cross scattering

becomes:
d- = (d F(q)1 2  

(2.47)
dQ dQ JMott

where F(q) is called the form factor and is the Fourier transform of the charge dis-

tribution:

F(q) J p(x)eq Xd 3x (2.48)

For a realistic model of elastic ep scattering we take protons to have magnetic

spin and take nucleon recoil into consideration. We start with the formula for e y

scattering in a frame where the muons are initially static.

__ (__ 2___ E ' q2-- = -Ce lCos 2(0/2) - q2s in 2(0/2) (2.49)
dQ 4E2sin4(0/2)) 2) 2M2

where E' is the energy of the outcoming electron and M is the energy of the muon.

To apply this formula to the case of protons, in addition to substituting with the

mass of the proton, we need to look back to the matrix transition amplitude that

was used for the calculation of the cross section. For the muon case, the lowest order

amplitude is:

T = -i i,( )jI'd4X (2.50)

where q is the difference in momentum between the outcoming and the incoming
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muon and t he transition current is given by

jO = --ei(k')-y"u(k)ei(k'-k)x (2.51)

where u(k) stands for the Dirac spinor and -y the Dirac matrices. For the proton

case, the second j" of Eq. 2.50 must be replaced by a combination of currents that

take into consideration the extended structure of the hadron. It turns out that the

only two possibilities between the antispinor and spinor of Eq. 2.51 that are Lorentz

invariant and independent are -y" and iu-'vq,, where ac" = y[7A, -y"]. Therefore we

have to multiply with something of the form [F(q2)-y + _F 2 (q 2 )io-"q,]. This gives:

dQ ) [(F 4  2 F2 )cos2(/ 2 ) 2 2 (F1 + F2 )2 sr2(6/2) (2.52)

F1 and F2 are called the Dirac and Pauli form factors. It is more common to

define the Sachs electric and magnetic form factors:

GE (Q 2) = F1(Q 2) - TF2(Q 2 )
E 2 (Q 2)(2.53)

GM(Q 2 ) = F1 (Q 2) + F2 (Q 2)

where T = Q2/4M 2 and Q here is the momentum transfer. We wewrite:

do- d,7)Mt G2 (Q2) + T G2(Q2)-- =[- + 2G(Q2)tan 2(0/2) (2.54)
dQ dQ 1+7 I

The relationship between the Sachs electric form factors and the charge distribu-

tions is not as straightforward as in the case of the spherical charge cloud (Eq. 2.48).

The recoil of the proton makes it hard to relate the two quantities. In a low energy

limit though and a frame where no energy is transfered to the proton and it simply

recoils back with opposite spatial momentum (the Breit or brick wall frame), we can

recover the usual Fourier transform interpretation. The electric form factor can be
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written then as:

GE (Q 2) 3 xe iq xp(x) 1 12 2) ... (2.55)

which lets us define the charge radius as:

(r2 ) = -6 dGE(Q 2  (2.56)dQ 2  Q2 =O

To sum up, we have taken advantage of elastic ep scattering to express the cross

section in terms of the form factors, which in a favorable energy regime are directly re-

lated to the charge density and the magnetic moment density of protons and indirectly

to the rms radius. As mentioned in the Introduction, there are still inconsistencies in

the value of the rms proton radius from different experiments.

Form factors are easy to extract experimentally, as are cross sections. As we will in

in section 2.2.4, we can also use lattice techniques to calculate them and consequently

provide new information to the proton radius puzzle.

2.2.2 Nucleon decay and the axial Form Factors

Another phenomenon that can be used to shed light to the structure of hadrons is their

decay through the weak interaction. The most common and well studied example is

the /3 decay:

p n e+ Ve (2.57)

n- p e- 1e (2.58)

The proton decay can only occur inside a nucleus since it is otherwise energetically

infavorable. The neutron weak decay on the other hand is possible either way and is

responsible for the 920 second mean life of neutrons.

Fermi, inspired by the neutron-electron scattering mechanism, proposed that the
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invariant amplitude of the beta decay takes the form:

M = G(n'Y"up)(iivyUe) (2.59)

where G is known as the Fermi constant. This was a very specific choice and there

was no clear reason why the current should only include vector components. Years of

experimentation demonstrated without doubt that, in contrast to EM interactions,

weak interactions do not conserve parity and there is a directional preference [30]. The

neutrino and antineutrino in Eq. 2.57 and Eq. 2.58 are emitted with the sign of their

spin projection onto their momentum vector negative and positive respectively. The

neutrino is then preferably left-handed and the antineutrino preferably right-handed.

In order to take violation of parity into consideration, it is enough to modify

Fermi's proposed current by adding an extra factor of j(1 - 5), where _y 5 = _1I2Y3Y4

in Euclidean space. Simple as it seems, this factor selects the left handed neutrino (or

right handed antineutrino) in the 3 decay interaction. The full current is now called

the vector-axial current V - A since it contains a vector term and an axial vector

term.

So far we have assumed that protons and neutrons are point particles. Taking

their substructure into consideration requires that the coupling constant has some q2

dependence and also might differ between the two terms of the V - A current. It also

introduces additional terms, in fact all possible vector and axial vector terms that

leave the amplitude M Lorentz invariant. For low momentum transfers though, all

terms proportional to q can be safely ignored, and thus the matrix element takes the

form:

(p(p', s')I V, - A, In(p, s)) = iip,(p', s')[-yfi(q 2 ) - -y y5g1(q2 )]un(p, s) (2.60)

The quantity gA = Y1(0) is called the axial charge and is of great importance since

it can be experimentally measured but also calculated through lattice techniques, as

we will see below.

The conserved vector current hypothesis assumes that under isospin symmetry,
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the vector part of the V - A current is the same as the EM vector current. If we

focus on the axial vector part of the V - A current away from the zero momentum

tranfer regime, the corresponing matrix element will contain an axial, a pseudoscalar

and a tensor term all accompanied by their respective form factors, GA(q 2), Gp(q 2)

and GT(Q 2 ). The one we will be most interested in is the axial form factor, GA(q 2),

because of its relation to the axial charge:

YA= GA(0) (2.61)

So far we have talked about the # decay in terms of the weak current interacting

with the nucleons. Taking into consideration the substructure of nucleons though, the

current is coupling directly to the quarks. The decay of a neutron (udd) into a proton

(uud) is actually the decay of a d quark into a u quark via the weak interaction. The

coupling axial current is then of the form 5 yWyd, where u now refers to the up quark

and not to the Dirac spinor. Under the isospin symmetry:

(p sy~yd n) = (p iyyou - dy"yd p) (2.62)

This is a very useful fact for lattice calculations because it means that all discon-

nected contributions for the nucleon cancel. A more detailed explanation of this will

be given in Section 2.2.4.

2.2.3 Hadron correlators at the quark level

Two-point correlation functions

Section 2.1.4 showed how we can express path integrals on the lattice and use them to

extract physical quantities, like the ground state energy of a hadron, or equivalently

its mass if it is static. We introduced a structure that creates a hadron at time zero

and annihilate it at time t. Every type of structure that measures the overlap of an

initial state and a final state is called a correlator. This one is the simplest type and
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it's called a 2-point function and it is more commonly used in Fourier space:

C2(t, p) e -' 'T3 (QjI T x(x, t),i(0)} Q) (2.63)
X

where X, and k, are the annihilation and creation operator of a hadron, Te projects

the state in Dirac space and T{.. .} is the time ordering operator. Note that the full

corresponding path integral should include a Ifactor, an integration over the gauge

field U, an exponential factor e-s as well as determinants of the Dirac operator that

arise from the fermionic integral as discussed in Section 2.1.5. The integral over U and

the Z factor on a lattice are included by calculating the observable quantity with many

different gauge configurations and by using Monte-Carlo sampling. The inclusion of

determinants is extremely costly on a decently sized lattice and so sometimes it can

be chosen to set them equal to unity. This method is called the quenched (or valence)

approximation. It basically ignores the contributions of the vacuum quark loops and

only focuses on the valence quarks, which are the quarks that build up the quantum

numbers of the hadron (2 for mesons and 3 for baryons).

There are many choices for the creation operator of each hadron, also called in-

terpolator. The interpolator has to combine the quark spins in a correct way in order

to give the overall spin of the hadron. It must also combine the quark colors into a

color singlet hadron. Finally, it must transform in the same way as the hadron trans-

forms, representing a scalar, pseudoscalar, vector, axial vector or tensor. Taking all

these into consideration, one possible choice for the interpolators of the most common

hadrons, the pion and the proton, are:

x (x) = d"(x)'yup(x) (2.64)

XC (x) = c (x)(C-),d'(x)) u(x) (2.65)

where u, d and s are the spinors for the up, down and strange quark, eabc is the

antisymmetric Levi-Civita tensor and C is the charge conjugation matrix.
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We can then write the two-point function for the pion as:

C2(t, p) = i epxTa (Q| T{d()y at(x)j (O)43,da'(0)} Q ) (2.66)

From Wick's theorem (see Eq. 2.37), the contraction of a quark and antiquark of

the same flavor can be written in terms of the inverse Dirac operator, which we will

now call a propagator.

(Oa((y)iV(x)) = (D ab(y, x)) --- a_ a (y, X) (2.67)

where 0 is the quark spinor. The propagator is a matrix in spacetime, Dirac space

and color space and each of its entries connects a source (x, b, /) with a sink (y, a, a).

It is not feasible to compute the whole matrix for a particular gauge configuration

because it would be extremely costly. Instead it is common to calculate a point-to-all

propagator that is generated from a fixed point source (X 0 , bo, 0o):

Sa" (y, xO) =( (D ab (y, X)) -1 (X - XO)6o6, op (2.68)
x,b,O

which requires the inversion of the Dirac operator.

To optimize the overlap in correlators, it is useful to use an extended (e.g Gaussian)

source instead of a point source. This is acheived by a process called smearing.

Similarly the propagators can be made to be smeared at their sources or their sinks.

For a more detailed explanation of smearing please refer to Section 6.2 of Gattringer

& Lang.

With the use of propagators we can now write Eq. 2.66 as:

C2(-i, 5) = edg,,,'a,c,(0, X 7,3S,",, (X,0) 5,,

X (2.69)

=e l e trace (Sitici relain,(, 0)

where in the second line we have used the hermiticity relation 75 S(0, X)7= St (X, 0).
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The trace of Eq. 2.69 is taken over both the Dirac space and the color space. Under

isospin symmetry, the final result contains only one point-to-all propagator of light

mass, S(x, 0), and can be readily calculated on the lattice.

Using the same steps we get for the proton:

C2 (t, p) = i eipxEabcEab'c' trace[(C5).Saa, (x, 0) (Cy 5),, S",trace,{S ',T }

(2.70)

where the s index refers to a trace or transpose in the Dirac space only and Tyr, is a

spin projection matrix that we can pick (e.g for polarized versus unpolarized protons).

3-point correlation functions

We will now use this approach to express the correlation function for a hadron that

is created at time 0, has one of its valence quarks interact with an external current at

time t, and gets annihilated at time t2 . This quantity is called a 3-point correlation

function. Its general form in momentum space is:

C3(t2 , t1 ; p, p') = e e' (2x1)-i xlTa (QI T{xa(x2)04(x 1)F3 .(x1)jj(0)} I)
X2,X1

(2.71)

where V is the quark spinor and F the interacting current, which is usually a combi-

nation of 7 matrices (i.e 7'y75 for the axial vector current). Using the interpolator for

the pion (Eq. 2.64) for a u-current:

C 3(t2 , ti; p, p') = e-iP'(X2-X)e-iPX1 x

X2,X1 (2.72)

Therar nowtwdif U(x2)st(x)F cspJ)nh' l Wdi ,(o)l I)

There are now two different terms that correspond to the possible Wick contrac-
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tions of the quark fields.

C3 (t2, ti; 7, P') -- E e-iP'(X2-Xi~e-iPX1 X

X2 ,X1

[ 5a a(, (2.73)

+_Sd'",(O, 2)7 S3.',(X2,X1)l7y6S' 6'0(X1, $)7),/

The first term corresponds to the left side of Figure 2-1 and the second term to the

right side. The second term contains a loop propagator and is also called disconnected

term. Since it is more involved to calculate than non-disconnected terms as well as

of lower contribution, it is common to either ignore it or construct combinations of

currents that get the term to cancel under isospin symmetry. For the purposes of this

project, we will ignore all disconnected terms.

(xi,ti)

(XI,ti) 0

0 (x2,t 2) 0 (x2,t 2)

Figure 2-1: Graphical representation of the connected and disconnected term of the

pion 3-point function

Continuing with the calculation of the pion 3-point function in terms of quark

propagators, we will now drop the u and d indeces of the propagators since they are

irrelevant due to isospin symmetry. In fact we notice that for the same reason the

d-current gives identical result as the u-current for the pion. We also notice that a

point-to-all propagator is not enough anymore because of the presence of the S(x 2 , x1 )

propagator. One can then create two point-to-all propagators, one at the source 0 and

one at the sink x 2 . There is another way to go around this though without making

two different sources. We write:

C3 (t2, t1 ; p, p') = 3 -'(P x1trace[Eg,y(t2 , x1 , 0; p')F 6Sg%'(x 1, X0 )] (2.74)
X1
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where E, is called the sequential propagator and is defined as:

Ex;/c (t2, X1 , 0; p') = /A'[,(x2 , 0; p')S7g(x 2 , X1 ) (2.75)
X2

and A is called the sequential source and is in the case of the pion:

A af i- X2(SQa'a (x
_.,3(X2,0;P =e "281,'(X2, 0)) (2.76)

The reason behind expressing the 3-point function like that is because the way

the x1 and x 2 summations as well as the exponentials are seperated allows now to

write:

D (X2, X1) Es(t2, X1, 0; P') = As (X2, 0; P') (2.77)
X1

where D(x 2, X1 ) is the Dirac operator. That means that A. acts like a source and

we can calculate the sequential propagator Es by solving the above equation for

the sequential source. This allows us to avoid making an additional point-to-all

propagator at X 2 . It is called the sequential source method and is readily used to

calculate the 3-point functions of mesons and baryons. One of its drawbacks is that

it fixed the momentum of the sink, requiring and new sequential source for each

momentum value used.

We can similarly express the 3-point function of the nucleon in terms of the se-

quential source propagator. The result in in this case different for the u-current and

the d-current. Dropping color and Dirac indeces for simpliticity, the result is:

C3",'d(t2 , t1 ; p, p') = e-'(-P')" 1 x trace[E,'d(t2 , X 1 , 0; p')FS(Xi, 0)] (2.78)
X1

where the sequential propagator Eu,d is now:

,ud(t2 , Xi, 0; p') = ZAd(x2,;p)S(x 2 ,) (2.79)
X2
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and the sequential sources for the u-current and the d-current equal:

As'"(x 2 , 0; p') e-iP'x2acEa'b'c' x [TS(X 2 , 0)Cy5 S(X 2, 0)(Cy5 )T

+trace, {TS(X 2 , 0) }C-y5S(X 2, 0) (Cy 5)T (2.80)

+trace,{S(x2 , 0)Cy 5S(x 2 , 0) (C-y5)T}T

+S(x 2, 0)CY5S(X 2, 0)(Cy 5)T T]

AS(x 2 ,0; p') = e6' 2 abcea'b'c' x [trace, {TS(x 2 , 0)}(C y)TS(x 2 0)Ci(
A' (X, 0; ') C(2.81)

+TS(X 2, 0)C-y 5 (Cy5 )TS(x 2 0)]

T here is again a spin projection matrix that we can pick according to the properties

of the nucleon that we want to investigate.

2.2.4 Extracting the form factors from hadron correlators

So far we have seen how to define 2-point and 3-point function on the quark level

and how to calculate them on the lattice. Let's now discuss how these correlators are

related to hadronic observables like the form factors.

In section 2.1.4 we saw that inserting a complete set of states in a generic hadron

2-point correlator, assuming zero momentum, we can write it as:

-mat

C2 (t)= Z"njM 2  (2.82)
Z h2mn

n

where m, are the masses of the hadron channel and ZK (ZK) the overlap of the hadron

annihilator (creator) states with the different possible eigenstates. Using the same

method we can write the 3-point function as:

emn(t-T) e-mmT
C3 (t, T) = Z " - (nJ 0 1m) (2.83)

whe 02mp 2m

where represents the inserted operator (current).
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In the limit where (t - r) -4 oc and T - oc, only the ground state contributions

are of interest. Taking then the ratio of the 3-point function to the 2-point function

calcels the overlaps and the exponential behavior and it gives direct access to the

quantity of interest, (016 0), the matrix element of the current:

(0100) = lim C(tT) (2.84)
2mo t--r,r--oo C 2(t)

where mo is the ground state energy of the hadron at zero momentum, therefore its

mass.

As shown in sections 2.2.1 and 2.2.2, this matrix element can be written in terms

of form factors. Depending then on the vector 0 that we insert, we can get access

to different form factors. For example, setting 6 = 0-3y'j/ gives us the very useful

axial charge:
C3 (, 5 )

lim (t, T) x 2mo = igA (2.85)
t-r,-r-o C2(t)

We now have all theoretical tools to measure hadronic observables by calculating

3-point and 2-point functions on the lattice.

2.3 Symanzik Improvement and Renormalization

2.3.1 Clover term

We have shown that the Wilson action gives the QCD action in the continuum limit.

However, it is important to make lattice calculations more accurate in discretized

space before the continuum limit is taken. In the same way that we chose the sym-

metric discretized derivative of Eq. 2.14, we can keep adding terms to the action that

will increase the accuracy to O(a2). In addition to the action, we can improve our

observables by additional terms. A systematic approach to this is called the Symanzik

improvement program.

It can be shown that the Wilson action only needs one additional term for an
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O(a) improvement, known as the Pauli term:

SPa = cswa5  (n) -SLFtv(n)4(n) (2.86)
nEA ,<v

where cs, is the Sheikholeslami-Wohlert coefficient, - a 2 and Ft is a dis-

cretized form of the field strength tensor. A common choice is:

Fv(n) = 8a2 (Qv(n) - Q,.(n)) (2.87)

where Q is the sum over the rectangular loops of Eq. 2.23:

Qj(n) = U,,(n) + U,-,(n) + U_,_,(n) + U ,,(n) (2.88)

In the graphical representation of Qj,, the different U,, look like a clover leaf; for

that reason the Pauli term is also called the clover term.

2.3.2 Renormalization of naive currents

In section 2.2 we outlined how to extract hadronic observables using lattice meth-

ods. That required the use of different currents, which were inserted in the 3-point

functions identical to their continuous forms, y, and -,Y57. These currents are not

conserved in a discrete lattice though and they are called naive currents. The actual

conserved currents are defined to satisfy the Ward identities:

(060 10) - (0106S O0) = 0 (2.89)

where 6 corresponds to the symmetry transformation. Eq. 2.89 is formulated simply

by requiring that the expectation value of an operator 0 is invariant under a symmetry

transformation of the fields - + 6q , 4 -* 4'+ 60. The conserved currents, vector,

axial vector, pseudoscalar and tensor, are complicated in form and we will not recite

them here. For a full derivation see section 11.1.3 of Gattringer & Lang.

Lattice calculations using conserved currents give matrix elements that correspond
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directly to their physical equivalents in the chiral limit. However often the conserved

currents are hard to use. In those cases one can use the naive currents and per-

form renormalization. There are different renormalization schemes depending on the

operators in question. For the naive vector current and axial vector current, the renor-

malization is multiplicative and performed by the factors Zv and ZA accordingly. In

the chiral limit, ZV = ZA.
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Chapter 3

Method

3.1 Data Acquisition

The data for the 2-point and 3-point functions were acquired using the Chroma library.

We constructed a measurement file that performed the following:

" Create a point source at the spatial and temporal origin and smear it.

" Create a propagator starting at the source and smear it at its sink.

* Use the propagator to make sequential sources for the nucleon u-current and

the nucleon d-current at timeslices 12, 14 and 16

" Make sequential propagators for all of the above sources.

" Use the propagator from the origin to compute all 2-point contractions.

" Use the propagator from the origin and the sequential propagators to compute

all 3-point contractions.

The code was run on a 243 x 64 lattice of lattice spacing a ~ 0.12 fm and pion

mass m, ~ 0.450 GeV. We used a total 365 gauge configurations built for two light

quarks of equal mass and one heavier. The mass parameter for the heavy s quark

corresponded to its physical mass. All propagators were computed for the heavy

quark mass.
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The action was Symanzik improved with a clover term of clover coefficient 1.249.

The type of smearing used was APE smearing.

For the purposes of this project, we will only consider the raw signal and not per-

form renormalization. Please note that renormalization is necessary before comparing

the data with physical results, but since we are operating with a non-physical nucleon

any such comparisons are out of our scope. Further calculations at other values of

the quark masses would be needed to connect to experiment.

3.2 Data Processing

By the end of the measurements we obtained the correlator functions for n = 365

gauge configurations. Given that we only have one dataset but we aim to look at

the variability of the mean functions over different possible datasets, we employ the

bootstrapping resampling method. 2n sets (bootstraps) of n configurations are cre-

ated randomly with replacement. In each bootstrap we compute the mean of each

correlator and then we take the appropriate C(t) ratios for each timeslice r. Then

we take the average and standard deviation of the ratios over all bootstraps. We also

compute the average and standard deviation of C2(t) for each timeslice, which we will

use to estimate the effective mass.

To account for the correlated data, the relevant C3 (t ,T) ratios were fitted by mini-C2 (t)

mizing:
tmax

x2 = (C(t)- A)w(t, t')(C(t')- A) (3.1)
t,t=tmin

with respect to A, where w(t, t') is the inverse of the measured covariance matrix:

1
Cov(t, t') = 1 (CWM - (CMM))C(t') - (COt'))) (3.2)

m - 1

where the averages are taken over the 2n bootstraps.

At the first few timeslices the contribution of excited states is too high so we need

to tune tmin and tmax carefully to get a good estimation of the signal plateau. In

order to acheive that we start in the middle of the flat signal and we increase the time
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interval by one timeslice at a time until X2 > 2.

After determining the time interval, we fit a constant line to the signal of each

bootstrap in order to minimize x2 . We average over all bootstraps and determine the

variability of the axial factor gA by calculating the standard deviation of the fitted

line.

We use the same process to fit the scaled effective mass, defined as:

C2(t )
a mef f = In C2()(3.3)

C2 (t - 1)

except in this case we fit a two-parameter exponential Ae-mefft to the exponentially

decaying two-point function.

Taking all results into consideration, we calculate the correctly normalized axial

charge for each timeslice t by:

9A(t) = 2m x C3(t,T) (3.4)
C2 (t)

Finally, we extrapolate to t -+ oc by fitting the values of gA with a decaying

exponential of the form A + B e-C.
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Chapter 4

Results

4.1 Effective mass

The signal of the effective mass of the nucleon, meff, reached a plateau in the region

between timeslices 7 and 14, as shown in Figure 4-1. It was found that:

mef f 0.915 0.008 (4.1)

with a certainty of x 2 = 1.0.

4

E3

2

1

-o 5 10 15 20

Figure 4-1: Effective mass of nucleon
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4.2 Raw signal of gA

For the dataset with tsink = 12a, where a is the lattice constant, the signal reached

a plateau between timeslices 3 and 10, with x2 = 1.0. The results are presented in

Figure 4-2. The value of the non-normalized axial current was found to be:

gA= 0. 3 01 t 0.007

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

(4.2)

2 4 6 a 10 12 14
t/a

Figure 4-2: Axial charge for tsink = 12a

The flat line is the fitted value for gA and the dashed lines correspond to 9A t %A-

At tsink = 14a the statistical noise of the signal increased significantly, reducing the

plateau region from timeslice 3 to 10. For x2 = 1.3, the axial current was calculated

as:

9A 0.308 0.013 (4.3)

Last, the signal for tsink = 16a demonstrated higher statistical fluctuations and

was fit with a larger than the other two x 2 value of 1.4 for the region between timeslices

3 and 11. The resulting fit is presented in Figure 4-4. The calculation of gA gave:

9A = 0.304 0.015 (4.4)

48



0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.

2 4 6 8

0( 2 i 16 2 14 16
tVa

Figure 4-3: Axial charge for tsink = 14a
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Figure 4-4: Axial charge for tink = 16a

The exponential function fitted to the axial charge values at the different time

sinks in order to investigate the behavior at large time scales was of the form f(t)

0.558 - 7874e-6 79 . It will be discussed further in Chapter 5.
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Chapter 5

Conclusion

5.1 Summary of results and discussion

According to Eq. 2.85, to get the correct definition of gA we need to multiply the

result of the raw signal by a factor of the the dimensionless ameff and propagate the

errors of the two quantities. The results of the calculation of the naive current axial

charge 9A and its error for a heavy nucleon on a 243 x 64 lattice and fixed sink times

12, 14 and 16 are presented on Table 5.1. We will call the three respective signals 1,

2 and 3. The effective mass of the nucleon was found to be mef f 0.915 0.008.

Table 5.1: Non-renormalized axial charge gA of heavy nucleon

Fig. tink gA AgA AgA%

4-2 12 0.551 0.018 3%
4-3 14 0.564 0.029 5%
4-4 16 0.556 0.031 6%

As tsink increases, the signal becomes more irregular and its fluctuactions increase.

That becomes apparent quantitatively by looking at the increase of the error in the

fit; We can also see that qualititatively by inspection of Figures 4-2, 4-3 and 4-4. The

fluctuations of the signals at signal 1 and signal 2 look almost symmetrical in the

region between timeslices 0-12 and 0-14 respectively. Signal 3 does not demonstrate

the same symmetry, making it harder to decide what region should be fit with the X2
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method.

Even though it was more irregular than the other two, the fitting of signal 3 still

gave the relativily low percentage error of 6%. A higher tsink is favorable since excited

states contamination is present at small t.

Another thing to consider concerning the results is that the gA value of signal 1

at the plateau is slightly lower than that of the other two signals. One would expect

signal 1 to be closer to the signal 2 than it is to signal 3 since the first two sink times

are physically closer and more likely to be affected by similar quantitative effects,

like the impact of excited states at lower times. The fluctuations of signals 2 and

3 are higher than those of signal 1 though, giving a possible explanation for this

discreptancy.

The three processed data points and their uncertainties were fitted with an ex-

ponential function of the form A + Be-Ct in order to extrapolate to the limit where

t - oc. The result of the fit was f(t) = 0.558 - 7874e

That implies that at the continuum limit the axial charge approaches the value

9A= 0.558. However, since the tsinks used were very close to each other and gave

similar values for gA, it is not clear how accurate this result is. The range of data

were of short range and statistically similar to each other, not allowing for a better

investigation of how gA changes with time.

5.2 Suggestions for improvement and future projects

Since the signal for tsink = 16a allows for a fit with a 6% error, it would be interesting

to investigate whether the fit improves when we consider a larger number of config-

urations and of what accuracy would the fit be for a signal with tsink > 16a. More

data points would allow for a better extrapolation to the continuum limit.

A direct improvement of this project would be to consider processes involving

non-zero momentum and different values of momentum insertion in order to estimate

the form factor GA(q 2 ) as a function of momentum transfer. This could allow for the

calculation of the axial charge radius, which is proportional to the derivative of the
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axial charge.

One can use the same set-up and configurations to investigate other quantities

related to hadron structure, like the electromagnetic form factors, for the proton and

other hadrons.

Finally, it would be useful to perform these calculations for lighter quark masses

in order to gain a renormalized value for gA that can be compared with experimental

data.
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