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Abstract

The amount of time series data collected in the medical community has recently
been exploding due to widespread affordable sensors and storage devices. However,
while the massive repositories of such physiological time series data provide enor-
mous opportunities for machine learning to make significant impacts, they are largely
under-utilized due to their granular detail, overwhelming size, and lack of proper
tools. Besides scale, fast yet accurate processing of physiological waveform data is
desired in medical practice, especially in time-critical settings such as the intensive
care unit (ICU). Efficiently leveraging these massive datasets is a key challenge that,
when resolved, will support a new paradigm of scientific discovery and operational
innovation in medicine.

In this thesis, we develop highly efficient similarity-based methods that make it
practical to search massive physiological time series repositories to rapidly identify
waveforms similar to those from a given individual. We call this concept “patients
with trajectories like mine.” Our goal is to exploit rapid similar waveform retrieval
to enable critical event prediction in the ICU setting. In order to achieve this goal,
we propose to apply locality-sensitive hashing (LSH), which supports a very fast
approximate nearest neighbor search in high dimensions. We empirically demonstrate
that LSH based retrieval and prediction methods vastly speed up querying time while
sacrificing only a trivial amount of accuracy as a cost.

Despite being fast and accurate, the generic LSH has two shortcomings. First,
it is capable of utilizing only one similarity measure at a time. To overcome this
limit, we introduce Stratified LSH (SLSH) which finds similarity among the data
from a more integrated perspective by employing multiple distance metrics in one
framework. SLSH is essentially a dual-level hierarchical LSH where each LSH layer is
associated with a distinct distance metric capturing a unique facet of similarity. The
second shortcoming and the main bottleneck of the generic LSH is that it involves
exhaustive distance calculations as a subroutine when short-listing the candidate set
to find the final nearest neighbors. To surmount this, we propose Collision Frequency
LSH (CFLSH) which short-lists the candidate set by simply counting the frequency
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of collision based on the key idea that the more frequently an element and a query
collide across multiple LSH hash tables, the more similar they are. We show that
with SLSH and CFLSH, we improve the efficiency of LSH in terms of both prediction
‘accuracy and querying speed.

We demonstrate our proposed methods on a mean arterial blood pressure dataset
extracted from the MIMIC II database in the context of predicting acute hypotensive
episodes in ICU. To examine the generality of our methods with respect to scaling,
we validate our methods on datasets with various dimensions and item counts.

Thesis Supervisor: Una-May O'Reilly
Title: Principal Research Scientist
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Chapter 1

Introduction

This thesis consists of methodological studies using locality-sensitive hashing (LSH)
on two clinically important tasks: efficient retrieval of similar physiological waveforms
given an individual and subsequent medically critical event prediction. We seek to
bring computer science theory into practice in the field of clinical medicine. We
demonstrate our LSH-based retrieval and prediction methods on an arterial blood
pressure dataset extracted from the MIMIC II database. In this chapter, we intro-
duce motivations and background behind our work, technical challenges we face, our

proposed approach to overcome challenges, and our contributions to the field.

1.1 Motivation

The amount of data collected in the medical community has recently been explod-
ing and is becoming more overwhelming due to widespread use of affordable sen-
sors and storage devices. Contexts range from EEG (electroencephalography), ECG
(electrocardiography), and blood pressure sensing in hospitals, to mobile phones or
lightweight wearable health tracking devices in homes and ambulatory care settings.

The ever increasing volume and detail of information captured from hospitals and
personal healthcare devices show promising potential to direct the medical practice
toward more data-driven, evidence-based, and personalized medicine. However, the

massive repositories of such physiological time series are largely under-utilized due
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Massive Waveform Repository
+ High-dimensional, high frequency

+ No clear underlying structure Approximation Level

@ -

P
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waveforms — +  Similar patients’ records,
Patient’s record, symptoms symptoms
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* v

Scalable retrieval system for massive physiological data
— Significantly faster querying time
— Trivial loss of accuracy as a trade-off
Our solution: Locality-Sensitive Hashing
— Very fast approximate nearest neighbor search in high dimensions
— Similarity preserving hashing method to provide rapid, preliminary filtering of
nearest neighbor candidates prior to querying

Figure 1-1: Overview of efficient retrieval of similar physiological waveforms given an
individual (“patients with trajectories like mine”).

to their granular detail, overwhelming size, and lack of proper tools. Efficiently
leveraging these massive datasets is a key challenge that, when resolved, will support
a new paradigm of scientific discovery and operational innovation in medicine. Access
to unprecedented amounts of data opens up an opportunity for deeper insight, earlier

intervention, and engagement.

In this thesis, we develop highly efficient methods that make it practical to search
massive physiological time series repositories to rapidly identify waveforms similar
to those from a given individual. We call this concept “patients with trajectories
like mine” (Figure 1-1). The thesis also develops methods to exploit rapid similar
waveform retrieval to enable critical event prediction in the intensive care unit (ICU)
setting. In the long term, our work will potentially contribute toward to replacing
population-based models of disease with specific models based on groups of highly
similar individuals, thereby allowing more precise diagnoses, critical event detection,

prediction of illness trajectories, and more individualized medical interventions.

We provide one example where our work can potentially be valuable. In-hospital
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cardiac arrest (IHCA) is a crucial event that affects 200,000 adults and 6000 pedi-
atric patients each year in the US [36]. Studies suggest that most cardiac arrests are
predictable. In one study, 75% of IHCA cases were preceded by premonitory dete-
riorations in blood pressure, respiration, heart rate rhythm, or oximetry [11,13] and
over one third were determined preventable [36]. However, premonitory trends are
frequently missed due to poor recognition of trends, which can be subtle. Thus, the
ability to efficiently compare a given patient’s physiological monitoring data with large
databases to identify prior patients with similar trajectories and known outcomes will

allow more precise predictions and support smarter alarms.

1.2 Background and Technical Challenge

The main axes of challenge in mining meaningful information from massive repos-
itories are time, accuracy, and scale. Fast yet accurate processing of physiological
waveform data is becoming essential in medical practice, especially in urgent care
and ICU settings, as everything there is time-critical and also requires a high degree
of correctness. Plus, the size of medical record corpora that we extract information
from is vast and keeps increasing. Therefore, there is a strong need for large-scale, yet
accurate data processing in almost real time. Many efforts in the past have sought
to meet such need with various parametric and non-parametric methods. We briefly
review the approaches tried in the past and the technical challenges we face when

using these approaches in the context of physiological time series analysis.

1.2.1 Parametric Time Series Analysis Methods

Pattern mining plays a crucial role permitting medical practitioners and researchers
to acquire high-quality relevant information from a massive repository of medical
records. Traditional statistical methods for estimation of such patterns rely heav-
ily on the use of parametric models [17,48] in order to provide measures of effect
and statistical significance. These are models that typically assume the entire data-

generating distribution (i.e., the underlying mechanism that created the data) can
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be defined by relatively few parameters. However, these assumptions become highly
unrealistic in healthcare settings because, due to the very complex and noisy nature
of medical and physiological data, there is often no clear sense of its underlying struc-
ture which may vary by different patients and symptoms. Accordingly, these methods
may be unreliable due to bias introduced by misspecified parametric models and are
generally not flexible or scalable enough to handle a large number of variables and
massive quantity of data.

For example, many of recent time series analysis methods are based on extensions
of a parametric method called Dynamic Bayesian Network (DBN) [94]. However‘, the
approach using variants of DBN has several limitations due to the requirement of
a good hidden state model and the complicated, expensive learning and inference.
In particular, the complexity of clinical data makes it difficult to form good prior
knowledge which many conventional parametric and Bayesian models depend on. On
the other hand, albeit less popular, there has been a series of works which showed the
effectiveness of simple non-parametric similarity-based methods over many popular

parametric models for time series classification [52,133].

1.2.2 Similarity-based Search: k-Nearest Neighbor Method

A competitive alternative is to use a non-parametric approach which “lets the data
speak for itself” without much restriction of parametric models. One of the core
problems in such an approach is similarity-based nearest neighbor (NN) search [23,
131]. For a given query (such as a patient’s record, a list of symptoms, or a piece of the
physiological waveforms of interest herein), NN retrieval returns a set of records that
are similar to the query. The NN set also offers extrapolative information. It may also
reveal a complex pattern. When records extend forward in time past that of the query,
they reveal outcomes of patients, chosen protocols, and diagnostics. Questions such
as, for people with the same symptoms, what critical events subsequently occurred,
what treatments produced the best recovery, and/or what side-effects were observed,
can be answered.

The k-nearest neighbor (KNN) method is a simple non-parametric similarity-based
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learning algorithm. In essence, it memorizes the entire reference dataset and finds a
group of k samples that are closest to a query by exhaustively going through every
point in the reference dataset and computing its distance to the query. Typically, one
uses the NN set to extrapolate a class label or response variable for the query based
on predominance.

Unlike parametric models like DBN, KNN can “let the data speak for itself" since
it does not summarize the input data by a number of parameter values of a certain
model in the training phase or make any assumption on the underlying state and
distribution of input data. Instead, the algorithm simply stores the entire training
data without any summarization or generalization. Thus, the method is particularly
useful when we do not have any prior knowledge about the data. Since it is very
difficult to assume the underlying mechanism of human physiological signals, NN
methods can be advantageous. Since KNN based classifiers can handle highly non-
linear decision boundaries, it can be more advantageous for complex physiological
state classification than many linear models.

The simplicity and practicality of KNN comes with several limitations.

e First, it is heavily influenced by the choice of distance metric and neighbor

weighting rule. These choices are difficult for patient waveform data.

e Second, a distance metric only expresses a single perspective but waveforms
may be similar based on various criteria, such as shape and amplitude, where

each is expressed by a different distance metric.

e Third, KNN becomes highly impractical when the dimensionality of data is high
and/or when the quantity of data is massive due to the curse of dimensionality.
It is known that either the search time or space requirement is exponential in

the number of dimensions and is linear to the dataset size [32].

In particular, high dimensionality is a property of physiological waveforms. Dis-
tance measures break down in high dimensions [1] and research has shown how
the most efficient repository indexing strategies (such as C4.5 and tree-based meth-

ods [131], intended to support sub-linear time retrieval) become inefficient and exhibit
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linear behavior as dimensionality increases [127]. The traditional tree-based indexing
methods (such as R-trees [46], k-d trees [14], and sr-trees [66]) degenerate into a linear
“scan in sufficiently high dimensions (larger than 10 dimensions [40]) both in theory

and in practice [127].

1.3 Prdposed Approach

To overcome the challenges we face with previously attempted approaches, our pro-
posal is to utilize locality-sensitive hashing which is a fast approximate nearest neigh-
bor search that is effective in large, high dimensional data. We briefly explain the

basics of LSH and the research questions we aim to answer in this thesis.

1.3.1 Locality-Sensitive Hashing

Our goal is to build a scalable retrieval and prediction system for high dimensional
massive physiological data, with a significantly faster querying time, while maintain-
ing accuracy in a reasonable range in comparison to the linear KNN or tree-based
methods. In order to achieve this goal, in this thesis, we propose retrieval and pre-
diction methods based on a computer science theoretical foundation called locality-
sensitive hashing (LSH) [54], which allows a very fast, approximate nearest neighbor
search in very high dimensions.

Whereas the linear, exhaustive KNN method searches for the exact NNs, LSH
aims to speed-up the search process by looking for approrimate NNs instead. LSH
is an approximate search method enabling a quick retrieval of a small approximate
nearest neighbor set with provable sub-linear query time and sub-quadratic space
complexity. It uses a specialized similarity preserving hashing method to provide
preliminary filtering of NN candidates to reduce the time cost of a follow-up linear
search among them. Locality-sensitive hash functions have the unique property that
similar elements are statistically likely to be hashed to the same value (i.e. collision).

Given a particular distance metric and its corresponding hash function family, LSH

maintains a number of hash tables containing the dataset points. The approximate
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nearest neighbors of a query can be obtained by hashing the query and scanning the
hash buckets which the query collides with across the tables. By being approximate,
LSH intrinsically introduces the trade-off between accuracy and speed depending on
the level of approximation. Users can decide whether to wait for the exact answer
by spending more time or to be satisfied with a much quicker approximation [40].
It is important to note that approximation of NNs is justifiable for most practical
purposes because even in exact search, a distance measure is only an approximation
to the ground truth. A detailed explanation of LSH is presented in Section 4.2.

In this thesis, we demonstrate the effectiveness of LSH on the waveform retrieval
and event prediction tasks on an arterial blood pressure dataset extracted from the
MIMIC II database [108]. To examine LSH on patient waveform retrieval, we reference
a repository of tens of thousands of highly complex blood pressure waveform segments.
The critical event of interest for us to predict is an acute hypotensive episode (AHE).
An AHE is a sudden dropping of arterial blood pressure to below a critical level
for some duration of a time window in ICU that demands immediate attentions and
interventions. It is crucial to detect AHE accurately and fast, because if left untreated,

such episodes may lead to irreversible organ damage and eventually death.

1.3.2 Research Questions
Throughout the thesis, we aim to bring answers to the following research questions.

e Given a repository of highly complex physiological waveforms and a query, is
there an efficient way of retrieving similar physiological time series that is fast,

accurate, and scalable?

—~ How effective is LSH to meet the above requirements (in terms of retrieval

accuracy and querying time) in comparison to the linear KNN method?

— Given we use a similarity-based method, what are the appropriate bases
(i.e. distance metrics)?
— How does retrieval performance (accuracy and time) scale as dimension or

quantity of data changes?
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— How sensitive or robust is the retrieval performance with respect to the

parameters of LSH?

e Can a similarity-based retrieval set of arterial blood pressure waveforms effec-

tively be leveraged for prediction of a critical event (acute hypotension) in ICU?

— How effective is the prediction of AHE based on extrapolating the infor-
mation of the retrieved nearest neighbors obtained by LSH, in terms of
prediction accuracy and querying time?

— What is the cause of the large difference in the querying speeds among

LSH based on different distance metrics?

— How does prediction performance scale as the lag duration'or quantity of

data changes?

e Given the limit of LSH that it can use only one distance metric at a time, is there

an effective way of utilizing multiple distance metrics in one LSH framework?

— Is the multi-metric strategy more effective than using a single metric in

terms of prediction accuracy and querying time?

e Given the bottleneck of LSH which is caused by entailing exhaustive distance
calculations between a query and its nearest neighbor candidates, is there any

effective way of circumventing the bottleneck?

1.4 Contributions

The main contributions of this thesis are as follows. To the best of our knowledge,
our work to date is the first extensive application of LSH to physiological time series

retrieval and event prediction.

e We address the question of how we can achieve fast, yet accurate and scal-

able retrieval of similar physiological waveform time series for a given query.

! The length of historical data prior to the event prediction window (explained in detail in Sec-

tion 3.3).
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We are the first to apply locality-sensitive hashing to approach this problem.
When compared to the exhaustive KNN, our method based on LSH largely
speeds up the retrieval time of similar physiological waveforms without sac-
rificing significant accuracy when demonstrated on an arterial blood pressure
dataset extracted from the MIMIC II database. This work was published in [73]

and is presented in Chapter 4.

We answer the question of whether a high precision similarity-based retrieval
set of arterial blood pressure waveforms can effectively be exploited to pre-
dict acute hypotensive episodes in ICU. In doing so, we extend the LSH-based
retrieval to the prediction task by extrapolating the information of similar wave-
forms via majority vote. Similar to the retrieval case, compared to using the
linear exhaustive KNN, our proposed method based on LSH vastly speeds up
the prediction time up to two orders of magnitude while sacrificing only 1%
of prediction accuracy. This work was published in [74] and is presented in

Chapter 5.

We propose a new similarity based prediction technique called stratified locality-
sensitive hashing (SLSH). It finds similarity among the data from a more in-
tegrated perspective by employing multiple distance metrics in one framework,
which previously was not feasible with the standard LSH. Comparing SLSH to
the standard LSH, we demonstrate that SLSH yields a higher prediction ac-
curacy and further shortens the sub-linear querying time of the standard LSH
while adding only trivial storage overhead. A part of this work was published
in [70,71] and the more extended version has been submitted to a conference

for review. This contribution is presented in Chapter 6.

We address the question of whether the short-listing by calculating the dis-
tances between the query and every candidate set element (the main bottleneck
of LSH) is optimal and whether there exists an effective way that avoids the
bottleneck. To answer this, we propose a new variant of LSH, namely collision

frequency locality-sensitive hashing (CFLSH). Unlike the standard LSH which
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only utilizes a distance metric, in CFLSH, the short-listing step from a pool of
pre-selected candidates filtered by locality-sensitive hash functions to the final
nearest neighbor set relies upon the frequency of collision along with distance
information. We show that CFLSH with the L1 distance has a higher predic-
tion accuracy and further accelerates the sub-linear querying time obtained by
the standard LSH. This work will be published in [72]. This contribution is

presented -in Chapter 7.

1.5 Organization

The rest of this thesis is organized as follows. In Chapter 2, we describe related
work. Then, we explain datasets used in this thesis in Chapter 3. Chapters 4 and
5 present the result of applying LSH on the problems of physiological time series
retrieval and of critical event prediction, respectively. Chapter 6 introduces stratified
LSH. In Chapter 7, we present collision frequency LSH. Finally, conclusions and future

directions are in Chapter 8.
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Chapter 2

Related Work

Although there is a vast literature on time series analysis in general [37,48], searching
through high frequency, high dimensional physiological time series data is a rela-
tively unexplored topic. Developing robust algorithms for correctly finding predictive
patterns in long non-stationary time series data is challenging. This chapter is or-
ganized as follows: we provide a survey and discuss works on similarity-based time
series search, prediction methods applied in critical care, theories and applications of

locality-sensitive hashing (LSH), and acute hypotension prediction.

2.1 Similarity-based Time Series Methods

Clinical decision making based on extrapolating information from similar patients of a
query patient has a long history. In the 1970s, the similarity-based “patients like me”
approach was applied on electronic health records (patient charts) to make prognoses
of ischemic [90] and coronary heart disease [105]. More recently, Google Correlate
was released that finds web search terms whose popularity over time best match a
user-provided time series [117]. Based on asymmetric hashing for Pearson correla-
tion, one of its highlighted applications is predicting flu trends. Likewise, Lehman
et al. [84] used the Gaussian mixture model and the k-nearest neighbor method to
learn dynamical patterns of temporal data and find similarity among them. They

used their method on applications such as search-by-example based data retrieval,
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event classification, and forecasting hypotensive episodes. Saeed et al. [107] proposed
a wavelet-based symbolic transformation that allows the use of existing efficient doc-
ument information retrieval algorithms to assess similar patterns in multi-parameter
physiologic time series. They applied their method to predict hemodynamic dete-
rioration. For more extensive review of how machine learning in used in decision
support in critical care, one should refer to [62]. For in-depth overview of the general
time series methods based on data mining and on econometrics based time series
analysis (e.g. AR, ARMA, ARIMA models), [37] and [48] provide thorough reviews,

respectively.

Recent literature in data analytics suggests applying simple nonparametric meth-
ods with a large quantity of data in order to let the “Big Data” truly speak for itself
instead of using sophisticated parametric models with a small amount of data [47].
Numerous studies show the effectiveness of non-parametric nearest neighbor meth-
ods over many popular parametric models for time series classification. For in-
stance, [133] showed that the one-nearest-neighbor classifier with the dynamic time
warping (DTW) distance measure has a superior performance over a multi-layer per-
ceptron neural network, hidden Markov model, and decision tree. In [52], the authors
showed that their nearest neighbor based classifier performs better than support vec-
tor machine, naive Bayes, and C4.5 decision tree for classifying patients with abnormal
hearts from a small electrocardiography (ECG) dataset. [75] showed that the nearest
neighbor classifier for predicting acute hypotensive episodes continuously improves
as the dataset size gets larger while the dynamic Bayesian network does not scale
well with increasing data size. However, the nearest neighbor search is in general
expensive for large-scale datasets due to high dimensionality and large quantity of
data. Several works seek to overcome such difficulties by finding either effective data

representations or efficient distance measures.

Representation There has been a series of work on finding the best representa-
tion for time series data such as Discrete Fourier Transformation [35], Single Value
Decomposition [35], Discrete Cosine Transformation [78], Discrete Wavelet Trans-

formation [19], Piecewise Aggregate Approximation [67], and Symbolic Aggregate
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Approximation [86]. Most of the representations focus on dimensionality reduction
and finding intrinsic dimensionality of data. In [31], it was shown that over many data
sets, there is no single representation that performs better than others and the opti-
mal choice of representation method is data-specific. In our LSH methods presented
in this thesis, we use a raw representation of data in its vector form without any
dimensionality reduction and still remain efficient since LSH is known to be effective
in high dimension [49].

Distance Measures Similarly, in conjunction with a representation, many efforts
have been made to speed up the computation of the following distance measures:
Euclidean distance [35,93], Manhattan distance [134], Lp-norm [134], DTW [16, 68,
103], Edit Distance based on Longest Common Subsequence {119}, and Edit Distance
[21,22]. Among these, the UCR suite for DTW [103] and Euclidean distance [93]
is known to be the fastest in each distance category. DTW performs better than
others for data sets of small size and short time series [31], but the performance
converges to that of Euclidean distance for large datasets. In general, branch-and-
bound techniques [103] do not scale well with long time series, although they are
known to be able to process massive datasets efficiently. In our work, we emphasize
robustness to the length of time series and scalable performance that improves with

greater item count.

2.2 Locality-Sensitive Hashing

Since its first introduction by Indyk and Motwani [54|, locality-sensitive hashing has
made a significant impact on the problem of large-scale nearest neighbor search in
high-dimensional data. In large, the focus of research on LSH can be divided into
three aspects: developing different LSH hash families for various distance metrics, ex-
ploring the theoretical boundaries of LSH, and improving the performance of the LSH
methods [122]. We provide a survey on each aspect in the following subsections. We:
additionally review applications of LSH and two specific variants of LSH (multilevel

and frequency based LSH) whose works have similar principles to our works.
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2.2.1 Hash Function Families

The primary focus of LSH research is to develop locality-sensitive hash function fam-
ilies for various distance metrics. Since the original LSH was proposed for the Ham-
ming distance [40, 54|, several variations of the original version have been proposed
for locality-sensitive hash function families over a wide range of distance metrics. We
categorize the distance metrics into four groups: the angle-based (cosine) distance,
the Lp distance, the Jaccard coefficient, and the rest.

The LSH for the angle-based distance includes the random projection LSH [4,20],
super-bit LSH [59], kernelized LSH [80], LSH with learnt metric [81], concomitant
LSH [34], hyperplane hashing [56], and cross-polytope LSH [6]. Many efforts have
also been made to design hash families for the Lp distance, especially for the Euclidean
distance. They include LSH for the L1 distance [3,40], the Euclidean distance [7,26],
the p-stable distributions [26], leech lattice LSH [4], and spherical LSH [8,115]. An
extensive comparison of different LSH methods for the Euclidean distance is found
in [100]. Developments for the Jaccard coefficient (used extensively in information
retrieval) include min-hash LSH [18], min-max hash [58], and B-bit minwise hashing
[85]. Additionally, variants of LSH have been developed for the Hamming distance
[40, 54] and the x? distance (for data represented as a histogram) [43]. For more

extensive review of the above LSH methods, refer to [5,122,125].

2.2.2 Theoretical Bounds

Another line of research, especially popular in the theoretical computer science com-
munity is exploring theoretical bounds of LSH. As this research area is continuously
being updated, we briefly cover only the most up-to-date noteworthy results.

For the Euclidean distance on the unit sphere (the special case which is equivalent
to the angular distance or cosine similarity used in many applications), spherical
LSH [115] is known to have the best known provable guarantees, but has a very
limited practical use because it is based on complex hash functions that are time

consuming to evaluate. On the other hand, the seminal hyperplane LSH [20] has
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worse theoretical guarantees, but works very well in practice. Andoni et al. [6] closes
the gap between theory and practice. With their cross-polytope and multi-probing
based LSH for the angular distance, they meet the optimal guarantee of [115], but also
improves over the hyperplane LSH. They also provide a practical algorithm released
as the FALCONN software package [104].

For the Hamming distance, [54,95] prove the optimal lower bound. Also, [4] proves
the tight bounds for the Euclidean distance. “Beyond LSH” [7] presents a new data-
dependent data structure based on multilevel hashing for the approximate nearest
neighbor problem in the Euclidean space (and in the Hamming space with a simple
reduction) that is the first improvement over [4,54] and the first data structure that
bypasses the classic LSH lower bound by [95]. [8] makes further improvement over

“Beyond LSH” with a better theoretical guarantee.

2.2.3 Performance Improvement

Several strategies have been proposed to improve the performance of the original LSH
in various aspects.

Space requirement One of the main drawbacks of LSH is that in practice, it
requires a large number of hash tables to achieve good search quality. Panigrahi et
al. [99] proposed entropy-based LSH which attempts to reduce the storage requirement
for LSH. It does so by using both the original query point and its randomly perturbed
nearby points as additional queries to combine the candidate sets.

Another effort to reduce the storage requirement of LSH is the multi-probe LSH
[64,88]. It probes the matching hash bucket of a query as well as several other buckets
in the same hash tables. The additionally probed buckets are the ones with hash keys
not too distant from that of the colliding hash bucket. It was shown that the multi-
probe LSH effectively reduced the space requirement by 90% in practice. However,
these space reducing LSH methods are known to have longer query times.

Parameter tuning Another significant drawback of LSH is that it is sensitive
to several model parameters which need to be chosen empirically. [33] provides auto-

matic tuning scheme for parameters needed to run multi-probe LSH with performance
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guarantees. Similar yet more specific analysis of LSH parameter selection scheme is

presented in [112].

LSH Forest [12] was proposed to overcome the sensitivity of LSH against various
parameters and data distributions. Each hash table is represented as a tree whose
leaves correspond to each data point (the set of hash tables represented as a set of
trees, hence the name “forest”). Any sub-trees that do not contain any data points are
pruned. By having a flexible tree structure, LSH Forest can adapt to different data
distribution and also to the situation where additional points are added or deleted. [9]
provides an improved version of LSH Forest. Their simple modification is that for each
node, they store a constant number of points close to the mean of the corresponding
subset of the dataset, which are compared to any query point reaching that node.
Not only being effective in practice, this modification of LSH Forest is also provably

better than the best LSH algorithm for the Hamming space [54].

Query and data adaptive LSH Performance of LSH on a query point depends
not only on the distribution of the data, but also on the local geometry in the vicin-
ity of the particular query [33]. Thus, several works have developed query and data
specific LSH. For example, [33] provides adaptive multi-probing scheme which deter-
mines the appropriate number of multi-probing buckets just enough to achieve the
required search quality. Query-adaptive LSH was proposed in [57] where, for each
query, the method picks the hash functions that are most likely to return the nearest
neighbors from a large pool of random hash functions. [53] proposes a similar idea
with their query-aware LSH. In the context of computer vision, Korman and Avidan
proposed coherency-sensitive hashing where immediate spatial neighbors of points in
the matching bucket of a query are also included in the approximate nearest neighbor

search [76].

In reality, datasets are typically not distributed uniformly over the space, and
as a result, the buckets of LSH are unbalanced, which causes the performance of
LSH to degrade. Several works have sought to solve this problem. For example, [39]
proposed data sensitive hashing which designs data-adaptive hash functions based

on adaptive boosting and spectral techniques, treating the hash function family as a
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strong classifier while each hash function in the family serves as a weak classifier. [61]
introduced distribution density aware hashing which extends the random projection
based LSH by first sub-grouping the data with the k-means algorithm, generating
random projections that best separate each pair of groups, and then using maximum
entropy principle to select the final set of random projections. [45] analyzed the non-
uniform problem of the Euclidean LSH and proposed a pivot-based algorithm to
acceierate the query process of the Euclidean LSH by using triangle inequality to
prune the search process.

Parallelism Several works have sought to efficiently parallelize LSH. In [113],
Parallel LSH was introduced which is designed to be extremely efficient, capable of
scaling out on multiple nodes and multiple cores supporting high-throughput stream-
ing of Twitter data. They utilized several novel ideas such as cache-conscious hash
table layout, using a two-level merge algorithm for hash table construction, duplicate
elimination during hash-table querying, an insert-optimized hash table structure, and
efficient data expiration algorithm for streaming data.

In the distributed setting, each query requiring a network call per hash bucket
look-up leads to a large network load. [10] proposed an efficiently distributed scheme
for the entropy based LSH [99]. It used a layered hashing based on distributed entropy
LSH using MapReduce and active distributed hash table to minimize the network cost

while maintaining good load balance between different machines.

2.2.4 Applications

In the early days of LSH, it was successfully used in duplicate detection [18,51,89|,
link-based similarity search [24, 27|, and image retrieval [44,80,111]. Recently, with
the advent of “Big Data”, the demand for LSH has increased. LSH has been used
extensively in a wider variety of application areas to deal with scaling issues of new
massive and high-dimensional data. Recent application areas in the past few years
include: speaker identification [110], music search [106], similarity join size estimation
in databases [83], genome sequencing [15,121], social network analysis [113,132], mo-

tion planning in robotics [98], patch finding in images [77], in evolutionary algorithms
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for multi-solution optimization [138], lattice based cryptography [82], video anomaly
detection [137], image forgery detection [2], signal processing [45], audio source sep-
aration [69], malware clustering [96], entity resolution [118], privacy preservation in

cloud computing [136], geography analysis [135], and speech recognition [116].

2.2.5 Locality-Sensitive Hashing on Physiological Data

In this thesis, we extensively apply LSH on physiological time series data. Only
a few studies have explored LSH in the healthcare and medical domain. LSH was
applied in [65] where the focus was on introducing a kernel based method to adapt
various types of similarity measures, demonstrated on pediatric ICU and surgical
data. LSH was also used in indexing ECG time series using salient segmentation of
data, but the data, containing only very short segments, was not large enough to show
significant advantages [130]. Syed et al. [114] applied LSH to automatically discover
patterns that distinguish between sequences belonging to different labeled groups. On
symbolized ECG time series from patients with coronary syndromes, their LSH-based
approach identified approximately conserved sequences of morphology variations that
are predicative of future death. In [60], LSH was used to design a sensor fusion scheme
to intelligently process wearable sensors with context awareness for the elderly. In
contrast to these works, the datasets used in our study are orders of magnitude larger,

and we examine the scaling properties of LSH.

2.2.6 Multilevel Locality-Sensitive Hashing

In Chapter 6, we introduce a multilevel LSH which hybridizes multiple distance mea-
sures in one framework. Two other notable works using multilevel LSH have been
conducted in the field. Andoni et al. [7] introduced a two-level hashing method which
results in the best lower bound complexity beyond the general LSH techniques. Data
independent ball-carving LSH was used at the outer level and the data dependent
spherical LSH was used at the inner level. However, this work only provides theoret-

ical analysis of its method and lacks experimental evaluations or a practical imple-
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mentation.

Pan et al. [97] also presented a two-level LSH method. In the first level, they
use a random projection tree to partition the dataset into subgroups. Then in the
second level, a single LSH hash table for each subgroup along with a hierarchical
structure based on space-filling curves is computed. They demonstrated efficiency
of their method over the standard LSH for image retrieval task. In contrast to our
multi-layer framework which integrates multiple distance metrics, in [97], the first
level operation is rather a data pre-processing step instead of being an actual layer
of LSH, and only a single distance measure based on the Lp distance is used at the

second level.

2.2.7 Frequency-based Locality-Sensitive Hashing

In Chapter 7, we propose LSH based on collision frequency counting. In [87], the
authors proposed a frequency based LSH. It utilizes a single function based on the p-
stable distribution as the hash function of a hash table and uses a frequency threshold
to select only those points which collide with the query more than the threshold times
as the candidate approximate nearest neighbors. On the other hand, our method can
be used for any distance measures with a valid locality-sensitive hash function family.

In the database community, LSH based on dynamic collision counting was intro-
duced, where the method uses a base of m single LSH functions to construct dynamic
compound hash functions [38]. If the number of LSH hash functions under which a
data point collides with the query is greater than a pre-specified threshold, the point
is selected to be a candidate for the approximate nearest neighbors of the query.
Both of the above methods are very sensitive to the value of the threshold, while our

proposed method is threshold-free.

2.3 Acute Hypotensive Episode Prediction

The primary task of interest in this thesis is predicting acute hypotensive episodes

with LSH. The 10*" PhysioNet/Computers in Cardiology Challenge in 2009 first ad-
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dressed the problem of predicting acute hypotensive episodes [91]. A small subset of
the MIMIC II data [108] was made available to use, which included ECG and arte-
rial blood pressure (ABP) signals, as well as the time series of vital signs sampled
once per minute. The best performing model used the generalized regression neu-
ral network multi-models on the ABP data [50]. This approach requires extensive
training of a neural network for each training sample, thus is ill suited for large scale
problems. Moreover, despite the successful performance of many proposed solutions
in the challenge, the size of the challenge dataset was very small (10 hours of lag
data for each of 60 patients), and many proposed approaches would not scale well for
realistic massive data. In contrast, the datasets used in our experiments are at least
two orders of magnitude larger in terms of the number of patients.

With the advent of “big data” and time and space efficient cloud computing,
machine learning is more readily applied to large repositories, see e.g. [120] which
predicted acute event prediction with hidden state Markov modeling and [30]’s dis-
tributed feature selection for acute hypotensive episode prediction using wavelets op-
timized with Gaussian processes. In [29], a large scale machine learning and analytics
framework, named beatDB, for mining knowledge from high resolution physiological
waveforms was introduced where users can flexibly configure various set-ups of data,
hypothesis defining, and algorithmic parameters. The utility of this framework was
demonstrated for the acute hypotension prediction problem, but the choice of algo-
rithm was limited only to logistic regression. Our work examines the scaling issue

with respect to dimension and size of data, which was not a part of the above works.
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Chapter 3

Data

In this chapter, we describe the datasets used to demonstrate our methodology. We
define a critical event (acute hypotension) of our interest herein, provide an overview
of the MIMIC II database, and discuss preprocessing steps and properties of our

datasets.

3.1 MIMIC II Database

Our data comes from the MIMIC II (Multiparameﬁer Intelligent Monitoring in In-
tensive Care) Database version 3 which contains physiologic signals and vital signs
time series captured from patient monitors, and comprehensive clinical data obtained
from hospital me