
Physiological Time Series Retrieval and Prediction

with Locality-Sensitive Hashing

by

Yongwook Bryce Kim

Sc.B., Brown University (2005)
S.M., Massachusetts Institute of Technology (2008)

MASSACUSETS1NT1OTE
OF TECHNOLOGY

JUN 23 2017

LIBRARIES
ARCHIVES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

@ Massachusetts Institute of Technology 2017. All rights reserved.

Signature redacted
A u th or

Department of Electrical Engineering and Computer Science
May 19, 2017

Certified by... Signature redacted
Una-May O'Reilly

Principal Research Scientist
Thesis Supervisor

Accepted by Signature redacted
/ 61 (l Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

2

Physiological Time Series Retrieval and Prediction with

Locality-Sensitive Hashing

by

Yongwook Bryce Kim

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2017, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

The amount of time series data collected in the medical community has recently
been exploding due to widespread affordable sensors and storage devices. However,
while the massive repositories of such physiological time series data provide enor-
mous opportunities for machine learning to make significant impacts, they are largely
under-utilized due to their granular detail, overwhelming size, and lack of proper
tools. Besides scale, fast yet accurate processing of physiological waveform data is
desired in medical practice, especially in time-critical settings such as the intensive
care unit (ICU). Efficiently leveraging these massive datasets is a key challenge that,
when resolved, will support a new paradigm of scientific discovery and operational
innovation in medicine.

In this thesis, we develop highly efficient similarity-based methods that make it
practical to search massive physiological time series repositories to rapidly identify
waveforms similar to those from a given individual. We call this concept "patients
with trajectories like mine." Our goal is to exploit rapid similar waveform retrieval
to enable critical event prediction in the ICU setting. In order to achieve this goal,
we propose to apply locality-sensitive hashing (LSH), which supports a very fast
approximate nearest neighbor search in high dimensions. We empirically demonstrate
that LSH based retrieval and prediction methods vastly speed up querying time while
sacrificing only a trivial amount of accuracy as a cost.

Despite being fast and accurate, the generic LSH has two shortcomings. First,
it is capable of utilizing only one similarity measure at a time. To overcome this
limit, we introduce Stratified LSH (SLSH) which finds similarity among the data
from a more integrated perspective by employing multiple distance metrics in one
framework. SLSH is essentially a dual-level hierarchical LSH where each LSH layer is
associated with a distinct distance metric capturing a unique facet of similarity. The
second shortcoming and the main bottleneck of the generic LSH is that it involves
exhaustive distance calculations as a subroutine when short-listing the candidate set
to find the final nearest neighbors. To surmount this, we propose Collision Frequency
LSH (CFLSH) which short-lists the candidate set by simply counting the frequency

3

of collision based on the key idea that the more frequently an element and a query
collide across multiple LSH hash tables, the more similar they are. We show that
with SLSH and CFLSH, we improve the efficiency of LSH in terms of both prediction
accuracy and querying speed.

We demonstrate our proposed methods on a mean arterial blood pressure dataset
extracted from the MIMIC II database in the context of predicting acute hypotensive
episodes in ICU. To examine the generality of our methods with respect to scaling,
we validate our methods on datasets with various dimensions and item counts.

Thesis Supervisor: Una-May O'Reilly
Title: Principal Research Scientist

4

Acknowledgments

I am greatly indebted to many people around me at MIT. I can never thank them

enough. First of all, I would like to express my sincere gratitude to my research

advisor Dr. Una-May O'Reilly whose guidance and support were unwavering these

past five years. She was always positive in the face of my numerous failures along the

way and encouraged me to pursue a broad vision and freely explore my own research

interests. Without her passion, generosity, and patience, completion of this thesis

would have not been possible. I am much obliged to my thesis committee members

Professor Peter Szolovits and Professor Piotr Indyk. I thank Pete for introducing me

to the field of biomedical computing and for his mentorship and thorough comments

which greatly improved this thesis. Piotr's support has been invaluable for me to

pursue research on LSH. His feedbacks on my research were always very insightful,

encouraging, and judicious. I would also like to acknowledge my academic advisor

Professor Berthold Horn for his guidance during my graduate study.

I am grateful for the help and friendship of Erik Hemberg. Erik has been an excel-

lent collaborator and a co-author of mine for several papers. I would like to thank the

past and present members of the ALFA group including Miguel Paredes, Franck Der-

noncourt, Stjepan Picek, Sarah Alhumoud, Nicole Hoffman, Ignacio Arnaldo, Kalyan

Veeramachaneni, Jacob Rosen, and Chidube Ezeozue for creating a great research

environment. I also appreciate my officemates Shaiyan Keshvari, Wenzheii Yuan, and

Ben Wolfe for all interesting conversations and distractions. I owe huge thanks to my

friends for their continual support during my ups and downs: Eunsuk Kang, Sangwoo

Jun, Dongliyun Jin, Jaekyung Ha, Sangtae Kim, Sangwon Byun, Hijung Shin, Se-

joon Lim, Joseph Lim, Eunhee Sohn, Joohyun Seo, Heesang Lee, Yisoo Pyon, Adam

Kuang, Mic Byrne, Charlie Maher, Laura Kim, and Jina Yoo. My graduate study

was supported by a generous fellowship from Kwanjeong Educational Foundation.

Finally, I would like to express my deepest gratitude and dedicate this thesis to

my amazing father, mother, brother, and grandmother for their unconditional love

and unfailing trust in me.

5

6

Contents

1 Introduction

1.1 M otivation .

1.2 Background and Technical Challenge

1.2.1 Parametric Time Series Analysis Methods .

1.2.2 Similarity-based Search: k-Nearest Neighbor

1.3 Proposed Approach

1.3.1 Locality-Sensitive Hashing

1.3.2 Research Questions

1.4 Contributions .

1.5 O rganization .

Method

2 Related Work

2.1 Similarity-based Time Series Methods

2.2 Locality-Sensitive Hashing

2.2.1 Hash Function Families

2.2.2 Theoretical Bounds

2.2.3 Performance Improvement

2.2.4 Applications .

2.2.5 Locality-Sensitive Hashing on Physiological Data

2.2.6 Multilevel Locality-Sensitive Hashing

2.2.7 Frequency-based Locality-Sensitive Hashing . . .

2.3 Acute Hypotensive Episode Prediction

7

21

21

23

23

24

26

26

27

28

30

31

. 31

. 33

. 34

. 34

. 35

. 37

. 38

. 38

. 39

. 39

3 Data 41

3.1 MIMIC II Database 41

3.2 Acute Hypotensive Episode . 43

3.3 Preprocessing . 44

3.4 Three Datasets . 46

3.5 Data Properties . 47

3.5.1 Descriptive Statistics . 48

3.5.2 Interpoint Distance . 50

4 Locality-Sensitive Hashing for Waveform Retrieval 53

4.1 M otivation . 53

4.2 M ethod . 54

4.2.1 Locality-Sensitive Hash Function Family 54

4.2.2 Locality-Sensitive Hashing Construction (Indexing) 57

4.2.3 Locality-Sensitive Hashing Retrieval (Querying) 59

4.2.4 Advantages of Locality-Sensitive Hashing 60

4.3 Experim ent . 61

4.4 Results and Discussion . 62

4.4.1 Nearest Neighbor Retrieval . 62

4.4.2 Sensitivity Analysis . 66

4.4.3 Impact of Dimension and Quantity of Data 67

4.5 Chapter Conclusion . 68

5 Locality-Sensitive Hashing for Critical Event Prediction 73

5.1 M otivation . 74

5.2 M ethod 75

5.3 Experim ent . 76

5.4 Results and Discussion 77

5.4.1 Acute Hypotensive Episode Prediction 78

5.4.2 Performance under Alternative Measures 81

5.4.3 Hash Table Bucket Distribution 82

8

5.4.4 Impact of Retrieval on Prediction

5.4.5 Impact of Lag Duration and Data Quantity

5.5 Chapter Conclusion .

6 Stratified Locality-Sensitive Hashing

6.1 Motivation .

6.2 M ethod .

6.3 Experiment .

6.4 Results and Discussion .

6.4.1 Retrieved Nearest Neighbor Set

6.4.2 Acute Hypotensive Episode Prediction

6.4.3 Multi-Distance Measures .

6.4.4 Commutativity .

6.5 Chapter Conclusion .

7 Collision Frequency Locality-Sensitive Hashing

7.1 Motivation.. .

7.2 Method .

7.3 Experiment .

7.4 Results and Discussion .. .

7.4.1 Acute Hypotensive Episode Prediction

7.4.2 Sensitivity Analysis .

7.4.3 Discussion .

7.5 Chapter Conclusion .

8 Conclusions

8.1 Summary of Thesis Contributions

8.2 Future Directions

8.2.1 Robust Time Series Representation

8.2.2 Locality-Sensitive Hashing for Multivariate,

8.2.3 Data and Task Dependent Hashing

.

.

.

Multi-Source Data

.

9

84

85

86

91

91

94

97

99

99

100

102

103

104

109

109

110

113

113

114

115

116

117

123

123

125

126

128

128

8.3 Final Remarks . 129

10

List of Figures

1-1 Overview of efficient retrieval of similar physiological waveforms given

an individual ("patients with trajectories like mine"). 22

3-1 MIMIC II database overview. Image source: MIT Critical Data [251. . 42

3-2 An example of an acute hypotensive episode (red box). 43

3-3 Arterial blood pressure (ABP) beats and morphological properties. Im-

age source: PhysiologyWeb [101]. 45

3-4 Problem definition of AHE prediction 46

3-5 The distribution of the whole data for DataLag 300, 1x Frequencies of

each kind of data are relative to the size of the total data set (6,467

segments). AHE positive data has a lower mean than the AHE negative

data.......... 48

3-6 Distribution of per segment means for DataLag 300, 1x. Frequencies of

each kind of data are relative to its own data size. AHE positive data

has a lower mean than the AHE negative data 49

3-7 Distribution of per segment standard deviations for DataLag 300, 1x. Fre-

quencies of each kind of data are relative to its own data size. There

is no significant difference between the AHE positive and negative data. 50

3-8 Average distribution of interpoint distances under (Top) Li and (Bot-

tom) cosine for DataLag 300, Ix52

11

4-1 The overview of LSH construction (red arrow) and retrieval (blue, ar-

row) procedures for a single hash table. For construction, similar wave-

forms are indexed into the same hash buckets. For retrieval, a query

is first hashed to find the points included in its matching bucket in

the hash table. Then, we linearly compute the distance between the

query and such set of points (the candidate set with a size significantly

smaller than that of the reference set) to retrieve the approximate

nearest neighbors of the query. For multiple tables, the final candidate

set for the linear similarity search consists of the union of the points

included in all matching buckets from all L hash tables. 58

4-2 Trade-off between retrieval accuracy and speed-up factor of L1LSH

performance relative to the linear KNN. Each point corresponds to a

parameter configuration of LSH. Squared points indicate the optimal

parameters for different values of k. 63

4-3 Trade-off between retrieval accuracy and speed-up factor of COSLSH

performance relative to the linear KNN. Each point corresponds to a

parameter configuration of LSH. Squared points indicate the optimal

parameters for different values of k. 64

4-4 Trade-off between retrieval accuracy and speed-up factor of E2LSH

performance relative to the linear KNN. Each point corresponds to a

parameter configuration of LSH. Squared points indicate the optimal

parameters for different values of k. 65

4-5 Comparison of the retrieval accuracy and speed-up trade-off profiles of

L1LSH, COSLSH, and E2LSH. Each point corresponds to a parameter

configuration of LSH. For a given accuracy, speed-ups are in the order

of COSLSH, LiLSH, and E2LSH from the fastest to the slowest. . . . 66

4-6 Sensitivity analysis of the retrieval accuracy with respect to (Top) the

number of hash functions (m) per table and (Bottom) the number of

hash tables (L) for L1LSH. 69

12

4-7 Sensitivity analysis of the speed-up factor with respect to (Top) the

number of hash functions (m) per table and (Bottom) the number of

hash tables (L) for L1LSH. 70

4-8 Trade-off between retrieval accuracy and speed-up factor of LSH rela-

tive to KNN on DataLag 300, Ix, DataLag 30, ix, and DataLag 30, 10x under

(Top) Li (Middle) cosine, and (Bottom) Euclidean distances. Using a

smaller dimensional data and a larger quantity of data each improves

accuracy and speed-up....... 71

5-1 Trade-off between prediction accuracy and speed-up factor of L1LSH

relative to the linear KNN. Each point corresponds to a parameter

configuration of LSH. 78

5-2 Trade-off between prediction accuracy and speed-up factor of E2LSH

relative to the linear KNN. Each point corresponds to a parameter

configuration of LSH. 79

5-3 Trade-off between prediction accuracy and speed-up factor of COSLSH

relative to the linear KNN. Each point corresponds to a parameter

configuration of LSH. 80

5-4 Comparison of the prediction accuracy and speed-up trade-off profiles

of L1LSH, COSLSH, and E2LSH for prediction based on 1-NN (k = 1).

Each point corresponds to a parameter configuration of LSH. 81

5-5 Comparison of MCC and speed-up trade-off profiles of L1LSH, COSLSH,

and E2LSH for prediction based on 1-NN (k = 1). Each point corre-

sponds to a parameter configuration of LSH. 82

5-6 Comparison of FNWA and speed-up trade-off profiles of L1LSH, COSLSH,

and E2LSH for prediction based on 1-NN (k = 1). Each point corre-

sponds to a parameter configuration of LSH. 83

13

5-7 Average bucket size distribution under L1LSH, COSLSH, and E2LSH

with (Top) m = 5 and (Bottom) m = 50 on DataLag 300, x. Hash

buckets are sorted in terms of their size in descending order on the

horizontal axis. Accumulated normalized data size is represented on

the vertical axis (1 denotes the size of the entire data). The closer the

plot is to the diagonal line, the more uniformly the data is indexed

across all valid hash buckets. 87

5-8 Relative retrieval versus prediction accuracy of L1LSH to the linear

KNN search for k = 1. Each point corresponds to a parameter config-

uration (m, L) of LSH. 88

5-9 Trade-off between prediction accuracy and speed-up factor of the LSH

relative to KNN on DataLag 300, ix, DataLag 30, lx, and DataLag 30, lOx

with (Top) L1LSH (Middle) COSLSH, and (Bottom) E2LSH. Using

a longer lag and a larger quantity of data each improves prediction

accuracy and speed-up. 89

6-1 An illustration of hypothetical time series with different amplitudes

and shapes. By the Li distance, (a, b) and (c, d) are grouped as

similar to each other whereas by the cosine distance, which requires

normalization, (a, c) and (b, d) are grouped as similar. 92

6-2 SLSH Indexing. We first stratify the data according to L1LSH at the

outer level. Then, on each bucket with a significant size, we apply

another layer of LSH with COSLSH at the inner level. The figure

illustrates the simple case when one hash table is built at the outer level. 94

6-3 SLSH Retrieval and Prediction. We retrieve the approximate nearest

neighbors of a query of interest by applying the same outer and inner

hash functions used for construction and perform the linear search

within the candidate set. Prediction is done by majority vote. The

figure illustrates the simple case when one hash table is built at the

outer level. 95

14

6-4 The 5-nearest neighbors (dashed lines) of a waveform query (red line)

retrieved by (Top) the standard L1LSH, (Middle) the standard COSLSH,

and (Bottom) SLSH. Each set is similar to the query in terms of am-

plitude, shape, and both amplitude and shape by LILSH, COSLSH,

and SLSH . 105

6-5 Comparison of SLSH (Li-COS) to L1LSH for prediction of AHE with

1-NN on DataLag 300, 1. Given an instance of L1LSH (green) as its

benchmark and as the outer layer, SLSH (blue) outperforms for the

entire range of (min, Lin). Each point corresponds to a parameter con-

figuration (m, L) and (min, Lin) of L1LSH and SLSH, respectively. . . 106

6-6 SLSH trade-off across all three datasets. Squares indicate L1LSH in-

stances selected by the 1% loss in accuracy criterion. Each non-squared

point corresponds to a parameter configuration (min, Lin) of SLSH.

Across all datasets, SLSH outperforms L1LSH in terms of accuracy

and speed-up. 107

7-1 Comparison of CFLSH with Li to L1LSH for (Top) k = 1, (Middle)

k = 5, and (Bottom) k = 10. Each point corresponds to a parameter

configuration (m, L) of LSH. 118

7-2 Comparison of CFLSH with cosine to COSLSH for (Top) k = 1, (Mid-

dle) k = 5, and (Bottom) k = 10. Each point corresponds to a param-

eter configuration (m, L) of LSH. 119

7-3 Sensitivity analysis of the prediction accuracy against the number of

hash functions used per table (m) with Li: (Top) CFLSH, (Middle)

the standard LSH, and (Bottom) the difference between the two. . . . 120

7-4 Sensitivity analysis of the prediction accuracy against the number of

hash functions used per table (m) with cosine: (Top) CFLSH, (Middle)

the standard LSH, and (Bottom) the difference between the two. . . . 121

8-1 Sources of realistic data abnormalities in time series data 126

15

8-2 Multi-resolution histogram representation H(x) = EZ wihi(x) for a

time series. Each histogram hi, with its learned weight wi, is built over

a specified period of time [to, tj]. 127

16

List of Tables

3.1 Data statistics for DataLag 300, Ix (unit: mmHG)............. 49

6.1 Prediction models based on SLSH, KNN, the standard LSH, and en-

sembles of KNN and LSH. KNN and the standard LSH serve as a

baseline for comparison for SLSH. 98

6.2 Prediction performance on DataLag 300, 1x, DataLag 30, 1x, and DataLag 30, 10x-

Across all datasets, SLSH outperforms L1LSH with respect to predic-

tion accuracy (%) and speed-up factor (x). 101

6.3 Predictor performance on DataLag 300, 1x Exploiting the data with mul-

tiple distance metrics is more advantageous as shown by the higher ac-

curacies obtained by the ensembles with the AND operator and SLSH

in comparison to the individual predictors with a single distance met-

ric. SLSH is a better strategy to combine distance metrics than using

the ensemble as it generates more accurate and faster results. The

order of outer and inner operations of SLSH impacts the prediction

performance as SLSH (Li-COS) and SLSH (COS-Li) generate differ-

ent outcom es. 102

17

18

List of Algorithms

1 Standard Locality-Sensitive Hashing: Indexing 59

2 Standard Locality-Sensitive Hashing: Querying 60

3 k-Nearest Neighbor Classification . 76

4 Stratified Locality-Sensitive Hashing: Indexing 96

5 Stratified Locality-Sensitive Hashing: Querying 97

6 Collision Frequency Locality-Sensitive Hashing: Querying 112

19

20

Chapter 1

Introduction

This thesis consists of methodological studies using locality-sensitive hashing (LSH)

on two clinically important tasks: efficient retrieval of similar physiological waveforms

given an individual and subsequent medically critical event prediction. We seek to

bring computer science theory into practice in the field of clinical medicine. We

demonstrate our LSH-based retrieval and prediction methods on an arterial blood

pressure dataset extracted from the MIMIC II database. In this chapter, we intro-

duce motivations and background behind our work, technical challenges we face, our

proposed approach to overcome challenges, and our contributions to the field.

1.1 Motivation

The amount of data collected in the medical community has recently been explod-

ing and is becoming more overwhelming due to widespread use of affordable sen-

sors and storage devices. Contexts range from EEG (electroencephalography), ECG

(electrocardiography), and blood pressure sensing in hospitals, to mobile phones or

lightweight wearable health tracking devices in homes and ambulatory care settings.

The ever increasing volume and detail of information captured from hospitals and

personal healthcare devices show promising potential to direct the medical practice

toward more data-driven, evidence-based, and personalized medicine. However, the

massive repositories of such physiological time series are largely under-utilized due

21

Massive Waveform Repository
- High-dimensional, high frequency

- No clear underlying structure Approximation Level

"Patients Like Me"
Patient's Query VA set of similar

- A segment of physIologIcal physiological waveforms
waveforms - Similar patients' records,

- Patient's record, symptoms symptoms

Scalable retrieval system for massive physiological data
- Significantly faster querying time
- Trivial loss of accuracy as a trade-off

Our solution: Locality-Sensitive Hashing
- Very fast approximate nearest neighbor search in high dimensions
- Similarity preserving hashing method to provide rapid, preliminary filtering of

nearest neighbor candidates prior to querying

Figure 1-1: Overview of efficient retrieval of similar physiological waveforms given an
individual ("patients with trajectories like mine").

to their granular detail, overwhelming size, and lack of proper tools. Efficiently

leveraging these massive datasets is a key challenge that, when resolved, will support

a new paradigm of scientific discovery and operational innovation in medicine. Access

to unprecedented amounts of data opens up an opportunity for deeper insight, earlier

intervention, and engagement.

In this thesis, we develop highly efficient methods that make it practical to search

massive physiological time series repositories to rapidly identify waveforms similar

to those from a given individual. We call this concept "patients with trajectories

like mine" (Figure 1-1). The thesis also develops methods to exploit rapid similar

waveform retrieval to enable critical event prediction in the intensive care unit (ICU)

setting. In the long term, our work will potentially contribute toward to replacing

population-based models of disease with specific models based on groups of highly

similar individuals, thereby allowing more precise diagnoses, critical event detection,

prediction of illness trajectories, and more individualized medical interventions.

We provide one example where our work can potentially be valuable. In-hospital

22

cardiac arrest (JHCA) is a crucial event that affects 200,000 adults and 6000 pedi-

atric patients each year in the US [36]. Studies suggest that most cardiac arrests are

predictable. In one study, 75% of IHCA cases were preceded by premonitory dete-

riorations in blood pressure, respiration, heart rate rhythm, or oximetry [11, 13] and

over one third were determined preventable [36]. However, premonitory trends are

frequently missed due to poor recognition of trends, which can be subtle. Thus, the

ability to efficiently compare a given patient's physiological monitoring data with large

databases to identify prior patients with similar trajectories and known outcomes will

allow more precise predictions and support smarter alarms.

1.2 Background and Technical Challenge

The main axes of challenge in mining meaningful information from massive repos-

itories are time, accuracy, and scale. Fast yet accurate processing of physiological

waveform data is becoming essential in medical practice, especially in urgent care

and ICU settings, as everything there is time-critical and also requires a high degree

of correctness. Plus, the size of medical record corpora that we extract information

from is vast and keeps increasing. Therefore, there is a strong need for large-scale, yet

accurate data processing in almost real time. Many efforts in the past have sought

to meet such need with various parametric and non-parametric methods. We briefly

review the approaches tried in the past and the technical challenges we face when

using these approaches in the context of physiological time series analysis.

1.2.1 Parametric Time Series Analysis Methods

Pattern mining plays a crucial role permitting medical practitioners and researchers

to acquire high-quality relevant information from a massive repository of medical

records. Traditional statistical methods for estimation of such patterns rely heav-

ily on the use of parametric models [17, 48] in order to provide measures of effect

and statistical significance. These are models that typically assume the entire data-

generating distribution (i.e., the underlying mechanism that created the data) can

23

be defined by relatively few parameters. However, these assumptions become highly

unrealistic in healthcare settings because, due to the very complex and noisy nature

of medical and physiological data, there is often no clear sense of its underlying struc-

ture which may vary by different patients and symptoms. Accordingly, these methods

may be unreliable due to bias introduced by misspecified parametric models and are

generally not flexible or scalable enough to handle a large number of variables and

massive quantity of data.

For example, many of recent time series analysis methods are based on extensions

of a parametric method called Dynamic Bayesian Network (DBN) [94j. However, the

approach using variants of DBN has several limitations due to the requirement of

a good hidden state model and the complicated, expensive learning and inference.

In particular, the complexity of clinical data makes it difficult to form good prior

knowledge which many conventional parametric and Bayesian models depend on. On

the other hand, albeit less popular, there has been a series of works which showed the

effectiveness of simple non-parametric similarity-based methods over many popular

parametric models for time series classification [52,133].

1.2.2 Similarity-based Search: k-Nearest Neighbor Method

A competitive alternative is to use a non-parametric approach which "lets the data

speak for itself" without much restriction of parametric models. One of the core

problems in such an approach is similarity-based nearest neighbor (NN) search [23,

131]. For a given query (such as a patient's record, a list of symptoms, or a piece of the

physiological waveforms of interest herein), NN retrieval returns a set of records that

are similar to the query. The NN set also offers extrapolative information. It may also

reveal a complex pattern. When records extend forward in time past that of the query,

they reveal outcomes of patients, chosen protocols, and diagnostics. Questions such

as, for people with the same symptoms, what critical events subsequently occurred,

what treatments produced the best recovery, and/or what side-effects were observed,

can be answered.

The k-nearest neighbor (KNN) method is a simple non-parametric similarity-based

24

learning algorithm. In essence, it memorizes the entire reference dataset and finds a

group of k samples that are closest to a query by exhaustively going through every

point in the reference dataset and computing its distance to the query. Typically, one

uses the NN set to extrapolate a class label or response variable for the query based

on predominance.

Unlike parametric models like DBN, KNN can "let the data speak for itself" since

it does not summarize the input data by a number of parameter values of a certain

model in the training phase or make any assumption on the underlying state and

distribution of input data. Instead, the algorithm simply stores the entire training

data without any summarization or generalization. Thus, the method is particularly

useful when we do not have any prior knowledge about the data. Since it is very

difficult to assume the underlying mechanism of human physiological signals, NN

methods can be advantageous. Since KNN based classifiers can handle highly non-

linear decision boundaries, it can be more advantageous for complex physiological

state classification than many linear models.

The simplicity and practicality of KNN comes with several limitations.

" First, it is heavily influenced by the choice of distance metric and neighbor

weighting rule. These choices are difficult for patient waveform data.

* Second, a distance metric only expresses a single perspective but waveforms

may be similar based on various criteria, such as shape and amplitude, where

each is expressed by a different distance metric.

" Third, KNN becomes highly impractical when the dimensionality of data is high

and/or when the quantity of data is massive due to the curse of dimensionality.

It is known that either the search time or space requirement is exponential in

the number of dimensions and is linear to the dataset size [32].

In particular, high dimensionality is a property of physiological waveforms. Dis-

tance measures break down in high dimensions [1] and research has shown how

the most efficient repository indexing strategies (such as C4.5 and tree-based meth-

ods [131], intended to support sub-linear time retrieval) become inefficient and exhibit

25

linear behavior as dimensionality increases [127]. The traditional tree-based indexing

methods (such as R-trees [46], k-d trees [14], and sr-trees [66]) degenerate into a linear

scan in sufficiently high dimensions (larger than 10 dimensions [40]) both in theory

and in practice [127].

1.3 Proposed Approach

To overcome the challenges we face with previously attempted approaches, our pro-

posal is to utilize locality-sensitive hashing which is a fast approximate nearest neigh-

bor search that is effective in large, high dimensional data. We briefly explain the

basics of LSH and the research questions we aim to answer in this thesis.

1.3.1 Locality-Sensitive Hashing

Our goal is to build a scalable retrieval and prediction system for high dimensional

massive physiological data, with a significantly faster querying time, while maintain-

ing accuracy in a reasonable range in comparison to the linear KNN or tree-based

methods. In order to achieve this goal, in this thesis, we propose retrieval and pre-

diction methods based on a computer science theoretical foundation called locality-

sensitive hashing (LSH) [54], which allows a very fast, approximate nearest neighbor

search in very high dimensions.

Whereas the linear, exhaustive KNN method searches for the exact NNs, LSH

aims to speed-up the search process by looking for approximate NNs instead. LSH

is an approximate search method enabling a quick retrieval of a small approximate

nearest neighbor set with provable sub-linear query time and sub-quadratic space

complexity. It uses a specialized similarity preserving hashing method to provide

preliminary filtering of NN candidates to reduce the time cost of a follow-up linear

search among them. Locality-sensitive hash functions have the unique property that

similar elements are statistically likely to be hashed to the same value (i.e. collision).

Given a particular distance metric and its corresponding hash function family, LSH

maintains a number of hash tables containing the dataset points. The approximate

26

nearest neighbors of a query can be obtained by hashing the query and scanning the

hash buckets which the query collides with across the tables. By being approximate,

LSH intrinsically introduces the trade-off between accuracy and speed depending on

the level of approximation. Users can decide whether to wait for the exact answer

by spending more time or to be satisfied with a much quicker approximation 140].

It is important to note that approximation of NNs is justifiable for most practical

purposes because even in exact search, a distance measure is only an approximation

to the ground truth. A detailed explanation of LSH is presented in Section 4.2.

In this thesis, we demonstrate the effectiveness of LSH on the waveform retrieval

and event prediction tasks on an arterial blood pressure dataset extracted from the

MIMIC II database [108]. To examine LSH on patient waveform retrieval, we reference

a repository of tens of thousands of highly complex blood pressure waveform segments.

The critical event of interest for us to predict is an acute hypotensive episode (AHE).

An AHE is a sudden dropping of arterial blood pressure to below a critical level

for some duration of a time window in ICU that demands immediate attentions and

interventions. It is crucial to detect AHE accurately and fast, because if left untreated,

such episodes may lead to irreversible organ damage and eventually death.

1.3.2 Research Questions

Throughout the thesis, we aim to bring answers to the following research questions.

o Given a repository of highly complex physiological waveforms and a query, is

there an efficient way of retrieving similar physiological time series that is fast,

accurate, and scalable?

- How effective is LSH to meet the above requirements (in terms of retrieval

accuracy and querying time) in comparison to the linear KNN method?

- Given we use a similarity-based method, what are the appropriate bases

(i.e. distance metrics)?

- How does retrieval performance (accuracy and time) scale as dimension or

quantity of data changes?

27

- How sensitive or robust is the retrieval performance with respect to the

parameters of LSH?

" Can a similarity-based retrieval set of arterial blood pressure waveforms effec-

tively be leveraged for prediction of a critical event (acute hypotension) in ICU?

- How effective is the prediction of AHE based on extrapolating the infor-

mation of the retrieved nearest neighbors obtained by LSH, in terms of

prediction accuracy and querying time?

- What is the cause of the large difference in the querying speeds among

LSH based on different distance metrics?

- How does prediction performance scale as the lag duration t or quantity of

data changes?

" Given the limit of LSH that it can use only one distance metric at a time, is there

an effective way of utilizing multiple distance metrics in one LSH framework?

- Is the multi-metric strategy more effective than using a single metric in

terms of prediction accuracy and querying time?

" Given the bottleneck of LSH which is caused by entailing exhaustive distance

calculations between a query and its nearest neighbor candidates, is there any

effective way of circumventing the bottleneck?

1.4 Contributions

The main contributions of this thesis are as follows. To the best of our knowledge,

our work to date is the first extensive application of LSH to physiological time series

retrieval and event prediction.

e We address the question of how we can achieve fast, yet accurate and scal-

able retrieval of similar physiological waveform time series for a given query.

The length of historical data prior to the event prediction window (explained in detail in Sec-

tion 3.3).

28

We are the first to apply locality-sensitive hashing to approach this problem.

When compared to the exhaustive KNN, our method based on LSH largely

speeds up the retrieval time of similar physiological waveforms without sac-

rificing significant accuracy when demonstrated on an arterial blood pressure

dataset extracted from the MIMIC II database. This work was published in [73]

and is presented in Chapter 4.

" We answer the question of whether a high precision similarity-based retrieval

set of arterial blood pressure waveforms can effectively be exploited to pre-

dict acute hypotensive episodes in ICU. In doing so, we extend the LSH-based

retrieval to the prediction task by extrapolating the information of similar wave-

forms via majority vote. Similar to the retrieval case, compared to using the

linear exhaustive KNN, our proposed method based on LSH vastly speeds up

the prediction time up to two orders of magnitude while sacrificing only 1%

of prediction accuracy. This work was published in [74] and is presented in

Chapter 5.

" We propose a new similarity based prediction technique called stratified locality-

sensitive hashing (SLSH). It finds similarity among the data from a more in-

tegrated perspective by employing multiple distance metrics in one framework,

which previously was not feasible with the standard LSH. Comparing SLSH to

the standard LSH, we demonstrate that SLSH yields a higher prediction ac-

curacy and further shortens the sub-linear querying time of the standard LSH

while adding only trivial storage overhead. A part of this work was published

in [70, 71] and the more extended version has been submitted to a conference

for review. This contribution is presented in Chapter 6.

" We address the question of whether the short-listing by calculating the dis-

tances between the query and every candidate set element (the main bottleneck

of LSH) is optimal and whether there exists an effective way that avoids the

bottleneck. To answer this, we propose a new variant of LSH, namely collision

frequency locality-sensitive hashing (CFLSH). Unlike the standard LSH which

29

only utilizes a distance metric, in CFLSH, the short-listing step from a pool of

pre-selected candidates filtered by locality-sensitive hash functions to the final

nearest neighbor set relies upon the frequency of collision along with distance

information. We show that CFLSH with the Li distance has a higher predic-

tion accuracy and further accelerates the sub-linear querying time obtained by

the standard LSH. This work will be published in [72]. This contribution is

presented in Chapter 7.

1.5 Organization

The rest of this thesis is organized as follows. In Chapter 2, we describe related

work. Then, we explain datasets used in this thesis in Chapter 3. Chapters 4 and

5 present the result of applying LSH on the problems of physiological time series

retrieval and of critical event prediction, respectively. Chapter 6 introduces stratified

LSH. In Chapter 7, we present collision frequency LSH. Finally, conclusions and future

directions are in Chapter 8.

30

Chapter 2

Related Work

Although there is a vast literature on time series analysis in general [37,48], searching

through high frequency, high dimensional physiological time series data is a rela-

tively unexplored topic. Developing robust algorithms for correctly finding predictive

patterns in long non-stationary time series data is challenging. This chapter is or-

ganized as follows: we provide a survey and discuss works on similarity-based time

series search, prediction methods applied in critical care, theories and applications of

locality-sensitive hashing (LSH), and acute hypotension prediction.

2.1 Similarity-based Time Series Methods

Clinical decision making based on extrapolating information from similar patients of a

query patient has a long history. In the 1970s, the similarity-based "patients like me"

approach was applied on electronic health records (patient charts) to make prognoses

of ischemic [90] and coronary heart disease [105]. More recently, Google Correlate

was released that finds web search terms whose popularity over time best match a

user-provided time series [117]. Based on asymmetric hashing for Pearson correla-

tion, one of its highlighted applications is predicting flu trends. Likewise, Lehman

et al. [84] used the Gaussian mixture model and the k-nearest neighbor method to

learn dynamical patterns of temporal data and find similarity among them. They

used their method on applications such as search-by-example based data retrieval,

31

event classification, and forecasting hypotensive episodes. Saeed et al. [107] proposed

a wavelet-based symbolic transformation that allows the use of existing efficient doc-

ument information retrieval algorithms to assess similar patterns in multi-parameter

physiologic time series. They applied their method to predict hemodynamic dete-

rioration. For more extensive review of how machine learning in used in decision

support in critical care, one should refer to [62]. For in-depth overview of the general

time series methods based on data mining and on econometrics based time series

analysis (e.g. AR, ARMA, ARIMA models), [37] and [48] provide thorough reviews,

respectively.

Recent literature in data analytics suggests applying simple nonparametric meth-

ods with a large quantity of data in order to let the "Big Data" truly speak for itself

instead of using sophisticated parametric models with a small amount of data [47].

Numerous studies show the effectiveness of non-parametric nearest neighbor meth-

ods over many popular parametric models for time series classification. For in-

stance, [133] showed that the one-nearest-neighbor classifier with the dynamic time

warping (DTW) distance measure has a superior performance over a multi-layer per-

ceptron neural network, hidden Markov model, and decision tree. In [521, the authors

showed that their nearest neighbor based classifier performs better than support vec-

tor machine, naive Bayes, and C4.5 decision tree for classifying patients with abnormal

hearts from a small electrocardiography (ECG) dataset. [75] showed that the nearest

neighbor classifier for predicting acute hypotensive episodes continuously improves

as the dataset size gets larger while the dynamic Bayesian network does not scale

well with increasing data size. However, the nearest neighbor search is in general

expensive for large-scale datasets due to high dimensionality and large quantity of

data. Several works seek to overcome such difficulties by finding either effective data

representations or efficient distance measures.

Representation There has been a series of work on finding the best representa-

tion for time series data such as Discrete Fourier Transformation [35], Single Value

Decomposition [35], Discrete Cosine Transformation [78], Discrete Wavelet Trans-

formation [19], Piecewise Aggregate Approximation [671, and Symbolic Aggregate

32

Approximation [86]. Most of the representations focus on dimensionality reduction

and finding intrinsic dimensionality of data. In [311, it was shown that over many data

sets, there is no single representation that performs better than others and the opti-

mal choice of representation method is data-specific. In our LSH methods presented

in this thesis, we use a raw representation of data in its vector form without any

dimensionality reduction and still remain efficient since LSH is known to be effective

in high dimension [49].

Distance Measures Similarly, in conjunction with a representation, many efforts

have been made to speed up the computation of the following distance measures:

Euclidean distance [35, 93], Manhattan distance [134], Lp-norm [1341, DTW [16,68,

103], Edit Distance based on Longest Common Subsequence [119], and Edit Distance

[21, 22]. Among these, the UCR suite for DTW [103] and Euclidean distance [93]

is known to be the fastest in each distance category. DTW performs better than

others for data sets of small size and short time series [31], but the performance

converges to that of Euclidean distance for large datasets. In general, branch-and-

bound techniques [103] do not scale well with long time series, although they are

known to be able to process massive datasets efficiently. In our work, we emphasize

robustness to the length of time series and scalable performance that improves with

greater item count.

2.2 Locality-Sensitive Hashing

Since its first introduction by Indyk and Motwani [54], locality-sensitive hashing has

made a significant impact on the problem of large-scale nearest neighbor search in

high-dimensional data. In large, the focus of research on LSH can be divided into

three aspects: developing different LSH hash families for various distance metrics, ex-

ploring the theoretical boundaries of LSH, and improving the performance of the LSH

methods [122]. We provide a survey on each aspect in the following subsections. We

additionally review applications of LSH and two specific variants of LSH (multilevel

and frequency based LSH) whose works have similar principles to our works.

33

2.2.1 Hash Function Families

The primary focus of LSH research is to develop locality-sensitive hash function fam-

ilies for various distance metrics. Since the original LSH was proposed for the Ham-

ming distance [40, 541, several variations of the original version have been proposed

for locality-sensitive hash function families over a wide range of distance metrics. We

categorize the distance metrics into four groups: the angle-based (cosine) distance,

the Lp distance, the Jaccard coefficient, and the rest.

The LSH for the angle-based distance includes the random projection LSH [4,20],

super-bit LSH [59], kernelized LSH [80], LSH with learnt metric [81], concomitant

LSH [34], hyperplane hashing [56], and cross-polytope LSH [6]. Many efforts have

also been made to design hash families for the Lp distance, especially for the Euclidean

distance. They include LSH for the Li distance [3,40], the Euclidean distance [7,261,

the p-stable distributions [26], leech lattice LSH [4], and spherical LSH [8, 115]. An

extensive comparison of different LSH methods for the Euclidean distance is found

in [100]. Developments for the Jaccard coefficient (used extensively in information

retrieval) include min-hash LSH [18], min-max hash [58], and B-bit minwise hashing

[85]. Additionally, variants of LSH have been developed for the Hamming distance

[40, 541 and the X2 distance (for data represented as a histogram) [43]. For more

extensive review of the above LSH methods, refer to [5,122,125].

2.2.2 Theoretical Bounds

Another line of research, especially popular in the theoretical computer science com-

munity is exploring theoretical bounds of LSH. As this research area is continuously

being updated, we briefly cover only the most up-to-date noteworthy results.

For the Euclidean distance on the unit sphere (the special case which is equivalent

to the angular distance or cosine similarity used in many applications), spherical

LSH [115] is known to have the best known provable guarantees, but has a very

limited practical use because it is based on complex hash functions that are time

consuming to evaluate. On the other hand, the seminal hyperplane LSH [20] has

34

worse theoretical guarantees, but works very well in practice. Andoni et al. [6] closes

the gap between theory and practice. With their cross-polytope and multi-probing

based LSH for the angular distance, they meet the optimal guarantee of [115], but also

improves over the hyperplane LSH. They also provide a practical algorithm released

as the FALCONN software package [104].

For the Hamming distance, [54,95] prove the optimal lower bound. Also, [4] proves

the tight bounds for the Euclidean distance. "Beyond LSH" [7] presents a new data-

dependent data structure based on multilevel hashing for the approximate nearest

neighbor problem in the Euclidean space (and in the Hamming space with a simple

reduction) that is the first improvement over [4, 541 and the first data structure that

bypasses the classic LSH lower bound by [95]. [8] makes further improvement over

"Beyond LSH" with a better theoretical guarantee.

2.2.3 Performance Improvement

Several strategies have been proposed to improve the performance of the original LSH

in various aspects.

Space requirement One of the main drawbacks of LSH is that in practice, it

requires a large number of hash tables to achieve good search quality. Panigrahi et

al. [991 proposed entropy-based LSH which attempts to reduce the storage requirement

for LSH. It does so by using both the original query point and its randomly perturbed

nearby points as additional queries to combine the candidate sets.

Another effort to reduce the storage requirement of LSH is the multi-probe LSH

[64,88]. It probes the matching hash bucket of a query as well as several other buckets

in the same hash tables. The additionally probed buckets are the ones with hash keys

not too distant from that of the colliding hash bucket. It was shown that the multi-

probe LSH effectively reduced the space requirement by 90% in practice. However,

these space reducing LSH methods are known to have longer query times.

Parameter tuning Another significant drawback of LSH is that it is sensitive

to several model parameters which need to be chosen empirically. [33] provides auto-

matic tuning scheme for parameters needed to run multi-probe LSH with performance

35

guarantees. Similar yet more specific analysis of LSH parameter selection scheme is

presented in [112].

LSH Forest [121 was proposed to overcome the sensitivity of LSH against various

parameters and data distributions. Each hash table is represented as a tree whose

leaves correspond to each data point (the set of hash tables represented as a set of

trees, hence the name "forest"). Any sub-trees that do not contain any data points are

pruned. By having a flexible tree structure, LSH Forest can adapt to different data

distribution and also to the situation where additional points are added or deleted. [9]

provides an improved version of LSH Forest. Their simple modification is that for each

node, they store a constant number of points close to the mean of the corresponding

subset of the dataset, which are compared to any query point reaching that node.

Not only being effective in practice, this modification of LSH Forest is also provably

better than the best LSH algorithm for the Hamming space [54].

Query and data adaptive LSH Performance of LSH on a query point depends

not only on the distribution of the data, but also on the local geometry in the vicin-

ity of the particular query [33]. Thus, several works have developed query and data

specific LSH. For example, [33] provides adaptive multi-probing scheme which deter-

mines the appropriate number of multi-probing buckets just enough to achieve the

required search quality. Query-adaptive LSH was proposed in [57] where, for each

query, the method picks the hash functions that are most likely to return the nearest

neighbors from a large pool of random hash functions. [53] proposes a similar idea

with their query-aware LSH. In the context of computer vision, Korman and Avidan

proposed coherency-sensitive hashing where immediate spatial neighbors of points in

the matching bucket of a query are also included in the approximate nearest neighbor

search [76].

In reality, datasets are typically not distributed uniformly over the space, and

as a result, the buckets of LSH are unbalanced, which causes the performance of

LSH to degrade. Several works have sought to solve this problem. For example, [39]

proposed data sensitive hashing which designs data-adaptive hash functions based

on adaptive boosting and spectral techniques, treating the hash function family as a

36

strong classifier while each hash function in the family serves as a weak classifier. [61]

introduced distribution density aware hashing which extends the random projection

based LSH by first sub-grouping the data with the k-means algorithm, generating

random projections that best separate each pair of groups, and then using maximum

entropy principle to select the final set of random projections. [45] analyzed the non-

uniform problem of the Euclidean LSH and proposed a pivot-based algorithm to

accelerate the query process of the Euclidean LSH by using triangle inequality to

prune the search process.

Parallelism Several works have sought to efficiently parallelize LSH. In [1131,

Parallel LSH was introduced which is designed to be extremely efficient, capable of

scaling out on multiple nodes and multiple cores supporting high-throughput stream-

ing of Twitter data. They utilized several novel ideas such as cache-conscious hash

table layout, using a two-level merge algorithm for hash table construction, duplicate

elimination during hash-table querying, an insert-optimized hash table structure, and

efficient data expiration algorithm for streaming data.

In the distributed setting, each query requiring a network call per hash bucket

look-up leads to a large network load. [10] proposed an efficiently distributed scheme

for the entropy based LSH [991. It used a layered hashing based on distributed entropy

LSH using MapReduce and active distributed hash table to minimize the network cost

while maintaining good load balance between different machines.

2.2.4 Applications

In the early days of LSH, it was successfully used in duplicate detection [18,51,89],

link-based similarity search [24, 27], and image retrieval [44, 80, 111]. Recently, with

the advent of "Big Data", the demand for LSH has increased. LSH has been used

extensively in a wider variety of application areas to deal with scaling issues of new

massive and high-dimensional data. Recent application areas in the past few years

include: speaker identification [110], music search [106], similarity join size estimation

in databases [83], genome sequencing [15,121], social network analysis [113,132], mo-

tion planning in robotics [98], patch finding in images [77], in evolutionary algorithms

37

for multi-solution optimization [138], lattice based cryptography [82], video anomaly

detection [137], image forgery detection [2], signal processing [45], audio source sep-

aration [69], malware clustering [96], entity resolution [118], privacy preservation in

cloud computing [136], geography analysis [135], and speech recognition 1116].

2.2.5 Locality-Sensitive Hashing on Physiological Data

In this thesis, we extensively apply LSH on physiological time series data. Only

a few studies have explored LSH in the healthcare and medical domain. LSH was

applied in [65] where the focus was on introducing a kernel based method to adapt

various types of similarity measures, demonstrated on pediatric ICU and surgical

data. LSH was also used in indexing ECG time series using salient segmentation of

data, but the data, containing only very short segments, was not large enough to show

significant advantages [130]. Syed et al. [114] applied LSH to automatically discover

patterns that distinguish between sequences belonging to different labeled groups. On

symbolized ECG time series from patients with coronary syndromes, their LSH-based

approach identified approximately conserved sequences of morphology variations that

are predicative of future death. In [60], LSH was used to design a sensor fusion scheme

to intelligently process wearable sensors with context awareness for the elderly. In

contrast to these works, the datasets used in our study are orders of magnitude larger,

and we examine the scaling properties of LSH.

2.2.6 Multilevel Locality- Sensitive Hashing

In Chapter 6, we introduce a multilevel LSH which hybridizes multiple distance mea-

sures in one framework. Two other notable works using multilevel LSH have been

conducted in the field. Andoni et al. [7] introduced a two-level hashing method which

results in the best lower bound complexity beyond the general LSH techniques. Data

independent ball-carving LSH was used at the outer level and the data dependent

spherical LSH was used at the inner level. However, this work only provides theoret-

ical analysis of its method and lacks experimental evaluations or a practical imple-

38

mentation.

Pan et al. [97] also presented a two-level LSH method. In the first level, they

use a random projection tree to partition the dataset into subgroups. Then in the

second level, a single LSH hash table for each subgroup along with a hierarchical

structure based on space-filling curves is computed. They demonstrated efficiency

of their method over the standard LSH for image retrieval task. In contrast to our

multi-layer framework which integrates multiple distance metrics, in [97], the first

level operation is rather a data pre-processing step instead of being an actual layer

of LSH, and only a single distance measure based on the Lp distance is used at the

second level.

2.2.7 Frequency-based Locality- Sensitive Hashing

In Chapter 7, we propose LSH based on collision frequency counting. In [87], the

authors proposed a frequency based LSH. It utilizes a single function based on the p-

stable distribution as the hash function of a hash table and uses a frequency threshold

to select only those points which collide with the query more than the threshold times

as the candidate approximate nearest neighbors. On the other hand, our method can

be used for any distance measures with a valid locality-sensitive hash function family.

In the database community, LSH based on dynamic collision counting was intro-

duced, where the method uses a base of m single LSH functions to construct dynamic

compound hash functions [38]. If the number of LSH hash functions under which a

data point collides with the query is greater than a pre-specified threshold, the point

is selected to be a candidate for the approximate nearest neighbors of the query.

Both of the above methods are very sensitive to the value of the threshold, while our

proposed method is threshold-free.

2.3 Acute Hypotensive Episode Prediction

The primary task of interest in this thesis is predicting acute hypotensive episodes

with LSH. The 1 0th PhysioNet/Computers in Cardiology Challenge in 2009 first ad-

39

dressed the problem of predicting acute hypotensive episodes [91]. A small subset of

the MIMIC II data [108] was made available to use, which included ECG and arte-

rial blood pressure (ABP) signals, as well as the time series of vital signs sampled

once per minute. The best performing model used the generalized regression neu-

ral network multi-models on the ABP data [50]. This approach requires extensive

training of a neural network for each training sample, thus is ill suited for large scale

problems. Moreover, despite the successful performance of many proposed solutions

in the challenge, the size of the challenge dataset was very small (10 hours of lag

data for each of 60 patients), and many proposed approaches would not scale well for

realistic massive data. In contrast, the datasets used in our experiments are at least

two orders of magnitude larger in terms of the number of patients.

With the advent of "big data" and time and space efficient cloud computing,

machine learning is more readily applied to large repositories, see e.g. 11201 which

predicted acute event prediction with hidden state Markov modeling and [30]'s dis-

tributed feature selection for acute hypotensive episode prediction using wavelets op-

timized with Gaussian processes. In [291, a large scale machine learning and analytics

framework, named beatDB, for mining knowledge from high resolution physiological

waveforms was introduced where users can flexibly configure various set-ups of data,

hypothesis defining, and algorithmic parameters. The utility of this framework was

demonstrated for the acute hypotension prediction problem, but the choice of algo-

rithm was limited only to logistic regression. Our work examines the scaling issue

with respect to dimension and size of data, which was not a part of the above works.

40

Chapter 3

Data

In this chapter, we describe the datasets used to demonstrate our methodology. We

define a critical event (acute hypotension) of our interest herein, provide an overview

of the MIMIC II database, and discuss preprocessing steps and properties of our

datasets.

3.1 MIMIC II Database

Our data comes from the MIMIC II (Multiparameter Intelligent Monitoring in In-

tensive Care) Database version 3 which contains physiologic signals and vital signs

time series captured from patient monitors, and comprehensive clinical data obtained

from hospital medical information systems, for tens of thousands of intensive care

unit (ICU) patients [41, 92, 108]. It is one of largest clinical medical databases that

are currently publicly available. Data were collected between 2001 and 2008 from

a variety of ICUs (including medical, surgical, coronary care, and neonatal) at the

Beth Israel Deaconess Medical Center in Boston, MA. The overview of the MIMIC

II database is illustrated in Figure 3-1.

The MIMIC II database is composed of two distinct components.

* The Waveform Database contains records of continuous high-resolution physio-

logic waveforms and minute-by-minute numeric time series (trends) of physio-

logic measurements.

41

Hospital

CSC

Sedeldle M01o tV chart
N. jia ignm FluidS

STrends -Pgrh ololl

- Laboratoy
Miucrobiology

P rovde ofde oy (POE)

*DRG

* diiondschiwge dalve

- Religioem"MN1y1nartal Wtus

D ischarge sumrnies
ERmadoy(X-ru~ C1, N.Asoid(
*C*logy (ECMO EG)

Vatiable
(SAPS. SOKA

ELWuW

Lo,,.
04OaWalio

Data archive

UW ~

bada~d
cop.~om

Figure 3-1: MIMIC II database overview. Image source: MIT Critical Data [25].

- The waveform measurements include a variety of blood pressure waveforms

(e.g. arterial blood pressure (ABP), a signal of our interest herein), elec-

trocardiogram waveforms (AVF, AVL, AVR, 1, 11, 111, MCL, MCL1, V, V1,

and V2), PLETH (uncalibrated raw output of fingertip plethysmograph),

and RESP (uncalibrated respiration waveform, estimated from thoracic

impedance).

- The numeric/trend measurements include non-invasive blood pressure, car-

diac output, carbon dioxide output, heart rate, respiration rate, oxygen

saturation, and temperature.

e The Clinical Database includes the general information (e.g. patient demo-

graphics, hospital admissions and discharge dates, room tracking, death dates,

ICD-9 codes), medications, lab tests, fluid balance, clinical notes (e.g. dis-

charge summary, nursing progress notes), and reports. These records have been

de-identified.

42

MIMIC-Il
Database

100

E
E 7 5 ---. --. ..--.-. -...--.-- --.--.-- --.--- -

7 0 ----... -. ..-. .. --..-- -- -.--.-- ----. --- -- -90.

U 100 200 300 400 500 600
Time (mins)

Figure 3-2: An example of an acute hypotensive episode (red box).

Many, but not all, of the Waveform Database records are matched to corresponding

Clinical Database records.

The database contains 25,328 distinct ICU stays from 22,870 hospital admissions.

There were patients who were admitted to the ICU multiple times. For more extensive

statistics of the MIMIC II database, refer to [108].

At the time of this thesis writing, the new MIMIC III database has been pub-

lished 1631. The biggest change is the larger dataset acquired over a longer time span

(2001-2012). MIMIC III is a superset of MIMIC II. However, since the physiological

waveform repository of the MIMIC III was unreleased to the public at the time of

conducting research for this thesis, we adhere to the MIMIC II data.

3.2 Acute Hypotensive Episode

In our work, we are particularly interested in predicting the acute hypotensive episode

(AHE) event (figure 3-2), which is a sudden dropping of blood pressure that demands

immediate attention and intervention. If left untreated, such episodes may lead to

43

irreversible organ damage and eventually death. Determining which intervention is

proper largely depends on the diagnosis of the cause of the episode, which includes

"sepsis, myocardial infarction, cardiac arrhythmia, pulmonary embolism, hemorrhage,

dehydration, anaphylaxis, effects of medication, insufficient cardiac output, or va-

sodilatory shock" [91]. Typically, the best intervention is rather a suboptimal, yet

relatively safe one which buys enough additional time to select more effective care

plan without exposing the patient to additional risks.

It is known that about one third of patients in ICUs experience AHE, and the

mortality rate of patients with AHE is more than twice that of patients without AHE

[91]. Thus, AHE is a critical event in ICUs, requiring immediate medical intervention

from hospital staff. Developing a good event predictor that can trigger timely and

appropriate proactive intervention would make a significant contribution.

The definition of AHE differs from physician to physician. In this thesis, we follow

the one used in the 2009 Physionet Challenge [91].

Definition 1. AHE is defined as an interval in which at least 90% of the non-

overlapping one-minute means of the arterial blood pressure waveform (MAP) were

in the acute hypotensive range during any 30-minute window within the interval. The

acute hypotensive range is defined to be under 60 mmHG (millimeters of mercury).

The definition of AHE can actually be parametrized according to the time window

we consider (e.g. 30 minutes), the threshold for the acute hypotensive range (e.g. 60

mmHG), and the percentage of beats whose MAP is too low (e.g. 90%). For the

impact of these parameters on the prediction accuracy and associated sensitivity

analysis, one should refer to the previous study conducted in [28].

3.3 Preprocessing

In this thesis, we focus on arterial blood pressure (ABP) waveforms since AHE is

defined solely in terms of ABP. ABP waveforms (Figure 3-3) are recorded using ar-

terial catheterization and a pressure sensor probe sampling at 125 Hz from a single

44

Systolic Dicrotic
pressure notch

Pressure
(mm Hg)

80 ---
Diastolic Mean arterial Sylstolel 1 -1 second--
pressure pressure

Figure 3-3: Arterial blood pressure (ABP) beats and morphological properties. Image
source: PhysiologyWeb 11011.

channel. The arterial line is connected to a tube filled with a saline solution, which

is connected to a pressure bag. A pressure transducer is placed in the tube and con-

verts pressure into an analog electrical signal measured at 125 Hz. The measurement

is subject to noise from various sources including transducer placement, clotting in

the arterial catheter, and device failures 1281. The Waveform Database of MIMIC II

contains 6,232 patient ABP records. Given a sampling rate of 125 Hz and 240,000

hours of ABP data, there are 108 billion sample points.

For each patient record, we preprocess and validate this data by applying the onset

detection algorithm on the ABP waveform to find the beginning and end of each beat

and by examining its validity as a beat 1120]. Beat detection reveals approximately

1.2 million beats of which approximately 0.9 million are valid 128,120].

Then, for each beat, we calculate its corresponding mean arterial pressure (MAP)

value since AHE is defined in terms of MAP. MAP is defined as a time-weighted aver-

age of systolic and diastolic pressure. The systolic pressure (the contraction phase of

the heart) is the peak of blood pressure in a single beat whereas the diastolic pressure

(the relaxation phase of the heart) corresponds to the minimum blood pressure in a

beat (Figure 3-3). The ventricles approximately spend 1/3 of their time in systole

and 2/3 of their time in diastole. MAP is defined as follows.

Definition 2. mean arterial pressure = (2/3 * diastolic pressure) + (1/3 * systolic

pressure).

Then, we transform the time series of per-beat MAP values to the time series of

per-minute average of MAP values for each patient (recall that AHE is defined in

45

Event Window
30mins

I Lag Time O Lead Time

To-300 mins To

Figure 3-4: Problem definition of AHE prediction

terms of one minute averages of MAP).

Since patients' recordings can include jumps in time due to various source of signal

artifacts, we treat a signal with an interruption as two individual segments if the gap

in the original signal is longer than 5 seconds. Thus, there can be multiple segments

of one-minute average MAP values for each patient.

Lag is the duration of the historical (training) data that the prediction model is

based on, prior to the event window (Figure 3-4)1. We further divide the dataset

into positive and negative sets. From the segments that include the presence of the

AHE event in their time span, each sample in the positive set consists of lag minutes

of time series prior to the beginning of the AHE event. In case where the available

amount of data is less than lag minutes prior to the event, we discard such data.

Thus, the shorter the lag is, the more data we are able to extract. On the other hand,

the negative set is composed of samples that are randomly sampled lag minutes of

time series from the segments that do not embrace any AHE event. We assign each of

the positive and negative segments a label of 1 and 0, respectively. Like many critical

event data, our data is naturally highly skewed toward AHE negatives.

3.4 Three Datasets

We use the following three datasets in our experiments.

1 Lead time (Figure 3-4) defines how much in advance we make prediction prior to the event window.

In this study, we fix the lead time as zero. For the impact of lead time on prediction performance,

refer to [28, 75].

46

DataLag 300, 1x We select patients who have segments of lag = 300 minutes of con-

tiguous signal (d = 300, 300 dimensional)2 , which results in 6,467 segments. The

data has 476 AHE positive (7.36%) and 5,991 AHE negative (92.64%) segments.

We set 6,467 as the unit dataset size and refer to it as 1x data for convenience. We

use this dataset as the main representative one to demonstrate our methods in the

later chapters.

DataLag 30, lOx If we lower the minimum duration of a valid segment, we can extract

even bigger datasets. This time, we select patients who have segments of lag =

30 minutes of contiguous signal (d = 30, 30 dimensional), which results in 53,857

segments. The data has 3,694 AHE positive (6.86%) and 50,163 AHE negative

(93.14%) segments. Since the size of this dataset is an order of magnitude larger

than that of DataLag 300, Ix, we simply refer this dataset as 1Ox sized data.

DataLag 30, 1x We sub-sample (without replacement) from DataLag 30, lox to construct

a data set with lag of 30 mins and size equal to 6,467. It has the same class balance

as DataLag 30, 10x. Since it has the same dataset size as DataLag 300, Ix, we refer to

this as 1x sized data.

The last two data sets are used to experiment with LSH with respect to scale,

duration of lag, and dimensionality. In the chapters to follow, we investigate the

scaling impact of the data quantity (1x versus 10x) on the retrieval/prediction ac-

curacy and querying speed of LSH by comparing results based on DataLag 30, Ix and

DataLag 30, lox. Likewise, we measure the impact of the lag duration (300 versus 30)

on the retrieval/prediction accuracy and querying speed by comparing experimental

results based on DataLag 300, lx and DataLag 30, 1x-

3.5 Data Properties

In this section, we explore and describe the properties of our datasets introduced in

the previous section. In particular, we focus on our main dataset, DataLag 300, Ix-

2 We define the dimensionality of data as the length of time series.

47

Distribution of Whole Data
0.3 -

Total Data
Negative Data

0.25 - Positive Data

>, 0.2 -

C,

LL 0.15 -

0.1 -

0.05 -

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Amplitude (mmHG)

Figure 3-5: The distribution of the whole data for DataLag 300, 1x Frequencies of each
kind of data are relative to the size of the total data set (6,467 segments). AHE
positive data has a lower mean than the AHE negative data.

3.5.1 Descriptive Statistics

We first take a look at the distribution of the whole data (regardless of individual

segments). Summarized in Table 3.1, the whole data has a mean MAP of 79.27 with

a standard deviation of 15.09 (in mnmHG). The AHE negative data has a very similar

profile of having a mean of 80.41 with a standard deviation of 14.73. In contrast, the

AHE positive data has a significantly lower mean of 64.94 with a standard deviation

of 11.89. Although our datasets contain only the lag minutes of data prior to the

event window (the sample points in the event window are not part of the dataset and

they are only used to define the class label), we observe that the AHE positive dataset

in general has a lower mean. However, we also note that the margins of error of AHE

positive and negative datasets overlap with each other, which makes the prediction

problem of AHE challenging. Figure 3-5 illustrates the distribution of the whole data.

Next, we examine per segment data statistics. In particular, we look at the mean

and standard deviation within individual segments. For each time series segment, we

48

Distribution of per Segment Mean Amplitudes
0.5 -

Total Data
0.45 - Negative Data

[W Positive Data
0.4 -

0.35 -

U

0.3 -

a,
L 0.25 -

a)
C .20.

0.15 -

0.1 -

0.05 -

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Mean Amplitude (mmHG)

Figure 3-6: Distribution of per segment means for DataLag 300, 1x- Frequencies of each

kind of data are relative to its own data size. AHE positive data has a lower mean

than the AHE negative data.

Table 3.1: Data statistics for DataLag 300, Ix (unit: mmHG).

Total AHE Positive AHE Negative

Whole Data 79.27 15.09 64.93 t 11.89 80.41 14.73

Per Segment Mean 79.27 12.77 64.93 8.98 80.41 12.32

Per Segment Standard Deviation 7.31 3.36 7.11 3.23 7.33 3.37

calculate the mean and standard deviation. It gives us the average value and the

degree of variability within a single segment. Figure 3-6 shows the distribution of

the per segment means. Summarized in Table 3.1, it presents the same trend as the

previous case that the AHE positive data has a lower mean while the AHE negative

and the total data has almost identical profiles. It shows the same means as the means

for the whole data (without per segment differentiation) because the mean of means

of individual segments is equal to the mean of the whole data. Only the standard

deviation of means slightly differs from the standard deviation of the whole data.

As a reminder, AHE is a sudden dropping of blood pressure. One could question

49

Distribution of per Segment Standard Deviations
0.3 -

Total Data
Negative Data

0.25 - Positive Data

>, 0.2 -
0
Ca)

a)
U_ 0.15
a)

0.05 253

0 mol -,n__ __ _ _ _ __ _ _ _

0 5 10 15 20 25 30

Standard Deviation (mmHG)

Figure 3-7: Distribution of per segment standard deviations for DataLag 300, Ix Fre-
quencies of each kind of data are relative to its own data size. There is no significant
difference between the AHE positive and negative data.

if there is a larger variability in the AHE positive data. So, to check whether the

AHE positive data has a larger variability within the segments (precursor to the

event window), we compare the per segment standard deviations (Figure 3-7). From

the figure and Table 3.1, we observe that there is no significant difference between

the standard deviations for the AHE positive and negative data. This makes AHE

prediction a challenging problem.

3.5.2 Interpoint Distance

Besides the descriptive statistics of our data, we provide another angle on looking

at the data by examining the distribution of interpoint distances in the data. The

interpoint distance between two points is defined as follows.

Definition 3. For a point q, its interpoint distance (IPD) to another point p under

a distance measure D is equal to the distance between q and p divided by the distance

50

between q and the nearest neighbor (NN) of q.

IPD(q,p)D = Iq- P ID

||q - N NJ|D

It effectively measures how other points besides the nearest neighbor are distributed

in the unit of the distance between the query point and its closest point. For each

point q, we get a distribution of interpoint distances. To obtain the distribution for

the whole data, we average the individual distributions over all q.

Figure 3-8 (Top) shows the average interpoint distance distribution under Li

distance. It has a long tail distribution with a mean of 4.15 and a standard deviation

of 2.21. On average, data points are located 4.15 times farther away from the distance

between a query and its nearest neighbor. It agrees with the previous study [126] that

the distribution of the Li distance between two arbitrary points follows the log-normal

distribution. Likewise, Figure 3-8 (Bottom) shows the average interpoint distance

distribution under the cosine distance. It follows the Gaussian distribution and has

a mean of 3.50 with a standard deviation of 0.94. Thus, in the metric space of the

cosine distance, the points in the dataset are more tightly grouped together compared

to the points in the metric space of L1. In general, as the distribution moves to the

left (toward IPD of' 1), finding the correct nearest neighbor becomes harder as there

is more chance for "any" points to be the nearest neighbor (i.e. higher false positives).

Overall, the main implication is that even on the same dataset, the distributions of

neighbors differ when measured with different distance metrics. Thus, we have to

be careful how we apply each distance metric on the data in our LSH methods and

subsequent analysis.

51

0.2

0.18

0.16

0.14

C
a) 0.12

a)
L 0.1

z 0.08
-3

0.06

0.04

0.02

0

0.2

0.18

0.16

0.14

) 0.12

a)
LI 0.1
8)

C 0.08

0.06

0.04

0.02

r)

Average Distribution of Interpoint Distances under Li

-

0 2 4 6 8 10 12

Interpoint Distance

Figure 3-8: Average distribution of interpoint distances

cosine for DataLag 300, Ix-

14 16 18

under (Top) Li and (Bottom)

52

2 4 6 8 10 12 14 16 18

Interpoint Distance

Average Distribution of Interpoint Distances under Cosine

Chapter 4

Locality-Sensitive Hashing for

Waveform Retrieval

This chapter addresses the question of how we can achieve fast, yet accurate retrieval

of similar physiological waveform time series for a given query. To answer this, we pro-

pose to apply locality-sensitive hashing (LSH). We explain the procedures of LSH in

detail. When compared to the linear k-nearest neighbor search, we show that the LSH

method largely speeds up the retrieval time of similar physiological waveforms with-

out sacrificing significant accuracy, but LSH is highly sensitive to its hyper-parameter

values. We also investigate the question of how dimension and quantity of data im-

pact retrieval performance and observe that using data with a lower dimension and

a larger quantity each improves retrieval accuracy and speed. Our specific demon-

strations and evaluations use arterial blood pressure waveforms extracted from the

MIMIC II database. The main content of this chapter was published in [73].

4.1 Motivation

Although the naive nearest neighbor (NN) search method [23] for retrieval works

very well in practice with moderately sized data, its performance deteriorates rapidly

for large, high-dimensional data. Our goal is to build a scalable, efficient retrieval

system for high-dimensional massive physiological data, which has a significantly

53

faster querying time, while maintaining the retrieval quality in a reasonable range in

comparison to the linear search. In order to achieve this goal, we propose a retrieval

method based on LSH [541, which allows a very fast approximate NN search in high

dimensions. Whereas the naive NN method searches for the exact NNs, LSH aims to

speed-up the search process by looking for approximate NNs instead. Approximate

neighbors are valuable because even in the exact search, the distance measure D is

also only an approximation to the ground truth.

In this chapter, the main research question is whether LSH is advantageous in

terms of querying speed and retrieval accuracy, and by how much, compared to k-

nearest neighbor (KNN) method. Our evaluations include sensitivity analysis of LSH

performance with respect to its hyper-parameters, as well as dimension and quantity

of data. To the best of our knowledge, this work is the first application of LSH on

the retrieval task of physiological time series referencing a repository with tens of

thousands of patients.

4.2 Method

In this section, we define the properties of locality-sensitive hash functions, explain

three examples of locality-sensitive hash function families, lay out the procedures of

LSH, and discuss the advantages of using LSH on physiological time series. We em-

phasize that this section will serve as a foundation for other event prediction methods

to be presented in Chapters 5, 6, and 7.

4.2.1 Locality-Sensitive Hash Function Family

The central idea of LSH is to hash data points by multiple locality-sensitive hash

functions with a special property that, for each hash function, the probability of

hashing to the same hash value (i.e. collision) is much higher for points close in

high-dimensional space than those that are far away from each other. This similarity

preserving property is what distinguishes LSH from the conventional hashing as the

goal of the latter is to avoid collisions even for close points. To preserve this similarity-

54

based locality, a hash function h is chosen from a hash function family H that is

(R, cR, P1 , P2)-sensitive, i.e., for any points p, q c Rd,

" if 11p - q|| < R, then PrH[h(p) = h(q)] > P1

" if ||p - qi| > cR, then PrH[h(p) = h(q)] < P2

for constants c, R > 0, and 0 < P2 < P < 1. The parameter p log/P , which

can usually be expressed in terms of the distance gap c, determines the search perfor-

mance. The smaller p is, the faster the search performance is. The difference between

P1 and P2 should ideally be large to increase the probability of collision. This is done

by applying multiple hash functions.

There exists a direct correspondence between a distance metric and its associated

family of locality-sensitive hash functions. However, it is important to note that for

many distance metrics, the corresponding hash families have not been developed.

Here, we experiment with three hash families that map the points in the original

space to the binary Hamming space.

Bit Sampling based LSH for the Li Distance: L1LSH

In our study, we utilize the hash function family for the Li distance, proposed in

[40,54], HL = {h : Xd 0 {, 1}} such that

h(p) = 0 if pi < tj

I if pi > tj

where pi is the value on the ith coordinate of p E Xd. i is a single dimension of the

data chosen uniformly at random from {1,. . . , d} and tj is a threshold chosen uni-

formly from the range of the data in that particular dimension. We choose this family

of hash functions because it is parameter-free and requires no tuning, unlike other

more sophisticated hash families for Li [4]. Plus, this family is equivalent to the thor-

oughly studied bit sampling based hash function family for the Hamming distance.

d-dimensional P (the set of N points) can be embedded into the Hamming cube of

55

dimension d' = wd by applying a unary function on each coordinate in P, where w

is the largest coordinate of all points in P. It is a known fact that the Hamming

distance on this embedded space preserves the Li distance in the original space. For

the detailed implementation procedures, analysis, and theoretical justification, one

should refer to [40, 541.

Random Projection based LSH for the Cosine Distance: COSLSH

The second family we investigate is the random projection based locality-sensitive

hash function family for the cosine distance. For p, q E Xd, the angle between them is

O(p, q) = arccos(pq). Charikar et al. [20] defines the locality-sensitive hash function

family for the cosine distance, H,, = {h : Xd -÷ {0, 1}} such that

hr(p) = 0 if p-r < 0

1 if P -r > 0

where r E Rd is constructed by picking each coordinate of r from the isotropic Gaus-

sian distribution N(0, 1). This hash function is equivalent to dividing the original

d-dimensional space into two subspaces by a randomly chosen hyperplane r, and the

hash value is determined by on which side of the hyperplane p lands. Unlike L1LSH,

which randomly and independently selects only a single dimension to generate a hash

value at a time, COSLSH has a property that the random projection simultaneously

considers all dimensions together.

The cosine distance in LSH has a strict requirement that the data must lie on

a unit sphere. Data normalization is a safe preprocessing step in many application

areas, but using COSLSH alone is not desirable for physiological time series since the

meaningful amplitude information gets lost due to normalization.

Random Projection based LSH for the Euclidean Distance: E2LSH

The third hash function family we investigate is the random projection based locality-

sensitive hash function family for the Euclidean distance (E2LSH) [26], HE2 = {h :

56

Xd - {0, 1,... , w}} such that

hr,b(P) Lpr+b

where w C Z+ is the discrete quantization step chosen according to the data and

the offset b is randomly drawn from the uniform distribution from 0 to w. The

inner product p - r is the projected value of p E Rd onto the direction r, where

the projection vector r E Rd is constructed by picking each coordinate of r from

the isotropic Gaussian distribution N(0, 1). The quantization step w influences the

performance of E2LSH as it controls the resolution (fine or coarse grained) of the

space of valid hash values. It needs to be chosen empirically. Unlike L1LSH which

randomly and independently selects only a single dimension to generate a hash value

at a time, E2LSH has a property that the random projection simultaneously considers

all dimensions together at a cost of involving an extra parameter w. To compare

E2LSH to L1LSH and COSLSH in the binary hash value space, we experiment with

w = 2 in this work.

4.2.2 Locality-Sensitive Hashing Construction (Indexing)

LSH has a fixed cost construction (i.e. data indexing) phase that supports subsequent

retrievals. The overall procedure is illustrated by the red arrow in Figure 4-1. We

construct L hash tables each using m independently selected hash functions over the

reference set. For indexing (details described in Algorithm 1), we select m functions

such that gI = (h1 ,, h2,1, ... , hm,) for each 1 = [1, 2, . .. , L]. The hash functions h's are

randomly chosen from a LSH family H (lines 3-4). Then, we construct L independent

hash tables where each hash table T contains the dataset points hashed using the

function g, (line 5). The value of g1 for each data point defines its hash key for its

corresponding hash bucket.

When hashed by g, in order for two points p and q to belong to the same hash

bucket, their hash values have to match for every one of m distinct hash functions

h. Therefore, the larger/smaller the quantity m of hash functions, the stricter/more-

57

Reference Set (P, size n)

I Approximate Nearest

Neighbors via LSH
Applying m random
hash functions h on gl(p) = (hi,j(p),... ,hmj(p))
all n points in P for

each I= 1, ... , L

Hash Table T,

Hash Key Data Points

1001010

1001011

1001100

Query (q)

Linear similarity search
within

the candidate set (<< n)

Figure 4-1: The overview of LSH construction (red arrow) and retrieval (blue arrow)
procedures for a single hash table. For construction, similar waveforms are indexed
into the same hash buckets. For retrieval, a query is first hashed to find the points
included in its matching bucket in the hash table. Then, we linearly compute the
distance between the query and such set of points (the candidate set with a size
significantly smaller than that of the reference set) to retrieve the approximate nearest
neighbors of the query. For multiple tables, the final candidate set for the linear
similarity search consists of the union of the points included in all matching buckets
from all L hash tables.

approximate the match. This parameter m is what we will explore experimentally to

derive an optimal trade-off in accuracy and speed up. When setting up the standard

LSH, the desirable number of hash functions used per table is the number that would

partition the original data as uniformly as possible over all possible hash buckets so

that each bucket contains only a small amount of the data.

A hash table, organized by hash keys, is to be used for inverse-lookup. It can

return all items corresponding to a certain hash key in constant time independent of

the data size. This is the key to achieving speed-up in LSH. It is important to note

that LSH tables only need to store the pointers to the data instead of the original

data itself. By applying standard hashing to store only non-empty buckets, it creates

only a trivial additional memory cost of only O(nL).

58

Query (q)

Algorithm 1 Standard Locality-Sensitive Hashing: Indexing

Require: m, number of hash functions per table; L, number of hash tables; X,
reference data; H, hash function family

1: procedure LSH-INDEXING(m, L, X, H)
2: for l [1,2,..., L] do
3: Sample m hash functions hjl uniformly random from H

4: gJ <- (hi,g, h2,ji .. I hm,l)
5: Hash table T +- g,(X) > all data hashed into tables
6: end for
7: Return all T's (T) and gl's (g)
8: end procedure

4.2.3 Locality-Sensitive Hashing Retrieval (Querying)

The goal of querying is to retrieve the nearest database items to a given query. The

overview is presented by the blue arrow in Figure 4-1. The algorithmic procedures

are laid out in Algorithm 2. For retrieval by the standard LSH, we

1. hash a query by the same set of hash functions gi's used for indexing (line 4),

2. compose the candidate set, which is defined as the union of all points contained

in the colliding hash buckets of the query from each hash table (line 5), and

3. retrieve a group of k items that are most similar to the query by the linear

search within the candidate set (lines 7-8). We call this step short-listing.

The short-listing by the linear search (line 7-8) is the major bottleneck of the LSH

querying procedure, which takes 95% or more of the overall running time.

There are two LSH parameters, the number of tables constructed (L) and the

number of hash functions used per table (m), which need to be chosen empirically.

The optimal pair of (n, L) provides the most efficient data structure to index the

data for the fastest and the most accurate retrieval and prediction. To increase the

precision of collision, m should be large enough to reduce false positives. On the

other hand, in order to increase recall, L should be large enough. As the quantity of

tables goes up, more approximate matches, each from different tables, are possible

which increases the chance of finding the exact nearest neighbors of the query. The

choice of the LSH parameters, m and L, depends on the specific application and

59

Algorithm 2 Standard Locality-Sensitive Hashing: Querying

Require: q, the query; T, hash tables; g, hash functions; k, number of NNs to
retrieve

1: procedure LSH-QUERYING(q, T, g, k)
2: C = 0 > candidate set
3: for I = [1, 2, ... , L] do > L is the number of hash tables in T
4: S = {E e Xlgl(x) = gl(q)} > colliding bucket from table T
5: C+- C U S
6: end for
7: Compute distances from q to each element in C c> with the distance metric

that defines g
8: Return k elements with the smallest distances
9: end procedure

the underlying distribution of the dataset. In some cases, the size of the candidate

set is smaller than k and the query fails to retrieve k NNs. Such case where the k

nearest neighbors of the query can not be retrieved is called a miss. It is important

to note that the search time of LSH is guaranteed to be sub-linear to the size of the

data [40], compared to the linear time cost of the naive KNN method. This can make

a significant difference in search time in a massive data repository.

4.2.4 Advantages of Locality-Sensitive Hashing

There are several advantages of using LSH on physiological time series data. First, by

transforming the high dimensional data into the space of short hash values generated

by m hash functions, we effectively achieve dimensionality reduction to a lower order

embedding space where the notion of similarity is well preserved. Moreover, while

KNN suffers from the selection bias of the distance metric, LSH inherently offers a

broader, less-biased coverage over the non-linear characteristics of waveform signals

because each hash function h serves as a different basis of comparing points with a

low resolution, "weak" similarity. Furthermore, both LSH construction and retrieval

processes can easily be distributed since each table is generated and queried indepen-

dently. Also, it is scalable because for new data, only the small step of applying the

stored hash functions g is needed, which does not require another pass over the entire

data.

60

4.3 Experiment

Baseline Given a pair of LSH parameters (i, L), for each query, we find k approx-

imate NNs via LSH and compare them to those from the linear KNN search. It

is complicated to evaluate nearest neighbor retrieval accuracy because there is no

ground truth, i.e., no single notion of similarity is perfect, each being dependent on

some distance metric. Practically, we proceed by using the linear KNN method as

our baseline. It returns the result of an exhaustive linear search, and LSH will be

compared to this "most accurate" (though most costly) method in terms of retrieval

accuracy and querying time. KNNs with L1, cosine, and Euclidean as a distance

metric will be compared to L1LSH, COSLSH, and E2LSH, respectively. Using the

same distance metric as KNN in the final linear search step (short-listing) of LSH

unifies the comparison basis.

Performance Measures To compare LSH to KNN, we formalize two perfor-

mance measures: retrieval accuracy and speed-up factor. We define the retrieval

accuracy as the recall, i.e. the fraction of the exact k-nearest neighbors that are also

retrieved by LSH. We let K(q) denote the approximate k-NNs of the query q retrieved

by LSH and I(q) denote the exact k-NNs obtained by the linear KNN. So, mathe-

matically, the retrieval accuracy (recall) is JK(q) n I(q)J/ I(q)J. We do not consider

the order within the k-NNs, but care only about the intersection between two sets.

Accordingly, the overall retrieval accuracy is the average of the individual accuracies

over all queries.

For cost, we are only interested in the querying time because the space requirement

and the offline construction cost of hash tables are both linear in the number of hash

tables and the dataset size [33]. Thus, we investigate the retrieval time, where the

speed-up factor of LSH is the retrieval time of a query by LSH relative to that by

the linear method. The major part of query processing in LSH is scanning through

the candidate set to find the k-NNs of a query (short-listing). Empirically, we find

that this step accounts for more than 95% of the total querying time. The time to

apply the hash functions on the query and to locate its matching hash buckets to scan

61

account for the other 5%. The querying time is mostly spent on computing distances

between each point in the candidate set and the query, and is thus proportional to the

size of the candidate set. We let C(q) denote the candidate set of a query q. We define

selectivity as |C(q)I/N, where N is the size of the whole dataset. Selectivity is a good

indicator of the querying time that is independent of specific hardware configurations

or the choice of programming languages. Thus, we define the speed-up factor of LSH

as the inverse of selectivity.

Additional Information We define the optimal values of (m, L) as the parame-

ters that result in the fastest retrieval time among the ones with retrieval accuracies

higher than 95%. We perform a grid search by varying m from 5 to 100 with an

increment of 5 and L from 10 to 100 with an increment of 10. We apply the above

procedure to retrieve 1-NN, 5-NNs, and 10-NNs. We demonstrate LSH mainly on

DataLag 300, Ix. For the purpose of the retrieval task, this dataset both serves as the

reference set from which neighbors are retrieved and as the set of queries. We verify

the correctness of our method by checking whether it always retrieves the query itself.

4.4 Results and Discussion

4.4.1 Nearest Neighbor Retrieval

L1LSH Figure 4-2 shows the trade-off between the retrieval quality and time for

L1LSH. Each point represents the average retrieval accuracy and the speed-up factor

of LSH over 10 trials for each pair of (m, L). The square boxes indicate the optimal

parameters for each neighborhood size, k. For 1-NN, with (m, L) = (30, 40), we

achieve the optimal nearest neighbor retrieval 12 times faster with LSH than the

linear search, while sacrificing less than 5% accuracy. For 5-NNs and 10-NNs, we find

the optimal LSH parameters are (30, 50) and (30, 60), respectively, and we still get

reasonable retrieval times 8.5 and 7 times faster with LSH than the linear search.

For fixed m and L, only the retrieval accuracies degrade with an increasing k

while the retrieval times remain almost the same. This is an expected behavior since

62

LSH performance relative to KNN (L1 LSH)

0 k=1
0.99 - Ax 4 k=5

x X (k=50 XA 0 X k=10
0.98 - X 0

A0

0.97 - 0 4 0 O
0 X 0
C0.96 - X 0
0
0

< 0.9 1A 2O 20

L.. U94 X X A 00 0

0.93 -0 0

X 0

0.92 - A '&A 0 0

0.91
0

A 0 0 0

0.9 A A i G0

0 5 10 15 20 25

Speed-up Factor (x)

Figure 4-2: Trade-off between retrieval accuracy and speed-up factor of L1LSH per-

formance relative to the linear KNN. Each point corresponds to a parameter config-

uration of LSH. Squared points indicate the optimal parameters for different values

of k.

it is much harder for the farthest neighbors among the k-NNs from both methods to

match for a large k, while retrieving more neighbors adds only a negligible time cost.

While all queries successfully return their 1-NNs, the fraction of queries that are

not able to retrieve the requested number of NNs (i.e. the miss cases where the size

of the candidate set of a query was smaller than k) was merely 0.11% and 0.19% of

the entire data for 5-NNs and 10-NNs, respectively.

While LSH is faster and close to the accuracy of KNN, it does incur two pre-

liminary costs: time to hash the data over L tables and storing hash tables. We

investigated the break-even point of this cost with respect to query time saved rel-

ative to the linear search time. Given the target accuracy and speed-up factor, the

time to construct the optimal LSH data structure was approximately equivalent to

the retrieval time of 15% of the total queries (by the wall clock time). So after pro-

cessing 15% of the queries, we would have saved enough time to make up for the cost

63

LSH performance relative to KNN (COSLSH)

x9 0 k=1
A x A k=5
X 0 0 x k=10

0.98 - A 0

0.97 -0
X X A

C.)
COi

0.96 -

C-)n

<0.95 -A
ci 0

0.94 -
()x o

0.93 - 0 0

x 0 0
0.92 - A

A
0.91 - 0

0.9 A
0 2 4 6 8 10 12 14 16

Speed-up Factor (x)

Figure 4-3: Trade-off between retrieval accuracy and speed-up factor of COSLSH
performance relative to the linear KNN. Each point corresponds to a parameter con-
figuration of LSH. Squared points indicate the optimal parameters for different values
of k.

of building the optimal LSH data structure. The extra storage cost of hash tables was

less than 1% of that of the original data since the hash tables only contain pointers

to the original data.

COSLSH Figure 4-3 shows the trade-off between the retrieval accuracy and

speed-up factor for COSLSH. The square boxes indicate the optimal parameters for

each k. For 1-NN, with (m, L) = (10, 60), we achieve the optimal nearest neighbor

retrieval 7.9 times faster with LSH than the linear search, while sacrificing less than

5% accuracy. For 5-NNs and 10-NNs, we find the optimal LSH parameters are (10,

70) and (10, 80), respectively, and we get retrieval times 7 and 6.3 times faster with

COSLSH than the linear KNN search.

E2LSH Figure 4-4 shows the trade-off between the retrieval accuracy and speed-

up factor for E2LSH. The square boxes indicate the optimal parameters for each k.

For 1-NN, with (m, L) = (100, 40), we achieve the optimal nearest neighbor retrieval

64

LSH performance relative to KNN (E2LSH)

0 k=1
0.99 A k=5

8 0 x k=10
0.98 - 0

xA

0.94X - O

0.97 - X
XA

9
00

A A-

'-0.96 - A A 00
A 0

00

Fz0.95 -XtA
> X A 0

0)0
0.94

0)XX 0 0
A A 0

0.93 -0 0 0

0.92 -X h X~A 0 0 0 0

X 0

A A 0 0 0

0.91 -X A0

0.91 A A &1 0--.

2 4 6 8 10 12 14 16

Speed-up Factor (x)

Figure 4-4: Trade-off between retrieval accuracy and speed-up factor of E2LSH per-

formance relative to the linear KNN. Each point corresponds to a parameter config-

uration of LSH. Squared points indicate the optimal parameters for different values

of k.

8.2 times faster with E2LSH than the linear search, while sacrificing less than 5%

accuracy. For 5-NNs and 10-NNs, we find the optimal LSH parameters are (100, 60)

and (100, 70), respectively, and we get retrieval times 5.8 and 5.6 times faster with

E2LSH than the linear KNN.

From the above observations, it may look like there exists a heuristic that only

the optimal L increases for increasing k while the optimal m remains unchanged.

However, when we examine this heuristic on other datasets besides DataLag 300, lx,

the heuristic does not hold and the pattern in our observations is likely to be a

coincidence.

Comparison In Figure 4-5, we compare LiLSH, COSLSH, and E2LSH on a wider

range of retrieval accuracy (y-axis) from 0.5 to 1. While there is not much difference

between them in the region of high retrieval accuracy and low speed-up, the general

trend shows that COSLSH has a higher speed-up than L1LSH and that L1LSH has

65

LSH Tradeoff for L1 LSH, COSLSH, and E2LSH (k=1)

0 L1LSH
0.95 A COSLSH

x E2LSH
0.9 -

0.85 - X

0.8-

. X AA

0.5

0.75

> X A

4" .1A A

0.65 - A

0.6 -X0 A

0.55 A

0.5 I

0 50 100 150 200 250 300 350 400

Speed-up Factor (x)

Figure 4-5: Comparison of the retrieval accuracy and speed-up trade-off profiles of

L1LSH, COSLSH, and E2LSH. Each point corresponds to a parameter configuration

of LSH. For a given accuracy, speed-ups are in the order of COSLSH, L1LSH, and

E2LSH from the fastest to the slowest.

a higher speed-up than E2LSH for a given retrieval accuracy. We explain that the

difference comes from the difference in the distribution of hash bucket sizes among

L1LSH, COSLSH, and E2LSH. When constructing hash tables, points are distributed

and indexed more uniformly with COSLSH than L1LSH and E2LSH, and thus result

in a smaller average selectivity leading to a higher speed-up. This phenomenon will

be explained in more depth in Section 5.4.3.

4.4.2 Sensitivity Analysis

The performance of LSH is known to be sensitive to several parameters. In this

section, we present the sensitivity analysis of retrieval accuracy and speed-up factor

with respect to the number of hash functions and the number of hash tables. We use

L1LSH as a representative to demonstrate. Figure 4-6 shows such analysis for retrieval

accuracy. From Figure 4-6 (Top), we observe that the retrieval accuracy decreases

with increasing m. As hash buckets become more fine-grained with increasing m,

66

there is a larger chance for two similar points to belong to different buckets if hash

buckets are too fine-grained. Figure 4-6 (Bottom) shows that the retrieval accuracy

increases with increasing L. The improvement diminishes for large L as there are

more overlaps among the elements from colliding hash buckets for large L.

Sensitivity analysis of the speed-up factor is presented in Figure 4-7. Figure 4-7

(Top) shows that the speed-up factor increases exponentially as m becomes larger.

As more hash functions are applied to hash, the number of possible hash buckets

become exponentially large (e.g. 2 ' for binary hash functions). Thus, the average

number of points belonging to a single hash bucket will decrease accordingly, resulting

in a smaller selectivity and larger speed-up. In Figure 4-7 (Bottom), we observe that

the speed-up factor exponentially decreases as L increases. This is expected because

as we add more hash tables to increase recall, the size of the candidate set becomes

larger. This leads to a linear search (short-listing) on a larger search space, leading

to a decreased speed-up.

4.4.3 Impact of Dimension and Quantity of Data

For retrieval, the lag duration corresponds to the dimensionality of data. As discussed

in Chapter 3, by reducing the lag duration, we are able to extract a much larger

dataset, allowing us to examine scaling. Figure 4-8 (Top) shows the comparison of

L1LSH on three different datasets (DataLag 300, ix, DataLag 30, 1x, and DataLag 30, 10x)

for retrieval based on 1-NN. From this, we can deduce two effects: the impact of the

data dimensionality and of the data quantity on the retrieval accuracy and querying

speed.

First, we can observe the impact of the dimensionality by comparing the accuracy-

speed trade-off profiles between DataLag 300, Ix (red) and DataLag 30, Ix (green). The

accuracy-speed trade-off profile of DataLag 30, Ix lies above that of DataLag 300, ix. For

a given speed-up, we observe that the retrieval is more accurate on the data with a

lower dimensionality. It agrees with the general perception that comparing time series

with a lower dimensionality is more accurate than that with a higher dimensionality

as the distance measures become less effective as the dimensionality becomes higher.

67

Second, the impact of the data quantity can be deduced by comparing the accuracy-

speed trade-off profiles between DataLag 30, 10x (blue) and DataLag 30, 1x (green). We

observe that the accuracy-speed trade-off profile of DataLag 30, 10x sits well above that

of DataLag 30, 1x. It implies that for a given accuracy, the speed-up effect is much

higher on a larger dataset. This agrees with the property of LSH that it has a sub-

linear time complexity to the size of the dataset. Thus, as the size of data becomes

larger, the efficiency of LSH will be more apparent. We observe the identical pat-

terns with COSLSH and E2LSH, as presented in Figure 4-8 (Middle) and Figure 4-8

(Bottom), respectively.

4.5 Chapter Conclusion

We proposed a fast, yet accurate and scalable locality-sensitive hashing method for

the retrieval problem of finding similar physiological waveform time series. We demon-

strated effectiveness of this method on our arterial blood pressure time series reposi-

tory extracted from the MIMIC II database. With LSH for various distance metrics,

we achieved an order of magnitude speed-up with the cost of decreasing the retrieval

accuracy by 5% compared to KNN. With this efficient retrieval method, we extend

our work to the problem of predicting acute, critical events in intensive care units in

the next chapter.

68

0.9

0.8

C.) k9
(6

0.7 -

(D 0.6

0.5 - - L=10

---- L=20
0.4 - L=30

-A- L=40
- L=50

0.3 -
5 10 15 20 25 30 35 40 45 50

Number of Hash Functions (m)

0.9

0.8 -

0.7

.0 0.6 -

0-51 m=10
E m=20
-.- m=30 _
A m=40

-v- m=50

10 20 30 40 50 60 70 80 90 100

Number of Hash Tables (L)

Figure 4-6: Sensitivity analysis of the retrieval accuracy with respect to (Top) the

number of hash functions (m) per table and (Bottom) the number of hash tables (L)

for L1LSH.

69

120

-9- L=1 0
-8 L=20

100 - 4 L=30
--- L=40
-v- L=50

80 --
80

0C)
U_

60

20 -

00
5 10 15 20 25 30 35 40 45 50

Number of Hash Functions (m)

120

-G- m=10
E m=20

100 - i m=30
-4- m=40
-v- m=50

80-

0

0

CO
IL

- 0 -7

0

UI)
401

20

10 20 30 40 50 60 70 80 90 100

Number of Hash Tables (L)

Figure 4-7: Sensitivity analysis of the speed-up factor with respect to (Top) the
number of hash functions (m) per table and (Bottom) the number of hash tables (L)
for L1LSH.

70

I I I I I I I

0.99 14 C

& Cx x x0.98 o X'C.

0.97 0 g A C

0 0
A

0.95 -
05

C0.94 d o O

0.93 0-
0

0
0.92 -0

05

0.91 --
09 ' O '0

0.92 -oc

1

0.99

0.98

0.97

0.96

0.95

_E 0.94Cu

0.93

0.92

09

LSH Tradeoff (L1SLH, k=1)

0 Lag 300, 1x
A Lag 30, 1 x
x Lag 30 1Ox

x
x

- x

x x

x x
x

xx x

x

0 10 20 30 40 50
Speed-up Factor (x)

LSH Tradeoff (COSLSH, k=1)

0.99

0.98

0.97

Cu0.9

0.98
0.95

'E; 0.94

0.93

0.92

0,91

0 d xax'C
AA x'C

0 A- 0, x x

A 0
x

- A A

0 AAox

A A
0

0
x

A CC

0 A
0 0 A A xA

0 0 A

A

0 A

A

L
60 70 80

o Lag 300, 1 x
A Lag 30, 1 x
x Lag 30 1Ox

50 60

0 Lag 300, 1x
A Lag 30, 1x
x Lag 30 1Oxxx x

x
0 0A A

0 0

00

00 A0 0
00 A

0 000

0 0 00

0 0
0

0 0 0a

0
0

10 1 0 5 3

0 5 10 15 20 25 30

Speed-up Factor (x)

Figure 4-8: Trade-off between retrieval accuracy and speed-up factor of LSH relative
to KNN on DataLag 300, lx, DataLag 30, 1x, and DataLag 30, 10x under (Top) Li (Middle)
cosine, and (Bottom) Euclidean distances. Using a smaller dimensional data and a

larger quantity of data each improves accuracy and speed-up.

71

0 10 20 30 40

Speed-up Factor (x)

LSH Tradeoff (E2LSH, k=1)

XX x
x
x

x x

.

x

x

72

Chapter 5

Locality-Sensitive Hashing for

Critical Event Prediction

This chapter addresses the question of whether a high quality similarity-based re-

trieval set of arterial blood pressure waveforms can effectively be leveraged for pre-

diction of a critical event in the intensive care unit (ICU). To answer this, we extend

the locality-sensitive hashing (LSH) based waveform retrieval method to the task

of predicting acute hypotension by majority discrimination. The prediction results

are thoroughly investigated with performance measures such as accuracy, correlation,

and the ability to detect false negatives. We also investigate the question of how lag

duration and quantity of data impact the prediction performance and what it means

in the medical context. From our experiments, we find that LSH largely speeds up

the querying time with a negligible decrease in prediction accuracy as a cost, while

the large difference in the querying times of LSH based on different distance metrics

originates from the difference in their hash bucket distributions. We also observe that

using a longer lag and a larger quantity of data each improves accuracy and speed-up.

The main content of this chapter was published in [74].

73

5.1 Motivation

In data-driven medicine, fast yet accurate prediction of acute and critical events based

on time series signal data from patient monitors is crucial especially in intensive

care units. In such settings, everything is very time critical, so if a task can be

completed dramatically faster, it is often acceptable to tolerate a modest amount

of approximation. In the previous chapter, we introduced the LSH-based scalable

retrieval system for high-dimensional massive physiological time series data, which

has a significantly faster querying time while still maintaining the retrieval quality in

a competitive range in comparison to the linear k-nearest neighbor (KNN) method.

The eventual purpose of retrieving patients with similar time series segments is to

make an inference about certain states or conditions of the query based on information

that can be leveraged from such neighbors. We are particularly interested in the

problem of making a prediction on the future medical condition of a query patient

based on the result of a quick retrieval of waveforms similar to that patient's.

Thus, in this chapter, we extend the LSH-based retrieval system to just-in-time

critical event prediction. Our ultimate goal is to obtain an accurate and fast predic-

tion for the query about an acute event that lies ahead in time with the similarity

based methods. The similarity based prediction via LSH or KNN is essentially a two-

step process of first quickly retrieving patients with trajectories like mine, the nearest

neighbors (NNs) of our query of interest by LSH or KNN, and second, extrapolating

the information of nearest neighbors (such as their labels) for prediction via majority

vote.

Similar to the retrieval problem, we demonstrate LSH-based prediction with L1LSH,

E2LSH, and COSLSH on the dataset of mean arterial blood pressure extracted from

the MIMIC II database. Our event of interest for prediction is an acute hypotensive

episode, explained in Chapter 3.

In this chapter, we ask the following research questions:

* how the querying time saved by LSH is related to a decrease in prediction

accuracy,

74

" whether one LSH method (L1LSH, COSLSH, or E2LSH) has better performance

than the others in terms of prediction accuracy and querying speed,

" whether the rank among them changes when compared with alternative perfor-

mance measures in terms of correlation and detecting false negatives,

" why there exists a large variability in the querying time among different LSH

methods,

" how diminishing retrieval accuracy due to approximation affects prediction ac-

curacy, and

" how the performance of prediction based on LSH depends on the lag time and

the quantity of data.

5.2 Method

The prediction by LSH is built on top of the standard LSH for retrieval. We then use

majority vote only among the small approximate NN set as a means of extrapolation

for prediction. The prediction by LSH consists of the following three steps:

1. constructing an efficient data structure (hash table) to index (hash) the data

for fast retrieval (Section 4.2.2, Algorithm 1),

2. quickly retrieving the approximate NNs of the query of interest (Section 4.2.3,

Algorithm 2), and

3. predicting the label of the query based on predominance of labels of its NNs

(Algorithm 3).

A weighting rule is the rule that defines wi, the weight for each neighbor (i.e.

how to combine the labels of the nearest neighbors). Typically, the majority rule

with equal weights (wi = 1/k) is applied (as in our work), but more sophisticated

approaches can also be used with the cost of extra computation, for example, where

neighbors are given weights according to the inverse of their distances to the query.

75

Algorithm 3 k-Nearest Neighbor Classification

Require: q, the query; k, the number of nearest neighbors retrieved; K(q)

{xi, yi} _>, k-nearest neighbors of q.
1: procedure KN N-CLASSIFICATION(q, k, K(q))
2: qq <- arg max, E wi -I(v = yi) > v denotes each valid class label. w

(Xj,Y)EK(q)
denotes sample weights. yj is the label of the point xi.

3: Return Qq, the predicted label for the query q
4: end procedure

5.3 Experiment

We present the experimental set-up for our investigations regarding the predictive

performance and querying speed of LSH on the acute hypotensive episode (AHE)

dataset described in Chapter 3.

AHE Prediction We build the prediction models based on LSH and KNN for

the occurrence of AHE within an event window. We build the models with a lag time

amount of historical data prior to the window, where each data point xi has a label yj

indicating the occurrence of AHE. We formulate this prediction task as a supervised

binary classification problem, where predicted labels Q, describe the patients as AHE-

positive or negative.

Performance Measures We evaluate performance of predictors mainly with:

" Prediction Accuracy = (TP + TN)/(TP + FP + TN + FN)', and

" Speed-up factor, which is the average time taken by LSH relative to that by

KNN, measured by the inverse of selectivity (defined in Section 4.3).

However, accuracy is known to be heavily influenced by the class imbalance in

the data (as in our dataset). Thus, additionally, we measure performance with an

alternative measure, namely Matthew's correlation coefficient (MCC).

MCC (TP x TN -FP x FN)

,/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC measures the correlation between observed and predicted binary classification

labels. It is regarded as the measure of the quality of binary classification that is

1 TP = True Positive, FP = False Positive, FN = False Negative, TN = True Negative.

76

less sensitive and more robust to the class imbalance and data size [102]. We choose

to use MCC instead of F-score since the latter sensitively depends on a weighting

parameter 3 between precision and recall. MCC has the range from -1 to 1.

One of the most critical mistakes that can happen in the ICU setting is predicting

condition positive patients as condition negative and consequently missing a chance

for appropriate intervention. The false negative weighted accuracy (FNWA) weighs

these false negative cases more heavily than other cases in the confusion matrix.

e FNWA = (TP+TN)(TP+FP+TN +a x FN)

Here, we use the factor of a = 5 arbitrarily. Like the prediction accuracy, it has a

minimum value of 0 and a maximum value of 1.

Number of Nearest Neighbors In this study, we make predictions mainly based

on one nearest neighbor (1-NN) for two reasons. First, as we will see in Section 5.4.1,

we show that the prediction accuracy based on 1-NN is higher than that of any larger

number of nearest neighbors. Second, 1-NN test allows better comparisons among

methods because it eliminates the need for hyper-parameter tuning on the appropriate

number of nearest neighbors and which neighbor weighting rule to use.

Experimental Procedure We apply L1LSH, COSLSH, and E2LSH for predic-

tion. For any LSH, we vary m from 5 to 100 with an increment of 5 and L from

10 to 100 with an increment of 10. We apply the above parameter configurations to

retrieve and predict based on 1-NN, 5-NNs, and 10-NNs. We demonstrate the pre-

diction of AHE by LSH mainly on DataLag 300, ix as a representative. We additionally

apply LSH on DataLag 30, ix and DataLag 30, 10x with 1-NN to measure the impact of

lag duration and of scaling.

5.4 Results and Discussion

We present the results of AHE prediction with various performance measures for

prediction accuracy and discuss the source of the large difference in speed-ups among

different LSH methods. Also, we discuss the impact of lag and the quantity of data

on the prediction accuracy and speed-up factors.

77

LSH Tradeoff: Prediction vs. Speed-up (L1 LSH)

0 k=1
0.99 - A k=5

x k=10
0.98 -

0.97 -

C)

0.9

<0.95 - 0 0

0 0 0
0

3 A O 00 9

0.92A
x0 0

0.0

0.92 - 20 0
A

Ak 0
091 0

X A

0.9 ''A X A

0 10 20 30 40 50 60

Speed-up Factor (x)

Figure 5-1: Trade-off between prediction accuracy and speed-up factor of L1LSH

relative to the linear KNN. Each point corresponds to a parameter configuration of

LSH.

5.4.1 Acute Hypotensive Episode Prediction

Figure 5-1 shows the prediction accuracy and speed-up trade-off profile of L1LSH for

k = 1,5,10. Each point corresponds to the average result from a pair of the number

of hash functions (m) used per table and the number of hash tables (L) over 10 runs.

For fixed m and L, we observe that only the prediction accuracies degrade with an

increasing k while the prediction times remain almost the same. On the other hand,

for the same loss of accuracy, we observe that the speed-up factor is much lower for

a larger k. Thus, making predictions based on a larger number of similar waveforms

does not improve the prediction quality and rather introduces noise.

This general pattern of the prediction accuracy being the highest with k = 1 is

also observed with E2LSH (Figure 5-2) and COSLSH (Figure 5-3). Thus, along with

the reasons explained in Section 5.3, for the remaining experiments, we demonstrate

our results only with k = 1.

78

LSH Tradeoff: Prediction vs. Speed-up (E2LSH)

0 k=1
0.99 - A k=5

X k=10
0.98 -

0.97 -

Ca)
< 0.96

0 *0N
0.95 - C~

0 0
0 0

' 0.94 -
a) 0

0.92 - AXx X 0

0.91 - A A
XX X 0

x x i
0.9 1 1 I

0 5 10 15 20 25 30 35 40 45

Speed-up Factor (x)

Figure 5-2: Trade-off between prediction accuracy and speed-up factor of E2LSH
relative to the linear KNN. Each point corresponds to a parameter configuration of
LSH.

We measure how much speed-up gain we achieve for each LSH method when we

allow a 1% decrease in prediction accuracy as a cost. From Figure 5-1, we observe

that L1LSH becomes 25 times faster than the linear KNN search (95.95% accuracy)

when we sacrifice 1% accuracy (94.95%). With E2LSH, we achieve a smaller speed-up

of 14x with 1% decrease in prediction accuracy (from 95.95% to 94.95%) (Figure 5-2).

On the other hand, as shown in Figure 5-3, while the maximum prediction accuracy

of COSLSH (93.74%) is lower than that of L1LSH and E2LSH, it becomes 249 times

faster than KNN for just a 1% drop in accuracy (92.74%).

Figure 5-4 presents the prediction accuracies of L1LSH, COSLSH, and E2LSH

and the associated speed-up factors with k = 1 all together. As another basis for

comparing prediction accuracy, we use the performance of the "all-negative" predic-

tor. It is a dummy predictor which classifies condition negative for all queries since

our data is highly skewed toward AHE negatives. It has a prediction accuracy of

92.64%. Our predictors based on LSH should do better than the all-negative predic-

79

LSH Tradeoff: Prediction vs. Speed-up (COSLSH)

0 k=1
0.99 - A k=5

x k=10
0.98 -

0.97 -

Ca

M

0.95 -
0

04
C-)

0 0 0 00.93 - 0 0

x x 0

0.92 - yx A A 0 0 O

0.91 -A

0.91
0 50 100 150 200 250 300 350 400 450

Speed-up Factor (x)

Figure 5-3: Trade-off between prediction accuracy and speed-up factor of COSLSH
relative to the linear KNN. Each point corresponds to a parameter configuration of

LSH.

tor in order to be meaningful. From the figure, we observe that L1LSH and E2LSH

have comparable accuracies to each other while L1LSH is faster than E2LSH as the

accuracy-speed trade-off profile of L1LSH sits above that of E2LSH. Their maximum

speed-ups at a point where their prediction accuracies cross with that of the dummy

predictor are 49 and 24 for L1LSH and E2LSH, respectively. On the other hand,

COSLSH has a maximum accuracy of 93.74%, which is lower than that of L1LSH

and E2LSH (95.95%). However, it shows a significantly better ability to speed up

the querying time (249x). There are two explanations for this trend. First of all, the

lower prediction accuracy comes from the information loss during the normalization

of data to be used for COSLSH. For a much higher speed-up, it originates from the

fact that the average selectivity of COSLSH is much smaller than that of L1LSH and

E2LSH. This is the topic of discussion in detail in Section 5.4.3.

80

0 L1LSH
0.99 - A COSLSH

x E2LSH
0.98 - Negative Predictor

0.97 -

0.90 0.96

0.95-

0.93 - 0A A

0.92

0.91

0.9

A

0-xe

X I I

0 50 100 150 200 250 300 350 400 450 500

Speed-up Factor (x)

Figure 5-4: Comparison of the prediction accuracy and speed-up trade-off profiles of

L1LSH, COSLSH, and E2LSH for prediction based on 1-NN (k = 1). Each point

corresponds to a parameter configuration of LSH.

5.4.2 Performance under Alternative Measures

As the prediction accuracy is known to be heavily influenced by the class imbalance,

we provide analysis with alternative performance measures for prediction. We mea-

sure the performances of LiLSH, E2LSH, and COSLSH using Matthew's correlation

coefficient (MCC) and false negative weighted accuracy (FNWA). We first look at the

performance with MCC. In Figure 5-5, we observe that the MCC values of LiLSH,

E2LSH, and COSLSH all lie well above that of the dummy all-negative baseline while

having significant speed-ups. The MCC of the baseline all-negative predictor is zero,

confirming that there is no correlation between the observed and predicted labels

when predicting AHE negative for all queries. Within the range of LSH parame-

ters we tried, we achieve a maximum speed up of 147x, 81x, and 456x with LiLSH,

E2LSH, and COSLSH, while their MCC values are larger (by a large margin of 0.4)

than that of the dummy predictor.

81

o L1LSH
A COSLSH
x E2LSH

- Negative Predictor

X 0

0 50 100 150 200 250 300 350

Speed-up Factor (x)
400 450 500

Figure 5-5: Comparison of MCC and speed-up trade-off profiles of L1LSH, COSLSH,
and E2LSH for prediction based on 1-NN (k = 1). Each point corresponds to a
parameter configuration of LSH.

We also look at the performance in terms of FNWA, which assigns a heavier

weight on the false negative cases (i.e. AHE patients being classified as healthy) in

the confusion matrix. In Figure 5-6, we observe that FNWAs of L1LSH, E2LSH, and

COSLSH are all well above that of the dummy all-negative predictor by a margin

of approximately 0.1. Within the range of LSH parameters we experimented with,

we achieve a maximum speed up of 147x, 81x, and 456x with L1LSH, E2LSH, and

COSLSH, while their FNWA values are larger than that of the dummy predictor.

This implies that the prediction by LSH is actually effective in predicting the most

detrimental cases of AHE in the ICU.

5.4.3 Hash Table Bucket Distribution

We address the question of why there exists a large difference in the speed-up factors

among L1LSH, COSLSH, and E2LSH. We hypothesize that it originates from the

82

0.8 r

0.7,

0.6

0.5

0
C.) 0.4

0.3 -

0.2 -

0.1 -

0

0 L1LSH
A COSLSH

0.95 x E2LSH
- Negative Predictor

CO,

< 0.9 -

(0.85 xx 0
0

(D 0.8z

U

0.75

0.7 I

0 50 100 150 200 250 300 350 400 450 500

Speed-up Factor (x)

Figure 5-6: Comparison of FNWA and speed-up trade-off profiles of L1LSH, COSLSH,
and E2LSH for prediction based on 1-NN (k = 1). Each point corresponds to a
parameter configuration of LSH.

difference in the distribution of hash bucket sizes. In order for LSH to have a good

speed-up, we desire that data are hashed uniformly over all valid hash buckets with

a small number of data points in each bucket. If so, during the querying step, the

selectivity of querying (e.g. size of the candidate set subject to the linear short-

listing) is minimal, leading to a large speed-up. But in reality, this might not be

possible assuming data always has some structure in it. We empirically validate our

hypothesis for two cases where the number of hash functions used (m) is small and

large on DataLag 300, 1x-

Figure 5-7 (Top) shows the average bucket size distribution under L1LSH, COSLSH,

and E2LSH with m = 5. Hash buckets are sorted in terms of their size in descending

order on the horizontal axis. Accumulated (normalized) data size is represented on the

vertical axis. Cumulated data of 1 denotes the size of the entire data. For example,

the fifth largest hash bucket having a cumulated data size of 0.9 means that the top

5 largest buckets contain 90% of the total data. The closer the plot is to the diagonal

83

line, the more uniformly data is indexed across all valid hash buckets. We observe

that the data are indexed more evenly over hash buckets with COSLSH, whereas

the majority of data belong in the few largest buckets with L1LSH and especially

E2LSH. Out of 32 possible hash buckets, the largest bucket of E2LSH and L1LSH

contains 78.90% and 43.59% of the total data each, whereas for COSLSH, the largest

bucket contains only 8.43% of the data. When examining the top 5 largest buckets,

E2LSH and L1LSH hold 99.73% and 89.09% of the total data in those buckets, while

COSLSH has only 32.11%. This observation explains why COSLSH is significantly

faster than L1LSH and E2LSH.

Figure 5-7 (Bottom) shows the average bucket size distribution under L1LSH,

COSLSH, and E2LSH when data is indexed with a larger number of hash functions,

m = 50. Like the previous case with a small m, COSLSH hashes the data more evenly

across all hash buckets (closer to the diagonal line), whereas L1LSH and E2LSH are

still highly skewed toward large buckets. Out of approximately 6,000 valid buckets,

the largest top one percentile of buckets (60 buckets) under COSLSH hold only 4%

of the total data while that number corresponds to 18.37% for LILSH and 40.85%

for E2LSH. Again, this explains the observation that the querying speed of COSLSH

is the fastest, followed by L1LSH and E2LSH.

5.4.4 Impact of Retrieval on Prediction

We investigate the question of how the quality of retrieval impacts that of prediction.

Figure 5-8 demonstrates the relationship between the relative loss of accuracy in

retrieval and that in prediction for L1LSH with k = 1. We define the relative retrieval

accuracy for each (m, L) as the fraction of the k-NNs that are retrieved by both L1LSH

and KNN methods, and the overall relative retrieval accuracy is the average of the

individual accuracies over all queries (defined in Section 4.3). Similarly, we define the

relative prediction accuracy (c.f. absolute prediction accuracy) as the average ratio

(LSH prediction accuracy)/(KNN prediction accuracy). One would expect that as

the retrieval accuracy of finding correct "patients like me" declines, it would make

a significant negative impact on the accuracy of prediction which extrapolates the

84

information from such patients. However, we observe that the loss of accuracy due to

approximation in retrieval, in exchange for vast gains in speed-up, has a non-linear

diminishing impact on the loss of prediction accuracy. For a given unit of decrease in

relative retrieval accuracy, the corresponding amount of decrease in relative prediction

accuracy is much smaller (all points sitting well above the linear diagonal line in

Figure 5-8). Although the rapidly found "approximate patients like me" by LSH

were not as well matched to the query as the set obtained by the linear search, the

prediction of AHE by LSH maintained over 90% relative prediction accuracy even

when the speed-up gain was large.

5.4.5 Impact of Lag Duration and Data Quantity

Investigating lag duration is driven by problem domain in the clinical setting as lag

data may be limited or the value of effective lag duration may be informative to clin-

icians. In this case, the lag also impacts data size, allowing us to examine scaling

(explained in detail in Section 3.4). Figure 5-9 (Top) shows the comparison of L1LSH

on three different datasets (DataLag 300, 1x, DataLag 30, 1x, and DataLag 30, lOx) for pre-

diction of AHE based on 1-NN. From this, we can deduce two effects: the impact of

the lag duration and of the data quantity on the prediction accuracy and speed-up fac-

tor. First, we observe the impact of the lag duration by comparing the accuracy-speed

trade-off profiles between DataLag 300, lx (red) and DataLag 30, Ix (green). The leftmost

points of each profile show the accuracy obtained by KNN with Li on each dataset.

We observe that, with a shorter lag time of 30 minutes, the maximum prediction

accuracy (0.9581) is slightly lower than that with 300 minutes of lag time (0.9595).

Plus, the trade-off profile of DataLag 300, lx lies well above that of DataLag 30, 1x. These

observations all together imply that, for the purpose of predicting AHE, it is more

beneficial to use 300 minutes of lag as it generates more accurate prediction outcomes

and larger speed-ups. We observe that same pattern with COSLSH and E2LSH, as

presented in Figure 5-9 (Middle) and Figure 5-9 (Bottom), respectively.

Second, the impact of the quantity of training data is highlighted by comparing

the accuracy-speed trade-off profiles between DataLag 30, lx (green) and DataLag 30, lox

85

(blue) in Figure 5-9 (Top) for L1LSH. Here, the maximum prediction accuracy when

trained with 10x data (0.9748) is much higher than that when trained with 1x

data (0.9581). The trade-off profile of DataLag 30, 10x is located well above that of

DataLag 30, ix. Therefore, more data results in higher accuracy and larger speed-up.

LSH scales well with accumulation of data and can improve prediction when there

is more physiological data available. Figure 5-9 (Middle) and Figure 5-9 (Bottom)

confirm that this pattern with respect to the quantity of dataset is also valid with

COSLSH and E2LSH.

5.5 Chapter Conclusion

In this chapter, we applied the sublinear time, scalable locality-sensitive hashing and

majority discrimination to the problem of predicting AHE based on physiological

waveform time series. Compared to using the linear k-nearest neighbor search, our

proposed method vastly speeds up prediction time up to an order (with L1LSH and

E2LSH) and two orders (with COSLSH) of magnitude faster while sacrificing less

than 1% of prediction accuracy as a cost. We found that the large difference in

the querying times of LSH based on different distance metrics originates from the

difference in their hash bucket distributions and that using a longer lag and a larger

quantity of data each improves accuracy and speed-up. We also observed the non-

diminishing impact of retrieval quality on the prediction accuracy. In the next two

chapters, we propose two new variants of LSH that lead to better performance on the

AHE prediction problem.

86

Ca
CU

CO

E
C-)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

m=5

0 5 10 15 20 25 30 35

Sorted Bucket Index by Size

m=50

0
0 1000 2000 3000 4000

Sorted Bucket Index by Size
5000 6000

Figure 5-7: Average bucket size distribution under L1LSH, COSLSH, and E2LSH with
(Top) m = 5 and (Bottom) m = 50 on DataLag 300, ,. Hash buckets are sorted in
terms of their size in descending order on the horizontal axis. Accumulated normalized
data size is represented on the vertical axis (1 denotes the size of the entire data).
The closer the plot is to the diagonal line, the more uniformly the data is indexed
across all valid hash buckets.

87

GL1 LSI
-- COSL S

-v- E2LSH

CZ

CO)

--- L1LSH
A -COSLSH

-v- E2LSH

H
SH

1

-

-

0.95 F-

-)

0

a.
0_0

(D

0.9 k-

A

Al

0~

A A

0.85 -

0.8 -

0.75 -

0.7 F

0.65 F

0.6
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Relative Retrieval Accuracy

Figure 5-8: Relative retrieval versus prediction accuracy of L1LSH to the linear KNN
search for k = 1. Each point corresponds to a parameter configuration (m, L) of LSH.

88

Speed-up (x)
x 0-5
* 5-10
v 10-20
0 20-40
A > 40

1
4&V

0,60 0

LSH Tradeoff: Prediction Accuracy vs. Speed-up (Li LSH, k=1)

o Lag 300, 1x
0.99 A Lag 30, 1x

x Lag 30 1Ox
0.98 -

0.97
0

x

<.94 0

0.95
x

0.94 - x X

A x0 X
A.9 00 X xx x

0 x
0.92 Cx x

0

0.91 (9 x

0 .9 1 -

0 50 100 150

Speed-up Factor (x)

LSH Tradeoff: Prediction Accuracy vs. Speed-up (COSLSH, k=1)
1

0 Lag 300, 1 x
0.99 - A Lag 30, 1x

x Lag 30 1Ox
0.98 -

0.97

0.96

0.95 x xx

05 x
Z 0.94 x x

~o 0
8)0o Cc0

0.93 0 0 0
0

0.92 0 0

0.91 A0

0.9
0 50 100 150 200 250 300 350 400 450 500

Speed-up Factor (x)

LSH Tradeoff: Prediction Accuracy vs. Speed-up (E2LSH, k=1)
1-

o Lag 300, 1x
0.99 - A Lag 30, 1x

x Lag 30 1Ox
0.98 -

0.97 -

x

0.95 - 00.92 --

0.95 - 0

00

0.91

00
0.9 A1

0 5 10 15 20 25 30 35 40 45

Speed-up Factor (x)

Figure 5-9: Trade-off between prediction accuracy and speed-up factor of the LSH
relative to KNN on DataLag 300, 1x, DataLag 30, 1x, and DataLag 30, 10x With (Top) L1LSH

(Middle) COSLSH, and (Bottom) E2LSH. Using a longer lag and a larger quantity
of data each improves prediction accuracy and speed-up.

89

90

.....

Chapter 6

Stratified Locality-Sensitive Hashing

When sensor stream data such as blood pressure come from a highly complex source

like the human body, a single metric is not sufficient to capture its coalesced enigmatic

underlying properties. Finding trajectories similar to a given query from such data re-

quires an integrated multi-metric strategy to accurately express underlying semantic

similarity. Herein we propose a new similarity based prediction technique called strat-

ified locality-sensitive hashing (SLSH), which finds similarity among the data from

a more integrated perspective by employing multiple distance metrics in one frame-

work. Demonstrated on the problem of predicting acute hypotensive episodes, we

show that SLSH not only achieves higher prediction accuracy, but also faster query-

ing speed in comparison to the standard locality-sensitive hashing based prediction.

The main content of this chapter was published in [70,71] and was also submitted to

a conference for review at the time of thesis writing.

6.1 Motivation

When utilizing locality-sensitive hashing (LSH), the appropriate choice of distance

metric for measuring similarity is critical because of the one-to-one relationship be-

tween a distance metric and its unique corresponding family of locality-sensitive hash

functions. Typically, a single locality-sensitive hash function family offers only one

perspective on the data with its associated distance metric. For example, as illus-

91

(a)

(b)

E <C (c)

(d)

Time

Figure 6-1: An illustration of hypothetical time series with different amplitudes and
shapes. By the Li distance, (a, b) and (c, d) are grouped as similar to each other
whereas by the cosine distance, which requires normalization, (a, c) and (b, d) are
grouped as similar.

trated in Figure 6-1, when either the Li or the Euclidean distance is used as the

distance metric, the similarity between waveform time series is mainly determined by

the amplitude of the waveforms. On the other hand, when using the cosine distance,

the notion of similarity is based on the shape or the angle between waveform vectors

as it requires data to lie on a unit sphere.

The current limit of LSH is that it can hash the data with only one similarity mea-

sure at a time with its associated family of locality-sensitive hash functions. However,

being limited to use only one distance metric to measure similarity introduces a se-

mantic gap (the discrepancy between true similarity and what can be captured with

a distance metric) and a loss of information because interpreting clinical physiological

waveforms requires diverse perspectives on the data. Both the amplitude (e.g. mean

blood pressure) and the shape of waveforms (e.g. trend and cycle frequency) contain

important clinical information. For example, an acute hypotensive episode is defined

as a sudden dropping (shape) of blood pressure to below 60 mmHg (amplitude) for

a prolonged period of time. There are multiple facets of similarity (e.g., matching

based on amplitude or shape of time series) and what constitutes similarity is not

entirely quantifiable by a single distance metric. In practice, practitioners often do

not precisely know which facets of similarity they are interested in. Or, they just

ask for "something similar in general." Therefore, due to its complex nature, in order

92

to capture the true underlying semantic similarity in physiological signals, the data

needs to be examined from multiple, more integrated perspectives. We achieve this

with our proposed SLSH which provides a fast means of measuring similarity capable

of integrating multiple distance metrics.

SLSH generates a hierarchy of hash tables. Each level of the hierarchy uses a

different distance metric for hashing. Specifically, it is a multilevel LSH where,

1. the outer level LSH first stratifies the data by amplitude using the Li distance,

and then

2. hierarchically, within each stratum, the inner level LSH with the cosine distance

hashes the data according to angle and shape of time series.

For a query, a set of candidate neighbors is retrieved from the colliding buckets at

each level. Finally, a number of candidates are chosen as the final nearest neighbors,

and we use majority vote among them to finalize the prediction.

In this chapter, we ask the following research questions, investigating:

o whether SLSH is advantageous and by how much, compared to the standard

LSH and the linear k-nearest neighbor (KNN) method for the task of predicting

acute hypotensive episodes (AHE),

o whether using multiple distance measures (via SLSH or an ensemble of multiple

predictors each based on a different distance metric) improves the prediction

performance in terms of accuracy and querying speed,

o whether the order of distance metrics used at the outer and inner level influences

the performance of SLSH, and

o how the above performances scale as the lag duration and quantity of data

change.

To the best of our knowledge, SLSH is the first scalable practical algorithm that in-

tegratively hybridizes multiple distance metrics in the LSH framework, demonstrated

on a prediction task based on physiological time series.

93

Reference Data (size n)

Inner Hash Table T,

Hash Data
441 Key Points

0001 ***
91,out LILSH 0010

Outer Hash Table T __
Hash Key Data Points

100010COSLSH Hash Data

100111 0 0 ALKey Points1001010 1001011 1 __

1001100 A

Halt (Small bucket) 0011 000

Figure 6-2: SLSH Indexing. We first stratify the data according to LILSH at the

outer level. Then, on each bucket with a significant size, we apply another layer of

LSH with COSLSH at the inner level. The figure illustrates the simple case when one

hash table is built at the outer level.

6.2 Method

Similar to the prediction based on the standard LSH or KNN, the prediction based

on SLSH is essentially a two-step process of first quickly retrieving patients with

trajectories like mine, the nearest neighbors (NNs) of our query of interest by SLSH,

and second, extrapolating the information of NNs for prediction via majority vote.

Prior to the retrieval and prediction, we index the data with the two-level SLSH. The

procedures of our two-level SLSH (Figure 6-2 and Figure 6-3) are composed of the

following tasks built on top of the standard LSH:

1. (Indexing) Stratify the data according to L1LSH at the outer level with (mat, Lout).

2. (Indexing) Only on each bucket/stratum with a significant size ("populous

bucket", whose size is larger than a% of the original data size), we hash one

level deeper with COSLSH at the inner level with (mi, Li,) 1 .

Somewhat analogous to top-down hierarchical clustering.

94

Outer Hash Table T Inner Hash Table T11

Hash Data Points Hash Data

giout(q) Key gin(q) Key Points

1001010 * 0001 *
Query (q) 1001011 **A0010

1001100 0 A

Exhaustive similarity search within HKas Dt
the candidate set (<<n)

0001

essee -- -@@@0010 A

Query (q) 0011 too
Majority

Vote
Retrieved Nearest Neighbors Yq Query's Label

Figure 6-3: SLSH Retrieval and Prediction. We retrieve the approximate nearest

neighbors of a query of interest by applying the same outer and inner hash functions

used for construction and perform the linear search within the candidate set. Predic-

tion is clone by majority vote. The figure illustrates the simple case when one hash

table is built at the outer level.

3. (Retrieval) Retrieve the approximate NNs of a query of interest by applying the

same outer and inner (only when needed) hash functions used for construction,

and by performing the linear search within the candidate set.

4. (Prediction) Finally, prediction in SLSH is done by taking the majority vote

among the retrieved k approximate NNs, identical to the prediction step of the

standard LSH (Algorithm 3 in Section 5.2).

The details of SLSH are presented in Algorithm 4 (indexing) and Algorithm 5 (re-

trieval and prediction).

Compared to the standard LSH, SLSH offers two benefits. First, it retrieves more

integrated NNs according to a mixture of two distance measures. Second, it shortens

the retrieval time because the candidate set size (selectivity) of SLSH is orders of

magnitude smaller than that of LSH due to stratification. When setting up the

standard LSH, the desirable number of hash functions used per table is the number

95

Algorithm 4 Stratified Locality-Sensitive Hashing: Indexing

Require: mout, number of hash functions per outer table; Lout, number of outer hash
tables; men, number of hash functions per inner table; Lin, number of inner hash
tables; X, reference data; H,,t, hash function family for outer LSH; Hin, hash
function family for inner LSH; a, inner LSH threshold

1: procedure SLSH-INDEXING(m 0,t, Lout min, Lin, X, Ht, Hin, a)
2: Tout, gout <- LSH-INDEXING(mut, Lout, X, Hout) >

Outer LSH with Algorithm 1. Data is divided into buckets which work as strata
in each hash table.

3: for l = [1, 2,..., Lout] do
4: Let ni be the number of hash buckets in T of Tout
5: for i = [1, 2,..., n] do
6: Let Bli be a hash buckets in T
7: if JB1i > a|X| then
8: Pli+ - I > populous bucket indicator
9: Ti, gli <- LSH-INDEXING(min, Lin, Bli, Hin) > inner LSH with

Algorithm 1
10: else
11: pli <- 0
12: end if
13: end for
14: end for
15: Return All (outer and inner) hash tables T and functions g
16: end procedure

that would partition the original data as uniformly as possible over all possible hash

buckets so that each bucket contains only a small amount of the data. In such a way,

when finding a hash bucket that collides with a query, the space subject to the linear

search is enormously reduced, resulting in a large speed-up gain. In practice, however,

tables typically contain a few populous buckets which impose a large bottleneck as

shown in Section 5.4.3. This highlights another benefit of SLSH, besides allowing

multiple perspectives on the data, that adding another layer of LSH yields more

finely partitioned, evenly populated hash buckets effectively avoiding the bottleneck.

We use two-level hashing in this work, but without loss of generality, SLSH can

be extended to multiple layers. While we use L1LSH and COSLSH for the outer and

inner level LSH, respectively, our SLSH framework can embrace any distance function

which has a valid locality-sensitive hash function family. For example, E2LSH can be

used in place of L1LSH or COSLSH. It is also possible to reverse the order of L1LSH

96

I I ,, -' , ?PM .1 1 M I

Algorithm 5 Stratified Locality-Sensitive Hashing: Querying

Require: q, a query; Tout, outer hash tables; gout, outer hash functions; {Ti}, inner
hash tables; {gn}, inner hash functions; k, number of NNs to retrieve

1: procedure SLSH-QUERYING(q, Tout, gout, { T}, {gii}, k)
2: C = 0 > candidate set
3: Apply lines from 2 to 6 of Algorithm 2 with Tut and gout > outer level

querying
4: for I = [1, 2,... , Lot] do L0 ,, is the number of hash tables in Tut
5: Let B1 be the colliding hash bucket of q in T of T0 ,t and i be its bucket

index
6: if 1i 0 then c> collision with a non-populous bucket
7: S +- members of bucket B1
8: C- C uS
9: else if Piu = 1 then > collision with a populous bucket

10: Apply lines from 2 to 6 of Algorithm 2 with Tj, gij on B1 and obtain
the inner candidate set Ch > inner level querying

11: C +- C U C
12: end if
13: end for
14: Compute distances from q to each element in C > with the distance metric

that defines gout
15: Return k elements with the smallest distances
16: end procedure

and COSLSH. However, when COSLSH is used first at the outer level, it requires

the entire data to be normalized prior to hashing and still needs to keep the original

unnormalized data to perform L1LSH at the inner level. For both time and memory

costs, it is more inefficient than normalizing only subsets of data that belong to the

populous buckets in our proposed procedure. In addition, first stratifying the data

according to shape has a lower interpretability to characterize each stratum when

compared to first stratifying the data with respect to amplitude.

6.3 Experiment

We present the experimental set-up for our investigations regarding the predictive

performance and speed of SLSH on the AHE datasets extracted from the MIMIC II

database described in Section 3.4.

97

Table 6.1: Prediction models based on SLSH, KNN, the standard LSH, and ensembles
of KNN and LSH. KNN and the standard LSH serve as a baseline for comparison for
SLSH.

Prediction Model Remarks
KNN-L1 KNN predictor with the Li distance.
KNN-COS KNN predictor with the cosine distance.
KNN-L1 AND KNN-COS Ensemble predicts 1 (positive) if and only if both methods

predict 1. Otherwise, 0.
KNN-L1 OR KNN-COS Ensemble predicts 1 (positive) if either of the two methods

predicts 1. Otherwise, 0.
L1LSH Standard LSH predictor with the Li distance.
COSLSH Standard LSH predictor with the cosine distance.
L1LSH AND COSLSH Ensemble predicts 1 (positive) if and only if both methods

predict 1. Otherwise, 0.
L1LSH OR COSLSH Ensemble predicts 1 (positive) if either of the two methods

predict 1. Otherwise, 0.
SLSH (Li-COS) Stratified LSH with the outer LSH with Li and the inner

LSH with cosine distances.
SLSH (COS-Li) The reverse. Stratified LSH with the outer LSH with cosine

and the inner LSH with Li distances.

AHE Prediction Identical to the prediction procedure presented in Chapter 5,

we build the prediction models based on SLSH, the standard LSH, and KNN for

the occurrence of AHE. We build the models with a lag time amount of historical

data prior to the event window, where each data point xi has a label yi indicating

the occurrence of AHE. We formulate this prediction task as a supervised binary

classification problem, where predicted labels Vi describe the query patients as AHE-

positive or negative.

Prediction Models We build the predictors with KNN, standard LSH, and

SLSH, as well as their various ensembles. All prediction models used are explained

in Table 6.1. KNN and the standard LSH serve as the baselines for comparison for

SLSH. Solo predictors (KNN, LSH) with a single distance metric are compared to the

duo ensembles combining the Li and the cosine distances.

Performance Measures We evaluate performance of predictors (the standard

LSH, SLSH, and KNN) mainly with:

98

" Prediction Accuracy = (TP + TN)/(TP + FP + TN + FN)2 , and

* Speed-up factor, the average time taken by the predictor relative to that by

KNN, measured by the inverse of selectivity (defined in Section 4.3).

For reasons described in Section 5.3 (mainly due to prediction accuracy being the

highest with k = 1 than any larger number of k and the advantage of eliminating the

need to tune the extra hyper-parameter k), we make predictions based on one nearest

neighbor (1-NN).

6.4 Results and Discussion

In this section, we start by providing a qualitative analysis of the retrieved nearest

neighbors via SLSH compared to those from a single level LSH. We assess prediction

accuracy and querying speed of SLSH compared to those of KNN and the standard

LSH. Then, we evaluate every prediction model presented in Table 6.1 and compare

ensembles to single metric models. We finish by discussing the impact of changing the

order of distance measures used at each layer of SLSH. For the following subsections,

we present analysis of our experimental results mainly on the dataset DataLag 300, lx

6.4.1 Retrieved Nearest Neighbor Set

This section addresses the question of whether SLSH is capable of retrieving NNs

according to both amplitude and shape. We demonstrate with a visual example.

Figure 6-4 presents the retrieved nearest neighbor sets of a time series query using the

standard single-level L1LSH, the standard single-level COSLSH, and SLSH. For the

given query (red line), in Figure 6-4 (Top), we observe that the set of 5-NNs (colored

dashed lines) retrieved by L1LSH is tightly located close to the query in terms of

the mean amplitude but oblivious to their various shapes. Likewise, in Figure 6-4

(Middle), the NNs retrieved by COSLSH all resemble the shape of the query, but

their amplitudes are well-spread across various levels. Figure 6-4 (Bottom) shows a

2 TP = True Positive, FP = False Positive, FN = False Negative, TN = True Negative.

99

qualitative evaluation of SLSH. The NNs obtained via SLSH not only have shapes

that are similar to that of the query, but also have their mean amplitudes much

closer the query compared to the set retrieved by COSLSH. Satisfying the notion of

similarity in terms of both amplitude and shape, this qualitatively verifies that SLSH

is able to address the data from multiple and more integrated perspectives.

6.4.2 Acute Hypotensive Episode Prediction

We present a quantitative evaluation by empirically demonstrating on DataLag 300, Ix

that the prediction by SLSH is faster and more accurate than L1LSH. Figure 6-5

shows the accuracy and the associated speed-up factor of L1LSH (red, green) and

SLSH (blue) for the AHE prediction based on 1-NN. First, for each combination

(m, L) of LSH parameters m E [5,10,.. .,50] and L E [10, 20, ... , 100], we make a

prediction via the single-level L1LSH. The prediction results with their corresponding

speed-ups are shown as the red crosses where each point corresponds to a single

parameter instance of (m, L). The leftmost point of the red plot with no speed-up is

the accuracy of KNN.

Then, for SLSH, by setting a particular instance of LiLSH as the outer layer of

SLSH and a = 1%, we perform the inner SLSH (with COSLSH) with the parameters

Min E [1,4, ... ,19] and Lin E [1,4, ... ,10]. We choose (m,t, L0 st) = (35, 20) as

the outer level SLSH, which corresponds the instance of L1LSH parameters which

outputs 1% loss of accuracy from KNN with a speed-up gain of 25x (reflected as the

green point on Figure 6-5). We choose this parameter set instance because it is the

fastest one among the ones having a loss of accuracy less than 1%, assuming that our

maximum accuracy loss tolerance (as a cost of gaining speed-up) is 1%. For the entire

range of SLSH (blue points), we observe that it is more accurate and faster than its

baseline, the single-level L1LSH (the green point).

There are two additional computational costs for running SLSH compared to the

standard LSH: extra querying cost with the inner hash functions and storage cost for

the second level inner hash tables. It turns out the both of them are trivial. The addi-

tional time taken to apply the inner level hash functions and to locate matching inner

100

Table 6.2: Prediction performance on DataLag 300, ix, DataLag 30, 1x, and DataLag 30, 10x-

Across all datasets, SLSH outperforms L1LSH with respect to prediction accuracy (%)
and speed-up factor (x).

Lag 300, 1x Lag 30, 1x Lag 30, 10x
Model Accuracy Speed-up Accuracy Speed-up Accuracy Speed-up
KNN-L1 95.95 1 95.81 1 97.48 1
L1LSH (1% loss) 94.95 24.57 94.81 13.11 96.48 24.69
SLSH (Li-COS) 95.30 74.21 94.97 213.21 97.01 138.78

hash buckets in SLSH querying is on average two orders of magnitude smaller than

the time required to conduct the linear search in populous buckets in the standard

LSH. Thus, measuring speed-up by selectivity is valid since it is minimally affected

by the introduction of trivial extra querying cost. For storage, the number of inner

hash tables (Li,) needed for the optimal SLSH instance across all datasets is only 1

table (Li, = 1) for the inner layer. Although LSH typically requires a large number

of hash tables to produce good approximation, the extra space requirement for SLSH

is negligible.

Table 6.2 shows the summary of model performance for KNN-L1, L1LSH, and

SLSH (Li-COS) on all three datasets (DataLag 300, lx, DataLag 30, 1x, and DataLag 30, 10x)

We note that the accuracy and speed-up of SLSH is determined by choosing the out-

put of the inner SLSH parameter instance which generates the optimal ("knee") point

on the Pareto front of the accuracy-speed trade-off profile of SLSH (Figure 6-6).

Across our datasets that either scale in item quantity (DataLag 30, 10x) or decrease in

the lag duration (DataLag 30, lx), we see an increase in both accuracy and speedup

with SLSH over L1LSH. Figure 6-6 illustrates the same result. Our conclusion that

SLSH performs better than the single-level standard LSH still holds when the data

scales in its size or the lag duration of data changes.

All in all, the experiment shows that SLSH has a higher accuracy and a much

faster querying speed (Pareto dominance) than the standard LSH with L1LSH alone.

For accuracy, we observe that obtaining a set of NNs from an integrated perspective

(matching based on both amplitude and shape) indeed leads to a better prediction.

We achieve a large speed up gain with SLSH by avoiding the bottleneck of L1LSH

101

Table 6.3: Predictor performance on DataLag 300, 1x. Exploiting the data with multiple
distance metrics is more advantageous as shown by the higher accuracies obtained
by the ensembles with the AND operator and SLSH in comparison to the individual
predictors with a single distance metric. SLSH is a better strategy to combine distance
metrics than using the ensemble as it generates more accurate and faster results. The
order of outer and inner operations of SLSH impacts the prediction performance as
SLSH (LI-COS) and SLSH (COS-Li) generate different outcomes.

Prediction Model Accuracy (%) Speed-up (x)
KNN-L1 95.95 1
KNN-COS 93.74 1
KNN-L1 AND KNN-COS 96.27 0.5
KNN-L1 OR KNN-COS 93.41 0.5
L1LSH (1% loss) 94.95 24.57
COSLSH (1% loss) 92.74 213.75
L1LSH AND COSLSH 95.10 24.20
L1LSH OR COSLSH 91.73 24.20
SLSH (Li-COS) 95.30 74.21
SLSH (COS-Li) 93.21 233.36

because the candidate set of SLSH subject to the linear search is orders of magnitude

smaller than that of L1LSH.

6.4.3 Multi-Distance Measures

We examine whether using two distance functions to capture similarity (via an en-

semble of two predictors or via SLSH) is more beneficial than using a single metric

predictor on DataLag 300, 1x. First, we compare KNN-L1 and KNN-COS to the en-

sembles of the two. From Table 6.3, we observe that the ensemble of KNN-L1 and

KNN-COS with the operator AND (0.9627) has a higher prediction accuracy than any

of the individual predictors (0.9595 and 0.9374, respectively). However, the ensemble

with the OR operator (0.9341) does not perform as well as any single predictor. Like-

wise, with a single level LSH, the ensemble of L1LSH and COSLSH with the AND

operator has a higher accuracy (0.9510) than any of the two alone (0.9493 and 0.9308,

respectively). So the ensembles combining LI and cosine with the more conservative

AND operator achieve a superior performance to single metric predictors.

SLSH also effectively combines two distance measures in a hierarchical way. Com-

102

paring SLSH to the ensemble of the single layer LSHs (i.e. L1LSH AND COSLSH),

we observe that SLSH (0.9530) is still more accurate and much faster than the en-

semble (0.9510). This implies that to combine two distance metrics, SLSH is a better

choice than the ensemble. On the other hand, SLSH has a lower prediction accuracy

than the ensemble of KNN-L1 and KNN-COS, but SLSH offers a substantial speed-up

gain (74x) compared to the ensemble of two KNNs. The above observations from the

ensembles with the AND operator and effectiveness of SLSH support our hypothesis

that exploiting the data with multiple distance metrics is indeed advantageous.

6.4.4 Commutativity

Having found using two hash families to be more advantageous, it prompts us to ask

how sensitive SLSH is to which hash function family it uses at the outer level and at

the inner level. We ask whether SLSH construction is commutative (i.e. if the order

of distance functions in the outer and the inner SLSH is interchangeable to obtain the

same result). The answer is that it is not commutative, and the order of operation

greatly matters.

First, changing the order of hash families for the outer and inner SLSH implies

different interpretability. With SLSH (Li-COS), among the elements with similar

amplitude, we choose the ones with similar shape as our final nearest neighbors. The

reverse holds for SLSH (COS-Li). Among the elements with similar shape, we choose

the ones with similar amplitude as our final nearest neighbors. Second, from Table 6.3,

we observe that SLSH (Li-COS) and SLSH (COS-L1) have different accuracies and

querying speeds. SLSH (Li-COS) has a higher accuracy, but is slower than SLSH

(COS-Li).

In addition, the change when we build the inner SLSH on top of the best perform-

ing outer SLSH (with 1% accuracy drop tolerance) is different in each case. When

going from L1LSH to SLSH (Li-COS), the accuracy improves by 0.35 and the query-

ing speed becomes 2.98 times faster. However, when going from COSLSH to SLSH

(COS-Li), the accuracy improves by 0.47, but the speed increases by only 1.09 times.

The improvement SLSH (COS-Li) makes over COSLSH is smaller in terms of speed

103

compared to SLSH (Li-COS). This behavior is related to the difference in the bucket

size distributions of the outer level LSH between by L1LSH and by COSLSH (dis-

cussed in Section 5.4.3). For SLSH (COS-Li), the outer level COSLSH stratified

the data into more evenly-spread buckets with small sizes (only 7.75% of total data

belonged to the top first percentile of hash buckets in terms of bucket sizes) and thus

achieved a good speed-up because the bottleneck linear searches were done on small

candidate sets. So there was not much room for the inner level SLSH (with L1LSH)

to make improvements in terms of speed because data were already stratified into

small sized buckets, which often did not qualify for the second level hashing. On the

other hand, when using L1LSH as the outer LSH, data stratification was very uneven

so that a substantial amount of data belonged to the few largest buckets (20.24%

of total data were concentrated in the top first percentile of hash buckets in terms

of bucket sizes). So, applying another layer of LSH (with COSLSH) on these large

buckets was effective in term of reducing the candidate set size and thus, speeding up

the querying time.

6.5 Chapter Conclusion

In this chapter, we proposed multilevel stratified locality-sensitive hashing. We used

this method to help address the problem of integrating multiple distance measures

in LSH, which previously was not feasible with the standard LSH. Correspondingly,

we showed that SLSH, which hybridizes the LI and the cosine distances, is capable

of retrieving nearest neighbors of a query according to a mixture of both amplitude

and shape. We compared SLSH against the standard single-level LSHs with the LI

and the cosine distances and found that our method generates higher accuracy and

faster querying speed on the problem of predicting acute hypotensive episodes.

104

L1LSH

-

-V

65-

60-

55

0 50 100 150 200 250 30

Time (minutes)

COSLSH

- \e

--.

/

7 \ \7 I\ /

\\\ /

-

0 50 100 150 200 250 30

Time (minutes)

SLSH

0

50
0 50 100 150 200 250 300

Time (minutes)
Figure 6-4: The 5-nearest neighbors (dashed lines) of a waveform query (red line)
retrieved by (Top) the standard L1LSH, (Middle) the standard COSLSH, and (Bot-
tom) SLSH. Each set is similar to the query in terms of amplitude, shape, and both
amplitude and shape by L1LSH, COSLSH, and SLSH.

105

100

95

90

85

C 80

E
E 75

70

50

100

95

90

85

80

75

70

65

60

55

50

100

95

90

85

80

75

70

65

60

55

E
E

0)
:

E
E

CL

0

,/ \\/ \

/ I

-. \

I

Stratified LSH Trade-off

+ L1LSH
+ L1LSH (1%loss)
X SLSH (L1 -COS)

+W

+_+

~X x W)"

-+

40 60

Speed-up Factor (x)

Figure 6-5: Comparison
1-NN on DataLag 300, 1x-

of SLSH (Li-COS) to L1LSH for prediction of AHE with
Given an instance of L1LSH (green) as its benchmark and

as the outer layer, SLSH (blue) outperforms for the entire range of (mi", Lj"). Each
point corresponds to a parameter configuration (i, L) and (mi, Li,) of L1LSH and

SLSH, respectively.

106

1

0.99

0.98 -

0.97-

0.96

0.95

U

0

0
0

Ci)

0.94 -

0.93 -

0.92 I-
0.91

0.9
0 20 80 100

1

0.99

0.98

>, 0.97
0

: 0.96

< 0.95
C
0

.. 0.94
_0
0) 0.93

0.92

0.91

0.9

Stratified LSH Trade-off

X WX XXXX XX nx
U

A A& A4F

0 50 100

Speed-up

A AA

150

Factor (x)
200 250

Figure 6-6: SLSH trade-off across all three datasets. Squares indicate L1LSH in-
stances selected by the 1% loss in accuracy criterion. Each non-squared point corre-
sponds to a parameter configuration (min, Lin) of SLSH. Across all datasets, SLSH
outperforms LiLSH in terms of accuracy and speed-up.

107

SL1LSH (1% loss), Lag 300, 1x
o SLSH (L1 -COS), Lag 300, 1x
- L1LSH (1% loss), Lag 30, 1x
A SLSH (L1 -COS), Lag 30, 1x
- L1LSH (1% loss), Lag 30, 1Ox
X SLSH (L1 -COS), Lag 30, 1Ox

0 GD'R AG9ft
W&A - w

108

Chapter 7

Collision Frequency Locality-Sensitive

Hashing

This chapter addresses the question of whether the short-listing by calculating the

distances between the query and every candidate set element is optimal and whether

there exists another effective way of conducting the short-listing. To answer these

questions, we propose a new model of locality-sensitive hashing (LSH), namely colli-

sion frequency locality-sensitive hashing (CFLSH), to further improve the prediction

accuracy without sacrificing any speed. The key idea is that the more frequently an

element and query collide across multiple LSH hash tables, the more similar they

are. We demonstrate and validate our method on the problem of predicting acute hy-

potensive episodes with the time series data extracted from the MIMIC II database.

The main content of this chapter will be published in [72].

7.1 Motivation

An important concept in LSH is the notion of candidate set, a pool of multiple ele-

ments preliminarily filtered from the original data via locality-sensitive hash functions.

The members of this set are the candidates to eventually become the final nearest

neighbors (NNs) of the query. For each element in the candidate set of a query, infor-

mation on its collision frequency and distance with respect to the query is recorded.

109

In most conventional variants of LSH, the short-listing from the candidate set to the

final k NNs is done by ranking the proximity to the query using distance, without

utilizing the collision frequency information [54].

In this chapter, we present an alternative way of conducting the retrieval step of

LSH and evaluate its impact after extrapolation and prediction. Our modification

substitutes the distance based short-listing of the NN set with a short-listing method

based on how frequently a query and a point collide during table by table querying.

We propose a new model of LSH, namely collision frequency LSH (CFLSH), to fur-

ther improve the prediction accuracy without sacrificing any speed by introducing an

intuitive way of formulating the approximate NN set: the more frequently an element

and the query collide in the same hash bucket across multiple LSH hash tables, the

more similar they are to each other. Here, the short-listing step is primarily per-

formed with respect to the frequency of collision and then secondarily by distance

information when there is a tie. This allows us to take advantage of a broader set of

information contained in the candidate set.

Our research question is whether CFLSH is as efficient or superior (in terms of

prediction accuracy and querying speed) to the standard LSH with the families for

the Li distance (LlLSH) [40] and the cosine distance (COSLSH) [20]. We evaluate

CFLSH on a dataset of mean arterial blood pressure extracted from the MIMIC II

database in the context of predicting acute hypotensive episodes (AHE).

7.2 Method

Before we explain CFLSH, we revisit the prediction procedures of LSH. The stan-

dard LSH based prediction consists of three steps: a) constructing an efficient data

structure (hash table) to index (hash) the data for fast retrieval to follow (Algo-

rithm 1, Section 4.2.2), b) quickly retrieving the approximate NNs of the query of

interest (Algorithm 2, Section 4.2.3), and c) predicting the label of the query based

on predominance of labels of its NNs (Algorithm 3, Section 5.2).

We are particularly interested in proposing a new method that modifies the re-

110

trieval step. For retrieval, we 1) hash a query by the same set of hash functions

used for indexing, 2) compose the candidate set, which is defined as the union of all

points contained in the colliding hash buckets of the query from each hash table, and

3) retrieve a group of k points that are most similar to the query by the standard

short-listing step, which is done by the linear search by distance within the candidate

set.

For a given query, the candidate set can be represented as a set of triplets

{(ti, di, fi)}, where t, is the index of ith element in the data, di is its distance to

the query, and fi is how many times it appears (frequency) in the candidate set (i.e.

in how many tables the query collides with ti). It is important to note that, to retrieve

a desired number of final approximate NNs, the linear search in the standard LSH

does not take account of the frequency fi information, but only of the distances di

between the query and the unique points in the candidate set.

In CFLSH, we modify the step 3 of retrieval (the short-listing step) by replacing

the linear search with collision frequency counting. We note that the indexing and

prediction parts of CFLSH are identical to the step a and c of the standard LSH above.

Unlike the standard LSH which utilizes only the distance information {(ti, di)}, the

query's k nearest neighbors in CFLSH are defined as the top k points among {ti}

which most frequently collided with the query (sorted according to fi) across the entire

set of hash tables. When there is a tie, such elements are secondarily sorted according

to the distance di to the query. Here, the short-listing step of CFLSH is primarily

performed with respect to the frequency of collision, seconded by distance information.

Therefore, CFLSH exploits the broader range of information {(ti, di, fi)} contained

in the candidate set. The detailed procedure of the method is in Algorithm 6.

This is an alternative and intuitive way of constituting the NN set than by per-

forming the linear search (in the step 3 of retrieval). The more frequently an element

and the query belong in the same bucket across multiple tables, the more likely they

are to be similar, because in LSH, each hash function h (and therefore its composite

g as well) serves as a different basis of comparing points with a low resolution, "weak"

similarity.

111

Algorithm 6 Collision Frequency Locality-Sensitive Hashing: Querying

Require: q, the query; T, hash tables; g, hash functions; k, number of NNs to
retrieve

1: procedure CFLSH-QUERYING(qT,g, k)
2: C = 0 > candidate set
3: for 1 = [1, 2, ... , L] do c L is the number of tables in T
4: S {x E Xgl(x) = gl(q)} > colliding bucket from table T
5: C +-C US
6: end for
7: Compute the frequency of each element in C.
8: Sort the elements in descending order in terms of frequency.
9: If there is a tie, compute distances from q to such elements and sort by distance

from the smallest.
10: Return k elements with the highest frequencies.
11: end procedure

In case of the hash function families for L1, each g randomly selects m dimensions

out of d. As we are adding more tables (i.e. additional g's), a broader set of dimensions

out of d are "covered" for similarity comparison. Thus, the more frequently two points

collide across multiple tables, the more often they match (sharing the same hash key,

thus being considered as equal) under a larger set of dimensions.

For example, let us assume that we have a candidate set {(ti, di, fi)} that is

{(t 1, 5, 5), (t2,2,7), (t,3, 10), (t4 ,4,7), (t,6,6), (t,7,1), (t7 , 1, 8)}. The candidate

set sorted according to the frequency fi is [3 , t7 , t2 , t4, t5 , ti, t6]. In this example, the

set of the approximate k nearest neighbors by CFLSH is t3 and [t, t7 , t2, t4 , t5J for

k = 1 and k = 5, respectively. On the other hand, with the standard LSH, the candi-

date set sorted according to the distance is [t7 , t2, t6, t4, t1 , t5 , t61. The corresponding

set of k nearest neighbors is t7 and [t7 , t2, t3, t4 , t1] for k = 1 and k = 5, respectively.

It is worth noting that the time complexity of CFLSH is equivalent to the stan-

dard LSH. Counting the frequency of each element in the candidate set takes a linear

time with respect to its size, which is the same time cost for the linear search step

of the standard LSH. However, in real time, CFLSH is a bit faster than the stan-

dard LSH because counting takes a shorter time than performing exhaustive distance

calculations.

112

7.3 Experiment

We present our findings on predicting AHE on our time series dataset of mean arterial

blood pressure extracted from the MIMIC II database (explained in Section 3.4). We

use DataLag 300, Ix for demonstration.

AHE Prediction Similar to the prediction problems we investigated in the pre-

vious chapters, we build the prediction models based on CFLSH, the standard LSH,

and KNN for the occurrence of AHE within an event window. We build the models

with a lag time amount of historical data prior to the window, where each data point

xi has a label yi indicating the occurrence of AHE. We again formulate this prediction

as a supervised binary classification problem, where predicted labels yi describe the

patients as AHE-positive or negative.

Performance Measures We evaluate prediction performance with:

" Prediction Accuracy = (TP + TN)/I(TP + FP + TN + FN)', and

" Speed-up factor, which is the average time taken by LSH or CFLSH relative to

that by KNN, measured by the inverse of selectivity (defined in Section 4.3).

Experimental Procedures We apply L1LSH, COSLSH, CFLSH with L1, and

CFLSH with cosine for prediction. For each combination of LSH parameters m E

[5, 10, . .. ,50] and L E [10, 20, ... , 100], we make a prediction via CFLSH and the

standard LSH for Li and compare them to the result of KNN. For cosine, we use

m E [1, 3, 5,... ,19]. We apply the above parameter configurations to retrieve and

predict based on 1-NN, 5-NNs, and 10-NNs.

7.4 Results and Discussion

In this section, we compare CFLSH to the standard LSH and conduct sensitivity

analysis of the prediction accuracy with respect to the number of hash functions

applied per table.

1 TP = True Positive, FP = False Positive, FN = False Negative, TN = True Negative.

113

7.4.1 Acute Hypotensive Episode Prediction

Figure 7-1 (Top) presents the prediction accuracy of L1LSH and CFLSH for the Li

distance (CFLSH-L1) with its associated speed-up factor with k = 1 (prediction based

on 1-NN). Each point corresponds to the average result from a pair of the number

of hash functions (m) used per table and the number of hash tables (L) over 10

runs. The leftmost point of L1LSH with no speed-up corresponds to the prediction

accuracy (95.95%) of KNN with Li as its distance function. For configurations of

parameters which generate up to 20x speedup, we observe that the standard L1LSH

results in slightly higher prediction accuracy than CFLSH-L1. However, beyond the

20x speedup tipping point, whereas the prediction accuracies of L1LSH degrade sig-

nificantly, those of CFLSH-L1 stay relatively unchanged. If we were to trade 1%

accuracy decrease for a faster querying time, we are able to achieve a prediction re-

sult via CFLSH up to 100 times faster compared to KNN, where the corresponding

speed-up for L1LSH is 25x.

The accuracy-speed trade-off profiles for higher numbers of k-NNs exhibit a dif-

ferent behavior. We remark that for a given (m, L), the speed-ups are the same for

all k and only the accuracy changes as k varies. Figure 7-1 (Middle) shows the profile

for k = 5. We observe that CFLSH outperforms L1LSH over the entire range of

parameter configurations. That is, given a speed-up, CFLSH has a higher accuracy

than L1LSH. Likewise, given an accuracy, CFLSH is much faster than L1LSH. How-

ever, unlike the profile of CFLSH for k = 1, whose accuracy range stays relatively

unchanged regardless of the magnitude of speed-up, the prediction accuracy for k = 5

decreases as the speed-up factor becomes larger. In Figure 7-1 (Bottom), the profile

for k = 10 exhibits a similar behavior to that of k = 5. The difference is that the

discrepancy between CFLSH and L1LSH is smaller with k = 10.

CFLSH with cosine exhibits a different behavior. Figure 7-2 (Top) presents the

prediction accuracy of COSLSH and CFLSH for the cosine distance (CFLSH-COS)

with its associated speed-up factor with k = 1. From the figure, we observe that

CFLSH-COS performs slightly worse than COSLSH for some range of parameters

114

although the discrepancy is negligible. The prediction results based on a higher

number of k-NNs exhibit a similar trend to that of k = 1. For k = 5 and k = 10,

the accuracy-speed trade-off profiles for CFLSH-COS are almost identical to those

of COSLSH, as shown in Figure 7-2 (Middle) and (Bottom), respectively. The fact

that CFLSH-COS does not perform better than COSLSH is the major difference

between CFLSH-COS and CFLSH-L1. One possible explanation for this behavior is

by observing the difference in the interpoint distance distributions under Li and cosine

(Section 3.5). The gap between collision probabilities for close and far points is higher

for Li than cosine, which means that the empirical estimates of those probabilities

obtained by collision frequency counting distinguish between close and far points

better for Li than cosine.

7.4.2 Sensitivity Analysis

Figure 7-3 shows the sensitivity analysis of CFLSH and the standard LSH with respect

to the number of hash functions applied (m) and the number of hash tables created

(L) when the Li distance is used. Without loss of generality, we illustrate with the

case for 1-NN (k = 1). In general, the accuracy of the standard LSH decreases with

increasing m as the cost of obtaining a higher speed-up when more hash functions are

used to define the hash key. Figure 7-3 (Middle) illustrates this behavior for L1LSH.

In contrast, CFLSH-L1 exhibits a different behavior. As illustrated in Figure 7-3

(Top), the accuracy increases up to a point and then starts to decrease only slightly

with increasing m, across all L, in the range between 0.93 and 0.96. This implies that

up to the tipping point, the accuracy and the speed-up both increase, and even with a

larger in past that of the tipping point, accuracy does not decrease significantly. We

then directly compare CFLSH-L1 to L1LSH. Figure 7-3 (Bottom) shows the change

of accuracy as a function of m and L when L1LSH is subtracted from CFLSH-L1. We

observe that, although by a very small margin of less than 0.03, L1LSH has a higher

accuracy than CFLSH-L1 for m up to 30 across all L. Then, for m greater than

30, CFLSH-L1 shows a significant accuracy improvement over L1LSH. In terms of

the accuracy-speed trade-off, this implies that CFLSH-L1 has a significant advantage

115

over L1LSH in the range of m that corresponds to large speed-ups.

We apply the same analysis to CFLSH-COS and COSLSH, shown in Figure 7-4.

Following the general expectation that the accuracy of the standard LSH decreases

with increasing number of hash functions applied as the cost of obtaining a higher

speed-up, COSLSH (Figure 7-4 (Middle)) behaves accordingly. However, in contrast

to the case of Li, CFLSH-COS follows this expected general pattern as well (Figure 7-

4 (Top)). Almost identical to COSLSH, the accuracy of CFLSH-COS stays relatively

unchanged up to a point (m up to 13) and then starts to drop abruptly, across all

values of L. When directly comparing CFLSH-COS and COSLSH by subtracting the

latter from the former, we observe the trend we saw in the case of Li: the standard

LSH performs better in the range of small m, then CFLSH starts to have a higher

accuracy for higher values of m. Although by a very small margin, CFLSH-COS

has a higher accuracy than COSLSH for m larger than 15 for all values of L. This

observation explains the long tail part of the accuracy-speed trade-off in Figure 7-2

(Top).

7.4.3 Discussion

All in all, these results imply that CFLSH performs better than the standard LSH

when a large number of hash functions is used to define the hash keys, which corre-

sponds to the situation with a large speed-up. If a user puts an emphasis on querying

speed more so than prediction accuracy, our results suggest the use of CFLSH over

the standard LSH, especially for LI. But for cosine, one has to be careful which LSH

to use as there is a very minimal distinction.

For data in real applications, there is no perfect, ground truth similarity measure

because what constitutes similarity is not entirely quantifiable by a single distance

metric. A single distance metric cannot capture every aspect of similarity along the

axes of matching based on amplitude and shape of time series. Although LI is the

best distance metric for our dataset (i.e. the prediction accuracy being the highest

when the similarity is measured by Li compared to other distance metrics such as

cosine), the fact that CFLSH-LI performs better than L1LSH implies that Li is not

116

yet a perfect distance metric for measuring similarity.

7.5 Chapter Conclusion

In this chapter, we presented a pragmatic study on a new variant of LSH, namely

collision frequency LSH, which short-lists the candidate set by counting the frequency

of collision instead of the linear distance calculation. It remains an open question why

the trade-off profiles of CFLSH and the standard LSH are different when Li is used

as a distance measure while they are similar in the case of cosine. As a future work,

it will be worthwhile to investigate theoretical foundations on why CFLSH performs

superior to the standard LSH in certain circumstances.

117

LSH Tradeoff (L)

0 L1LSH k=1
x CFLSH k=1

0.95 X x x

S0.95

0.8 -

~09i

a 0.8

0.75
0 50 100 150

Speed-up Factor (x)

LSH Tradeoff (L)

* L1LSH k=5
x CFLSH k=5

0.95

0.9

4 0.85
0 x

0.8 -0

g x

0.75 0
0 50 100 150

Speed-up Factor (x)

LSH Tradeoff (Li)

* L1LSHk=10
x CFLSH k=10

0.95

S0.9
C

C

0.8 - xx
a.&

0
0.75

0 50 100 150
Speed-up Factor (x)

Figure 7-1: Comparison of CFLSH with Li to L1LSH for (Top) k = 1, (Middle)
k = 5, and (Bottoi) k = 10. Each point corresponds to a parameter configuration
(i, L) of LSH.

118

LSH Tradeoff (COS)

o COSLSHk=1
x CFLSH k=1

P~WbU5 a

a

0 200 400 600
Speed-up Factor (x)

800 1000

LSH Tradeoff (COS)

0 COSLSH k=5
x CFLSH k=5

0
R
a

a

0 50 100 150 200
Speed-up Factor (x)

a

5

250

LSH Tradeoff (COS)

o COSLSH k=10
x CFLSH k=10

am* jb %

a

0 a

U

50 100
Speed-up Factor (x)

150 200

Figure 7-2: Comparison of
k = 5, and (Bottom) k =

(m, L) of LSH.

CFLSH with cosine to COSLSH for (Top) k = 1, (Middle)
10. Each point corresponds to a parameter configuration

119

0.95

0.9
C)

-0.85
0
CL

0.75

1

0.95 F

0.9

0

C

0.75
300

0.95 I

0.9C-)

0

.0

a
0D

0.75
0

1

U.8 01

0.85-

0.8-

1

0.85-

0.8-

0.96

0.955

0.95

0.945 -

0.94 -

0.935 F

0.93

0.95 F

0.9

0.85

0.1

0.05 F

0

CFLSH (L1, k=1)

-vL=10
L=20
L=30.

-- L=40
SL=50

0 10 20 30 40 5
Number of hash functions (m)

Standard LSH (L1, k=1)

) 10 20 30 40 5
Number of hash functions (m)

CFLSH minus Standard LSH (L1, k=1)

0 10 20 30
Number of hash functions (m)

0

40 50

Figure 7-3: Sensitivity analysis of the prediction accuracy against

functions used per table (m) with Li: (Top) CFLSH, (Middle)

and (Bottom) the difference between the two.

the number of hash
the standard LSH,

120

0
CU

C-)
C-)

0

C.)
-o
U)

0~

0

C-,
CU

0
0

C
0

.2
~0
U)
a- -- -L=10

-a- L=20
L=30

-A-L=40
L=50

0.8

0.15
L=10
L=20
L=30

- L=40
L=50

_0

Ca)
T

a_

-0.05

1

CFLSH (COS, k=1)

L=10
L=20
L=30

-'-L=40
SL=50

0 5 10 15 2
Number of hash functions (m)

Standard LSH (COS, k=1)

L=10
L=20
L=30
L=40
L=50

5 10 15
Number of hash functions (m)

CFLSH minus Standard LSH (COS, k=1)

0.005 F

-0.005

-0.01

-0.015

-0.02 '
0 5 10 15

Number of hash functions (m)

20

20

Figure 7-4: Sensitivity analysis of the prediction accuracy against the number of hash

functions used per table (m) with cosine: (Top) CFLSH, (Middle) the standard LSH,
and (Bottom) the difference between the two.

121

1

0.95

0.9

0.85

0.8

0.75.2
0

0~

.2

0.7

0.65

0.6

0.55

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.01

0

0

0
t5

e-L=1 0~
-e-L=20

L=30 .
L=40

SL=50

0

122

Chapter 8

Conclusions

In this final chapter, we summarize the contributions of this thesis and discuss future

works. We conclude with final remarks.

8.1 Summary of Thesis Contributions

In this thesis, we developed highly efficient methods based on locality-sensitive hash-

ing (LSH) to search through massive databases of physiological time series to identify

waveforms that are similar to those from a given individual. Furthermore, we de-

veloped and applied the methods that exploit these "patients with trajectories like

mine" retrievals to support waveform pattern recognition for critical event predic-

tion. We demonstrated our methods on the mean arterial blood pressure dataset

extracted from the MIMIC II database in the context of predicting acute hypotensive

episodes in intensive care units. To the best of our knowledge, our work to date is

the first extensive application of LSH on physiological time series retrieval and event

prediction.

The contributions of this thesis are as follows.

* We are the first to apply LSH to the problem of retrieving similar physiological

waveform time series. When compared to the exhaustive k-nearest neighbor

(KNN) method, our methods based on LSH with the Li (L1LSH), the cosine

(COSLSH), and the Euclidean distances (E2LSH) each largely speed up the

123

retrieval time of similar physiological waveforms without sacrificing significant

accuracy. We achieved an order of magnitude speed-up at the cost of decreasing

the retrieval accuracy by 5% compared to KNN. We performed the sensitivity

analysis of retrieval accuracy and speed-up against the number of hash functions

applied per table (m) and the number of hash tables created (L). We found

that the retrieval accuracy decreases with increasing m and increases with in-

creasing L, whereas the speed-up increases with increasing m and decreases

with increasing L. Additionally, we examined the impact of the data dimension

and the data quantity on the LSH performance. We found that using the data

with lower dimension and larger quantity each improves retrieval accuracy and

querying speed.

" We further extended the LSH based retrieval system to the problem of predicting

a medically critical event (acute hypotension) by extrapolating the information

of similar waveforms via majority vote. Similar to the retrieval case, compared

to using the linear KNN, our LSH based prediction method vastly speeds up the

prediction time up to an order (with L1LSH and E2LSH) or two orders (with

COSLSH) of magnitude faster while sacrificing less than only 1% of prediction

accuracy as a cost. Because prediction accuracy is highly influenced by the

data imbalance we faced with our dataset, we additionally performed analysis

in terms of correlation and false negative detection. We investigated the under-

lying factor of the large difference in the speed-ups among L1LSH, E2LSH, and

COSLSH. We empirically showed that it originates from the differences in the

distribution of bucket sizes (i.e. how uniformly data are indexed across hash

buckets). We also examined the impact of lag duration and scaling on the LSH

performance and demonstrated that a longer lag and a larger quantity of data

each improves prediction accuracy and querying speed.

* We proposed a new variant of LSH, namely stratified locality-sensitive hashing

(SLSH), which finds similarity among the data from a more integrated per-

spective by employing multiple distance metrics in one framework. SLSH is

124

essentially a dual-level LSH where each LSH layer (L1LSH for the outer and

COSLSH for the inner LSH) is associated with a distinct distance metric captur-

ing a unique facet of similarity. SLSH overcomes the limitation of the standard

LSH that only one distance measure can be used at a time. We visually pre-

sented that SLSH is capable of retrieving nearest neighbors according to both

amplitude and shape. Comparing SLSH to the standard L1LSH, we demon-

strated that SLSH yields a higher prediction accuracy and further shortens the

sub-linear querying time of the standard LSH. We showed that this pattern still

holds when the lag time of data shortens or the quantity of data scales up. We

further examined whether using two distance metrics to capture similarity (via

an ensemble of two single-metric predictors or via SLSH) is more beneficial than

using a single-metric predictor and empirically proved that exploiting the data

with multiple distance metrics is indeed advantageous.

e We proposed another new variant of LSH, namely collision frequency locality-

sensitive hashing (CFLSH), to further improve the prediction accuracy without

sacrificing any speed based on the key idea is that the more frequently an

element and query collide across multiple LSH hash tables, the more similar

they are. CFLSH short-lists the candidate set by simply counting the frequency

of collision instead of performing the exhaustive distance calculation, which is

the main bottleneck of the standard LSH. We empirically demonstrated that

CFLSH with the Li distance has a higher accuracy than L1LSH and further

speeds-up the querying time, and that CFLSH is better than the standard LSH

in the range of large m which corresponds to significant speed-ups.

8.2 Future Directions

There are multiple areas to further strengthen and extend our proposed methods

presented in this thesis. Among many, we discuss three major areas for advancement:

noise robust time series representation, LSH for multivariate multi-source data, and

data adaptive hashing.

125

Dilation of Pattern Time Shift Missing Data Noise

t- I

Figure 8-1: Sources of realistic data abnormalities in time series data.

8.2.1 Robust Time Series Representation

Although there have been numerous works in time series analysis, most of them are

built on unrealistic assumptions. For example, it is typically assumed (unlike our

work) that the training data are perfectly aligned patterns of all equal length with

no extra spurious leading or trailing data. However, ICU data are typically very

noisy and unaligned because it is more of observational data rather than data from

a controlled experiment. This implies they are severely prone to data abnormalities

such as noise, missing data, translation, and dilation of patterns (Figure 8-1), which

all make calculating similarity within these data very challenging. As discussed in

Chapter 2, several works have attempted to overcome such difficulties by finding ei-

ther effective distance measures (e.g. dynamic time warping) or data representations

(e.g. time-frequency transforms). However, while the former approach is effective on

handling small local misalignments, it is still vulnerable to high-level (i.e. spanning

a longer time period) abnormalities such as phase shifts. In order to find a better

representation that captures high-level long term dynamics of physiological time se-

ries, which at the same time is robust against low-level, local noise, we propose that

a solution based on the use of multi-resolution histograms will be effective.

In multi-resolution histograms, each time series trajectory is represented as a

set of histograms. Generated within a window over a given time period, a single

histogram keeps only the frequency information that is independent of time. This

binning captures the local structure and makes it less sensitive to data abnormalities

126

03 h h2
ha h4

012

102

100-

E 80
E

60

40-
0 50 100 150 200 250 300

Time from TO

Figure 8-2: Multi-resolution histogram representation H(x) =jE wihi(x) for a time
series. Each histogram hi, with its learned weight wi, is built over a specified period
of time [to, til.

at the given temporal scale. It can also effectively mitigate the problem of missing

data provided the quantity is small.

As shown in Figure 8-2, we hierarchically generate multiple histograms. For a time

series x, each histogram hi(x), expressed as a normalized probability density, is built

on the data from to to ti, where t2 = m -2'-1, for i = 1, 2, ... , n (m and n indicate the

base window duration and the total number of histograms, respectively). Then, the

multi-resolution histogram is H(x) = Ej wjh(x), where wi's are the weights associ-

ated at each histogram resolution. By having the multi-scale hierarchical structure

over time, we are able to model high-level long term dynamics and behavior. The bin

numbers for each histogram, the degree of resolution (i.e. the number of histograms)

over time, and the weights at each resolution need to be learned empirically.

For comparing histograms, it is known that the Earth Mover's Distance (EMD) is

the most accurate measure. There remains the task of incorporating EMD into LSH

to make the multi-resolution histogram based representation even more powerful in

this framework. However, for EMD, there is no known family of locality-sensitive hash

127

functions. Thus, we propose to first embed EMD into the space of the Li distance

whose LSH family of hash functions is well-studied [55].

8.2.2 Locality-Sensitive Hashing for Multivariate, Multi-Source

Data

Besides measuring arterial blood pressure (which is single source, univariate), there

are several other patient monitoring data sources acquired in intensive care units

such as electrocardiogram (ECG), body temperature, cardiac output, and amount of

oxygen and carbon dioxide in the blood (discussed in detail in Chapter 3). Within

each source/channel, there can be multiple features or variables. Thus, in order to

leverage multiple sources and features, there is a need to extend our work for multi-

source multivariate data.

One possible approach for LSH to handle multivariate data is to hash each variate

spanning a single source to a separate hash key of the same size and concatenate

it with the keys of other similarly hashed variates to form a higher order bucket

index/identifier, effectively allocating a set of multi-variate buckets, one per source,

rather than a single bucket. Then for each source/channel, we can repeat this step.

Finally, for querying, we can either combine the candidate sets resulting from each

source, or take the intersection among them to compose the final candidate set.

It is largely unknown which source among many is best to predict a certain class

of event and how reliable each source is. It can be very event-specific and also for

a particular event, event-class specific. In many cases, the best subset of time series

to use is almost always class-dependent. Investigations in these issues need to be

conducted as well.

8.2.3 Data and Task Dependent Hashing

In this thesis, we used hashing methods with distance metrics that are independent

of the data properties. Although these methods hold the advantage of strict perfor-

mance guarantees, they could be more efficient if the hash functions were specifically

128

, ' I - - .11 , - - - - - , , _- " - , -- 'T , , '' " .. -1 1-1. 1 - P-IT - _ -

designed for a certain dataset or task. In other words, even with more integrated

LSH methods (such as SLSH), it is possible that there remains a semantic gap, which

is the discrepancy between true similarity and what can be captured with distance

metrics. Retrieving approximate nearest neighbors in such metric spaces may not

lead to good search performance when semantic similarity is represented in a com-

plex way. Therefore, as our future work, we are interested in investigating "learning to

hash" methods [122,125] that learn data-dependent and task-specific hash functions to

achieve better prediction accuracy and querying speed. Such methods include spectral

hashing [128, 1291, angular quantization [421, binary reconstructive embedding [791,

metric learning hashing [81], semi-supervised hashing [123, 124], and deep-learning

based semantic hashing [109].

8.3 Final Remarks

In this thesis, we developed highly efficient methods based on LSH that make it

practical to search massive physiological time series repositories to rapidly identify

waveforms similar to those from a given individual. We then extended LSH to exploit

rapid waveform retrieval to enable critical event prediction in the intensive care unit

setting.

Even though many more subsequent works remain to be investigated, we hope and

believe that our work based on efficiently finding "patients with trajectories like mine"

will contribute as a stepping stone toward better diagnostic precision, detection of

critical health events, and more individualized treatments and interventions in the

near future.

129

130

......... -

Bibliography

[1] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On the sur-
prising behavior of distance metrics in high dimensional spaces. In Proceedings
of the 8th International Conference on Database Theory, ICDT '01, pages 420-
434. Springer-Verlag, 2001.

[2] Osamah M Al-Qershi and Bee Ee Khoo. Copy-move forgery detection using on
locality sensitive hashing and k-means clustering. In Information Science and
Applications (ICISA) 2016, pages 663-672. Springer, 2016.

[3] Alexandr Andoni and Piotr Indyk. Efficient algorithms for substring near neigh-
bor problem. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1203-1212. Society for Industrial and Applied
Mathematics, 2006.

[4] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for ap-
proximate nearest neighbor in high dimensions. In Foundations of Computer
Science, 2006. FOCS'06. 47th Annual IEEE Symposium on, pages 459-468.
IEEE, 2006.

[5] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for ap-
proximate nearest neighbor in high dimensions. Communications of the ACM,
51(1):117-122, January 2008.

[6] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig
Schmidt. Practical and optimal LSH for angular distance. In Advances in Neural
Information Processing Systems, pages 1225-1233, 2015.

[7] Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya Razenshteyn. Beyond
locality-sensitive hashing. In Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1018-1028. Society for Indus-
trial and Applied Mathematics, 2014.

[8] Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for
approximate near neighbors. In Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing, pages 793-801. ACM, 2015.

[91 Alexandr Andoni, Ilya Razenshteyn, and Negev Shekel Nosatzki. LSH forest:
Practical algorithms made theoretical. In Proceedings of the Twenty-Eighth

131

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 67-78. SIAM,
2017.

[10] Bahman Bahmani, Ashish Goel, and Rajendra Shinde. Efficient distributed
locality sensitive hashing. In Proceedings of the 21st ACM International Con-
ference on Information and Knowledge Management, pages 2174-2178. ACM,
2012.

[11] Paul Barach and Stephen D Small. Reporting and preventing medical mishaps:
lessons from non-medical near miss reporting systems. British Medical Journal,
320(7237):759-763, 2000.

[12] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. LSH forest: self-tuning
indexes for similarity search. In Proceedings of the 14th International Conference
on World Wide Web, pages 651-660. ACM, 2005.

[13] Susanna E Bedell, David C Deitz, David Leeman, and Thomas L Delbanco.
Incidence and characteristics of preventable latrogenic cardiac arrests. JAMA,
265(21):2815-2820, 1991.

[141 Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509-517, 1975.

[15] Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P Drake, Jane M
Landolin, and Adam M Phillippy. Assembling large genomes with single-
molecule sequencing and locality-sensitive hashing. Nature Biotechnology,
33(6):623-630, 2015.

[16] Donald J Berndt and James Clifford. Using dynamic time warping to find
patterns in time series. In KDD workshop, volume 10, pages 359-370. Seattle,
WA, 1994.

[17] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung.
Time Series Analysis: Forecasting and Control. John Wiley & Sons, 2015.

[18] Andrei Z Broder. On the resemblance and containment of documents. In Com-
pression and Complexity of Sequences 1997. Proceedings, pages 21-29. IEEE,
1997.

[19] Kin-Pong Chan and Ada Wai-Chee Fu. Efficient time series matching by
wavelets. In Data Engineering (ICDE), 1999 IEEE 15th International Con-
ference on, pages 126-133. IEEE, 1999.

[20] Moses S Charikar. Similarity estimation techniques from rounding algorithms.
In Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Com-
puting, pages 380-388. ACM, 2002.

132

[21] Lei Chen and Raymond Ng. On the marriage of lp-norms and edit distance.
In Proceedings of the Thirtieth International Conference on Very Large Data
Bases, pages 792-803. VLDB Endowment, 2004.

[221 Lei Chen, M Tamer Ozsu, and Vincent Oria. Robust and fast similarity search
for moving object trajectories. In Proceedings of the 2005 ACM SIGMOD In-
ternational Conference on Management of Data, pages 491-502. ACM, 2005.

[23] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. Infor-
mation Theory, IEEE Transactions on, 13(1):21-27, 1967.

[241 Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. Google
news personalization: scalable online collaborative filtering. In Proceedings of
the 16th International Conference on World Wide Web, pages 271-280. ACM,
2007.

[25] MIT Critical Data. MIMIC-II. http://criticaldata.mit.edu/mimic-ii/.
Accessed: 2017-03-15.

[26] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of
the Twentieth Annual Symposium on Computational Geometry, pages 253-262.
ACM, 2004.

[27] Jeffrey Dean and Monika R Henzinger. Finding related pages in the world wide
web. Computer Networks, 31(11):1467-1479, 1999.

[28] Franck Dernoncourt. BeatDB: An end-to-end approach to unveil saliencies from
massive signal data sets. Master's thesis, Massachusetts Institute of Technology,
2014.

[29] Franck Dernoncourt, Kalyan Veeramachaneni, and Una-May O'Reilly. BeatDB:
A large scale waveform feature repository. In NIPS Workshop on Machine
Learning for Clinical Data Analysis and Healthcare, 2013.

[30] Franck Dernoncourt, Kalyan Veeramachaneni, and Una-May O'Reilly. Gaus-
sian process-based feature selection for wavelet parameters: predicting acute
hypotensive episodes from physiological signals. In Computer-Based Medical
Systems (CBMS), 2015 IEEE 28th International Symposium on, pages 145-
150. IEEE, 2015.

[311 Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn
Keogh. Querying and mining of time series data: experimental comparison of
representations and distance measures. Proceedings of the VLDB Endowment,
1(2):1542-1552, 2008.

[321 David Dobkin and Richard J Lipton. Multidimensional searching problems.
SIAM Journal on Computing, 5(2):181-186, 1976.

133

[33] Wei Dong, Zhe Wang, William Josephson, Moses Charikar, and Kai Li. Mod-
eling LSH for performance tuning. In Proceedings of the 17th ACM Conference
on Information and Knowledge Management, pages 669-678. ACM, 2008.

[34] Kave Eshghi and Shyamsundar Rajaram. Locality sensitive hash functions
based on concomitant rank order statistics. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 221-229. ACM, 2008.

[35] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast subse-
quence matching in time-series databases. In Proceedings of the 1994 A CM SIG-
MOD International Conference on Management of Data, SIGMOD '94, pages
419-429, New York, NY, USA, 1994. ACM.

[361 GP Findlay, H Shotton, K Kelly, and M Mason. Time to intervene? A review
of patients who underwent cardiopulmonary resuscitation as a result of an in-
hospital cardiorespiratory arrest. A report by the National Confidential Enquiry
into Patient Outcome and Death, 2012.

[37] Tak-chung Fu. A review on time series data mining. Engineering Applications
of Artificial Intelligence, 24(1):164-181, 2011.

[381 Junhao Gan, Jianlin Feng, Qiong Fang, and Wilfred Ng. Locality-sensitive
hashing scheme based on dynamic collision counting. In Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data, pages
541-552. ACM, 2012.

[39] Jinyang Gao, Hosagrahar Visvesvaraya Jagadish, Wei Lu, and Beng Chin Ooi.
DSH: data sensitive hashing for high-dimensional k-nn search. In Proceedings
of the 2014 ACM SIGMOD International Conference on Management of Data,
pages 1127-1138. ACM, 2014.

[40] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high
dimensions via hashing. In Proceedings of the 25th International Conference on
Very Large Data Bases, VLDB '99, pages 518-529. Morgan Kaufmann Publish-
ers Inc., 1999.

[41] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Pla-
men Ch Ivanov, Roger G Mark, Joseph E Mietus, George B Moody, Chung-
Kang Peng, and H Eugene Stanley. Physiobank, Physiotoolkit, and Physionet.
Circulation, 101(23):e215-e220, 2000.

[42] Yunchao Gong, Sanjiv Kumar, Vishal Verma, and Svetlana Lazebnik. Angular
quantization-based binary codes for fast similarity search. In Advances in Neural
Information Processing Systems, pages 1196-1204, 2012.

[43] David Gorisse, Matthieu Cord, and Frederic Precioso. Locality-sensitive hashing
for Chi2 distance. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 34(2):402-409, 2012.

134

[441 Kristen Grauman and Trevor Darrell. Fast contour matching using approx-
imate earth mover's distance. In Computer Vision and Pattern Recognition.
Proceedings of the 2004 IEEE Computer Society Conference on, volume 1, pages
1-220-1-227. IEEE, 2004.

145] Xiaoguang Gu, Yongdong Zhang, Lei Zhang, Dongming Zhang, and Jintao Li.
An improved method of locality sensitive hashing for indexing large-scale and
high-dimensional features. Signal Processing, 93(8):2244-2255, 2013.

146] Antonin Guttman. R-trees: a dynamic index structure for spatial searching,
volume 14. ACM, 1984.

[47] Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable effective-
ness of data. Intelligent Systems, IEEE, 24(2):8-12, 2009.

[48] James Douglas Hamilton. Time Series Analysis. Princeton University Press,
1994.

[49] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest
neighbor: Towards removing the curse of dimensionality. Theory of Computing,
8(1):321-350, 2012.

150] JH Henriques and TR Rocha. Prediction of acute hypotensive episodes using
neural network multi-models. In Computers in Cardiology, 2009, pages 549-552.
IEEE, 2009.

[51] Monika Henzinger. Finding near-duplicate web pages: A large-scale evaluation
of algorithms. In Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 284-
291. ACM, 2006.

[521 Bing Hu, Yanping Chen, and Eamonn Keogh. Time series classification under
more realistic assumptions. In Proceedings of the 2013 SIAM International
Conference on Data Mining, pages 578-586. SIAM, 2013.

1531 Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. Query-
aware locality-sensitive hashing for approximate nearest neighbor search. Pro-
ceedings of the VLDB Endowment, 9(1):1-12, 2015.

[54] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, pages 604-613. ACM, 1998.

[55] Piotr Indyk and Nitin Thaper. Fast Image Retrieval via Embeddings. In 3rd
International Workshop on Statistical and Computational Theories of Vision.
ICCV, 2003.

135

[56] Prateek Jain, Sudheendra Vijayanarasimhan, and Kristen Grauman. Hashing
hyperplane queries to near points with applications to large-scale active learn-
ing. In Advances in Neural Information Processing Systems, pages 928-936,
2010.

[571 Herve J6gou, Laurent Amsaleg, Cordelia Schmid, and Patrick Gros. Query
adaptative locality sensitive hashing. In Acoustics, Speech and Signal Process-
ing, 2008. ICASSP 2008. IEEE International Conference on, pages 825-828.
IEEE, 2008.

[581 Jianqiu Ji, Jianmin Li, Shuicheng Yan, Qi Tian, and Bo Zhang. Min-max hash
for Jaccard similarity. In Data Mining (ICDM), 2013 IEEE 13th International
Conference on, pages 301-309. IEEE, 2013.

[59] Jianqiu Ji, Jianmin Li, Shuicheng Yan, Bo Zhang, and Qi Tian. Super-bit
locality-sensitive hashing. In Advances in Neural Information Processing Sys-
tems, pages 108-116, 2012.

[60] Ping Jiang, Jonathan Winkley, Can Zhao, Robert Munnoch, Geyong Min, and
Laurence T Yang. An intelligent information forwarder for healthcare big data
systems with distributed wearable sensors. IEEE Systems Journal, 10(3):1147-
1159, 2016.

[61] Zhongming Jin, Cheng Li, Yue Lin, and Deng Cai. Density sensitive hashing.
IEEE Transactions on Cybernetics, 44(8):1362-1371, 2014.

[621 Alistair EW Johnson, Mohammad M Ghassemi, Shamim Nemati, Katherine E
Niehaus, David A Clifton, and Gari D Clifford. Machine learning and decision
support in critical care. Proceedings of the IEEE, 104(2):444-466, 2016.

[63] Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling
Feng, Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony
Celi, and Roger G Mark. MIMIC-III, A freely accessible critical care database.
Scientific Data, 3, 2016.

[64] Alexis Joly and Olivier Buisson. A posteriori multi-probe locality sensitive hash-
ing. In Proceedings of the 16th ACM International Conference on Multimedia,
pages 209-218. ACM, 2008.

[651 David C Kale, Dian Gong, Zhengping Che, Yan Liu, Gerard Medioni, Randall
Wetzel, and Patrick Ross. An examination of multivariate time series hashing
with applications to health care. In Data Mining (ICDM), 2014 IEEE Inter-
national Conference on, pages 260-269. IEEE, 2014.

[66] Norio Katayama and Shin'ichi Satoh. The sr-tree: An index structure for high-
dimensional nearest neighbor queries. In ACM SIGMOD Record, volume 26,
pages 369-380. ACM, 1997.

136

[67] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra.
Dimensionality reduction for fast similarity search in large time series databases.
Knowledge and Information Systems, 3(3):263-286, 2001.

[68] Eamonn Keogh and Chotirat Ann Ratanamahatana. Exact indexing of dynamic
time warping. Knowledge and Information Systems, 7(3):358-386, 2005.

[69] Minje Kim, Paris Smaragdis, and Gautham J Mysore. Efficient manifold pre-
serving audio source separation using locality sensitive hashing. In Acoustics,
Speech and Signal Processing (ICASSP), 2015 IEEE International Conference
on, pages 479-483. IEEE, 2015.

[701 Yongwook Bryce Kim, Erik Hemberg, and Una-May O'Reilly. Stratified locality-
sensitive hashing for accelerated physiological time series retrieval. In Engineer-
ing in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual Inter-
national Conference of the, pages 2479-2483. IEEE, 2016.

1711 Yongwook Bryce Kim, Erik Hemberg, and Una-May O'Reilly. Stratified locality-
sensitive hashing for sublinear time critical event prediction. In Advances in
Neural Information Processing Systems (NIPS) Machine Learning in Healthcare
Workshop, 2016.

[72] Yongwook Bryce Kim, Erik Hemberg, and Una-May O'Reilly. Collision fre-
quency locality-sensitive hashing for prediction of critical events. In Engineer-
ing in Medicine and Biology Society (EMBC), 2017 39th Annual International
Conference of the IEEE. IEEE, 2017. To appear.

[73] Yongwook Bryce Kim and Una-May O'Reilly. Large-scale physiological wave-
form retrieval via locality-sensitive hashing. In Engineering in Medicine and
Biology Society (EMBC), 2015 37th Annual International Conference of the
IEEE, pages 5829-5833. IEEE, 2015.

[74] Yongwook Bryce Kim and Una-May O'Reilly. Analysis of locality-sensitive
hashing for fast critical event prediction on physiological time series. In En-
gineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual
International Conference of the, pages 783-787. IEEE, 2016.

[75] Yongwook Bryce Kim, Joohyun Seo, and Una-May O'Reilly. Large-scale
methodological comparison of acute hypotensive episode forecasting using
MIMIC2 physiological waveforms. In Computer-Based Medical Systems
(CBMS), 2014 IEEE 27th International Symposium on, pages 319-324. IEEE,
2014.

[76] Simon Korman and Shai Avidan. Coherency sensitive hashing. In Computer Vi-
sion (ICCV), 2011 IEEE International Conference on, pages 1607-1614. IEEE,
2011.

137

177] Simon Korman and Shai Avidan. Coherency sensitive hashing. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 38(6):1099-1112, 2016.

[78] Flip Korn, Hosagrahar V Jagadish, and Christos Faloutsos. Efficiently support-
ing ad hoc queries in large datasets of time sequences. A CM SIGMOD Record,
26(2):289-300, 1997.

[79] Brian Kulis and Trevor Darrell. Learning to hash with binary reconstructive
embeddings. In Advances in Neural Information Processing Systems, pages
1042-1050, 2009.

[80] Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing for
scalable image search. In Computer Vision, 2009 IEEE 12th International
Conference on, pages 2130-2137. IEEE, 2009.

181] Brian Kulis, Prateek Jain, and Kristen Grauman. Fast similarity search for
learned metrics. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 31(12):2143-2157, 2009.

[821 Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In Annual Cryptology Conference, pages 3-22. Springer, 2015.

[83] Hongrae Lee, Raymond T Ng, and Kyuseok Shim. Similarity join size estimation
using locality sensitive hashing. Proceedings of the VLDB Endowment, 4(6):338-
349, 2011.

[84] LH Lehman, M Saeed, GB Moody, and RG Mark. Similarity-based searching
in multi-parameter time series databases. In Computers in Cardiology, 2008,
pages 653-656. IEEE, 2008.

[85] Ping Li and Arnd Christian K6nig. Theory and applications of b-bit minwise
hashing. Communications of the ACM, 54(8):101-109, 2011.

[86] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing SAX:
a novel symbolic representation of time series. Data Mining and Knowledge
Discovery, 15(2):107-144, 2007.

[87] Kang Ling and Gangshan Wu. Frequency based locality sensitive hashing.
In Multimedia Technology (ICMT), 2011 International Conference on, pages
4929-4932. IEEE, 2011.

188] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-
probe LSH: efficient indexing for high-dimensional similarity search. In Pro-
ceedings of the 33rd International Conference on Very Large Data Bases, pages
950-961. VLDB Endowment, 2007.

189] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. Detecting near-
duplicates for web crawling. In Proceedings of the 16th International Conference
on World Wide Web, pages 141-150. ACM, 2007.

138

[90] J Frederick McNeer, C Frank Starmer, Alan G Bartel, Victor S Behar, Yihong
Kong, Robert H Peter, and Robert A Rosati. The nature of treatment selection
in coronary artery disease. Circulation, 49(4):606-614, 1974.

[911 GB Moody and LH Lehman. Predicting acute hypotensive episodes: The 10th
annual physionet/computers in cardiology challenge. In Computers in Cardiol-
ogy, 2009, pages 541-544. IEEE, 2009.

192] George B Moody and Roger G Mark. A database to support development and
evaluation of intelligent intensive care monitoring. In Computers in Cardiology,
1996, pages 657-660. IEEE, 1996.

[93] Abdullah Mueen, Krishnamurthy Viswanathan, Chetan Gupta, and Eamonn
Keogh. The fastest similarity search algorithm for time series subsequences
under Euclidean distance, August 2015. http: //www. cs .unm. edu/~mueen/
FastestSimilaritySearch.html.

[941 Kevin Patrick Murphy. Dynamic bayesian networks: representation, inference
and learning. PhD thesis, University of California, Berkeley, 2002.

[95] Ryan O'Donnell, Yi Wu, and Yuan Zhou. Optimal lower bounds for locality-
sensitive hashing (except when q is tiny). ACM Transactions on Computation
Theory (TOCT), 6(1):5, 2014.

[96] Ciprian Oprisa, Marius Checiches, and Adrian Nandrean. Locality-sensitive
hashing optimizations for fast malware clustering. In Intelligent Computer Com-
munication and Processing (ICCP), 2014 IEEE International Conference on,
pages 97-104. IEEE, 2014.

[971 Jia Pan and Dinesh Manocha. Bi-level locality sensitive hashing for k-nearest
neighbor computation. In Data Engineering (ICDE), 2012 IEEE 28th Interna-
tional Conference on, pages 378-389. IEEE, 2012.

[98] Jia Pan and Dinesh Manocha. Fast probabilistic collision checking for sampling-
based motion planning using locality-sensitive hashing. The International Jour-
nal of Robotics Research, 35(12):1477-1496, 2016.

[991 Rina Panigrahy. Entropy based nearest neighbor search in high dimensions.
In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithm, pages 1186-1195. Society for Industrial and Applied Mathematics,
2006.

[100] LoYc Paulev6, Herve J6gou, and Laurent Amsaleg. Locality sensitive hashing:
A comparison of hash function types and querying mechanisms. Pattern Recog-
nition Letters, 31(11):1348-1358, 2010.

[101] PhysiologyWeb. Mean arterial pressure calculator. http://www.
physiologyweb.com/calculators/mean-arterial-pressurecalculator.
html. Accessed: 2017-03-14.

139

[102] David Martin Powers. Evaluation: From precision, recall and F-measure to
ROC, informedness, markedness & correlation. Journal of Machine Learning
Technologies, 2(1):37-63, 2011.

[103] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo
Batista, Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh.
Searching and mining trillions of time series subsequences under dynamic time
warping. In Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 262-270. ACM, 2012.

[104] Ilya Razenshteyn and Ludwig Schmidt. FALCONN. https://f alconn-lib.
org/. Accessed: 2017-04-12.

[105] Robert A Rosati, J Frederick McNeer, C Frank Starmer, Brant S Mittler,
James J Morris, and Andrew G Wallace. A new information system for medical
practice. Archives of Internal Medicine, 135(8):1017-1024, 1975.

[106] Matti Ryynanen and Anssi Klapuri. Query by humming of MIDI and audio
using locality sensitive hashing. In Acoustics, Speech and Signal Processing
(ICASSP), 2008 IEEE International Conference on, pages 2249-2252. IEEE,
2008.

[107] Mohammed Saeed and Roger G Mark. A novel method for the efficient retrieval
of similar multiparameter physiologic time series using wavelet-based symbolic
representations. In AMIA, 2006.

[108] Mohammed Saeed, Mauricio Villarroel, Andrew T Reisner, Gari Clifford, Li-
Wei Lehman, George Moody, Thomas Heldt, Tin H Kyaw, Benjamin Moody,
and Roger G Mark. Multiparameter intelligent monitoring in intensive care
II (MIMIC-II): A public-access intensive care unit database. Critical Care
Medicine, 39(5):952, 2011.

[109] Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hashing. International
Journal of Approximate Reasoning, 50(7):969-978, 2009.

[110] Ludwig Schmidt, Matthew Sharifi, and Ignacio Lopez Moreno. Large-scale
speaker identification. In Acoustics, Speech and Signal Processing (ICASSP),
2014 IEEE International Conference on, pages 1650-1654. IEEE, 2014.

[111] Gregory Shakhnarovich, Paul Viola, and Trevor Darrell. Fast pose estima-
tion with parameter-sensitive hashing. In Computer Vision, 2003. Proceedings.
Ninth IEEE International Conference on, pages 750-757. IEEE, 2003.

[112] Malcolm Slaney, Yury Lifshits, and Junfeng He. Optimal parameters for
locality-sensitive hashing. Proceedings of the IEEE, 100(9):2604-2623, 2012.

140

[113] Narayanan Sundaram, Aizana Turmukhametova, Nadathur Satish, Todd
Mostak, Piotr Indyk, Samuel Madden, and Pradeep Dubey. Streaming sim-
ilarity search over one billion tweets using parallel locality-sensitive hashing.
Proceedings of the VLDB Endowment, 6(14):1930-1941, 2013.

[114] Zeeshan Syed, Piotr Indyk, and John Guttag. Learning approximate se-
quential patterns for classification. Journal of Machine Learning Research,
10(Aug):1913-1936, 2009.

[1151 Kengo Terasawa and Yuzuru Tanaka. Spherical LSH for approximate nearest
neighbor search on unit hypersphere. In Workshop on Algorithms and Data
Structures, pages 27-38. Springer, 2007.

[116] Vikrant Singh Tomar and Richard C Rose. Efficient manifold learning for speech
recognition using locality sensitive hashing. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on, pages 6995-
6999. IEEE, 2013.

[117] Dan Vanderkam, Rob Schonberger, Henry Rowley, and Sanjiv Kumar. Nearest
neighbor search in Google correlate. Technical report, Google, 2013.

[118] Vasilis Verroios and Hector Garcia-Molina. Top-k entity resolution with adap-
tive locality-sensitive hashing. Technical report, Stanford InfoLab, 2017.

[119] Michail Vlachos, George Kollios, and Dimitrios Gunopulos. Discovering similar
multidimensional trajectories. In Data Engineering (ICDE), 2002 IEEE 18th
International Conference on, pages 673-684. IEEE, 2002.

[1201 Alexander Waldin, Kalyan Veeramachaneni, and Una-May O'Reilly. Learn-
ing blood pressure behavior from large physiological waveform repositories.
In ICML Workshop on Role of Machine Learning in Transforming Healthcare,
2013.

[121] Jeremy R Wang and Corbin D Jones. Fast alignment filtering of nanopore
sequencing reads using locality-sensitive hashing. In Bioinformatics and
Biomedicine (BIBM), 2015 IEEE International Conference on, pages 127-130.
IEEE, 2015.

[122] Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. Hashing for
similarity search: A survey. arXiv preprint arXiv:1408.2927, 2014.

[123] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Semi-supervised hashing for
scalable image retrieval. In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 3424-3431. IEEE, 2010.

[124] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Semi-supervised hashing for
large-scale search. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 34(12):2393-2406, 2012.

141

[1251 Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. Learning to hash for
indexing big data: A survey. Proceedings of the IEEE, 104(1):34-57, 2016.

[126] Zhe Wang, Wei Dong, William Josephson, Qin Lv, Moses Charikar, and Kai
Li. Sizing sketches: a rank-based analysis for similarity search. In ACM SIG-
METRICS Performance Evaluation Review, volume 35, pages 157-168. ACM,
2007.

[1271 Roger Weber, Hans-J6rg Schek, and Stephen Blott. A quantitative analysis and
performance study for similarity-search methods in high-dimensional spaces. In
Proceedings of the 24rd International Conference on Very Large Data Bases,
VLDB '98, pages 194-205, San Francisco, CA, USA, 1998. Morgan Kaufmann
Publishers Inc.

[128] Yair Weiss, Rob Fergus, and Antonio Torralba. Multidimensional spectral hash-
ing. In Proceedings of the 12th European Conference on Computer Vision,
ECCV'12, pages 340-353, Berlin, Heidelberg, 2012. Springer-Verlag.

[129] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. In Advances
in Neural Information Processing Systems, pages 1753-1760, 2009.

[130] Jonathan Woodbridge, Bobak Mortazavi, Alex AT Bui, and Majid Sarrafzadeh.
High performance biomedical time series indexes using salient segmentation. In
Engineering in Medicine and Biology Society (EMBC), 2012 Annual Interna-
tional Conference of the IEEE, pages 5086-5089. IEEE, 2012.

[1311 Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang,
Hiroshi Motoda, Geoffrey McLachlan, Angus Ng, Bing Liu, Philip Yu, Zhi-Hua
Zhou, Michael Steinbach, David Hand, and Dan Steinberg. Top 10 algorithms
in data mining. Knowledge and Information Systems, 14(1):1-37, January 2008.

[132] Zhenyu Wu and Ming Zou. An incremental community detection method for
social tagging systems using locality-sensitive hashing. Neural Networks, 58:14-
28, 2014.

[133] Xiaopeng Xi, Eamonn Keogh, Christian Shelton, Li Wei, and Chotirat Ann
Ratanamahatana. Fast time series classification using numerosity reduction. In
Proceedings of the 23rd International Conference on Machine Learning, pages
1033-1040. ACM, 2006.

[134] Byoungkee Yi and Christos Faloutsos. Fast time sequence indexing for arbitrary
Lp norms. In The VLDB Journal, pages 385-394. Morgan Kaufmann, 2000.

[135] Yi Yu, Suhua Tang, and Roger Zimmermann. Edge-based locality sensitive
hashing for efficient geo-fencing application. In Proceedings of the 21st ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems, pages 576-579. ACM, 2013.

142

[136] Xuyun Zhang, Christopher Leckie, Wanchun Dou, Jinjun Chen, Ramamoha-
narao Kotagiri, and Zoran Salcic. Scalable local-recoding anonymization using
locality sensitive hashing for big data privacy preservation. In Proceedings of the
25th ACM International on Conference on Information and Knowledge Man-
agement, pages 1793-1802. ACM, 2016.

1137] Ying Zhang, Huchuan Lu, Lihe Zhang, Xiang Ruan, and Shun Sakai. Video
anomaly detection based on locality sensitive hashing filters. Pattern Recogni-
tion, 59:302-311, 2016.

[138] Yuhui Zhang, Yue-jiao Gong, Huaxiang Zhang, Tian-Long Gu, and Jun Zhang.
Towards fast niching evolutionary algorithms: A locality sensitive hashing-
based approach. IEEE Transactions on Evolutionary Computation, 2016.

143

