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Abstract

Over the last decade, we have witnessed tremendous successes of Artificial Neural
Networks (ANNs) on solving a wide range of Al tasks. However, there is considerably
less development in understanding the biological neural networks in primate cortex. In
this thesis, I try to bridge the gap between artificial and biological neural networks. I
argue that it would be beneficial to build ANNs that are both biologically-plausible and
well-performing, since they may serve as models for the brain and guide neuroscience
research. On the other hand, developing a biology-compatible framework for ANNs
makes it possible to borrow ideas from neuroscience to improve the performance of AI
systems. I discuss several aspects of modern ANNs that can be made more consistent
with biology: (1) the backpropagation learning algorithm (2) ultra-deep neural net-
works (e.g., ResNet, He et al., 2016) for visual processing (3) Batch Normalization
(Ioffe and Szegedy, 2015). For each of the three aspects, I propose biologically-plausible
modifications of the ANN models to make them more implementable by the brain
while maintaining (or even improving) their performance.
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Title: Eugene McDermott Professor in the Department of Brain and Cognitive Sciences
and Principal Investigator of McGovern Institute for Brain Research and Computer
Science and Artificial Intelligence Laboratory
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Chapter 1

Introduction

During the last several years we saw a resurgence of interest in Artificial Neural

Networks (ANNs). The big data and the unprecedented growth of computational

power (mainly due to GPUs) has enabled new designs and applications of these

classical models. ANNs nowadays are orders of magnitude larger than those in 1990s.

In particular, there is a trend of increasing the number of layers in ANNs, leading to

Deep Neural Networks (DNNs) and the field "Deep Learning". DNNs have achieved

remarkable performance in many domains [39, 1, 27, 55, 80, 21, 74]. Interestingly,

recent state-of-the-art models for visual processing are actually "ultra-deep" networks

[24, 261 with hundreds to a thousand layers.

Nevertheless, the success of ANNs and Deep Learning does not immediately deliver

better understanding or modeling of biological neural networks and the brain. I

argue that the "biological plausibility" of DNN models and algorithms is an important

but under-investigated question. In particular, increasingly deep designs of neural

networks pose several questions regarding biological plausibility:

* First, How to train efficiently a deep neural network in a biologically-plausible

manner? Traditional training algorithm backpropagation has several biologically

unrealistic requirements.

* Second, Is "ultra-deep" networks [24, 26] biologically-plausible? One motivation

for the field "Deep Learning" is that the brain is organized in a hierarchical way.

23



However, the "ultra-deep" networks for visual processing are one to two orders

of magnitude deeper than the ventral stream of visual cortex.

0 Third, activation normalization algorithms (e.g., Batch Normalization [35]) are

crucial for training deep networks. Yet the current algorithms cannot handle

biologically realistic training settings such as recurrent learning and online

learning. If biological neural normalizations exist in the brain, how should them

support these training scenarios?

Each of the following three chapters discusses one of the above questions, where

novel biologically-plausible models are proposed to solve corresponding problems.
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Chapter 2

Biologically Plausible

Backpropagation

2.1 Introduction

Deep Neural Networks (DNNs) have achieved remarkable performance in many domains

[39, 1, 27, 55, 80, 21, 74]. The simple gradient backpropagation (BP) algorithm has

been the essential "learning engine" powering most of this work.

Deep neural networks are universal function approximators [311. Thus it is not

surprising that solutions to real-world problems exist within their configuration space.

Rather, the real surprise is that such configurations can actually be discovered by

gradient backpropagation.

The human brain may also be some form of DNN. Since BP is the most effective

known method of adapting DNN parameters to large datasets, it becomes a priority to

answer: could the brain somehow be implementing BP? Or some approximation to it?

For most of the past three decades since the invention of BP, it was generally

believed that it could not be implemented by the brain [12, 52, 61, 8, 5]. BP seems

to have three biologically implausible requirements: (1) feedback weights must be

the same as feedforward weights (2) forward and backward passes require different

computations, and (3) error gradients must somehow be stored separately from

activations.
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One biologically plausible way to satisfy requirements (2) and (3) is to posit a

distinct "error network" with the same topology as the main (forward) network but

used only for backpropagation of error signals. The main problem with such a model

is that it makes requirement (1) implausible. There is no known biological way for the

error network to know precisely the weights of the original network. This is known

as the "weight transport problem" [23]. In this work we call it the "weight symmetry

problem". It is arguably the crux of BP's biological implausibility.

In this chapter, we systematically relax BP's weight symmetry requirement by

manipulating the feedback weights. We find that some natural and biologically

plausible schemes along these lines lead to exploding or vanishing gradients and render

learning impossible. However, useful learning is restored if a simple and indeed more

biologically plausible rule called Batch Manhattan (BM) is used to compute the weight

updates. Another technique, called Batch Normalization (BN) [35], is also shown

effective. When combined together, these two techniques seem complementary and

significantly improve the performance of our asymmetric version of backpropagation.

The results are somewhat surprising: if the aforementioned BM and/or BN opera-

tions are applied, the magnitudes of feedback weights turn out not to be important.

A much-relaxed sign-concordance property is all that is needed to attain comparable

performance to mini-batch SGD on a large number of tasks.

Furthermore, we tried going beyond sign concordant feedback. We systematically

reduced the probability of feedforward and feedback weights having the same sign

(the sign concordance probability). We found that the effectiveness of backpropagation

is strongly dependent on high sign concordance probability. That said, completely

random and fixed feedback still outperforms chance e.g., as in the recent work of

Lillicrap et al. [51].

Our results demonstrate that the perfect forward-backward weight symmetry

requirement of backpropagation can be significantly relaxed and strong performance

can still be achieved. To summarize, we have the following conclusions:

(I) The magnitudes of feedback weights do not matter to performance. This

surprising result suggests that our theoretical understanding of why backpropagation
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works may be far from complete.

(II) Magnitudes of the weight updates also do not matter.

(III) Normalization / stabilization methods such as Batch Normalization and Batch

Manhattan are necessary for these asymmetric backpropagation algorithms to work.

Note that this result was missed by previous work on random feedback weights [51].

(IV) Asymmetric backpropagation algorithms evade the weight transport problem.

Thus it is plausible that the brain could implement them.

(V) These results indicate that sign-concordance is very important for achieving strong

performance. However, even fixed random feedback weights with Batch Normalization

significantly outperforms chance. This is intriguing and motivates further research.

(VI) Additionally, we find Batch Manhattan to be a very simple but useful technique

in general. When used with Batch Normalization, it often improves the performance.

This is especially true for smaller training sets.

2.2 Asymmetric Backpropagations

A schematic representation of backpropagation is shown in Fig. 2-1. Let E be the

objective function. Let W and V denote the feedforward and feedback weight ma-

trices respectively. Let X denote the inputs and Y the outputs. Wij and V4 j are

the feedforward and feedback connections between the j-th output Y and the i-th

input Xi, respectively. f(.) and f'(.) are the transfer function and its derivative. Let

the derivative of the i-th input with respect to the objective function be E, theDxi,

formulations of forward and back propagation are as follows:

Y= f (Nj), where Nj = j Wi Xi (2.1)

aX =i fy f '(N ) a(2 .2)

The standard BP algorithm requires V = W. We call that case symmetric

backpropagation. In this work we systematically explore the case of asymmetric
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backpropagation where V = W.

dE
Y dY

00 00
VW

000 000
dX

(A) ForwardProp (B) BackProp

Figure 2-1: A simple illustration of backpropagation

By varying V, one can test various asymmetric BPs. Let sign() denote the function

that takes the sign (-1 or 1) of each element. Let o indicate element-wise multiplication.

M, S are matrices of the same size as W. M is a matrix of uniform random numbers

E [0, 1] and S, is a matrix where each element is either 1 with probability 1 - p or -1

with probability p. We explored the following choices of feedback weights V in this

work:

1. Uniform Sign-concordant Feedbacks (uSF):

V = sign(W)

2. Batchwise Random Magnitude Sign-concordant Feedbacks (brSF):

V = M o sign(W), where M is redrawn after each update of W (i.e., each mini-batch).

3. Fixed Random Magnitude Sign-concordant Feedbacks (frSF):

V = M o sign(W), where M is initialized once and fixed throughout each experiment.

4. Batchwise Random Magnitude p-percent-sign-concordant Feedbacks

(brSF-p):

V = M o sign(W) o Sp,, where M and Sp is redrawn after each update of W (i.e., each

mini-batch).

5. Fixed Random Magnitude p-percent-sign-concordant Feedbacks (frSF-

p):

V = M o sign(W) o Sp, where M and S, is initialized once and fixed throughout each

experiment.

6. Fixed Random Feedbacks (RndF):
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Each feedback weight is drawn from a zero-mean gaussian distribution and fixed

throughout each experiment: V ~ A(0, oa), where o- was chosen to be 0.05 in all

experiments.

The results are summarized in the Section 2.5. The performances of 1, 2 and

3, which we call strict sign-concordance cases, are shown in Experiment A. The

performances of 4 and 5 with different choices of p, which we call partial sign-

concordance cases, are shown in Experiment B. The performances and control

experiments about setting 6, which we call no concordance cases, are shown in

Experiments CI and C2.

2.3 Normalizations/stabilizations are necessary for

"asymmetric" backpropagations

Batch Normalization (BN)

Batch Normalization (BN) is a recent technique proposed by [35] to reduce "internal

covariate shift" [351. The technique consists of element-wise normalization to zero

mean and unit standard deviation. Means and standard deviations are separately

computed for each batch. Note that in [351, the authors proposed the use of additional

learnable parameters after the whitening. We found the effect of this operation to be

negligible in most cases. Except for the "BN" and "BN+BM" entries (e.g., in Table

2.2), we did not use the learnable parameters of BN. Note that batch normalization

may be related to the homeostatic plasticity mechanisms (e.g., Synaptic Scaling) in

the brain [83, 79, 82].

Batch Manhattan (BM)

We were first motivated by looking at how BP could tolerate noisy operations that

could be seen as more easily implementable by the brain. We tried relaxing the weight

updates by discarding the magnitudes of the gradients. Let the weight at time t be

w(t), the update rule is:

29



w(t + 1) = w(t) +,q * F(t)

where 7 is the learning rate.

We tested several settings of r(t) as follows:

Setting 0 (SGD): T(t) = - Zb + m * T(t - 1) - d * w(t)

Setting 1: T(t) = -sign(Eb L) + m * T - 1) - d * w(t)

Setting 2: T(t) = sigm(-sign(Zs ') + m * T(t - 1) - d * w(t))

Setting 3: T(t) = sign(K(t))

where i(t) = -si gn(E -) + m * i'(t - 1) - d * w(t)

where m and d are momentum and weight decay rates respectively. sign() means

taking the sign (-1 or 1), E is the objective function, and b denotes the indices of

samples in the mini-batch. Setting 0 is the SGD algorithm (by "SGD" in this work,

we always refer to the mini-batch version with momentum and weight decay). Setting

1 is same as 0 but rounding the accumulated gradients in a batch to its sign. Setting

2 takes an extra final sign after adding the gradient term with momentum and weight

decay terms. Setting 3 is something in between 1 and 2, where an final sign is taken,

but not accumulated in the momentum term.

We found these techniques to be surprisingly powerful in the sense that they did

not lower performance in most cases (as long as learning rates were reasonable). In

fact, sometimes they improved performance. This was especially true for smaller

training sets. Recall that asymmetric BPs tend to have exploding/vanishing gradients,

these techniques are immune to such problems since the magnitudes of gradients are

discarded.

We also found that the performance of this technique was influenced by batch size

on some experiments. In the cases of very small batch sizes, discarding the magnitudes

of the weight updates was sometimes detrimental to performance.

This class of update rule is very similar to a technique called the Manhattan update

rule, which can be considered as a simplified version of Rprop [67]. We suggest calling
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it "Batch Manhattan" (BM) to distinguish it from the stochastic version [87]. By

default, we used setting 1 for BM throughout the Experiments A, B, CI and C2. The

"miscellaneous experiment" at the end of the Section 2.5.4 demonstrates that settings

1, 2 and 3 give similar performances, so the conclusions we draw broadly apply to all

of them.

2.4 Related Work

Since the invention of backpropagation (BP) [69], its biological plausibility has been a

long-standing controversy. Several authors have argued that BP is not biologically

plausible [12, 52, 61, 8, 5]. Various biologically plausible modifications have been

proposed. Most involve bidirectional connections e.g. Restricted Boltzmann Machines

[29, 75] and so-called recirculation algorithms [28, 611 which despite their name

provided, in the case of an autoencoder, an elegant early demonstration that adaptive

backwards weight can work without being identical to the forward ones. Recently,

there have also been BP-free auto-encoders [4] based on "target propagation" [45].

The most relevant work to ours is a recent paper by Lillicrap et al. [51] of which

we became aware after most of this work was done. Lillicrap et al. showed that fixed

random feedback weights can support the learning of good representations for several

simple tasks: (i) approximating a linear function, (ii) digit recognition on MNIST and

(iii) approximating the outputs of a random 3 or 4 layer nonlinear neural network.

Our work is very similar in spirit but rather different and perhaps complementary

in its results, since we conclude that signs must be concordant between feedforward

and corresponding feedback connections for consistent good performance, whereas the

magnitudes do not matter, unlike Lilicrap et al. experiments in which both signs and

magnitudes were random (but fixed). To explain the difference in our conclusions, it

is useful to consider the following points:

1. We systematically explored performance of the algorithms using 15 different datasets

because simple tasks like MNIST by themselves do not always reveal differences between

algorithms.
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All others MNIST CIFAR10&100 SVHN ( TIMIT-80
InputSize 119x119x3 28x28x1 32x32x3 32x32x3 1845x1x1

1 Conv 9x9x48/2 Conv 5x5x20/1 Conv 5x5x32/1 Conv 5x5x20/1 FC 512
2 Max-Pool 2x2/2 Max-Pool 2x2/2 Max-Pool 3x3/2 Max-Pool 2x2/2 FC 256
3 Conv 5x5x128/1 Conv 5x5x50/1 Conv 5x5x64/1 Conv 7x7x512/1 FC 80
4 Max-Pool 2x2/2 Max-Pool 2x2/2 Avg-Pool 3x3/2 Max-Pool 2x2/2
5 FC max(256,#Class*3) FC 500 Conv 5x5x64/1 FC 40
6 FC #Class*2 FC 10 Avg-Pool 3x3/2 FC 10
7 FC #Class FC 128
8 FC 10/100

Table 2.1: Network architectures used in the experiments: AxBxC/D means C feature
maps of size AxB, with stride D. The CIFAR10&100 architecture has a 2 units
zero-padding for every convolution layer and 1 unit right-bottom zero-padding for
every pooling layer. The other models do not have paddings. "FC X" denotes Fully
Connected layer of X feature maps. In the first model, the number of hidden units
in FC layers are chosen according to the number of classes (denoted by "#Class") in
the classification task. " max(256,#Class*3)" denotes 256 or #Class*3, whichever is
larger. Rectified linear units (ReLU) are used as nonlinearities for all models.

2. We tested deeper networks, since the accuracy of asymmetric BP's credit assignment

may critically attenuate with depth (for task (i) and (ii) Lillicrap et al. used a 3-layer

(1 hidden layer) fully-connected network, and for task (iii) they used a 3 or 4 layer

fully-connected network, whereas in most of our experiments, we use deeper and larger

CNNs as shown in Table 2.1).

3. We found that local normalizations/stabilizations is critical for making asymmetric

BP algorithms work. As shown by our results in Table 2.4, the random feedbacks

scheme (i.e. the "RndF" column) suggested by Lillicrap et al. seem to work well

only on one or two tasks, performing close to chance on most of them. Only when

combined with Batch Normalization ("RndF+BN" or "RndF+BN+BM" in Table 2.4),

it appears to become competitive.

4. We investigated several variants of asymmetric BPs such as sign-concordance (Table

2.2 and 2.3), batchwise-random vs. fixed-random feedbacks (Table 2.3) and learning

with clamped layers (Table 2.4 Exp. C2).
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2.5 Experiments

2.5.1 Method

We were interested in relative differences between algorithms, not absolute performance.

Thus we used common values for most parameters across all datasets to facilitate

comparison. Key to our approach was the development of software allowing us to easily

evaluate the "cartesian product" of models (experimental conditions) and datasets

(tasks). Each experiment was a {model,dataset} pair, which was run 5 times using

different learning rates (reporting the best performance).

2.5.2 Datasets

We extensively test our algorithms on 15 datasets of 5 Categories as described below.

No data augmentation (e.g., cropping, flip, etc.) is used in any of the experiments.

Machine learning tasks: MNIST [46], CIFAR-10 [40], CIFAR-100 [40], SVHN[57],

STL10 [10]. Standard training and testing splits were used.

Basic-level categorization tasks: CaltechiOl [17]: 102 classes, 30 training and 10

testing samples per class. Caltech256-101 [221: we train/test on a subset of randomly

sampled 102 classes. 30 training and 10 testing per class. iCubWorld dataset [161: We

followed the standard categorization protocol of this dataset.

Fine-grained recognition tasks: Flowers17 [59], Flowers102 [60]. Standard training

and testing splits were used.

Face Identification: Pubfig83-ID [64], SUFR-W-ID [47], LFW-ID 133] We did not

follow the usual (verification) protocol of these datasets. Instead, we performed a

80-way face identification task on each dataset, where the 80 identities (IDs) were

randomly sampled. Pubfig83: 85 training and 15 testing samples per ID. SUFR-W:

10 training and 5 testing per ID. LFW: 10 training and 5 testing per ID.

Scene recognition: MIT-indoor67 [65]: 67 classes, 80 training and 20 testing per

class

Non-visual task: TIMIT-80 [19]: Phoneme recognition using a fully-connected
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uSF brSF frSF
Experiment A SGD BM BN BN+BM uSF NuSF uSF uSF +BN +BN +BN

BM +BN +BM +BM +BM

MNIST 0.67 0.99 0.52 0.73 88.65 0.60 0.95 0.55 0.83 0.80 0.91
CIFAR 22.73 23.98 16.75 17.94 90.00 40.60 26.25 19.48 19.29 18.44 19.02

CIFAR100 55.15 58.44 49.44 51.45 99.00 71.51 65.28 57.19 53.12 50.74 52.25
SVHN 9.06 10.77 7.50 9.88 80.41 14.55 9.78 8.73 9.67 9.95 10.16
STL10 48.01 44.14 45.19 43.19 90.00 56.53 46.41 48.49 41.55 42.74 42.68
Callol 74.08 66.70 66.07 61.75 98.95 70.50 75.24 63.33 60.70 59.54 60.27

Ca1256-101 87.06 83.43 82.94 81.96 99.02 85.98 86.37 82.16 80.78 78.92 80.59
iCub 57.62 55.57 46.43 87.08 80.96 66.57 70,61 61.37 48.38 47.33 46.08

Flowers17 35.29 31.76 36.76 32.35 94.12 42.65 38.24 35.29 32.65 29.41 31.47
Flowers102 77.30 77.57 75.78 74.92 967 77.92 79.25 71.74 73.20 73.31 73.57

PubFig83-ID 63.25 54.42 51.08 41.33 98.75 78.58 65.83 54.58 40.67 42.67 40.33
SUFR-W-ID 80.00 74.25 75.00 65.00 98.75 83.50 79.50 72.00 65.75 66.25 66.50

LFW-ID 79.25 74.25 73.75 55.75 98.75 85.75 80.75 73.75 56.25 57.25 55.75
Scene67 87.16 85.37 86.04 82.46 98.51 88.21 87.09 87.09 81.87 82.31 81.79
TIMIT80 23.04 25.92 23.92 24.40 23.60 29.28 25.84 25.04 25.12 25.24 24.92

Table 2.2: Experiment A: The magnitudes of feedbacks do not matter. Sign
concordant feedbacks can produce strong performance. Numbers are error rates (%).
Yellow: performances worse than baseline(SGD) by 3% or more. Blue: performances
better than baseline(SGD) by 3% or more.

network. There are 80 classes, 400 training and 100 testing samples per class.

2.5.3 Training Details

The network architectures for various experiments are listed in Table 2.1. The input

sizes of networks are shown in the second row of the table. All images are resized to

fit the network if necessary.

Momentum was used with hyperparameter 0.9 (a conventional setting). All

experiments were run for 65 epochs. The base learning rate: 1 to 50 epochs 5 * 10-,

51 to 60 epochs 5 * 10-5, and 61 to 65 epochs 5 * 10-6. All models were run 5

times on each dataset with base learning rate multiplied by 100, 10, 1, 0.1, 0.01

respectively. This is because different learning algorithms favor different magnitudes

of learning rates. The best validation error among all epochs of 5 runs was recorded

as each model's final performance. The batch sizes were all set to 100 unless stated

otherwise. All experiments used a softmax for classification and the cross-entropy

loss function. For testing with batch normalization, we compute exponential moving

averages (alpha=0.05) of training means and standard deviations over 20 mini batches

after each training epoch.
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2.5.4 Results

Experiment A: sign-concordant Feedback

In this experiment, we show the performances of setting 1, 2 and 3 in Section 2.2,

which we call strict sign-concordance cases: while keeping the signs of feedbacks

the same as feedforward ones, the magnitudes of feedbacks are either randomized or

set to uniform. The results are shown in Table 2.2 : Plus sign (+) denotes combi-

nation of methods. For example, uSF+BM means Batch Manhattan with uniform

sign-concordant feedback. SGD: Stochastic gradient descent, the baseline algorithm.

BM: SGD + Batch Manhattan. BN: SGD + Batch Normalization. BN+BM:

SGD + Batch Normalization + Batch Manhattan. uSF: Uniform sign-concordant

feedback. This condition often had exploding gradients. NuSF: same as uSF, but

with feedback weights normalized by dividing the number of inputs of the feedforward

filter (filter width * filter height * input feature number). This scheme avoids the

exploding gradients but still suffers from vanishing gradients. uSF+BM: this setting

is somewhat unstable for small batch sizes. Two training procedures were explored:

(1) batch size 100 for all epochs (2) batch size 100 for 3 epochs and then batch

size 500 for the remaining epochs. The best performance was reported. While this

gives a little advantage to this model since more settings were tried, we believe it is

informative to isolate the stability issue and show what can be achieved if the model

converges well. Note that uSF+BM is the only entry with slightly different training

procedures. All other models share exactly the same training procedure & parameters.

uSF+BN, uSF+BN+BM, brSF+BN+BM, frSF+BN+BM: These are some

combinations of uSF, brSF, frSF, BN and BM. The last three are the most robust,

well-performing ,and biologically-plausible algorithms.

Experiment B: Violating Sign-Concordance with probability p

In this experiment, we test the effect of partial sign-concordance. That is, we

test settings 4 and 5 as described in Section 2.2. In these cases, the feedback weight
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Baseline Part 1: Random M and S every batch Part 2: Fixed random M and S
Same Sign Same Sign

Experiment B SGD 100% 75% 50% 25% (brSF 100% 75% 50% 25% (frSF
+BN+BM) +BN+BM)

MNIST 0.67 7.87 8.34 7.54 1.01 0.80 4.25 3.56 1.37 0.84 0.91
CIPAR 22.73 71.18 75.87 7060 19.98 18.44 71.41 68.49 31.54 20.85 19.02

CIFAR100 55.15 93.72 96.23 94.58 68.98 50.74 96.26 95.22 71.98 56.02 52.25
SVHN 9.06 75.25 74.91 74.64 10.94 9.95 37.78 32.72 15.02 11.50 10.16
STL10 48.01 69.65 72.50 72.10 44.82 42.74 72.46 68.96 50.54 43.85 42.68
C41101 74.08 91.46 9399 9.36 67.65 59.54 94.20 87.57 68.60 68.12 60.27

Ca1256-101 87.06 93.24 94.02 92.75 82.75 78.92 95.98 90.88 84.22 83.04 80.59
iCub 57.62 75.6 I.S6 '.3 1 52.42 47.88 9 8.82 64.62 51.22 46.08

Flowers17 35.29 70.29 82.06 73.82 35.00 29.41 79.12 61.76 44.12 35.59 31.47
Flowers102 77.30 90p54 aR 09.6 78.18 73.81 93.4 987 77.62 77.85 .78.57

PubFig83-ID 63.25 95.33 95.67 94.17 61.25 42.67 94.25 89.25 64.33 47.17 40.33
SUFR-W-ID 80.00 95000 D8.7 93250 71.00 66.25 95," :540 77.25 68.00 66.50

LFW-ID 79.25 95.25 96.00 94.50 64.50 57.25 95.75 95.25 75.00 59.75 55.75
Scene67 87.16 94.48 94.78 9343 88.18 82.81 05.37 92.69 88.36 84.40 61.79

TIMIT80 23.04 55.32 61.36 55.28 26.48 25.24 62.60 33.48 27.56 26.08 24.92

Table 2.3: Experiment B Part 1 (left): Feedbacks have random magnitudes, varing
probability of having different signs (percentages in second row, column 3-7) from
the feedforward ones. The M and S redrawn in each mini-batch. Numbers are error
rates (%). Yellow: performances worse than baseline(SGD) by 3% or more. Blue:
performances better than baseline(SGD) by 3% or more. Experiment B Part 2
(right): Same as part 1, but The M and S were fixed throughout each experiment.

Experiment CI SGD RndF NuSF BN RndF+BN RndF+BM RndF+BN+BM uSF+BN+BM
MNIST 0.67 1.81 0.60 0.52 0.83 1.89 1.07 0.83
CIFAR 22.73 4%t69 4."0 16.75 24.35 62.71 _2075 19.29

CIFAR100 55.15 90.88 71.51 49.44 60.83 97.11 64.69 53.12
SVHN 9.06 143. 14.55 7.50 12.63 4 12.79 JV 9.67
STL10 48.01 57.80 56.53 45.19 51.60 80.39 47.39 41.55
CaI101 74.08 8MO1 70.80 66.07 72.81 984 67.12 60.70

Cal256-101 87.06 94.12 85.98 82.94 85.49 98.14 83.63 80.78
iCub 57.62 87.87 66.57 46.48 58.82 1 41 3 59.02 48.88

Flowers17 35.29 69.41 42.65 36.76 43.53 91.18 38.24 32.65
Flowers102 77.30 92.31 77.92 75.78 81.22 96 78.99 78.20
PubFig83 63.25 95.42 78.58 51.08 67.00 97.67 55.25 40.67

SUFR-W-ID 80.00 94.75 83.50 75.00 77.75 O ? 69.00 6.75
LFW-ID 79.25 95.75 85.75 73.75 79.25 97.75 67.50 56.25
Scene67 87.15 98.i 8 1pl 86.04 87.84 W $6 87.09 61.87

TIMIT80 23.04 26.76 29.28 23.92 26.52 33.12 26.32 25.12

SGD SGD RndF RndF RndF+BN+BM RndF+BN+BM uSF+BN+BM uSF+BN+BM
Experiment 02 Bottom Top Bottom Top Bottom Top Bottom Top

MNIST 0.65 3.85 85.50 3.81 86.74 3.81 0.66 3.85
CIFAR 23.12 8.80 8 74V . 46 J -

CIFAR100 59.49 80.71 98.79 80.65 98.69 84.34 61.61 84.10
SVHN 8.31 75.2 Z 15.12 . SJ i 10.8
STL10 49.96 74.69 88.36 72.44 81.31 76.11 52.18
Cal101 7.97 82.72 9443 79.14 80;4 A 44 M8L93

Ca1256-101 86.08 89.71 98.43 88.92 98.14 89.02 82.84 89.12
iCub 46.78 8*.90 87.56 .t q - 4948

Flowers17 38.24 70.59 92.35 70.00 87.35 77.06 45.00 77.06
Flower102 78.99 "AW "OV40 88.14 78.09 . 7
PubFig83 66.75 89.58 97.67 89.58 97.67 89.67 43.83 89.50

SUFR-W-ID 80.50 9 . - W:49 ' 71.50
LFW-ID 79.75 92.50 98.25 93.00 97.00 89.50 65.00 89.50
Scene67 88.73 9iT57 WW 144 9MW9 8'.97 W_

TIMIT80 23.52 46.20 95.00 46.20 93.00 39.76 24.96 40.16

Table 2.4: Experiment Cl: fixed random feedbacks. Experiment C2: (.)Bottom:
The model's last layer is initialized randomly and clamped/frozen. All learning
happens in the layers before the last layer. (.) Top: The model's layers before the last
layer are initialized randomly and clamped/frozen. All learning happens in the last
layer. Numbers are error rates (%). Yellow: performances worse than baseline(SGD)
by 3% or more. Blue: performances better than baseline(SGD) by 3% or more.
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SGD BM1 BM2 BM3 uSF+BN uSF+BN+BM1 uSF+BN+BM2 uSF+BN+BM3
MNIST 0.67 0.99 1.30 1.09 0.55 0.83 0.72 0.61
CIFAR 22.73 23.98 23.09 20.47 19.48 19.29 18.87 18.88

CIFAR100 55.15 58.44 58.81 52.82 57.19 53.12 52.38 54.68
SVHN 9.06 10.77 12.31 12.23 8.73 9.67 10.54 9.20
STL10 48.01 44.14 44.74 45.23 48.49 41.55 47.71 46.45
Cal101 74.08 W.70 05PO 70.26 68.83 60.70 M64.8 62.59.

Table 2.5: Different settings of Batch Manhattan (as described in Section 2.3) seem
to give similar performances. SGD: setting 0, BM1: setting 1, BM2: setting 2,
BM3: setting 3. The interaction of BM with sign concordant feedback weights (uSF)
and Batch Normalization are shown in "uSF+BN+(.)" entries. Numbers are error
rates (%). Yellow: performances worse than baseline (SGD) by 3% or more. Blue:
performances better than baseline(SGD) by 3% or more.

magnitudes were all random. Strict sign-concordance was relaxed by manipulating the

probability p of concordance between feedforward and feedback weight signs. Feedback

weights V = M o sign(W) o S, depend on the matrix S, as defined in Section 2.2.

Table 2.3 Part 1 reports results from setting 4, the case where a new M and Sp is

sampled for each batch. Table 2.3 Part 2 reports results of setting 5, the case where

M and S, are fixed.

Experiment Cl: Fixed Random Feedback

Results are shown in Table 2.4: RndF: fixed random feedbacks. RndF+BN,

RndF+BN+BM: some combinations of RndF, BN and BM. uSF+BN+BM:

one of our best algorithms, for reference. The "RndF" setting is the same as the one

proposed by [51]. Apparently it does not perform well on most datasets. However,

combining it with Batch Normalization makes it significantly better. Although it

remains somewhat worse than its sign concordant counterpart. Another observation is

that random feedback does not work well with BM alone (but better with BN+BM).

Experiment C2: Control experiments for Experiment C1

The fact that random feedback weights can learn meaningful representations is some-

what surprising. We explore this phenomenon by running some control experiments,

where we run two control models for each model of interest: 1. (.)Bottom: The
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model's last layer is initialized randomly and clamped/frozen. All learning happens in

the layers before the last layer. 2. (.) Top: The model's layers before the last layer

are initialized randomly and clamped/frozen. All learning happens in the last layer.

Results are shown in Table 2.4.

There are some observations: (i) When only the last layer was allowed to adapt,

all models behaved similarly. This was expected since the models only differed in

the way they backpropagate errors. (ii) With the last layer is clamped, random

feedback cannot learn meaningful representations. (iii) In contrast, the models with

sign concordant feedback can learn surprisingly good representations even with the

last layer locked. We can draw the following conclusions from such observations: sign

concordant feedback ensures that meaningful error signals reach lower layers by itself,

while random feedback is not sufficient. If all layers can learn, random feedback seems

to work via a "mysterious co-adaptation" between the last layer and the layers before

it. This "mysterious co-adaptation" was first observed by [511, where it was called

"feedback alignment" and some analyses were given. Note that our Experiment C

shows that the effect is more significant if Batch Normalization is applied.

Miscellaneous Experiment: different settings of Batch Manhattan

We show that the 3 settings of BM (as described in Section 2.3) produce similar

performances. This is the case for both symmetric and asymmetric BPs. Results are

in Table 2.5.

2.6 Discussion

This work aims to establish that there exist variants of the gradient backpropagation

algorithm that could plausibly be implemented in the brain. To that end we considered

the question: how important is weight symmetry to backpropagation? Through a

series of experiments with increasingly asymmetric backpropagation algorithms, our

work complements a recent demonstration[51] that perfect weight symmetry can be

significantly relaxed while still retaining strong performance.
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These results show that Batch Normalization and/or Batch Manhattan are crucial

for asymmetric backpropagation to work. Furthermore, they are complementary

operations that are better used together than individually. These results highlight

the importance of sign-concordance to asymmetric backpropagation by systematically

exploring how performance declines with its relaxation.

Finally, let us return to our original motivation. How does all this relate to

the brain? Based on current neuroscientific understanding of cortical feedback, we

cannot make any claim about whether such asymmetric BP algorithms are actually

implemented by the brain. Nevertheless, this work shows that asymmetric BPs, while

having less constraints, are not computationally inferior to standard BP. So if the

brain were to implement one of them, it could obtain most of the benefits of the

standard algorithm.

This work suggests a hypothesis that could be checked by empirical neuroscience

research: if the brain does indeed implement an asymmetric BP algorithm, then

there is likely to be a high degree of sign-concordance in cortical forward-backward

connections.

These empirical observations concerning Batch Manhattan updating may shed light

on the general issue of how synaptic plasticity may implement learning algorithms.

They show that changes of synaptic strength can be rather noisy. That is, the sign of

a long term accumulation of synaptic potentiation or depression, rather than precise

magnitude, is what is important. This scheme seems biologically implementable.
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Chapter 3

A Biologically-Plausible Framework

of Residual Learning, Recurrent

Neural Networks and Visual Cortex

3.1 Introduction

Residual learning [24], a novel deep learning scheme characterized by ultra-deep

architectures has recently achieved state-of-the-art performance on several popular

vision benchmarks. The most recent incarnation of this idea [26] with hundreds of

layers demonstrate consistent performance improvement over shallower networks. The

3.57% top-5 error achieved by residual networks on the ImageNet test set arguably

rivals human performance.

Because of recent claims [86] that networks of the AlexNet[41] type successfully

predict properties of neurons in visual cortex, one natural question arises: how similar

is an ultra-deep residual network to the primate cortex? A notable difference is the

depth. While a residual network has as many as 1202 layers[24], biological systems

seem to have one or two orders of magnitude less, if we make the customary assumption

that a weighted linear combination layer (plus a nonlinearity) in the NN architecture

corresponds to a cortical area. In fact, there are about half a dozen areas in the
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ventral stream of visual cortex from the retina to the Inferior Temporal cortex. Notice

that it takes in the order of 10ms for neural activity to propagate from one neuron to

another one (remember that spiking activity of cortical neurons is usually well below

100 Hz). The evolutionary advantage of having fewer layers is apparent: it supports

rapid (100msec from image onset to meaningful information in IT neural population)

visual recognition, which is a key ability of human and non-human primates [81, 72].

It is intriguingly possible to account for this discrepancy by taking into account

recurrent connections within each visual area. Areas in visual cortex comprise six

different layers with lateral and feedback connections [421, which are believed to mediate

some attentional effects [6, 42, 36, 66, 34] and even learning (such as backpropagation

[49]). "Unrolling" in time the recurrent computations carried out by the visual cortex

provides an equivalent "ultra-deep" feedforward network, which might represent a

more appropriate comparison with the state-of-the-art computer vision models.

In addition, we conjecture that the effectiveness of recent "ultra-deep" neural

networks primarily come from the fact they can efficiently model the recurrent compu-

tations that are required by the recognition task. We show evidence for this conjecture

by demonstrating that 1. a deep residual network is formally equivalent to a specific

shallow RNN 1; 2. such a RNN with weight sharing, thus with orders of magnitude less

parameters (depending on the unrolling depth), can retain most of the performance of

the corresponding deep residual network.

Furthermore, we generalize such a RNN to a class of more biologically plausible

models of visual cortex to account for multi-stage recurrent processing and show their

effectiveness on the CIFAR-10 and ImageNet dataset.

Another minor contribution of this work is that, we propose using time-specific

batch normalization (TSBN, defined in Section 3.3) in hidden-to-hidden transitions of

RNN. We are also the first to show when TSBN is used, there is no difficulty training

RNNs (even multi-state fully recurrent ones) with ReLUs. This was previously believed

to be difficult without careful weight initializations [44].

'We use the term "RNN" to broadly refer to any neural network with recurrent activations, not
the "vanilla/plain RNN" (the baseline model people often use to compare with LSTMs).
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3.2 Equivalence of ResNet and a specific RNN

3.2.1 Intuition

We discuss here a very simple observation: a Residual Network (ResNet) approximates

a specific, standard Recurrent Neural Network (RNN) implementing the discrete

dynamical system described by

ht = K o (ht- 1) + ht_ 1  (3.1)

where ht is the activity of the neural layer at time t and K is a nonlinear operator.

Such a dynamical systems corresponds to the feedback system of Figure 3-1 (B).

Figure 3-1 (A) shows that unrolling in (discrete) time the feedback system gives a

deep residual network with the same (that is, shared) weights among the layers. The

number of layers in the unrolled network corresponds to the discrete time iterations

of the dynamical system. The identity shortcut mapping that characterizes residual

learning appears in the figure.

From a biological perspective, a neuron's current activation, characterized by

Excitatory Postsynaptic Potential (EPSP) of soma (i.e., activation before nonlinearity)

is roughly the sum of inputs plus the residual EPSP from the previous time step.

The latter corresponds naturally to the identity shortcut mapping (especially the

pre-activation scheme in [26], which we adopted in this work).

3.2.2 Formulation in terms of Dynamical Systems

We frame recurrent and residual neural networks in the language of dynamical systems.

We consider here dynamical systems in discrete time, though most of the definitions

carry over to continuous time. A neural network (that we assume for simplicity to have

a single layer with n neurons) can be a dynamical system with a dynamics defined as

ht+1 = f (ht; wt) + xt (3.2)
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Figure 3-1: A formal equivalence of a ResNet (A) with weight sharing and a RNN (B). I is
the identity operator. K is an operator denoting the nonlinear transformation called f in the
main text. xt is the value of the input at time t. t is a Kronecker delta function.

where ht C Rn is the activity of the n neurons in the layer at time t and f : R" -+ Rn

is a continuous, bounded function parametrized by the vector of weights wt. In a

typical neural network, f is synthesized by the following relation between the activity

yt of a single neuron and its inputs xt_1:

yt = -((W, xt1) + b), (3.3)

where o is a nonlinear function such as the linear rectifier -(.) = I - I+.

A standard classification of dynamical systems defines the system as

1. homogeneous if Xt = 0, Vt > 0 (alternatively the equation reads as ht+1 =

f(ht; wt) with the inital condition ho = xo)

2. time invariant if wt = w.
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Residual networks with weight sharing thus correspond to homogeneous, time-

invariant systems which in turn correspond to a feedback system (see Figure 3-1) with

an input which is non-zero only at time t = 0 (xteo = xo, Xt = 0 Vt > 0) and with

f (z) = (K + I) o z:

hn = f(ht; wt) = (K + I)" a zO (3.4)

"Normal" residual networks correspond to homogeneous, time-variant systems.

3.3 A Generalized RNN for Multi-stage Fully Recur-

rent Processing

As shown in the previous section, the recurrent form of a ResNet is actually shallow

(if we ignore the possible depth of the operator K). In this section, we generalize it

into a moderately deep RNN that reflects the multi-stage processing in the primate

visual cortex.

Multi-state Graph We propose a general formulation that can capture the

computations performed by a multi-stage processing hierarchy with full recurrent

connections. Such a hierarchy can be characterized by a directed (cyclic) graph G

with vertices V and edges E: G = {V,E}. where vertices V is a set contains all the

processing stages (i.e., we also call them states). Take the ventral stream of visual

cortex for example, V = {LGN, V1, V2, V4, IT}. Note that retina is not listed since

there is no known feedback from primate cortex to the retina. The edges E are a set

that contains all the connections (i.e., transition functions) between all vertices/states,

e.g., V1-V2, V1-V4, V2-IT, etc. One example of such a graph is in Figure 3-2 (A).

Pre-net and Post-net The multi-state fully recurrent system does not have to

receive raw inputs. Rather, a (deep) neural network can serve as a preprocesser. We

call the preprocesser a "pre-net" as shown in Figure 3-2 (B). On the other hand, one

also needs a "post-net" as a postprocessor and provide supervisory signals to the

recurrent system and the pre-net. The pre-net, recurrent system and post-net are
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(C) Example models in our framework and corresponding transition matrices

Figure 3-2: (A) Modeling the ventral stream of visual cortex using a multi-state fully recurrent neural network.
(B) the model consists of a input, a recurrent part and a output. (C) Examples of the recurrent part of the model
and corresponding transition matrices used in this work. "BN" denotes Batch Normalization and "Conv" denotes
convolution. Deconvolution layer (denoted by "Deconv") is [881 used as a transition function from a spacially small
state to a spacially large one. BRCx2/BRDx2 denotes a BN-ReLU-Conv/Deconv-BN-ReLU-Conv/Deconv pipeline
(similar to a residual module [26]). There is always a 2x2 subsampling/upsampling between nearby states (e.g., V1/hi:
32x32, V2/h2: 16x16, V4/h3:8x8, IT:4x4). Stride 2 (convolution) or upsampling 2 (deconvolution) is used in transition
functions to match the spacial sizes of input and output states. The intermediate feature sizes of transition function
BRCx2/BRDx2 or BRCx3/BRDx3 are chosen to be the average feature size of input and output states. "+I" denotes
a identity shortcut mapping.
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Figure 3-3: The performance of 4-state and 3-state models. The state sizes of the 4-state model are: 32x32x8,
16x16x16, 8x8x32, 4x4x64. The state sizes of the 3-state model are: 32x32x64, 16x16x128, 8x8x256. Only small
4-state models were tried since they are very computationally heavy. The readout time is t-5 for both models. All
models are time-invariant systems (i.e., weights are shared across time).

Table 3.1: Compare our model (FRNN) with other best models (prior to our work) on CIFAR-10. All models were
trained with simple translation and mirror augmentation. The depth is the number of weighted linear combination
layers and pooling layers. All of our models were trained with 60 epochs for consistency, since we did not focus on
the absolute performance. We expect better performance if more epochs are used (will report in the next revision).
Nevertheless, these models are all at the level of human performance. We believe at this point biological consistency is
more interesting than marginal performance differences. Also our models achieve high performance with small latency
(i.e., depth), which supports rapid visual recognition and is crucial for organism's survival.
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trained in an end-to-end fashion with backpropagation.

For most models in this work, unless stated otherwise, the pre-net is a simple 3x3

convolutional layer and the post-net is a pipeline of a batch normalization, a ReLU, a

global average pooling and a fully connected layer (or a lxi convolution, we use these

terms interchangeably).

Take primate visual system for instance, the retina is a part of the "pre-net". It does

not receive any feedback from the cortex and thus can be separated from the recurrent

system for simplicity. In Section 3.5, we also tried 3 layers of 3x3 convolutions as

an pre-net, which might be more similar to a retina, and observed slightly better

performance.

Transition Matrix The connections between states over time can be represented

by a 3-D matrix where each element (i,j,t) represents the transition function from state

i to state j at time t. This formulation is flexible in the sense that transition functions

can vary over time (e.g., being blocked from time t, to time t 2, etc.). This formulation

allows us to design a system where multiple locally recurrent systems are connected

sequentially: a downstream recurrent system only receives inputs when its upstream

recurrent system finishes, similar to recurrent convolutional neural networks (e.g., [48]).

This system with non-shared weights can also represent exactly the state-of-the-art

ResNet. Example transition matrices used in this work are shown in Figure 3-2 (C).

When there are multiple transition functions to a state, their outputs are summed (for

ResNet) or averaged (for our fully recurrent neural networks (FRNN) ). Averaging

gives slightly better performance for FRNN (about 1%).

Weight sharing Given an unrolled network, a weight sharing configuration can be

described as a set S, whose element is a set of tied weights s = {Wiljl,tl, ... , Wim,jm,tm },

where Wim,jm,tm denotes the weight of the transition functions from state im to jm at

time tm. This requires: 1. all weights Wm,jm,tm E s have the same initial values. 2.

the actual gradients used for updating each element of s is the sum of the gradients

of all elements in s: VW E s, (s )used = EW,,s(')original, where E is the training

objective.

Notations: Unrolling Depth vs. Readout Time The meaning of "unrolling
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depth" may vary in different RNN models since "unrolling" a cyclic graph is not well

defined. In this work, we adopt a biologically-plausible definition: we simulate the

time after the onset of the visual stimuli assuming each transition function takes

constant time 1. We use the term "readout time" to refer to the time the post-net

reads the data from the last state. Regarding the initial values, at t = 0 all states are

empty except that the first state has some data received from the pre-net. We only

start simulate a transition function when its input state is populated.

This definition in principle allows one to have quantitive comparisons with biological

systems. e.g., for a model with readout time t, the wall clock time can be estimated

to be 20t to 50t ms, considering the latency of a single layer of biological neurons.

Sequential vs. Static Inputs/Outputs As a RNN, our model supports se-

quential data processing and in principle all other tasks supported by traditional

RNNs.

Batch Normalizations for RNNs As an additional observation, we found that it

generally hurts performance when the normalization statistics (i.e., average, standard

deviation) in batch normalization are shared across time. This may explain the

difficulties observed in [43]. However, good performance is restored if we apply a

procedure we call a "time-specific normalization": mean and standard deviation are

calculated independently for every t (using training set). In CIFAR-10 experiments

(except Table 3.1) we do not use the learnable parameters of BN. In ImageNet

experiments, we do used the learnable parameters (shared over time) since they

noticeably improves performance.

3.4 Related Work

Deep Recurrent Neural Networks: Our final model is deep and similar to a

stacked RNN [71, 15, 20] with several main differences: 1. our model has feedback

transitions between hidden layers and self-transition from each hidden layer to itself.

2. our model has identity shortcut mappings inspired by residual learning. 3. our

transition functions are deep and convolutional. As suggested by [62], the term depth
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in RNN could also refer to input-to-hidden, hidden-to-hidden or hidden-to-output

connections. Our model is deep in all of these senses. See Section 3.3.

Recursive Neural Networks and Convolutional Recurrent Neural Net-

works: When unfolding RNN into a feedforward network, the weights of many

layers are tied. This is reminiscent of Recursive Neural Networks (Recursive NN), first

proposed by [761. Recursive NN are characterized by applying same operations recur-

sively on a structure. The convolutional version was first studied by [14]. Subsequent

related work includes [63] and [48]. One characteristic distinguishes our model and

residual learning from Recursive NN and convolutional recurrent NN is whether there

are identity shortcut mappings. This discrepancy seems to account for the superior

performance of residual learning and of our model over the latters.

Our work may explain the seemingly surprising observation of "stochastic depth"

[32] that randomly replacing a subset of layers of ResNet by identity mappings during

training does not hurt performance - if they are similar refinements performed

repeatedly, dropping a few of them should not be catastrophic. A recent report

[7] we became aware of after we finished this work discusses the idea of imitating

cortical feedback by introducing loops into neural networks. A Highway Network [78]

is a feedforward network inspired by Long Short Term Memory [30] featuring gated

shortcut mappings (instead of hardwired identity mappings used by ResNet).

3.5 Experiments

Dataset and training details We test most models on the standard CIFAR-10 [40]

dataset. All images are 32x32 pixels with color. Data augmentation is performed in the

same way as [24]. Momentum was used with hyperparameter 0.9. Experiments were

run for 60 epochs with batchsize 64 unless stated otherwise. The learning rates are

0.01 for the first 40 epochs, 0.001 for epoch 41 to 50 and 0.0001 for the last 10 epochs.

All experiments used the cross-entropy loss function and softmax for classification.

Batch Normalization (BN) [35] is used for all experiments. But the learnable scaling

and shifting parameters are not used in the recurrent parts of the model unless stated
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Figure 3-4: The transition matrices of all models are shown in Figure 3-2C. "#Param" denotes the number of
parameters. For each model, the effective unrolling factors "xN" are determined by the readout time t (See Section 3.3
for the definition). Dashed lines are training errors. For multi-state ResNet, a downstream state only executes after
receiving inputs from upstream states. For fully recurrent nets, all transitions execute concurrently. The state sizes
are shown above. (A) A 2-state ResNet with the second state only unrolled once. This architecture works better with
shared rather than non-shared weights on CIFAR-10. In general, we empirically observe that weight sharing in the
1st state of a multi-state system is often beneficial. One conjecture is that our transition function might match better
low-level visual recurrent computations. (B) Standard 3-state ResNet. (C) 2-state fully recurrent NN. (D) Different
readout time of (A). (E) A 2-state fully recurrent network with different readout time. There is consistent performance
improvement as t increases. The number of parameters changes since at some t, some recurrent connections have not
been contributing to the output and thus their number of parameters are subtracted from the total. We observe in
(D) and (E) that error reduces as t increases, while #param. is kept the same.

otherwise. Network weights were initialized with the method described in [25]. The

implementations are based on MatConvNet[85].

ResNet with Shared Weights Across Time We conjecture that the effective-

ness of ResNet mainly comes from the fact that it efficiently models the recurrent

computations required by the recognition task. If this is the case, one should be

able to reinterpret ResNet as a RNN with weight sharing and achieve comparable

performance to the original version. We demonstrate various incarnations of this idea

and show it is indeed the case (See Figure 3-4 and Figure 3-6).

Fully Recurrent Neural Networks with Shared and Non-shared Weights

Although a RNN is usually implemented with shared weights across time, it is however

possible to unshare the weights and use an independent set of weights at every time t.

For practical applications, whenever one can have a initial t = 0 and enumerate all

possible ts, a RNN with non-shared weights should be feasible, similar to the time-

specific batch normalization described in 3.3. The results of 2-state fully recurrent

neural networks with shared and non-shared weights are shown in Figure 3-4 (C).
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The Effect of Readout Time In visual cortex, useful information increases as

time proceeds from the onset of the visual stimuli. This suggests that recurrent system

might have better representational power as more time is allowed. We tried training

and testing 2-state ResNet and FRNN with various readout time (i.e., unrolling depth,

see Section 3.3) and observe similar effects. Results are shown in Figure 3-4 (D) and

(E). The difference from Figure 3-5 (A) is that training and testing readout times are

the same in this experiment.

Larger Models With More States

The results of 3-state and 4-state FRNNs are shown in Figure 3-3 and Table 3.1.

3-state models seem to generally outperform 2-state ones. This is expected since more

parameters are introduced. We compare the 3-state models with existing best models

on CIFAR-10 in Table 3.1.Next, for computational efficiency, we tried only allowing

each state to have transitions to adjacent states and to itself by disabling bypass

connections (e.g., Figure 3-3 top). In this case, the number of transitions scales linearly

as the number of states increases, instead of quadratically. This setting performs well

with 3-state networks and slightly less well with 4-state networks (perhaps as a result

of small feature/parameter sizes). Finally, for 4-state fully recurrent networks, the

models tend to become overly computationally heavy if we train it with large t or

large number of feature maps. With small t and feature maps, we have not achieved

better performance than 3-state networks. For experiments in this subsection, we

choose a moderately deep pre-net of three 3x3 convolutional layers to model the layers

between retina and V1: Conv-BN-ReLU-Conv-BN-ReLU-Conv. This is not essential

but outperforms shallow pre-net slightly (within 1% validation error).

Generalization Across Readout Time As a RNN, our model supports training

and testing with different readout times. Based on our theoretical analyses in Section

3.2.2, the representation is usually not guaranteed to converge when running a model

with time t -- oc. Nevertheless, the model exhibits good generalization over time.

Results are shown in Figure 3-5.

Experiments on ImageNet We also evaluated weight sharing on ImageNet

1000-way classification task. The results are shown in Figure 3-6.
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Figure 3-5: (A) Training and testing with different readout time.
A 2-state ResNet with shared weights is trained with readout time
t=13 (i.e., 1st state unrolling factor N=t-3=10) and tested with t
from 7 to 23. The model can generalize well to readout time that
are not trained with. There even seems to be tiny performance
improvement (on test set) when testing with slightly larger read-
out time than training. (B) Biological Plausibility of Time-specific
Batch Normalization (TSBN): we show the normalization statistics
of a batch normalization module in the model in part (B) (which
was trained with t=23). Each line represents the statistics of a fea-
ture channel over time. TSBN seems to implement a simple decay,
thus it may be biologically-plausible.

Figure 3-6: ImageNet experiment with a
4-state ResNet with non-shared vs. shared
weights. Train: training error. Val: val-
idation error. No scaling augmentation is
done. Performances are all based on single-
crop. We trained the models with 12 epochs
and logarithmically decaying learning rates
(i.e., logspace(-1, -4, N) in Matlab, where
N=12 is the number of epochs). The loga-
rithmic learning rates make the model con-
verge much faster than the usual three stage
learning rates (i.e., dividing by 10 every some
epochs), thus the models have already con-
verged well and the performance differences
are representative.

3.6 Discussion

When is Weight Sharing Good/Bad? We observe that (e.g., in Figure 3-4 A),

sharing weights over time in the first stage of ResNet always improves performance.

However, sharing weights in the later stages does sometimes slightly lower performance.

We conjecture that whenever our prior - the transition function (e.g., BN-ReLU-Conv

x2) is "similar" to the underlying recurrent function used by visual cortex, weight

sharing will be beneficial. This would imply that our transition function happen to

better model recurrent computations in early -visual areas than later stages.

Psychophysics Support: After our work, [13] reported that while higher layers of

deep networks enjoy better performance on a visual recognition task, only intermediate

(instead of last) layers agree best with human rapid predictions (t= 50 to 500ms).

Given that a deep network's output layer is trained to match human predictions at

t = o0. It is interesting to see an intermediate layer matches best an intermediate

time, consistent with what we predict.
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3.7 Future Directions

1. The dark secret of Deep Networks: trying to imitate Recurrent Shallow

Networks? The results of this work lead to the following conjecture: the effectiveness

of most of the deep feedforward neural networks, including but not limited to ResNet,

can be attributed to their ability to approximate recurrent computations that are

prevalent in most tasks with larger t than shallow feedforward networks. This may

offer a new perspective on the theoretical pursuit of the long-standing question "why

is deep better than shallow" [56, 53].

2. Conjecture about Cortex and Recurrent Computations in Cortical

Areas: Most of the models of cortex that led to the Deep Convolutional architectures

and followed them - such as the Neocognitron [18], HMAX [68] and more recent

models [86] - have neglected the layering in each cortical area and the feedforward and

recurrent connections within each area and between them. They also neglected the

time evolution of selectivity and invariance in each of the areas. Our proposal makes

several interesting predictions. Each cortical area would correspond to a recurrent

network and thus to a system with a temporal dynamics even for flashed inputs; with

increasing time one expects asymptotically better performance; masking with a mask

an input image flashed briefly should disrupt recurrent computations in each area;

performance should increase with time even without a mask for briefly flashed images;

the cortex and each of its component areas are RNNs and, unlike relatively shallow

feedforward networks, are computationally as powerful as universal Turing machine

[73].
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Chapter 4

Biologically-Plausible Normalizations

For Recurrent and Online Learning

4.1 Introduction

Batch Normalization [35] (BN) is a highly effective technique for speeding up conver-

gence of feedforward neural networks. It enabled recent development of ultra-deep

networks [24] and some biologically-plausible variants of backpropagation [49]. How-

ever, despite its success, there are two major learning scenarios that cannot be handled

by BN: (1) online learning and (2) recurrent learning.

For the second scenario recurrent learning, previous chapter (i.e., [50]) and [11]

independently proposed "time-specific batch normalization": different normalization

statistics are used for different timesteps of an RNN. Although this approach works

well in many experiments in the previous chapter (i.e., [50]) and [11], it is far from

perfect due to the following reasons: First, it does not work with small mini-batch

or online learning. This is similar to the original batch normalization, where enough

samples are needed to compute good estimates of statistical moments. Second, it

requires sufficient training samples for every timestep of an RNN. It is not clear how

to generalize the model to unseen timesteps. Finally, it is not biologically-plausible.

While homeostatic plasticity mechanisms (e.g., Synaptic Scaling) [83, 79, 82] are good

biological candidates for BN, it is hard to imagine how such normalizations can behave
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Online Small AllApproach FF & FC FF & Conv Rec & FC Rec & Conv Learning Batch Combined

Normal zation(BN) / / K K X Suboptimal X
Time-specific BN / / Limited Limited X Suboptimal X

Layer *V*I/V*
Normalization

Streaming
Normalization

Table 4.1: An overview of normalization techiques for different tasks. /: works well.
X: does not work well. FF: Feedforward. Rec: Recurrent. FC: Fully-connected. Conv:
convolutional. Limited: time-specific BN requires recording normalization statistics
for each timestep and thus may not generalize to novel sequence length. *Layer
normalization does not fail on these tasks but perform significantly worse than the
best approaches.

differently for each timestep. Recently, Layer Normalization (LN) [3] was introduced to

solve some of these issues. It performs well in feedforward and recurrent settings when

only fully-connected layers are used. However, it does not work well with convolutional

networks. A summary of normalization approaches in various learning scenarios is

shown in Table 4.1.

We note that different normalization methods like BN and LN can be described

in the same framework detailed in Section 4.3. This framework introduces Sample

Normalization and General Batch Normalization (GBN) as generalizations of LN and

BN, respectively. As their names imply, they either collect normalization statistics

from a single sample or from a mini-batch. We explored many variants of these models

in the experiment section.

A natural and biologically-inspired extension of these methods would be Streaming

Normalization: normalization statistics are collected in an online fashion from all

previously seen training samples (and all timesteps if recurrent). We found numerous

advantages associated with this approach: 1. it naturally supports pure online learning

or learning with small mini-batches. 2. for recurrent learning, it is more biologically-

plausible since a unique set of normalization statistics is maintained for all timesteps.

3. it performs well out of the box in all learning scenarios (e.g., online learning, batch

learning, fully-connected, convolutional, feedforward, recurrent and mixed - recurrent

and convolutional). 4. it offers a new direction of designing normalization algorithms,
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since the idea of maintaining online estimates of normalization statistics is independent

from other design choices, and as a result any existing algorithm (e.g., in Figure 4-1 C

and D) can be extended to a "streaming" setting.

We also propose Lp normalization: instead of normalizing by the second moment

like BN, one can normalize by the p-th root of the p-th absolute moment (See Section

4.3.4 for details). In particular, Li normalization works as well as the conventional

approach (i.e., L2) in almost all learning scenarios. Furthermore, Li normalization

is easier to implement: it is simply the average of absolute values. We believe it can

be used to simplify and speed up BN and our Streaming Normalization in GPGPU,

dedicated hardware or embedded systems. Li normalization may also be more

biologically-plausible since the gradient of the absolute value is trivial to implement,

even for biological neurons.

In the following section, we introduce a simple training scheme, a minor but

necessary component of our formulation.

4.2 Online and Batch Learning with "Decoupled Ac-

cumulation and Update"

Although it is not our main result, we discuss a simple but to the best of our knowledge

less explored' training scheme we call a "Decoupled Accumulation and Update" (DAU).

Conventionally, the weights of a neural network are updated every mini-batch.

So the accumulation of gradients and weights update are coupled. We note that a

general formulation would be that while for every mini-batch the gradients are still

accumulated, one does not necessarily update the weights. Instead, the weights are

updated every n mini-batches. The gradients are cleared after each weight update.

Two parameters characterize this procedure: Samples per Batch (S/B) m and Batch

per Update (B/U) n. In conventional training, n = 1.

Note that this procedure is similar to but distinct from simply training

larger mini-batches since every mini-batch arrives in a purely online fashion so one

'We are not aware of this approach in the literature. If there is, please inform us.
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cannot look back into any previous mini-batches. For example, if batch normalization

is present, performing this procedure with m S/B and n B/U is different from that

with m * n S/B and 1 B/U.

If m = 1, it reduces to a pure online setting where one sample arrives at a time.

The key advantage of this proposal over conventional training is that we explicitly

require less frequent (but more robust) weight updates. The memory requirement (in

additional to storing the network weights) is storing m samples and related activations.

This training scheme generalizes the conventional approach, and we found that

merely applying this approach greatly mitigated (although not completely solved)

the catastrophic failure of training batch normalization with small mini-batches (See

Figure 4-4). Therefore, we will use this formulation throughout this work.

We also expect this scheme to benefit learning sequential recurrent networks with

varying input sequence lengths. Sometimes it is more efficient to pack in a mini-batch

training samples with the same sequence length. If this is the case, our approach

predicts that it would be desirable to process multiple such mini-batches with varying

sequence lengths before a weight update. Accumulating gradients from training

different sequence lengths should provide a more robust update that works for different

sequence lengths, thus better approximating the true gradient of the dataset.

In Streaming Normalization with recurrent networks, it is often beneficial to learn

with n > 1 (i.e., more than one batch per update). The first mini-batch collects all the

normalization statistics from all timesteps so that later mini-batches are normalized

in a more stable way.

4.3 A General Framework for Normalization

We propose a general framework to describe different normalization algorithms. A

normalization can be thought of as a process of modifying the activation of a neuron

using some statistics collected from some reference activations. We adopt three terms

to characterize this process: A Normalization Operation (NormOP) is a function

N(xi, si) that is applied to each neuron i to modify its value from xi to N(xi, si), where
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si is the Normalization Statistics (NormStats) for this neuron. NormStats is

any data required to perform NormOP, collected using some function si = S(Ri),

where R, is a set of activations (could include xi) called Normalization Reference

(NormRef). Different neurons may or may not share NormRef and NormStats.

This framework captures many previous normalizations algorithms as special cases.

For example, the original Batch Normalization (BN) [35] can be described as follows:

the NormRef for each neuron i is all activations in the same channel of the same layer

and same batch (See Figure 4-1 C for illustration). The NormStats are Si ={pi,-i}

- the mean and standard deviation of the activations in NormRef. The NormOp is

N(xjj,{p,-i) = '--i

For the recent Layer Normalization [3], NormRef is all activations in the same

layer (See Figure 4-1 C). The NormStats and NormOp are the same as BN.

We group normalization algorithms into three categories:

1. Sample Normalization (Figure 4-1 C): NormStats are collected from one sample.

2. General Batch Normalization (Figure 4-1 D): NormStats are collected from all

samples in a mini-batch.

3. Streaming Normalization: NormStats are collected in an online fashion from all

pass training samples.

In the following sections, we detail each algorithm and provide pseudocode.

4.3.1 Sample Normalization

Sample normalization is the simplest category among the three. NormStats are

collected only using the activations in the current layer of current sample. The

computation is the same at training and test times. It handles online learning

naturally. Layer Normalization [3] is an example of this category. More examples are

shown in Figure 4-1 C.

The pseudocode of forward and backpropagation is show in Algorithm 1 and

Algorithm 2.
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(B) Decoupled Accumulation and Update
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Figure 4-1: A General Framework of Normalization. A: the input to convolutional
layer is a 3D matrix consists of 3 dimensions: x (image width), y (image height) and
features/channel. For fully-connected layers, x=y=1. B: training with decoupled
accumulation and update. C: Sample Normalization. D: General Batch Normalization.
E: Streaming Normalization
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Algorithm 1 Sample Normalization Layer: Forward

Require: layer input x (a sample), NormOP N(.,.), function S(.) to compute Norm-

Stats for every element of x

Ensure: layer output y (a sample)

s S(x)

y N(x,s)

Algorithm 2 Sample Normalization Layer: Backpropagation

Require: ' (a sample) where E is objective, layer input x, NormOP N(.,.), function

S(.) to compute NormStats for every element of x

Ensure: 2 (a sample)

can be calculated using chain rule. Detail omitted.

4.3.2 General Batch Normalization

In General Batch Normalization (GBN), NormStats are collected in some way using

the activations from all samples in a training mini-batch. Note that one cannot really

compute the batch NormStats at test time since test samples should be handled

independently from each other, instead in a batch. To overcome this, one can simply

compute running estimates of training NormStats and use them for testing (e.g., the

original Batch Normalization [35] computes moving averages).

More examples of GBN are shown in Figure 4-1 D. The pseudocode is shown in

Algorithm 3 and 4.

Algorithm 4 General Batch Normalization Layer: Backpropagation

Require: a (a mini-batch) where E is objective, layer input x (a mini-batch),

NormOP N(.,.), function S(.) to compute NormStats for every element of x,

running estimates of NormStats s, function F to update s.
Ensure: ! (a mini-batch)

5 can be calculated using chain rule. Detail omitted.
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Algorithm 3 General Batch Normalization Layer: Forward

Require: layer input x (a mini-batch), NormOP N(.,.), function S(.) to compute
NormStats for every element of x, running estimates of NormStats s, function F to
update A.

Ensure: layer output y (a mini-batch), running estimates of NormStats s
if training then

s = S(x)
s = F(s,s)
y = N(x,s)

else {testing}
y = N(x,s)

end if

4.3.3 Streaming Normalization

Finally, we present the main results of this work. We propose Streaming Normalization:

NormStats are collected in an online fashion from all past training samples. The main

challenge of this approach is that it introduces infinitely long dependencies throughout

the neuron's activation history - every neuron's current activation depends on all

previously seen training samples.

It is intractable to perform exact backpropagation on this dependency graph for

the following reasons: there is no point backpropagating beyond the last weight update

(if any) since one cannot redo the weight update. This, on the other hand, would

imply that one cannot update the weights until having seen all future samples. Even

backpropagating within a weight update (i.e., the interval between two weight updates,

consisting of n mini-batches) turns out to be problematic: one is usually not allowed

to backpropagate to the previous several mini-batches since they are discarded in

many practical settings.

For the above reasons, we abandoned the idea of performing exact backpropagation

for streaming normalization. Instead, we propose two simple heuristics: Streaming

NormStats and Streaming Gradients. They are discussed below and the pseudocode

is shown in Algorithm 5 and Algorithm 6.
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Streaming NormStats

Streaming NormStats is a natural requirement of Streaming Normalization, since

NormStats are collected from all previously seen training samples. We maintain a

structure/table H1 to keep all the information needed to generate a good estimate of

NormStats. and update it using a function F everytime we encounter a new training

sample. Function F also generates the current estimate of NormStats called 8. We

use to normalize instead of s. See Algorithm 5 for details.

There could be many potential designs for F and H1 , and in our experiments we

explored a particular version: we compute two sets of running estimates to keep track

of the long-term and short-term NormStats: H1 = {iong, short, counter}.

" Short-term NormStats sshort is the exact average of NormStats s since the last

weight update. The counter keeps track of the number of times a different s

is encountered to compute the exact average of s.

* Long-term NormStats s',, is an exponential average of sshort since the

beginning of training.

Whenever the weights of the network is updated: 1long = "i * iong + K2 * Sshort,

counter is reset to 0 and Asehst is set to empty. In our experiments, r1 + "2 = 1 SO

that an exponential average of short is maintained in slong.

In our implementation, before testing the model, the last weight update is NOT

performed, and short is also NOT cleared, since short is needed for testing 2

In addition to updating H1 in the way described above, the function F also

computes s = aiSlong + c2sshort. Finally, is used for normalization.

Streaming Gradients

We maintain a structure/table H2 to keep all the information needed to generate a

good estimate of gradients of NormStats and update it using a function G everytime

2It also possible to simply store the last s computed in training for testing, instead of storing

sshort and re-computing . in testing. These two options are mathematically equivalent.
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backpropagation reaches this layer. Function G also generates the current estimate of

gradients of NormStats called 9. We use 9 for further backpropagation instead of

,. See Algorithm 6 for details.

Again, there could be many potential designs for G and H2, and we explored a

particular version: we compute two sets of running estimates to keep track of the

long-term and short-term gradients of NormStats: H2 = {ion, Pshort, counter}.

" Short-term Gradients of NormStats Pshort is the exact average of gradients of

NormStats S since the last weight update. The counter keeps track of the

number of times a different 2 is encountered to compute the exact average of
aE

* Long-term Gradients of NormStats yIong is an exponential average of ,hot

since the beginning of training.

Whenever the weights of network is updated: giong = K3 * ilong + I 4 * 9short, counter

is reset to 0 and 9short is set to empty. In our experiments, K3 + K4 = 1 so that an

exponential average of gArt is maintained in ylong.

In addition to updating H2 in the way described above, the function G also com-

putes Ml = 1iong + f2Pshort + /33-l-. Finally, M is used for further backpropagation.

Algorithm 5 Streaming Normalization Layer: Forward
Require: layer input x (a mini-batch), NormOP N(.,.), function S(.) to compute

NormStats for every element of x, running estimates of NormStats and/or related
information packed in a structure/table H1, function F to update H1 and generate
current estimate of NormStats s.

Ensure: layer output y (a mini-batch) and H1 (it is stored in this layer, instead of
feeding to other layers), always maintain the latest s in case of testing
if training then

s = S(x)
{H1 ,s} = F(Hi,s)
y = N(x,s)

else {testing}
y = N(x,s)

end if
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Algorithm 6 Streaming Normalization Layer: Backpropagation

Require: 2 (a mini-batch) where E is objective, layer input x (a mini-batch),
NormOP N(.,.), function S(.) to compute NormStats for every element of x,
running estimates of NormStats S, running estimates of gradients and/or related

information packed in a structure/table H2 , function G to update H2 and generate

the current estimates of gradients of NormStats a.

Ensure: 2 (a mini-batch) and H2 (it is stored in this layer, instead of feeding to
other layers)

E is calculated using chain rule.

{H2 , } = G(H2 ,9)

Use L for further backpropagation, instead of a

is calculated using chain rule.

A Summary of Streaming Normalization Design and Hyperparameters

The NormOp used in this work is N(xi,{1pi,-i}) = -f ,the same as what is used by

BN. The NormStats are collected using one of the Lp normalization schemes described

in Section 4.3.4.

With our particular choices of F, G, H1 and H2 , the following hyperparame-

ters uniquely characterize a Streaming Normalization algorithm: a1 , a 2 , 1, /2,/3,

Ki, K2 , K 3 , K 4 , samples per batch m, batches per update n and a choice of mini-batch

NormRef (i.e., SPl-SP5, BAl-BA6 in Figure 4-1 C and D).

Unless mentioned otherwise, we use BAl in Figure 4-1 D as the NormRef throughout

this work. We also demonstrate the use of other NormRefs (BA4 and BA6) in the

Appendix Figure Al.

An important special case: If n = 1, a, = 0, a 2 = l,/31 = 0, 32 = 0, 03 = 1, we

ignore all NormStats and gradients beyond the current mini-batch. The algorithm

reduces to exactly the GBN algorithm. So Streaming Normalization is strictly

a generalization of GBN and thus also captures the original BN [35] as a special case.

Recall from Section 4.3.3 that Asht is NOT cleared before testing the model. Thus

for testing, NormStats are inherited from the last training mini-batch. It works well

in practice.

Unless mentioned otherwise, we set a, = K1 = K3 , a2 = K2 = K4 , K 1 + K2 = 1,

K 3 + K4 = 1, al + a 2 = 1, /1 + /2 + /3 = 1. We leave it to future research to explore
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different choices of hyperparameters (and perhaps other F and G).

Implementation Notes

One minor drawback of not performing exact backpropagation is that it may break

the gradient check of the entire model. One solution coulde be: (1) perform gradient

check of the model without SN and then add a correctly implemented SN. (2) make

sure the SN layer is correctly coded (e.g., by reducing it to standard BN using the

hyperparameters discussed above and then perform gradient check).

4.3.4 Lp Normalization: Calculating NormStats with Differ-

ent Orders of Moments

Let us discuss the function S(.) for calculating NormStats. There are several choices

for this function. We propose Lp normalization. It captures the previous mean-

and-standard-deviation normalization as a special case.

First, mean p is always calculated the same way - the average of the activations

in NormRef. The divisive factor -, however, can be calculated in several different

ways. In Lp Normalization, o is chosen to be the p-th root of the p-th Absolute

Moment.

Here the Absolute Moment of a distribution P(x) about a point c is:

I x - cPPP(x)d( (4.1)

and the discrete form is:
1N

N 1x - cIP (4.2)

Lp Normalization can be performed with three settings:

" Setting A: a is the p-th root of the p-th absolute moment of all activations in

NormRef with c being the mean y of NormRef.

* Setting B: a is the p-th root of the p-th absolute moment of all activations in

NormRef with c being the running estimate A of the average.
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* Setting C: a is the p-th root of the p-th absolute moment of all activations in

NormRef with c being 0.

Most of these variants have similar performance but some are better in some situations.

We call it Lp normalization since it is similar to the norm in the LP space.

Setting B and C are better for online learning since A will give degenerate result

(i.e., o = 0) when there is only one sample in NormRef. Empirically, when there are

enough samples in a mini-batch, A and B perform similarly.

We discuss several important special cases:

Special Case A-2: setting A with n=2, a is the standard deviation

(square root of the 2nd moment) of all activations in NormRef. This setting

is what is used by Batch Normalization [35] and Layer Normalization [3].

Special Case p=1: Whenever p=1, a is simply the average of absolute values

of activations. This setting works virtually the same as p=2, but is much simpler to

implement and faster to run. It might also be more biologically-plausible, since the

gradient computations are much simpler.

4.3.5 Separate Learnable Bias and Gain Parameters

The original Batch Normalization [35] also learns a bias and a gain (i.e., shift and

scaling) parameter for each feature map. Although not usually done, but clearly these

shift and scaling operations can be completely separated from the normalization layer.

We implemented them as a separate layer following each normalization layer. These

parameters are learned in the same way for all normalization schemes evaluated in

this work.

4.4 Generalization to Recurrent Learning

In this section, we generalize Sample Normalization, General Batch Normalization

and Streaming Normalization to recurrent learning. The difference between recurrent

learning and feedforward learning is that for each training sample, every hidden layer

of the network receives t activations hi, , ..., ht, instead of only one.
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4.4.1 Recurrent Sample Normalization

Sample Normalization naturally generalizes to recurrent learning since all NormStats

are collected from the current layer of the current timestep. Training and testing

algorithms remain the same.

4.4.2 Recurrent General Batch Normalization (RGBN)

The generalization of GBN to recurrent learning is the same as what was proposed

by the previous chapter [50] and [11]. The training procedure is exactly the same as

before (Algorithm 3 and Algorithm 4). For testing, one set of running estimates of

NormStats is maintained for each timestep.

Another way of viewing this algorithm is that the same GBN layers described in

Algorithm 3 and 4 are used in the unrolled recurrent network. Each GBN layer in

the unrolled network uses a different memory storage for NormStats.

4.4.3 Recurrent Streaming Normalization

Extending Streaming Normalization to recurrent learning is straightforward - we not

only stream through all the past samples, but also through all past timesteps. Thus,

we maintain a unique set of running estimates of NormStats for all timesteps. This is

more biologically-plausible and memory efficient than the above approach (RGBN).

Again, another way of viewing this algorithm is that the same Streaming Nor-

malization layers described in Algorithm 5 and 6 are used in the original (instead

of the unrolled) recurrent network. All unrolled versions of the same layer share

running estimates of NormStats and other related data.

One caveat is that as time proceeds, the running estimates of NormStats are slightly

modified. Thus when backpropagation reaches the same layer again, the NormStats

are slightly different from the ones originally used for normalization. Empirically,

it seems to not cause any problem on the performance. Training with "decoupled

accumulation update" with Batches per Update (B/U) > 1 ' can also mitigate this

3B/U=2 is often enough
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problem, since it makes NormStats more stable over time.

4.5 Streaming Normalized RNN and GRU

In our character-level language modeling task, we tried Normalized Recurrent Neural

Network (RNN) and Normalized Gated Recurrent Unit (GRU) [9]. Let us use Norm(.)

to denote a normalization, which can be either Sample Normalization, General Batch

Normalization or Streaming Normalization. A bias and gain parameter is also learned

for each neuron. We use NonLinear to denote a nonlinear function. We used hyperbolic

tangent (tanh) nonlinearity in our experiments. But we observed ReLU also works.

ht is the hidden activation at time t. xt is the network input at time t. W. denotes

the weights. G denotes elementwise multiplication.

Normalized RNN

ht = NonLinear (Norm(Wx * xt) + Norm(Wh * ht-1)) (4.3)

Normalized GRU

g, = Sigmoid(Norm(Wx, * xt) + Norm(Wr * ht_1))) (4.4)

gz = Sigmoid(Norm(Wx * xt) + Norm(Whz * ht-1))) (4.5)

hnew = NonLinear (Norm(Wxh * Xt) + Norm(Whh * (ht- 1 0 gr))) (4.6)

ht = gz 0 knew + (1 - gz) 0 ht 1  (4.7)

4.6 Related Work

[43] and [2] used Batch Normalization (BN) in stacked recurrent networks, where BN

was only applied to the feedforward part (i.e., "vertical" connections, input to each

RNN), but not the recurrent part (i.e., "horizontal", hidden-to-hidden connections

between timesteps). Previous chapter (i.e., [50]) and [11] independently proposed

applying BN in recurrent/hidden-to-hidden connections of recurrent networks, but
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separate normalization statistics must be maintained for each timestep. Previous

chapter (i.e., [50]) demonstrated this idea with deep multi-stage fully recurrent (and

convolutional) neural networks with ReLU nonlinearities and residual connections.

[11] demonstrated this idea with LSTMs on language processing tasks and sequential

MNIST. [3] proposed Layer Normalization (LN) as a simple normalization technique

for online and recurrent learning. But they observed that LN does not work well with

convolutional networks. [70] and [58] studied normalization using weight reparameteri-

zations. An early work by [84] mathematically analyzed a form of online normalization

for visual perception and adaptation.

4.7 Experiments

4.7.1 CIFAR-10 architectures and Settings

We evaluated the normalization techniques on CIFAR-10 dataset using feedforward

fully-connected networks, feedforward convolutional network and a class of convolu-

tional recurrent networks proposed by the previous chapter (i.e., [50]). The architec-

tural details are shown in Figure 4-2. We train all models with learning rate 0.1 for

25 epochs and 0.01 for 5 epochs. Momentum 0.9 is used. We used MatConvNet [85]

to implement our models.
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Figure 4-3: Lp Normalization. The architecture is a feedforward and convolutional
network (shown in Figure 4-2 B). All statistical moments perform similarly well. L7
normalization is slightly worse.
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Figure 4-2: Architectures for CIFAR-10. Note that C reduces to B when k, = k2= 1.

4.7.2 Lp Normalization

We show BN with Lp normalization in Figure 4-3. Note that Lp normalization can

be applied to Layer Normalization and all other normalizations show in 4-1 C and D.

Li normalization works as well as L2 while being simpler to implement and faster to

compute.
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4.7.3 Online Learning or Learning with Very Small Mini-batches

We perform online learning or learning with small mini-batches using architecture A

in Figure 4-2.

Plain Mini-batch vs. Decoupled Accumulation and Update (DAU): We

show in Figure 4-4 comparisons between conventional mini-batch training and Decou-

pled Accumulation and Update (DAU).

X BN, 10 S/B, 1 B/U
V-BN, 5 S/B, 40 B/U

-~*-- BN, 10 S/B, 20 B/U
* -4BN, 200 S/B, 1 B/U

90 -

85 -

80

75

70

c 65
0

" 60

C 55
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V50

40

13 r

X BN, 10 S/B, 1 B/U
--- BN, 5 S/B, 40 B/U
-*-- BN, 10 S/B, 20 B/U

-0 BN, 200 S/B, 1 B/U

0 10 20 30 0 10 20 30

Epoch Epoch

Figure 4-4: Plain Mini-batch vs. Decoupled Accumulation and Update (DAU). The
architecture is a feedforward and fully-connected network (shown in Figure 4-2
A). S/B: Samples per Batch. B/U: Batches per Weight Update. We show there
are significant performance differences between plain mini-batch (i.e., B/U=1) and
Decoupled Accumulation and Update (DAU, i.e., B/U=n>1). DAU significantly
improves the performance of BN with small number of samples per mini-batch (e.g.,
compare curve 1 with 3).

Layer Normalization vs. Batch Normalization vs. Streaming Normal-

ization: We compare in Figure 4-5 Layer Normalization, Batch Normalization and

Streaming Normalization with different choices of S/B and B/U.
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Figure 4-5: Different normalizations applied to a feedforward and fully-connected
network (shown in Figure 4-2 A). The right two pannels are zoomed-in versions

of the left two pannels. S/B: Samples per Batch. B/U: Batches per Weight Update.

"Ours" refers to Streaming Normalization with "Li norm" (Setting B with p=1 in

Section 4.3.4) and a, = 01 = 0.7, a2 = 02 = 0.3 and 03 = 0 (see Section 4.3.3 for more

details about hyperparameters). We show that our algorithm works with pure online

learning (1 S/B) and tiny mini-batch (2 S/B), and it outperforms Layer Normalization.

The choice of S/B does not matter for layer normalization since it processes samples

independently.

4.7.4 Evaluating Variants of Batch Normalization

Feedforward Convolutional Networks: In Figure 4-6, we tested algorithms shown

in Figure 4-1 C and D using the architecture B in Figure 4-2. We also show the

performance of our Streaming Normalization for reference.
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Figure 4-6: Different normalizations applied to a feedforward and convolutional
network (shown in Figure 4-2 B). All models were trained with 32 Samples per Batch
(S/B), 1 Batch per Update (B/U). "Our approach" refers to Streaming Normalization
with "L2 norm" (Setting A with p=2 in Section 4.3.4) and a, = #1 = 0.5, a2 = /2 = 0.5
and /3 = 0 (see Section 4.3.3 for more details about hyperparameters). LN: Layer
Normalization. Sample Normalizations (including LN) seem to all work similarly. It
seems beneficial to normalize each channel/feature map separately (e.g., compare BA3
with BA4), like what BN does.

ResNet-like convolutional RNN: In Figure 4-7, we tested algorithms shown

in Figure 4-1 C and D using the architecture C in Figure 4-2. We also show the

performance of our Streaming Normalization for reference.
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Figure 4-7: Different normalizations applied to a recurrent and convolutional
network (Figure 4-2 C with ki = 5 and k2 = 1). All models were trained with
32 Samples per Batch (S/B), 1 Batch per Update (B/U). "Our approach" refers to

Streaming Normalization with "L2 norm" (Setting A with p=2 in Section 4.3.4) and
a, = 01 = 0.5, a 2 = 02 = 0.5 and 03 = 0 (see Section 4.3.3 for more details about
hyperparameters). LN: Layer Normalization. Sample Normalizations (including LN)
seem to all work similarly. It seems beneficial to normalize each channel/feature map
separately (e.g., compare BA3 with BA4), like what BN does.

Densely Recurrent Convolutional Network: In Figure 4-8, we tested Time-

Specific Batch Normalization and Streaming Normalization on the architecture D in

Figure 4-2.
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Figure 4-8: Time-specific Batch Normalization (TSBN) and Streaming Normalization
applied to a densely recurrent and convolutional network (Figure 4-2 D with
k = 5). "Ours" refers to Streaming Normalization with "L2 norm" (Setting B with p=2
in Section 4.3.4), 32 Samples per Batch (S/B) and 2 Batches per Update (B/U) and
ai = /1 = 0.7, a2 = 0.3, 02 = 0 and 03 = 0.3 (see Section 4.3.3 for more details about
hyperparameters). Sometimes for recurrent networks, B/U > 1 is preferred, since the
first mini-batch collects NormStats from all timesteps so that the second mini-batch
is normalized in a more stable way. TSBN was trained with 64 S/B, 1 B/U (32 S/B,
2 B/U would give similar performance, if not worse). Streaming Normalization has
similar performance to TSBN but does not require storing different NormStats for
each timestep.

4.7.5 More Experiments on Streaming Normalization

In Figure 4-9, we compare the performances of original BN (i.e., NormStats shared

over time), time-specific BN, layer normalization and streaming normalization on a

recurrent and convolutional network shown in Figure 4-2 C.

We evaluated different choices of hyperparameter 31,32 and 33 in Figure 4-10.

4.7.6 Recurrent Neural Networks for Character-level Language

Modeling

We tried our simple implementations of vanilla RNN and GRU described in Section

4.5. The RNN and GRU both have 1 hidden layer with 100 units. Weights are

updated using the simple Manhattan update rule described in [49]. The models were

76

30 31)

lut
5

20 25 30



-NI

10 20 30
Epoch

100

90

so

70

80

40

30

20

10

0-

Tvl,,vef BN
LN

9 0U409

10

5

- 3

10 2 30

__ _ fil BN-N--s00I 95
-9

- k

30

25

15

10

5

0

Epoch

--4-- 00W 99
-9-Th-pof09h

4

-L

-U

0 10 20c30
Epoch

Figure 4-9: Different normalizations applied to a recurrent and convolutional

network (shown in Figure 4-2 C with unrolling parameters k, = k2 = 5)., The right two

pannels are zoomed-in versions of the left two pannels. "Ours" refers to Streaming

Normalization with "L2 norm" (Setting B with p=2 in Section 4.3.4), 32 Samples
per Batch (S/B), 2 Batches per Update (B/U) and a, = 01 = 0.7, a2 = 0.3,032 = 0
and 33 = 0.3 (see Section 4.3.3 for more details about hyperparameters). Time-
specific Batch Normalization, original BN and Layer Normalization (LN) were trained
with 64 S/B, 1 B/U (32 S/B, 2 B/U would give similar performance, if not worse).
Streaming Normalization clearly outperforms other methods in training. Streaming
Normalization converges more than twice as fast as LN. Note that 32 S/B 2 B/U
and 64 S/B 1 B/U are equivalent to LN since it processes samples independently.
Original BN fails on testing.
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Figure 4-10: Evaluate different choices of hyperparameter 01,/2 and /3. The architecture
is a recurrent and convolutional network (shown in Figure 4-2 C with unrolling
parameters k1 .= k2 = 5). The right two pannels are zoomed-in versions of the left
two pannels. The models are Streaming Normalization with "L2 norm" (Setting B
with p=2 in Section 4.3.4), 32 Samples per Batch (S/B), 2 Batches per Update (B/U)
and a,, a 2 = 0.3,'i = r1 = 0.7, K2 = K4 = 0.3. The hyperparameters (/1, 2, /3) are
shown in the figure. (0,0,0) means that the gradients of NormStats are ignored. (0,0,1)
means only using NormStats gradients from the current mini-batch. (0,1,0) means
only using NormStats gradients accumulated since the last weight update. Note that
regardless the values of /, the gradients of NormStats are always accumulated (See
Section 4.3.3). Using gradients from the previous weight update (i.e., 1,0,0) seems to
work reasonably well. Some combinations (i.e., (0.7,0.0.3) or (0.7,0.0.3)) of previous
and current gradients seem to give the best performances. This experiment indicates
that streaming the gradients of NormStats is very important for performance.
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trained with learning rate 0.01 for 2 epochs and 0.001 for 1 epoch on a text file of

all Shakespeare's work concatenated. We use 99% the text file for training and 1%

for validation. The training and validation softmax losses are reported. Training

losses are from mini-batches so they are noisy, and we smoothed them using moving

averages of 50 neighbors (using the Matlab smooth function). The test loss on the

entire validation set is evaluated and recorded every 20 mini-batches. We show in

Figure 4-11 and 4-12 the performances of Time-specific Batch Normalization, Layer

Normalization and Streaming Normalization. Truncated BPTT was performed with

100 timesteps.

4.5 3.4

.5

S 264

.5 I

Epoch Epoch

Figure 4-11: Character-level language modeling with RNN on Shakespeare's work
concatenated. The training (left) and validation (right) softmax losses are reported.
"Ours" refers to Streaming Normalization with "L2 norm" (Setting B with p=2 in
Section 4.3.4), 32 Samples per Batch (S/B), 2 Batches per Update (B/U) and ai =
01 = 0.7, a2 = 0.3, #2 = 0 and 0 = 0.3 (see Section 4.3.3 for more details about
hyperparameters). TSBN: time-specific BN. LN: Layer Normalization. Both TSBN
and Streaming Normalization (SN) converges faster than LN. SN reaches slightly lower
loss than TSBN and LN.
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Figure 4-12: Character-level language modeling with GRU on Shakespeare's work
concatenated. The training (left) and validation (right) softmax losses are reported.
"Ours" refers to Streaming Normalization with "L2 norm" (Setting B with p=2 in
Section 4.3.4), 32 Samples per Batch (S/B), 2 Batches per Update (B/U) and ai =
31 = 0.7, a2 = 0.3, 02 = 0 and /3 = 0.3 (see Section 4.3.3 for more details about
hyperparameters). TSBN: time-specific BN. LN: Layer Normalization. Streaming
Normalization converges faster than LN and reaches lower loss than TSBN.

4.8 Discussion

Biological Plausibility

We found that the simple "Neuron-wise normalization" (BA6 in Figure 4-1 D)

performs very well (Figure 4-6 and 4-7). This setting does not require collecting

normalization statistics from any other neurons. We show the streaming version of

neuron-wise normalization in Figure Al, and the performance is again competitive. In

neuron-wise normalization, each neuron simply maintains running estimates of its own

mean and variance (and related gradients), and all the information is maintained locally.

This approach may serve as a baseline model for biological homeostatic plasticity

mechanisms (e.g., Synaptic Scaling) [83, 79, 82], where each neuron internally maintains

some normalization/scaling factors that depend on neuron's firing history and can be

applied and updated in a pure online fashion.
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Lp Normalization

Our observations about Lp normalization have several biological implications:

First, we show that most Lp normalizations work similarly, which suggests that there

might exist a large class of statistics that can be used for normalization. Biological

systems could implement any of these methods to get the same level of performance.

Second, Li normalization is particularly interesting, since its gradient computations

are much easier for biological neurons to implement.

As an orthogonal direction of research, it would also be interesting to study

the relations between our Lp normalization (standardizing the average Lp norm of

activations) and Lp regularization (discounting the the Lp norm of weights, e.g., Li

weight decay).

Theoretical Understanding

Although normalization methods have been empirically shown to significantly

improve the performance of deep learning models, there is not enough theoretical

understanding about them. Activation-normalized neurons behave more similarly

to biological neurons whose activations are constrained into a certain range: is it a

blessing or a curse? Does it affect approximation bounds of shallow and deep networks

[53, 54]? It would also be interesting to see if certain normalization methods can

mitigate the problems of poor local minima and saddle points, as the problems have

been analysed without normalization [381.

Internal Covariate Shift in Recurrent Networks

Note that our approach (and perhaps the brain's "synaptic scaling") does not

normalize differently for each timestep. Thus, it does not naturally handle internal

covariate shift [35] (more precisely, covariate shift over time) in recurrent networks,

which was the main motivation of the original Batch Normalization and Layer Normal-

ization. Our results seem to suggest that internal covariate shift is not as hazardous

as previously believed as long as the entire network's activations are normalized to a

good range. But more research is needed to answer this question.
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4.9 Appendix: Other Variants of Streaming Normal-

ization

--H--BA.-B
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Figure Al: We explore other variants of Streaming Normalization with different
NormRef (e.g., SP1-SP5, BAl-BA6 in 4-1 C and D) within each mini-batch. -B
denotes the batch version. -S denotes the streaming version. The architecture is
a feedforward and convolutional network (shown in Figure 4-2 B). Streaming
normalization lowers training errors.
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Chapter 5

Conclusions and Future Work

In this thesis I discussed three aspects of Deep Neural Networks (DNNs) that can

be made more biologically-plausible. I propose models and algorithms that are both

biologically implementable and well-performing.

In contrast to traditional DNNs, the proposed systems and algorithms better

model the brain and may provide some guidance to future experimental research in

neuroscience. On the other hand, developing biology-compatible frameworks for ANNs

facilitates the design of biologically inspired AI systems.

There are, of course, more to be done in this emerging area of research, since

biological plausibility of Deep Learning is an under-investigated problem. For example,

future work should answer the following important open questions:

" How does the brain implement generative models? e.g., for visual imagery.

" How to train recurrent networks in a biologically plausible manner?
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