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Abstract

Throughput-oriented architectures, like GPUs, use a large number of simple cores
and rely on application-level parallelism, using multithreading to keep the cores busy.
These architectures work well when parallelism is plentiful but work poorly when
its not. Therefore, it is important to combine these techniques with other hardware
support for parallelizing challenging applications.

Recent work has shown that speculative parallelism is plentiful for a large class
of applications that have traditionally been hard to parallelize. However, adding
hardware support for speculative parallelism to a throughput-oriented system leads to
a severe pathology: aborted work consumes scarce resources and hurts the throughput
of useful work.

This thesis develops a technique to optimize throughput-oriented architectures for
speculative parallelism: tasks should be prioritized according to how speculative they
are. This focuses resources on work that is more likely to commit, reducing aborts and
using speculation resources more efficiently. We identify two on-chip resources where
this prioritization is most likely to help, the core pipeline and the memory controller.

First, this thesis presents speculation-aware multithreading (SAM), a simple policy
that modifies a multithreaded processor pipeline to prioritize instructions from less
speculative tasks. Second, we modify the on-chip memory controller to prioritize
requests issued by tasks that are earlier in the conflict resolution order.

We evaluate SAM on systems with up to 64 SMT cores. With SAM, 8-threaded in-
order cores outperform single-threaded cores by 2.41 x on average, while a speculation-
oblivious policy yields a 1.91 x speedup. SAM also reduces wasted work by 43%.
Unlike at the core, we find little performance benefit from prioritizing requests at the
memory controller. The reason is that speculative execution works as a very effective
prefetching mechanism, and most requests, even those from tasks that are ultimately
aborted, do end up being useful.

Thesis Supervisor: Daniel Sanchez
Title: Assistant Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Throughput-oriented processors (e.g., Xeon Phi [701, Niagara [40], GPUs [38]) in

contrast to traditional scalar microprocessors, use massive amounts of simple cores,

and rely on hardware multithreading to maximize the rate of completed work. These

systems rely on application level parallelism to keep the cores busy. Throughput-

oriented architectures are very efficient when parallelism is plentiful because they avoid

the complexity and overhead of high-performance cores. However, when application

parallelism is scarce, the system becomes underutilized. Therefore, it is important

to combine throughput-oriented architectures with hardware techniques that allow

extracting more parallelism from applications.

Hardware support for speculative parallelism would make these systems broadly

useful. For applications whose tasks have dependences that are hard to analyze

statically, prior techniques such as Thread-Level Speculation (TLS) and Hardware

Transactional Memory (HTM) have proposed to run tasks speculatively. Hardware

detects dependence violations among tasks dynamically and re-execute conflicting

tasks in the correct order. More recently, Swarm [32,33] generalizes these techniques to

extract substantially more parallelism from these applications; for instance, the route

planning algorithm astar, which prior work has failed to parallelized statically, scales

linearly with speculative execution up to 128 cores. Hence, running these applications

in throughput processors has become appealing.

However, when hardware support for speculative execution is applied for throughput-

oriented systems, tasks that are likely to abort consume resources and hurt the

13



throughput of less-speculative ones. This effect causes two pathologies: the amount of

mis-speculated work grows, and the time spent holding speculation resources increases,

causing more stalls. Therefore, unlike in non-speculative systems, where throughput

is measured in terms of total work, speculative systems should maximize the rate of

committed work.

1.1 Contributions

The key insight of this thesis is that throughput architectures can be optimized for

speculative parallelism by prioritizing tasks according to how speculative they are.

For TLS and other schemes that support ordered parallelism [25, 33, 71, 74], where

the program dictates the execution order of speculative tasks, this order directly

determines how speculative each task is. For HTM and other schemes that support

unordered parallelism [16,26,46], where any execution order is valid, it is less clear how

speculative each task is. However, we observe that HTM conflict resolution policies

often enforce an order among transactions on the fly. We can leverage this order to

prioritize tasks.

There are multiple resources in a system that are shared among multiple concurrent

tasks, including the core, caches, on-chip network, and memory controllers. A key

question is where this prioritization would be most useful. We focus on the core

pipeline, which is often saturated by multithreading, and the memory controller, which

is often the most contended resource in the memory system.

1.1.1 Prioritization at the Core

We present speculation-aware multithreading (SAM), a simple policy that modifies a

multithreaded processor pipeline to prioritize instructions from less-speculative tasks

(Sec. 2.2). SAM avoids pipeline interference from more- to less-speculative tasks,

reducing wasted work. And because less-speculative tasks commit earlier, SAM also

makes more effective use of speculation resources.

We design SAM variants for in-order and out-of-order cores. We find that SAM is

much more effective than prior SMT policies that aim to maximize pipeline efficiency,

like ICount [77]. We also present a simple adaptive policy that achieves SAM's low

14



aborts when contention is high, and ICount's high pipeline efficiency when contention

is low.

SAM improves the performance benefit of multithreaded cores on speculative

parallel programs. We demonstrate SAM on an architecture that supports ordered

and unordered speculative parallelism (Chapter 3). On a 64-core system with 2-wide

issue in-order SMT cores, with SAM, 8-threaded cores outperform single-threaded

cores by 2.41 x on average, while speculation-oblivious round-robin achieves 1.91 x

improvement. SAM also reduces wasted work by 43%, making speculative execution

more efficient. With out-of-order execution, 8-threaded cores improve performance

over single-threaded cores by 1.53x with SAM vs only 1.16x with ICount, and SAM

reduces wasted work by 81% (Chapter 5).

1.1.2 Prioritization at the Memory Controller

We also investigate whether prioritizing requests at the memory controller according

to their conflict resolution priorities can provide performance benefits. Like SAM,

deprioritizing requests from more speculative tasks inhibits their progress and less

work is wasted if they were to ultimately abort. Unlike SAM, where each core makes a

local decision on which thread to issue from, the memory controller is a global resource

and can select among all threads in the system.

However, we find that speculative execution works as a very effective prefetching

mechanism. Speculatively running tasks far ahead in program order helps to bring

the data they access into on-chip caches. When a task is aborted, the data it fetched

is usually useful for other tasks that commit. Hence, from the point of view of the

memory controller, requests served for aborted tasks are rarely wasted work.

We corroborate this observation with simulation, where we see no significant

performance advantage by prioritizing requests at the memory controller. Therefore

we conclude that memory system prioritization would yield negligible benefits.

15
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Chapter 2

Speculation-Aware Multithreading

2.1 Motivation

This section explores the interplay between multithreaded cores and speculative tasks,

by analyzing the behavior of a few representative applications as the number of threads

per core increases. This analysis identifies the consequences of speculation-oblivious

multithreading, and motivates the need for a speculation-aware multithreading policy.

For these experiments, we use an architecture that performs well on both ordered

and unordered speculative workloads. This architecture is based on Swarm [33,34],

a recent proposal for ordered parallelism that uses large hardware task queues to

speculate far ahead of the earliest active task. Although Swarm was primarily focused

on ordered speculative workloads, our baseline extends it to more effectively support

unordered speculative workloads. This is accomplished by adopting the conflict

resolution policy proposed by Wait-N-GoTM [30], which, upon a conflict, adaptively

decides whether to forward speculative data or to stall the requester, and orders

tasks lazily. This policy reduces aborts under contention, especially for unordered

benchmarks. Chapter 3 describes this baseline architecture in detail, but in-depth

knowledge is not required to understand the following analysis.

The baseline uses 2-wide issue, in-order cores similar to those of Cavium Thun-

derX [24]. Cores use SMT: at each cycle, the core can issue up to two micro-ops from

one or two threads. When multiple threads have issuable micro-ops, a speculation-

oblivious round-robin policy selects among them.
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Micro-ops issued Unused issue slots (reason)
Committed Aborted Conflict Queue Not ready No task

Constant Multithreading hurts Multithreading helps
1 .0 --- --..-......--....-......----..--...------- - - - -

--- -- - - ----- ---W 0.4 8 - --

1 23 45 6 7 8 1 234 5 6 7 8 1 23 4 56 7 8
Threads per core Threads per core Threads per core

vacation des astar
Figure 2-1: Execution time and cycle breakdown of three representative apps running
on 64-core systems with 1 to 8 threads per core (lower is better).

Fig. 2-1 shows how the number of threads per core affects performance on a 64-core

system (Chapter 4 details our methodology). Each 8-bar group reports results for

a single application, using from 1 to 8 threads per core. We consider an unordered

application, vacation, and two ordered applications, des and astar. The height of

each bar is execution time relative to that of single-threaded cores (lower bars are

better). Moreover, each bar shows the breakdown of how cores spend cycles:

" Cycles where micro-ops are issued by tasks that:

- perform useful work that will be committed, or

- are performing work that will later be aborted.

" Cycles where no micro-op is issued, because:

- data or structural dependences among a thread's instructions result in all micro-ops

being not ready,

- an inter-task data-dependence conflict has stalled a thread's task,

- a thread is stalled because a speculation resource is full, such as the task or

commit queue, or

- a thread has no instructions because it has no task to run.

Among these categories, multithreading is aimed at reducing not ready in order

to increase the number of cycles where micro-ops are issued. This is beneficial

when the effect is an increased rate of committed micro-ops. However, we will show

multithreading can also have the undesirable consequence of increasing cycles spent in

aborted, conflict, and queue.

Multithreading can be highly beneficial: vacation in Fig. 2-1 shows that multi-
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threading can dramatically increase performance. vacation has plentiful parallelism,

but accesses main memory frequently. As a result, its time is spent either issuing

instructions from tasks that later commit, or waiting (not ready) on data dependences

caused by long-latency loads. With a single thread per core, the latter stalls waste

76% of issue slots. These stalls greatly decrease with multithreading. They are still

significant with four threads per core, but become negligible at eight threads per core.

With eight threads per core, vacation is 4.1x faster than on a single thread.

This result shows that multithreading can improve performance on speculative

programs: these programs often have much more parallelism than the system has cores,

and multithreading is a cheap way to put that parallelism to good use. Supporting

eight threads increases core area by about 30% [18], but quadruples performance in

vacation. Although more threads yield diminishing returns, we find that the most

resource-efficient configuration is often highly threaded.

However, speculation introduces two deleterious pathologies that can limit the

benefits of multithreading:

Pathology 1: Increased aborts: des in Fig. 2-1 shows that multithreading can

increase wasted work to the point of hurting performance. Like vacation, des with

a single thread per core loses many issue slots to dependences among instructions.

Unlike vacation, des has limited parallelism: with a single thread per core, 7% of

issue slots are wasted on tasks that are later aborted. Aborts grow with the number

of threads per core: with eight threads per core, 40% of issue slots are lost to aborted

work. As a result, multithreading hurts performance beyond four threads per core.

It is well known that, when speculative applications have limited parallelism,

increasing concurrency adds aborts and may hurt performance. However, prior work

has shown this effect when increasing the number of cores [84], not the number of

threads per core. This implies two critical differences. First, with multithreading,

wasted work hurts performance much more quickly than when increasing the number

of cores, because tasks that will abort take execution resources away from tasks that

will commit, slowing them down. Second, with multithreading, there is a simple way

to affect how instructions from different tasks share core resources: the issue policy. A

speculation-aware issue policy can prioritize instructions from likely-to-commit tasks,

improving their performance.
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Pathology 2: Inefficient use of speculation resources: astar in Fig. 2-1 shows

that multithreading can degrade performance by overloading speculation resources.

Like the two previous applications, single-threaded astar loses over half of issue slots

to instruction dependences, which multithreading could address. However, astar is an

ordered application that stresses our baseline's commit queues. Commit queues hold

the speculative state of tasks that finish execution but cannot yet commit, so that the

core can run another task. When these commit queues fill up, however, cores cannot

run more tasks, and stall. Fig. 2-1 shows that these queue stalls increase with the

number of threads per core, and make multithreading degrade performance beyond

three threads.

In general, adding threads increases pressure on speculation resources due to

two compounding effects. First, more tasks are active, demanding more speculation

resources. Second, multithreading increases the latency of individual tasks, so tasks

hold speculative resources for longer. This is not limited to commit queues, e.g.,

BlueGene/Q runs out of transaction IDs more frequently with multiple threads per

core [81].

In summary, wasted work and inefficient use of speculation resources have a

substantial impact on the performance of multithreading. These observations lead

to speculation-aware multithreading (SAM). SAM prioritizes the execution of tasks

with a higher conflict resolution priority. SAM reduces wasted work because it focuses

execution resources on tasks that are more likely to commit. And SAM also reduces

the time speculation resources are held, because tasks with a higher conflict resolution

priority commit earlier. Though simple, SAM is highly effective at addressing these

pathologies.

2.2 Speculation-Aware Multithreading

The speculation-aware multithreading (SAM) policy prioritizes each thread according

to the conflict resolution priority of the speculative task that the thread is currently

running.

We describe SAM's mechanisms for a generic conflict resolution policy (we discuss

our baseline's policy in Chapter 3). A conflict resolution policy establishes an implicit

20
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or explicit priority order among speculative tasks, and resolves conflicts among tasks

following this priority. For example, under most policies, lower-priority tasks cannot

abort higher-priority tasks.

There is a wide variety of conflict resolution policies [10, 30,46,67], both in terms

of the information used to prioritize tasks (age, work done so far, etc.) and the

corrective actions taken upon a conflict (stalling or aborting a task, or forwarding

data). In general, two characteristics are relevant for SAM. First, a task's conflict

resolution priority can change while the task runs (e.g., upon a conflict with another

task). Therefore, SAM interfaces with the conflict resolution policy to receive these

frequent priority updates and immediately adjust thread priorities. Second, two tasks

may have the same priority (e.g., if they are unordered and have not encountered any

conflicts). Therefore, SAM breaks ties among same-priority threads using a secondary

policy, such as round-robin or ICount.

We describe SAM's implementation for in-order and out-of-order cores, and present

experiments that show that (i) the key reason SAM works well is because it devotes

resources to tasks that are more likely to commit, and (ii) SAM works better the more

aggressively it can prioritize a single thread.

2.2.1 SAM on in-order cores

Fig. 2-2 shows the in-order core we use and the changes needed to support SAM. Our

implementation performs issue-stage prioritization. Each cycle, the issue stage selects

among ready micro-ops from all threads. Priorities are absolute: ready micro-ops

from a higher-priority thread are always selected over those of lower-priority threads.

Ready micro-ops from same-priority threads share slots using a round-robin policy.

Fetch Decode ser
queues' ie

Conflict resolution SAM issue priorities
priority updates (higher is better)
(from task unit) E[ EE 2 -

Figure 2-2: In-order core with SAM modifications.
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This prioritized issue scheme is simple and available in commercial systems [11,23].

The key problem that SAM addresses is how to set thread priorities to maximize the

benefits of multithreaded cores on speculative systems.

SAM vs other policies: Fig. 2-3 compares the performance of different multithread-

ing policies on a system with 64 in-order cores and 1, 2, 4, or 8 threads per core.

Each bar's height denotes normalized execution time over the single-threaded core,

averaged across all 16 applications in our suite (lower is better). Each bar also shows

the breakdown of issue slots, following the same nomenclature as Sec. 2.1.

Micro-ops issued Unused issue slots (reason)
Committed Aborted Conflict Queue Not ready No task

1 .8 ---- --------------- ---------------------- -------------

E 0.6 .. ...... .......-. ---- ------ .----- ----.
0. --- - ---- ---- ----

0.0
1 2 4 8 2 4 8 2 4 8 2 4 8

RR SAM FP SO

Figure 2-3: Performance and execution time breakdown of different issue policies
across all applications, on a system with 64 in-order cores and 1/2/4/8 threads per
core (lower is better).

Fig. 2-3 shows that SAM significantly outperforms the baseline round-robin policy

(RR). 1 SAM reduces aborts, queue stalls, and conflicts. As we will see in Chapter 5,

these benefits are consistent across all applications.

Two effects could explain SAM's improvement over RR. First, SAM prioritizes

tasks that are more likely to commit. Second, SAM, and in fact any prioritization

policy, introduces unfairness: most resources are devoted to the highest-priority task,

reducing the overlap among tasks in the same core.

Distinguishing these two effects is important: any priority scheme causes unfairness,

so simpler policies could perform as well as SAM. To this end, Fig. 2-3 also includes

two simple prioritization policies: fixed-priority (FP), where each thread in the core

'We have evaluated speculation-oblivious policies beyond RR, like ICount, but they make nearly

no difference on an in-order core, as we will see next.

22



uses a fixed priority that is preserved across tasks; and start-order (SO), which gives

higher priority to older tasks.

FP performs worst, showing that prioritizing differently than the conflict resolution

priority is a poor strategy: FP often gives resources to tasks that are likely to abort,

wasting much more work than any other policy. At 8 threads per core, FP is 29%

slower than RR. SO is typically better than RR but worse than SAM, outperforming RR

by just 2% on average. SO performs better than FP because start order is often similar

to conflict resolution order. These experiments show that prioritizing likely-to-commit

work is the dominant effect.

In summary, simpler order policies perform worse than directly enforcing conflict

resolution priorities. One may wonder whether a more sophisticated policy would

perform better, e.g., using prediction to better estimate how likely a task is to commit.

However, if such a predictor exists, we argue that it should be used to alter the conflict

resolution priority directly.

Fairness and forward progress: Finally, note that, while priorities may cause long-

term unfairness and even prevent forward progress in non-speculative systems [13], SAM

does not suffer from these problems because conflict resolution policies always guarantee

that every task can eventually become the system's highest-priority task [5, 10, 46].

2.2.2 SAM on out-of-order cores

SAM is unfair by design-it prioritizes one or a few threads, rather than sharing

resources equitably among threads. On in-order cores, thread priorities have little

effect on pipeline efficiency. But priorities can affect the throughput of out-of-order

(OoO) SMT cores, for two reasons:

* Increased stalls: Threads in an OoO core share limited issue buffer and reorder

buffer (ROB) entries, as well as physical (renamed) registers. These resources are

acquired by micro-ops before they are ready to issue. Therefore, prioritizing one

thread may clog these resources with dependent micro-ops that will take a long

time to become ready, causing stalls. Prior OoO SMT issue policies like ICount [77]

address this issue by prioritizing threads that use these resources better. This is

not a problem on in-order cores because prioritization is only done among ready

micro-ops.
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9 Increased wrong-path execution: OoO cores can execute micro-ops far past a mis-

predicted branch. These wrong-path micro-ops waste execution resources. In SMT

cores, if resources are shared fairly among threads, wrong-path execution becomes

less frequent, because each thread has fewer micro-ops in flight (and thus does not

execute as far past unresolved branches). But this reduction does not materialize

if we prioritize a particular thread rather than sharing resources fairly. This is not

a problem on in-order cores because a non-issuable branch prevents subsequent

instructions from being issued (e.g., our in-order core resolves branches at issue, so it

avoids wrong-path issues, though it does perform wrong-path fetches and decodes).

Despite these handicaps, we find that prioritizing instructions from likely-to-commit

tasks is the first-order constraint for OoO cores. Therefore, our SAM implementation

performs aggressive prioritization.

Basic SAM policy: Fig. 2-4 shows our OoO core SAM implementation. Each cycle,

if there are free issue buffer, ROB, and renamed register entries, the issue stage injects

up to two decoded micro-ops into the unified issue buffer. SAM performs prioritization

at this point, always selecting micro-ops from higher-priority threads. SAM breaks ties

among same-priority threads using ICount (i.e., it selects micro-ops from the thread

with the fewest micro-ops in flight). This way, SAM retains ICount's pipeline efficiency

when tasks are undifferentiated.

LIJ Issue Physica I .. " Reorder

SMT Buffer Reg File o Buffer
Fetch Decode [T MTJ

queues

Conflict resolution Conflict res. priorities In-flight uops (for ICount)
priority updates -[] m
(from task unit)

SAM priorities

Figure 2-4: Out-of-order core with SAM modifications.

Unfairness is good: As shown in Fig. 2-4, in our specific design, all backend

structures (issue buffer, ROB, physical registers, and load-store queues) are dynamically

shared among threads rather than statically partitioned. The reason is that shared

structures let SAM prioritize threads more aggressively.

24



Fig. 2-5 shows why this is a good idea by comparing the performance of statically-

partitioned and dynamically-shared ROBs under ICount and SAM. We simulate 2-wide

issue cores with 36 issue buffer and 72 ROB entries (see Chapter 4 for details). Each

bar shows the normalized execution time over the single-threaded core, averaged across

all benchmarks.

Micro-ops issued Unused issue slots (reason)
Committed Aborted Wron ath Conflict Queue Not ready No task

- 1.0 ----------------------- ..- ..---------- - --- --------- ------
E E

- 0 .8 ----- -. .....--. ... ..-- -- --- -.--..- -

0 .6 ---- - -. . ..--- - - - -
0. ---- ---------
0.
(D 0 .2 -------- - -- - --- -- - --- - -

W 0.0
1 248 248 248 248 248

IC SAM IC SAM Adaptive
Statically Partitioned Dynamically Shared

Figure 2-5: Performance of ICount, basic SAM, and adaptive SAM with statically-
partitioned vs dynamically-shared ROBs.

Fig. 2-5 shows that, with more threads, ICount suffers from more aborts and

queue and conflict stalls. These hurt performance with more threads, despite ICount's

increased pipeline utilization (fewer cycles lost to wrong-path or not-ready micro-ops).

Partitioned and shared ROBs show the same trend.

SAM ameliorates these pathologies, but the type of ROB impacts its effectiveness.

With partitioned ROBs, as threads grow SAM still suffers from increased aborts and

queue/conflict stalls, although at a lower rate than ICount. This happens because

the highest-priority thread fills its ROB partition and lets micro-ops from other, more

speculative threads be issued.

With a shared ROB, however, SAM can fill the issue buffer with micro-ops from a

single thread. As a result, SAM keeps cycles lost to aborts and queue/conflict stalls

nearly flat. This comes at the price of higher wrong-path micro-ops and not-ready

stalls. But these inefficiencies are secondary, and SAM is thus most effective when it

can prioritize most aggressively.

Finally, note that SAM's desire for prioritization makes our core deviate from

typical designs, which seek some amount of fairness among threads. For example,

dynamically shared ROBs are relatively rare (e.g., the EV8 used a shared ROB [20],
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but modern Intel cores use partitioned ROBs). And our results contradict prior work

by Raasch and Reinhardt [59], who find that partitioned vs shared ROBs make little

difference, because they implicitly focused on fair policies.

Adaptive SAM policy: The above results show that, on average, it is better to

prioritize aggressively. However, applications with rare aborts and little contention

can still benefit from ICount's higher pipeline efficiency. To this end, we implement

a simple policy that combines the benefits of SAM and ICount. This policy keeps

running counts of cycles lost to task-level speculation (aborted + conflict + queue) and

pipeline inefficiencies. (not ready - wrong path). If cycles lost to task-level speculation

dominate, the core uses SAM; if cycles lost to pipeline inefficiencies dominate, the core

uses ICount. Fig. 2-5 shows that this adaptive policy slightly improves on the basic

SAM policy at 2 and 4 threads.

26



Chapter 3

Baseline Speculative Architecture

We implement the SAM policy on a baseline speculative architecture that performs well

on both ordered and unordered programs. This lets us evaluate our techniques with a

broader range of speculative programs than if we used a TLS or HTM baseline. To

support ordered and unordered programs, this architecture is based on Swarm [33,34].

To reduce aborts under contention and make the system more efficient on unordered

benchmarks, we adopt the conflict resolution techniques from Wait-N-GoTM [30].

Although we evaluate SAM within this baseline, SAM solves a general problem and

should benefit any other HTM and TLS schemes that use multithreaded cores.

Sec. 3.1 and Sec. 3.2 present Swarm's main features (see prior work [33,34] for de-

tails). Sec. 3.3 describes the Swarm + Wait-N-GoTM conflict resolution policy. Sec. 3.4

extends Swarm's conflict detection mechanisms to cheaply support multithreaded

cores, in a way similar to BulkSMT [57].

3.1 Swarm Execution Model

Swarm programs consist of timestamped tasks. Each task may access arbitrary data,

and can create child tasks with any timestamp greater than or equal to its own. Swarm

guarantees that tasks appear to run in timestamp order. If multiple tasks have equal

timestamp, Swarm chooses an order among them.

Swarm exposes its execution model through a simple API. Listing 3.1 illustrates

this API by showing the Swarm implementation of des, a discrete event simulator for
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digital circuits adapted from Galois [28, 55].
void desTask(Timestamp ts, GateInput* input) {

Gate* g = input->gate(;
bool toggledOutput = g.simulateToggle(input);
if (toggledOutput)

// Toggle all inputs connected to this gate
for (GateInput* i : g->connectedInputso)
swarm::enqueue(desTask, ts+delay(g,i), i);

}

void main() {
[...] // Set up gates and initial values
// Enqueue events for input waveforms
for (GateInput* i : externalInputs)

swarm::enqueue(inputWaveformTask, @, i);
swarm::runo; // Start simulation

}

Listing 3.1: Swarm implementation of discrete event simulation for digital circuits.

Each task runs a function that takes a timestamp and an arbitrary number of

additional arguments. Listing 3.1 defines one task function, desTask, which simulates a

signal toggling at a gate input. Tasks can create child tasks by calling swarm: : enqueue

with the appropriate task function, timestamp, and arguments. In our example, if an

input toggle causes the gate output to toggle, desTask enqueues child tasks for all the

gates connected to this output. Finally, a program invokes Swarm by enqueuing some

initial tasks with swarm: : enqueue and calling swarm: :run, which returns control

when all tasks finish. For example, Listing 3.1 enqueues a task for each input waveform,

then starts the simulation.

Swarm's execution model supports both TLS-style ordered speculation by choosing

timestamps that reflect the serial order as in prior work [63], and TM-style unordered

speculation by using an equal timestamp for all tasks. Moreover, Swarm's execution

model generalizes TLS by decoupling task creation and execution orders: whereas

in prior TLS schemes a task could only spawn speculative tasks that are immediate

successors [25,26,63,71,73], a Swarm task can create child tasks with any timestamp

equal or higher than its own. This allows programs to convey new work to hardware

as soon as it is discovered instead of in the order it needs to run, exposing a large

amount of parallelism for ordered irregular applications [33].

3.2 Swarm Microarchitecture

Swarm uncovers parallelism by executing tasks speculatively and out of order. To

uncover enough parallelism, Swarm can speculate thousands of tasks ahead of the
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earliest active (unfinished) task. Swarm introduces modest changes to a tiled, cache-

coherent multicore, shown in Fig. 3-1. Each tile has a group of multithreaded cores,

each with its own private Li cache. All cores in a tile share an L2 cache, and each tile

has a slice of a fully-shared L3 cache. Every tile is augmented with a task unit that

queues, dispatches, and commits tasks.

16-tile, 64-core CMP Tile Organization
"Me 10 ~

Router L3 Slice

0 L2
_ 

L ~i E~L LJ/Ij1.~~ LII D ILI/D j
00

A MN Core Corei L! ! ICore

Task Unit
Mem /10

Figure 3-1: Swarm CMP and tile configuration.

Swarm hardware efficiently supports fine-grain tasks and a large speculation window

through four main mechanisms: low-overhead hardware task management, large

task queues, scalable data-dependence speculation mechanisms, and high-throughput

ordered commits.

Hardware task management: Each tile's task unit queues runnable tasks and

maintains the speculative state of finished tasks that cannot yet commit. Swarm

executes every task speculatively, except the earliest active task. To uncover enough

parallelism, task units can dispatch any available task to cores, no matter how distant

in timestamp order. A task can run even if its parent is still speculative.

Each task is represented by a task descriptor that contains its function pointer,

timestamp, and arguments. Threads dequeue tasks for execution in timestamp order

from the local task unit. Successful dequeues initiate speculative execution at the

task's function pointer and make the task's timestamp and arguments available in

registers. A thread may stall if there is no task to dequeue. Tasks create child tasks

and enqueue them to a tile.

Large task queues: The task unit has two main structures: (i) a task queue that

holds task descriptors for every task in the tile, and (ii) a commit queue that holds

the speculative state of tasks that have finished execution but cannot yet commit.
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Together, these queues implement a task-level reorder buffer.

Task and commit queues support tens of speculative tasks per core (e.g., 128 task

queue entries and 32 commit queue entries per core) to implement a large window of

speculation (e.g., 8192 tasks in the 64-core CMP in Fig. 3-1). Nevertheless, because

programs can enqueue tasks with arbitrary timestamps, task and commit queues can

fill up. This requires some simple actions to ensure correct behavior. Tasks that have

not been dequeued and whose parent has committed are spilled to memory to free

task queue entries. For all other tasks, queue resource exhaustion is handled by either

stalling the enqueuer or aborting higher-timestamp tasks to free space [33].

Scalable data-dependence speculation: Swarm uses eager (undo-log-based) ver-

sioning and eager conflict detection using Bloom filters, similar to LogTM-SE [83].

Swarm always forwards still-speculative data read by a later task; on an abort, Swarm

aborts only descendants and data-dependent tasks.

High-throughput ordered commits: Finally, Swarm adapts the virtual time

algorithm [31] to achieve high-throughput ordered commits. Tiles periodically commu-

nicate with an arbiter (e.g., every 200 cycles) to discover the earliest unfinished task

in the system. All tasks that precede this earliest unfinished task can safely commit.

This scheme achieves high commit rates, up to multiple tasks per cycle on average,

which allows fine-grain ordered tasks, as short as a few tens of cycles.

3.3 Conflict Resolution Policy

Our key hypothesis is that thread issue priority and conflict resolution ordering should

be coordinated. Therefore, it is important that we use a conflict resolution policy

that does not overly restrict task ordering. Unfortunately, Swarm as proposed in prior

work overly restricts conflict resolution order among unordered tasks. Furthermore,

since multithreading often increases wasted work (Sec. 2.1), we should use a policy

that minimizes aborts. Swarm also violates this principle and causes more aborts

than needed by always forwarding speculative data. We solve both these problems by

adapting the key techniques from Wait-n-GoTM [30].

Lazy virtual time tiebreakers: Swarm's conflict resolution policy encodes task

order using virtual time: the concatenation of a task's programmer-assigned time-
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Figure 3-2: Eager virtual time tiebreakers (used in original Swarm) vs lazy tiebreakers

(used here).

stamp and a tiebreaker. Tiebreakers are unique and monotonically increasing, which

guarantees forward progress and preserves parent-before-child order. A task's virtual

time determines both its commit order and its conflict resolution order: on an access,

the task aborts all conflicting higher-virtual time tasks; conversely, the task can be

aborted by any lower-virtual time tasks.

The original Swarm protocol greedily assigns each task a unique tiebreaker when

the task begins execution. When tasks have equal programmer-assigned timestamp,

greedy tiebreaking restricts order and causes needless aborts. Fig. 3-2(a) shows such a

needless abort: tasks A and B both have timestamp 0, and are assigned tiebreakers 10

and 20 when they start execution. Task B writes to address X first, then task A issues

a read request. Because B is ordered after A, B must abort.

Drawing from Wait-n-GoTM [30], we instead assign tiebreakers lazily. Tasks start

running without a tiebreaker, and are assigned one when they acquire a dependence

with an equal-timestamp task. Fig. 3-2(b) shows how this works in our example: tasks

A and B have no tiebreaker until task A requests X. At that point, task B, which

already wrote X, acquires a tiebreaker and forwards X's data to A. Tasks without a

tiebreaker always compare higher than equal-timestamp tasks with a tiebreaker. To

preserve parent-before-child order, a parent acquires a tiebreaker when it creates its

first equal-timestamp child. To preserve commit order, if a task finishes execution

without a tiebreaker, it is assigned one. To guarantee forward progress, a task retains

its tiebreaker until it commits.

Wait-n-GoTM employs a more sophisticated scheme, TimeTraveler [79], which
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uses lower and upper bounds that are progressively restricted upon conflicts. One can

construct situations where TimeTraveler would avoid aborts that a single tiebreaker

cannot. However, these situations are rare (e.g., they involve three or more tasks

conflicting on different addresses), and we observe the benefit would be marginal:

across all applications, 81% of accesses come from tasks without tiebreakers. Therefore,

we opt for this simpler scheme.

Adaptively stalling vs forwarding: Suppose an access from task A conflicts with

task B (e.g., A issues a read to a line that B previously wrote). If B has higher virtual

time than A, B must be aborted. However, if B has a lower virtual time than A,

there are two options: the system could forward B's speculatively-written data to A,

or it could stall A until B finishes executing or commits. Forwarding can improve

performance, but makes A dependent on B, causing it to abort on a cyclic dependence,

i.e., if B writes the line again.

Most systems adopt a fixed policy: LogTM [46,83] and most early HTMs [17,26,61]

always stall, while Swarm, DATM [62], and most other conflict-serializable HTMs [5,

57,58] always forward. Wait-n-GoTM improves on these designs by detecting what

conflicts are likely to cause cyclic dependences and stalling only on those. We adopt

Wait-n-GoTM's line-based predictor and training scheme, including one predictor per

tile. This predictor is checked before the tile responds to a conflicting request. If the

line is predicted to cause a cyclic dependence, the tile NACKs the request, stalling

requester task A, and records the dependence in staller task B's log. When B finishes,

the tile ACKs task A, which resumes execution when all stalls have been cleared

(multiple tasks may stall a given request). This implements the Wait-N-GoTM-wait

variant [30].

SAM prioritization: In this system, the task's virtual time is its conflict resolution

priority. Therefore, SAM prioritizes each thread using its task's virtual time. Tasks

with a lower virtual time are given higher priority, and tasks with equal virtual time

are given equal priority. The core recomputes thread priorities when a thread dequeues

a new task and when a task's virtual time is assigned a tiebreaker.
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3.4 Multithreaded Cores

Finally, we modify the Swarm Li caches to support multiple threads. We strive for

simplicity, since Li accesses must be fast. Each line has a single safe bit per thread

context. Safe bits let multiple threads share the Li without violating conflict check

rules. An Li hit can only be served from the Li if the thread's safe bit is set. If

unset, the core issues an L2 access, which causes a conflict check. When the request

finishes, the safe bit is set. If the request is a write, the line's safe bits of all other

threads are cleared. When a thread dequeues a new task, if its virtual time precedes

the previous task's, the thread's safe bits for all Li lines are flash-cleared (safe bits

are kept otherwise, because conflict checks performed for a given virtual time are also

valid for higher ones [33]).

Safe bits are similar to the access bits in BulkSMT-ORDER [57]. Unlike BulkSMT,

which can detect conflicts and order tasks within the core, we defer all conflict detection

to the tile for simplicity. Because tiles are small, tile-level checks are fast.
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Chapter 4

Experimental Methodology

Modeled system: We use a cycle-accurate, event-driven simulator based on Pin [44,

53]. We use detailed core, cache, network, and main memory models, and simulate all

speculative execution overheads (e.g., running mispeculating tasks until they abort,

simulating conflict check and rollback delays and traffic, etc.). We model systems of

up to 64 cores (Fig. 3-1) and 8 threads per core, with parameters given in Table 4.1.

We use 2-wide issue in-order and out-of-order cores, shown in Figs. 2-2 and 2-4.

Cores run the x86-64 ISA. We use the instruction decoder and functional-unit latencies

of zsim's core model, which have been validated against Nehalem [66]. Our in-order

core is similar to Cavium ThunderX [24], while out-of-order cores are similar to Knights

Landing [70]. Cores use SMT with up to 8 threads. Threads share the front-end

and execution units, but have separate micro-op queues before the issue stage. The

backend has two restricted execution ports: both ports can execute integer micro-ops,

but floating-point micro-ops can run in port 0 only, and memory-access micro-ops

can run in port 1 only. In-order cores are scoreboarded and stall-on-use, so even a

single thread can have multiple memory requests in flight. Out-of-order cores feature

a 36-entry issue buffer and a 72-entry ROB, both dynamically shared.

Benchmarks: We use a diverse set of ordered and unordered benchmarks. Table 4.2

details their provenance, input sets, and 1-core run-times on an in-order core. Most

benchmarks have 1-core run-times of over one billion cycles.

We use eight ordered benchmarks. Six are the graph analytics (bfs, sssp, astar,

msf), simulation (des), and database (silo) applications from the original Swarm
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Cores 64 cores, 16 tiles, 2 GHz, x86-64 ISA, SMT with 1-8
threads

Frontend 8B-wide ifetch; 2-level bpred with 512x 10-bit BHSRs +
1024x2-bit PHT; 16-entry per-thread micro-op queues

In-order 2-way issue, scoreboarded, stall-on-use, functional units as
backend in Fig. 2-2, 16-entry load/store buffers

OoO 2-way issue/rename/dispatch/commit, 36-entry issue
backend buffer, 72-entry ROB, 16-entry load/store buffers

Li caches 16 KB, per-core, split D/I, 8-way, 2-cycle latency
256 KB, per-tile, 4 banks (64 KB/bank), 8-way, hashed,

L2 caches inclusive, 7-cycle latency

16 MB, shared, static NUCA [371 (1 MB slice/tile), 4
L3 cache banks/tile, 16-way, hashed, inclusive, 9-cycle bank latency

Coherence MESI, 64 B lines, in-cache directories

4 4x4 meshes; 192-bit links, X-Y routing, 1-cycle routers,
NoC 1-cycle links

Main 8 controllers at chip edges, 120-cycle latency, 25.6 GB/s per
mem controller

128 task queue entries/core (8192 total),
Queues 32 commit queue entries/core (2048 total)

Instructions 5 cycles per enqueue/dequeue/fini sh-task instruction
2 Kbit 8-way Bloom filters, H3 hash functions [15]

Conflicts Tile checks take 5 cycles (Bloom filters) + 1 cycle per
timestamp compared in the commit queue

Commits Tiles send updates to GVT arbiter every 200 cycles

Spills Coalescers fire when a task queue is 87% full
Coalescers spill up to 15 tasks each

Table 4.1: Configuration of the 64-core CMP.

Source Input 1-core cycles

bfs PBFS [41] hugetric-00020 [6,19] 3.39 Bcycles
sssp Galois [55] East USA roads [1] 2.18 Bcycles

astar [33] Germany roads [51] 1.40 Bcycles
color [27] com-youtube [42] 1.08 Bcycles

msf PBBS [9] kron-g500-logn16 [6,19] 0.74 Bcycles
des Galois [55] csaArray32 1.37 Bcycles

nocsim GARNET [2] 16x16 mesh, tornado traffic 19.65 Bcycles
silo [76] TPC-C, 4whs, 32Ktxns 2.22 Bcycles

ssca2 -s15 -il.0 -ul.0 -16 -p6  11.13 Bcycles
vacation-I -n2 -q90 -u98 -r1048576 -t262144 2.85 Bcycles

vacation-h -n4 -q60 -u90 -r1048576 -t262144 3.86 Bcycles
kmeans-1 STAMP [45] -m40 -n40 -i rand-n16384-d24-c16 7.81 Bcycles

kmeans-h -m15 -n15 -i rand-n16384-d24-c16 3.10 Bcycles
genome -g4096 -s48 -n1048576 2.06 Bcycles

intruder -a10 -164 -s32768 2.02 Bcycles
yada -a15 -i ttimeulOO000.2 2.79 Bcycles

Table 4.2: Benchmark information: source implementations, inputs, and execution
time on a single in-order core, single-thread baseline system.

paper [33], and use the same inputs. The other two, color and nocsim, are from [32]

and use the same inputs. color performs graph coloring using the largest-degree-first

heuristic [82]. nocsim is a detailed NoC simulator derived from GARNET [2].
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We use eight unordered, transactional memory benchmarks from STAMP [45]. We

implement transactions with tasks of equal timestamp, so that they can commit in

any order. As in prior work in transaction scheduling [4,84], we break the original

threaded code into tasks that can be scheduled asynchronously and generate children

tasks as they find more work to do. The default "+" and "++" configurations are

either too short in our largest system (512 threads), or too long to be simulated in

reasonable time, respectively, so we use custom configurations that interpolate between

the default ones.

We use all STAMP applications except bayes and labyrinth. Like Blake et

al. [8], we observe that bayes has non-deterministic behavior that makes its runtime

vary wildly, making comparisons across runs difficult. labyrinth consists of few very

long transactions that conflict frequently and all but serialize execution. Hence, it

does not make sense to run it on a 512-thread system (the whole program runs fewer

transactions than the system has threads). We also observe that intruder and yada

use software task scheduling data structures that limit their scalability. We refactor

both applications to use Swarm's hardware task scheduling instead, which improves

their scalability.

Metrics: We report average performance changes using harmonic-mean speedups.

On issue slot breakdowns (e.g., Figs. 2-1 and 2-3), we account for each stall reason

in proportion to the number of threads it prevents from issuing. For example, if an

issue slot cannot be used because 3 threads have no ready micro-ops and the remaining

5 have no task, not ready is charged for 3/8 of the slot, and no task for 5/8. If a

thread uses the slot, stalled threads are not charged.

For each benchmark, we fast-forward to the start of the parallel region (skipping

initialization), and report results for the full parallel region. We perform enough runs

to achieve 95% confidence intervals < 1%.
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Chapter 5

SAM Evaluation

5.1 Multithreaded Scalability

Fig. 5-1 compares the performance and scalability of systems with 1 to 64 in-order

cores, using three configurations: single-threaded cores, and 8-threaded SMT cores

with the Round-Robin (RR) and SAM policies. As we scale the number of cores, we

keep per-core L2/L3 sizes and queue capacities constant. This captures performance

per unit area. Note that this causes some super-linear speedups because the larger

shared L3 and hardware queues reduce memory pressure and task spills, respectively.

Each line shows the speedup of a single configuration over the 1-core single-threaded

system.

Overall, multithreading improves performance over the single-threaded configura-

tion, by 2.41x with SAM and by 1.91x with RR on average. Over all benchmarks,

SAM outperforms RR by 20% in harmonic speedup.

Four applications (ssca2, vacation-1, vacation-h, and kmeans-1) do not suffer

from any multithreading pathology: they have negligible aborts and conflicts, and do

not overload commit queues. Thus, they are insensitive to the issue policy-RR and

SAM perform identically.

For all other applications, SAM consistently outperforms RR. SAM's benefits usually

increase with the number of cores, as application parallelism becomes more scarce, and

pathologies more frequent. SAM eliminates or ameliorates these pathologies. On these

applications, SAM outperforms RR by 29% on average, and by up to 88% (yada).
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Figure 5-1: Performance of single-threaded cores and 8-threaded SMT cores with
Round-Robin and SAM on (a) ordered and (b) STAMP benchmarks, as the system
scales from 1 to 64 cores. Speedups are relative to the 1-core single-thread system.

5.2 Analysis of SAM for In-Order Cores

To gain more insights into the differences between SAM and RR, Fig. 5-2 reports the

execution time and issue slot breakdown at 64 cores. Similar to Fig. 2-1, it shows

how increasing the number of threads per core affects execution time. Each seven-bar

group reports results for one application, using single-threaded cores as well as 2-,

4-, and 8-threaded cores with both RR and SAM. Results are normalized to those of

single-threaded cores (lower bars are better).

Overall, increasing the number of threads per core has three dominant effects:
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Figure 5-2: Execution times and breakdown of issue slots at 64 cores (in-order) for (a)

ordered and (b) STAMP benchmarks, under a single-threaded configuration, and 2-,
4-, and 8-threaded configurations with Round-Robin and SAM (lower is better).

(i) not-ready stalls decrease, (ii) conflict stalls and issue slots lost to aborted tasks

increase, and (iii) queue stalls increase. By prioritizing the execution of tasks that are

more likely to commit, SAM mitigates the latter two factors and improves on RR. We

analyze how these factors affect applications with different contention characteristics

and speculation requirements.

R R and SA M perform equally well on applications without pathologies:

Ordered bfs and unordered ssca2, vacation-i, vacation-h, and kmeans-l have

plentiful parallelism but are memory-bound. With little contention, most time is spent

issuing instructions from tasks that commit, or stalled on long-latency loads. RR and

SAM perform equally well by reducing not-ready stalls. However, even eight threads

per core cannot hide all memory latency in bfs and ssca2, and some stalls remain.

At eight threads per core, these applications complete 2.9x (knieans-l) to 5.6x (bfs)

faster than with single-threaded cores.

SAM reduces wasted work and conflicts under contention: color has occa-

sional data dependences among tasks, so adding threads increases aborts. With R R,

aborts grow to the point of overwhelming the benefit of reduced stalls. However,

since SAM prioritizes issues from tasks that are more likely to commit, it tempers

the performance loss caused by aborted work. At eight threads per core, SAM is 55%
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faster than RR on color, and 88% faster than with single-threaded cores. msf, des,

and silo exhibit similar behavior.

The STAMP benchmarks genome, intruder, and yada also benefit from SAM.

Though these applications are unordered, transactions inherit an order from the

dynamic manifestation of dependences. Prioritization based on this order reduces

wasted work by as much as 2.1 x (yada).

On kmeans-high, conflict stalls, caused when the Wait-N-GoTM protocol detects

a likely cyclic dependence, negate the reduction in not-ready stalls. SAM reduces the

chance of such dependences by reducing the overlap of transactions.

Micro-ops issued Unused issue slots (reason)
Committed Aborted Wron path Conflict Queue Not ready No task

1.5 1.20. --- -------- ---- - -

x 0 .2 - - - - - - - - - - - - - - - -- - - --

1 248 248 248 1 248 248 248 1 248 248 248 1 248 248 248 1 248 248 248 1 248 248 248
IC SAM AD IC OAM AD IC SAM AD IC AM AD IC SArSM AD IC SAM AD

sssp a or des si intruer ya

Figure 5-3: Execution times and breakdown of issue slots with 64 out-of-order cores for
selected benchmarks, under a single-threaded configuration, and 2-, 4-, and 8-threaded
configurations with ICount, SAM, and ADaptive policies.

SAM reduces queue stalls on applications that need a large speculation

window: To find independent work, ordered applications may speculate so far ahead

that they fill their commit and task queues, causing queue stalls. Queue stalls are

significant in many ordered benchmarks and astar exemplifies this phenomenon. As

we saw in Sec. 2.1, in astar, increasing threads per core with RR causes queue stalls

to grow to the point of negating the benefits of reduced not-ready stalls. SAM reduces

queue stalls by focusing execution resources on tasks with a lower virtual time, which

must commit earlier. At eight threads per core, SAM is 25% faster than RR on astar,

and 69% faster than the single-threaded configuration. sssp and silo exhibit similar

effects; SAM improves their performance by reducing both queue stalls and aborted

issue slots. nocsim's queue stalls are significant, but do not grow beyond two threads

per core; SAM helps nocsim by reducing aborted work, not queue stalls.
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5.3 Analysis of SAM for Out-of-Order Cores

Fig. 2-5 in compares the average performance of ICount (IC) and SAM on an out-of-

order core.' Overall, out-of-order cores are able to cover more stalls, so the performance

benefits of multithreading are limited. However, a comparatively larger fraction of

issue slots are wasted to aborts, hence the need for SAM is higher. On average,

8-threaded cores improve performance over single-threaded cores by 1.53x with SAM

vs only 1.16x with ICount. Moreover, at 8 threads, SAM reduces wasted work by 81%

over IC.

To understand these differences, Fig. 5-3 reports the execution time and issue

slot breakdown for six representative applications. color, silo, intruder, and yada

show that aborts and conflict/queue stalls are the first-order concern in OoO cores.

With IC, cycles lost to these pathologies make these applications slower on 8-threaded

cores than on single-threaded cores. By contrast, SAM keeps cycles lost to aborts

and conflict/queue stalls nearly flat, outperforming IC by up to 2.9x (color). This

happens even though IC reduces not-ready stalls and wrong-path execution more than

SAM.

sssp shows how the adaptive policy can be beneficial. With 2 and 4 threads per

core, IC's better pipeline utilization makes IC outperform SAM. With SAM, a single

thread grabs most ROB entries, starving lower-priority threads. The adaptive policy

detects this situation (aborts + wrong-path i not-ready stalls) and opts for the higher

pipeline efficiency of IC. des and silo show similar behavior.

Finally, intruder shows a case where the adaptive policy is suboptimal. With

4 threads per core, SAM has more not-ready stalls than IC but it more than makes

up for it by reducing aborts. Therefore, the basic SAM policy is 36% faster than IC.

However, the adaptive SAM policy, which by design tries to equalize aborts and stalls,

attains a middle ground, where it is only 15% better than IC. Though they occur,

these anomalies are very rare, and adaptive SAM nearly always matches the best of

SAM and IC.

'We have also evaluated using RR instead of IC in OoO cores, but, like prior work, we find that
IC is consistently better.
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5.4 Case Study: Throttling

Throttling, i.e., limiting the amount of tasks executed in parallel, is a general strategy

to cope with performance degradation caused when hardware parallelism exceeds

application parallelism. Prior work has proposed dynamic throttling for non-speculative

parallel programs [56,72], as well as transactional schedulers that limit the number of

concurrent transactions [4, 7,8,84], reacting to contention to reduce aborts. We show

that adaptively limiting the number of active threads provides no benefit over SAM,

and while throttling slightly improves RR, a large gap remains between RR and SAM.

We implement a simple throttler that builds on two insights. First, in all our

applications, we observe there is a single thread count that performs best, and there

are no other local maxima. Therefore, we use simple hill climbing to find the best

number of threads per core. Second, many applications are either stable or change

slowly over time. Therefore, we perform hill climbing as the application runs, incurring

minimal cost.

Our throttler operates by periodically exploring nearby thread counts, and settles

on the count that performs best. Since our applications are speculative, we use

committed instructions per cycle as the performance metric (i.e., we do not consider

executed instructions from tasks that later abort).

First, the throttler randomly chooses to either increase or decrease the number

of active threads on every core in the system. If performance improves at the new

thread count, the throttler continues changing the number of threads per core in the

same direction, until it either reaches the minimum/maximum number of threads

or performance degrades. If performance degrades, the throttler goes back to the

previous thread count. This way, the throttler settles on the best-performing thread

count among the explored ones. Each measurement interval is M cycles long, and the

throttler stays at the new thread count for S cycles. We tune M (50 - 500K cycles)

and S (250K-2.5M cycles) on a per-application basis to provide maximum benefit for

each application.

RR with throttling yields marginal improvements, and a large gap with

SAM remains: As shown in Fig. 5-4(a), throttling improves RR marginally, 8.4% on

average at 8 threads per core. However, this is not sufficient to close the gap with
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Micro-ops issued Unused issue slots (reason)
Committed Aborted Conflict Queue Not ready No task
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(a) Effect of throttling. (b) Effect of issue-width.

Figure 5-4: Average execution time and issue slot breakdown for in-order 64-core (a)

8-threaded systems with RR and SAM, with and without throttling; and (b) systems

with dual-issue (baseline) and single-issue cores.

SAM. Moreover, throttling does not improve SAM's performance. Throttling with RR

only helps reduce aborts incurred at higher thread counts. In contrast, SAM reduces

aborted instructions and queue stalls by prioritizing instructions from tasks that are

likely to commit. Further, performance with throttling is sensitive to the throttler

interval lengths-no single interval length performs best across all applications. Such

careful parameter tuning makes throttling harder to apply than SAM.

In summary, throttling is inferior to SAM, as applying it to RR fails to capture

most of SAM's improvements.

5.5 Sensitivity to Issue Width

Finally, Fig. 5-4(b) compares the behavior of a single-issue in-order core to the baseline

2-wide issue core. With one thread per core, the single-issue core performs 15% worse

than the baseline. RR's performance degrades more rapidly beyond four threads, and

8-threaded RR cores are worse than 2-threaded cores. This happens because fewer

threads are needed to avoid most stalls in the narrower pipeline. By contrast, SAM's

performance does not degrade with thread count, although its benefits with increasing

thread counts are reduced. Overall, this result shows that SAM avoids pathologies

even when execution resources are more heavily contended.
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Chapter 6

Prioritizing Main Memory

Requests

SAM has shown that prioritization at the core is very useful. But cores are not

the only shared resource: the memory system is also shared, and highly contended.

Prioritization could be helpful here.

To explore this, we focus on memory controller, which is often the most contended

resource in the memory system. Like SAM, deprioritizing requests from more specula-

tive tasks inhibits their progress and less work is wasted if they were to ultimately

abort. Unlike SAM, where each core makes a local decision on which thread to issue

from, the memory controller is a global resource and can select among all threads in

the system.

However, to our surprise, we find little benefit from prioritizing requests at the

memory controller. When a task aborts, the data it fetched into the on-chip caches is

usually reused when the task later re-executes and commits. Speculative execution

works as a very effective prefetcher, and from the point of view of the memory controller

requests served for aborted tasks are not wasted work. Therefore the benefits are

minimal and we deem that prioritization in the memory system should not yield large

benefits.

47



6.1 Prioritization at the Memory Controller

We use a conventional FR-FCFS (First Ready-First Come First Served) memory

controller as our baseline. Here, priority is given to requests that hit in the open

row-buffers of DRAM. If no request is a hit, requests are served in arrival order.

The controller maintains separate request queues for reads and writes. Since write

request are never in the critical path of any task (they can only be generated due to

LLC evictions), the controller prioritizes reads. When either the read queue becomes

empty or when the write queue hits a high threshold, the bus is switched to write

mode. Writes are serviced in a burst until the queue occupancy hits a lower threshold.

This scheme minimizes the bus turnaround time.

We modify this controller to prioritize read requests by conflict resolution priority

(i.e. virtual time in Swarm). The read queue is implemented with a hardware priority-

queue indexed by virtual time and each memory access is tagged with the virtual time

of the task that generated it. Write requests, which are not in the critical path, are

not prioritized, and are scheduled according to FR-FCFS.

6.2 Methodology

We use the same simulation infrastructure as in Chapter 4 to explore prioritization at

the memory controller. We model a DDR3-1600 memory with parameters given in

Table 6.1.

DRAM DDR3-1600, 4 ranks,
8 banks per rank

Burst Length 4 cycles
CAS latency 8 cycles

ACT to CAS 8 cycles
RD to PRE 4 cycles

PRE to ACT 8 cycles
ACT to ACT 4 cycles
ACT to PRE 24 cycles

WR to RD 4 cycles
WR to PRE 8 cycles

Qu . 64 entry read queue,Queue Sizes 64 entry write queue
Write 48 high threshold,

Thresholds 16 low threshold

Table 6.1: Configuration of DRAM and the Memory Controller.
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The memory controller scheduling scheme would not make a difference unless

there are multiple requests competing for the bus at the same time. To maximize the

amount of such requests, we run all experiments on a 64-core, 8-threads/core system,

with memory bandwidth constrained to 12.6 GB/s. This is a very constrained amount

of bandwidth for a 64-core chip. The reason is that we want the memory controller

to be highly contended in this experiment to maximize the impact of the scheduling

policy. We expect real systems to have more memory bandwidth.

6.3 Results and Discussion

Fig. 6-1 compares how the Virtual-Time prioritized (VT) memory controller performs

against FR-FCFS. We leave out insensitive applications: those with negligible aborts

and those which do not overload the commit queues from this graph.

Micro-ops issued Unused issue slots (reason)
Committed Aborted Conflict Queue Not ready No task

0 8 --- ------- ---------------- -----

0 - - -- --- - ---- -

0.8 ...... 0.4......

0.2........

FRVT FRVT FRVT FRVT FRVT FRVT FRVT FRVT
astar sssp color silo intruder yada nocsim des

Figure 6-1: Execution times and breakdown of issue slots for selected benchmarks
under FR-FCFS and Virtual Time memory controller scheduling schemes, using 64
in-order cores with 8 threads/core.

Surprisingly, even with this limited bandwidth, we find that no application shows

any significant benefit. silo and yada show about a 5% benefit. Despite having

significant aborts, none of the applications show any reduction when the memory

controller is prioritizing accesses from tasks that are more likely to commit.

Fig. 6-2 provides more insights for this behavior, by showing a breakdown of how

memory bandwidth is utilized. We distinguish between memory reads and writes, and

reads are further broken down according to whether they were useful or wasted. We
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Figure 6-2: Memory bandwidth utilization and breakdown of memory accesses for
selected benchmarks under FR-FCFS and Virtual Time memory controller scheduling
schemes.

identify a read request as "useful" if the line is ever accessed by a task that commits.

If all tasks that accessed the line ultimately abort, we mark the memory request that

initially brought in the line to be "wasted".

Two applications, nocsim and des, are not memory bandwidth bound, even in

this restricted bandwidth configuration. These are simulators that have small working

sets that fit in the LLC. Under such circumstances, prioritization has little effect.

For all applications (including the above two), we find that despite having significant

aborts, the majority of memory requests served are in fact useful. For des and sssp,

where aborted instructions are 30% and 60% of the total issued instructions, we

find that nearly all memory accesses were useful. For color, although 90% of the

instructions are aborted, only 5% of memory accesses were wasted.

These results show that speculative execution works as a very effective prefetching

mechanism. Speculatively running tasks far ahead in program order brings the data

they access into the on chip caches. Even if the original task aborts, the data is

used by another task that commits. This typically, but not always, happens when

the aborted task is later re-executed. Hence, from the point of view of the memory

controller, requests served for aborted tasks are not wasted work.

In fact, this is the same principle that runahead execution [48], a technique where

instructions are executed speculatively to generate accurate prefetches in out-of-order

cores, takes advantage of. We encounter the same effect with task-level speculation.

However, yada and silo show that prioritization can benefit when wasted memory

accesses are more prevalent. Such accesses occur, for example, when either a speculative
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task is not rerun or accesses a different region of memory when rerun. Deprioritizing

more-speculative tasks prevents them from making further progress and leads to a

reduction in wasted work.

Several applications (e.g. sssp, intruder) show a reduction in queue stalls. Like

in SAM, prioritizing tasks with a lower virtual time will ensure a better utilization

of the commit queue resources. Unlike SAM, this reduction does not lead to overall

benefits, since performance is ultimately limited by memory bandwidth. (We also

explored systems with higher bandwidth, but prioritization does not make a difference

when the memory controller is not contended.)
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Chapter 7

Additional Related Work

7.1 Multithreading in Speculative Parallelism

IMT [54] is perhaps the closest proposal to SAM. For a multithreaded single-core TLS

system, IMT prioritizes the sole non-speculative thread when inter-thread dependences

are frequent. In contrast, SAM derives core-local priorities for all cores and threads in

the system. While IMT is sensible in a 1-core system, on the 512-thread system we

evaluate, IMT would have negligible impact by prioritizing the one thread (system-

wide) that runs the single non-speculative task.

Other work has supported speculative parallelization on SMT cores, first in the

context of TLS [3, 52,80], and more recently on HTM [57]. These proposals focus

on tailoring the versioning and conflict detection mechanisms to SMT cores. How-

ever, these systems use conventional multithreading policies, such as round-robin or

ICount [77]. By contrast, SAM shows that coordinating issue and conflict resolution

priorities makes speculation much more efficient.

Recent work has implemented HTM for GPUs [21,22], which have heavily mul-

tithreaded cores. Like the above designs, this work focuses on tailoring speculative

mechanisms to the characteristics of GPUs, to cope with their large numbers of

threads and exploit their data-parallel nature. These techniques also use conventional

multithreading policies.

53



7.2 Prioritization in Non-Speculative Systems

Prior work has proposed SMT prioritization policies for parallel programs. Tullsen et

al. [78] propose fine-grain synchronization techniques to accelerate lock-based programs.

Cai et al. [14] and Boneti et al. [11, 12] use SMT priorities to address work imbalance

in barrier-based programs. Beyond SMT, ACS [75] and BIS [35] accelerate critical

sections and other bottlenecks in multithreaded programs by scheduling them in

fast cores on a heterogeneous system. These prioritization techniques are useful to

accelerate non-speculative synchronization constructs, but not speculative parallelism,

where all synchronization among tasks is implicit.

Prior work has also proposed many GPU thread (i.e., warp) prioritization schemes [36,

43,49,65,68]. These schemes mainly seek to improve locality by limiting the number

of threads that are interleaved at fine granularity. Locality is the overriding concern

in GPUs because they are heavily threaded and have very little on-chip storage per

thread. However, issue policies have a minor effect on locality for the number of

threads per core we consider.

Finally, some SMT systems expose issue priorities to software [11, 23]. While our

SAM implementation controls priorities in hardware, software TM or TLS systems

could use this support to implement SAM.

7.3 Scheduling in Memory Controller

Thread-agnostic memory scheduling algorithms [29,64,69,85,86] seek to maximize

DRAM throughput. FR-FCFS [64], which seeks to maximize row hits, is the most

common in existing processors. For multiprogrammed workloads, where different

threads have completely different characteristics and different memory level parallelism,

these policies can cause unfairness. Prior techniques [47,60] have sought to solve this

unfairness, but they sometimes sacrifice system throughput [50]. TCM [39] achieves

the best of both by prioritizing latency-sensitive threads over bandwidth-sensitive ones.

However, all these proposals target systems running multiprogrammed workloads, not

a single multithreaded application as we do.
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Chapter 8

Conclusion

This thesis has explored how throughput-oriented architectures can be optimized for

speculative parallelism. Naively adding hardware support for speculative parallelism

in these architectures leads to a severe pathology: aborted work consumes scarce

resources and hurts the throughput of useful work.

To mitigate this pathology, we proposed that throughput-oriented architectures

should prioritize tasks according to how speculative they are. We identified two on-chip

resources where this prioritization is most likely to be beneficial.

First, we presented Speculation-Aware Multithreading (SAM), a simple technique

to prioritize instructions at the core pipeline by aligning instruction dispatch with

conflict resolution priorities. By focusing execution resources on likely-to-commit

tasks, SAM reduces aborts and conflicts; and since these tasks commit earlier, SAM

also makes more effective use of speculation resources.

SAM improves the performance benefit of multithreaded cores on speculative

programs. On a 64-core system with 2-wide issue in-order SMT cores, 8-threaded cores

outperform single-threaded ones by 2.41 x on average with SAM, vs. by 1.91 x with

round-robin. SAM also reduces wasted work by 43%. With out-of-order execution,

8-threaded cores outperform single-threaded cores by 1.53x with SAM vs only 1.16x

with ICount, and SAM reduces wasted work by 81%.

Second, we investigated whether prioritizing requests at the memory controller

according to their conflict resolution priorities can provide performance benefits.

However, unlike at the core, we found little performance benefit from prioritizing
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requests at the memory controller. The reason is that speculative execution works as

a very effective prefetching mechanism, and most requests, even those from tasks that

are ultimately aborted, do end up being useful.

These insights would help computer architects understand the trade-offs involved

in designing future computing systems. With the end of technology scaling, leveraging

parallelism has become the most effective way of making applications run even faster.

Throughput-oriented architectures were traditionally used to run massively parallel

applications, yet its interaction with hardware support for speculation, which expands

the range of applications that can be parallelized, remained unexplored. As we show in

this thesis, prioritizing at the core pipeline is a simple but useful technique that should

be incorporated into multithreaded systems with support for speculative parallelism,

whereas prioritizing memory requests is not necessary.
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