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Abstract

Several studies have investigated the effect of constructive or destructive interference
on the transmission of internal waves that propagate through non-uniform stratifica-
tions. Such studies have been performed for internal waves that are spatiotemporally
harmonic. To understand the effect of spatiotemporal localization, this thesis presents
a theoretical and experimental study of the transmission of two-dimensional internal
waves that are generated by a boundary forcing that is localized in both space and
time. This is done by considering an idealized problem and applying a weakly vis-
cous semi-analytic linear model to it. After validation with a numerical model, the
semi-analytic model allows us to perform parametric studies.

Using theoretical studies, we show that localization leads to the disappearance
of transmission peaks and troughs that would otherwise be present for a harmonic
forcing. The laboratory experiments that we perform provide a clear indication of
this physical effect. Based on the group velocity and angle of propagation of the in-
ternal waves, a practical criteria that assesses when the transmission peaks or troughs
are evident, is obtained. It is found that there is a significant difference in the pre-
dicted energy transfer due to a harmonic and non-harmonic forcing which has direct
implications to various physical forcings such as a storm over the ocean.

Thesis Supervisor: Thomas Peacock
Title: Professor
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Chapter 1

Introduction

This thesis presents a study of the effect of spatiotemporal localization of a boundary

forcing on the transmission of internal waves through non-uniform stratifications. In

this chapter, we describe the importance of internal waves in section (1.1). Previous

work in the area of internal wave interference is presented in section (1.2.1) and the

distinction of the current work is presented in section (1.2.2). Finally, the outline of

the thesis is discussed in section (1.3).

1.1 Internal Waves

1.1.1 Stratified Fluids

Fluids are termed to be 'stratified' if they have density variations with depth. If the

density increases monotonically with depth, they are gravitationally stable and are

often referred to as 'statically stable'. Since it costs energy to move fluid parcels up

or down due to gravitational and buoyancy forces respectively, stratified fluids tend

to move in horizontal layers. If provided with an adequate amount of energy through

a forcing, however, they can allow for waves to propagate through them.

To understand how a stratified fluid supports waves, consider a fluid parcel in a

stratified fluid as shown in figure (1-1). Due to some forcing, the fluid parcel is initially

perturbed vertically upwards by a distance c from its neutrally buoyant location

17
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Figure 1-1: Schematic of buoyancy-driven oscillations of a fluid parcel about z = Z(

in a linearly stratified medium. FB indicates the upward buoyancy force (in red)

and Fg indicates the downward gravitational force (in black) on the fluid parcel. The

vertical position of the parcel is indicated as time progresses (rightwards). The arrows

indicate the relative magnitudes of the forces.

z = zo. Because of the stratification, this parcel then feels a larger gravitational force

than the buoyancy force. As a result, the parcel is pulled backwards to the original

position. When it overshoots its original position, the buoyancy force overcomes the

gravitational force and the parcel experiences a net upward force. This is similar to

the action of a spring on a mass. Thus, the equation of motion for a single fluid parcel

can be written as follows:
d2 z, g di .
dt2 POdz 0

(1.1)

In equation (1.1), z, indicates the vertical position of the fluid parcel, 1i(z) is the

density profile in the fluid, g is the gravitational acceleration and po is a characteristic

density of the fluid. The 2nd term on the left hand side indicates the difference

between the buoyancy and gravitational forces for a given displacement z,. Clearly,

this equation admits oscillatory solutions with a natural frequency given by:

(1.2)N = d.- o d -z

18
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This natural frequency is often referred to as the Brunt-Vdissli frequency or the buoy-

ancy frequency. Such buoyancy-driven oscillations give rise to waves in the interior

of a stratified fluid. These are thus termed as 'internal' waves.

1.1.2 Internal Waves in the Ocean and the Atmosphere

The ocean and atmosphere are naturally stratified mediums. Density changes in

the ocean are caused by variations in salinity and temperature. In the atmosphere,

density variations are majorly due to temperature and pressure changes. In both

the ocean and the atmosphere, it is more common than rare to encounter density

changes that have a non-linear dependence on depth. This implies that the buoyancy

frequency given by equation (1.2) is usually non-uniform. Specifically, for the ocean

water column, the upper 100 m doesn't have much density variation due to turbulence

generated by wind or cyclonic activity (Toffoli et al. (2012)). This upper layer is

usually referred to as the 'mixed layer' which has a buoyancy frequency close to zero.

Below the mixed layer, there are large variations in the density which result in higher

values of the buoyancy frequency (the pycnocline), below which lies the deep ocean

with a relatively weak stratification (Gill (1982), Cushman-Roisin & Beckers (2011)).

A typical stratification profile from the equatorial Pacific ocean is plotted in figure

(1-2).

Internal waves manifest in the ocean and atmosphere through a variety of gen-

eration mechanisms. In the atmosphere, winds blowing over topography can gener-

ate low-frequency internal waves widely know as lee waves (Bell (1975), Baines &

Hoinka (1985)). In the ocean, surface excitation of the mixed layer by storms excites

strong near-inertial wave activity (Gill (1984), Alford et al. (2016)). In propagating

downwards, these internal waves must traverse the pycnocline, or even more complex

structures such as multiple pycnoclines and double-diffusive staircase structures that

are known to exist in the central Canada Basin of the Arctic ocean (Timmermans

et al. (2008)). Apart from surface storms and wind forcings, another important gen-

eration mechanism for internal waves in the ocean is through tidal oscillations over

topography (Wunsch (1975), Echeverri & Peacock (2010)). It has been estimated

19
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Figure 1-2: Stratification profile from the equatorial Pacific ocean (0.5'N, 149.5 0E)

averaged over the month of April in 2015. In order from left to right, the panels plot

the salinity S (psu), potential temperature T (0 C), potential density i (kg m- 3 ) and

the buoyancy frequency N (s- 1). The salinity and temperature were obtained from the

climatalogy data by Roemmich & Gilson (2009). The potential density and buoyancy

frequency were then calculated using the Gibbs Seawater Toolbox (McDougall &

Barker (2011)).

by Wunsch & Ferrari (2004) that both the surface wind forcings and tides have an

almost equal part in the generation of internal waves in the ocean.

1.2 Internal Wave Interference

1.2.1 Previous Work

The propagation characteristics of internal waves such as their group velocity and

propagation direction are strongly dependent on the buoyancy frequency of the strat-

ified medium. In non-uniform stratifications, internal waves can be partially reflected

and transmitted at interfaces of layers with unequal buoyancy frequencies or in lay-

ers with strong continuous variations in the buoyancy frequency (Sutherland (2010)).

The reflected and incident waves can subsequently interfere with each other. As the

ocean and the atmosphere are non-uniformly stratified, the study of constructive and

destructive interference underlies our understanding of the passage of internal waves

in these mediums. With this motivation, transmission coefficients for spatially and

20



temporally harmonic internal waves propagating through stratifications with discon-

tinuous buoyancy frequency profiles were obtained by the insightful study of Suther-

land & Yewchuk (2004). Thereafter, Nault & Sutherland (2007) further developed

the methodology to address continuously varying stratifications.

Advancement in terms of localized internal waves was done by Mathur & Pea-

cock (2009) who considered internal wave fields that were spatially localized, for the

purpose of studying the propagation of internal wave beams through non-uniform

stratifications. And most recently, utilizing such methods, a study by Ghaemsaidi

et al. (2016a) has shown that multi-layered stratifications have a rich transmission

behavior for internal waves that are spatially and temporally harmonic; multiple

transmission peaks can exist due to constructive and destructive interference effects

between propagating and evanescent waves (Ghaemsaidi (2015)). As a point of sci-

entific interest, under certain circumstances these interference effects have a direct

mathematical analogy to optical interferometry (Mathur & Peacock (2010)).

1.2.2 Current Work

In all of the studies mentioned in the previous section, although spatial localization

was considered, the internal wave field was temporally harmonic. Since interference

effects are due to the interactions of incident and reflected waves, however, both local-

ization in space and in time are clearly important in determining whether interference

effects will play a role for a given excitation.

Ghaemsaidi (2015) was the first to consider the problem of boundary-forced inter-

nal waves in non-uniform stratifications. In such a scenario, because internal waves are

continuously forced, it was shown that a significant amplification leading up to reso-

nance was possible. Separate studies were performed for continuous and discontinuous

buoyancy frequency profiles. For the discontinuous stratification scenario, physical

insight into this amplification process was obtained by considering the propagation of

internal waves along ray paths (Sutherland (2010)). An analytical expression for the

transmission as a function of the number of interactions between the reflected waves

and the forcing was derived. As the number of interactions increases, this expression
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converges to the one obtained for a harmonic forcing. This study thus suggests that

the transmission of internal waves must get affected for forcings that are spatiotem-

porally localized. Such localized forcings are especially important as they are relevant

in physical scenarios such as an ocean storm.

The above considerations motivate us to extend the problem discussed by Ghaem-

saidi (2015) to analyze how internal wave interference is affected by spatiotemporal

localization. This is done by using the same physical setup but by replacing the

harmonic forcing function with a quasi-monochromatic wave packet in a spatial and

temporal sense. This introduces a band of frequencies and wavenumbers around the

dominant values. Such a forcing is applied to a two-layered stratified fluid that has a

finite transition layer where the buoyancy frequency changes continuously. The ray

approach discussed by Ghaemsaidi (2015) is used to identify the correct length and

time scales for the forcing such that the effects of interference are evident leading up

to developing a practical criteria.

1.3 Thesis Outline

The specific problem of boundary-forced internal waves in non-uniform stratifications

is studied by utilizing semi-analytic, numerical and experimental techniques. We first

present the idealized physical problem in chapter 2. The underlying semi-analytic

model is also presented in this chapter, along with details of an accompanying nu-

merical model. In chapter 3, we present a case study of a motivating example which

was used to validate the internal wave fields obtained from our semi-analytic model

against the numerical model. With this validation, we were able to perform paramet-

ric studies of the effects of spatiotemporal localization on internal wave interference

by using the numerically cheap semi-analytic model. The results of this parametric

study are also presented in chapter 3. Furthermore, a practical criteria to determine

when the effects of interference are evident is developed. We demonstrate our predic-

tions via a set of laboratory experiments, the results of which are presented in chapter

4. Finally, we present our conclusions. in chapter 5.
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Chapter 2

Mathematical Model

In this chapter, we discuss the mathematical framework that is used to make theoreti-

cal predictions about the transmission of boundary-forced internal waves. We start by

deriving the governing equations of Boussinesq linear internal waves in section (2.1).

The specific idealized problem under consideration is then described in section (2.2).

Section (2.3) then presents the solution procedure we follow to solve the governing

equations for our physical problem. To validate this semi-analytic linear model, the

numerical model that we use is described in section (2.4).

2.1 Governing Equations for Internal Waves

Consider a stratified fluid whose background density changes as f(z), where the z

axis is anti-parallel to gravity. For a gravitationally stable fluid, we require that

dfi/dz < 0. For a Boussinesq fluid, we now write down the equations of motion in

2 dimensions . Under the Boussinesq approximation, the velocity field (i = (u, w))

must be divergence free (Kundu et al. (2012)).

V - U, = 0. (2.1)

Assuming the Schmidt number (Sc = v/D, where v is the kinematic viscosity and D

is the mass diffusivity) to be infinity, we also have the following requirement for the
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density field p:
Dp 0 (2.2)
Dt

here, D/Dt = a/at + - -V.

The fluid motion is governed by the Navier-Stokes equations as follows:

Du _ lapDu - -- + vV2 u (2.3a)
Dt po ax
Dw _ lap 2 PDt- -- + vV2w- -g. (2.3b)
Dt poPz Po

Here, po is a characteristic value of the density of the fluid. Assuming that the base

flow is quiescent, we now introduce perturbations (indicated by ') so that (u, w) =

(u', w'), p = f(z)+p' and p = p(z)+p'. To satisfy the base state, we need a hydrostatic

balance given by iz = -p(z)g. Equations (2.2) and (2.3) are linearized by assuming

that the perturbations are infinitesimal. We use a stream function formulation so that

the velocity field satisfies equation (2.1) directly. Therefore, u' = -V) and w' = Ox

where V) is the stream function. The linearized equations are as follows:

ap' ,djat - (2.4a)at dz'
a-= - ap' + vV 2u', (2.4b)at pO ax
aw' la8p' p '-= ---- +VV2W' - -g. (2.4c)at po az Po

We now eliminate p' from equations (2.4b) and (2.4c) to obtain:

-1 ap'
(V20)t = v(V 4

0) _ . (2.5)
PO ax(25

Finally, eliminating p' from equation (2.4a) and (2.5), we obtain a single equation in

terms of the stream function (Sutherland (2010)) as follows:

(V2V)tt + N(z) 204x = v(V 44)t. (2.6)

In the above equation, N(z) is the Brunt-Viisiili frequency (also known as buoyancy
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frequency) given by N(z) = (-g/po)dji/dz. It is the natural frequency of oscillation

of fluid parcels that undergo infinitesimal disturbances. In this thesis, a non-uniform

stratification is referred to the case when N(z) is not constant. In other words, a

non-uniform stratification is the one wherein f(z) varies non-linearly.

2.1.1 Dispersion Relation

To obtain insight into the propagation of internal waves, we now consider the inviscid

case with a uniform stratification that has a buoyancy frequency No . Equation (2.6)

allows plane wave solutions of the form / exp(i(kx + mz - wt)). Substituting this

expression, we obtain the following dispersion relation:

w2 =N 2 2  ) = o2sin2o . (2.7)

0 in the above expression is the angle that the wavenumber vector k= (k, m) makes

with the vertical.

An interesting aspect of this dispersion relation is that it does not depend on the

magnitude of the wave vector. As a consequence of this, the phase velocity -

(w/1k1 2 )k and the group velocity 4 V w are perpendicular to each other. Thus,

for linear internal waves, energy propagates in a direction that is perpendicular to the

phase velocity. Additionally, a given forcing frequency w and buoyancy frequency No

fixes the propagation angle irrespective of the magnitude of the wavenumber vector.

Propagating internal waves exist only when w < No. For w > No, the waves are

evanascent that do not have any energy flux associated with them.

2.2 Problem Formulation

We consider the two-dimensional configuration presented in figure (2-1). The physical

domain extends from -oo to +oo in the x direction, localized velocity forcing is ap-

plied at z = 0, and internal waves generated by this forcing can propagate downwards

freely through z = zi. Although the method is applicable to arbitrary stratifications,
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Figure 2-1: Sketch of the physical system. The colored solid lines indicate the vertical
velocity forcing function at times t_ (red), to (green) and t+ (blue) such that t_ <

t0 < t+. The dotted lines indicate the corresponding Gaussian envelopes. Solid lines
with arrows define approximate boundaries of the internal wave packets, while the
arrows indicate the direction of the group velocity.

to begin we consider a buoyancy frequency profile N(z) that changes from a value of

N1 to AT2 through a transition layer of thickness A that lies a distance L below z =0.

In this thesis, we will refer to the region above this transition layer as the upper layer

and the one below as the lower layer. More specifically, the form of the stratification

profile that is considered for our case study in chapter (3) is:

N(2.8)

The profile given by equation (2.8) is chosen such the buoyancy frequency attains

the values Ni and N2 at z =-L + ) A/2 and z = -L - A/2 respectively to within

0.1%. An example profile is indicated in figure (2-1). A similar profile has been

used in previous studies (Mathur & Peacock (2009), Ghaemsaidi (2015)) to study the

transmission of internal waves through non-uniform stratifications. It has been shown

that when the stratification changes are not gradual enough (that is, in this case A is

small enough), internal waves can get reflected and refracted, which is analogous to

transmission of light through mediums of different refractive indices. The incident,

reflected and transmitted wave packets are indicated in figure (2-1). The problem of

interference between the reflected waves and the boundary forcing has been studied

by Ghaemsaidi (2015). We thus choose this specific problem to understand the effect
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of localization on the interference that has been already studied.

To investigate the effects of spatiotemporal localization, we consider a vertical

velocity forcing function given by:

WbXt)- -(x -xo) 2  (-(t -to) 2 ~~29

Wb(Xt)=Re A exp(i(kox -wot)) exp 22 exp 2 (2.9)

The function (2.9) can be viewed as a traveling wave of amplitude A modulated by

Gaussian envelopes in both space and time that attain their peak values at x = xo and

t to, respectively; the modulation broadens the wavenumber and frequency content

of the wave field around ko and wo, depending on the magnitude of the widths of the

Gaussian functions given by at and o respectively. This is indicated in figure (2-2).

It is to be noted that if the forcing is harmonic (that is, at, ax -+ oo), the Fourier

spectra would just be a delta function at (ko, wo). For our studies, since we wish

to expand the Fourier spectra, the function given by equation (2.9) is chosen as it

allows us an individual control on how wide the spectrum can be in both the spatial

and temporal sense. This, however, does not change the dominant wavenumber and

frequency hence keeping the phase and group velocity of the resulting internal wave

packets the same.

The form of the forcing function at times before, at and after the temporal Gaus-

sian peak is illustrated in figure (2-1). The phase velocity has the magnitude wo/ko

and is directed to the right. The forcing will thus induce an incident, rightward

propagating wave packet (I) with a downward group velocity. This wave packet

then experiences reflection (R) and transmission (T) as a result of encountering the.

transition layer.

As the forcing is provided in the form of the vertical velocity, we take a derivative

of equation (2.6) in the x direction and obtain the following governing equation for

the vertical velocity field:

(V2 w)tt + N(z)2 wx= v(V'w)t. (2.10)

Since the domain is infinite is x and t, no boundary conditions or initial conditions
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Figure 2-2: An example forcing function and its corresponding Fourier spectra. The
left panel indicates the localized nature of the forcing in the spatial dimension x and
the temporal dimension t. Lines of constant phase have the same slope in the entire
domain. The right panel indicates the Fourier spectra of this forcing. It is a Gaussian
blob with a peak at (ko, wo). Its widths are inversely proportional to at and ax.

are needed along those dimensions. Along z, the forcing boundary condition needs to

be satisfied at z = 0. At z = zi, the bottom of the domain, boundary conditions are

implemented in a manner that allows for the internal waves to pass through freely.

This is discussed in detail in the next section.

2.3 Solution Procedure by Fourier Decomposition

We solve equation (2.10) by performing a Fourier decomposition of the forcing func-

tion along x and t. This can be done as the forcing function is localized in x and t

and the domain along both the dimensions is effectively infinite. A general vertical

velocity forcing function can be expressed in terms of its Fourier modes as follows:

f+00 f +00Wb(x, t) = ] __ii 1 eitkx-wt) dk dw. (2.11)

For each Fourier mode -b of the forcing, we substitute an ansatz iZ(z) exp(i(kx - wt))

for w(x, z, t) in equation (2.10) to obtain (Ghaemsaidi et al., 2016 a):

WZZZZ + -- 2k2) Zzz + k2 (k + (N )2 - 1) = 0. (2.12)
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This equation gives us the vertical structure of the velocity field for every Fourier

mode of the forcing. As noted by Mathur & Peacock (2009), it is not favorable

to solve this equation as an initial value problem because it has a pair of rapidly

decaying and growing solutions, which can cause numerical instability. It is thus

solved as a boundary value problem with two boundary conditions each at z = 0

and z = z1 . This is done by finding m such that exp(mz) satisfies equation (2.12)

in the regions where N(z) is constant. In the case where a constant stratification is

not completely achieved, the application of this method requires the following WKB

(Wentzel-Kramers-Brillouin) condition (Cheng (2007)) to be reasonably satisfied at

z = 0 and z = zi, where the boundary conditions will be applied (Ghaemsaidi et al.,

2016a):

mI>> k2 NN ./3  (2.13)

This condition essentially ensures that the vertical wavelength of the internal waves is

much smaller than the length-scale of changes in the buoyancy frequency. As a result,

the internal waves don't really feel the changes in the background stratification.

In general, there can be four complex roots for m, the imaginary part of which

is the local vertical wavenumber. Only one of these solutions leads to a downward

group velocity and a downward weak viscous decay. We choose this root in each layer

and express ?7(z) at the top and bottom as:

I exp(miz) + R exp(-miz) at z = 0, (2.14)

T exp(m 2z) at z = zi.

Here, I, R and T are the amplitudes of the incident, reflected and transmitted waves

through the transition layer, respectively, and m, and m 2 are the local complex-valued

vertical wavenumbers in the N1 and N2 layers, respectively. The signs of the terms

in the exponential functions are chosen so as to ensure the correct direction of phase
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propagation. The following boundary conditions are applied:

W = Wb at z = 0, (2.15a)

WZZ =- Mi atz=O, (2.15b)

Wz = m2 i at z = z1 , (2.15c)

Wzz = m2W at z = zi. (2.15d)

The boundary condition given by equation (2.15a) ensures that the vertical velocity

at z = 0 is specified by the forcing. Equations (2.15b), (2.15c) and .(2.15d) ensure the

exponential z dependence of the excited internal waves that is specified by equation

(2.14). If zi -+ -oo, equation (2.15d) is indeed a redundant condition. However, it

closes the system numerically where we have to solve the problem for a finite bottom.

The decomposition given by equation (2.11) is performed discretely using the

FFT algorithm. Thereafter, equation (2.12), utilizing the boundary conditions (2.15),

is solved numerically using the MATLAB bvp4c for the obtained discrete Fourier

modes of the forcing. After obtaining the vertical structures w-(z; w, k) for every

Fourier mode, we transform them back to the space-time domain to obtain the vertical

velocity field w(x, z, t). The other field variables such as the stream function 4',
horizontal velocity u and pressure p can be found via the linear modal relations:

4'(z) = -, (2.16a)
ik'

PO W b
p(z) = k (2.16b)

U (z) = -4'. (2.16c)

Finally, to obtain the field variables we take the inverse Fourier transform of the

modal quantities computed for all the discrete forced Fourier modes. The results of

using this theoretical solution procedure will be discussed for a test case in chapter

3.

This method of Fourier decomposition works if the excited velocity field is also
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localized. That is, its magnitude goes to zero at the end of the simulation time in

the entire domain. The Fourier representation in x and t implicitly enforces periodic

boundary conditions on the velocity field. However, through the bottom boundary

condition, we allow for the waves to escape. When the waves are propagating (W <

N1 , N2 ), the simulation end time and the domain size in x need to be chosen such that

all of the wave energy escapes through the bottom without reaching the side-ends of

the domain. If this is not the case, due to the intrinsic periodic nature of using Fourier

modes, there can be spurious waves appearing at the start of the simulation time.

A problem also arises when N2 < w < N1 . This implies that the waves are

propagating in the upper layer but evanescent in the lower layer. We discuss this

specific scenario as it is encountered in the lab experiments that are discussed in

chapter (4). Because the internal waves cannot propagate through the lower layer,

they undergo multiple reflections off the transition layer and the upper boundary. All

of the forced input energy then gets focused in the upper layer. There is no mechanism

for the energy to escape through the bottom of the domain. The only way by which

the wave energy can progressively decrease is through viscous dissipation. Solutions

to equation (2.12) ensure that there is viscous decay along the direction of propagation

of the internal waves (Ghaemsaidi (2015)). Therefore, the domain size in x has to be

large enough so that the waves decay entirely until they reach the end of the domain.

Subsequently, we also conclude that for this particular scenario, the method of Fourier

decomposition cannot provide us with an inviscid solution.

2.4 Numerical Model

To support our semi-analytic modeling, we use a finite volume numerical model that

solves the fully nonlinear Navier-Stokes equations with the Boussinesq approximation

(Ueckermann et al. (2015)). The Stokes equation is solved by an incremental pressure

correction scheme (Ferziger & Peric (2001)) and the advection fluxes are obtained

using a TVD (Total Variation Diminishing) scheme.

The internal waves are forced through a partial forcing i.e. only the vertical
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Figure 2-3: The domain used for the nonlinear simulations. No-slip or zero-valued

Dirichlet boundary conditions are applied at the boundaries A, B and C. At the top

boundary D, the vertical velocity is set to the forcing function as indicated and the

horizontal velocity is set to zero. Arrows indicate the forcing velocity vectors.

velocity is forced at the top boundary by setting it to the function given by equation

(2.9). Zero-valued Dirichlet boundary conditions are used for other variables at all

other boundaries. It has been shown by Mercier et al. (2010) that forcing internal

waves partially does not introduce any discernible differences in the spectral nature of

the velocity fields. The background stratification is introduced as an initial condition

in the solver and the time-dependent perturbation density is obtained by subtracting

the background density.

A lab-scale simulation was set up to verify our semi-analytic model. The size of

the domain was 0.45 m in depth and 2.5 m in span. The number of grid points in x

was 300 and in z was 100. Adhering to the CFL (Courant-Friedrichs-Lewy) condition,

a At of 10' s was chosen. A forcing amplitude of 10 m/s was used to ensure that

the waves are in the linear regime.
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Chapter 3

Theoretical Results

In this chapter, with the help of a case study, we demonstrate the results of our semi-

analytic linear model. In section (3.1), the parameters chosen for this case study are

discussed in detail. The resulting velocity field is then compared with the results

from the numerical model for validation. A parametric study to explore the effects of

spatiotemporal localization is presented in section (3.2). Certain characteristic length

scales and time scales that govern the magnitude of the effects of interference are also

proposed in this section. We then finally present our conclusions from this analysis

in section (3.3).

3.1 Validation Case Study

We begin by considering an inviscid system with the stratification parameters A/L =

0.5 and N2 /N1 = 0.6, wave field parameters wo/N = 0.52 and koL = 4.8, and

localization parameters -tN1 = 15 and a-2/L = 2 (here, we use the time scale 1/N

and length scale L to non-dimensionalize the localization parameters for convenience

only. The correct non-dimensionalization of a-, and at is discussed in section (3.2)).

For these parameters, the spatiotemporal nature of the forcing and vertical velocity

field as obtained from the semi-analytic model are presented in figure (3-1). At the

time instant shown, the forcing has already occurred and has excited a wave packet 11

that has interacted with the transition layer to result in the reflected wave packet R,
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Figure 3-1: Forcing and the excited vertical velocity field for validation case study

at tN1 = 135. a) Spatiotemporal nature of the velocity forcing at z = 0, wherein

the horizontal line indicates the current time. b) Vertical velocity field in the domain

at the current time. The arrows indicate the group velocities of the respective wave

packets. c) Stratification or the buoyancy frequency profile. Dotted lines in panel b

indicate the transition region of the stratification.

and transmitted wave packet T1. It is clear that the waves in the upper and the lower

layer propagate at different angles. In the region of lower buoyancy frequency, the

internal waves propagate at a shallower angle. This is consistent with the dispersion

relation given by equation (2.7). The wave packet R, then interferes with the forcing

at z = 0 and gets reflected back towards to the transition layer as the wave packet 12.

This wave packet gets transmitted through the transition layer as T2 and reflected as

R2. If the forcing was harmonic in time and space, the amplitude of the subsequently

resultant incident wave packets (represented by I) would be non-negligible for an

infinite number of such reflections. However, due to the spatiotemporal localization,

we observe that the amplitude has greatly decreased even for the second reflected

wave packet 72.

We now define the transmission parameter for this system to be -r =

{max wi/A at z/L = -1-0.5A/L}, that is the ratio of the maximum excited vertical

velocity just below the transition region and the forced vertical velocity amplitude A.
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Figure 3-2: Comparison of the semi-analytic and numerical vertical velocity field

normalized by the forcing amplitude (w/A) at tN = 135. The dotted lines in both

the panels indicate the transition region of the background stratification

For this example, r, is determined to be 1.56; for comparison, for a harmonic forcing

(that is, o, o -+ oo) with the same forcing parameters the transmission parameter

is r, = 2.53 (~ 62% larger), indicating a higher degree of constructive interference.

This can be corroborated by identifying that at the time the bulk of the reflected

wave packet 7, reaches z = 0, the forcing has a diminished amplitude both due to

the spatial and temporal localization. This reduces the amount of interference that

can happen between the reflected wave packet and the forcing itself in the upper

layer. One can also think of it from the frequency and wavenumber domain. Due

to the localization, we introduce a band of wavenumbers and frequencies which have

their own coefficients of transmission for this system. The total coefficient of trans-

mission is the weighted sum of these transmission coefficients where the weights are

the relative Fourier amplitudes. If the dominant wavenumber and frequency lie on a

harmonic transmission peak, the transmission for a localized forcing is expected to

be lower due to the contribution of wavenumbers and frequencies around that do not

lie on the harmonic transmission peak.

3.1.1 Comparison with Numerical Model Results

As a validation for the semi-analytic model, we now compare the velocity field ob-

tained with the results from the numerical model discussed in chapter (2). Figure
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Figure 3-3: Comparison of the normalized Fourier spectra of the vertical velocity

obtained from the semi-analytic model and numerics (for the same parameters as in

figure (3-1) with tN1 = 135). Panel (a): above the transition layer, panel (b): inside

the transition layer and panels (c, d): below the transition layer.

(3-2) shows that the vertical velocity field obtained for the parameters discussed ear-

lier from the linear semi-analytic model and the numerical model agree well with

each other. Above the transition region, the wave field is a result of multiple inci-

dent and reflected waves as indicated in figure (3-1). This effect is captured well by

both the models. Near the bottom of the domain, there are some deviations in the

numerical wave field as compared to the semi-analytic model. These deviations can

be attributed to the no-slip boundary conditions implemented on all the boundaries

which leads to wave reflections. The boundary conditions in the semi-analytic model,

however, allow for the waves to freely escape through the bottom of the domain.

For a more quantitative validation, we compare the normalized Fourier spectra

of the vertical velocity field at different depths as obtained from the semi-analytic

model and numerical simulations for this case study. This comparison is presented in

figure (3-3). There are very small differences in the spectra at depths above, inside

and slightly below the transition region. This does not affect the Fourier spectrum

of the waves transmitted well below the transition layer, however, for which there is

very good agreement between both the models.

With this validation in hand, we are free to use the semi-analytic model to perform

parametric studies to investigate how the forcing parameters affect the transmission

of the system. Intuitively, we expect that as the size of the forcing gets larger both
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spatially and temporally, effects of interference will be enhanced as more number of

reflections can now interfere with the forcing (figure (3-1)). This would also depend on

the dominant frequency and wavenumber, however, as the propagation angle and the

group velocity of the waves depends on these factors. Using the linear semi-analytic

model, we investigate this dependency in the next section.

3.2 Effects of Spatiotemporal Localization

Using a ray approach for .a discontinuous stratification profile, it has been shown by

Ghaemsaidi (2015) that as the number of interactions between the reflected waves

and the boundary forcing increases, the effect of either constructive or destructive

interference becomes more profound. In the case of a spatially localized forcing, only

a finite number of reflections actually interact with the forcing and, similarly, if the

forcing is temporally localized the time for which the forcing exists only permits a

limited number of reflections to interfere. Adopting this perspective, we will define a

characteristic length scale L* and a time scale t*, with a view to developing a practical

criteria for when interference effects will be evident.

3.2.1 Criteria for Possible Interference Effects

Consider figure (3-4), which shows a ray path of internal waves that have the dominant

wavenumber and frequency (ko, wo) of the forcing. These waves propagate as a group

along a direction that makes an angle 60 with the horizontal. 0 is given by Oo =

sin-1 (wo/N1 ) according to equation (2.7). Further utilizing equation (2.7), the group

speed along this direction is given by:

c. = IVkw = (N1 sin O0 cos 6o)/ko. (3.1)

As indicated in figure (3-4), the ray path that originates at the z = 0 level traverses

a distance LO before reaching the center of the transition layer. By geometry, Lo =

L/ sin Oo. After getting reflected from the transition layer, it traverses a distance of
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Figure 3-4: Sketch of the physical system overlaid with the length scale L* and the
distance Lo. Arrows associated with the waves indicate the direction of the group
velocity.

Lo until it reaches the z = 0 level again. At this stage, the reflected waves can again

interfere with the forcing. We now define L* as the horizontal distance between the

point at which a wave packet leaves the z = 0 level and the point at which it comes

back after getting reflected from the transition region. Furthermore, t* is defined as

the time it takes for the wave packet to traverse the path length 2LO. Therefore, these

scales are given by the following expressions:

L* = 2L cot Oo, (3.2a)

t* = (2Lo)/cg = (2koL)/(N sin 2 0 cos 00). (3.2b)

Equation (3.2a) is obtained using geometry and equation (3.2b) is obtained by utiliz-

ing the fact that the interval waves move through a distance 2LO at their group speed

c. given by equation (3.1).

The length scale L* indicates the horizontal distance away from the point of origin

of the waves where the first interference can potentially take place with the forcing.

Similarly, t* indicates the time after the waves originate at which the first interference

might occur. The effect of the interference thus depends on the magnitude of the

forcing itself at distance L* and a time t* away. To quantify this, we define the
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Figure 3-5: Comparison of the transmission parameter (for A/L = 0.5, N2 /N1 =

0.6) in the harmonic and non-harmonic case. The left panel shows the transmission

parameter for harmonic forcing. The black circles in both the panels indicate the

forcing parameters considered for the motivating example. The right panel shows the

transmission parameter for a localized forcing with -tN1 = 22.5, a-2/L = 2.

following dimensionless parameters:

n_ = 4a -/L*, (3.3a)

nt = 4o-t/t*, (3.3b)

where n, and nt reasonably quantify the number of reflections the spatiotemporal

extent of the forcing supports for interference; the factor of 4 ensures that 95% of the

forcing amplitude is considered. It is to be expected that interference effects present

in the case of harmonic forcing will be evident only when both n' and nt are above a

certain threshold. For interference to take place between the reflected waves and the

forcing at least once, we expect n1 , nt > 1 for any transmission peaks or troughs to

be evident.

3.2.2 Comparison of Harmonic and Non-Harmonic Transmis-

sion

We consider the results for the transmission parameter r, for the harmonic and non-

harmonic forcing, presented in figure (3-5). For a harmonic forcing, the transmission
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Figure 3-6: Effect of temporal delocalization on the transmission parameter and the

total energy transferred (for A/L = 0.5, N2 /Ni = 0.6, a-,/L = 2, kOL = 4) . The color

bar in the left panel is set to the be the same as in figure (3-5). The contours in both

the panels correspond to the function min{nx, nt}.

peaks and troughs can be clearly seen, achieving maximum values of T" - 3. In

contrast, the transmission plot for the localized forcing, which is overlaid by contours

of the function min{rn, nt}, displays identifiable peaks only when nx, nt > 1; below

this threshold, the transmission peaks disappear (i.e. there needs to be enough spa-

tiotemporal extent for at least one reflected wave packet to interfere with the forcing).

Furthermore, the maximum value of the transmission parameter is notably reduced

to r, 1.5. Parameters for the case study discussed earlier are indicated by black

circles in figure (3-5). It is clear that if the forcing were harmonic, the frequency and

wavenumber pair lies on a transmission peak. In the case of a non-harmonic forcing,

the localization reduces the effect of either constructive or destructive interference.

Thus, if the harmonic system undergoes destructive interference, the transmission pa-

rameter for the non-harmonic forcing would be expected to increase and vice versa.

The case study under consideration has a frequency and wavenumber that exhibits

constructive interference in the harmonic forcing case. Therefore, expectedly, the

transmission parameter reduces in the non-harmonic case.

The non-harmonic transmission plot in figure (3-5) has been plotted for fixed

spatial and temporal size of the forcing viz. a, and -t. We now look at the scenario

where the spatial nature of the forcing is fixed and only the temporal part (i.e. the
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parameters wo and ot) is changed. Figure (3-6) presents results for the vertical velocity

transmission parameter, -r, and the energy input to the system, C, for a disturbance

of spatial nature (koL = 4, cr,/L = 2) and varying temporal extent (15 < atN < 45).

The total energy input (per unit distance in the y direction) is calculated as S =

f f(pw) dx dt and has been non-dimensionalized by the characteristic value poA2 L2 .

As the forcing is specified in terms of the vertical velocity, the energy input to the

system is expected to vary with the forcing parameters. For atN ~- 15, there is a

trivial change in the transmission parameter and the energy input as a function of

wo/N1, but as atN1 exceeds 25, constructive peaks and destructive troughs due to

interference emerge. Contours of the function min{rn, nt} are overlaid on both plots

and again it is evident that peaks and troughs in both the transmission parameter

and the energy input appear only above nx, nr > 1.

3.3 Conclusions

In this chapter, we have validated our semi-analytic linear model by comparing the

results with a nonlinear numerical model. This has allowed us to use the numerically

cheap linear model to perform parametric studies in order to investigate the effects of

spatiotemporal localization on the transmission of internal waves. It has been shown

that such a localization does have an impact on the degree of either constructive

or destructive interference that takes place in the system. This is directly reflected

by a decrease or increase in the transmission parameter respectively. We have also

proposed relevant length and time scales that govern whether or not interference

effects will be evident. A practical criteria based on these scalings has been shown

to meaningfully identify whether interference effects are evident. It is to be noted

that the proposed criteria does not in itself indicate whether there is interference in a

given physical system. The criteria gives us information on whether these effects due

to interference would be evident if they are present in the case of a harmonic forcing.
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Chapter 4

Experiments

In this chapter, we describe the laboratory experiments that were performed to test

the theoretical predictions discussed in chapter 3. We begin by describing the ex-

perimental apparatus in section (4.1). Given a stratification, there are essentially

four parameters that affect the transmission parameter. These are: two spatial pa-

rameters (dominant wavenumber and spatial size of the forcing) and two temporal

parameters (dominant frequency and temporal size of the forcing). As is described

in section (4.2), internal waves were forced using a wave generator that is made of

discrete plates moving up and down. In this section, experimental limitations that al-

lowed us the flexibility to change only the temporal parameters are further discussed.

The results we obtained from our experiments are discussed in section (4.3), wherein

the method used to calculate the experimental transmission parameter is discussed in

section (4.3.1). We compare the experimental and theoretical transmission parameter

and present a discussion on the experimental velocity fields in section (4.3.2).

4.1 Apparatus

For the experimental studies, we used a glass wave tank that is 5.5 m long, 0.55 m

wide and 0.55 m high. The schematic of front view of the setup is shown in figure

(4-1). A photograph of the actual experimental setup is shown in figure (4-2). The

tank was separated by a partition that ran along its length creating a working section
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Figure 4-1: Schematic of the front view of the experimental setup. The observation

region is indicated by dotted lines and it is illuminated from underneath the tank by

the LASER sheet (depicted in green).
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Figure 4-2: Actual experimental setup indicating all the important components
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which was 0.2 m wide. There were parabolic reflectors at the ends of the tank that

reflected any waves that were generated in the working section of the tank so that

they were dissipated behind the partition (Echeverri, 2009).

Salt-densified water was used to set up the density stratification using the double-

bucket method, for which the flow rates out of the two buckets were controlled using

two peristaltic pumps. The flow rate from the dense water bucket to the freshwater

bucket and that from the freshwater bucket to the experimental tank were maintained

at 3 1pm and 6 1pm (where 1pm stands for liters per minute). As a result of the

stratification, density in the tank varied between 1000 kg/m3 and. 1040 kg/m 3 . A

Precision Measurements Engineering conductivity probe was calibrated and used to

measure the density profile. The calculated buoyancy frequency from the raw density

profile is plotted in figure (4-3). This profile differs a little from the profile given by

equation (2.8). The small bump in the buoyancy frequency just above the transition

region occurred due to experimental limitations of changing the volumes of water in

the buckets in the double-bucket method. Nevertheless, we account for this difference

by fitting a function of the following form:

N )=(N1+N2) (N1-N2) h(z+L) (N N 1 [z+L]2)NWz) N, +2 + N -2 tanh z +/ L +(N3 - N1)exp (_ [/6 ]_2
(4.1)

This function is essentially the one defined by equation (2.8) superimposed with a

Gaussian function in the transition region. The parameters: N1, N2 , N3 , A and L are

obtained by performing a least squares fit to the experimental data. As is shown in

figure (4-3), this function approximates the experimental buoyancy frequency profile

very well and is thus used for predictions from the semi-analytic model.

The velocity field of the generated internal waves was measured using PIV in a

50 cm x 50 cm observation region as indicated in figure (4-1). Hollow glass spheres

with a diameter of 8 - 10 lim were used to seed the flow. As indicated in figure

(4-1) and (4-2), a light sheet was created from underneath the tank using a pulsed

Nd:YAG laser. Images of the seeding particles were recorded using an Imager Pro

X 4M LaVision CCD camera at a resolution of 2042 x 2042 and at a rate of 32
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Figure 4-3: Experimental stratification profile. The left panel indicates the density

variation that is measured using the conductivity probe. The right panel shows the

buoyancy frequency profile obtained by numerical differentiation of the raw density

profile. The fitted analytic function to this profile is also indicated.

images per forcing period. Since the flow velocities are of the order of a few mm/s, a

single laser head was pulsed and cross-correlation was performed between consecutive

particle images. The post-processing and calibration of the cameras was done using

the DaVis PIV software developed by LaVision. An example experimental vertical

velocity field overlaid on the experimental schematic is indicated in figure (4-1).

4.2 Wave Generator Configuration

In order to force the internal waves, we used a wave generator that has been built based

on the design by Gostiaux et al. (2007) and later analyzed by Mercier et al. (2010).

The wave generator was set up on top of the tank as shown in figures (4-1) and (4-2).

It consisted of 84 individual plates whose vertical position is controlled by individual

circular cams whose centers can be offset from the spindle center. The eccentricity

(ej) and phase (#j) of the cams were adjusted individually, where j indicates the serial

number of the plates. The eccentricities ej were set to a maximum value of e = 5 mm.

The cams are attached to a spindle that was rotated by a motor at variable speed

(angular position of the spindle is given by -(t)). The time dependent vertical velocity

46



0.7 a) Angular Velocity (s-1) b) Plate (j) parameters 200 c) Fourier Transform of w3

--- Plate velocity (mm/s):
0.6 -Plate position (mm)

0.5 . - 150

0.4
0 100

0.3-

0.2 50

0.1-

0 -51 0
0 20 40 60 80 0 20 40 60 80 -1 0 1

Time (s) Time (s) W

Figure 4-4: An example of the temporal part of the wave generator forcing given

by equation (4.3). Panel a shows the angular velocity (d-y/dt) of the motor for the

following set of experimental parameters: wo = 0.68s-1, o-t = 50s, to = 40s, S =
20 s, e = 5 mm. Panel b indicates the vertical position and velocity of a single generator
plate. Panel c shows the amplitude of the Fourier Transform of the plate vertical

velocity wj, wherein the dotted red lines indicate wo.

of each plate can be expressed as:

wj (t) = ej cos(Oj + -y (t))d-y/dt. (4.2)

The wave generator provided two degrees of freedom in the horizontal spatial

direction (eccentricity and phase) but only one in time (-y(t)). Hence, getting a

temporally localized velocity profile that is smooth was non-trivial. Also, to set

the wave generator to realize a specific spatial profile, all of the plates and cams

need to be removed and configured individually. This limited our ability to vary the

spatial parameters of the forcing through an experiment. Therefore, we chose to fix

the spatial profile and vary the temporal parameters alone viz. frequency and time

window of the forcing. The spatial Gaussian envelope of the idealized forcing function

given by equation (2.9) was physically realized by setting ej = e exp(-(xj - xo) 2 /2ao)

and #j = koxj. Since the rotation of all the cams is given by a single function Y(t),

however, it was not possible to exactly reproduce the temporal part of the function

in equation (2.9). We thus utilized the following function for -'(t), such that dy/dt
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forms a localized temporal envelope:

=n [ (i- (to -at/2) tanh - (to + at/ 2) df. (4.3)
214 k\ J/6 6/6

Such a definition ensured that -y(t) changes monotonically and hence the phase speed

was always directed in the same direction. The phase speed of the forcing did not

remain constant, however, but increased to a maximum value of (wo/ko) in a time

6. It stayed at the maximum value for a time of about at and reduced back to zero

in 6. Nevertheless, such a -y(t) profile gave us a temporally localized forcing with a

broad frequency spectrum close to but not exactly wo. The forcing is also symmetric

about the time to which we will refer to as the mean time of the forcing. An example

angular velocity (dy/dt) profile is shown in figure (4-4). The Fourier Transform of

the plate velocity indicates that it has a peak at +wo and is fairly symmetric about

the peak. The function given by equation (4.3) thus served as an adequate function

for verifying our theoretical predictions.

The stepper motor on the wave generator was controlled using a LabView pro-

gram and an NI (National Instruments) motion controller to attain the intricate y(t)

profile. For the experimental runs, the wave generator was configured such that

ko = 40.69 m- 1 and a_ = 0.25 m and wo and at were varied. The choice of ko was

made so as to ensure that the Reynolds number associated with the excited waves

is not too small that viscous effects are highly dominant. A large value of ko would

result in a larger viscous dissipation as the viscous decay rate is proportional to k'

(Ghaemsaidi (2015)). For the chosen value of the wavenumber, the Reynolds number,

Re = Awo/vko was of the order of (10 - 100).

4.3 Results

For the stratification that was set up, we performed a total of 43 experimental runs

where only the temporal part of the forcing that is given by 'Y(t) in equation (4.3)

was varied. The value of 6 was arbitrarily set to 20s by ensuring that this value
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at(s) 6(s) to = 5 + (at + 6)/2 (s)
20 20 25
50 20 40
200 20 115

Table 4.1: Values chosen for temporal forcing parameters: at, 6 and to for the exper-
iments.

was larger than the typical buoyancy period in all the experiments. The dominant

frequency wo was varied from 0.68 s1 to 1.28s- 1 for three different values of at viz.

20, 50 and 200 s. This range of frequencies was especially chosen so that the internal

waves in the bottom layer are evanescent. Such a scenario ensures that all of the

forced energy is concentrated in the upper layer, thus leading to resonant peaks of

transmission (Ghaemsaidi (2015)). The value of the mean time to was chosen on the

basis of at (detailed values are show in table (4.1)). To better resolve the expected

peaks in the transmission parameter for at = 200 s, we performed experiments for 21

different values of wo that were equally spaced in the specified range. For at = 20s

and 50 s, 11 values of wo were used each.

4.3.1 Transmission Studies

In order to calculate the transmission parameter from the experimental data, the verti-

cal velocity field at a depth just below the transition region (that is, at z = -L + A/2)

was analyzed. The top 0.01% data values over all times and horizontal distances at

this depth were found and divided by the forcing amplitude Awo. The transmis-

sion parameter was defined as the mean of these values and the standard deviation

provided a rough error estimate for the experimentally measured transmission. This

method ensured that the measured transmission was not based on a single data value.

The choice of using the top 0.01% was arbitrary and made so as to ensure that suf-

ficient number of data values were actually considered for this calculation without

substantially lowering the transmission value due to averaging.

Figure (4-5) shows the experimentally obtained transmission for the experiments

we performed for 43 different sets of wo and at. Additionally, the theoretical
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Figure 4-5: Theoretical and experimental transmission for different values of the

temporal parameters at and wo. In panel a, the red, blue and green solid lines indicate

the transmission computed by using the semi-analytic model for a spatiotemporally

localized forcing. The solid black line indicates the transmission for a harmonic forcing

(O-2, at -+ oc). In panel b, the star markers are the experimental transmission values

with the colors corresponding to the respective t values. The vertical dotted lines in

both the panels indicate the buoyancy frequencies in the lower and upper layer (N2

and N1 ).
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transmission curves for spatiotemporally localized forcings and a harmonic forcing

(ot, cx -+ 00) are plotted. These were obtained from the semi-analytic model dis-

cussed in chapter 2.

4.3.2 Discussion

For the theoretical curves in figure (4-5), the transmission peaks are taller and the

troughs are deeper for higher values of Ut. This is consistent with the results discussed

in chapter 3. The peaks and troughs are, however, not as strong as the ones for a

harmonic forcing. For the lowest time window for at = 20 s, no evidence of either con-

structive or destructive interference is seen as the transmission varies monotonically

with wo.

The experimental transmission values follow a similar trend as the theoretical

curves. In regions of constructive interference, the transmission value for experiments

with higher at that is, a larger forcing time window, is higher. These transmission

peaks are observed around wo ~ 0.7 s-1 and wo ~ 1.0 s-1

Figure (4-6) shows the vertical velocity fields for wo = 0.68 s-1 when the trans-

mission of internal waves is amplified due to constructive interference between the

reflected waves and the forcing. It is evident from the magnitude of the vertical

velocity that for at = 200 s, internal waves undergo maximum amplification at the

mean time to of the forcing. This is a direct result of multiple interactions between the

reflected waves and the forcing that a larger forcing time window allows. For lower

values of Ut, the maximum amplitude of the vertical velocity is reduced. For later

times, instabilities are seen to arise in the case of at = 200 s which lead to a reduction

in the vertical length scale of the excited velocity field. This can be attributed to

the development of Parametric Subharmonic Instability (PSI) due to wave-wave in-

teractions. PSI effectively transfers energy from longer to shorter length scales. This

has been earlier reported in similar physical systems by Ghaemsaidi et al. (2016b).

This might be a reason behind the enhanced transmission at frequencies close to

wo ~ 0.7s-'. Occurrence of PSI allows for the leakage of energy to the bottom layer

as the daughter waves have a frequency that is lower than the parent frequency. We
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Figure 4-6: Plots of the experimental vertical velocity field normalized by the forcing
amplitude (w/(Awo)). All the panels indicate velocity fields forced at wO = 0.68 s- 1,
a frequency at which resonance occurs. Rows a, b and c indicate velocity fields for

at = 20, 50 and 200 s respectively. The left and right panels of each row correspond

to the velocity field at the time to (about which the angular velocity is symmetric)
and at 40 s after to.

52

-~-0.2

S-0.3

-0.4

b) t=to

-0.2

~ 0.3:

-0.4

c)

-0.1

-0.2

-0.3.

-0.4

a) t = to

-0.1 7*7%* -



0a) tto -0.5

-0.1

-0.2:

-0.3:

-0.4

0.1 0.2
X (M)

t = to

0.1 0.2
x (M)

c) tto

-0.1

-0.2

-0.3:

-0.4

0.1 0.2
x (M)

0.3 0.4

0.3 0.4

0.3 0.4

0.5

-0.1 WJ

-0.2

-0.3

-0.4

0.1 0.2 0.3
x (M)

t = to +40 s

-0.1

-0.2

-0.3

-0.4

0.1 0.2 0.3
x (M)

t =to+ 40s

-0.1

-0.2

-0.3

-0.4

0.1 0.2
x (M)

Figure 4-7: Plots of the experimental vertical velocity field normalized by the forcing
amplitude (w/(Awo)). All the panels indicate velocity fields forced at wO = 0.86s-1,
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ot = 20, 50 and 200 s respectively. The left and right panels of each row correspond

to the velocity field at the time to (about which the angular velocity is symmetric)
and at 40 s after to. The color scale is the same as in figure (4-6).
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also note that since we are considering time-localized forcings, the internal wave field

contains a band of frequencies that can potentially lead to wave-wave interactions.

However, when the forcing is highly localized, despite the frequency band being large,

there is not enough time for the instabilities to grow. This is why PSI does not occur

when at = 20 s.

In the diminution regions around wo ~ 0.85 s-1 and wo ~ 1.2 s-1 that are evident

through the transmission curves in figure (4-5), the transmission values for at = 200 s

are lower than those for at = 50 s, which are in turn lower than those for at = 20 s.

This provides evidence of larger destructive interference for a larger temporal size of

the forcing. The amplification and diminution values are, however, far off from the

predictions for a harmonic forcing due to the spatiotemporal localization.

For the scenario of destructive interference at wo = 0.86 s-1, velocity fields are

shown in figure (4-7). As compared to figure (4-6), the velocity amplitudes in all

the cases are much smaller due to diminution. For the case of at = 200 s, internal

waves undergo larger diminution as can be seen by the reduced velocity amplitude

as compared to smaller values of at. Contrary to the constructive interference case,

instabilities are not developed even at longer time scales. This is due to a significant

reduction in the velocity amplitudes thus preventing the growth of any wave-wave

interactions.

Overall, there is a good qualitative agreement between the theoretical and ex-

perimental results. We now revisit the criteria we had developed in chapter 3 to

determine whether the effect of interference is evident. This criteria is based on the

dimensionless parameters n, and nt defined in equation (3.3). n, and nt quantita-

tively represent the number of reflections the forcing supports for interference in a

spatial and temporal sense. In defining these parameters for the experimental see-

nario, the spatial size of the forcing is taken to be 4a., as the factor of 4 ensures that

we include 95% of the forcing amplitude in the Gaussian envelope. The temporal

part of the forcing, however, does not have a Gaussian envelope but is represented by

equation (4.3) where at (without any additional factors) represents the time window

for which the forcing is active. Since only the temporal parameters are varied, nx re-
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Figure 4-8: Plots of the critical ratios n, and nt. The left panel presents the plots
of n_ (solid black line) and nt (solid colored lines). nt is plotted for different values
of ot. The right panel indicates the minimum of n and nt. A log scale is used for
the y-axis. In both the panels, the black dotted line indicates the value of 1.5 for
reference.

mains the same for different values at but nt scales accordingly. These dimensionless

parameters are plotted in figure (4-8). It is clear that as the forcing gets de-localized,

nt increases. For the chosen spatial extent of the forcing, n., is well above 1 for all

frequencies. The value of nt, however, is lower than or close to 1 for at = 20 s. Ac-

cording to the results in chapter 3, for any effects of interference to be evident, the

minimum of n., and nt must be reasonably larger than 1. This explains why we do not

observe any transmission peaks or troughs for at = 20 s. It is to be noted that for the

forcing parameters chosen, even if the spatial extent allows for multiple reflections to

interfere, the temporal localization becomes the limiting factor for the case of smallest

at. For at = 200 s, there is a cross-over of the n,, and nt curves. This does not lower

the effect of interference as both n, and nt are well above 1 and thus support either

constructive or destructive interference.
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Chapter 5

Conclusions

In this thesis, we have performed a study of the effect of spatiotemporal localization

on the transmission and interference of internal waves in non-uniform stratifications.

Motivated by previous studies, we have considered the specific problem of boundary-

forced internal waves in non-uniform stratifications. In chapter 1, it was argued

that all of the previous studies related to internal wave interference have considered

temporally harmonic internal waves. We made the case that since the transmission of

internal waves in non-uniform stratifications strongly depends on interference between

incident and reflected waves, spatial as well as temporal localization must have a non-

negligible impact on the transmission.

To explore the above idea further, we presented an idealized physical problem

in chapter 2. We considered a two-layer stratification system with a finite transition

layer where the buoyancy frequency changes continuously. This stratified fluid system

was forced by a spatiotemporally localized forcing in the vertical velocity at the top

boundary. In order to obtain internal wave field solutions for this problem, the semi-

analytic model earlier developed by Ghaemsaidi et al. (2016 a) was further extended to

consider such localized forcings. In this chapter, we also discussed a numerical model

for solving the fully nonlinear Navier-Stokes equations that was used for validation

purposes.

In chapter 3, we made use of a motivating example to demonstrate how spatiotem-

poral localization of the boundary forcing causes a significant change in the trans-
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mission. This example was also used to compare the internal wave fields obtained

from the semi-analytic and the numerical model. Having validated the semi-analytic

model, we utilized it to perform parametric studies and analyze the effects of local-

ization on internal wave interference. In this regard, a practical criteria to determine

whether the effects of interference would be evident was developed. This criteria is

dependent on several parameters such as the temporal and spatial size of the forcing,

the depth and buoyancy frequency of the upper layer, and the dominant frequency

and wavenumber of the forcing. It essentially quantifies the number of interactions

between the reflected waves and the forcing that the spatiotemporal size of the forc-

ing can support. We have developed this criteria with a view of determining how

closely the effects of interference for a non-harmonic forcing resemble with those for a

harmonic forcing. For the motivating example, it was shown that this criteria mean-

ingfully determines the parametric regimes where transmission peaks or troughs due

to constructive or destructive interference are expected. It was also found that there

are significant differences in the amount of energy required to force the system with

a non-harmonic forcing as opposed to a harmonic one.

In order to demonstrate our theoretical predictions, we performed a set of labo-

ratory experiments that were presented in chapter 4. For a given stratification and a

fixed spatial nature of the forcing, we performed experiments for three different values

of the temporal size of the forcing over a range of forced frequencies. These exper-

iments were in very good qualitative agreement with the theoretical predictions for

transmission. As expected, on temporal de-localization of the forcing, transmission

peaks and troughs were seen to get stronger, thus indicating higher degree of con-

structive or destructive interference. For the experimental parameters, we revisited

our criteria from chapter 3 and showed that it correctly explains the experimental

results as well.

Overall, this thesis demonstrates that transmission results for internal waves un-

dergoing interferences in non-uniform stratifications can be highly dependent on how

spatiotemporally localized they are. For example, a direct implication of our study is

that the amount of energy a storm can transfer to the deep ocean through excitation
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of internal waves greatly depends on its spatial extent and the amount of time it

lasts for. In such cases, performing a harmonic analysis by considering the dominant

frequency of the storm can lead to incorrect results. The practical criteria we have

developed can be potentially applied to such geophysical scenarios because of the ex-

istence of a well-defined pycnocline in the upper ocean in most cases. This provides

an estimate for the length scale of the upper layer that plays a crucial role in applying

the criteria.

5.1 Future Work

The semi-analytic model we have developed for localized forcings could be applied

to stratification profiles from the real ocean. In a typical ocean stratification, the

depth of the pycnocline below the mixed layer can be taken as a length scale for the

criteria we have developed. The criteria can then be utilized to determine whether the

effects of interference would be evident. Such an analysis can thus identify the correct

length and time scales for an ocean storm to excite internal waves that undergo any

interference in the upper ocean.

Extension of this study to more complicated stratifications is another avenue of

future research. As discussed in chapter 1, an example of a complex stratification

profile is the double-diffusive staircase structure that is prevalent in the Arctic ocean.

In such a case, it is unclear what the relevant length scale must be so that the criteria

that we have developed could be directly applied. The model we have developed can,

however, be applied to such stratification profiles to perform a study to identify the

relevant length scale.
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