
MIT Open Access Articles

Exploiting semantic commutativity in hardware speculation

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Zhang, Guowei et al. “Exploiting Semantic Commutativity in Hardware Speculation.”
2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), October
15-19 2016, Taipei,Taiwan, Institute of Electrical and Electronics Engineers (IEEE), December
2016 © 2016 Institute of Electrical and Electronics Engineers (IEEE)

As Published: http://dx.doi.org/10.1109/MICRO.2016.7783737

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/111987

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/111987
http://creativecommons.org/licenses/by-nc-sa/4.0/

Appears in the Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2016

Exploiting Semantic Commutativity
in Hardware Speculation

Guowei Zhang Virginia Chiu Daniel Sanchez
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

{zhanggw, vchiu, sanchez}@csail.mit.edu

Abstract—Hardware speculative execution schemes such as
hardware transactional memory (HTM) enjoy low run-time
overheads but suffer from limited concurrency because they rely
on reads and writes to detect conflicts. By contrast, software spec-
ulation schemes can exploit semantic knowledge of concurrent
operations to reduce conflicts. In particular, they often exploit
that many operations on shared data, like insertions into sets, are
semantically commutative: they produce semantically equivalent
results when reordered. However, software techniques often incur
unacceptable run-time overheads.

To solve this dichotomy, we present COMMTM, an HTM
that exploits semantic commutativity. COMMTM extends the
coherence protocol and conflict detection scheme to support
user-defined commutative operations. Multiple cores can perform
commutative operations to the same data concurrently and
without conflicts. COMMTM preserves transactional guarantees
and can be applied to arbitrary HTMs.

COMMTM scales on many operations that serialize in conven-
tional HTMs, like set insertions, reference counting, and top-K
insertions, and retains the low overhead of HTMs. As a result,
at 128 cores, COMMTM outperforms a conventional eager-lazy
HTM by up to 3.4× and reduces or eliminates aborts.

I. INTRODUCTION

Many software and hardware techniques, such as transac-

tional memory (TM) or speculative multithreading, rely on

speculative execution to parallelize programs with atomic

regions. Multiple atomic regions are executed concurrently,

and a conflict detection technique flags potentially unsafe

interleavings of memory accesses (e.g., in TM, those that may

violate serializability). Upon a conflict, one or more regions

are rolled back and reexecuted to preserve correctness.

Ideally, conflict detection should (1) be precise, i.e., allow as

many safe interleavings as possible to maximize concurrency,

and (2) incur minimal run-time costs. Software and hardware

conflict detection techniques satisfy either of these properties

but sacrifice the other: software techniques can leverage

program semantics to be highly precise, but they incur high run-

time overheads (e.g., 2-6× in software TM [10]); meanwhile,

hardware techniques incur small overheads, but are imprecise

because they rely on reads and writes to detect conflicts.

In particular, software conflict detection techniques often

leverage semantic commutativity of transactional operations to

reduce conflicts. Two operations are semantically commutative

when reordering them produces results that are semantically

equivalent, even if the concrete resulting states are different.

Semantically commutative operations executed in concurrent

transactions need not conflict. For example, consider two

consecutive insertions of different values a and b to a set s im-

plemented as a linked list. If s.insert(a) and s.insert(b)

are reordered, the concrete representation of these elements

in set s will be different (either a or b will be in front).

However, since the order of elements in s does not matter

(a set is an unordered data structure), both representations

are semantically equivalent. Therefore, insertions into sets

commute. Software techniques can leverage such semantic

commutativity to perform set insertions concurrently instead

of serializing them. Semantic commutativity is common in

other contexts beyond this simple example [13, 25, 34, 41].

Semantic commutativity was first exploited in the 1980s [51],

and is now common in databases [6, 34], and parallelizing

compilers and runtimes [25, 36, 41] (Sec. II).

By contrast, hardware conflict detection schemes do not

exploit commutativity. The key reason is that hardware schemes

leverage the coherence protocol to detect conflicts cheaply, and

current protocols only support reads and writes. For instance,

in the example above, concurrent transactions that insert into

the same set conflict because they read and write the set’s

head pointer, and are serialized. This lack of precision can

significantly limit concurrency, to the point that prior work finds

that commutativity-aware software TM (STM) outperforms

hardware TM (HTM) despite its higher overheads [25, 26].

To solve this dichotomy, we present COMMTM, a commuta-

tivity-aware HTM (Sec. III). COMMTM extends the coherence

protocol with a reducible state. Lines in this state must be

tagged with a user-defined label. Multiple caches can hold

a given line in the reducible state with the same label, and

transactions can implement commutative operations through

labeled loads and stores that keep the line in the reducible state.

These commutative operations proceed concurrently, without

triggering conflicts or incurring any communication. A non-

commutative operation (e.g., a conventional load or store)

triggers a user-defined reduction that merges the different

cache lines and may abort transactions with outstanding

reducible updates. For instance, in the example above, multiple

transactions can perform concurrent insert operations by

acquiring the set’s descriptor in insert-only mode and appending

elements to their local linked lists. A normal read triggers an

insert-reduction that merges the local linked lists.

COMMTM bears interesting parallels to prior commutativity-978-1-5090-3508-3/16/$31.00 c© 2016 IEEE

1

aware STMs. There is a wide spectrum of STM conflict

detection schemes that trade precision for additional overheads.

Similarly, we explore several variants of COMMTM that

trade precision for hardware complexity. First, we present

a basic version of COMMTM (Sec. III) that achieves the

same precision as software semantic locking [25, 51]. We

then extend COMMTM with gather requests (Sec. IV), which

allow software to redistribute reducible data among caches,

achieving much higher concurrency in important use cases.

We evaluate COMMTM with microbenchmarks (Sec. VI)

and full TM applications (Sec. VII). Microbenchmarks show

that COMMTM scales on a variety of commutative operations

that allow no concurrency in conventional HTMs, such as

set insertions, reference counting, ordered puts, and top-K

insertions. At 128 cores, COMMTM improves full-application

performance by up to 3.4×, lowers private cache misses by up

to 45%, and reduces or even eliminates transaction aborts.

II. BACKGROUND

A. Semantic Commutativity

Semantic commutativity is frequently used in software

conflict detection schemes [20, 25, 26, 34, 36, 40, 51]. Most

work in this area focuses on techniques that reason about

operations to abstract data types. Not all commutativity-aware

conflict detection schemes are equally precise: simple and

general techniques, like semantic locking [25, 40, 51], flag some

commutative operations as conflicts, while more sophisticated

schemes, like gatekeepers [25], incur fewer conflicts but have

higher overheads and are often specific to particular patterns.

In this work we focus on semantic locking [40, 51], also

known as abstract locking. Semantic locking generalizes read-

write locking schemes (e.g., two-phase locking): transactions

can acquire a lock protecting a particular object in one of a

number of modes; multiple semantically-commutative methods

acquire the lock in a compatible mode and proceed concurrently.

Semantic locking requires additional synchronization on the

actual accesses to shared data, e.g., logging or reductions.

COMMTM allows at least as much concurrency as semantic

locking, with the added benefit of reducing communication by

using caches to buffer and coalesce commutative updates. With

gather requests (Sec. IV), COMMTM allows more concurrency

than semantic locking.

B. Commutativity-Aware Cache Coherence

Unlike software conflict detection schemes, hardware

schemes detect conflicts using read-write dependences. The

reason is that they rely on the coherence protocol, which

operates in terms of reads and writes. Recently, Coup [54]

has shown that the coherence protocol can be extended to

support local and concurrent commutative updates. Coup allows

multiple caches to simultaneously hold update-only permission

to the same cache line. Caches with update-only permission

can buffer commutative updates (e.g., additions or bit-wise

operations), but cannot satisfy read requests. Upon a read

request, Coup reduces the partial updates buffered in private

caches to produce the final value.

Like Coup, COMMTM modifies the coherence protocol to

support a new state that does not trigger coherence actions on

updates, avoiding conflicts. However, Coup does not work in a

transactional context (only for single-instruction updates) and is

restricted to a small set of strictly commutative operations, i.e.,

those that produce the same bit pattern when reordered. Instead,

COMMTM supports the broader range of multi-instruction,

semantically commutative operations. Moreover, COMMTM

shows that there is a symbiotic relationship between semantic

commutativity and speculative execution: COMMTM relies on

transactions to make commutative multi-instruction sequences

atomic, so semantic commutativity would be hard to exploit

without speculative execution; and COMMTM accelerates

speculative execution much more than Coup does single-

instruction commutative updates, since apart from reducing

communication, COMMTM avoids conflicts.

III. COMMTM

We now present the COMMTM commutativity-aware HTM.

COMMTM extends the coherence protocol and conflict detec-

tion scheme to allow multiple private caches to simultaneously

hold data in a user-defined reducible state. Transactions can use

labeled memory operations to read and update these private,

reducible lines locally without triggering conflicts. When

another transaction issues an operation that does not commute

given the current reducible state and label (i.e., a normal load or

store or a labeled operation with a different label), COMMTM

transparently performs a user-defined reduction before serving

the data. This approach preserves transactional guarantees:

semantically-commutative operations proceed concurrently to

improve performance, but non-commutative operations cannot

observe reducible lines with partial updates.

We first introduce COMMTM’s programming interface and

ISA. We then present a concrete COMMTM implementation

that extends an eager-lazy HTM baseline. Finally, we show

how to generalize COMMTM to support other HTM designs.

A. CommTM Programming Interface and ISA

COMMTM requires simple program changes to exploit

commutativity: defining a reducible state to avoid conflicts

among commutative operations, using labeled memory accesses

to perform each commutative operation within a transaction,

and implementing user-defined reduction handlers to merge

partial updates to the data.

In this section, we use a very simple example to introduce

COMMTM’s API: concurrent increments to a shared counter.

Counter increments are both strictly and semantically com-

mutative; we later show how COMMTM also supports more

involved operations that are semantically commutative but not

strictly commutative, such as top-K insertions. Fig. 1 shows

how COMMTM allows multiple transactions to increment the

same counter concurrently without triggering conflicts.

User-defined reducible state and labels: COMMTM extends

the conventional exclusive and shared read-only states with a

reducible state. Lines in this reducible state must be tagged with

a label. The architecture supports a limited number of labels

2

(e.g., 8). The program should allocate a different label for each

set of commutative operations; we discuss how to virtualize

these labels in Sec. III-D. Each label has an associated, user-

defined identity value, which may be used to initialize cache

lines that enter the reducible state. For example, to implement

commutative addition, we allocate one label, ADD, to represent

deltas to shared counters, and set its identity value to zero.

Labeled load and store instructions: To let the program denote

what accesses form a commutative operation, COMMTM

introduces labeled memory instructions. A labeled load or

store simply includes the label of its desired reducible state,

but is otherwise identical to a normal memory operation. For

instance, commutative addition can be implemented as follows:

void add(int* counter, int delta) {

tx_begin();

int localValue = load[ADD](counter);

int newLocalValue = localValue + delta;

store[ADD](counter, newLocalValue);

tx_end();

}

load[ADD] and store[ADD] inform the memory system that

it may grant reducible permission with the ADD label to

multiple caches. This way, multiple transactions can perform

commutative additions locally and concurrently. This sequence

is performed within a transaction to guarantee its atomicity

(this code may also be called from another transaction, in which

case it is handled as a conventional nested transaction [31]).

User-defined reductions: Finally, COMMTM requires the pro-

gram to specify a per-label reduction handler that merges

reducible cache lines. This function takes the address of the

cache line and the data to merge into it. For example, the

reduction operation for addition is:

void add_reduce(int* counterLine , int[] deltas) {

for (int i = 0; i < intsPerCacheLine; i++) {

int v = load[ADD](counterLine[i]);

int nv = v + deltas[i];

store[ADD](counterLine[i], nv);

}

}

Unlike commutative operations done through labeled loads

and stores, reduction handlers are not transactional. Moreover,

to ease COMMTM’s implementation, we restrict the types of

accesses that reduction handlers can make. Specifically, while

handlers can access arbitrary data with read-only and exclusive

permissions, they should not trigger additional reductions (i.e.,

they cannot access other lines in reducible state).

Arbitrary object sizes: COMMTM operates at cache-line granu-

larity, so smaller or larger objects need additional conventions.

To support objects smaller than a cache line, COMMTM

requires data to be aligned to object-size boundaries. For

example, each 64-byte line can hold up to 8 8-byte counters,

each aligned at a 8-byte boundary. Because a reduction of

arbitrary data with the identity value leaves the data unchanged,

padding is unnecessary. Reduction handlers simply assume that

lines are full of aligned values, and reduce all data in the

line. For example, the reduction handler above tries to reduce

all 8 possible counters; if the line has only one counter, data

X0

X2

X1

X3

ld A

st A

ld A

ld A
st A

ld A

ld A
st A

ld A

commit

restart

restart

commit

commit

ld A
st A

commit

restart

ld A

X5 ld A
st A ld A

commit

restart

ld A

commit

restart

X4

(a) Conventional HTM

X0

X2

X1 ld[ADD] A

st[ADD] A

ld[ADD] A

st[ADD] A

ld[ADD] A

st[ADD] A
commit commit

commit

X3 ld[ADD] A

st[ADD] A
commit

X4 ld[ADD] A

st[ADD] A commit X5

ld A

ld A

commit

restart

(b) COMMTM

Fig. 1. Example comparing (a) a conventional HTM and (b) COMMTM.
Transactions X0–X4 increment a shared counter, and X5 reads it. While
conventional HTMs serialize all transactions, COMMTM allows commutative
operations (additions in X0–X4) to happen concurrently, serializing non-
commutative operations (the load in X5) only.

Core - 0

L1I L1D

L2 - 0

Core - 7

L1I L1D

L2 - 7

…

Shared L3 and directory

16-tile, 128-core chip

M
e
m

o
ry

 co
ntro

lle
r

Memory controller

Memory controller

M
e
m

o
ry

 c
o
nt

ro
lle

r
Tile

Tile organization

reduction handlers

labeled loads/stores

reducible state
labels

COMMTM additions

Fig. 2. Baseline system and main COMMTM additions.

surrounding the counter will be reduced with identity elements

(zeros) and will remain unchanged.

To support objects larger than a cache line, COMMTM relies

on indirection, using the reducible cache line to hold pointers

to the object’s partial updates. As we will see in Sec. VI, this

naturally arises with data structures like sets or linked lists.

B. CommTM Implementation

B.1. Eager-Lazy HTM Baseline

To make our discussion concrete, we present COMMTM in

the context of a specific HTM baseline. This HTM uses eager

conflict detection and lazy (buffer-based) version management,

as in LTM [4] and Intel’s TSX [53]. We assume a multicore

system with per-core private L1s and L2s, and a shared L3,

as shown in Fig. 2. Cores buffer speculatively-updated data in

the L1 cache; the L2 has non-speculative data only. Evicting

speculatively-accessed data from the L1 causes the transaction

to abort. The HTM uses the coherence protocol to detect

conflicts eagerly. Transactions are timestamped, and timestamps

are used for conflict resolution [30]: on a conflict, the earlier

transaction wins, and aborted transactions use randomized

backoff to avoid livelock. This conflict resolution scheme frees

eager-lazy HTMs from common pathologies [9].

B.2. Coherence protocol

COMMTM extends the coherence protocol with an additional

state, user-defined reducible (U). For example, Fig. 3 shows

3

S

I

M

R

R W

W W

W

MSI

Transitions
Initiated by own core (gain permissions)
Initiated by others (lose permissions)

States

Legend

Requests Read Write Labeled load/store

S

I

M

U

R

R

W, R
L

W, L

L
W

W, R

W, R

W

CommTM-MSI

L

Invalid Modified User-defined
reducible

Shared
(read-only)

Fig. 3. State-transition diagrams of MSI and COMMTM protocols. For clarity,
diagrams omit actions that do not cause a transition (e.g., R requests in S).

how COMMTM extends MSI with the U state. Lines enter U

in response to labeled loads and stores, and leave U through

reductions. Each U-state line is labeled with the type of

reducible data it contains (e.g., ADD). Lines in U can satisfy

loads and stores whose label matches the line’s.

Other states in the original protocol retain similar functional-

ity. For example, in Fig. 3, M can satisfy all memory requests

(conventional and labeled), S can only satisfy conventional

loads, and I cannot satisfy any requests. In the rest of the

section we will show how lines transition among these states.

COMMTM’s U state is similar to Coup’s update-only

state [54]. However, COMMTM requires substantially different

support from Coup in nearly all other aspects: whereas Coup

requires new update-only instructions for each commutative

operation, COMMTM allows programs to implement arbitrary

commutative operations, exploiting transactional memory to

make them atomic; whereas Coup implements fixed-function

reduction units, COMMTM allows arbitrary reduction functions;

and whereas Coup focuses on reducing communication in a non-

transactional context, COMMTM reduces both transactional

conflicts and communication.

B.3. Transactional Execution

Labeled memory operations within transactions cause lines

to enter the U state. We first discuss how state transitions

work in the absence of transactional conflicts, then explain

how conflict detection handles U-state lines.

On a labeled request to a line with invalid or read-only

permissions, the cache issues a GETU request and receives the

line in U. There are five possible cases:

1) If no other private cache has the line, the directory serves

the data directly, as shown in Fig. 4a.

2) If there are one or more sharers in S, the directory invalidates

them, then serves the data.

3) If there are one or more sharers in U with a different label

from the request’s, the directory asks them to forward the

data to the requesting core, which performs a reduction to

produce the data. Reductions are discussed in Sec. III-B4.

Sharer permissions (Ex: exclusive;
ShU: reducible)

A: 3 A: 20 Private
caches Modified User-defined

reducible

Shared
cache

A: ShU{1,2}: --

Address Sharers

Legend

L2

load[ADD](A)

Shared cache

A: 24

Shared cache

A: ShU{0}: --

A: 24

Initial state

Final state

Tim
e

L2

L1 L1

Core 0 Core 1

L2 L2

L1 L1

Core 0 Core 1

A: 24

(a) No other sharers

L2

load[ADD](A)

Shared cache

A: Ex{1}: --

A: 24

Shared cache

A: ShU{0,1}: --

A: 0

Initial state

Final state

L2

L1 L1

Core 0 Core 1

L2 L2

L1 L1

Core 0 Core 1

A: 0

A: 24

(b) Downgrade from M to U

Fig. 4. Serving labeled memory accesses: (a) the first GETU requester obtains
the data; and (b) another cache with the line in M is downgraded to U and
retains the data, while the requester initializes the line with the identity value.
Each diagram shows the initial and final states in the shared and private caches.

A: 3 00 Address

Speculation status bits (only in L1) U-state line: Data

L2

L1

Core

A: 3

A: 3 00

TX (ts:0)

R/W: speculatively-read/written
RW

tx_begin()
ld[ADD](A)
st[ADD](A)

1
tx_end()

2
tx_begin()
ld[ADD](A)
st[ADD](A)

3
L2

L1

Core

A: 3

A: 4 11

L2

L1

Core

A: 3

A: 4 00

TX (ts:1)

L2

L1

Core

A: 4

A: 5 11

Fig. 5. Value management for U-state lines is similar to that of M-state lines.
L1 tag bits record whether the line is speculatively read or written (using the
state and label to infer whether from labeled or unlabeled instructions). Upon
commit, spec-R/W bits are reset to zero. Before being written by another
transaction, dirty U-state lines are written back to the L2.

4) If there are one or more sharers in U with the same label,

the directory grants U permission, but does not serve any

data.

5) If there is an exclusive sharer in M, the directory downgrades

that line to U and grants U to the requester without serving

any data, as shown in Fig. 4b.

In cases 1–3, the requester receives both U permission and the

data; in cases 4 and 5, the requester does not receive any data,

and instead initializes its local line with user-defined identity

elements (e.g., zeros for ADD). Labeled operations must be

aware that data may be scattered across multiple caches. In

all cases, COMMTM preserves a key invariant: reducing the

private versions of the line produces the right value.

Speculative value management: Value management for lines

in U that are modified is nearly identical to that of lines in M.

Fig. 5 shows how a line in U is read, modified, and, in the

absence of conflicts, committed: 1 Both normal and labeled

writes are buffered in the L1 cache, and non-speculative values

are stored in the private L2. 2 When the transaction commits,

all dirty lines in the L1 are marked non-speculative. 3 Before a

dirty line in the L1 is speculatively written by a new transaction,

its value is forwarded to the L2. Thus, if the transaction is

4

Sharer permissions (Ex: exclusive;
ShU: reducible)

A: 3 A: 20 Private
caches Modified User-defined

reducible

Shared
cache

A: ShU{1,2}: --

Address Sharers

Legend

L2

Shared cache

A: ShU{0,1}: --

Shared cache

A: Ex{1}: --

Initial state

Final state

L2

L1 L1

Core 0 Core 1

L2 L2

L1 L1

A: 3 A: 28

TX (ts: 7) TX (ts: 5)

Core 0 Core 1
ABORT TX (ts: 5)

A: 31

A: 31

A: 4

TX abort

reduction

(a) Invalidation request from lower-
timestamp transaction

L2

Shared cache

A: ShU{0,1}: --

Shared cache

A: ShU{0,1}: --

Initial state

Final state

L2

L1 L1

Core 0 Core 1

L2 L2

L1 L1

A: 3 A: 28

TX (ts: 7) TX (ts: 9)

Core 0 Core 1
ABORT TX (ts: 7)

A: 4

A: 3

A: 4

A: 28

TX abort

(b) Invalidation request from
higher-timestamp transaction

Fig. 6. Invalidations to lines in the labeled set cause a conflict. In this example,
core 0 receives an invalidation request to a U-state line in its transaction’s
labeled set: (a) if requester has a lower timestamp, abort and forward data;
and (b) if requester has a higher timestamp, NACK invalidation.

aborted, its speculative updates to data in both M and U can

be safely discarded, as the L2 contains the correct value.

Conflict detection and resolution: COMMTM leverages the

coherence protocol to detect conflicts. In our baseline, conflicts

are triggered by invalidation and downgrade requests to lines

read or modified by the current transaction (i.e., lines in the

transaction’s read- or write-sets). Similarly, in COMMTM,

invalidations to lines that have received a labeled operation

from the current transaction trigger a conflict. We call this set

of lines the transaction’s labeled set. We leverage the existing

L1 status bits to track the labeled set, as shown in Fig. 5.

COMMTM is orthogonal to the conflict resolution protocol.

We leverage the timestamp-based approach of our baseline

HTM: each transaction is assigned a unique timestamp that

is included in all memory requests. On an invalidation to a

line in the transaction’s read, write, or labeled set, the core

compares its transaction’s timestamp and the requester’s. If the

receiving transaction is younger (i.e., has a higher timestamp),

it honors the invalidation request and aborts; if it is older than

the requester, it replies with a NACK, which causes the requester

to abort. Fig. 6 shows both cases for a line in the labeled set.

B.4. Reductions

COMMTM performs reductions transparently to satisfy non-

commutative requests. There is a wide range of implementation

choices for reductions, as well as important considerations for

deadlock avoidance.

We choose to perform each reduction at the core that issues

the reduction-triggering request. Specifically, each core features

a shadow hardware thread dedicated to perform reductions.

Each core has a small (e.g., 2-entry) buffer to hold lines waiting

to be reduced. The head entry of the buffer is memory-mapped

Sharer permissions (Ex: exclusive;
ShU: reducible)

A: 3 A: 20 Private
caches Modified User-defined

reducible

Shared
cache

A: ShU{1,2}: --

Address Sharers

Legend

Shared cache

Shared cache
A: Ex{1}: --

Initial state

Final state

L2 L2

L1 L1

Core 1 Core 2

A: ShU{0,2,3}: --

L2

L1

Core 3

L1

Core 2

L2

L1

Core 1

A: 3 L2 A: 28

L2

L1

Core 3

1

1

2
2

5

4
3

A: --

A: 36

user-
defined
reduction

L2

L1

Core 0

A: 5

L2

L1

Core 0

1

2

Fig. 7. Reductions are triggered by non-commutative requests. In this example,
core 1 issues an unlabeled or differently-labeled request, causing a full reduction
of line A’s U-state data, held in several private caches.

to a fixed physical page, and this page is mapped (read-only)

to the shadow thread’s address space. Fig. 7 shows the steps

of a reduction: 1 When the directory receives a reduction-

triggering request, it sends invalidation requests to all the cores

with U-state permissions. 2 Each of the cores receiving the

invalidation forwards the line to the requester. 3 When each

forwarded line arrives at the requester, the shadow thread runs

the reduction handler, which merges it with the current line

(if the requester does not have the line in U yet, it transitions

to U on the first forwarded line it receives). 4 After all lines

have been received and reduced, the requester transitions to M,

4 notifies the directory, and 5 serves the original request.

Dedicating a hardware thread to reductions ensures that they

are performed quickly, but adds implementation cost. Alter-

natively, COMMTM could perform reductions by interrupting

the requesting thread, e.g., through user-level interrupts [28,

44, 52]. Because reductions are not transactional, this would

require implementing transaction pause/unpause [31, 55].

NACKed reductions: When a reduction happens to a line that

has been speculatively updated by a transaction, the core

receiving the invalidation may NACK the request, as shown in

Fig. 6b. In this case, the requesting core still reduces the values

it receives, but aborts its transaction afterwards, retaining its

data in the U state. When reexecuted, the transaction will retry

the reduction, and will eventually succeed thanks to timestamp-

based conflict resolution.

For simplicity, non-speculative requests have no timestamp

and cannot be NACKed. Finally, even though the request they

seek to serve may come from a transaction, reductions are

not speculative: reduction handlers always operate on non-

speculative data and have no atomicity guarantees. Trans-

actional reductions would be more complex, and they are

5

unnecessary in all the use cases we study (Secs. VI and VII).

Deadlock avoidance: Because the memory request that triggers

the reduction blocks until the reduction is done, and reduction

handlers may themselves issue memory accesses, there are

subtle corner cases that may lead to deadlock and must be

addressed. First, as mentioned in Sec. III-A, we enforce that

reduction handlers cannot trigger reductions themselves (this

restriction is easy to satisfy in all the reduction handlers we

study). Second, to prevent reductions from causing protocol

deadlocks, we dedicate an extra virtual network for forwarded

U-state data. This adds moderate buffering requirements to

on-chip network routers [35], which must already support 3-6

virtual networks in conventional protocols [7, 33, 46]. Third,

we reserve a way in all cache levels for data with permissions

other than U. Misses from reductions always fill data in that

way, which ensures that they will not evict data in U, which

would necessitate a reduction.

With these provisos, memory accesses caused by reductions

cannot cause a cyclic dependence with the access they are

blocking, avoiding deadlock. Note that both the corner cases

and the deadlock-avoidance strategies we adopt are similar to

those in architectures that support active messages, where these

topics are well studied [2, 28, 44, 50] (a forward response

triggered by a reduction is similar to an active message).

Handling unlabeled operations to speculatively-modified la-

beled data: Finally, COMMTM must handle a transaction that

accesses the same data through labeled and unlabeled operations

(e.g., it first adds a value to a shared counter, and then reads

it). Suppose that an unlabeled access to data in U causes a

reduction (i.e., if the core’s U-state line was not the only one

in the system). If the data was speculatively modified by our

own transaction, we cannot simply incorporate this data to the

reduction, as the transaction may abort, leaving COMMTM

unable to reconstruct the non-speculative value of the data. For

simplicity, in this case we abort the transaction and perform

the reduction with the non-speculative state, re-fetched from

the core’s L2. When restarted, labeled loads and stores are

performed as conventional loads and stores, so the transaction

does not encounter this case again. Though we could avoid this

abort through more sophisticated schemes (e.g., performing

speculative and non-speculative reductions), we do not observe

this behavior in any of our use cases.

B.5. Evictions

Evictions of lines in U from private caches are handled as

follows: if no other private caches have U permissions for the

line apart from the one that initiates the eviction, the directory

treats this as a normal dirty writeback. When there are other

sharers, the directory forwards the data to one of the sharers,

chosen at random, which reduces it with its local line.

If the chosen core is performing a transaction that touches

this data, for simplicity, the transaction is aborted.

Finally, evictions of lines in U from the shared cache cause

a reduction at one of the cores sharing the line. Since the

last-level cache is inclusive, this eviction aborts all transactions

that have accessed the line.

C. Putting it all Together: Overheads

In summary, our COMMTM implementation introduces

moderate hardware overheads:

• Labeled load and store instructions in ISA and cores.

• Cache at all levels need to store per-tag label bits. Supporting

eight labels requires 3 bits/line, introducing 0.6% area

overhead for caches with 64-byte lines.

• Extended coherence protocol and cache controllers. While

we have not verified COMMTM’s protocol extensions, they

are similar to Coup’s, which has reasonable verification

complexity (by merging S and U, Coup requires no extra

stable states and only 1–5 transient states [54]).

• One extra virtual network for forwarded U data, which adds

few KBs of router buffers across the system [15].

• One shadow hardware thread per core to perform reductions.

In principle, this is the most expensive addition (an extra

thread increases core area by about 5% [22]). However,

commercial processors already support multiple hardware

threads, and the shadow thread can be used as a normal

thread if the application does not benefit from COMMTM.

D. Generalizing CommTM

COMMTM can be applied to other contexts beyond our

particular implementation.

Other protocols: While we have used MSI for simplicity,

COMMTM can easily extend other invalidation-based protocols,

such as MESI or MOESI, with the U state [54]. In fact, we

use and extend MESI in our evaluation.

Virtualizing labels: Large applications with many data types

may have more semantically-commutative operations than

hardware has labels. With moderate toolchain support, program-

mers should be able to define and use as many commutative

operations as they need. At link time, the linker can map these

operations to a small number of labels. Multiple operations

may share the same label under two conditions. First, it should

not be possible for both commutative operations to access

the same data. There are many cases where this is naturally

guaranteed, for instance, on operations on different types (e.g.,

insertions into sets and lists). Second, U-state lines need to

have enough information (e.g., the data structure’s type) to

allow reduction handlers to perform the right operation. If too

many labels are still needed, it is always safe to turn labeled

loads and stores into unlabeled ones (e.g., using profile-guided

optimization to preserve the most profitable labels).

Lazy conflict detection: While we focus on eager conflict

detection, COMMTM applies to HTMs with lazy (commit-

time) conflict detection, such as TCC [12, 19] or Bulk [11, 37].

This would simply require acquiring lines in S or U without

restrictions (triggering non-speculative reductions if needed,

but without flagging conflicts), buffering speculative updates

(both commutative and non-commutative), and making them

public when the transaction commits. Commits would then

abort all executing transactions with non-commutative updates.

For example, a transaction that triggers a reduction and then

commits would abort all transactions that accessed the line

6

Sharer permissions (Ex: exclusive;
ShU: reducible)

A: 3
A: 20 Private

caches Modified User-defined
reducible

Shared
cache

A: ShU{1,2}: --

Address Sharers

Legend

User-defined reduction User-defined split

L2

Shared cache
A: ShU{0,1,2,3}: --

A: 9

Shared cache
A: ShU{0,1,2,3}: --

A: 14

Initial state

Final state

L2

L1 L1

L2 L2

L1 L1 A: 14

Core 1

Core 1

A: 19

A: 19

A: 0

A: 0

A: 9

L2

A: 0

L1

L2

L1 A: 0

Core 0

Core 0

A: 0

A: 0

L2

A: 12

L1

L2

L1 A: 12

Core 3

Core 3

A: 16

A: 16

Core 2

Core 2

Fig. 8. Gather requests collect and reduce U-state data from other caches. In
this example, core 2 issues a gather request to satisfy a decrement operation.
User-defined splitters at other cores donate part of their local deltas to core 2.
For instance, core 3 splits its initial value, 16, into 12, which it retains, and 4,
which it donates.

while in U, but transactions that read and update the line while

in U would not abort each other.

Other contexts: COMMTM’s techniques could be used in

contexts beyond TM that require speculative execution of

atomic regions, such as architectural support for implicit

parallelism [18, 24, 49] or deterministic multithreading [17].

E. CommTM vs Semantic Locking

Just as eager conflict detection is the hardware counterpart

to two-phase locking [5, 21], COMMTM as described so far

is the hardware counterpart to semantic locking (Sec. II-A).

In semantic locking, each lock has a number of modes, and

transactions try to acquire the lock in a given mode. Multiple

transactions can acquire the lock in the same mode, accessing

and updating the data it protects concurrently [25] (with some

other synchronization to arbitrate low-level accesses, e.g.,

logging updates and performing reductions later). An attempt

to acquire the lock in a different mode triggers a conflict. Each

label in COMMTM can be seen as a lock mode, and just like

reads and writes implicitly acquire read and write locks to

lines, labeled accesses implicitly acquire locks in the mode

specified by their label, triggering conflicts if needed. Besides

reducing conflicts, COMMTM also reduces communication by

buffering commutative updates in private caches.

IV. AVOIDING NEEDLESS REDUCTIONS

WITH GATHER REQUESTS

While semantic locking is general, not all commutative

operations are amenable to semantic locking, and more sophisti-

cated conflict detectors allow more operations to commute [25].

Similarly, we now extend COMMTM to allow more concurrency

than semantic locking. The key idea is that many operations

are conditionally commutative: they only commute when the

reducible data they operate on meets some conditions. With

COMMTM as presented so far, these conditions require normal

reads, resulting in frequent reductions that limit concurrency.

To solve this problem, we introduce gather requests, which

allow moving partial updates to the same data across different

private caches without leaving the reducible state.
Motivation: Consider a bounded non-negative counter that

supports increment and decrement operations. increment

always succeeds, but decrement fails when the initial value of

the counter is already zero. increment always commutes, but

decrement commutes only if the counter has a positive value.

Bounded counters have many use cases, such as reference

counting and resizable data structures.
In COMMTM, we can exploit the fact that if the local value

is positive, the global value must be positive. In this case,

decrement can safely decrement the local value. However, if

the local value is zero, decrement must perform a reduction

to check whether the value has reached zero, as shown in this

implementation:

bool decrement(int* counter) {

tx_begin();

int value = load[ADD](counter);

if (value == 0) {

// Trigger a reduction

value = load(counter);

if (value == 0) {

tx_end();

return false;

}

}

store[ADD](counter, value - 1);

tx_end();

return true;

}

With frequent decrements, reductions will serialize execution

even when the actual value of the counter is far greater than zero.

Gather requests avoid this by allowing programs to observe

partial updates in other caches and redistribute them without

leaving U.
Gather requests: Fig. 8 depicts the steps of a gather request

in detail. Gather requests are initiated by a new instruction,

load gather, which is similar to a labeled load. If the

requester’s line is in U, load gather issues a gather request

to the directory and reduces forwarded data from other sharers

before returning the value.
The directory forwards the gather request to each (U-state)

sharer. The core executes a user-defined splitter, a function

analogous to a reduction handler that inspects its local value

and sends a part of it to the requester. In our implementation,

the directory forwards the number of sharers in gather requests,

which splitters can use to rebalance the data appropriately.
Splitters reuse all the machinery of reduction handlers: they

run on the shadow thread, are non-speculative, and split requests

may trigger conflicts if their address was speculatively accessed.
Our bounded counter example can use gather requests as

follows. First, we modify the decrement operation to use

7

load gather:

bool decrement(int* counter) {

tx_begin();

int value = load[ADD](counter);

if (value == 0) {

value = load_gather[ADD](counter);

if (value == 0) {

value = load(counter);

if (value == 0) {

tx_end();

return false;

}

}

}

store[ADD](counter, value - 1);

tx_end();

return true;

}

Second, we implement a user-defined splitter that gives a

fraction 1/numSharers of its counter values, which, over

time, will maintain a balanced distribution of values:

void add_split(int* counterLine , int* fwdLine,

int numSharers) {

for (int i = 0; i < intsPerCacheLine; i++) {

int value = load[ADD](counterLine[i]);

int donation = ceil(value / numSharers);

fwdLine[i] = donation;

store[ADD](counterLine[i], value - donation);

}

}

Fig. 8 shows how a gather request rebalances counter values and

allows a decrement operation to proceed while maintaining

lines in U. Note how, after the gather request, the requester’s

local value (9) allows it to perform successive decrements

locally. In general, we observe that, although gather requests

incur global traffic and may cause conflicts, they are rare, so

their cost is amortized across multiple operations.

There are many ways to make gather operations more

expressive. For example, we could enhance load gather to

query a subset of sharers, or to provide user-defined arguments

to splitters. However, we have not found a need for these

mechanisms for the operations we evaluate. We leave an in-

depth exploration of these and other mechanisms to enhance

COMMTM’s precision to future work.

V. EXPERIMENTAL METHODOLOGY

We perform microarchitectural, execution-driven simulation

using zsim [43]. We evaluate a 16-tile chip with 128 simple

cores and a three-level memory hierarchy, shown in Fig. 2,

with parameters given in Table I. Each core has private L1s

and a private L2, and all cores share a banked L3 cache with

an in-cache directory.

We compare the baseline HTM and COMMTM. Both

HTMs use Intel TSX [53] as the programming interface, but

do not use the software fallback path, which the conflict

resolution protocol makes unnecessary. We add encodings for

labeled load, labeled store, and load gather, with

labels embedded in the instructions.

We evaluate COMMTM under microbenchmarks (Sec. VI)

and full TM applications (Sec. VII). We run each benchmark to

completion, and report results for its parallel region. To achieve

TABLE I
CONFIGURATION OF THE SIMULATED SYSTEM.

Cores 128 cores, x86-64 ISA, 2.4 GHz, IPC-1 except on L1 misses

L1 caches 32 KB, private per-core, 8-way set-associative, split D/I

L2 caches
128 KB, private per-core, 8-way set-associative, inclusive,
6-cycle latency

L3 cache
64 MB, fully shared, 16 4 MB banks, 16-way set-associative,
inclusive, 15-cycle bank latency, in-cache directory

Coherence MESI/COMMTM, 64 B lines, no silent drops

NoC 4×4 mesh, 2-cycle routers, 1-cycle 256-bit links

Main mem 4 controllers, 136-cycle latency

1 32 64 96 128

Threads

0

20

40

60

80

100

S
p
e
e
d
u
p

CommTM

Baseline

Fig. 9. Speedup of counter mi-
crobenchmark.

1 32 64 96 128

Threads

0

5

10

15

20

25

30

35

40

S
p

e
e

d
u

p

CommTM w/ gather

CommTM w/o gather

Baseline

Fig. 10. Speedup of reference-count-
ing microbenchmark.

statistically significant results, we introduce small amounts of

non-determinism [3], and perform enough runs to achieve 95%

confidence intervals ≤ 1% on all results.

VI. COMMTM ON MICROBENCHMARKS

We use microbenchmarks to explore COMMTM’s capabilities

and its impact on update-heavy operations.

Counter increments: In this microbenchmark, threads perform

10 million increments to a single counter, implemented as

presented in Sec. III. Fig. 9 shows that COMMTM achieves

linear scalability, while the baseline HTM serializes all trans-

actions. While counters are our simplest use case, prior work

reports that counter updates are a major cause of aborts in real

applications [14, 42].

Reference counting: We implement a reference counter using

the non-negative bounded counter described in Sec. IV, with

and without gather requests. Threads acquire and release 1

million references in total, incrementing and decrementing

16 counters. Each thread starts with three references to each

object and holds up to ten references. On every iteration, a

thread selects a random object and increments or decrements its

reference count probabilistically. The probability to increment

the counter decreases linearly with the number of references

the thread holds to the object, from 1.0 with no references to

0.0 with 10 references. Fig. 10 shows that COMMTM without

gather requests provides some speedup over the baseline TM

with a few threads, but frequent reductions caused by threads

having zero in their U-state line result in serialized transactions.

By contrast, COMMTM with gather requests scales to 39× at

128 threads. The sub-linear scalability is due to more frequent

gather requests and splits at high thread counts.

8

H T H’ T’

Reduction

H T’

(a) Reducing a list descriptor

H T

Split

H’ T H H

(b) Splitting a list descriptor

Fig. 11. A linked-list descriptor contains its head and tail pointers, and can
be shared in U state by multiple caches. Each U-state copy represents a partial
linked list. A reduction merges all partial lists and generates the resulting
descriptor, and a split divides the partial list descriptor into two: one with the
head element, which is donated, and the other with all other elements.

CommTM Baseline

1 32 64 96 128

Threads

0

20

40

60

80

100

120

S
p

e
e

d
u

p

(a) 100% enqueues

1 32 64 96 128

Threads

0

10

20

30

40

50

S
p

e
e

d
u

p

(b) 50% enqueues, 50% dequeues

Fig. 12. Speedup of linked list microbenchmark.

Linked lists: In this microbenchmark, threads enqueue and

dequeue elements from a singly-linked list. When order is

unimportant (e.g., if the list is used as a set, a hash table bucket,

or a work-sharing queue), these operations are semantically

(but not strictly) commutative. Fig. 11a shows how COMMTM

makes these operations concurrent. Only the descriptor of a

linked list, which contains its head and tail pointers, is accessed

with labeled loads and stores (accesses to elements use normal

loads and stores). This way, threads enqueue/dequeue elements

to their local, reducible linked-list descriptors. Fig. 11a shows

how the user-defined reduction handler merges two linked-

list descriptors. Dequeues use load gather if their local

descriptor is empty, and each splitter donates the head element

of its local list, as shown in Fig. 11b.

Fig. 12 compares the baseline HTM and COMMTM. In the

baseline HTM, to avoid false sharing, head and tail pointers are

allocated on different cache lines. Threads perform 10 million

operations: all enqueues in Fig. 12a, or 50% enqueues and

50% dequeues (randomly interleaved) in Fig. 12b. The baseline

HTM scales poorly in both cases, while COMMTM scales near-

linearly on enqueues, and by 55× on mixed enqueues/dequeues

(limited again by frequent gathers).

Ordered puts: Ordered puts or priority updates are frequent

in databases [34] and are key in challenging parallel algo-

rithms [47]. This semantically-commutative operation replaces

an existing key-value pair with a new input pair if the new pair

has a lower key. In COMMTM, we simply access the key-value

pair with a labeled accesses, and define a reduction handler

that merges key-value pairs by keeping the lowest one. Threads

perform 10 million ordered puts using randomly-generated 64-

bit keys and values. These fit within a cache line, but arbitrarily

large key-value pairs are possible by using indirection (i.e.,

CommTM Baseline

1 32 64 96 128

Threads

0

20

40

60

80

100

S
p

e
e

d
u

p

Fig. 13. Speedup of ordered put
microbenchmark.

1 32 64 96 128

Threads

0

20

40

60

80

100

120

S
p

e
e

d
u

p

Fig. 14. Speedup of top-K insertion
microbenchmark.

dsc

0 2

Reduction

4 198

dsc’

1 3 5 199

dsc

0 1 2 99

0 1 2 99 0 1 2 99 0 1 2 99
… … …

Fig. 15. Reduction of a top-K set descriptor with K = 100.

keeping pointers to the key and value in the reducible line).

Fig. 13 shows that COMMTM scales near-linearly, while the

baseline is 3.8× slower (in this case, the baseline scales to

31× because only smaller keys cause conflicting writes).

Top-K sets: A top-K set, common in databases, retains the

K highest elements of a set [34]. We implement top-K sets

similarly to linked lists: a descriptor contains a pointer to the

top-K data (stored as a heap), and only the accesses to the

descriptor use labeled loads and stores. Threads build up local

top-K heaps, and reads trigger a reduction that merges all local

heaps, as shown in Fig. 15.

Fig. 14 shows the performance of inserting 10 million

elements to a top-1000 set. While the baseline HTM suffers

significant serialization introduced by unnecessary read-write

dependencies, COMMTM scales top-K set insertions linearly,

yielding a 124× speedup at 128 threads.

VII. COMMTM ON FULL APPLICATIONS

We evaluate COMMTM on five TM benchmarks:

boruvka [25], which we implement from scratch, and

genome, kmeans, ssca2, and vacation, which we adapt

from STAMP [29]. Table II details their input sets and main

characteristics. boruvka computes the minimum spanning tree

of a graph. It utilizes several commutative operations: OPUT to

record the minimum-weight edges connecting separate graph

components, MIN to union two components, MAX to mark edges

added to the minimum spanning tree, and ADD to calculate the

weight of the resulting tree. kmeans performs commutative

additions to shared cluster centroids. ssca2 spends little time

in commutative updates to shared, global graph metadata. Like

Blundell el al. [8], we compile genome and vacation with

resizable hash tables, which use conditionally-commutative

updates to a bounded counter to determine when to resize.

Fig. 16 compares the performance and scalability of

COMMTM and the baseline HTM. Each graph shows the

speedups of the baseline HTM and COMMTM for a single

application from 1 to 128 threads (x-axis). As before, all

speedups are relative to the single-thread runtime in the baseline

9

TABLE II
BENCHMARK CHARACTERISTICS.

Input set Uses gather? Commutative operations

boruvka usroads [16] ✗
Updating min-weight edges (64b-key OPUT); Unioning components (64b MIN);

Marking edges (64b MAX); Calculating weight of MST (64b ADD)
kmeans -m15 -n15 -t0.05 -i random-n16384-d24-c16 [29] ✗ Updating cluster centers(32b ADD, 32b FP ADD)

ssca2 -s16 -i1.0 -u1.0 -l9 -p9 [29] ✗ Modifying global information for a graph (32b ADD)

genome -g4096 -s64 -n640000 [29] ✓ Remaining-space counter of a resizable hash table (bounded 64b ADD)

vacation -n4 -q60 -u90 -r32768 -t8192 [29] ✓ Remaining-space counter of a resizable hash table (bounded 64b ADD)

CommTM Baseline

1 32 64 96 128

Threads

0

10

20

30

40

50

60

70

S
p

e
e

d
u

p

(a) boruvka

1 32 64 96 128

Threads

0

10

20

30

40

50

60

70

S
p

e
e

d
u

p

(b) kmeans

1 32 64 96 128

Threads

0

2

4

6

8

10

12

S
p

e
e

d
u

p
(c) ssca2

1 32 64 96 128

Threads

0

20

40

60

80

100

120

S
p
e
e
d
u
p

(d) genome

1 32 64 96 128

Threads

0

5

10

15

20

25

30

S
p

e
e

d
u

p

(e) vacation

Fig. 16. Per-application speedups of COMMTM and baseline HTM on 1–128 threads (higher is better).

Non-transactional Transactional, committed Transactional, aborted

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o

rm
a

liz
e

d
 c

o
re

 c
y
c
le

s

CommTM

Baseline

CommTM

Baseline

CommTM

Baseline

8 th 32 th 128 th

(a) boruvka

0

1

2

3

4

5

N
o

rm
a

liz
e

d
 c

o
re

 c
y
c
le

s

CommTM

Baseline

CommTM

Baseline

CommTM

Baseline

8 th 32 th 128 th

(b) kmeans

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o

rm
a

liz
e

d
 c

o
re

 c
y
c
le

s

CommTM

Baseline

CommTM

Baseline

CommTM

Baseline

8 th 32 th 128 th

(c) ssca2

0.0

0.5

1.0

1.5

2.0

2.5

N
o

rm
a

liz
e

d
 c

o
re

 c
y
c
le

s

CommTM

Baseline

CommTM

Baseline

CommTM

Baseline

8 th 32 th 128 th

(d) genome

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o

rm
a

liz
e

d
 c

o
re

 c
y
c
le

s

CommTM

Baseline

CommTM

Baseline

CommTM

Baseline

8 th 32 th 128 th

(e) vacation

Fig. 17. Breakdown of core cycles for COMMTM and baseline HTM for 8, 32, and 128 threads (lower is better).

Read after Write Write after Read Gather after Labeled access Others

0

2

4

6

8

10

12

14

16

18

N
o

rm
a

liz
e

d
 w

a
s
te

d
 c

y
c
le

s

CommTM

Baseline

CommTM

Baseline

CommTM

Baseline

8 th 32 th 128 th

(a) boruvka

0

50

100

150

200

250

300

N
o

rm
a

liz
e

d
 w

a
s
te

d
 c

y
c
le

s

CommTM

Baseline

CommTM

Baseline

CommTM

Baseline

8 th 32 th 128 th

(b) kmeans

0

5

10

15

20

25

N
o

rm
a

liz
e

d
 w

a
s
te

d
 c

y
c
le

s

CommTM

Baseline

CommTM

Baseline

CommTM

Baseline

8 th 32 th 128 th

(c) ssca2

0

2

4

6

8

10

12

N
o

rm
a

liz
e

d
 w

a
s
te

d
 c

y
c
le

s

CommTM

Baseline

CommTM

Baseline

CommTM

Baseline

8 th 32 th 128 th

(d) genome

0

20

40

60

80

100

N
o

rm
a

liz
e

d
 w

a
s
te

d
 c

y
c
le

s

CommTM

Baseline

CommTM

Baseline

CommTM

Baseline

8 th 32 th 128 th

(e) vacation

Fig. 18. Breakdown of wasted cycles for COMMTM and baseline HTM for 8, 32, and 128 threads (lower is better).

HTM. Fig. 16 shows that COMMTM always outperforms the

baseline HTM, often significantly. At 128 threads, COMMTM

outperforms the baseline by 35% on boruvka, 3.4× on kmeans,

0.2% on ssca2, 3.0× on genome, and 45% on vacation.

Moreover, the gap between the baseline HTM and COMMTM

often widens as the number of threads grows.

COMMTM is especially beneficial on update-heavy appli-

cations. For instance, kmeans introduces a large number of

commutative updates within transactions. With conventional

HTMs, these updates must be serialized. Thus, as the number

of threads increases, serialized updates bottleneck the whole

application. By contrast, COMMTM makes these updates local

and concurrent, achieving significant speedup. COMMTM

yields negligible improvements on applications that update

shared data rarely, like ssca2.

Fig. 17 gives more insight into these results by showing the

breakdown of cycles spent by all threads for each application.

Each cycle is either non-transactional or transactional, and

transactional cycles are divided into useful (committed) and

wasted (aborted) cycles. Each graph shows the breakdown of

cycles for both COMMTM and the baseline HTM on 8, 32,

and 128 threads for a single application. Cycles are normalized

10

GETX GETS GETU

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 #

 o
f
G

E
T

 r
e
q
u
e
s
ts

CommTM

Baseline

CommTM

Baseline

CommTM

Baseline

8 th 32 th 128 th

(a) boruvka

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 #

 o
f
G

E
T

 r
e
q
u
e
s
ts

CommTM

Baseline

CommTM

Baseline

CommTM

Baseline

8 th 32 th 128 th

(b) kmeans

Fig. 19. Breakdown of total number of GET requests between L2s and L3 for
COMMTM and conventional HTM on 8, 32 and 128 threads (lower is better).

to the baseline’s at 8 threads. Lower bars are better.

Fig. 17 shows that COMMTM substantially reduces wasted

transactional cycles. At 128 threads, COMMTM reduces

wasted cycles over the baseline by 25× on kmeans, 6.6% on

ssca2, 8.3× on genome, and 2.6× on vacation. In boruvka,

COMMTM eliminates all wasted transactional cycles. Fig. 17

also explains why COMMTM barely helps ssca2: contention

is rare and therefore only a small fraction of cycles are spent

on aborted transactions.

Fig. 18 further details the cause of wasted cycles. In the

baseline HTM, wasted cycles are almost always caused by

read-after-write dependency violations. For applications with

ample semantic commutativity, such as boruvka and kmeans,

most of these dependencies are superfluous and COMMTM

avoids them entirely.

Beyond improving concurrency, COMMTM also reduces

traffic, as applications with significant data reuse benefit

substantially from buffering updates in private caches. Fig. 19

shows the breakdown of GET requests between the L2s and

L3 for boruvka and kmeans, the two applications with a

significant reduction in traffic. At 128 threads, COMMTM

reduces L3 GET requests by 13% on boruvka and 45% on

kmeans. This also explains why non-transactional cycles are

lower in Fig. 17 (15% lower on boruvka and 48% on kmeans).

Finally, though COMMTM improves performance signifi-

cantly, labeled memory operations are relatively rare. At 128

threads, the fraction of all labeled instructions, including loads,

stores, and gathers, over all executed instructions are 0.13% on

boruvka, 1.2% on kmeans, 5.9 · 10−7 on ssca2, 0.042% on

genome, and 0.057% on vacation. Though rare, their impact

is substantial: on conventional HTMs, these operations cause

conflicts that abort whole transactions, which include many

other instructions, wasting a large amount of work.

VIII. ADDITIONAL RELATED WORK

Prior work in HTM has proposed a wide set of techniques

to reduce the number of conflicts and their impact. These

techniques are orthogonal to COMMTM, as they do not leverage

commutativity, and detect conflicts through reads and writes.

Several HTMs, such as DATM [39], SONTM [5], Wait-n-

GoTM [23], and OmniOrder [38], reduce aborts by letting

transactions continue execution after they conflict and trying

to commit them in the order imposed by the data dependence

that caused the conflict. These designs improve performance

when dependences are acyclic, but semantically-commutative

updates often consist of read-modify-write chains that cause

cyclic dependencies, which conflict-serializable HTMs must

treat as conflicts. However, COMMTM avoids these conflicts.

SI-TM [27] relaxes serializability and implements snapshot

isolation, which only flags write-write dependences as conflicts.

SI-TM, like other schemes that weaken serializability [1, 48],

can allow more concurrency on reads and writes to the same

data but requires programs to be rewritten to work under a

less intuitive concurrency model. SI-TM also relies on an

expensive multiversioned main memory. Finally, SI-TM also

cannot handle conflicting read-modify-write operations, which

cause write-write conflicts (e.g., unlike COMMTM, SI-TM

bottlenecks on kmeans [27]).

Other techniques focus on reducing the cost of mispeculation.

ReSlice [45] reexecutes only the conflicting load and its

dependent instructions, and RetCon [8] performs symbolic

reexecution of simple, conflicting auxiliary updates (e.g.,

updates to shared counters that are not used elsewhere in the

transaction). Unlike these schemes, COMMTM does not trigger

conflicts to begin with, avoiding superfluous communication

and serialization. COMMTM is also much cheaper than ReSlice

and allows a broader range of non-peripheral operations than

RetCon, such as enqueues and top-K insertions.

Finally, open-nested transactions [31, 32] can provide

some of the benefits of commutativity. Unlike conventional

(closed) nested transactions, which remain speculative until

their parent commits, open-nested transactions commit when

they end, and specify an abort handler to undo their effects if

their parent later aborts. Open-nested transactions make their

parents less vulnerable, but they still suffer from conflicts and

serialization. By contrast, COMMTM supports concurrent and

communication-free updates to the same data. Moreover, open

nesting is practical only when operations are easy to undo,

which is not always the case (e.g., top-K in Sec. VI).

IX. CONCLUSION

We have presented COMMTM, an HTM that exploits

semantic commutativity to avoid conflicts that limit scalability

in prior HTMs. COMMTM extends the coherence protocol

and conflict detection scheme to allow multiple cores to

perform user-defined commutative operations concurrently and

without conflicts. COMMTM preserves transactional guarantees:

COMMTM triggers reductions when non-commutative opera-

tions access the same data as commutative ones, so they never

observe any partial state. COMMTM’s basic scheme allows as

much concurrency as semantic locking. Gather requests allow

COMMTM to reduce conflicts even further.

We have shown that COMMTM bridges the precision-

overhead dichotomy of hardware vs software conflict detection:

COMMTM scales many operations that serialize in conventional

HTMs, such as set insertions, reference counting, and top-K

insertions, while retaining the low overhead of HTMs. As

11

a result, at 128 cores, COMMTM outperforms an eager-lazy

HTM by up to 3.4× and reduces or even eliminates aborts.

Finally, beyond our specific implementation, a key contri-

bution of our work is to recognize that hardware speculation

can also benefit from conflict-detection techniques that have

traditionally been considered software-only. Prior work has

developed a rich set of conflict detectors that go beyond

COMMTM’s current capabilities. It would be interesting to see

how many of these techniques can also be easily adapted by

hardware. We leave this exploration to future work.

ACKNOWLEDGMENTS

We sincerely thank Maleen Abeydeera, Nathan Beckmann,

Joel Emer, Mark Jeffrey, Harshad Kasture, Anurag Mukkara,

Suvinay Subramanian, Po-An Tsai, and the anonymous review-

ers for their helpful feedback. We are grateful to Heiner Litz for

sharing his transactional memory implementation on zsim [27].

We thank to Colin Blundell and Milo Martin for sharing their

RetCon benchmarks [8]. This work was supported in part by

C-FAR, one of six SRC STARnet centers by MARCO and

DARPA, and by NSF grant CAREER-1452994.

REFERENCES

[1] A. Adya, “Weak consistency: a generalized theory and optimistic imple-
mentations for distributed transactions,” Ph.D. dissertation, Massachusetts
Institute of Technology, 1999.

[2] A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson et al., “The MIT
Alewife machine: architecture and performance,” in ISCA-22, 1995.

[3] A. R. Alameldeen and D. A. Wood, “IPC considered harmful for
multiprocessor workloads,” IEEE Micro, no. 4, 2006.

[4] C. S. Ananian, K. Asanović, B. C. Kuszmaul, C. E. Leiserson, and S. Lie,
“Unbounded transactional memory,” in HPCA-11, 2005.

[5] U. Aydonat and T. S. Abdelrahman, “Hardware support for relaxed
concurrency control in transactional memory,” in MICRO-43, 2010.

[6] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi et al., “Coordination
avoidance in database systems,” VLDB, vol. 8, no. 3, 2014.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt et al., “The gem5
simulator,” ACM Comp. Arch. News, vol. 39, no. 2, 2011.

[8] C. Blundell, A. Raghavan, and M. M. Martin, “RETCON: transactional
repair without replay,” in ISCA-37, 2010.

[9] J. Bobba, K. E. Moore, H. Volos, L. Yen et al., “Performance pathologies
in hardware transactional memory,” in ISCA-34, 2007.

[10] C. Cascaval, C. Blundell, M. Michael, H. W. Cain et al., “Software
transactional memory: Why is it only a research toy?” ACM Queue,
vol. 6, no. 5, 2008.

[11] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval, “Bulk disambiguation of
speculative threads in multiprocessors,” in ISCA-33, 2006.

[12] H. Chafi, J. Casper, B. Carlstrom, A. McDonald et al., “A scalable,
non-blocking approach to transactional memory,” in HPCA-13, 2007.

[13] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and
E. Kohler, “The scalable commutativity rule: Designing scalable software
for multicore processors,” in SOSP-24, 2013.

[14] C. Click, “Azul’s experiences with hardware transactional memory,” in
Transactional Memory Workshop, 2009.

[15] W. J. Dally and B. P. Towles, Principles and practices of interconnection
networks. Elsevier, 2004.

[16] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, 2011.

[17] J. Devietti, B. Lucia, L. Ceze, and M. Oskin, “DMP: deterministic shared
memory multiprocessing,” in ASPLOS-XIV, 2009.

[18] L. Hammond, M. Willey, and K. Olukotun, “Data speculation support
for a chip multiprocessor,” in ASPLOS-VIII, 1998.

[19] L. Hammond, V. Wong, M. Chen, B. Carlstrom et al., “Transactional
memory coherence and consistency,” in ISCA-31, 2004.

[20] M. Herlihy and E. Koskinen, “Transactional boosting: a methodology
for highly-concurrent transactional objects,” in PPoPP, 2008.

[21] M. D. Hill, “Is transactional memory an oxymoron?” VLDB, vol. 1, no. 1,
2008.

[22] G. Hinton, D. Sager, M. Upton, D. Boggs et al., “The microarchitecture
of the Pentium R© 4 processor,” in Intel Technology Journal, 2001.

[23] S. Jafri, G. Voskuilen, and T. Vijaykumar, “Wait-n-GoTM: Improving
HTM performance by serializing cyclic dependencies,” in ASPLOS-XVIII,
2013.

[24] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez, “A
scalable architecture for ordered parallelism,” in MICRO-48, 2015.

[25] M. Kulkarni, D. Nguyen, D. Prountzos, X. Sui, and K. Pingali,
“Exploiting the commutativity lattice,” in PLDI, 2011.

[26] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan et al., “Optimistic
parallelism requires abstractions,” in PLDI, 2007.

[27] H. Litz, D. Cheriton, A. Firoozshahian, O. Azizi, and J. P. Stevenson,
“SI-TM: reducing transactional memory abort rates through snapshot
isolation,” in ASPLOS-XIX, 2014.

[28] K. Mackenzie, J. Kubiatowicz, M. Frank, W. Lee et al., “Exploiting
two-case delivery for fast protected messaging,” in HPCA-4, 1998.

[29] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP: Stanford
transactional applications for multi-processing,” in IISWC, 2008.

[30] K. Moore, J. Bobba, M. Moravan, M. D. Hill, and D. A. Wood, “LogTM:
log-based transactional memory.” in HPCA-12, 2006.

[31] M. Moravan, J. Bobba, K. Moore, L. Yen et al., “Supporting nested
transactional memory in LogTM,” in ASPLOS-XII, 2006.

[32] J. E. B. Moss, “Open nested transactions: Semantics and support,” in
WMPI, 2006.

[33] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb, “The
Alpha 21364 network architecture,” in Hot Interconnects, 2001.

[34] N. Narula, C. Cutler, E. Kohler, and R. Morris, “Phase reconciliation
for contended in-memory transactions,” in OSDI-11, 2014.

[35] L.-S. Peh and W. J. Dally, “A delay model and speculative architecture
for pipelined routers,” in HPCA-7, 2001.

[36] P. Prabhu, S. Ghosh, Y. Zhang, N. Johnson, and D. August, “Commutative
set: A language extension for implicit parallel programming,” in PLDI,
2011.

[37] X. Qian, W. Ahn, and J. Torrellas, “ScalableBulk: Scalable cache
coherence for atomic blocks in a lazy environment,” in MICRO-43,
2010.

[38] X. Qian, B. Sahelices, and J. Torrellas, “OmniOrder: Directory-based
conflict serialization of transactions,” in ISCA-41, 2014.

[39] H. E. Ramadan, C. J. Rossbach, and E. Witchel, “Dependence-aware
transactional memory for increased concurrency,” in MICRO-41, 2008.

[40] R. F. Resende, D. Agrawal, and A. El Abbadi, “Semantic locking in
object-oriented database systems,” in OOPSLA, 1994.

[41] M. C. Rinard and P. C. Diniz, “Commutativity analysis: A new analysis
framework for parallelizing compilers,” in PLDI, 1996.

[42] W. Ruan, T. Vyas, Y. Liu, and M. Spear, “Transactionalizing legacy
code: An experience report using GCC and memcached,” in ASPLOS-XIX,
2014.

[43] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” in ISCA-40, 2013.

[44] D. Sanchez, R. M. Yoo, and C. Kozyrakis, “Flexible architectural support
for fine-grain scheduling,” in ASPLOS-XV, 2010.

[45] S. R. Sarangi, J. Liu, Wei Torrellas, and Y. Zhou, “ReSlice: Selective
re-execution of long-retired misspeculated instructions using forward
slicing,” in MICRO-38, 2005.

[46] K. S. Shim, M. Lis, M. H. Cho, I. Lebedev, and S. Devadas, “Design
tradeoffs for simplicity and efficient verification in the Execution
Migration Machine,” in ICCD, 2013.

[47] J. Shun, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons, “Reducing
contention through priority updates,” in SPAA, 2013.

[48] T. Skare and C. Kozyrakis, “Early release: Friend or foe?” in WTW,
2006.

[49] G. S. Sohi, S. E. Breach, and T. Vijaykumar, “Multiscalar processors,”
in ISCA-22, 1995.

[50] T. Von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active
messages: a mechanism for integrated communication and computation,”
in ISCA-19, 1992.

[51] W. E. Weihl, “Commutativity-based concurrency control for abstract data
types,” IEEE Trans. Comput., vol. 37, no. 12, 1988.

[52] H. Wong, A. Bracy, E. Schuchman, T. Aamodt et al., “Pangaea: a
tightly-coupled IA32 heterogeneous chip multiprocessor,” in PACT-17,
2008.

[53] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance evaluation
of Intel R© transactional synchronization extensions for high-performance
computing,” in SC13, 2013.

[54] G. Zhang, W. Horn, and D. Sanchez, “Exploiting commutativity to
reduce the cost of updates to shared data in cache-coherent systems,” in
MICRO-48, 2015.

[55] C. Zilles and L. Baugh, “Extending hardware transactional memory to
support non-busy waiting and non-transactional actions,” in TRANSACT,
2006.

12

	Introduction
	Background
	Semantic Commutativity
	Commutativity-Aware Cache Coherence

	CommTM
	CommTM Programming Interface and ISA
	CommTM Implementation
	Eager-Lazy HTM Baseline
	Coherence protocol
	Transactional Execution
	Reductions
	Evictions

	Putting it all Together: Overheads
	Generalizing CommTM
	CommTM vs Semantic Locking

	Avoiding Needless Reductions with Gather Requests
	Experimental Methodology
	CommTM on Microbenchmarks
	CommTM on Full Applications
	Additional Related Work
	Conclusion
	References

