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ABSTRACT

This thesis describes a numerical method for plane strain limit analysis and its
application in computing the collapse load of footings on cohesive soil. The calculations of
rigorous lower and upper bounds on the true collapse load are formulated and solved by a
linear programming method with finite element discretization, as proposed in recent
papers by Sloan (1988a) and Sloan and Kleeman (1994).

The analyses are validated through calculations of bearing capacity for vertical,
concentric loading of footings on a deep clay layer, whose exact solutions are well known.
These evaluations show how solution accuracy can be improved by: 1) selection of the
size of the discretized domain; 2) yield surface linearization and 3) mesh discretization and
refinement. The upper bound solution is much less sensitive to mesh arrangement than the
lower bound solution. Further analyses for footings on non-homogenous clay layers are in
excellent agreement (bounds within + 3%) with exact solutions published by Booker and
Davis (1973) based on the method of characteristics.

The numerical limit analyses are then applied in predictions of collapse for inclined,
eccentric loading of footings on clay, for which there are no published exact solutions.
These analyses required several modifications of the existing programs to generalize soil-
footing interface properties and to select opiimization functions. The results demonstrate
different failure mechanisms associated with bearing capacity, separation between the
footing and the underlying soil, interface sliding etc. For all analyses, collapse loads can be
accurately predicted to within 4-5% and computational times required for each analysis
are typically in the range of 30-45 minutes (DEC ALPHA 3000-300X workstation). The
collapse loads are represented as a closed-convex surface failure envelope defined in terms
of three statically equivalent loads and are well described using simple curve fitting
techniques. Comparisons show that published empirical factors for inclined and eccentric
loading contain comparatively large errors (up to 25%) and are generally conservative
compared to the exact solutions. These studies confirm the capability and efficiency of
numerical limit analyses for predicting complex collapse mechanisms.

Thesis Supervisor: Dr. Andrew J. Whittle
Title: Associate Professor of Civil and Environmental Engineering
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1. Introeduction

Collapse calculations are important in geotechnical engineering to ensure that all
foundations and earthworks have adequate factors of safety against failure. All
geotechnical design methods (e.g. Eurocode E7, 1993) include calculations of ultimate
limit states. Examples of collapse calculations include prediction of the maximum load
which can be applied to a foundation or the maximum height to which a slope can be
excavated.

The available techniques for estimating the collapse loads include limit analyses,
the method of characteristics, and limit equilibrium methods. These methods are all based
on the theory of rigid-perfectly plastic material behavior. Limit analyses and the method of
characteristics are based on powerful bound theorems (Drucker et al. 1952), but are
difficult to apply for complex design problems involving non-homogeneous profiles,
complex loading and geometries. In contrast, limit equilibium methods can handle such
complexities and hence, are widely used in geotechnical practice. Most of the stability
charts, bearing capacity factors, and earth pressure coefficients have been produced by
limit equilibrium methods. However, it is very difficult to assess the accuracy of limit
equilibrium solutions due to approximations in the analyses.

The advent of large digital computers has increased tremendously the range of
problems which can be solved using numerical methods such as the finite element method.
This numerical technique has certain notable advantages: 1) it is able to simulate
geometrically complex problems; and 2) can incorporate complicated constitutive stress-
strain relations to model real soil behavior. Although collapse loads can be obtained
numerically using finite element methods, these calculations are difficult to perform as they
involve the incremental solution of a non-linear system of equations.

The above-mentioned difficulties of existing techniques for computing collapse
loads have provided the motivation to develop more reliable and rigorous methods of
stability analysis. One very promising technique is numerical limit analyses, which combine
the advantages of numerical discretization, with the rigour of the bound theorems of

classical plasticity theory. The technique was firstly proposed by Lysmer (1970), who

21



formulated numerical solutions for lower bound analyses using finite element discretization
and linear programming. More recently, Sloan (1988a) and Sloan and Kleeman (1994)
have formulated highly efficient numerical lower and upper bound limit analyses. The
objective of this thesis is to apply and evaluate these numerical limit analyses in
calculations of collapse for footings on clay with inclined and eccentric loading.

Chapter 2 presents a literature survey on the methods of stability analysis. The
chapter also discusses the existing solutions for the stability of footings and shallow
foundations in order to provide background information for subsequent chapters (4 and
5). There is also a short descriptiocn of recent developments of numerical limit analyses
using linear programming and finite element discretization.

Chapter 3 presents the formulation of the numerical lower bound and upper bound
methods based on papers by Sloan (1988a) and Sloan and Kleeman (1994).

Chapter 4 presents results of numerical limit analyses for the undrained bearing
capacity of footings on clay with vertical, concentric loading. Detailed calculations are
performed to investigate factors affecting numerical accuracy of the solutions. Finally, the
computed upper and lower bounds are compared with exact solutions published in the
literature for footings on non-homogeneous clay layers, where the undrained shear
strength increases linearly with depth (Davis and Booker, 1973).

Chapter 5 applies the numerical limit analyses to the undrained loading of a rough
rigid footing on clay with inclined and eccentric loading. These problems have no exact
theoretical solutions in the current literature. The research includes modifications of the
programs which were necessary to incorporate the soil-footing interface. Results are
presented for a wide range of eccentricity ratios, inclination angles, and shear strength
profiles of the clay. Computed collapse loads are generalized to form a failure surface in
terms of three statically equivalent forces, and the thesis proposes approximate functions
for quantifying the failure conditions. The numerical analyses are also compared with
published empirical and limit equilibrium solutions.

Chapter 6 summarizes the main results of the thesis and proposes further research

on numerical limit analyses.
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2. Literature Review

2.1 Introduction

In geotechnical engineering, there are two main classes of problem relating to the
mechanical properties of soil: i) the prediction of deformations and stresses at working
load levels and ii) assessment of ultimate loads required to cause instability or failure.
Examples of the former include deformations caused by excavations, predictions of the
stresses induced by surface loading of embankments, etc. In practice, stress analyses at
working load levels are usually based on assumptions of linear, isotropic elastic (LIE) soil
behavior (Poulos and Davis, 1974) while specialized techniques have evolved to handle
non-linear soil properties in one-dimensional settlement calculations (Ladd and Foott,
1974; Mesri and Choi, 1985). In contrast, problems of bearing capacity, lateral earth
pressure, and slope stability generally assume no (pre-failure) deformations and focus
exclusively on the loading conditions which cause failure. There are three main classes of
analyses available for rigid perfectly plastic (RPP) materials: 1) limit equilibrium; 2) slip-
line analyses and 3) limit analyses. Most of the published data for bearing capacity and
earth pressure are based on methods 2 and 3 (or empirical modifications thereof), and are
limited to relatively simplified loading conditions, problem geometry, and subsurface
stratigraphy (strength profiles). Limit equilibrium methods are most commonly used for
slope stability problems and are widely favored in geotechnical practice as they can handle
complex stratification and variations in strength properties.

In principle, powerful numerical techniques such as the non-linear finite element
method can provide a unified analysis of deformation and stability problems by
incorporating realistic constitutive models for the soil behavior (see Figure 2.1).
However, in practice, it is difficult to perform numerically accurate non-linear finite
element analyses, while the reliability of the predictions are largely dependent on the ability
of the constitutive model to describe generalized stress-strain-strength properties of the
soil (cf. Whittle 1987, Pestana, 1994). As a result, there is a continuing practical need for

robust stability analyses based on assumptions of rigid perfectly plastic behavior'.

" It should be noted that centain classes of problem involving progressive failure can only be handled with
more comprchensive modeling of constitutive behavior etc.
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This chapter reviews the methods for stability analysis in soils (Section 2.2) with
particular emphasis on the lower and upper bound theorems used in limit analyses.
Section 2.3 describes how these different types of analyses have been applied to predict
the stability of shallow foundations and footings. Section 2.4 surveys the recent
development of numerical methods for computing upper and lower bounds based on linear
programming and finite element discretization. This section serves as an introduction to
the subsequent Chapters, which describe the formulation of the numerical limit analyses
(Chapter 3) and its applications for computing the stability of footings on clay (Chapters 4
and 5).

2.2 Methods of Stability Analysis in Geotechnical Engineering

2.2.1 Limit Equilibrium Method (LEM)

Limit equilibrium methods were firstly introduced into soil mechanics by Fellenius
(1926) who considered the equilibrium of circular failure arcs for assessing short term
(undrained) slope stability in clay. The technique has evolved significantly, especially for
applications in slope stability where a large number of techniques have been proposed
(Table 2.1). Fredlund and Krahn (1977) describe a generalized Limit Equilibrium Method
which comprises the following steps:

1) Specify the spatial distribution of unit weights, pore water pressures and shear

strength parameters of the underlying soil and rock stratum.

2) Assume a failure surface geometry’ by subdividing the failed mass into a

number of vertical slices and solving the static equilibrium equations (as shown
in Table 2.1).

3) Solve the factor of safety ror the specified failure surface. The factor of safety

is defined as the ratio of the maximum available strength of the soil to the

forces required for equilibrium.

? The failure surface is continuous and is usually constructed from segments which are of pianar, circular
or logspiral in shape. If the soil is purely cohesive, the failure surface is composed of pianar and/or
circular sections, whereas for frictional materials, the shapes of the failure surface are usually planar and
logspiral.
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4) Search for the critical failure surface with the lowest factor of safety.

In the first critical step, the selection of shear strength parameters depend on the
type of analysis' and soil, while experience is also required to interpret strength
parameters from laboratory and field test data. The undrained shear strength of clay
depends on mode of shear, consolidation effective stress, etc; while drained shear strength
parameters are usually required for free draining materials such as sands etc. The use of
undrained strength means that the excess pore pressures have not had time to dissipate
under an applied load, or that the critical mode of stability involves rapid mode of failure
where there is no time for drainage of pore water. Thus, the in situ effective stress is
treated as consolidation stress which controls the in situ undrained shear strength and
stability. On the other hand, the use of drained strength implies that the excess poré
pressures have sufficient time to dissipate during loading.

For the second step, the characteristic geometry of the failure surface is well
defined when dealing with homogeneous slopes, but becomes very difficult to assess when
the subsurface stratification is complex. For this case, the critical failure surface can be
quite irregular and may be controlled by local features of the geology etc.

For the third step, the factor of safety corresponding to an assumed failure surface
is obtained by the method of slices and solved by static equilibrium equations. In the
method of slices, the assumed failure soil mass is divided into a number of slices. Figure
2.2a shows a typical slice with the forces which act on it. Static equations and unknowns
are also summarized in Figure 2.2b. It can be shown that for a slope divided into n slices,
there are in general (5n-2) unknowns while there are only (3n) equations of static
equilibrium. Thus, the slope stability problem is statically indeterminate. In order to
render the problem statically determinate, (2n-2) assumptions must be made. There are
several classes of assumption which are commonly made:

1. Assumptions about the distribution of normal stress along the slip surface.

2. Assumptions about the positions of the line of thrust of the interslices forces.

3. Assumptions about the inclination of the interslices forces.

' Ladd (1991) describes three types of stability analyses: 1) total stress analysis (TSA); 2) effective stress
analysis (ESA); and 3) undrained strength analysis (USA), which are recommended for stability
calculations during staged construction on clays.
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In all of the limit equilibrium methods of analysis (Table 2.1), the normal force P is
assumed to act at the center of the base of each slice (provided that the width of each slice
is small); hence, a statically determinate equilibrium problem requires only (n-2) additional
assumptions. In many methods of analysis (e.g. Bishop; Spencer; Morgenstern and Price),
an assumption is made about the inclination of the interslice forces. As this involves
another (n-1) assumptions, the problem is now over-constrained. In this case, the analyses
may be carried out either satisfying moment equilibrium or horizontal force equilibrium,
which yield two different factors of safety F, and Fr. Table 2.1 shows that differences in
the assumptions concerning the interslice forces, and the interpretation of the safety factor
(using overall force equilibrium, moment equilibrium or both equations) distinguish several
different methods of slope stability analysis. For example, the Ordinary Method of Slices
(or Swedish method, Fellenius, 1936) is the simplest of these methods as it is the only
procedure which results in a linear factor of safety. To make the problem determinate,
Fellenius assumes that the resultant of the interslice forces acting on any slice is parallel to
its base. The factor of safety is obtained by satisfying moment equilibrium only. Figure 2.3
summarizes the analysis of ordinary method of slices or Swedish method.

Fredlund and Krahn (1977) have shown that the expression of factor of safety can
be formulated in a general framework as shown in Figure 2.4. The vertical force
equilibrium is used to calculate the normal force along the slip surface. The two factors of
safety are computed separately, the first from moment equilibrium (Fm) and the second
from horizontal force equilibrium (Fy). The factor of safety equations of each method
(Table 2.1) differ (i) in the equation of statics satisfied explicitly for overall slope stability,
and (ii) the assumptions used to make the problem determinate. Table 2.1 also summarizes
these assumptions and the equilibrium equations used in each method.

A number of stability charts have been developed for slopes in homogeneous soil
conditions. In practice, two stability charts are commonly used, Taylor (1948), and
Bishop and Morgenstern (1960). Taylor (1948) used the ordinary method of slices to
examine the undrained stability of an homogeneous slope in purely cohesive soils (¢ = 0)
and introduced the stability number N = c,/yH, where c, is the undrained shear strength, y
is the unit weight of soil and H is the height of slope. Taylor’s stability chart is shown in
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Figure 2.5. For a given height of vertical cut, the factor of safety against undrained failure
is then, FS = cJ/Cureq, Where Cug is the undrained strength required for collapse in the
stability chart and c, is the actual strength of the clay.

Bishop and Morgenstern (1960) used Bishop’s method of slices to examine the
stability of slopes in soils using the effective stress analysis. Pore pressure was introduced
as an independent variable using the pore pressure ratio r,, which is defined as the ratio of
pore pressure at a point of interest to Ithe weight of overburden soil (i.e. r, = wyz )"
Bishop and Morgenstern (1960) expressed the factor of safety as F = m - nr,, where m and
n are dimensionless parameters which depend on slope angle B, c’/vH, ¢ and the depth
factor D. Figure 2.6 shows one of the charts prepared by Bishop and Morgenstern
(1960).

The fourth step of the LEM involves searching for the critical failure surface (with
the minimum factor of safety). This is often difficult to achieve, especially for complex
failure mechanisms, as the search may correspond to a local minimum, rather the global
minimum factor of safety. As a result, the critical failure surface and the collapse load
obtained by LFM are highly dependent on the shape of the surface and the search
procedure. It is often difficult to evaluate LEM analyses, as the inaccuracies in the method
may be related to the selected shape of the failure surface and search procedures used.
However, for some situations such as homogeneous cohesive soil, LEM gives similar
solutions to upper bound limit analyses described below. Since LEM does not have a
fundamental theoretical underpinning, it is very difficult to assess the accuracy and validity

of the solutions.

2.2.2 Slip-Line Field Analyses

Slip-line field analyses were firstly used to study collapse loads by Kotter (1903)
and Prandtl (1920). Thereafter, they were widely used for earth pressure and bearing
capacity problems by Caquot and Kérisel (1949) and Sokolovskii (1965). Kétter (1903)

was the first to derive the slip-line equations for strain problems, while Prandt!’s (1920)

''In general, r, varies throughout the slope. In practice, average values of r, must be estimated from
ground water measurements of other forms of conservative engineering judgment.
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solution corresponds to the limit load on a homogencous cohesive material'. Sokolovskii
(1965) applied the slip-line method to study various stability problems for cohesive and
frictional materials, and his studies represent the first main application in soil mechanics.

The original slip-line analyses can be summarized as follows. A stress field is
constructed in the region near the applied load to satisfy the specified stress boundary
conditions, equilibrium and yield criterion. This solution is referred to as a partial plastic
stress field, and can be obtained by combining the equations of quasi-static equilibrium
and yield criterion to generate a pair of hyperbolic partial differential equations. The
solutions are represented by two set of lines whose directions at every point coincide with
the directions of failure (often referred to as slip directions) which form a network of
siress characteristics’.

Further development of the slip line analyses followed the formalism of the theory
of plasticity (Hill, 1950) and the rigorous limit theorems (Drucker et al, 1952). The
original plastic equilibium equations can be eguated with lower bound solutions (see
Section 2.2.3) provided that the partial plastic stress field is extended throughout the
entire soil mass in statically admissible manner (i.e. satisfying equilibrum, yield, and
traction boundary conditions). While upper bound solutions, kinematically admissible
velocity fields are solved by combining compatibility equations, associated flow rule, and
velocity boundary conditions. These equations produce a similar (dual) set of partial
differential equations, which can be solved by methods of Sokolovskii to form a series of
lines referred to as velocity characieristics.

A complete solution using the slip-line field theory inciudes both the stress and
velocity characteristics, and is referred to as the method of characteristics or the method
of associated fields (Atkinson, 1981). The method of characteristics satisfies all the
conditions of equilibrium, compatibility and yield properties for the soil (with associated
flow) and are thus exact solutions for rigid-perfectly plastic materials.

It is worth noting several important points in the slip-line field analysis. The partial

plastic stress field obtained from the plastic equilibrium equation does not necessarily meet

"It should be noted that both Kotter (1903) and Prandtl (1920) were working on problems relating to a
rigid punch loading on steel.
? Define from the Mohr circle.
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all of requirements of the lower bound theorem of plasticity as there is no guarantee that
the stress fields can be extended to the entire soil mass, satisfying the equilibrium, the yield
criterion, and stress boundary conditions. Therefore, the partial plastic stress field is not
necessary a true lower bound solution. On the other hand, the velocity field obtained from
the method of characteristics satisfies all of the requirements of the upper bound solution
and hence, is a rigorous upper bound solution.

The disadvantage of the slip-line field method is the difficulty in solving the stress
and velocity characteristics. Graphical soluticns can only be achieved for homogeneous
soil (see Scott, 1963), while numerical methods have been applied to relatively simple soil
profiles (e.g. Davis and Booker, 1973). In addition, it is difficult to extend the partial
plastic stress field throughout the entire body in a statically admissible manner. This is
because there is no any specific rule to apply. If only the partial plastic stress field is
derived, the solution is not a true lower bound and hence, it is difficult to assess the
accuracy ‘of the solution. Another problem which frequently arises is that stress
characteristics can be solved for some classes of problem, where the associated velocity
characteristics cannot be found. For example, the effect of self-weight on the bearing

capacity of a footing on a frictional soil (see Sokolovskii ,1965).

2.2.3 Limit Analysis Method

The limit theorems or bound theorems were developed in 1950’s in conjunction
with research on metal plasticity (Hill, 1950; Drucker et al. 1952). Applications of the
limit theorems in soil mechanics were first published in Drucker and Prager (1952) and
were surveyed by Chen (1975).

Limit analyses are based on two theorems: 1) the lower bound theorem, which
states that any statically admissible stress field will provide a lower bound (or “safe”)
estimate of the true collapse; and 2) the upper bound theorem, which states that when the
power dissipated by any kinematically admissible velocity field is equated with the power
dissipated by the external loads, then the external loads are upper bounds (or “unsafe” ) on
the true collapse load (cf. Drucker et al. 1952). A statically admissible stress field is one

which satisfies the equilibrium equations, stress boundary conditions, and yield criterion
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(the stress state must lie inside or on the yield surface at all points in the continuum). A
kinematically admissible velocity field is one which satisfies strain and velocity
compatibility equations, velocity boundary cenditions, and the flow rule (of the soil at
yield).

When combined, the two theorems provide a rigorous bound on the true collapse

load. The following paragraph describe the main assumptions of the limit analyses.

2.2.3.1 The Yield Function and Flow Rule

The mechanical behavior of a rigid-perfectly plastic material is completely
characterized by a convex yield function, F(c;). Figure 2.7 shows a typical yield surface
in a generalized stress space. Deformations (plastic flow) only occur when the stress state
is at yield [i.e. F(o;) = 0]. When the stress state lies inside the yield surface [F(oy) < 0],
the material remains rigid (no deformation). Stress states outside the yield surface [F(oy) >
0] are not permitted within the framework of rigid-perfectly plastic behavior.

Plastic flow occurs when the stress state satisfies the yield criterion. The

associated flow rule describes the direction and magnitudes of the plastic strain rates, 6‘}?

at yield. In perfect plasticity, the flow rule is associated with the gradient of the yield

function at the current stress state as follows:

"35 =A— when F(oy)=0 (2.1a)

ég =0 when F(oj) <0 (2.1b)

where A =a non-negative, plastic multiplier rate which controls the magnitude of the

plastic strain rate

cF
50_= the gradient of the yield surface which controls the direction (i.e. relative
ij

magnitudes) of the plastic strain rates
The expression in equation 2.1 means that for an associated flow rule of perfectly

plastic material, when the stresses reach the yield criterion, the plastic strain rate will occur
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and can be represented by a vector whose direction is outward normal to the yield surface
at a stress point gj; such as point A in Figure 2.7.
Examples of yield criteria used in soil mechanics are Mohr-Coulomb, Tresca, and
Von Mises, etc (Figure 2.8). The Mohr-Coulomb yield criterion is the most commonly
used failure criterion in scil mechanics as it correctly accounts for changes in the shear
strength as a function of the effective confining stress. On the other hand, the Tresca and
Von Mises yield criteria can be applied to undrained shearing of saturated soils, where the
shear resistance is controlled by the current water content of the clay, and is not affected
by changes in a total confining pressure. Figures 2.8a, b and ¢ shows perspective views of
the three isotropic failure criteria in principal stress space while Figure 2.8d compares
them in the n-plane projection.
The Mohr-Coulomb yield criterion can be written in t-a, space as:
F(t,on)=t-0.tand-c=0 (2.2)
or in terms of the major and minor principal stresses:
F(c1,63) = 61 (1-sing) - o3 (1+ sind) -2ccosp =0 (2.3)
where 61, 63 = the major and minor principal stresses’
T, Gn = shear stress and normai stress acting on a plane considered
¢, ¢ = cohesion intercept and friction angle (material properties)
The associated flow rule can then be derived from equations 2.1a and 2.3:
1-sind

P _ P
€ =€ .
1+ sing

=-¢5tan’ (n/4-¢/2) (2.4)

Equation 2.4 implies that any plastic deformation of the Mohr-Coulomb material
must be accompanied by an increase in volume if ¢ # 0. This property is known as

dilatancy.

The Tresca yield criterion is a specific form of the Mohr-Coulomb criterion
corresponding to ¢ = 0:
F(61,03)=0.5(c,-03)-¢c=0 (2.5)

' Note: For soil mechanics, o,, &, and o; are effective stresses.
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Thus, the associated flow rule corresponding to Tresca criterion is obtained by
substituting ¢ = 0 in equation 2.4.
E)+€5 =0 (2.6)
The associated flow rule of Tresca criterion implies that plastic deformation occurs

with no change in volume (incompressibility condition).

Finally, in contrast to both Mohr-Coulomb and Tresca yield criteria, the Von
Mises yield criterion is 2efined in terms of the three principal stresses:

F(1, 02,03) = (01 - 62)° + (02 - 03)* + (03 - 61)* - 6k* = 0 2.7
where k = the yield stress of material in pure shear state'

The associated flow rule of the Von-Mises criterion also causes plastic flow with
no change in volume:

& =2Mo; -6,); &) =200, -0;); 6% =24(0, -0, (2.8)
Thus, summing these principal pléstic strain rates gives rise to:

e +E5+€5 =0 (2.9)

2.2.3.2 Virtual Work Assumption

The limit theorems assume that at the onset of collapse, changes in geometry of the
body are very small and can be neglected (thereafter, deformations have no defined limit).
At collapse, equilibrium equations are solved for the original undeformed dimensions. The
assumption of no appreciable change in geometry enables the virtual work equation to be
applied.

The principle of virtual work is composed of two separate and unrelated sets: the
equilibrium set and the compatible set (Figure 2.9). The equilibrium set consists of states
of external forces and internal stress which are in equilibrium, whereas the compatible set

consists of states of displacement and strain which are compatible to each other. The

' The parameter k (Von Mises) can be related to the parameter ¢ (Tresca) as: k = 2c/J5 , where c is
measure in a triaxial mode of shearing.
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principal of virtual work states that if the system is in equilibrium, the work done by the
external forces and displacement is equal to the work done by internal stresses and strains.

IT}U: dA +IFiui.dV = Icijé;dv 2.10)
A \"2 \'"4

where
Ti, Fi = external forces on the surface, and the body forces acting at all points
within the continuum, respectively
a;; = a set of internal stresses which are in equilibrium with the external forces (T,
F)
u:= a set of ‘trial’ displacement rates (velocities) at all points in the continuum

;i = a set of virtual strain rates compatible with the virtual displacement rate, u;

V, A = volume and surface area of the body, respectively

The asterisk (*) signifies that the equilibrium (external forces and internal stresses
relation) and the virtual deformation rates (compatible deformations and strains) are not
necessary related to each other, and may be completely independent. The left hand side of
the virtual work equation expresses the work done by the external forces, whereas the
right side expresses the internal power dissipation due to the internal stresses and strains.

Referring to Figure 2.9, a valid equilibrium set (T;, F; , o;) must satisfy the

following equilibrium equations:

At surface points: Ti = oy 2.11)
. L %

At interior points': +F =0 2.12)

Gij = Gji (2.13)

where n; = the outward unit normal vector to a surface element

! Note: Quasi-static assumption in equilibrium equation
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A valid compatible set (u:,éi.j) must also satisfy the following strain and

displacement rate compatibility equation:

2%, =— +— (2.14)

2.2.3.3 The Upper Bound Theorem

The upper bound theorem states that when the rate of internal work dissipated by a
kinematically admissible velocity field, u; is equated to the rate at which the external
forces do work, then the external forces (T;, F;) are upper bounds on the true collapse
load.

A kinematically admissible velocity field is one which satisfies the following:

(1) strain and velocity compatibility equations (equation 2.14)

(ii) the velocity (rate of displacement) boundary conditions

(iii) the associated flow rule (equation 2.1)

The upper bound theorem ignores the equilibrium conditions, stress boundary
conditions, and yield criterion (defined in terms of stresses). The proof of the upper
bound theorem will be given in Appendix A.

In order to demonstrate upper bound calculations, the method will be used to
evaluate the critical height of a vertical cut in cohesive soil as shown in Figure 2.10a. The
unit weight of soil is y. The critical height is defined here as the height at which the
unsupported vertical cut will collapse due to its own weight. To establish an upper bound
solution, we must assume a mechanism by which failure is likely to occur. For undrained
loading of clay, the rigid block mechanism is kinematically admissible and is useful for
collapse calculations. One such mechanism is also shown in Figure 2.10b. Here a wedge
of soil is underlain by a single straight slip plane making an angle 45° with the vertical.
Failure takes places as a rigid biock sliding under the action of gravitational forces, and is
resisted by shearing forces on the slip plane. Figure 2.10c shows the relative velocity

diagram (hodograph) for such a failure mechanism. It is assumed that the wedge moves
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with a displacement rate 8w parallel to the slip plane. The rate of work done by the
gravitational forces is the vertical component of the velocity multiplied by the weight of
the soil wedge:

Vs YH? 8w /42
while the rate of energy dissipated along the discontinuity surface is:

cu HV2 8w
where c, is the undrained shear strength of the clay layer.
Hence, equating the rate of external work to the rate of internal energy dissipation, an
upper bound for the height of the vertical cut at collapse is given by:

H. = dcu/y

2.2.3.4 The Lower Bound Theorem

The lower bound theorem states that if a statically admissible stress field can be
found throughout the system, then the loads, T;, F; will be lower bounds on the true
collapse load.

A statically admissible stress field is one which satisfies the following:

(i) equilibrium equations (equations 2.12 and 2.13)

(ii) stress boundary conditions (equation 2.11)

(iit) does not violate the yield criterion [F(c;;) < 0] at any point within the system

The lower bound theorem ignores all kinematic conditions (compatibility
equations, velocity boundary conditions, and flow rule). The proof of the lower bound
theorem will be given in Appendix B.

In order to demonstrate lower bound calculations, the method will be used to
evaluate the critical height of vertical cut in cohesive soil as shown in Figure 2.11a. To
establish a lower bound solution, a stress field must be which satisfies the conditions that

the external loads are in equilibrium with the internal stresses, i.e.

%, +-&iy-—0

= o (2.15)
oo, Ot

Nl A

& o
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The stress field shown in Figure 2.11a automatically satisfies the equilibrium conditions of
equation 2.15 and also satisfies the stress boundary conditions on the vertical and
horizontal planes. Mohr’s circles of stress for the element A and B in Figure 2.13a are
shown in Figure 2.13b. The Mohr’s circle A does not cross the Tresca failure envelope
when
YHi=2¢,
and hence
Hi=2c.y
Note that the Mohr’s circle B is smaller than circle A and does not violate the
failure criterion. This shows that the stresses are obtained in statically admissible
procedure everywhere throughout the soil; thus, the obtained H, is a lower bound on the
actual height of the cut at collapse.
Therefore, from the upper bound and lower bound calculations, the true height,
H,, of the vertical cut in purely cohesive clay at collapse can be bracketed as:
2c//y < He < dcly
Thus, the average of the upper and lower bound solutions is H = 3c,/y and hence
the bounds differ from the average by 33%, which represents a large error for a practiced
calculation, and requires refinement (primarily of the lower bound solution). This can be
achieved by proposed more realistic statically admissible stress fields as discussed in detail

by Heyman (1973), who gives an upper bound H, = 3.83c,/y and a lower bound H; =
2.83cly.

2.2.4 Displacement Based Finite Element Analysis

Collapse loads can also be computed using the displacement based finite element
method. These analyses model the complete load history and include the pre-yield elastic
deformations of the soil. To obtain collapse loads by finite element analysis, the procedure

is carried out using a step-by-step, incremental load-displacement analysis.
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2.2.4.1 Incremental Procedure

The basic approach in an incremental step-by-siep solution is to assume that the
solution at the beginning of the increment is known. Thus, the solution for the next
displacement increment can be obtained by solving the incremental equilibrium equations
for each incremental load as:

[ K]{dU} = {dR} (2.16)

where {dU}, {dR} = the vectors of displacement increment and load increment of the
discretized body, respectively. The matrix [ K ] is the sum of the total geometrical stiffness
and total material stiffness matrices and corresponds to the tangent stiffness of the current
configuration of the body. The incremental displacement vector {dU} can be
approximated using this tangential stiffness. For each successive step in the load path, the
soil must satisfy the requirements of continuum mechanics namely the stress equilibrium
equations, the kinemnatic compatibility equations and the non-linear constitutive relations
(stress-strain-strength). Having evaluated an approximation to the displacement vectors
corresponding to the applied load increment, then solution can proceed to the next
increment of the calculation. However, the displacement increments do not generally
satisfy the equilibrium of the discretized body at the next configuration due to material
non-inearity'. As a result, various interactive procedurss have been developed and applied
to finite element analysis. The choice of a particular procedure depends on the loading
condition, the accuracy required for the analysis, the constitutive relations etc.

Figure 2.12 shows the simplest incrementation procedure known as first order
Euler integration method in which the tangent stiffnzss [ K ] at the beginning of an
increment is directly utilized to obtain a linear approximation for the incremental response.
As shown in Figure 2.12a, we suppose that the solution at Point A is known at the
beginning and we want to determine incremental displacement {dU} associated with
applied incremental load {dR}. We project along a tangent at Point A to obtain an
approximate solution denoted by point B. However, because of the assumption in
equation 2.16 which is always approximate equilibrium conditions, we can expect that

after a number of increments, the approximate solution diverges from the true load path,

! Problems of geometric non-linearity are not considered here.
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as shown in Figure 2.12b. It is possible that a solution may be subject to very significant
errors and may indeed be unstable, depending on the size of the load step used. Although
this kind of analytical error can be reduced by keeping the incremental load (or
displacement) small, the number of increments will be correspondingly greater, causing an
increase in computational time. Therefore, in practice it is frequently necessary to iterate

uatil the non-linear equilibrium equations are satisfied' .

2.2.4.2 TIterative Solution Techniques

Due to the assumption of a constant stiffness within a load step, the displacement
increments will, in general, be in error If left uncorrected, such errors will accumulate and
solution will diverge from the correct load path. One solution is to adopt an iterative
procedure which ensures that the solution is sufficiently accurate at each successive step.
All iterative techniques are based on a piecewise linear method in which the stiffness is
assumed constant and an iterative procedure is pursued until equilibrium is satisfied. A
correction load vector corresponding to the unbalanced force vector (obtained from the
external load vectors and the stress state) at the previous iterative step, is applied to
approximate the displacement increment at the next iterative step. This procedure can be
repeated until the correction load vector reaches an acceptable tolerance.

Bathe (1982) describes several iterative solution techniques including the full
Newton-Raphson and modified Newton-Raphson, shown in Figure 2.13. For the Newton-
Raphson method, the tangent stiffness matrix is recalculated at each time during an
iteration as shown in Figure 2.13a. On the other hand, for the modified Newton-Raphson
method, the stiffness matrix evaluated at the previous step is used throughout the iteration
as show in Figure 2.13b. Thus, the number of iterations increases with the non-linearity of
the system. It can be seen that even though Newton-Raphson method requires smaller
iterations than the modified version, convergence of the solution is not guaranteed if the
tangent stiffness becomes weak. In general, it is difficult to assess the number of iterations

required to achieve a given tolerance (load path accuracy).

' There are higher order incremental schemes, which compute the error for a give step size and
automatically adjust the step size to prevent progressive deterioration of the solution (e.g. Abbo and Sloan,
1994).
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Convergence of the iterative solution is generally measured using either a
displacement criterion or a residual force criterion. The first method compares the norms
of two consecutive displacement solutions. Convergence is satisfied when the difference
between two norms is less than some specified tolerance:

|-y
g

< Tol (2.17)

where {U} = displacement vector
the subscript i = the iteration number -
the superscript n+1 = the incremental step
Norm of a vector {A} = |{A}| = ({A}T{A})"?

Alternatively, the second method compares the norm of the residual (unbalanced)

force vector to the norm of the total external load vector:

{R‘}nﬂ

i+l

I{R}nﬂ
Ry

< Tol (2.18)

where {R}™' = the total external load vector = {Ry}™" + {Rs}""

{Rs} = the body force vector

{Rs} = the surface force vector

{R;} = the resisting forces obtained by integration of the element stresses

Nayak and Zienkiewicz (1972) have suggested that the tolerance for these criteria
should be on the order of 10* to 10°. This tolerance seems rather restrictive for
geotechnical materials because of their non-linear properties.

Theoretically, the finite element analysis can give the complete results of stability
calculations, namely stress-strain distribution, displacement, etc. However, in geotechnical
practice, it is not easy to apply non-linear numerical analysis because of its complexity as
described earlier. Moreover, the finite element analysis depends on idealization, or
discretization of a problem so that an approximate solution to the governing differential

equations is obtained. The accuracy of this solution relies upon the assumptions made
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during the discretization of a problem and the numerical techniques used to obtain the
solution. Some common sources of errors arise from:

1) constitutive relations,

2) element selection and mesh refinement.

The analysis also requires a generalized soil model (constitutive relations) in order
to achieve reliable solutions. However, the measured behavior of real soil is very complex
and includes properties such as anisotropic and rate dependent shear strength, strain
softening, etc. Moreover, many of the existing soil models assume that the limiting (critical
state) shear strength is only mobilized at large shear strains and hence, numerical analyses
must include geometric non-linearities to capture this type of behavior. Numerical errors
also occur due to the linearization and integration of the non-linear stress-strain relations
when performing incremental or iterative schemes described earlier.

Displacement based finite element analyses approximate the continuum
deformation field with specified interpolation functions (which describe displacement
variations within an element). In order to achieve reliable predictions of collapse loads, the
interpolation functions must be able to capture the deformation modes associated with
incompressible or dilating soil (volume increase with shearing). Inaccuracies often occur in
predictions of collapse loads due to the excessive number of kinematic constraints
imposed on the incremental displacement fields as collapse is approached (e. g. Nagtegaal
et al., 1974; Sloan and Randolph, 1982). Sloan and Randolph (1982) demonstrated that
this problem can be solved by using higher order interpolation functions' which provide
sufficient degrees of freedom to overcome incompressiblity constraints. In addition, they
showed that analyses using standard types of (isoparametric) elements yields unreliable

prediction of collapse loads, especially for undrained axisymmetric problems.

' For undrained analyses of collapse, they recommend cubic strain interpolation functions which are
generated 15-noded triangular elements.
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2.3 The Stability of Footings and Shallow Foundations
2.3.1 Terzaghi Bearing Capacity Theory

In 1920, Prandtl published results of his study regarding the penetration of hard
bodies, such as metal punches into a softer material. Terzaghi (1943) extended the plastic
failure theory of Prandtl (1920) to evaluate the bearing capacity of soils for shallow strip
footings. The assumptions used in Texzaghi’s bearing capacity are as follows:

1. A shallow foundation is defined as shallow when the depth of embedment, Dy is

less than, or equal to its width, B.

2. The soils above the base of foundation acts as a uniform surcharge with no

shear resistance.

3. Soil below the base level is a rigid-perfectly plastic material, which satisfies the

Mohr-Coulomb yield criterion.

4. Solutions are obtained for a plane strain (strip footing) geometry.

5. Empirical correction factors are introduced to address the effects of foundation

shape, pre-failure compressibility, inclination angles, etc.

Figure 2.14 shows the failure mechanism assumed by Terzaghi (1943) for
determining the ultimate bearing capacity of a smooth flexible foeting (uniform bearing
pressure). The failure is composed of three zones: I) an Rankine active zone, ABJ (o1
vertical); IT) two radial shear zones, AJE and BJD (rotations of principal stress directions);
and IIT) two Rankine passive zones, GEA and BDF (with o, horizontal). The curves JD
and JE are arcs of a logarithmic spiral.

Based on this type of failure mechanism, Terzaghi evaluated the bearing capacity
using an approximate method of superimposition:

Qun = CcN. + qN, + “2yBN, (2.19)
where N, N,, N, are bearing capacity factors which are functions of the friction angle ¢’
and represent the effects of soil cohesion c, surcharge, q, and soil unit weight, Y,
respectively. Terzaghi (1943) obtained the exact solutions of N, N, for a weightless soil (
y =0):

N, = exp[r tan¢’] tan’(45 + ¢'/2) (2.20)
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N: = (Nq - 1)cotd’ (2.21)
Approximate solutions' for N, have been proposed by several investigators
including Hill (1950), Sokolovskii (1965), Caquot and Kérsiel (1948), Terzaghi (1943),
and Prandtl (1920) (Table 2.2 summarizes result for smooth and rough bases). The most
commonly used values of N, are those reported by Caquot and Kérsiel (1948) for a
smooth base:
N, = 2(N, + 1)tan¢’ (2.22)
Figure 2.15 summarizes the three bearing capacity factors presented in equations
2.20,2.21 and 2.22.

Equation 2.19 is applicable for general problems of drained bearing capacity
(effective stress analysis). The undrained bearing capacity of a purely cohesive soil (tota!
stress analysis, ¢ = 0) is given by:

qur =GN +q (2.23)

Note that for ¢ =0, N;=1and N. =2 + 1 =5.141, are the standard results for a
smooth foundation on a homogeneous cohesive clay layer.

In practice, there are many uncertainties in applying equations 2.19-2.23 to predict
drained bearing capacity of sands including: 1) uncertainties in the analytical solution for
Ny (note: for ¢ = 0, N, = 0); 2) the importance of non-linearities in the measured peak
friction angles of sands at low stress levels (cf. Pestana, 1994); and 3) the compressibility
of sand (cf. Vesic, 1975). Furthermore, bearing capacity is rarely the dominant design
criterion for shallow foundations on sands, while the short term (undrained) bearing

capacity of clays is often critical in the design of foundations.

' Note: N, =0 for ¢’ =0.
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2.3.2 Parameters Affecting Bearing Capacity
2.3.2.1 Effects of Embedment and Foundation Shapes

The theoretical basis for bearing capacity are slip-line analyses which apply only to
plane strain footing geometry. For other foundation shapes such as circular or rectangular
bases, there are no analytical solutions available. Similarly, by neglecting the shear
resistance of the overburden soils, there are no exact solutions which account for the
effects of embedment depth. Geotechnical practice uses semi-empirical correction factors
to account for foundation shape and embedment depth.

The modified Terzaghi’s bearing capacity formula is then written:

Qur = cNcD.S. + qND,S, + Y4yBN,D,S, (2.29)

where D, Dq and D, are depth factors and S, S, and S, are shape factors listed in Table
23 and are based on recommendations by DeBeer (1967) and Hansen (1970),

respectively.

2.3.2.2 Effect of Inclined and Eccentric Loads

To calculate the bearing capacity of shallow foundation with eccentric loading,
Meyerhof (1953) proposed the concept of effective width based on experimental studies.
Figure 2.16 shows the concept of the effective area for a footing of length, L, and width,
B, subjected to an eccentric, vertical load, Q.. The load eccentricities are eL and e, with
respect to the length and width, respectively. The effective width concept assumes that
the vertical load Q, acts over the apparent width, B' = (B - 2e) and the apparent length, L'
= (L - 2e1). Thus, the collapse load can be approximated as qui(B'.L").

When the footing is subjected to an inclined load, the problem is rather more
complicated because of the presence of the horizontal component of the applied load.
Failure can occur either by sliding of the footing along its base or by the general shear
failure of the underlying soil. The bearing capacity of inclined loads can be obtained by
introducing inclination factors, which take into account for the direction of load
application inclined at a certain angle to the vertical. In practice, inclination factors are
simply applied to each term of the bearing capacity equation:

Qui = cND.Sci + qND.S,Iq + Y4yBN,D,S,I,(2.25)

43



where I, and L; and I, are inclination factors
Hansen (1961) applied the method of stress characteristics to study a footing on
weightless soil loaded with an inclined and concentric load as shown in Figure 2.17. The
footing has a flexible rough base which indicates that the contact normal stress is uniform.
In his analyses, Hansen assumes that the soil-footing interfaces obeys the Mohr-Coulomb
criterion with the same properties as the underlying soil.
For undrained loading (¢ = 0), Vesic (1975) and Hansen’s (1961) give:
L = 1/(cosa + 2sinat) (2.26)
L=1

where a = inclination angle of the applied load to the vertical

In contrast, Meyerhof (1953) proposed empirical inclination factors:

L =1,=(I - a°/90°) (227

More recently, Saran and Agarwal (1991) have solved the bearing capacity of a
strip footing with an inclined and eccentric load, using a limit equilibrium method shown in
Figure 2.18. They assume the following:

1. The base of the footing is rough.

2. The shear resistance of soil above the base of foundation is neglected and

replaced by uniform surcharge.

3. Referring to Figure 2.18, the failure of the left side (direction of horizontal load

direction) is fully mobilized, while the failure on the right is partially mobilized.

4. The footing can lose contact with the soil at large load eccentricity. Saran and

Agarwal (1991) provided several expressions for the width of the contact area
as a function of the eccentricity ratios.

5. The method of superposition still holds, which implies that three components of

bearing capacity, (cohesion, self-weight, surcharge) can be evaluated

separately.
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Due to the complexity of the problem, the bearing capacity factor can not be
derived in closed-form, but is solved numerically trial-and-error, with solutions shown in

Figure 2.19.

2.3.2.3 Effect of Layer Thickness (on undrained bearing capacity)

The standard (Terzaghi, 1943) bearing capacity solutions apply for a deep clay
layer (half-space). Shield (1955) used limit analyses to study the capacity of a smooth,
rigid punch on the surface of thin layer of cohesive material (Tresca yield) resting on the
rough rigid base. The square and circular punch were considered in his analyses. For
thinner layer, Shield obtained the mathematical expressions for the upper and lower bound
solutions for the bearing capacity factor, N, as a function of the width-thickness ratio
B/(2H), where B is the width of the footing and H is the thickness of the clay. Table 2.4
summarizes the expressions of bearing capacity for the square and circular punch while
Figure 2.20 compares the analytical bounds. For both cases, the bearing capacity of thin
clay layers increases significantly with the width-thickness ratio. Within the range of
practical interest [B/(2H) = 10-80], N. increase almost linearly with B/(2H). For a large
value of B/(2H), the bounds for square punch differs from their mean about 10-15%, while
those for circular punch are very small (less than 5%). Hence, the bounds are reasonably

accurate for all practical cases of interest.

2.3.2.4 Effect of Strength Gradient on Undrained Bearing Capacity

Davis and Booker (1973) used numerical analyses to solve stress and velocity
characteristics for undrained collapse of surface footings (with smooth and rough bases)
on clay layer with non-homogeneous strength profiles (Figure 2.21). Their analyses
consider two types of strength profile : i) undrained shear strength increases linearly with
depth, and ii) a clay crust overlying layer whose strength increases linearly with depth.
Davis and Booker (1973) have found both stress and velocity characteristics of these
problems, thus their solutions are exact. Figure 2.21 summarizes the bearing capacity

factors for these two cases.

45




2.3.2.5 Effect of Anisotropy on Undrained Bearing Capacity

Davis and Christian (1971) investigated the effect of anisotropic strength
properties on the undrained bearing capacity using an anisotropic yield criterion, proposed
by Hill (1950). Exact solutions for this problem (obtained from stress and velocity
characteristics) can be represented as a simple modification of the bearing capacity:

q =" [ci(0°) +¢c(90°) I N + qi¥q (2.28)

where ¢,(0°) = undrained shear strength for triaxial compression

¢u(90°) = undrained shear strength for triaxial extension

N'c = modified bearing capacity factor defined in terms of c,(0°), c,(90°) and
c«(45°) in Figure 2.22.

Note that when parameters a and b are equal, N'. becomes the conventional

Terzaghi’s bearing capacity factor(i.e. N = 5.141)

2.3.3 Survey of Analysis Methods Used for Footings and Foundations on Clays

The application of limit analyses to undrained loading of footing on clay are
restricted to simple problems such as the effect of layer thickness of clay (Shield, 1955).

The method of characteristics has been used to investigate complicated problems
of undrained loading on clay, including the effects of 1) strength non-homogeneity (Davis
and Booker, 1973); 2) anisotropic strength (Davis and Christian, 1971); and 3) inclined
loads (Hansen, 1961). In addition, Sokolovskii (1965) applied this method to obtain
solutions for both cohesive and frictional soils for footing problems. All of the above
analyses were solved for plane strain conditions. Houlsby and Wroth (1982) have used the
method of characteristics to calculate the bearing capacity for axially symmetric footings
and penetrometers. Their studies are relevant to interpreting the shear strength at the
Liquid Limit test using the fall cone method. Cox et al. (1961) and Cox (1962) have also
studied the axial symmetric problem of a smooth circular punch. Little work on
foundation problems of axial symmetry has been reported.

The limit equilibrium method (LEM) has also been applied to estimate the bearing
capacity of plane strain footings under inclined and eccentric loads by Saran and Agarwal

(1991). Janbu (1985) used LEM methods to compute the collapse of footings under
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inclined concentric load as shown in Figure 2.24a (the analyses assume ¥ = 0). The applied
horizontal and vertical loads are assumed to be uniformly distributed over the width of the
foundation, which implies that the solutions correspond to the case of flexible base. Figure
2.23b show Janbu’s bearing capacity factor, N,, plotted as a function of base roughness
ratio, r = H/Bc,, where H is the applied horizontal force, B is the width of the footing,
and c, is the undrained shear strength of the clay. Thus, the vertical collapse pressure, g,
= [cuNc + p], where p is the overburden pressure at the base of the foundation. Notice that
to use Janbu’s chart, the applied horizontal load must be known, which is a typical
situation for offshore structure where the applied horizontal load is evaluated from wave
action or wind loads.

Garber and Baker (1977) have proposed a variational method for assessing the
stability problem, and evaluating Terzaghi’s bearing capacity factors. The assumptions
used in their analyses are similar to those used in Terzaghi’s bearing capacity calculation.
Plane strain conditions are considered and the effect of the soil above the foundation level
is represented by a uniformly distributed surcharge. The variational method is similar in
concept to the Limit Equilibrium Method (LEM) with unknowns corresponding to the
location of the failure surface and the normal stress distribution along the failure surface.
Their analyses consider only continuous functions for the failure surface and normal stress.
The applied load from a footing is expressed as a function of the normal stress using one
ot hree equilibrium equations. The bearing capacity problem is formulated by finding the
sm ‘lest value of the applied load which permits the normal stress along the failure surface
to satisfy the conditions of LEM (i.e. three equations of equilibrium, and the Mohr-
Coulomb failure criterion). The formulation leads to a variational problem of the
isoparametric type, which is solved using the method of Lagrange multipliers. Their
solutions of bearing capacity factors match those obtained by Terzaghi (1943). Note that
the variational method still suffers the same problem as LEM in which the resulting
solutions contain errors of unknown magnitude.

Griffiths (1982) has applied non-linear, elasto-plastic finite element analyses to
evaluate Terzaghi’s bearing capacity equation for plane strain footings on cohesive,

frictional soil (Mohr-Coulomb failure criterion) with a non-associated flow rule (zero
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dilation at failure). These analyses also consider both smooth and rough bases. The
results show that the bearing capacity factors N. and N, obtained from finite element
analyses are in good agreement with those proposed by Terzaghi (1943), while the N,
term corresponds with solutions of Hill (1950) and, Hanser and Christiensen (1969) at
small friction angles (¢ < 25°; Table 2.2). Large differences occur between the finite
element and published solutions of N, for ¢ > 25°. The results confirm that Terzaghi’s

assumption is conservative due non-linearity in the N, term.

2.4 Numerical Solution of Limit Analyses By Linear Programming
2.4.1 Motivation

Limit analysis is a powerful method for analyzing stability problems in soil
mechanics as the lower and upper bound theorems provide a rigorous bound on the exact
collapse load. However, the conventional analytical techniques used to solve limit
theorems (methods of characteristics) are very difficult to apply for complex geometries,
soil profiles (non-homogeneities) and loading conditions. Furthermore, crude upper and
lower bound loads may not provide adequate resolution of the collapse load (cf. section
2.2). For example, it is often difficult to construct statically admissible stress fields, which
give a lower bound close to the true collapse load. Moreover, there is no rational method
for refining statically admissible stress fields in order to improve the accuracy of the lower
bound calculation. Finally, many published solutions are referred to as ‘lower bounds’
although they do not satisfy the complete requirements of the lower bound theorem.

For homogeneous soils, it is often much easier to obtain relatively accurate upper
bound solutions which are close to the true collapse load' except in cases where the soil
dilates (y > 0; see Figure 2.1)* at failure. Conventional analyses which assume rigid block
mechanisms do not represent correctly the volume changes of these dilating materials and

hence, do not satisfy fully the requirements of the upper bound theorem.

' When dealing with complex stratigraphy etc, it is also difficult to find kinematically admissible failure

mechanism. _
? For undrained analysis of clay y = 0 and there 1s no plastic volume change.

48



Since the application of the conventional analytical limit analysis is limited to
simple problems, a more robust numerical method for computing the lower and upper

bounds is highly desirable.

2.4.2 Numerical Lower Bound Formulation by Finite Element and Linear Programming

The numerical lower bound formulation was first proposed by Lysmer (1970) for
plane strain problems. His approach uses the concept of finite element discretization and
linear programming. In this procedure, the soil mass is discretized into 3-noded triangular
elements whose nodal variables are unknown stresses. The stresses are assumed to vary
linearly within element, while stress discontinuities are permitted to occur at the interface
between adjacent triangles. The statically admissible stress field is defined by the
constraints of equilibrium equations, stress boundary conditions, and the yield criterion.
Each non-linear yield criterion is approximated by a set of linear constraints on the stresses
which lie inside the parent yield surface, thus ensuring that the solutions are a strict lower
bound'. This leads to an expression for the collapse load which is maximized and
subjected to a set of linear constraints on the stresses. The lower bound load is solved by
optimization, using techniques of linear programming. Other investigators have worked on
similar algorithms (Anderheggen and Knopfel ,1972; Pastor, 1976, Bottero et al., 1980).
However, the major disadvantage of these formulations is the linearization of the yield
criterion which generates a large system of linear equations, and requires excessive
computational times, especially if the traditional simplex or revised simplex algorithms are
used (Sloan, 1988a). Therefore, the scope of the early investigations were limited to small
problems. Lysmer (1970) attempted to improve the efficiency of his solutions by
employing an iterative technique which used a small subset of the total number of yield
constraints. Although this approach reduced the computational time significantly, it was
only conditionally stable and not sufficiently robust for general applications.

More recently, efficient methods for solving numerical lower bounds by finite
elements and linear programming have been developed (Bottero et al, 1980; Sloan, 1988a
and 1988b; #nd Assadi and Sloan, 1990). The key concept of these analyses is the

! Sloan (1988a) uses the method of Lysmer (1970) to linearize the yield function.
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introduction of an active set algorithm (Sloan, 1988b) to solve the linear programming
problem where the constraint matrix is sparse. Sloan (1988b) has shown that the active set
algorithm is ideally suited to the numerical lower bound formulation and can solve a large-
scale linear programming problem very efficiently. A second problem associated with
numerical lower bound solutions occurs when dealing with statically admissible conditions
for an infinite-half space. Assadi and Sloan (1990) have solved this problem by adopting
the concept of infinite elements originally proposed by Pastor (1978), and hence obtain

rigorous lower bound solutions for general problems.

2.4.3 Numerical Upper Bound Formulation by Finite Element and Linear Programming

Numerical upper bound formulations finite elements and linear programming were
also proposed by Anderheggen and Knopfel (1972) and Bottero et al.(1980). The former
was primarily concerned with limit analyses for plates, whereas the latter formulation was
generalized to include velocity discontinuities for plane strain problems. In the formulation
of Bottero et al (1980), the soil mass is discretized into 3-noded triangular elements whose
nodal variables are the unknown velocities. The velocities are assumed to vary linearly
within element. Each element is associated with a specified number of unknown plastic
multiplier rates (A; equation 2.1). Velocity discontinuities are permitted along pre-
specified interfaces of adjacent triangles. Plastic deformation can occur within the
triangular element and at the velocity discontinuities. Kinematically admissible velocity
fields are defined by the constraints of compatibility equations, flow rule of yield criterion
and velocity boundary conditions. The non-linear yield criterion (Von Mises, Tresca or
Mohr-Coulomb) is linearized using a polygonal approximation (Sloan, 1989), which
circumscribes the exact yield surface so that the solutions are a strict upper bound. The
finite element formulation of the upper bound theorem leads to a linear programming
problem whose objective function is the minimization of the collapse load and is expressed
in terms of the unknown velocities and plastic multipliers. Bottero et al.(1980) obtained
upper bound loads using the revised simplex algorithm.

One of the major disadvantages of this formulation is that the revised simplex

algorithm required significant amounts of computational time. This problem was overcome
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by Sloan (1988b, 1989) who adopted the same basic formulation as Bottero et al (1980),
but solved the linear programming problem using the active set algorithm.

The second problem encountered by Bottero et al (1980) and Sloan (1989) is
caused by the incompressibility condition of perfectly plastic deformation. The
discretization using linear triangular elements must be arranged such that 4 triangles form
a quadrilateral, with the central nodes lying at its centroid’ .

Furthermore, the analyses only handled a limited number of velocity discontinuities
with pre-specified directions of shearing. Sloan and Kleeman (1994) have recently
developed a mere general numerical upper bound formulation (also using linear triangular
discretization) which permits velocity discontinuities along all edges between adjacent
triangular elements, while the direction of shearing is solved automatically during the
optimization process. Sloan and Kleeman (1994) have shown that this new formulation
provides good estimates of the true collapse load even with a relatively coarse grid, and is
much less sensitive to the mesh arrangement than the earlier prototype formulation (Sloan,
1989).

Recently, another type of numerical upper bound approach has been formulated by
Chuang (1992). The soil mass is discretized into rigid triangular and rectangular elements
with plastic deformation occurring along contact edges of adjacent elements. The
kinematic formulation leads to a linear programming problem which is a primal problem.
Chuang (1992) is able to show through the duality theorem of linear programming that the
dual problem of the primal formulation for these conditions corresponds to the limit
equilibrium method. Therefore, his solutions are more accurate than those obtained from
conventional limit equilibrium calculations. However, his method is limited by the
assumption of rigid elements, which indicates that velocity fields obtained are not

kinematic admissible for frictional materials which dilate at failure.

' Yu et al. (1994) have shown that this constraint can be removed using higher order (quadratic)
interpolation of the nodal point velocities.

51



2.4.4 Previous Applications of Numerical Limit Analyses

The numerical limit analysis technique has been applied successfully to assess a
number of stability problems in soil mechanics for which no analytical solutions exist,
including undrained stability of shallow square tunnels (Assadi and Sloan, 1990),
undrained stability of shallow circular tunnels (Sloan and Assadi, 1993), undrained stability
of a trapdoor (Sloan et al, 1990), and the bearing capacity factor due to self-weight, N, of
a cohesionless soil (Yu and Sloan, 1993).

Figure 2.24 shows the undrained stability charts for shallow square tunnels in a
homogeneous clay (Assadi and Sloan, 1990). The stability factor is represented by (o, -
o.)/c., where g, is the surcharge at the surface, 6, is the internal pressure in a tunnel, and c,
is the undrained shear strength of clay. The stability factor is plotted against the
embedment depth-width ratio H/B. Figure 2.25 summarizes the results of similar studies
for a circular tunnel in clay layer whose undrained shear strength increases linearly with
depth. In this case, the stability factor is given as (o, - 6,)/c,0, Where cy is the undrained
shear strength of clay at the ground surface. All of the results correspond to active type
failure, where the surcharge at the surface causes the soil to fail (at a specified internal
pressure). For all analyses, the collapse loads can be accurately predicted within +8-12%
which is considered very reasonable for practical engineering calculations.

Figure 2.26 shows the bearing capacity factor N, for a smooth strip footing plotted
as a furction of friction angle with the ordinate plotted on a logarithmic scale. The plot
compares: 1) the solutions obtained from the numerical limit analyses (Yu and Sloan,
1993); 2) Sokolovskii’s partial stress field solutions; 3) Booker’s upper bound solutions;
and 4) Chen’s upper bound solutions (Hill mechanism). All of the solutions indicate that
the value of In(N,) increases almost linearly with friction angle. The numerical upper
bound solutions represent a significant improvement on solutions obtained by Sokolovskii
and Chen. The bounds from numerical limit analyses typically differ by about 20%.
Booker’s upper bound solutions together with the numerical lower bound solutions enable

to bracket the exact value for N, to within about 5%.
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Several authors have applied numerical limit analyses to reinforced earth walls
(Sawicki, 1983, 1988; de Buhan et al., 1989; de Buhan and Siad, 1989; Yu and Sloan,
1994b, Abdi et al., 1994) based on homogenization assumptions which treat the reinforced
soil mass as an equivaient homogeneous, anisotropic material. Figure 2.27 shows the
numerical upper and lower bound solutions for the bearing capacity of a strip footing on
weightless cohesionless reinforced soil (Yu and Sloan, 1994b). These results are plotted as
normalized bearing capacity, q/co against the soil friction angle ¢, where q = the collapse
pressure, 6o = (d/h)oyiqa, d = the thickness of the reinforcement, h = the spacing of the
reinforcement, and oyqa = the tensile yield strength of the reinforcement. Plotted in the
same figure are: 1) the upper bound solutions obtained by de Buhan et al., who used a
rigid body mechanism to find the collapse ioad; and 2) the exact solution obtained by
Sawicki (1988). The results show the numerical upper bound solutions give more accurate
estimates of the true collapse load than those obtained by de Buhan et al. It can be seen
that the exact solution lies between the numerical lower and upper bound predictions, and
can be accurately predicted by their mean to within 10% (while the numerical upper bound

solution is much closer to the exact solution than the lower bound).
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