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Case Study

Cautionary Tales of Inapproximability

DAVID BUDDEN1,2,* and MITCHELL JONES1,3,*

ABSTRACT

Modeling biology as classical problems in computer science allows researchers to leverage
the wealth of theoretical advancements in this field. Despite countless studies presenting
heuristics that report improvement on specific benchmarking data, there has been com-
paratively little focus on exploring the theoretical bounds on the performance of practical
(polynomial-time) algorithms. Conversely, theoretical studies tend to overstate the gener-
alizability of their conclusions to physical biological processes. In this article we provide a
fresh perspective on the concepts of NP-hardness and inapproximability in the computa-
tional biology domain, using popular sequence assembly and alignment (mapping) algo-
rithms as illustrative examples. These algorithms exemplify how computer science theory
can both (a) lead to substantial improvement in practical performance and (b) highlight
areas ripe for future innovation. Importantly, we discuss caveats that seemingly allow the
performance of heuristics to exceed their provable bounds.
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1. SEQUENCE ASSEMBLY: WHERE THEORY MEETS PRACTICE

G iven a set of n strings, S = fs1; s2; . . . ‚ sng, the goal of the shortest common superstring problem

(SCSP) is to find the minimum length string, s, such that each si 2 S is a substring of s. The SCSP over the

nucleotide alphabet, S = fA‚ C‚ G‚ Tg, thus provides a simple and convenient model for the sequence as-

sembly problem, whereby we wish to determine the DNA sequence from which a set of reads (or k-mers) are

derived. This is a classic example of how decades of research on approximation bounds of NP-hard problems

can be applied to improve the practical performance of algorithms in the computational biology domain.

A detailed review on the development of approximation and hardness bounds for SCSP is provided by

Golovnev et al. (2013). Despite these advancements, the power of theoretical computer science abstractions

is limited by how closely they represent the true biological problem (as we discuss later)—in this case,

reversing the DNA fragmentation process inherent to high-throughput sequencing experiments. SCSP and

its sequence assembly derivatives (Sweedyk, 2000; Kaplan and Shafrir, 2005) have thus been criticized for

their assumptions regarding parsimony and tandem repeats (Nagarajan and Pop, 2009), motivating the

application of graph theoretic models that make more appropriate sets of assumptions.
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1.1. NP-hardness of exact solutions

Most modern sequence assembly algorithms correct for the issues inherent to the SCSP by modeling the

assembly problem as one of finding suitable paths in graphs constructed from reads (or k-mers). The

simplest of these approaches involves the construction of an overlap graph, OG(S) (over a set of strings

S = fs1; s2; . . . ‚ sng), which is defined on a set of vertices, V = f1‚ 2‚. . . ‚ ng, and weighted directed edges

(Kececioglu and Myers, 1995; Myers, 2005). The weight of each edge, (i‚ j), is defined as the length of the

largest string that is both a suffix of si and a prefix of sj.

Similar to the SCSP, the process of sequence assembly involves traversing OG(S) to determine the set of

edges that yields the largest overlap. This can be accomplished by visiting each vertex (representing each

substring si 2 S) exactly once while maximizing the length of the traversed path (the maximum com-

pression). This problem is precisely the maximum traveling salesman problem (TSP), which is akin to the

problem of finding a Hamiltonian path except for weighted edges. Despite the convenience of this rep-

resentation, the TSP is an NP-hard problem that affords approximation bounds of arguable benefit in the

context of sequence assembly.

1.2. Approximation algorithms and de Bruijn graphs

A convenient method of circumventing the NP-hardness of sequence assembly (when modeled as

overlap graphs) is to remodel the problem such that reads are associated with edges rather than vertices.

The problem of sequence assembly can thus be modeled as a de Bruijn graph, DG(S), which is a directed

unweighted graph such that each vertex is a substring of some length k (k-mer) of the strings S (Compeau

et al., 2011) (i.e., each string si 2 S is represented as an edge rather than a vertex). In the scenario that S

contains every k-mer of the optimal assembly, this solution can be found exactly in polynomial time as an

instance of the Eulerian path problem. Most modern assembly algorithms use a variant of this graph

theoretic ‘‘trick’’ (Butler et al., 2008; Chaisson and Pevzner, 2008; Zerbino and Birney, 2008; Simpson

et al., 2009; Li et al., 2010).

It is perhaps unsurprising that the exact polynomial-time solution to sequence assembly involves many

simplifications to the true problem (Compeau et al., 2011), including that all k-mers present in the genome

are contained within the set of reads, that all sequencing reads are error free, that each k-mer appears

exactly once within the genome (i.e., no repeats), and that the genome consists of exactly one circular

chromosome. In practice, the majority of popular assembly algorithms retain a polynomial-time Eulerian

approach while introducing heuristics to address these erroneous assumptions (Butler et al., 2008; Chaisson

and Pevzner, 2008; Zerbino and Birney, 2008; Simpson et al., 2009; Li et al., 2010). It is important to

realize that no guarantee can be made regarding the quality of these assemblies; by definition of the

problem, there is no canonical reference against which performance can be evaluated, and finding an exact

validation solution to the more general de Bruijn super path problem is impractical (NP-hard (Pevzner

et al., 2001; Medvedev et al., 2007; Nagarajan and Pop, 2009)).

2. THE INAPPROXIMABILITY OF SEQUENCE ALIGNMENT

There are many other problems in computational biology that can benefit from theoretical analysis. An

excellent example is sequence alignment (i.e., mapping against a reference genome); as opposed to as-

sembly, for which there exists an unambiguous canonical sequence from where a set of reads were

produced, the purpose of mapping is typically to identify variations (e.g., insertions, deletions, or muta-

tions) in sequenced reads with respect to an assembled reference genome. This emphasis on inexact

matching poses a unique set of theoretical challenges.

2.1. A new theory for genomic deletion

We have recently shown that sequence alignment can be modeled as an instance of the maximum facility

location problem (MFLP) (Canzar et al., 2016). In brief, given a bipartite graph of putative mappings from

the donor genome (set of clients, C) to the reference genome (set of facilities, F), the weight wu‚ v of an edge

from a client, u 2 C, to facility, v 2 F, is equivalent to our confidence in that deletion. Given that two

predicted deletions directly conflict if and only if their genomic intervals overlap, we further associate each
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facility, v, with its genomic interval, Iv � R. The problem of sequence alignment has now been re-

formulated as one of selecting a nonoverlapping subset of facilities, T � F, such that
P

u2C maxv2T wu‚ v is

maximized.

Importantly, the hardness of MFLP (and thus sequence alignment in this form) can be demonstrated by

reduction from maximum coverage (Canzar et al., 2016). This reduction also preserves approximation

bounds. This means that if P 6¼NP, then there is no polynomial-time algorithm that can always find a

solution better than 1 - e - 1 � 0:63 times the optimal solution.* The best known polynomial-time ap-

proximation algorithm for this problem yields 0:25-approximation (Feldman, 2013), highlighting a large

gap for future innovation in this domain.

3. IMPOSSIBLY GOOD ALGORITHMS?

The size of high-throughput sequencing data sets necessitates the development and application of

polynomial-time algorithms. Indeed, principled reductions of these biological scenarios to classical

NP-hard problems provide a convenient framework for identifying theoretical bounds on the expected

performance of these algorithms. However, it is important to recognize that these reductions are often

imperfect. One example of this is sequence assembly; as discussed in this article, there have been many

attempts at identifying appropriate abstractions for modeling this problem (e.g., SCSP, overlap, and de

Bruijn graphs), each of which involves a set of assumptions and simplifications that limit its applicability.

A practical limitation of theoretical modeling is highlighted by our analysis of the sequence alignment

problem (Canzar et al., 2016). As the hardness result for this problem is at least � 0:63, one might think all

hope is lost. It is then perhaps surprising that the empirical performance of this algorithm (when evaluated

on the Illumina NA12878 genome) is far closer to the optimal solution in terms of precision and recall.

Combined with the promising performance of other published heuristics (Butler et al., 2008; Chaisson and

Pevzner, 2008; Zerbino and Birney, 2008; Simpson et al., 2009; Li et al., 2010), these results likely indicate

that these hardness results generalize across a set of worst-case instances that are either unlikely or unable

to be encountered in actual biological data. It is equally unlikely that one would draw this important

conclusion from theory alone.

The benefits of computer science abstractions extend well beyond the class of problems touched in this

article. Literature is brimming with successful heuristics for gene regulatory modeling (Budden et al.,

2014a,b; Budden et al., 2015) and network inference (Hurley et al., 2014; Le Novère, 2015), whereas a

theoretical study by Krishnan et al. (2007) claims that the latter is impossible to solve for nontrivial network

topologies. We encourage researchers to continue exploring the applicability of rigorous theoretical

analysis in new domains, but to adopt caution when drawing biological conclusions from their findings.
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