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Abstract

From its inception, statistical mechanics has aspired to become the link between bi-
ology and physics. But classical statistical mechanics dealt primarily with systems in
thermal equilibrium, where detailed balance forbids the directed motion characteris-
tic of living things. Formal variational principles have recently been discovered for
nonequilibrium systems that characterize their steady-state properties in terms of gen-
eralized thermodynamic quantities. Concrete computations using these principles can
usually only be carried out in certain limiting regimes, including the near-equilibrium
regime of linear response theory. But the general results provide a solid starting point
for defining these regimes, demarcating the extent to which system’s behavior can be
understood in thermodynamic terms.

I use these new results to determine the range of validity of a variational proce-
dure for predicting the properties of near-equilibrium steady states, illustrating my
conclusions with a simulation of a sheared Brownian colloid. The variational principle
provides a good prediction of the average shear stress at arbitrarily high shear rates,
correctly capturing the phenomenon of shear thinning. I then present the findings of
an experimental collaboration, involving a specific example of a nonequilibrium struc-
ture used by living cells in the process of endocytosis. I first describe the mathematical
model I developed to infer concentrations of signaling molecules that control the state
of this structure from existing microscopy data. Then I show how I performed the
inference, with special attention to the quantification of uncertainty, accounting for
the possibility of “sloppy modes” in the high-dimensional parameter space. In the
final chapter I identify a trade-off between the strength of this kind of structure and
its speed of recovery from perturbations, and show how nonequilibrium driving forces
can accelerate the dynamics without sacrificing mechanical integrity.

Thesis Supervisor: Jeremy L. England
Title: Cabot Career Development Associate Professor of Physics
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Chapter 1

Introduction

The general struggle for existence of animate beings is therefore not a

struggle for raw materials - these, for organisms, are air, water and soil,

all abundantly available - nor for energy which exists in plenty in any

body in the form of heat (albeit unfortunately not transformable), but

a struggle for entropy, which becomes available through the transition of

energy from the hot sun to the cold earth.

– Ludwig Boltzmann, 1886 [10, p.24]

From the standpoint of statistical mechanics, as Boltzmann points out in this

quotation, the characteristic activities of living things are part of the process by

which the universe tends towards a state of maximum entropy. Schrödinger came

back to this point in his lecture series What is Life? [89], and since then it has

remained a constant theme in biophysics.

Both Boltzmann and Schrödinger place the connection to statistical mechanics

in a “no-go theorem”: the activities of living things are impossible in thermal equi-

librium, and necessarily depend on harnessing a pre-existing disequilibrium like the

temperature difference between earth and sun. This is simply an extension of the

most basic statement of the Second Law of Thermodynamics, which implies that

engines can only run in an environment that has not yet reached its maximum en-

tropy. Most successful applications of statistical physics to biology are quantitative
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elaborations on this claim, investigating how much entropy is actually generated in

particular biological activities such as sensing, DNA replication and reproduction

[59, 73, 72, 58, 85, 76, 82, 23].

But classical statistical mechanics is also predictive. Given a closed physical system

that has been left alone for a sufficiently long time, we can predict the most likely

value of any observable quantity by maximizing the system’s entropy. Living things

are clearly not in a state of maximum entropy, since they exist precisely as processes

on the way to maximum entropy. But perhaps there is some other quantity that is

maximized or minimized in a living system’s most likely state, and can be estimated

from knowledge of the organism’s constituent parts. This hope has generated and

continues to generate considerable excitement (cf. [80]). If such a principle could be

found, it would go a long way to explaining the origin of life on earth, and would pave

the way for a predictive physical theory of biology.

Advances in the theory of stochastic processes and in the foundations of thermo-

dynamics have made it possible to write down formal variational principles charac-

terizing the most probable state of any observable in a nonequilibrium system, and to

express these principles in terms of generalized thermodynamic quantities [19, 36, 7].

But the quantities involved in these exact results lack any direct empirical meaning,

and can in general be computed only if the equations of motion have already been

solved [86, 7].

The real value of these theoretical advances lies in their power to clarify the limits

of thermodynamic reasoning [68]. For driven systems near equilibrium, considerations

of work, energy and entropy lead to definite predictions of wide applicability such

as the Einstein relation and more general fluctuation-dissipation theorems [21, 66].

These theorems are usually derived in the limit of vanishing nonequilibrium driving

force, and the factors that determine their range of validity at finite driving force

remain only vaguely specified. The new exact results for arbitrary driving now provide

the necessary tools for defining this boundary. Knowing the boundary will not only

steer us away from dead ends in our pursuit of biological understanding, but also help

us mine all of the relevant insight from “near-equilibrium” results.
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This thesis is a tour of the edge of thermodynamics. It is organized around two

poles: a general theoretical result I derived concerning the range of linear response

theory, and a set of experimental results I obtained in collaboration with the Kirch-

hausen Laboratory at Harvard Medical School. In the final chapter, I bring these

poles together by investigating the thermodynamic properties of the experimental

system through the lens of a simplified stochastic model.

I begin Chapter 2 with a simple example: a piston of gas kept out of equilibrium

by an oscillatory driving force. I use this example to illustrate a result from linear

response theory, which shows how the probability of a fluctuation is controlled by

its free energy minus the average work done by a nonequilibrium driving force on

the way there. I then derive a general fluctuation theory for nonequilibrium steady

states in terms of work statistics. Finally, I construct a novel perturbative analysis

of this general formula that contains the linear response result as a limiting case, and

provides a framework for determining precisely where and why it breaks down.

As becomes clear in the course of the derivation, the distinction between my

analysis and the traditional linear response approach appears when the relaxation

time of the system to its stationary state depends on the strength of the driving force.

In my driven piston example, it is hard to identify a simple mechanism by which the

amplitude of the pressure fluctuations could affect the rate of relaxation. But in

many physical systems – especially systems of interacting particles – driving forces

can “stir” the particle configuration and thereby accelerate the relaxation dynamics.

In Chapter 3, I apply the theory of Chapter 2 to a concrete example of such a system,

showing how the nonlinear response remains well-described by my near-equilibrium

approximation.

Chapter 4 contains the results of my experimental collaboration. I start by intro-

ducing the biological process I studied, focusing on the features of particular physical

interest. This system involves a self-assembled structure that is switched “on” and

“off” by modulation of the coupling to a nonequilibrium environment. The structure

has to be switched off at a certain stage in the process, and for the past decade my

collaborators have been advancing an interesting hypothesis about how this timing is

13



regulated. I translated this hypothesis into a quantitative model, and combined the

model with some new data from their laboratory to assess its physical plausibility.

In Chapter 5, I use a model inspired by the biological system of Chapter 4 to illus-

trate the novel material properties that become possible in a nonequilibrium steady

state. The presence of an “active” disassembly pathway powered by an externally

supplied free energy source allows mechanically robust structures to rapidly recover

from large perturbations, something difficult to achieve in a passive material.

The thesis finishes with Chapter 6, where I sum up the conclusions of these four

chapters, and point out what I believe to be the most promising future directions.
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Chapter 2

The Edge of Linear Response

2.1 Introduction: A Driven Ideal Gas

Consider the cylinder depicted in Figure 2-1. It is filled with a dilute gas of 𝑁

particles, and immersed in an environment of uniform temperature 𝑇 and pressure

𝑃ext = 𝑃0. One wall of the cylinder is formed by a movable piston, so that the volume

is free to vary, and eventually relaxes to its equilibrium value 𝑉 = 𝑉0.

In thermal equilibrium, one can compute 𝑉0 in terms of the other parameters by

maximizing the entropy 𝑆tot of the whole setup – including the environment – which

is equal to minus the Gibbs free energy 𝐺 (up to an additive constant). At fixed

temperature, the internal energy of an ideal gas is constant, as is the contribution to

the system entropy from the momentum degrees of freedom, so 𝐺 is determined by

the configurational entropy 𝑁𝑘𝐵 ln𝑉 :

𝐺 = 𝐸 − 𝑇𝑆 + 𝑃𝑉 = −𝑘𝐵𝑇𝑁 ln𝑉 + 𝑃0𝑉 + 𝑔(𝑇 ) (2.1)

where 𝑔(𝑇 ) is a function independent of 𝑉 .

The Gibbs free energy is extremized at

0 =
𝜕𝐺

𝜕𝑉
= −𝑘𝐵𝑇𝑁

𝑉0

+ 𝑃0, (2.2)
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Figure 2-1: Color. Top left: Cylinder filled with 𝑁 non-interacting particles. The
volume 𝑉 available to the gas varies in response to changes in an externally controlled
pressure 𝑃ext applied to the movable piston on the right side of the container. The
cylinder is immersed in an equilibrated environment of temperature 𝑇 and pressure
𝑃ext = 𝑃0. Top right: Adding a small periodic perturbation ∆𝑃 (𝑡) = ∆𝑃0 sin(𝜔𝑡) to
the original constant pressure 𝑃ext = 𝑃0 drives the system away from its equilibrium
volume 𝑉eq = 𝑉0. I define a “steady state” by measuring the volume at discrete
time intervals separated by the driving period 2𝜋/𝜔. Bottom left: The equilibrium
volume 𝑉eq can be found by minimizing the Gibbs free energy 𝐺(𝑉 ). The steady-
state volume 𝑉ss minimizes 𝒢 = 𝐺−𝑊 , where 𝑊 (𝑉 ) is the typical work done by the
periodic perturbation ∆𝑃 during the fluctuation to volume 𝑉 . Bottom right: The
typical trajectory to generate a given volume fluctuation away from the steady state
for this linear system (top set of solid lines) is the sum of an exponential part that is
independent of the drive properties (bottom set of solid lines), and a sinusoidal part
that is independent of the size of the fluctuation (dotted line).
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which agrees with the prediction of the ideal gas law

𝑉0 =
𝑁𝑘𝐵𝑇

𝑃0

. (2.3)

2.1.1 Overdamped Model

The goal of this chapter is to determine the regime of validity of a generalization of

this variational procedure for driven systems, which has traditionally been derived

in linear response theory using the limit of vanishing driving force. I introduce the

key concepts in this section by explicitly computing the steady-state volume 𝑉ss in a

model of a driven dilute gas, and showing that the linear response result leads to the

same answer.

I drive the gas out of equilibrium by causing the external pressure 𝑃ext to vary in

time. The response of the volume will depend on the details of the system dynamics.

I consider the case where friction between the piston and the cylinder is strong enough

that the inertia of the piston is negligible, so the rate of change of volume is simply

proportional to the pressure difference across the piston:

𝑑𝑉

𝑑𝑡
= −𝛾

[︂
𝑃ext(𝑡) −

𝑁𝑘𝐵𝑇

𝑉

]︂
(2.4)

where 𝛾 is a friction coefficient that controls the timescale of relaxation.

For small enough variations of 𝑃ext = ∆𝑃 (𝑡) + 𝑃0 about 𝑃0, the volume change

∆𝑉 = 𝑉 −𝑉0 from the equilibrium volume at 𝑃0 will be much smaller than 𝑉0. In this

regime, the right-hand side can be approximated by the first two terms of a Taylor

expansion in ∆𝑉 :

𝑑

𝑑𝑡
∆𝑉 = −𝛾

[︂
𝑃ext(𝑡) −

𝑁𝑘𝐵𝑇

𝑉0

(︂
1 − 1

𝑉0

∆𝑉

)︂]︂
(2.5)

= −𝛾𝑃0

(︂
∆𝑃 (𝑡)

𝑃0

+
∆𝑉

𝑉0

)︂
(2.6)

= −𝑉0

𝜏

(︂
∆𝑃 (𝑡)

𝑃0

+
∆𝑉

𝑉0

)︂
(2.7)
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where 𝜏 = 𝑉0/(𝑃0𝛾) is the relaxation timescale governing the exponential decay of

∆𝑉 to its equilibrium state at fixed ∆𝑃 near 𝑃0.

2.1.2 Periodic Steady State

The homogeneous solution of Equation (2.7), for ∆𝑃 = 0, can be read off immediately:

∆𝑉 = ∆𝑉0𝑒
−𝑡/𝜏 (2.8)

For a sinusoidal driving force ∆𝑃 (𝑡) = ∆𝑃0 sin𝜔𝑡, the particular solution is

∆𝑉 (𝑡) = − 𝑉0√
1 + 𝜔2𝜏 2

∆𝑃0

𝑃0

sin(𝜔𝑡− 𝜑) (2.9)

where the phase shift is 𝜑 = tan−1 𝜔𝜏 .

The general solution for an arbitrary initial condition can be written as the sum

of the particular solution and a scaled copy of the homogeneous solution:

∆𝑉 (𝑡) = − 𝑉0√
1 + 𝜔2𝜏 2

∆𝑃0

𝑃0

sin(𝜔𝑡− 𝜑) + 𝛿𝑉 𝑒−𝑡/𝜏 (2.10)

where the constant 𝛿𝑉 controls the initial volume.

The periodic driving prevents ∆𝑉 from relaxing to any fixed value. To define a

stationary state, I observe the system stroboscopically, taking snapshots at discrete

times 𝑡𝑛 = 2𝜋
𝜔
𝑛 with 𝑛 = 0, 1, 2, 3 . . . . These are the times when the pressure returns

to 𝑃0 from below. This choice implies sin(𝜔𝑡𝑛 − 𝜑) = − sin𝜑 = −𝜔𝜏/
√

1 + 𝜔2𝜏 2 for

all 𝑛, so that the distance from the equilibrium volume 𝑉0 at observation time 𝑡𝑛 is

given by:

∆𝑉 (𝑡𝑛) = 𝑉0
𝜔𝜏

1 + 𝜔2𝜏 2
∆𝑃0

𝑃0

+ 𝛿𝑉 𝑒−𝑡𝑛/𝜏 . (2.11)

In the limit 𝑡𝑛 → ∞, these stroboscopic measurements relax to a stationary value:

∆𝑉ss = 𝑉0
𝜔𝜏

1 + 𝜔2𝜏 2
∆𝑃0

𝑃0

. (2.12)
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This is the steady-state volume I set out to compute, given in terms of the nonequi-

librium drive parameters 𝜔 and ∆𝑃0.

2.1.3 A Variational Principle

I will now obtain the same answer from a thermodynamic perspective.

The physical intuition for generalizing free energy minimization is most accessible

in the context of fluctuation theory. While I began by considering a macroscopic

system whose dynamics are effectively deterministic, a finite thermal system is neces-

sarily subject to fluctuations. The probability 𝑝eq(𝑉 ) of a given fluctuation away from

the deterministic volume 𝑉 * in a large system at thermal equilibrium is determined

by the decrease in entropy ∆𝑆tot = 𝑆tot(𝑉 ) − 𝑆tot(𝑉
*):

𝑝eq(𝑉 ) ∝ 𝑒Δ𝑆tot(𝑉 )/𝑘𝐵 ∝ 𝑒−Δ𝐺(𝑉 )/𝑘𝐵𝑇 (2.13)

where 𝑆tot is the entropy of the whole setup, and 𝐺(𝑉 ) is the Gibbs free energy of

the ideal gas, as defined in Equation (2.1). This relationship is essentially a coarse-

grained version of the Boltzmann distribution. It was first identified by Einstein [22]

and has since been confirmed more rigorously in the large system size limit, using the

methods of large deviation theory [95].

In 1959, James McLennan showed that the correction to the Boltzmann distribu-

tion for near-equilibrium steady states is related in a simple way to the work done by

the external driving forces [71, 65]. The coarse-grained version of his finding gives:

𝑝ss(𝑉 ) ∝ 𝑒−[Δ𝐺(𝑉 )−𝑊ex(𝑉 )]/𝑘𝐵𝑇 (2.14)

where 𝑊ex(𝑉 ) = 𝑊 (𝑉 ) − 𝑊 (𝑉 *) is the “excess work” done on the way to the fluc-

tuation. For my driven piston, 𝑊 (𝑉 ) is the work done by the pressure perturbation

∆𝑃 (𝑡) over a trajectory of duration 𝒯 ≫ 𝜏 that ends in a state with volume 𝑉 .

The most likely volume in a near-equilibrium steady state thus minimizes the
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quantity

𝒢(𝑉 ) = 𝐺(𝑉 ) −𝑊 (𝑉 ). (2.15)

Evaluating the work on the way to a fluctuation 𝑊 (𝑉 ) requires knowing the most

likely trajectory that leads to the fluctuation. Detailed balance requires that the

most likely fluctuation trajectories in thermal equilibrium are mirror images of the

corresponding relaxation trajectories. In this linearized nonequilibrium model, the

homogeneous part of the fluctuation trajectory (which is the solution in the absence

of a driving force) will thus be the mirror image of the homogeneous part of the

relaxation trajectory. Since only the homogeneous part of the solution depends on

the initial condition ∆𝑉 , the mean work done on the way to a fluctuation is given by

𝑊 (∆𝑉 ) =

∫︁ 0

−∞
∆𝑃 (𝑡)𝑉̇ 𝑑𝑡 (2.16)

=
1

𝜏

∫︁ 0

−∞
∆𝑃0 sin(𝜔𝑡)∆𝑉 𝑒𝑡/𝜏 + const. (2.17)

= ∆𝑃0∆𝑉
𝜔𝜏

1 + 𝜔2𝜏 2
+ const. (2.18)

where I have suppressed constant terms that are independent of ∆𝑉 .

The steady-state volume is now found by minimizing

𝒢 = 𝐺−𝑊 =
𝑃0𝑉0

2

(︂
∆𝑉

𝑉0

)︂2

− ∆𝑃0∆𝑉
𝜔𝜏

1 + 𝜔2𝜏 2
+ const., (2.19)

where I have approximated the free energy 𝐺 by the lowest-order non-vanishing term

in a Taylor expansion about 𝑉0. This new quantity is minimized when

0 =
𝜕𝒢
𝜕𝑉

=
𝑃0

𝑉0

∆𝑉 − ∆𝑃0
𝜔𝜏

1 + 𝜔2𝜏 2
. (2.20)

Solving for ∆𝑉 yields the steady-state volume difference

∆𝑉ss = 𝑉0
𝜔𝜏

1 + 𝜔2𝜏 2
∆𝑃0

𝑃0

. (2.21)
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This agrees with the direct calculation of Equation (2.12), in accord with McLennan’s

general result (2.14).

2.1.4 Range of Validity

I performed the above derivation in the ∆𝑃0 → 0 limit, following the standard ap-

proach of linear response theory. But Equation (2.21) can remain valid far from this

limit, depending on the size of 𝜏 relative to 1/𝜔. Figure 2-2 compares the prediction

of Equation (2.21) with the actual steady-state value of ∆𝑉 (measured at observation

times 𝑡𝑛 = 2𝜋
𝜔
𝑛) from the full nonlinear equation (2.4). At small 𝜏 , the two values

show good agreement even when ∆𝑃0 is large enough to make the gas expand more

than ten times its original volume at the top of the drive cycle and the dynamics are

clearly nonlinear.

The reason for this is shown in the bottom-left panel of Figure 2-2. The state

at time 𝑡𝑛 is fully determined by the portion of the ∆𝑃 (𝑡) protocol contained in the

preceding time interval of order 𝜏 . As 𝜏 decreases, the system loses memory of its

past states more quickly. When 𝜏 is sufficiently small, the nonlinear regions of the

trajectory with large ∆𝑃 (𝑡)/𝑃0 can no longer have any effect on the state of the

system at the observation times 𝑡𝑛 (where ∆𝑃 = 0), and so the linearized results can

still provide an adequate prediction. If 𝜏 were somehow coupled to ∆𝑃0 as described

in the top right panel of Figure 2-2, so that 𝜏 asymptotically decreased as 1/∆𝑃0,

the “linear response” result (2.14) would predict the full nonlinear response of ∆𝑉ss

to ∆𝑃0 for arbitrarily large values of the forcing ∆𝑃0. It is hard to envision such a

mechanism in the driven piston, but the sheared suspension I will analyze in Chapter

3 has this behavior naturally built in to the dynamics.

The fluctuation theory of (2.14) also points the way towards a thermodynamic

version of this analysis, which can be more readily generalized. Since Equation (2.14)

is exact for when the dynamics are linear, it should start to fail only when nonlineari-

ties significantly affect the amount of work done during the time 𝜏 immediately before

the end of the trajectory. Since 𝑊ex(𝑉 ) appears in the exponent of (2.14) divided by

𝑘𝐵𝑇 , it seems that the nonlinearities become important when their contribution to
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Figure 2-2: Top left: Steady-state volume difference ∆𝑉ss vs. relaxation time 𝜏 for
∆𝑃0 = 𝑃0. The near-equilibrium prediction 𝑉

(0)
ss from Equation (2.21) agrees well

with the exact solution 𝑉ss up to about 𝜔𝜏 ∼ 0.01. Top right: Nonlinear response
for imaginary scenario where 𝜏 depends on ∆𝑃0. If 𝜏 decreases asymptotically as
1/∆𝑃0, then the near-equilibrium result can remain valid for arbitrarily large choices
of ∆𝑃0. Bottom right: 𝑉 (𝑡) in the periodic steady state with this large ∆𝑃0 value
and 𝜔𝜏 = 0.01. The sinusoidal pressure changes produce a volume response with a
very different shape, due to the nonlinearity of the dynamical equation (2.4). Bottom
left: Zoomed-in plot of 𝑉 (𝑡) showing the relaxation dynamics to the periodic steady
state. The system loses memory of its initial condition well before it leaves the region
where the small-∆𝑉 approximation is valid.
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𝑊ex(𝑉 ) during a typical fluctuation becomes comparable to 𝑘𝐵𝑇 . The limit of vanish-

ing driving force guarantees that this contribution is small, but Figure 2-2 indicates

that this assumption is by no means necessary. The factor determining the validity

of “near-equilibrium” results like (2.14) appears not to be the strength of the driv-

ing, but the strength of nonlinearities measured in these thermodynamic terms. Over

the course of this chapter, I will employ the tools of contemporary nonequilibrium

statistical mechanics to confirm this conjecture for a broad class of systems.

2.2 Theoretical Framework

Almost 60 years after the publication of McLennan’s result, we are finally in a po-

sition to see where it comes from, and thereby determine its full range of validity.

This is primarily due to the conceptual reorganization of nonequilibrium statistical

mechanics that has taken place over the past two decades, which highlights the role

of time-reversal symmetry as the central physical principle of the theory [17, 47]. In

this section I summarize this new way of looking at things, setting up the derivations

of Section 2.4 where I obtain the conditions of validity for McLennan’s variational

principle. All the important claims in this background section are standard results

in the stochastic thermodynamics literature, but arranged and described in an orig-

inal way. My novel results are contained in Sections 2.4-2.6, where I determine the

boundaries of the near-equilibrium regime with a novel expansion in the degree of

nonlinearity.

2.2.1 Microscopic Reversibility

The foundation of this new point of view on nonequilibrium statistical mechanics

is the insight that statistical irreversibility enters time-symmetric dynamics via the

distribution over environmental initial conditions. In this subsection I will present

the core equation that captures this insight (2.24), after setting up the basic concepts

required to write it down.

Consider an isolated chunk of classical matter with Hamiltonian 𝐻tot, whose state
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is described by a set of 𝑁 coordinates 𝑞𝑖 with conjugate momenta 𝑝𝑖. The dynamics

are given by Hamilton’s equations

𝑞𝑖 =
𝜕𝐻tot

𝜕𝑝𝑖
(2.22)

𝑝̇𝑖 = −𝜕𝐻tot

𝜕𝑞𝑖
.

These equations of motion are deterministic, and symmetric under the time reversal

operation 𝑡 → −𝑡, 𝑝𝑖 → −𝑝𝑖 (and also B → −B in the presence of a magnetic field

B). Any trajectory allowed by these equations of motion is therefore also allowed to

happen in reverse. As illustrated in Figure 2-3, I will keep track of some subset of the

degrees of freedom, which I will call the “system” and denote by x, and refer to the

rest of the degrees of freedom y as the “environment.” The Hamiltonian can now be

split into three parts: one that depends on the system degrees of freedom alone, one

that depends on the environment alone, and one that couples the two sets together:

𝐻tot(x,y, 𝑡) = 𝐻sys(x, 𝜆𝑡) + 𝐻env(y) + ℎint(x,y) (2.23)

Importantly, I have allowed for an explicit time-dependence in the system Hamiltonian

𝐻sys (but not in the other terms) via a control parameter 𝜆𝑡. This generalizes the

extra external pressure ∆𝑃 (𝑡) from my introductory example, and can be used to do

work on the system.

If I now choose the initial condition y0 of the environment at random, the tra-

jectory of the system degrees of freedom x from a given initial condition x0 becomes

stochastic. I will write the probability that x takes a given trajectory from this ini-

tial condition as 𝑝[x𝒯
0 |x0, 𝜆

𝒯
0 ]. The symbol x𝒯

0 denotes the whole trajectory from its

beginning at time 𝑡 = 0 to some chosen end time 𝒯 . I have also explicitly included

the dependence on the variation of the control parameter 𝜆𝑡, using 𝜆𝒯
0 to represent

its trajectory over the observation time. Rigorously defining this probability requires

providing a suitable measure on the infinite-dimensional space of trajectories x𝒯
0 . This

is easy to do in the present context, since the trajectory x𝒯
0 from a given system initial
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Figure 2-3: Color. Left: The 𝑁 degrees of freedom in a piece of isolated matter
are partitioned into two sets, a system with microstate x and an environment with
microstate y. The system is illustrated here as discrete particles, since I keep track
of the full trajectories x𝒯

0 . The environment is just a solid color, because I integrate
it out to obtain an effective stochastic dynamics for x. Work can be done on the
system by externally imposed variations in a set of parameters 𝜆, which affect only
the system part of the Hamiltonian 𝐻sys. Right: I will focus on situations where the
environment can be modeled as a set of ideal thermal and chemical reservoirs with
temperatures 𝑇 (𝛼) and chemical potentials 𝜇

(𝛼)
𝑖 .
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condition x0 is fully determined by the environment state y0. The path measure can

thus be taken as the ordinary Liouville measure Π𝑖𝑑𝑝𝑖 𝑑𝑞𝑖 on the environment phase

space.

This random choice of environment state can break time-reversal symmetry, intro-

ducing statistical irreversibility into the effective stochastic dynamics. To measure the

extent to which this symmetry is broken, we can compare the probability 𝑝[x𝒯
0 |x0, 𝜆

𝒯
0 ]

with the probability of the reverse trajectory 𝑝[x̂𝒯
0 |x*

𝒯 , 𝜆̂
𝒯
0 ]. I have introduced a new

symbol x̂𝒯
0 to denote the time-reversed version of x𝒯

0 : the order in which the states

are visited is reversed, and the signs of all the momenta are flipped. Similarly, 𝜆̂𝒯
0 in-

dicates the time-reverse of the control protocol 𝜆𝒯
0 . If any magnetic fields are present,

they are automatically included among the parameters 𝜆, and their signs are reversed

in the reverse protocol. An individual state whose momenta have been reversed and

a single set of control parameters with magnetic fields reversed are denoted by x* and

𝜆*, respectively.

If y0 is chosen from an equilibrium distribution over environment states, it turns

out that the statistical irreversibility of a given system trajectory x𝒯
0 is given by the

change in the entropy of the environment ∆𝑆𝑒 over the course of the trajectory:

𝑝[x̂𝒯
0 |x*

𝒯 , 𝜆̂
𝒯
0 ]

𝑝[x𝒯
0 |x0, 𝜆𝒯

0 ]
= 𝑒−Δ𝑆𝑒/𝑘𝐵 . (2.24)

As I explain below, Equation 2.24 can be taken as a basic statement of the requirement

of consistency between a time-asymmetric coarse-grained dynamics and the time-

reversal symmetry of the fundamental dynamics. For this reason, it is often referred

to in the literature as the “microscopic reversibility relation” [17]. It can also be

viewed as a generalization of the requirement of detailed balance, and is sometimes

called “local detailed balance” (cf. [91]). An analogous relation holds for quantum

systems, thanks to the time-reversal symmetry of the Schrödinger equation [40].
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2.2.2 Microcanonical Derivation

I will now examine the connection between Equation (2.24) and time-reversal symme-

try in the Hamiltonian framework I have just described. I will deviate from standard

derivations of this result, which initialize the environment in a canonical ensemble

[45, 53], because this connection is clearer when the initial energy of the whole setup

is fixed. In the limit of infinite environment size, my microcanonical approach gives

the same answer as the older literature, confirming that the usual “equivalence of

ensembles” in the thermodynamic limit remains valid in this context.

The whole setup including the environment and the system begins at time 𝑡 = 0

with total energy 𝐸. If the system begins in state x0, then the energy available to

the environment is 𝐸 −𝐻sys(x0, 𝜆0). I will denote the phase space volume occupied

by environment states y with this energy as Ω(𝐸 − 𝐻sys(x0, 𝜆0)). To compute the

probability 𝑝[x𝒯
0 |x0, 𝜆

𝒯
0 ] of observing a given system trajectory x𝒯

0 , I count how many

of these allowed environment states give rise to x𝒯
0 under the equations of motion

(2.22), when combined with the system initial condition x0 and the control protocol

𝜆𝒯
0 . I denote the phase space volume occupied by these states as Ω[x𝒯

0 |x0, 𝜆
𝒯
0 ]. Now I

choose the initial environment state from a uniform distribution over the energetically

allowed states contained in Ω(𝐸 − 𝐻sys(x0, 𝜆0)). As illustrated in Figure 2-4, the

probability of choosing one of the states that produces the desired trajectory is:

𝑝[x𝒯
0 |x0, 𝜆

𝒯
0 ] =

Ω[x𝒯
0 |x0, 𝜆

𝒯
0 ]

Ω(𝐸 −𝐻sys(x0, 𝜆0))
. (2.25)

The energy of the environment changes over the course of the trajectory, as heat

flows in and out of the system. At the end of the trajectory, it is equal to 𝐸 + 𝑊 −
𝐻sys(x𝒯 , 𝜆𝒯 ), where the work 𝑊 done by manipulation of 𝜆 is

𝑊 =

∫︁ 𝒯

0

𝜕𝐻sys(x𝑡, 𝜆𝑡)

𝜕𝜆
𝜆̇𝑡𝑑𝑡. (2.26)

Because the control parameter has a direct effect only on the system, and not on the

environment, 𝑊 is fully determined by the protocol 𝜆𝒯
0 and the system trajectory x𝒯

0 ,
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Figure 2-4: Top: Given an initial system state x0, at time 𝑡 = 0, the trajectory x𝒯
0

is determined by the choice of initial environment state y0. If y0 is chosen from a
uniform distribution over a constant energy surface, the probability of choosing a
state that generates a given x𝒯

0 is the ratio of the phase space volume occupied by
these states (dark shaded region) to the total phase space volume available (light
shaded region). Phase space volume is conserved by the Hamiltonian dynamics, and
so the dark shaded region at time 𝑡 = 0 evolves into a new region at time 𝑡 = 𝒯
with the same volume but a new energy. Bottom: Reversing the momenta of the
dark shaded region from the 𝑡 = 𝒯 snapshot generates the initial conditions for the
reverse trajectory x̂𝒯

0 . The probability of observing this trajectory is again given by
the ratio of this region’s volume to the volume of the entire set of environment states
that share the same energy. The fact that both dark shaded regions occupy the same
volume is a geometric statement of time-reversal symmetry, expressed symbolically
in Equation (2.28).
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regardless of what happens in the environment.

If I reverse the momenta, choose the environment conditions from this new energy

surface, and run the protocol 𝜆𝑡 in reverse, then the probability of observing x̂𝒯
0 is

given by:

𝑝[x̂𝒯
0 |x*

𝒯 , 𝜆̂
𝒯
0 ] =

Ω[x̂𝒯
0 |x*

𝒯 , 𝜆̂
𝒯
0 ]

Ω(𝐸 + 𝑊 −𝐻sys(x𝒯 , 𝜆𝒯 ))
. (2.27)

Figure (2-4) shows how the numerators of Equations (2.25) and (2.27) are related by

time-reversal symmetry:

Ω[x̂𝒯
0 |x*

𝒯 , 𝜆̂
𝒯
0 ] = Ω[x𝒯

0 |x0, 𝜆
𝒯
0 ], (2.28)

as long as Ω[x𝒯
0 |x0, 𝜆

𝒯
0 ] is evaluated using a measure that is invariant under the

system equations of motion (which is true of the usual Liouville measure 𝑑𝑝 𝑑𝑞).

When combined with Boltzmann’s formula 𝑆 = 𝑘𝐵 ln Ω, this way of expressing the

symmetry immediately leads to the desired result:

𝑝[x̂𝒯
0 |x*

𝒯 , 𝜆̂
𝒯
0 ]

𝑝[x𝒯
0 |x0, 𝜆𝒯

0 ]
=

Ω(𝐸 −𝐻sys(x0, 𝜆0))

Ω(𝐸 + 𝑊 −𝐻sys(x𝒯 , 𝜆𝒯 ))
= 𝑒−Δ𝑆𝑒/𝑘𝐵 . (2.29)

2.2.3 Environment Entropy

The microcanonical definition of temperature 1
𝑇

= 𝛽 = 𝜕𝑆𝑒

𝜕𝐸
implies that

∆𝑆𝑒[x
𝒯
0 ] = 𝛽∆𝑄[x𝒯

0 ], (2.30)

where the heat ∆𝑄[x𝒯
0 ] = ∆𝐻tot −∆𝐻sys is the change in the energy associated with

the environment degrees of freedom y when the system executes the trajectory x𝒯
0 .

As illustrated in Figure 2-3, more complex environments can be modeled with

several ideal thermal and chemical reservoirs (indexed by 𝛼) at temperatures 𝑇 (𝛼),

and chemical potentials 𝜇
(𝛼)
𝑗 = −𝑇 (𝛼) 𝜕𝑆

(𝛼)
𝑒

𝜕𝑛
(𝛼)
𝑗

, where 𝑛
(𝛼)
𝑗 is the number of particles

of type 𝑗 in reservoir 𝛼. My derivation can be generalized to handle this broader

class of environments if each of the reservoirs is separately initialized in a uniform
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distribution over states of fixed energy and particle number, and is coupled to the

system at the beginning of the forward trajectory. The derivation from the canonical

ensemble in [53] includes the possibility of particle exchange and multiple reservoirs

from the beginning.

Now the system can be driven out of equilibrium without any time-variation in

𝜆, carrying fluxes of energy and matter from one reservoir to another. The entropy

change in the environment becomes (cf. [81]):

∆𝑆𝑒(x
𝒯
0 ) =

∑︁
𝛼

𝛽(𝛼)

(︃
∆𝑄(𝛼)[x𝒯

0 ] −
∑︁
𝑗

𝜇
(𝛼)
𝑗 ∆𝑛

(𝛼)
𝑗 [x𝒯

0 ]

)︃
. (2.31)

Throughout this chapter, I will make an analogy between systems driven by ex-

ternal forces and those driven by thermal/chemical gradients, defining a generalized

work 𝒲 and an arbitrary reference temperature 𝑇 that restore the form of the First

Law for isothermal systems:

𝑇∆𝑆𝑒 = 𝒲 − ∆𝐻sys (2.32)

where

𝒲 ≡ 𝑊 + 𝑇∆𝑆𝑒 −
∑︁
𝛼

∆𝑄(𝛼) (2.33)

= 𝑊 + 𝑇
∑︁
𝛼

[︃
∆𝑄(𝛼)(𝛽(𝛼) − 𝛽) − 𝛽(𝛼)

∑︁
𝑗

𝜇
(𝛼)
𝑗 ∆𝑛

(𝛼)
𝑗

]︃
. (2.34)

This allows the results I obtain in terms of work statistics to be readily generalized

to cases of chemical or thermal driving.

2.2.4 Path Ensemble Averages

The microscopic reversibility relation (2.24) places a strict constraint on the averages

of macroscopic observables, which can be expressed by integrating out the unobserved

degrees of freedom. This results in an equality (2.40) between two averages of an ar-
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bitrary functional 𝒪[x𝒯
0 ] over ensembles of trajectories x𝒯

0 . As first pointed out by

Gavin Crooks, most of the central results of nonequilibrium statistical mechanics –

including the Onsager relations, the fluctuation-dissipation theorem, and the Jarzyn-

ski Equality, in addition to McLennan’s result from the previous section – can be

obtained from this relation [18].

Equation (2.24) relates conditional trajectory probabilities to each other, where

the initial condition is specified a priori. To obtain a path ensemble average, we

also need to specify the distribution from which the initial condition is to be drawn.

For now, I will simply use 𝑝rev(x*
𝒯 ) to denote the initial conditions for the reverse

trajectories, and 𝑝fwd(x0) for the forward trajectories. With some trivial rearranging

of Equation (2.24), I find

𝑝rev(x*
𝒯 )𝑝[x̂𝒯

0 |x*
𝒯 , 𝜆̂

𝒯
0 ] = 𝑒−Δ𝑆𝑒/𝑘𝐵

𝑝rev(x*
𝒯 )

𝑝fwd(x0)
𝑝fwd(x0)𝑝[x𝒯

0 |x0, 𝜆
𝒯
0 ]. (2.35)

Both sides now contain normalized probability distributions over the entire space of

system trajectories x𝒯
0 . Multiplying by the trajectory functional 𝒪[x𝒯

0 ], I integrate

over trajectories to find:

⟨︀
𝒪[x𝒯

0 ]
⟩︀
rev,𝒯 =

⟨
𝒪[x𝒯

0 ]𝑒
−Δ𝑆𝑒[x

𝒯
0 ]

𝑘𝐵
+ln

𝑝rev(x
*
𝒯 )

𝑝fwd(x0)

⟩
fwd,𝒯

(2.36)

where

⟨︀
𝒪[x𝒯

0 ]
⟩︀
fwd,𝒯 ≡

∫︁
𝒟[x𝒯

0 ]𝒪[x𝒯
0 ]𝑝fwd(x0)𝑝[x𝒯

0 |x0, 𝜆
𝒯
0 ] (2.37)

is the average of 𝒪[x𝒯
0 ] in the forward trajectory ensemble with initial conditions

chosen from 𝑝fwd(x0), and

⟨︀
𝒪[x𝒯

0 ]
⟩︀
rev,𝒯 ≡

∫︁
𝒟[x𝒯

0 ]𝒪[x𝒯
0 ]𝑝rev(x*

𝒯 )𝑝[x̂𝒯
0 |x*

𝒯 , 𝜆̂
𝒯
0 ] (2.38)

is the average over the reverse trajectory ensemble with initial conditions chosen from

𝑝rev(x*
𝒯 ).
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A particularly important case has both the forward and reverse processes initial-

ized in the Boltzmann distribution:

ln
𝑝rev(x*

𝒯 )

𝑝fwd(x0)
= −𝛽[𝐻sys(x

*
𝒯 , 𝜆𝒯 ) −𝐻sys(x0, 𝜆0) − 𝐹 (𝜆𝒯 ) + 𝐹 (𝜆0)] (2.39)

where 𝐹 (𝜆) = −𝑘𝐵𝑇 ln
∫︀
𝑑x exp[−𝛽𝐻sys(x, 𝜆)] is the free energy. I will use Equation

(2.32) to write this in terms of the thermodynamic work 𝒲 defined by Equation

(2.34):

⟨︀
𝒪[x𝒯

0 ]
⟩︀
rev,𝒯 =

⟨︀
𝒪[x𝒯

0 ]𝑒−𝛽𝒲⟩︀
fwd,𝒯 𝑒𝛽Δ𝐹 . (2.40)

This is the fundamental expression I will work with for the rest of this chapter.

Now different choices of 𝒪[x𝒯
0 ] will produce different theorems. Choosing 𝒪[x𝒯

0 ] =

1 in Equation (2.40) generates the Jarzynski equality [44]:

1 =
⟨︀
𝑒−𝛽𝒲⟩︀

fwd,𝒯 𝑒𝛽Δ𝐹 . (2.41)

Using this result, I can write Equation (2.40) in an explicitly normalized form,

which will be important when I take the 𝒯 → ∞ limit to study the steady state:

⟨︀
𝒪[x𝒯

0 ]
⟩︀
rev,𝒯 =

⟨︀
𝒪[x𝒯

0 ]𝑒−𝛽𝒲⟩︀
fwd,𝒯

⟨𝑒−𝛽𝒲⟩fwd,𝒯
. (2.42)

2.3 Stochastic Models

Theoretical calculations based on Equations (2.24) and (2.31) are usually performed

using some form of coarse-grained stochastic dynamics, rather than the Hamiltonian

framework used above. In this section, I will briefly introduce two standard frame-

works for stochastic modeling, illustrated in Figure 2-5, which I will make use of

throughout the rest of this thesis.
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Figure 2-5: Color. Top left: A set of three particles can be found in one of four
distinct states, depending on which particles are bound together. Arrows represent
allowed transitions between states. Bottom left: If the transitions between discrete
states are Markovian, the dynamics are described by a Markov jump process. Shown
here is a trajectory for the three-particle system using equal rates for all transitions.
Top right: A small particle is suspended in a solvent, and subject to a force field f
along with a random force due to bombardment by solvent molecules. Bottom right:
The random forces exerted by solvent molecules cause the particle to execute a noisy
trajectory described by a Langevin equation, with a net drift in the direction of the
force.
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2.3.1 Markov Jump Process

Markov jump processes are a kind of stochastic dynamics exemplified by chemical

reactions, as illustrated on the left side of Figure 2-5. The system evolves in a sequence

of instantaneous “jumps” among discrete states 𝑖, 𝑗, 𝑘, . . . , and the probability 𝑤𝑗𝑖𝑑𝑡

that a system in state 𝑖 executes a jump to state 𝑗 in a given infinitesimal time window

𝑑𝑡 is independent of the system’s history. Since the time required for a pair of atoms

to enter or leave a bound state is typically very short compared to other relevant

timescales (set by diffusion, for example), this can provide a very good model for the

discrete changes in number of each kind of molecule over time in a chemical reaction,

while abstracting from the quantum-mechanical nature of the transition.

The same mathematical framework can be used for any system that exhibits iden-

tifiable discrete states at some level of coarse-graining. The only requirement is a

separation of time scales: the relaxation dynamics within each discrete state must be

much faster than the transitions between states, so that the probability of starting a

jump from a given internal configuration within the state is history-independent.

The transition rates are bound by clear thermodynamic constraints whenever the

internal configuration probabilities are given by the Boltzmann distribution, and the

environment consists of a set of equilibrated thermal/chemical reservoirs. A variation

on the derivation of Equation (2.40) from microscopic reversibility (2.24) can be

employed to show that

𝑤𝑖𝑗

𝑤𝑗𝑖

= 𝑒−𝛽(𝒲𝑗𝑖−Δ𝐹𝑗𝑖) (2.43)

where 𝒲𝑗𝑖 is the generalized work done on the way from 𝑖 to 𝑗, as defined in Equation

(2.34), and ∆𝐹𝑗𝑖 is the difference between the free energies of the two states. Special

care must be taken when the transition from 𝑖 to 𝑗 can be accomplished in more than

one way, as in the example of Chapter 5. Then 𝒲𝑗𝑖 can take on multiple possible

values, depending on the pathway. In such cases, one must assign a separate rate for

𝑤𝜌
𝑗𝑖 for each pathway 𝜌 before imposing (2.43) [39].

34



2.3.2 Langevin Dynamics

The other stochastic modeling framework I will employ is inspired by Brownian mo-

tion, depicted on the right side of Figure 2-5. The equations of motion for the position

q and momentum p of a Brownian particle of mass 𝑚 subject to a force field f(q) are

ṗ = f − 𝑏

𝑚
p + f

(𝑟)
𝑡 (2.44)

q̇ =
1

𝑚
p (2.45)

where f
(𝑟)
𝑡 is a random force with mean ⟨f (𝑟)𝑡 ⟩ = 0 due to thermal collisions with

solvent molecules, and 𝑏 is the particle’s drag coefficient. The Langevin equation

arises in the limit of infinitely fast decay of correlations in the random force, which is

a good approximation for micron-scale Brownian particles being kicked by much faster

moving water molecules [29]. In this limit, the random force becomes proportional to

a vector of Gaussian white noise 𝜉𝑡 defined by its mean and autocorrelation function:

f
(𝑟)
𝑡 = 𝑘𝜉𝑡 (2.46)

⟨𝜉𝑡⟩ = 0 (2.47)

⟨𝜉𝑖𝑡𝜉𝑗𝑡′⟩ = 𝛿(𝑡− 𝑡′)𝛿𝑖𝑗 (2.48)

where 𝜉𝑖 and 𝜉𝑗 are elements of the vector 𝜉, 𝛿(𝑡) is the Dirac delta function, 𝛿𝑖𝑗 is

the Kronecker delta and 𝑘 is a scalar constant of proportionality.

This information is sufficient to compute the left-hand side of the microscopic

reversibility relation (2.24) in terms of the constant 𝑘, and the right-hand side is

determined by the existing definitions of work and energy. In Appendix A I use

these expressions to confirm that there exists a value of 𝑘 consistent with microscopic

reversibility for arbitrary choices of f . This value is 𝑘 =
√

2𝑘𝐵𝑇𝑏, so that

f
(𝑟)
𝑡 =

√︀
2𝑘𝐵𝑇𝑏𝜉𝑡 (2.49)

which is a form of the famous Einstein relation [21].
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At constant f , Equation (2.44) causes the momentum p to lose memory of its

initial condition on the time scale 𝑚/𝑏. At times significantly longer than this, p(𝑡) is

sampled from its steady-state distribution with mean ⟨p⟩ = 𝑚f/𝑏 and variance 𝑚𝑘𝐵𝑇

regardless of its starting state p(0). Since the mass 𝑚 of a particle scales with its

volume and the drag 𝑏 with linear size, this quantity is smaller for smaller particles in

the same solvent. For micron-scale particles in water, this timescale is extremely short

– a few hundred nanoseconds. In such cases, it can be an excellent approximation

to regard this relaxation process as instantaneous, so that the distribution over p is

always in the steady state corresponding to the current force value, even if the force is

changing in time. In this 𝑚 → 0 limit, the variance of the velocity q̇ = p/𝑚 diverges,

and the steady-state fluctuations of q̇ about its mean are themselves described by a

vector of Gaussian white noise:

q̇ =
1

𝑏
f(q) +

√︂
2𝑘𝐵𝑇

𝑏
𝜉𝑡. (2.50)

This is known as the “overdamped” Langevin equation, which will be the basis of the

simulation I describe in Chapter 3.

Just as the Markov jump process is used to model many systems that are quite

different from chemical reactions, so too the overdamped Langevin equation (2.50)

is used as a generic phenomenological model for all kinds of continuous stochastic

processes, as long as they possess the requisite separation of time scales between the

“noise” and the deterministic part of the dynamics. The requirements of microscopic

reversibility will vary according to the physical interpretation of the equation, and

the proportionality constant 𝑘 governing the strength of the random force is no longer

necessarily related to the drag coefficient and temperature.
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2.4 Coarse-Grained Steady-State Distribution from

Forward Statistics

With this background in place, I can now turn to my original results [67]. I first

obtain a generalization of the McLennan distribution (2.14) governing macroscopic

fluctuations in all systems obeying microscopic reversibility (2.24), arbitrarily far

from thermal equilibrium. In Section 2.5, I will obtain McLennan’s result as a spe-

cial case of my general expression, and investigate the conditions under which this

approximation is valid.

2.4.1 General Expression

The symmetry of path ensemble averages expressed in Equation (2.42) implicitly

contains a macroscopic fluctuation theory that generalizes Equation (2.13) to steady

states arbitrarily far from equilibrium – whether driven by periodic variation in 𝜆 as in

the piston example or by chemical or thermal gradients. Recall that the “steady state”

of a periodically driven system is defined by making observations at integer multiples

of the drive period, as described in the explanation of Equation (2.12) in my initial

example. This means that 𝜆 has a fixed value for all the time points of interest, and

I will suppress the explicit dependence on 𝜆 for the remaining derivations.

To obtain the macroscopic fluctuation theory for these driven steady states, I

first partition the system phase space based on some observable properties. In the

example of Section (2.1), the property is the position of the piston, which sets the

volume of the cylinder. This property can be used to carve up the microscopic phase

space (including the positions and velocities of the piston and all the particles) into

discrete regions, such that a point x falls in region X if the volume of the cylinder is

within some margin 𝛿𝑉 of a specified volume 𝑉X.

Now I use this partition of phase space to define a trajectory observable 𝒪[x𝒯
0 ] =

𝜒(x𝒯 ∈ X), where 𝜒(𝐴) equals 1 if 𝐴 is true, and 0 if 𝐴 is false. Since x𝒯 determines

the initial condition of the reverse trajectory, and is sampled from the Boltzmann
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distribution, the left hand side of the path average relation (2.42) becomes

⟨𝜒(x𝒯 ∈ X)⟩rev,𝒯 =

∫︁
𝑑x𝜒(x ∈ X)𝑒−𝛽(𝐻sys(x*)−𝐹 )

= 𝑝eq(X), (2.51)

where 𝑝eq(X) is the probability of finding x ∈ X in thermal equilibrium. If magnetic

fields are present, it is important to note that 𝐻sys(x
*) here is really shorthand for

𝐻sys(x
*, 𝜆*

𝒯 ), which is equal to 𝐻sys(x, 𝜆𝒯 ) thanks to the reversal of magnetic field

direction implied in 𝜆*.

The other side of the path average relation (2.42) can be expressed in terms of the

probability 𝑝fwd,𝒯 (X) = ⟨𝜒(x𝒯 ∈ X)⟩fwd,𝒯 of finding the system in X at time 𝑡 = 𝒯 :

⟨︀
𝜒(x𝒯 ∈ X)𝑒−𝛽𝒲⟩︀

fwd,𝒯 = 𝑝fwd,𝒯 (X)

⟨︀
𝜒(x𝒯 ∈ X)𝑒−𝛽𝒲⟩︀

fwd,𝒯

⟨𝜒(x𝒯 ∈ X)⟩fwd,𝒯
(2.52)

= 𝑝fwd,𝒯 (X)
⟨︀
𝑒−𝛽𝒲⟩︀

fwd,𝒯 ,X
. (2.53)

I have streamlined the notation by introducing a restricted trajectory ensemble aver-

age in the second line, which only includes trajectories that end in X at time 𝒯 .

Inserting Equations (2.51) and (2.52) into (2.42) gives a general expression for the

finite-time evolution of 𝑝fwd,𝒯 (X):

𝑝fwd,𝒯 (X) = 𝑝eq(X)

⟨︀
𝑒−𝛽𝒲⟩︀

fwd,𝒯

⟨𝑒−𝛽𝒲⟩fwd,𝒯 ,X

(2.54)

For an ergodic system, which loses memory of its initial conditions in finite time, the

desired steady-state probability can be found by simply taking the long-time limit

𝑝ss(X) = lim
𝒯 →∞

𝑝fwd,𝒯 (X). (2.55)

But evaluating this limit requires some care, because 𝒲 diverges.
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2.4.2 Cumulant Expansion

To take the 𝒯 → ∞ limit of Equation (2.54), I will make use of the fact that ln⟨𝑒−𝛽𝒲⟩
is the cumulant generating function for the distribution over 𝒲 :

ln
⟨︀
𝑒−𝛽𝒲⟩︀

fwd,𝒯 =
∞∑︁

𝑚=1

(−𝛽)𝑚

𝑚!
⟨𝒲𝑚⟩𝑐fwd,𝒯 (2.56)

Explicit formulas for the cumulants ⟨𝒲𝑚⟩𝑐fwd,𝒯 are obtained from the coefficients of

a power series expansion in 𝛽 of ln
⟨︀
𝑒−𝛽𝒲⟩︀

fwd,𝒯 . A helpful review of the properties

of cumulants ⟨𝒲𝑚⟩𝑐fwd,𝒯 in the context of a related derivation can be found in [54].

The first cumulant ⟨𝒲⟩𝑐fwd,𝒯 = ⟨𝒲⟩fwd,𝒯 is the mean of the distribution, the second

⟨𝒲2⟩𝑐fwd,𝒯 is the variance, and the higher-order terms provide progressively more

information about the shape of the distribution. A Gaussian distribution is fully

described by the first two cumulants, with all the higher-order terms vanishing.

Thanks to the explicit normalization of Equation (2.42), the expressions for the

steady-state distribution will involve differences between cumulants
⟨︀
𝒲𝑘
⟩︀𝑐
fwd,𝒯 ,X

of

the restricted trajectory ensemble, and the cumulants
⟨︀
𝒲𝑘
⟩︀𝑐
fwd,𝒯 for the full ensemble.

As illustrated in Figure 2-6, these cumulant differences converge to a finite limit

as 𝒯 → ∞ for ergodic systems [54]. I can therefore define:

∆⟨𝒲𝑘⟩𝑐(X) = lim
𝒯 →∞

[︁⟨︀
𝒲𝑘
⟩︀𝑐
fwd,𝒯 ,X

−
⟨︀
𝒲𝑘
⟩︀𝑐
fwd,𝒯

]︁
(2.57)

The key property of cumulants for the present analysis is that shifting the mean

of the distribution while leaving its shape unchanged has no effect on the cumulants

of order 2 and higher [54]. It will therefore be convenient group all these higher

cumulants together, and refer to the resulting quantity as the “excess fluctuations”

Φex:

Φex(X) =
∞∑︁
𝑘=2

(−𝛽)𝑘

𝑘!
∆⟨𝒲𝑘⟩𝑐(X). (2.58)

Note that this term does not simplify in the thermodynamic limit, even though the
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Figure 2-6: Color. Ergodicity means that a long trajectory can be divided into
a sequence of uncorrelated segments, so that the average over a single trajectory
becomes equivalent to the average over an ensemble of independent systems. The
stipulation that trajectories end in X only affects the final segment, so the cumulant
differences only depend on the work statistics in this finite time window.

Central Limit Theorem guarantees that the work distribution will look progressively

more Gaussian as the system size increases, and only the first term of this sum is

nonzero for a Gaussian distribution. All the cumulants
⟨︀
𝒲𝑘
⟩︀𝑐
fwd,𝒯 of an extensive

quantity like 𝒲 become proportional to the system size, and so their relative sizes

converge to finite limits as 𝑁 → ∞ (cf. [49, p. 46]). This apparent paradox results

from the sensitive dependence of Φex on rare fluctuations in the far tail of the work

distribution, where the Central Limit Theorem does not apply (cf. [46]).

I will also give a special symbol to the first cumulant difference, and call it the

“excess work,” because it is the mean additional work done during the fluctuation to

state X, beyond the work already being done in the steady state:

𝒲ex(X) = ∆⟨𝒲⟩(X). (2.59)

This notation is potentially confusing, because several alternative definitions of “ex-

cess work” already exist in the literature. Equation (2.59) is most closely related to

the notion of “excess heat” proposed by Oono and Paniconi in the context of phe-

nomenological thermodynamics [79], applied to stochastic processes by Komatsu and

Nakagawa [55]. This definition involves subtracting off the steady-state rate of heat

production from a transient relaxation trajectory to obtain a finite heat associated

with the transition. Basu, Maes and Netoc̆ný applied an analogous procedure to
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define an excess work associated with the relaxation to a new steady state [3]. The

definition of Equation (2.59) is almost identical to that of Basu et al., except that the

work is evaluated along the trajectories that generate the fluctuation.

In terms of these quantities, the 𝒯 → ∞ limit of Equation (2.54) is [67]

𝑝ss(X) = 𝑝eq(X)𝑒𝛽𝒲ex(X)−Φex(X). (2.60)

The rest of this chapter and the example in the next one will be devoted to unpacking

the implications of this expression.

2.4.3 Discussion

The quantity Φex in the exponent of (2.60) – involving all the cumulants of the work

distribution even in the large system limit – is not a something we are used to dealing

with from other areas of physics. It usually much more challenging to measure or

even estimate than the steady-state probability distribution itself. Equation (2.60)

is thus most useful when Φex is independent of X, and the expression reduces to the

McLennan form (2.14) up to a normalization constant. The advantage of knowing

the exact expression (2.60) is that it provides a basis for estimating the size of cor-

rection terms to the McLennan approximation, so that its full range of validity can

be carefully established.

Starting from Equation (2.40), one can obtain a whole family of exact expressions

for the steady-state distribution by making different choices for 𝒪[x𝒯
0 ]. Most expres-

sions that have been studied so far from this path ensemble average approach are

special cases of the general form:

𝒪[x𝒯
0 ] = 𝛿(x0 − x)𝑒𝛼𝛽𝒲[x𝒯

0 ] (2.61)

where x is the microstate whose probability is being computed and 𝛼 is a number

between 0 and 1 (cf. [54, eq. 4.19], which is not quite the same, because x𝒯 is

also restricted). Macrostate probabilities can be found by replacing the 𝛿-function
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with an indicator function 𝜒 as done above. Note that this form restricts the initial

system state at 𝑡 = 0, as opposed to the final-state restriction of Equations (2.51)

and (2.52) imposed at 𝑡 = 𝒯 . The final-state restriction in the forward ensemble can

be transformed into an initial-state restriction in the reverse ensemble by a trivial

relabeling of the time axis, and corresponds to the choice 𝛼 = 1 in Equation (2.61).

The best choice of 𝛼 depends on what the expression will be used for. The simplest

choice, and the one first examined historically, is 𝛼 = 0 [17, 18]. A symmetrized

form has also been studied, using 𝛼 = 1/2 [53]. This form provides a convenient

cancellation of second-order terms in a series expansion in small driving force. But

neither of these choices is appropriate for the expansion about linearized coarse-

grained dynamics that I will construct in the next section.

The first reason for this has to do with coarse-graining. The effective dynamics

of X will depend in general on the distribution over internal configurations x ∈ X

at each point in time. x0 is always sampled from the Boltzmann distribution in the

forward ensemble, but by time 𝒯 the distribution within a given X has relaxed to

a nonequilibrium steady state that could be very different. The opposite is true for

the reverse ensemble: x𝒯 is Boltzmann-distributed, and x0 is sampled from the new

steady state. Phenomenological equations that accurately capture the fluctuations

of X in the steady state are sufficient to obtain the required work statistics only if

the relevant parts of the X trajectory have the internal configurations sampled from

the steady state. Since the trajectory functional defined in Equation (2.61) imposes

a restriction on x0, I need all the dependence on 𝒲 to be in the reverse average to

guarantee that x is properly distributed within X during the transient that determines

the “excess” quantities. This happens only when 𝛼 = 1.

The second limitation of (2.61) with 𝛼 < 1 becomes relevant when the steady-state

distribution under the forward driving protocol 𝜆𝒯
0 is different from the distribution

under the reverse protocol 𝜆̂𝒯
0 , as in the example of Chapter 3. When 𝛼 < 1, the

resulting expression for the steady-state probability of x under the forward protocol

includes work averages under the reverse protocol. To compute the probability of a

small fluctuation, it may be necessary to consider trajectories that are very rare in
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the reverse protocol steady state. There is then no reason to expect that a set of

approximate equations of motion linearized around the forward steady state should

be adequate to determine the relevant work statistics.

Equation (2.60), based on the choice 𝛼 = 1, avoids both these problems. This

equation relates the probabilities of typical fluctuations in the observables X to typical

fluctuations of 𝒲 in the steady state. The relevant work statistics can be plausibly

estimated using an approximate coarse-grained dynamics valid near the steady-state

mean.

Note that all the expressions in this family involve work statistics under the driven

dynamics, and they can only provide substantive predictions in regimes such as the

one discussed in Section 2.5, where the effect of the driving on the work fluctua-

tions can be estimated without knowing the steady state distribution. An alternative

approach makes use only of equilibrium statistics, so that the nonequilibrium be-

havior can be predicted in principle to arbitrary accuracy based on measurements

of equilibrium correlations [65, 16]. This approach makes use of a new dynamical

variable called the “traffic” or “dynamical activity,” however, and the predictions de-

mand prior knowledge of how this new variable depends on the strength of the driving

force. Progress in this direction demands building up stronger intuition for how the

dynamical activity behaves in systems of interest.

2.5 Extended Linear Response

I will now use Equation (2.60) to determine the range of validity of the McLennan

distribution (2.14), originally derived within linear response theory. As I noted above,

the form of (2.60) makes this question equivalent to the problem of determining when

Φex is independent of X.

The most obvious way to make Φex constant is to make it vanish. This happens

in the weak driving limit, since all the terms in Φex are of higher order than 𝒲ex in

the strength of the driving force ℱ . This driving force could be the amplitude of a

periodic variation in a control parameter, the shear rate in a flow-driven system, or
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the chemical potential difference or temperature difference in boundary-driven system.

The ℱ → 0 limit gives rise to traditional linear response theory, as exemplified by

the Einstein Relation [21], the Green-Kubo relation [65, 53, 54] and similar results

connecting near-equilibrium behavior to equilibrium fluctuations [66].

At larger values of ℱ , Φex does not vanish, but it can be treated as part of

the normalization constant as long as it is independent of X. To see when the X-

dependence comes in, I must make some additional assumptions about the statistics

of 𝒲 .

I will do this by postulating phenomenological equations for the fluctuation tra-

jectories in the nonequilibrium steady state of a set of observables X, which are taken

to be instantaneous averages over a finite but macroscopic system volume. I will

initially specialize to the case of a system driven by an externally imposed flow field

that is constant in time, such as the sheared colloid discussed in Chapter 3. As shown

in Appendix A, the instantaneous work rate in this class of systems is entirely deter-

mined by the system’s current microstate. Thus I can let one of the coarse-grained

variables in the vector X control the exact work rate:

𝒲̇ = 𝑉 ℱ · (𝑋1 + 𝐽ss) (2.62)

where 𝐽 is the current conjugate to the thermodynamic force ℱ supplied by the flow,

and the first element of X is the deviation of the current from its ℱ -dependent mean

steady state value 𝑋1 = 𝐽 − 𝐽ss(ℱ).

I will obtain a set of conditions on the phenomenological dynamics of this X that

guarantee that Φex(X) is independent of X. By perturbing about this case, I will

determine the factors that control the impact of Φex on the steady state distribution.

The bulk of the section will follow my original presentation of this material in

[67]. At the end of the section, I will show how to generalize the results to systems

driven by thermal or chemical gradients, where the work rate is determined by the

time-derivative Ẋ and not by X directly.
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2.5.1 Phenomenological Equations and Fluctuation Trajecto-

ries

I first consider the case where the dynamics of X are well-described by a linear diffu-

sion process, whose individual trajectories follow a form of the overdamped Langevin

equation introduced in Section 2.3.2:

Ẋ = −𝐴(ℱ)X + 𝐵(ℱ)𝜉𝑡. (2.63)

I have defined X such that X = 0 is the most probable value in the steady state,

and 𝐴 and 𝐵 are constant matrices independent of X. 𝐴 is positive definite, and 𝐵

is diagonal with all positive entries. To allow for extensions beyond the traditional

linear response regime, I will allow 𝐴 to depend on ℱ . As I explain in Section 2.5.3,

this implies that 𝐵 also must depend on ℱ to maintain thermodynamic consistency.

I will require the elements of 𝐵 to scale as 1/
√
𝑉 when the volume changes (while 𝐴

remains constant), so that the size of fluctuations in the intensive variables X satisfies

the Central Limit Theorem.

The solution for 𝑡 ≥ 0 with initial condition X0 is:

X𝑡 = 𝑒−𝐴𝑡X0 −
∫︁ 𝑡

0

𝑑𝑡′ 𝑒−𝐴(𝑡−𝑡′)𝐵𝜉𝑡′ . (2.64)

To evaluate the conditional averages in Φex, I need to obtain the ensemble of trajec-

tories that end in X𝒯 . This cannot be extracted easily from Equation (2.63) directly,

because the noise realization 𝜉𝑡 must be sampled from a modified distribution con-

ditioned on this ending state. As shown in Appendix B, these trajectories can be

found by solving a different Langevin equation with 𝜉𝑡 sampled from the original

𝛿-correlated distribution:

Ẋ = 𝐴X + 𝐵𝜉𝑡, (2.65)

where 𝐴 = 𝐴𝑇 if 𝐴𝐴𝑇 = 𝐴𝑇𝐴 and 𝐵 is proportional to the identity matrix (in general
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it is given by a more complicated form derived in Appendix B). Replacing 𝐴 by 𝐴

ensures that any circulating currents in the steady state of the original dynamics

preserve their direction when the sign on the 𝐴X term is flipped.

The solution to Equation (2.65) can be found by integrating backwards from 𝒯
to time 𝑡 < 𝒯 :

X𝑡 = 𝑒𝐴(𝑡−𝒯 )X𝒯 −
∫︁ 𝒯

𝑡

𝑑𝑡′ 𝑒𝐴(𝑡−𝑡′)𝐵𝜉𝑡′ . (2.66)

For notational simplicity, I will drop the tilde of 𝐴 from now on, since the original 𝐴

will not be needed in the subsequent derivations.

2.5.2 Work Statistics for Linear Dynamics

The work done over a given trajectory X𝒯
0 is given by

𝒲 = 𝑉 ℱ
∫︁ 𝒯

0

𝑑𝑡 𝐽𝑡 (2.67)

= 𝑉 ℱ
∫︁ 𝒯

0

𝑑𝑡 𝑋̂1 ·
[︂
𝑒𝐴(𝑡−𝒯 )X𝒯 −

∫︁ 𝒯

𝑡

𝑑𝑡′ 𝑒𝐴(𝑡−𝑡′)𝐵𝜉𝑡′ + 𝐽ss

]︂
(2.68)

= 𝒲 ′(X𝒯 ) + 𝒲0 (2.69)

where 𝑋̂1 is the unit vector in the 𝑋1 direction, and 𝒲 ′ is the part of the work that

contains the dependence on the final condition X𝒯 .

The X𝒯 -dependent term 𝒲 ′ has a finite 𝒯 → ∞ limit and is independent of the

noise realization 𝜉𝒯0 :

lim
𝒯 →∞

𝒲 ′(X) = 𝑉 ℱ𝑋̂1 · 𝐴−1X. (2.70)

Since this quantity is deterministic and contains all the X𝒯 dependence, we can

immediately conclude that it is equal to 𝒲ex up to an additive constant, and that the

X-dependent part of Φex vanishes. The remaining constants can be easily computed
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using Equations (2.59) and (2.58), yielding:

𝒲ex(X) = 𝑉 ℱ𝑋̂1 · 𝐴−1X (2.71)

Φex =
1

2
(𝛽𝑉 ℱ)2⟨(𝑋̂1 · 𝐴−1X)2⟩ss. (2.72)

But my central conclusion is in fact independent of the exact values of these

constants, which are important only for normalizing the distribution. As long as a

set of observables containing 𝒲̇ can be found that obeys the linear equation (2.63),

this brief argument establishes that the steady-state fluctuations are given by the

McLennan form

𝑝ss(X) ∝ 𝑝eq(X)𝑒𝛽𝒲ex(X), (2.73)

with the nonequilibrium correction fully determined by the mean work done on the

way to the fluctuation.

This derivation of Equation (2.73) does not rely on the Gaussianity or whiteness

of the noise term 𝜉𝑡. As long as the noise term in Equation (2.63) is independent

of X, the linearity of the equation guarantees that the excess work 𝒲ex(X) is the

sum of a deterministic term that carries the X-dependence and a stochastic term

independent of X. Colored or non-Gaussian noise will change the expression for Φex,

but will not introduce any X-dependence into that quantity. In particular, Equation

(2.73) remains the correct distribution for underdamped fluctuation dynamics with

exponential noise, which have been successfully employed to model shear stress fluc-

tuations in molecular dynamics simulations of simple fluids [6]. The underdamped

equation for 𝑋 can be converted into a pair of overdamped equations by treating 𝑋̇

as an independent observable.

The perturbative calculations of Section 2.5.4, however, become more challenging

when the noise is non-Gaussian or self-correlated. Before applying Equation (2.73)

to such systems, one should verify that the expansion around linearity remains well-

behaved.
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2.5.3 Linearity and Nonlinearity

Since 𝒲ex is a linear function of X, adding it to the exponent in Equation (2.73)

only changes the mean and not the covariance matrix of the Gaussian equilibrium

distribution 𝑝eq(X). When X is one-dimensional, this implies

𝐵(ℱ)2

𝐴(ℱ)
=

𝐵(0)2

𝐴(0)
. (2.74)

This relationship will place an important constraint on the behavior of the nonlinear

correction term in the discussion surrounding Equation (2.87) below.

But 𝒲ex as given in Equation (2.71) is not necessarily a linear function of ℱ ,

because 𝐴(ℱ) can also depend on this parameter. To see how this fact extends

traditional linear response theory, we can compute the typical current in a macroscopic

system with a single observable 𝑋 = 𝐽 −𝐽ss, and compare this with the prediction of

the Green-Kubo formula. The typical current is found by maximizing the probability

(2.73), which yields:

𝐽ss(ℱ) =
𝛽𝑉 ℱ
𝐴(ℱ)

⟨𝐽2⟩eq, (2.75)

where I have used the fact that the equilibrium distribution 𝑝eq(𝑋) that follows from

Equation (2.63) is Gaussian. The Green-Kubo formula of linear response theory

predicts (cf. [25]):

𝐽ss(ℱ) = 𝛽𝑉 ℱ
∫︁ ∞

0

𝑑𝑡⟨𝐽𝑡𝐽0⟩eq. (2.76)

Under the linear overdamped Langevin dynamics of Equation (2.63), Equation (2.76)

becomes

𝐽 (0)
ss (ℱ) =

𝛽𝑉 ℱ
𝐴(0)

⟨𝐽2⟩eq. (2.77)

Equations (2.77) and (2.75) start to differ from each other when the damping rate 𝐴

begins to depart from its equilibrium value 𝐴(0). The relative size of the difference
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is given by

𝐽
(0)
ss − 𝐽ss
𝐽ss

=
𝐴(ℱ)

𝐴(0)
− 1. (2.78)

Equation (2.73) thus provides an extension of linear response forms like (2.76) that

remains valid even when 𝐽ss ceases to be a linear function of ℱ .

2.5.4 Nonlinear Correction

I now introduce a nonlinear term into the fluctuation dynamics (2.65). My goal is to

identify the physical property of the system that controls how well the real steady-

state distribution is approximated by Equation (2.73) when that expression is no

longer exact. For this calculation, I again focus on the 1-D case, and consider an

ensemble of fluctuation trajectories for 𝑋 = 𝐽 − 𝐽ss(ℱ) described by

𝑋̇ = 𝐴(ℱ)𝑋 +
𝜖(ℱ)

2
𝑋2 + 𝐵(ℱ)𝜉𝑡 (2.79)

where 𝜉𝑡 is again a Gaussian white noise term with mean 0 and autocorrelation

function ⟨𝜉0𝜉𝑡⟩ = 𝛿𝑡. The coefficient 𝜖 has dimensions of 1/[time][current]. Note

that in one dimension, the ensemble of fluctuation trajectories is always simply a

mirror image of the ensemble of relaxation trajectories, since there are no circulating

steady-state current whose properties have to be preserved under the transformation.

The solution can be written as a power series in 𝜖:

𝑋(𝑡) = 𝑋
(0)
𝑡 + 𝜖𝑋

(1)
𝑡 + 𝜖2𝑋

(2)
𝑡 + . . . . (2.80)

Plugging this in to the equation of motion and collecting terms in powers of 𝜖 gives

𝑋̇(0) = 𝐴𝑋(0) + 𝐵𝜉𝑡 (2.81)

𝑋̇(1) = 𝐴𝑋(1) +
1

2
(𝑋(0))2 (2.82)

In Appendix C, I use these two equations and the expression for the work (2.67) given
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above to show that:

𝒲ex(𝑋) =
𝑉 ℱ
𝐴

𝑋 + 𝜖
𝑉 ℱ
4𝐴2

𝑋2 + 𝒩 + 𝑂(𝜖2) (2.83)

Φex(𝑋) = 𝜖
𝛽2𝑉 2ℱ2𝐵2

2𝐴4
𝑋 + 𝒩 ′ + 𝑂(𝜖2). (2.84)

where 𝒩 , 𝒩 ′ are constants independent of 𝑋.

Since Φex depends on 𝑋, the general Equation (2.60) for the steady state dis-

tribution no longer reduces exactly to the McLennan form (2.73). The variational

principle based on the McLennan form should still provide a good approximation of

the typical steady-state behavior as long as 𝑑
𝑑𝑋

Φex(𝑋) ≪ 𝑑
𝑑𝑋

𝛽𝒲ex(𝑋) near 𝑋 = 0.

By comparing Equations (2.83) and (2.84) we see that this is true whenever

𝜖 ≡ 𝜖
𝛽𝑉 ℱ𝐵2

2𝐴3
≪ 1. (2.85)

This expression defines a dimensionless quantity 𝜖 that controls the accuracy of the

McLennan approximation.

To assess the physical significance of 𝜖, we can compare it to the quadratic 𝑂(𝜖)

term in the expression for the excess work (2.83). Since the variance in the unper-

turbed steady-state distribution is 𝜎2
𝑋 = 𝐵2/2𝐴, we can write

𝜖 = 4𝛽[𝒲ex(𝜎𝑋) −𝒲(0)
ex (𝜎𝑋)]. (2.86)

where 𝒲(0)
ex is the value computed under the linear dynamics alone, with 𝜖 = 0.

This quantity is thus equal to four times the extra mean work difference due to the

nonlinear term during a typical fluctuation, in units of 𝑘𝐵𝑇 .

2.5.5 Degree of Nonequilibrium

Since the McLennan distribution (2.14) is sufficient to produce straightforward gener-

alizations of “near-equilibrium” results like the Green-Kubo relation, the parameter 𝜖

of Equation (2.86) serves as a good measure of the “degree of nonequilibrium.” When
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𝜖 ≪ 1, fluctuation probabilities are still directly determined by entropy and energy

exchange, and in this sense the system remains close to thermal equilibrium, even if

the probabilities are far from the Boltzmann distribution. As 𝜖 becomes large, more

subtle features of the system dynamics come into play. The symmetry expressed in

Equation (2.40) still holds, but it becomes impossible to translate this into any con-

crete prediction about observable behavior without additional constraints on the rare

fluctuations that control the higher cumulants. The 𝜖 ≫ 1 regime is truly far from

equilibrium, in the sense that generalizations of equilibrium thermodynamics can no

longer provide predictions or intuition about the system’s evolution.

Combined with the assumptions about the dependence of 𝐴 and 𝐵 on ℱ and 𝑉 ,

Equation (2.85) shows how the degree of nonequilibrium 𝜖 depends on the strength of

the driving force and on the system size. For small values of ℱ , these three parameters

remain close to their equilibrium values 𝐴(0), 𝐵(0), 𝜖(0), and so 𝜖 ∝ ℱ . This is the

regime treated by linear response theory. To see what can happen at larger values, we

can consider a system where 𝐴 = 𝐴(0)(1+𝑘ℱ), 𝐵2 = 𝐵(0)2(1+𝑘ℱ), 𝜖 = 𝜖(0)(1+𝑘ℱ)

for some constant 𝑘. These choices satisfy the constraint (2.13) on the relationship

between 𝐴 and 𝐵 for 𝜖(0) = 0. They represent a force ℱ that accelerates the relaxation

to steady state while driving the system out of equilibrium, as the shear flow will do

in Chapter 3. These stipulations imply that 𝜖 increases monotonically to its limit

lim
ℱ→∞

𝜖 = 𝜖(0)
𝛽𝑉 𝐵2(0)

2𝑘𝐴(0)3
. (2.87)

If this quantity is small, then the system will remain “near equilibrium” for arbitrarily

large values of the driving force ℱ .

The fact that 𝐵2 ∝ 1/𝑉 is the only 𝑉 -dependent parameter in Equation (2.85)

immediately implies that 𝜖 is independent of system size. This is an important feature,

which guarantees that 𝜖 remains an informative quantity even in the thermodynamic

limit 𝑉 → ∞. Other plausible candidates for measuring the degree of nonequilibrium

do not have this property. For example, the excess work done (in units of 𝑘𝐵𝑇 )

during a typical fluctuation 𝛽𝒲ex(𝜎𝑋) seems like a reasonable measure of how well
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the externally supplied work couples to the distribution over states. But Equation

(2.83) reveals that this quantity grows as
√
𝑉 , because 𝜎𝑋 ∝ 1/

√
𝑉 . To obtain a

𝑉 -independent quantity in terms of excess work in Equation (2.86), I had to subtract

off the part due to the linear terms, and isolate the nonlinear contribution.

2.6 Application to Other Models

For concreteness, I focused the analysis of Section 2.5 on a specific class of sys-

tems driven by externally imposed flow fields. This restriction came into play when

I imposed a thermodynamic interpretation on the stochastic process described by

Equation (2.63), stipulating that

𝒲̇ = 𝑉 ℱ · (𝑋1 + 𝐽ss). (2.88)

But versions of the linear Langevin equation (2.63) and the nonlinear perturbation

(2.79) can be used as a phenomenological description of the near-steady-state dy-

namics under any kind of driving force. In this section, I show how to apply the

mathematical results of Section 2.5 to systems driven by gradients of temperature or

chemical potential.

2.6.1 Transport of Energy and Particles

Consider a system in contact with several reservoirs that are not in equilibrium

with each other, as described in Section 2.2.3 above. Energy and matter can flow

through the system from one reservoir to another. I will label system macrostates

with a variable X that contains the variation in system energy per unit volume

𝑋1 = [𝐻sys(x) − ⟨𝐻sys⟩ss]/𝑉 as well as in the concentrations 𝑋𝑖 = [𝑛𝑖 − ⟨𝑛𝑖⟩ss]/𝑉
of each kind of particle. To compute the work rate due to the imbalances of temper-

ature and chemical potential, I will need to keep track of the flux from each reservoir

separately. The linear Langevin equation (2.65) for computing the ensemble of fluc-
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tuation trajectories thus becomes:

Ẋ =
∑︁
𝛼

Ẋ(𝛼) =
∑︁
𝛼

[𝒜(𝛼)X + ℬ(𝛼)𝜉
(𝛼)
𝑡 + Ẋ(𝛼)

ss ] (2.89)

with 𝐴 =
∑︀

𝛼𝒜(𝛼) and 𝐵2 =
∑︀

𝛼(ℬ(𝛼))2 so that the net change in X is still described

by (2.65). The noise realizations 𝜉
(𝛼)
𝑡 are sampled independently for each reservoir.

If the reservoirs are not in equilibrium with each other, then some of the Ẋ(𝛼)’s will

remain nonzero in the steady state X = 0. This steady-state flux is contained in the

constant terms Ẋ
(𝛼)
ss , which must satisfy

∑︀
𝛼 Ẋ

(𝛼)
ss = 0.

The work statistics can be computed using the definition (2.34) of 𝒲 :

𝒲̇(X) = −𝑘𝐵𝑇𝑉
∑︁
𝛼

[︃
(𝛽(𝛼) − 𝛽)𝑋̇

(𝛼)
1 −

∑︁
𝑖>1

𝛽(𝛼)𝜇
(𝛼)
𝑖 𝑋̇

(𝛼)
𝑖

]︃
(2.90)

= −𝑘𝐵𝑇𝑉
∑︁
𝛼,𝑖

(𝛽(𝛼) − 𝛽)

[︂
(𝒜(𝛼)

1𝑖 𝑋𝑖 + ℬ(𝛼)
1𝑖 𝜉𝑖𝑡)

−
∑︁
𝑗>1

𝛽(𝛼)𝜇
(𝛼)
𝑗 (𝒜(𝛼)

𝑗𝑖 𝑋𝑖 + ℬ(𝛼)
𝑗𝑖 𝜉𝑖𝑡)

]︂
+ 𝒲̇0 (2.91)

= 𝑉 (F ·X + B · 𝜉𝑡) + 𝒲̇0 (2.92)

where the vectors F and B are defined by this equation, and 𝒲̇0 is a constant that

contains the contribution of the Ẋ
(𝛼)
ss . F and B are both linear in the temperature

and chemical potential differences when these differences are small, but can become

nonlinear for larger differences, since 𝒜(𝛼) and ℬ(𝛼) can be functions of all the reservoir

parameters 𝛽(𝛼), 𝜇
(𝛼)
𝑗 .

Since ⟨𝜉𝑡⟩ = 0, this expression for 𝒲̇ is formally identical with that obtained in

Section 2.5.2 for the purposes of computing the mean work, except that 𝑋̂1 is replaced

by F. Φex remains independent of X, because all the dependence on the final condition

X𝒯 is still contained in a term independent of 𝜉𝑡. Thus I obtain results very similar
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to Equations (2.71) and (2.72)

𝒲ex(X) = 𝑉 F · 𝐴−1X (2.93)

Φex =
1

2
(𝛽𝑉 ℱ)2⟨(F · 𝐴−1X)2⟩ss, (2.94)

and the fluctuations of X continue to be described by the McLennan form (2.73).

To study perturbations away from this linear case, I again specialize to the one-

dimensional equation (2.79), now divided into contributions from two chemical reser-

voirs with chemical potentials 𝜇(1) ≥ 𝜇(2):

𝑋̇ = 𝒜(1)𝑋 + 𝜖(1)𝑋2 + ℬ(1)𝜉
(1)
𝑡 + 𝑋̇(1)

ss + 𝒜(2)𝑋 + 𝜖(2)𝑋2 + ℬ(2)𝜉
(2)
𝑡 + 𝑋̇(2)

ss . (2.95)

with 𝜖 = 𝜖(1) + 𝜖(2) for consistency with (2.79), and 𝑋̇
(2)
ss = −𝑋̇

(1)
ss . The work rate is

𝒲̇ =𝑉

(︂
[𝜇(1)𝒜(1) + 𝜇(2)𝒜(2)]𝑋 + [𝜇(1)𝜖(1) + 𝜇(2)𝜖(2)]𝑋2

+
√︁

(𝜇(1)ℬ(1))2 + (𝜇(2)ℬ(2))2𝜉𝑡 + [𝜇(1) − 𝜇(2)]𝑋̇(1)
ss

)︂
. (2.96)

Using the calculations in Appendix C, I find:

𝒲ex(𝑋) = 𝑉 𝜇̄𝑋 + 𝑉
𝜖

4𝐴
(𝜇̄ + 2𝜇̄′)𝑋2 + 𝒩 + 𝑂(𝜖2) (2.97)

where

𝜇̄ ≡ 𝜇(1)𝒜(1) + 𝜇(2)𝒜(2)

𝐴
(2.98)

𝜇̄′ ≡ 𝜇(1)𝜖(1) + 𝜇(2)𝜖(2)

𝜖
(2.99)

𝜇̄′′ ≡
√︀

(𝜇(1)ℬ(1))2 + (𝜇(2)ℬ(2))2

𝐵
(2.100)

are average chemical potentials weighted by the linear rates, the nonlinear corrections,

and the noise amplitudes, respectively.
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The fluctuation term can be written as:

Φex(X) = 𝜖𝛽𝒲ex(𝑋) + 𝒩 ′ + 𝑂(𝜖2) (2.101)

where

𝜖 = 𝛽
𝜖𝑉

𝐴

(︂
𝜇̄ + 2𝜇̄′ − 𝜇̄′′ − 3

𝜇̄′𝜇̄′′

𝜇̄

)︂
𝐵2

2𝐴
(2.102)

is the dimensionless measure of the strength of the nonlinearity. This cannot be

exactly identified with the 𝑂(𝜖) term from 𝒲ex as in Equation (2.86), because of the

𝜇̄′′ terms that are absent from 𝒲ex. Instead, the expansion parameter and the extra

excess work due to the nonlinearity are related by

𝜖 = 4𝛽[𝒲ex(𝜎𝑋) −𝒲(0)
ex (𝜎𝑋)]

(︂
1 − 𝜇̄′′ 𝜇̄ + 3𝜇̄′

𝜇̄(𝜇̄ + 2𝜇̄′)

)︂
. (2.103)

But if the contributions of the two reservoirs to each of the terms of Equation (2.95)

are in similar proportions, so that 𝜇̄ ≈ 𝜇̄′ ≈ 𝜇̄′′, this simplifies to

𝜖 = −4

3
𝛽[𝒲ex(𝜎𝑋) −𝒲(0)

ex (𝜎𝑋)]. (2.104)

Thus as long as the three different ways of averaging 𝜇(1) and 𝜇(2) give approximately

the same answer, the magnitude of the expansion parameter can still be estimated

based on the contribution of nonlinearities to the excess work.

2.6.2 Chemical Reactions

A similar analysis can be applied to a well-mixed solution of reacting chemicals, where

the nonequilibrium driving force is provided by a chemostat that maintains some of

the chemical concentrations at fixed values. The equation for the work rate (2.90)

becomes slightly more complicated, because particles are removed from the chemical

reservoir by being converted into different kinds of particles (cf. [39, 81] for a complete

presentation of the thermodynamics of such systems). In the example I will present
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in Chapter 5, I make some simplifying approximations that allow Equation (2.90) to

apply as written.

The more fundamental problem in applying the results of Section 2.5 to chemical

reactions is the failure of the Langevin equation (2.63) to capture the exact work

statistics required to evaluate Φex.

At the molecular level, chemical reaction dynamics involve transitions among dis-

crete states, which can be described by a Markov jump process as discussed in Section

2.3.1 above. The Langevin equation is only a valid approximation in the limit of large

system size. It turns out that the key assumption is that many individual chemical

reactions occur in the time required for the concentration to change appreciably [39].

Then on the time scale of the concentration dynamics, the net effect of all these rapid

jumps looks like Gaussian white noise.

Although the Langevin equation accurately describes the typical fluctuation dy-

namics in a macroscopic chemical system, assessing the X-dependence of Φex requires

considering the extremely rare fluctuations that influence the higher cumulants. As

shown in [39], the Langevin equation successfully provides the exact entropy statistics

only in the detailed-balance equilibrium state where the forward and reverse jump

rates for each reaction are equal. When these rates become sufficiently unequal, then

the typical trajectories successfully modeled by the Langevin equation only contain

jumps in the more likely direction, with the stochasticity resulting entirely from the

timing of the jumps. The probabilities of the rare trajectories that contain reverse

jumps are no longer related in any obvious way to the statistics of these small fluc-

tuations.

This disconnect between observable small fluctuations and reverse trajectory prob-

abilities constitutes an important aspect of the “edge of thermodynamics.” When the

Langevin approximation successfully provides the full work statistics, then Φex can be

exactly computed from measurements of typical fluctuations that have plausible phys-

ical relevance. When the approximation fails, Φex contains new information about

rare trajectories that become astronomically improbable in the limit of large system

size, and may never occur in any actual realizations of the process. This seems to
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destroy the utility of thermodynamic expressions like (2.60). But such expressions

can still remain relevant when the real probabilities are bounded by the prediction of

the Langevin equation. Such a bound has recently been discovered for the asymptotic

statistics of the total entropy change in steady states of generic Markov jump pro-

cesses [30], but it is not yet clear if something similar can be done for the conditional

averages of (2.60).
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Chapter 3

Shear Thinning in Brownian Colloids

Strongly driven colloidal suspensions are commonly used as examples of far-from-

equilibrium steady state systems where the relationship between currents and applied

fields can violate the predictions of linear response theory (cf. [27, 35, 56, 94, 98]).

In this chapter, I describe how to measure the key quantities 𝒲ex and Φex of Chapter

2 in a numerical simulation of a sheared colloid. I find that the form of the steady

state distribution given in equation (2.73) for vanishing nonlinearities generates a

qualitatively correct prediction of the observed decrease in viscosity with increasing

shear rate, while the 𝑂(𝜖) correction from the first term in Φex is sufficient to maintain

quantitative agreement with the actual distribution well into the thinning regime.

This system is thus poised on the edge of the expanded near-equilibrium regime

defined in Chapter 2. The simple approximation based on 𝒲ex can be expressed in

terms of a few easily accessible parameters, and provides solid physical intuition for

the basic phenomenon even when the quantitative predictions begin to fail.

3.1 Setup

Consider a suspension of small identical spheres in a liquid bath. The particles are

small enough that Brownian motion can equilibrate their spatial configuration rapidly

compared to the timescale of the experiment, producing a steady state independent

of initial conditions. Electrostatic repulsion keeps the spheres far enough apart that
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Figure 3-1: Color. Shear cell with periodic boundary conditions along flow direction.
The reflecting walls on the top and bottom are separated by a distance 𝑑. The top
wall moves at constant speed 𝑣 in the 𝑥 direction, while the bottom wall is fixed,
causing a linear gradient 𝛾̇ = 𝑣/𝑑 in the solvent flow velocity along the 𝑦 direction.
The suspended colloidal particles repel each other with equal and opposite forces
F𝑖𝑗 = −F𝑗𝑖.

the disturbance each particle creates in the flow field has no effect on the trajectories

of the other particles, while ions in the solvent screen the charges and exponentially

suppress the interaction at large separations.

3.1.1 Flow-Induced Steady State

As illustrated in Figure 3-1, a nonequilibrium steady state can be created by moving

one wall of the chamber containing the suspension at a constant velocity 𝑣 while

keeping the opposite wall fixed, thus setting up a steady shear flow in the gap of

width 𝑑 between the walls. The strength of the shear flow can be quantified in a form

independent of the system dimensions as the “shear rate” 𝛾̇ = 𝑣/𝑑. A constant shear

rate can be maintained by using periodic boundary conditions in the flow direction

(which can be approximated in an experiment by using a cylindrical geometry). I

will define coordinates such that the moving wall travels in the +𝑥 direction and the

𝑦 axis points from the stationary wall to the moving wall.

Three important dimensionless parameters for the dynamics of a sheared colloid

are the Reynolds number Re = 𝜌𝛾̇𝑎2/𝜂0, the Peclet number Pe = 𝛾̇𝑎2𝑏/𝑘𝐵𝑇 , and the

volume fraction 𝜑 = (4/3)𝜋𝑎3𝜌𝑁 . Here 𝜌 is the mass density of the fluid (assumed to
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be comparable to the density of the particles), 𝑎 is the radius of a particle, 𝜂0 is the

viscosity of the suspending fluid, 𝑏 is the drag coefficient of a particle (= 6𝜋𝜂0𝑎 for a

sphere with no-slip boundary conditions), and 𝜌𝑁 is the number density of suspended

particles.

In the Re ≪ 1 limit, the instantaneous velocity of the particles can be regarded as

fully determined by their spatial configuration (up to the rapidly equilibrating contri-

bution from Brownian motion), so the set of particle positions is sufficient to define

the full microstate, and overdamped Langevin equation (2.50) becomes applicable.

Re can be kept in this regime while sweeping Pe up to any desired maximum value

Pemax by choosing a viscosity such that 𝜂0 ≫
√︀

𝜌Pemax𝑘𝐵𝑇/𝑎.

Pe measures the importance of motion by convection in the shear flow relative

to diffusive motion. It thus provides a dimensionless measure of the strength of the

driving force, so that Pe ≪ 1 is the linear-response regime, and Pe ≫ 1 constitutes

the “far from equilibrium” regime where shear thinning occurs.

𝜑 governs the frequency with which particles interact with each other. If it in-

creases beyond a certain critical point 𝜑𝑐, the system will undergo a phase transition

to a crystalline state. I will focus on the regime 𝜑 < 𝜑𝑐, which is easiest to simulate

accurately, and which is where the extended linear response prediction (2.73) is most

likely to hold.

3.1.2 Equations of Motion

To describe this system mathematically, I will use the model employed in [94, 98]

for the investigation of departures from near-equilibrium linear-response behavior

in nonequilibrium steady states. This model is expressed as a set of overdamped

Langevin equations:

𝑥̇𝑖 = 𝑦𝑖𝛾̇ +
1

𝑏

∑︁
𝑗

x̂ · F𝑗𝑖 +

√︂
2𝑘𝐵𝑇

𝑏
𝜉𝑥,𝑖(𝑡) (3.1)

𝑦̇𝑖 =
1

𝑏

∑︁
𝑗

ŷ · F𝑗𝑖 +

√︂
2𝑘𝐵𝑇

𝑏
𝜉𝑦,𝑖(𝑡) (3.2)
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where F𝑗𝑖 is the conservative force exerted on particle 𝑖 by particle 𝑗. The new feature

of these equations as compared to Equation (2.50) from Chapter 2 is the addition of

the flow term 𝑦𝑖𝛾̇ to the equation for 𝑥̇𝑖. This incorporates the effect of the imposed

shear flow, and will alter the formula for the externally supplied work as described in

Section 3.2 below.

I choose the force F𝑗𝑖 to be a screened Coulomb repulsion, with potential energy

𝑈(𝑟) = 𝑘𝐵𝑇𝑒
−𝑟/𝜆𝑧𝑙𝐵/𝑟 as a function of the distance 𝑟 separating a pair of particles.

𝜆 is the screening length, 𝑙𝐵 is the Bjerrum length, and 𝑧 is the number of elementary

charges on each particle.

Equations (3.1-3.2) can be numerically simulated with the dilute limit of the

Brownian Dynamics of Ermak and McCammon [24] or of the Stokesian Dynamics of

Brady and Bossis [12], which generate the following discretized equations of motion

in the regime I am considering:

𝑥𝑖(𝑡 + ∆𝑡) = 𝑥𝑖(𝑡) + 𝑦𝑖(𝑡)𝛾̇∆𝑡 +
1

𝑏

∑︁
𝑗

x̂ · F𝑗𝑖∆𝑡 + ∆𝑥𝑟
𝑖 (3.3)

𝑦𝑖(𝑡 + ∆𝑡) = 𝑦𝑖(𝑡) +
1

𝑏

∑︁
𝑗

ŷ · F𝑗𝑖∆𝑡 + ∆𝑦𝑟𝑖 (3.4)

Equations (3.3) and (3.4) are simply iterated by the computer with a small enough

time step that the results are insensitive to variations in time-step size.

As mentioned at the beginning of this section, I am considering the case where

the particle size is much smaller than 𝜆 or 𝑧𝑙𝐵, so that hydrodynamic interactions

(particle-particle interactions mediated by disturbances in the solvent flow) have a

negligible impact on the particle trajectories. This is what allows me to use the “dilute

limit” of the Stokesian or Brownian Dynamics, where the mobility and resistance

tensors are diagonal and independent of particle positions. Another consequence of

this limit is that the actual particle radius 𝑎 does not appear in the equations of

motion; I therefore use the screening length 𝜆 as the microscopic length scale for

computing the Peclet number and measuring distance from equilibrium.
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3.1.3 Shear Stress

The macroscopic viscosity of the whole suspension at equilibrium will be larger than

𝜂0, because both the disturbance of the flow field produced by individual particles and

the mutual repulsion between pairs of particles make the suspension harder to shear

than the bare fluid. As the suspension is sheared, however, the contribution of the

particle repulsion to the viscosity decreases, and the suspension shear thins (cf. [11]).

The particles cause the shear stress to vary with position in the suspension, so I define

an overall shear stress for the system by averaging the local shear stress at the moving

wall of the system over the whole wall area. This will be convenient for computing

the work done by the moving wall later on, and gives a macroscopic parameter that

can be directly observed in experiment via a measurement of the force applied to the

wall. As shown in Appendix D, for a suspension of particles in a Newtonian solvent

in the limit of zero Re with no hydrodynamic interactions, the instantaneous mean

shear stress 𝜎wall
𝑥𝑦 exerted by the fluid on the moving wall is:

𝜎wall
𝑥𝑦 = 𝜎𝐼

𝑥𝑦 + 𝜎0
𝑥𝑦. (3.5)

with

𝜎𝐼
𝑥𝑦 =

1

2𝑉

∑︁
𝑖 ̸=𝑗

x̂ · F𝑖𝑗∆𝑦𝑖𝑗. (3.6)

Here 𝑉 is the system volume, x̂ is the unit vector in the +𝑥 direction, and ∆𝑦𝑖𝑗 =

𝑦𝑗 − 𝑦𝑖. The right-hand side can be unambiguously determined from the system

microstate, which I am taking to be the list of positions of all the particles. I can

therefore choose 𝑋 = 𝜎𝐼
𝑥𝑦 as a coarse-grained observable within the framework of

Chapter 2. The remaining term 𝜎0
𝑥𝑦 is independent of the particle positions, so the

work done by the moving wall will depend on the particle configuration through 𝜎𝐼
𝑥𝑦

alone.

When the shear rate is small compared to the diffusive relaxation rate, the overall

viscosity of the suspension can be computed from the equilibrium fluctuations in 𝜎𝑥𝑦
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using linear response theory [25]. As the shear rate continues to increase, the viscos-

ity begins to deviate from this value as the suspension shear thins. In the following

sections, I will use the expression for the steady-state distribution in Equation (2.60)

from Chapter 2 to determine the most probable value of 𝜎𝐼
𝑥𝑦 and hence the contribu-

tion 𝜂𝐼 = −𝜎𝐼
𝑥𝑦/𝛾̇ to the viscosity in both the linear response regime and the shear

thinning regime.

3.2 Probabilities and Work Statistics

Physically, the rate at which the moving wall does work on the fluid is given by the

force −𝐴𝜎wall
𝑥𝑦 it exerts against the fluid (where 𝐴 is the surface area of the wall) times

the speed of the wall 𝛾̇𝑑. Using equation (3.5), I thus obtain:

𝒲̇ = −𝑉 𝛾̇𝜎𝐼
𝑥𝑦 + 𝒲̇0. (3.7)

where 𝒲̇0 is the part of the work that does not depend on the configuration of the

particles. In Appendix A, I verify that this expression for the work rate satisfies

microscopic reversibility (2.24) under the equations of motion (3.1-3.2). Since 𝒲̇0

only affects the normalization, but not the shape of the distribution, I will set it to

zero for the purpose of the calculations in this section.

Using equation (3.7), I can now compute the work done along any stochastic

trajectory 𝜎𝐼
𝑥𝑦(𝑡) by integrating the trajectory with respect to time. The distribution

of 𝒲 for trajectories ending at a given 𝜎𝐼
𝑥𝑦 value can then be estimated using a variant

of an established method for obtaining “pre-history” ensembles in experiments on

noisy electrical circuits [64]. Specifically, I let the system relax to the steady state

at some value of 𝛾̇ and run there for a long time, while continuously recording the

fluctuations in 𝜎𝐼
𝑥𝑦 (which can be determined directly from the fluctuations in the force

applied to the moving plate in an experiment). As shown in Figure (3-2), I then choose

some time interval 𝒯 (much longer than the relaxation time to the steady state) and

compute both the work 𝒲 and the final value 𝜎𝐼
𝑥𝑦,𝒯 of 𝜎𝐼

𝑥𝑦 for every segment of length
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Figure 3-2: Color. Top: Portion of the raw 𝜎𝐼
𝑥𝑦(𝑡) timeseries at high shear rate Pe

= 19. I obtained the conditional work distribution by collecting trajectory segments
based on their ending state. Two ending-state bins are indicated by dotted lines, and
an example of a trajectory segment that ends in each bin is shaded in the correspond-
ing color. The shaded areas are proportional to the interaction-dependent part of the
work, according to equation (3.7). Bottom left: Average of all trajectory segments
that end in each of the two bins from the top panel. Bottom right: Work distributions
for trajectories ending in each of the two bins, shaded in the corresponding colors.
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𝒯 in the whole trajectory. Finally, I bin the work values by the corresponding value

of 𝜎𝐼
𝑥𝑦,𝒯 to obtain the distribution of work for each bin, from which I can estimate the

cumulant differences ∆⟨𝒲𝑛⟩𝑐(𝜎𝐼
𝑥𝑦) up to an additive constant independent of 𝜎𝐼

𝑥𝑦.

3.2.1 Simulation Results

I simulated a sheared colloidal monolayer of 𝑁 = 100 particles using the equations of

motion (3.3) and (3.4). The colloid was confined to a square box of side length 20,

with reflecting boundary conditions on the moving wall and the opposite wall, and

periodic boundary conditions on the other sides. The other parameters were chosen as

𝑘𝐵𝑇 = 𝑏 = 𝜆 = 𝑧𝑙𝐵 = 1. I ran this simulation for 20 different values of Pe, from 0 to

19, generating trajectories with lengths up to 𝑡 = 72, 000 in the given units, with time

step size 0.001. The simulations were initialized with uniform random distributions of

particle positions, and the initial transients were removed from the timeseries before

analysis.

The first panel of Figure 3-3 shows how 𝐹 ≡ −𝑘𝐵𝑇 ln 𝑝eq(𝜎
𝐼
𝑥𝑦) and the other two

terms in the general expression for the steady-state distribution (2.60) depend on

𝜎𝐼
𝑥𝑦, with the nonequilibrium terms evaluated at three different values of the shear

rate. 𝐹 is parabolic near 𝜎𝐼
𝑥𝑦 = 0, but requires a fourth-order polynomial to fit the

far tails. 𝒲ex is linear in 𝜎𝐼
𝑥𝑦 at low shear rates, starts curving slightly by Pe =

10, and becomes noticeably quadratic by Pe = 19, indicating that the 𝑂(𝜖) term

in the expansion around linearized dynamics (2.83) has become important. Φex is

independent of 𝜎𝐼
𝑥𝑦 at low shear rates, but starts becoming 𝜎𝐼

𝑥𝑦-dependent at about

the same shear rate as 𝒲ex(𝜎
𝐼
𝑥𝑦) begins to deviate from linearity, as predicted by

Equation (2.84).

The second panel of Figure 3-3 shows the location of the peak of the steady-state

distribution 𝜎𝐼*
𝑥𝑦 as a function of Pe. This is the value of the shear stress in observed

in the thermodynamic limit 𝑉 → ∞ when the fluctuations become negligible. I plot

the prediction based on the work statistics using Equation (2.60), and compare this

with the distribution directly sampled from the simulation. I have also plotted the

prediction of the McLennan approximation (2.73) that relies only on the mean excess
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Figure 3-3: Color. Left: Using the method illustrated in Figure 3-2, I compute
𝒲ex(𝜎

𝐼
𝑥𝑦) and Φex(𝜎

𝐼
𝑥𝑦) ≈ (𝛽/2)∆⟨𝒲2⟩𝑐(𝜎𝐼

𝑥𝑦) for a range of values of 𝜎𝐼
𝑥𝑦 in my nu-

merical simulation, and plot this data for Pe values 4, 10, and 19, increasing from
bottom to top. Also plotted is the equilibrium free energy 𝐹 extracted from the Pe =
0 simulation run. Right: Empirical location 𝜎𝐼*

𝑥𝑦 of peak of probability distribution,
compared with four thermodynamic predictions. The diamonds maximize the gen-
eral expression for the steady-state distribution from Equation (2.60), including the
Φex term. The squares maximize the McLennan distribution contained in Equation
(2.73), ignoring the contribution of Φex. The dotted line is the Green-Kubo linear-
response prediction of Equation (2.76), obtained from the 𝜎𝐼

𝑥𝑦 systems at equilibrium
with Pe = 0. Finally, the solid line is the prediction of the phenomenological model
described in Section 3.2.2.

work. The McLennan distribution correctly captures the qualitative shear thinning

behavior, where 𝜎𝐼*
𝑥𝑦𝐼 departs from the linear-response dependence on 𝛾̇ and eventually

saturates, causing the contribution of the particle interactions to the viscosity −𝜎𝐼
𝑥𝑦/𝛾̇

to fall off as 1/𝛾̇. This approximation predicts that the saturation occurs sooner than

it actually does, but the correction based on my estimate of Φex appears to entirely

compensate for the discrepancy.

The straight dotted line in this panel is the linear-response prediction for the

mean shear stress, computed from the equilibrium fluctuations using the Green-Kubo

formula given in Equation (2.76). It correctly predicts the initial slope of the linear

part of the curve, but starts noticeably departing from the true 𝜎𝐼*
𝑥𝑦 as soon as the

dimensionless shear rate parameter Pe becomes greater than 1. The solid black line

also uses the equilibrium fluctuations to compute the initial response near Pe = 0,

but then allows the relaxation rate to increase with Pe to account for shear-induced
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stirring as described below.

3.2.2 Physical Intuition

The fact that the McLennan distribution (2.73) correctly describes shear thinning

suggests the use of a linear phenomenological model, like the one from Section 2.5,

to develop some physical intuition for this behavior. The Gaussianity of 𝑝eq(𝜎𝐼
𝑥𝑦) and

the linearity of 𝒲ex(𝜎
𝐼
𝑥𝑦) are both consistent with the linear dynamics of Equation

(2.63). I will write these dynamics in terms of the timescale 𝜏(𝛾̇) for relaxation to

the steady state, the noise amplitude 𝐵 and a term 𝐶 that controls the location of

the steady-state mean:

𝜎̇𝐼
𝑥𝑦 = −1

𝜏
𝜎𝐼
𝑥𝑦 + 𝐶 + 𝐵𝜉(𝑡). (3.8)

Using this model in conjunction with the expression for the work rate (3.7), I find

the mean excess work done on the way to a given 𝜎𝐼
𝑥𝑦 value in terms of the relaxation

time 𝜏 :

𝒲ex(𝜎
𝐼
𝑥𝑦) = −𝑉 𝛾̇𝜏𝜎𝐼

𝑥𝑦. (3.9)

The equilibrium distribution for this model can be written in terms of the equilibrium

values 𝜏0 and 𝐵0 of the model parameters 𝜏 and 𝐵:

𝑝eq(𝜎
𝐼
𝑥𝑦) =

1√︀
𝐵2

0𝜏0
𝑒
−

(𝜎𝐼
𝑥𝑦)2

𝐵2
0𝜏0 (3.10)

≡ 1√︀
𝐵2

0𝜏0
𝑒−𝛽𝐹 (𝜎𝐼

𝑥𝑦). (3.11)

where I have introduced the free energy 𝐹 = 𝑘𝐵𝑇 (𝜎𝐼
𝑥𝑦)

2/(𝐵2
0𝜏0) to simplify the nota-

tion and highlight the connection to the variational principle of Section 2.1.3. Since

Φex is independent of 𝜎𝐼
𝑥𝑦 under this linear model, the steady-state distribution is
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given by the McLennan form (2.73):

𝑝ss(𝜎
𝐼
𝑥𝑦) ∝ 𝑝eq(𝜎

𝐼
𝑥𝑦)𝑒

𝛽𝒲ex(𝜎𝐼
𝑥𝑦) (3.12)

∝ 𝑒−𝛽(𝐹−𝒲ex) (3.13)

The value of 𝜎𝐼
𝑥𝑦 observed in the steady state of a macroscopic system is found by

maximizing 𝑝ss, which is equivalent to minimizing 𝐹 − 𝒲ex. This minimum occurs

when

0 =
𝜕

𝜕𝜎𝐼
𝑥𝑦

(𝐹 −𝒲ex) =
2𝑘𝐵𝑇

𝐵2
0𝜏0

𝜎𝐼*
𝑥𝑦 + 𝑉 𝛾̇𝜏. (3.14)

Solving for 𝜎𝐼*
𝑥𝑦 yields

𝜎𝐼*
𝑥𝑦 = −1

2
𝛽𝑉 𝐵2

0𝜏0𝛾̇𝜏 (3.15)

= −𝛽𝛾̇𝜏𝑉 ⟨(𝜎𝐼
𝑥𝑦)

2⟩eq (3.16)

where I have replaced the equilibrium parameters 𝐵2
0 and 𝜏0 with the directly mea-

surable equilibrium variance ⟨(𝜎𝐼
𝑥𝑦)

2⟩eq = 𝐵2
0𝜏0/2.

The contribution of interactions between particles to the viscosity is thus given

by

𝜂𝐼 ≡ −𝜎𝐼*
𝑥𝑦

𝛾̇
(3.17)

= 𝛽𝜏𝑉 ⟨(𝜎𝐼
𝑥𝑦)

2⟩eq. (3.18)

The viscosity continues to be related to the relaxation time of stress fluctuations,

as in classical linear response theory. But now the relaxation time 𝜏 is allowed to

depend on the driving force 𝛾̇. Near equilibrium, relaxation to the steady state is

primarily driven by diffusion, and 𝜏 = 𝜏0 is determined by the diffusion coefficient of

the particles along with their number density and interaction potential. But as the

shear rate increases, the imposed flow field stirs the particles, and randomizes their
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configuration faster than diffusion alone. As 𝛾̇ → ∞, diffusion becomes irrelevant,

and 𝜏 ∼ 1/𝛾̇ is the time required for two neighboring particles to be pushed past each

other by the shear flow. This is a natural mechanism to generate the expression for

𝜏 as a function of driving force discussed in Section 2.5.5, which can keep the system

in the near-equilibrium regime for arbitrarily large force values:

𝜏 =
𝜏0

1 + 𝑘𝛾̇𝜏0
. (3.19)

The solid line in the second panel of Figure 3-3 is the 𝜎𝐼*
𝑥𝑦 prediction of Equation

(3.16), with the relaxation time 𝜏 given by Equation (3.19). 𝜏0 is determined from

equilibrium fluctuations, and 𝑘 = 1.78 was determined by fitting to the 𝜎𝐼*
𝑥𝑦 vs. Pe

data. This model does a good job reproducing the line shape, with a single free

parameter. Since it abstracts from all the details of the particle shape and the in-

teraction potential, it also provides more general intuition for why shear thinning is

such a generic phenomenon in suspensions of hard particles. Whenever the shear

flow helps to accelerate the relaxation of the particle configuration to its steady-state

distribution, 𝜏 should follow Equation (3.19) for small and large values of 𝛾̇, and the

viscosity will be smaller at higher shear rates.
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Chapter 4

Regulating Disassembly in

Clathrin-Mediated Endocytosis

The life of eukaryotic cells depends on a constant traffic in lipid membranes among

topologically separate structures. Vesicles are pinched off from the plasma membrane

that surrounds the cell and fused with organelles in the interior for processing of

their contents. Other vesicles carry newly synthesized membrane proteins from the

endoplasmic reticulum to the plasma membrane, or deliver secretory proteins from

the Golgi apparatus to the cellular exterior.

From a physical perspective, this constant and organized flux of membrane is quite

a spectacular phenomenon – one that remains poorly understood at a fundamental

level. Thanks to advances in membrane thermodynamics, we do have some idea of

the conditions under which membrane buds spontaneously form and pinch off [90],

and molecular biologists have identified the many proteins that help to regulate these

processes in cells [87]. But there is still much to learn about how these collections of

proteins cooperate to synthesize vesicles in a robust and tunable way.

The most experimentally accessible example of such a process is clathrin-mediated

endocytosis (CME). This is a primary pathway for vesicle creation at the plasma

membrane in mammalian cells, in which curved protein lattices self-assemble on the

membrane in order to bend it [52]. The regular structure of these lattices makes

them easy to identify and study with electron microscopy [83], and their location
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at the outer cell membrane renders them accessible to high-resolution in vivo imag-

ing techniques [74]. As shown in Figure 4-1, the lattice is composed of three-legged

subunits known as clathrin triskelia, which are themselves composed of six proteins:

three tightly bound “heavy chains” that make up the three legs, each associated with a

smaller “light chain” [52]. Purified clathrin can self-assemble into its distinctive spher-

ical lattice structure in vitro [51], facilitating the study of the physics and chemistry

of the process in simplified systems with known components [8].

In order to carry out their functional role, these structures have to combine two

seemingly incompatible properties. The binding energy of the subunits must be suf-

ficiently strong to overcome the resistance of the membrane elasticity. But the struc-

ture also has to rapidly disassemble when the vesicle has been successfully created.

Mutant cells that fail to remove the protein coats from new vesicles exhibit numer-

ous pathologies. The cell uses stored chemical energy to resolve this impasse, via

chaperone proteins that actively destabilize the coat.

CME thus provides a promising platform in which to test the utility of results

like those of Chapter 2 for understanding the collective behavior of real biological

subsystems. It will soon be possible to make the relevant measurements of relaxation

rates and steady-state distributions in an artificially controlled environment, where

all components are known and provided in controlled amounts.

The properties of these nonequilibrium steady states, however, form just one el-

ement of the CME phenomenon. Even if we understood all the characteristics of

the disassembly transition, the question of the trigger mechanism would still remain.

Which parameter changes in order to send the system over the threshold? And how

is this parameter change coupled to the completion of the vesicle?

In this chapter, I present my contribution to an experiment designed to answer

these questions. This experiment employed a purpose-built protein to indirectly mon-

itor the concentrations of putative trigger molecules. Inferring the dynamics of these

molecules from the observed behavior of the sensor protein required integrating a

large quantity of background knowledge, control experiments, and reasonable but

unverified assumptions. As these inference tasks become ever more complex, it is in-
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Figure 4-1: Color. Top left: Electron-microscope image of clathrin coats on the
inner surface of the plasma membrane, reprinted from [42]. Top right: Structure of a
complete clathrin coat, reprinted from [50]. Bottom: Dynamics of clathrin-mediated
endocytosis. Clathrin triskelia bind to the plasma membrane and self-assemble into
a lattice. Once the lattice is complete, the enclosed patch of membrane is severed
from the bulk to create a topologically distinct closed surface of membrane, called
a vesicle. Finally the clathrin coat disassembles, setting the vesicle free for further
processing. The entire process takes about a minute. 3D renderings taken from the
animation accompanying [50].
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creasingly important to formalize the process in order to ensure that all assumptions

are made explicit and to quantify the reliability of the result. My contribution to

this experimental work on the clathrin system was precisely this quantitative formal-

ization. After summarize the goals and methods of the experiment, I will explain

how I translated the intuitive judgments of the biologists into a Bayesian framework,

drawing on tools developed for systems biology research, and present the results of

my analysis.

4.1 Biological Background

Before introducing the experiment, I need to set up the problem in more detail. In

this section, I provide some key background information on the proteins involved in

the disassembly process, and on the information-bearing phospholipids in the plasma

membrane that are hypothesized to provide the triggering mechanism. Both aspects

of clathrin disassembly are of significant biophysical interest in their own right, apart

from their role in this particular process. The disassembly mechanism is generic, and

operates on many other kinds of structures; and the special phospholipids I will be

discussing are involved in almost every signaling pathway of eukaryotic cells [2].

4.1.1 Auxilin and Hsp70

As mentioned above, disassembly of the clathrin lattice after vesicle completion is

powered by ATP hydrolysis. The enzyme that couples these two reactions together

is a member of the Hsp70 family called Hsc70. Hsp70 enzymes break apart many

kinds of protein structures, including dangerous aggregates that begin to form when

proteins misfold at high temperatures – hence the name “heat shock protein.” Using

an ATP-driven cycle through different conformations, these proteins can bind to their

target with very high apparent affinity, displacing the other proteins that were bound

to it in the structure, and then spontaneously dissociate from the target at a later

point in the cycle [92, 93, 78].

At the concentrations actually maintained in the cytosol, the rate of Hsp70-
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mediated disassembly is much lower than typical assembly rates, and structures are

only minimally perturbed. For disassembly to occur, the local concentration of Hsp70

near the target must be raised by special proteins that bind Hsp70 on one end and

the target on the other [92].

There are two proteins that accomplish this task for clathrin disassembly. For

historical reasons, one of them is called auxilin (Aux) [97] and the other cyclin G-

associated kinase (GAK) [48]. Once it became clear that GAK plays a similar func-

tional role to auxilin, GAK received the more suggestive name auxilin 2, with the

original auxilin now relabeled as auxilin 1. For the purpose of the present discussion,

I will simply refer to both of them as auxilin.

Both these proteins contain three domains that are essential to their function in

the disassembly process: a domain that binds to a pocket formed by three clathrin

triskelia in an assembled coat, another that binds to the plasma membrane, and a

third that binds to Hsc70. The name auxilin (from the Latin auxilium which means

“help”) comes from the fact that large quantities of auxilin actually help clathrin to

assemble into coats in vitro, since they simultaneously bind to multiple subunits of

the lattice and thus increase its stability.

It has been observed in previous experiments with fluorescently labeled auxilin

that these molecules are absent from the clathrin structure as it nucleates and grows

on the plasma membrane, and they suddenly arrive after the structure is complete,

around the time the neck of the nascent vesicle pinches off [69]. This explains how

the structure can avoid disassembling until the task of vesicle creation has been ac-

complished. But it opens a new question: how do these molecules “know” that they

should arrive at this time?

4.1.2 Phosphoinositides and Fission Sensing

For the past decade, the Kirchhausen Lab has been proposing a plausible hypothesis

to answer this question, based on the membrane-binding ability of auxilin [69, 32].

At physiological concentrations, the membrane-binding activity is essential to bring

auxilin to the clathrin structure; the clathrin-binding interaction is too weak on its
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Figure 4-2: Color. Left: Frame from a simulation reported in [84] of the phospholipid
bilayer that surrounds the cell, with a molecule of PI(4,5)P2 highlighted in red. Right:
PIP molecular structure, with network of conversion reactions catalzyed by known
enzymes. Taken from [14].

own. When a truncated version of auxilin is added to cells, with the membrane-

binding domain removed, the sudden recruitment after vesicle completion no longer

occurs [69].

They hypothesize that the presence of the clathrin coat increases the local con-

centration of certain enzymes, which can specifically bind to the coat proteins. These

enzymes catalyze the transfer of phosphate groups from ATP to specific sites on some

of the phospholipid molecules that make up the membrane. As long as the nascent

vesicle is still attached to the plasma membrane, the modified phospholipids rapidly

diffuse out of the bud to the bulk of the membrane. Since the surface area of the

bud is negligible compared to the area of the whole membrane (smaller by a factor of

about 10,000), the concentration of modified phospholipids in the bulk membrane re-

mains unaffected, and the enzymes act too slowly (compared to the diffusion rate) to

pull the local concentration away from this value. A sudden change occurs when the

vesicle pinches off from the plasma membrane. Phospholipids can no longer escape

from the vesicle, and even a small number of slow enzymes can significantly change

the membrane composition.

The standard phospholipid used by eukaryotic cells for this sort of membrane-
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based signaling is phosphatidylinositol (PI). Although PI makes up only one percent

of the total lipid content of the plasma membrane [61], its unique structure makes it

extremely important for information storage and transfer [2]. As shown in Figure 4-2,

the region of PI exposed to the interior of the cell contains a ring of six carbon atoms,

with hydroxyl groups hanging from five of the vertices, numbered 1-5 (the sixth con-

nects the ring to the rest of the molecule). The cell can in principle transfer phosphates

from ATP to any subset of these five sites, generating 5!
∑︀5

𝑛=1
1

(5−𝑛)!𝑛!
= 31 possible

distinct molecular species (in addition to the original PI), known as phosphoinositides

(PIP). Only three of the five sites (3, 4 and 5) are used in known biochemical pro-

cesses, so only seven of these possible types are actually found in cell membranes [2].

The standard notation for distinguishing these types denotes the phosphorylated sites

(the sites with phosphates attached to them) in parentheses: PI(3)P, for example, is

phosphorylated only on site 3.

The structure of the membrane-binding domains of auxilin suggests that they

should interact with PIP’s. The amino acid sequences of these domains are homol-

ogous to a known enzyme that can catalyze the removal of a phosphate group from

at least three of the seven PIP’s [37, 60]. A change in the active site of the enzyme

abolishes the catalytic activity of the auxilin domains, but the 3D structure of the

domain as determined by X-ray crystallography is still very similar to that of the

enzyme, and should preserve affinity for some PIP species [32]. Biochemical assays

qualitatively confirm this conjecture, but the affinity is extremely weak and difficult

to quantify reliably [69, 32].

In light of this information, we can make the question about the disassembly

trigger more specific: is the sudden recruitment of auxilin after vesicle fission caused

by a change in PIP concentrations? The most satisfying answer to this question would

come from suddenly blocking or enhancing the activity of the enzyme responsible for

the concentration change, while recording the response of the auxilin dynamics. But

before such an experiment can be performed, one must first establish that there is a

concentration change. Ideally, one would also quantify the affinity of auxilin for PI

and all seven PIP’s, to determine whether the change in membrane composition is

77



sufficient to drive its observed recruitment.

My main contribution to this project was to extract information about PIP con-

centrations in clathrin-coated membrane regions from an experiment designed and

carried out by Dr. Kangmin He at the Kirchhausen lab. In Section 4.2 I describe

the experiment and the goals of my quantitative analysis. After explaining some key

elements of the initial data processing in Section 4.3, I present my inference procedure

in Sections 4.4-4.5. Section 4.6 reports the results of this analysis, with comments on

their significance and limitations.

4.2 Experimental Design

Detecting how many phosphates are attached to the carbon ring of a PIP and which

positions they occupy seems a daunting task, especially if this must be done in real

time inside living cells. What makes this measurement possible is a deep principle that

undergirds much of post-genomic molecular biology. The biologically relevant features

of a molecule are by definition the features that the cell can robustly recognize. And

since the cell can only “recognize” something through the way it interacts with another

molecule, we can design a sensor for any biologically relevant feature by harnessing

this interaction.

In this case, the fact that PIP’s are so important for information processing implies

that many proteins in the cell can discriminate among them with high fidelity. For at

least four of the seven PIP’s, a naturally occurring protein has been successfully iden-

tified that binds only to that form and ignores the others. With routine techniques,

one can take the DNA sequence that codes for any one of these proteins, append the

sequence that codes for a green or red fluorescent protein with an appropriate linker,

and insert a ring of DNA containing this sequence into a cell. The cell’s membranes

will now fluoresce with an intensity proportional to the local concentration of the

given PIP. This technique has been used to show that different PIP’s are typically

localized to different kinds of membranes (plasma membrane, Golgi complex, endo-

somes, etc.), apparently helping the cell distinguish these structures from one another
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[70].

In these experiments, the plasma membrane always appears with a relatively uni-

form fluorescence intensity. The sudden local change in concentration predicted to

occur at the moment of vesicle fission is not observed. This does not rule out the

existence of such changes, however, because the small size of the clathrin-coated vesi-

cles demands an extremely sensitive measurement. The vesicles are typically about

50 nm in diameter, while the wavelength of the light used to visualize the PIP sen-

sors is at least 500 nm. This means that the signal of interest gets smeared out by

diffraction over an area 100 times larger than the size of the source. To detect a given

concentration change in a coated vesicle, the measurement has to be 100 times more

sensitive than would be required to measure the same concentration difference in the

bulk of the plasma membrane.

4.2.1 Auxilin-based Sensors

According to our hypothesis, however, auxilin is capable of robustly reporting this

local concentration change. Cells expressing fluorescent versions of these proteins

display clearly visible flashes of localized fluorescence intensity [69]. So Kangmin de-

signed a new sensor based on fluorescent auxilin by replacing the membrane-binding

domain with one of the established PIP sensors (and removing the domain that binds

to Hsc70 to avoid accidentally activating the uncoating process too early). The

clathrin-binding ability of the auxilin molecule would combine cooperatively with

the PIP-binding capacity of the original sensor, thereby amplifying the signal.

When he expressed these sensors in live cells, bright dots appeared scattered

over the whole plasma membrane, as shown in Figure 4-3. These spots appeared at

the same locations as fluorescent clathrin, which was observed simultaneously using

a different color. Remarkably, the spots showed qualitatively different behavior over

time depending on which PIP sensor was used, as shown in Figure 4-3. The PI(4,5)P2

sensor, for example, gradually grew brighter as the clathrin coat assembled, and then

rapidly disappeared after the clathrin fluorescence reached its maximum value. The

PI(3)P sensor, on the other hand, behaved almost identically to the original auxilin,
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briefly flashing at the moment of vesicle fission.

As documented in [38], a large set of control experiments were performed to test

the specificity of these sensors and verify that they are reporting on the intended

PIP’s. One particularly important experiment addressed a referee’s concern that

these sensors are based on the same protein whose behavior is to be explained. If

some unknown factors independent of PIP signaling are actually producing the aux-

ilin recruitment, then those same factors could be responsible for the supposed sen-

sor readout. This concern is ameliorated somewhat by the fact that the sensor for

PI(4,5)P2 behaves in a way that is dramatically different from the original auxilin.

But to perform a more decisive test, Kangmin built a new sensor using the clathrin-

binding domain of an unrelated protein called epsin, which does not show any sudden

spikes of recruitment. The results gave fresh confidence that everything was work-

ing as expected: the epsin-based sensor for each PIP showed the same qualitative

behavior as the corresponding auxilin-based sensor.

4.2.2 Quantification

The images in Figure 4-3, when accompanied by the control experiments, convincingly

establish that local PIP concentrations change suddenly at the moment of vesicle

fission. In principle, no additional quantitative analysis is needed to answer this basic

biological question. But quantification is desirable for at least three reasons. First, it

allows us to attempt a more detailed inference, extracting the speed, size and duration

of the change. This information will provide a basis for judging whether measured

differences in affinities of auxilin for the seven PIP’s are sufficient to account for their

recruitment dynamics.

To identify the enzymes responsible for the concentration change, it would also be

helpful to have an estimate of how many copies of the enzyme we should expect to

find in each coat. When coupled with known rates for the relevant kinds of enzymes,

this also tells us whether the diffusion-based mechanism for generating the sudden

concentration change is still plausible.

Finally, the affinities of the original PIP sensor proteins for their binding partners
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Figure 4-3: Color. Top left: Cells were gene-edited to attach red fluorescent pro-
teins to all clathrin triskelia. Auxilin or auxilin-based sensors were attached to green
fluorescent proteins. Total Internal Reflection Fluorescence (TIRF) microscopy was
employed to collect sequential exposures of the fluorescent emission in each color
channel from the ∼500 nm-thick region near the surface of the cell illuminated by
the evanescent field of the excitation laser. Top right: Data from an experiment with
green fluorescent auxilin. A convenient way to collapse a movie to a single image
is to draw a line through the imaged region and display the fluorescence intensities
along this line for all frames in a movie. In the resulting image, called a kymograph,
the vertical axis is time, increasing from top to bottom. Bottom: Kymographs from
microscope movies of auxilin-based sensors for each of the four tested PIP’s. Kymo-
graphs from a control experiment is also included, with identical conditions except
that the PIP-binding domain of the sensor was mutated. The red channel has been
slightly shifted along the x axis relative to the green channel, for easier visualization
of both.
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(without the added auxilin fragment) have been measured in vitro. We can use our

estimate of PIP concentration changes to determine whether these published values

are consistent with the absence of detectable signal in the original sensor experiments,

and with the behavior of the auxilin-based sensors. It is generically expected that in

vitro affinity measurements should differ from affinities because of crowding, enzyme

activity, etc., and this experiment gives us an opportunity to quantify that difference

in a concrete case.

The first step in this analysis, illustrated in Figure 4-4, is to convert the microscope

movies into a set of trajectories that give the fluorescence intensities of clathrin and

the sensor as a function of time for each clathrin assembly event. Then the trajectories

need to be aligned and placed on the same time axis, so that the mean and standard

error can be obtained for each time point. This step raises a number of important

difficulties, which will be addressed in Section 4.3. The resulting traces provide the

starting point for inferring PIP concentrations and enzyme copy numbers using the

model of sensor kinetics presented in Section 4.4.

The initial quantification of the microscope movies was performed with a MAT-

LAB script developed in the Kirchhausen lab for this purpose several years ago [1].

Because the clathrin-coated regions are so much smaller than the wavelength of the

light used for imaging, each coat shows up on the microscope as a bright spot with an

approximately Gaussian profile, whose width is set by the wavelength. The total flu-

orescence intensity emitted by this spot reflects the number of fluorescent molecules

contained in it. Identifying and tracking such Gaussian dots over the course of the

movie is a routine computational task, and the core of the script is based on stan-

dard algorithms. The first panel of Figure 4-5 shows the distributions of lifetimes of

automatically detected objects under different experimental conditions. The short-

lifetime regime contains other kinds of events in addition to the endocytosis process

I am trying to study, including “abortive” clathrin coats that dissolve before they

produce a new vesicle, and clathrin coats or clusters floating in the cytosol that tem-

porarily enter the field of view. In the original paper for which the MATLAB script

was developed, considerable attention was dedicated to screening out these events in
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Figure 4-4: Color. Top left: Diffraction-limited spots of fluorescent clathrin are auto-
matically detected in each frame of the microscope movies, and the total fluorescence
intensities emanating from the clathrin and from the sensor in each spot are sepa-
rately recorded. Top right: The spots are linked together from frame to frame using
standard algorithms, generating a trajectory of the fluorescence intensity variations
over the lifetime of each spot. Bottom right: Collecting all the trajectories from a
given set of experimental conditions generates a statistical ensemble. Bottom left:
Histograms of fluorescence intensity from the ensemble of sensor trajectories in the
bottom right panel, taken at the three time points indicated by vertical dotted lines.
The first two time points show the same distribution, indicating that the ensemble
has reached a steady state. The mean number of sensor molecules in each object is
less than one, and a peak is clearly visible at the average fluorescence intensity of
a single molecule. After vesicle completion, when the clathrin fluorescence starts to
decreases, the distribution changes.
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order to obtain fully reproducible lifetime distributions. For separate reasons, de-

scribed below, I only consider events that have lifetimes within the typical range

for the standard assembly/disassembly cycle of 60-80 seconds, which automatically

excludes these kinds of objects without any additional statistical tests.

4.3 Data Interpretation and Averaging

In Section 4.4 I will write down differential equations for the evolution of two quanti-

ties 𝑁𝐶(𝑡) and 𝑁𝑆(𝑡), which are to be compared with the fluorescence intensity data

for clathrin and a sensor protein, respectively, averaged over some subset of detected

events under a given set of experimental conditions. There are several good reasons

for skepticism about the meaningfulness of this comparison, some due to my modeling

assumptions and some to the perennial challenge of biological heterogeneity. In this

section I summarize these challenges and describe how I addressed them.

4.3.1 Deterministic Modeling of Stochastic Processes

The first problems come from my use of deterministic chemical kinetics. The mean

number of sensor molecules in a given coated structure is usually quite low in the cells

chosen for analysis, so as to avoid interference with the natural dynamics. In this

low number regime, the difference between the predictions of deterministic chemical

kinetics and of the full Master Equation can be significant. Furthermore, the only way

to incorporate vesicle fission into these deterministic equations is to suddenly change

some of the clathrin and phosphoinositide kinetic parameters at a given time 𝑡 = 𝑡fiss.

But fission is really a stochastic event, and averaging many traces with different 𝑡fiss

values smears out the features of the line shapes.

The first issue is alleviated by the fact that the Master Equation and deterministic

chemical dynamics agree even at low numbers when the deterministic ODE’s are

linear. The only nonlinearities in the equation for the sensor dynamics come from

saturation of binding sites, when the bound sensors take up a significant fraction of

the total number of binding sites in the coat or on the membrane. But if the binding
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Figure 4-5: Color. Left: Distribution of lifetimes of automatically detected clathrin
spots. Solid traces are from cells expressing the full auxilin-based sensor proteins, and
dotted lines are from control cells that only express the PIP-binding part. To reduce
the variability in clathrin coat sizes for the model fitting and analysis, I only used
events within the indicated narrow window of lifetimes. Right: Clathrin fluorescence
vs. time, averaged over all the events in the lifetime window from the left panel, for
each of the sensor-expressing cells (solid lines) and the control cells (dotted lines).

sites were saturated, this would interfere with the native auxilin dynamics, which is

what the low expression levels were supposed to prevent, and thereby perturb the

clathrin uncoating process.

In Figure 4-5, I compare the average clathrin dynamics with and without sensor

binding, and show that the presence of the sensor has a minimal effect. In the first

panel, I plot the distribution of lifetimes of all the automatically detected clathrin

spots from the microscope movies, with solid lines for the cells expressing the four sen-

sors, and dotted lines for the cells expressing just the PIP-binding part. As discussed

above, the PIP-binding part of the sensor does not specifically associate with the

clathrin spots when expressed alone, and thus provides a good control that should not

perturb the dynamics. At short lifetimes, the distributions differ from one another,

possibly due to differences in the ratio of “abortive” clathrin coats to productive en-

docytosis events in the different experimental conditions. But for the longer lifetimes

that contain only productive events, the distributions all agree up to experimental

uncertainty.

As for the second problem, since I am primarily interested in what happens after
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fission, the cleanest way to address the stochasticity of 𝑡fiss would be to use it as

the basis for aligning the trajectories prior to averaging. In the absence of a direct

measurement of 𝑡fiss, the next best thing is to align based on the end of the event,

which happens when the clathrin signal falls below the threshold for a significant

event detection. This will clearly distort the beginning of the trajectory because of

the range of event lifetimes, so I truncated the average data and kept only the final

40 frames of each trajectory for analysis.

I experimented with different alignment techniques: selecting trajectories with

similar shapes and aligning based on least-squares minimization using the whole tra-

jectory, using the peak of the post-scission sensor bursts, or using the point where

the derivative of the trajectory becomes most negative. None of these methods were

clearly superior to simply aligning the ends of the traces, but they complicate the

analysis and makes the results less robustly reproducible.

The second panel of Figure 4-5 shows the averaged clathrin fluorescence signals

after alignment based on the end of the event. I have again separately plotted the

data from the experiments with each of the sensors and each of the control proteins,

and have normalized the fluorescence intensity by dividing each trace by its mean

value. The clathrin dynamics are very similar across all conditions.

4.3.2 Biological Heterogeneity

Additional problems arise when we consider that the model parameters are not nec-

essarily the same for all cells or even for all coats within a single cell.

The canonical example of such heterogeneity in biology is variability in protein

expression levels, which affects the model parameter 𝑁𝑆0. This natural heterogeneity

becomes still more significant with proteins produced by transient transfection with

a foreign plasmid, since the number of copies of the plasmid cannot be precisely

controlled.

The linearity of the sensor dynamics discussed above alleviates this problem. In

the limit where the differential equations for the sensor kinetics are approximately

linear, it is easy to check that changing 𝑁𝑆0 merely scales the sensor trajectories

86



45 50 55 60 65 70 75 80 85
−1

0

1

2

3

4

5

6

7

45 50 55 60 65 70 75 80 85
−0.5

0

0.5

1

1.5

2

2.5

45 50 55 60 65 70 75 80 85
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

45 50 55 60 65 70 75 80 85
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

45 50 55 60 65 70 75 80 85
−5000

0

5000

10000

15000

20000

45 50 55 60 65 70 75 80 85
−2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

45 50 55 60 65 70 75 80 85
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 x 104

45 50 55 60 65 70 75 80 85
−5000

0

5000

10000

15000

20000

50 60 70 80 50 60 70 80

50 60 70 8050 60 70 80

Time (s) Time (s)

M
ea

n 
Se

ns
or

 F
lu

or
es

ce
nc

e
M

ea
n 

Se
ns

or
 F

lu
or

es
ce

nc
e PI(4,5)P2 PI(4)P

PI(3)P PI(3,4)P2

Figure 4-6: Color. Sensor fluorescence measurements were made on several cells for
each sensor. Each trace in this plot represents the averaged fluorescence trajectory
in a single cell, using the selection and alignment procedures described in Section
4.3. Color indicates relative expression level of sensor protein, with lighter colors
corresponding to higher cytosolic sensor concentrations. Inset contains the same data
after linearly rescaling the trajectories by dividing each one by its mean.

by a constant factor, and does not affect the shape. This means that the equations

of Section 4.4 should still describe the sensor dynamics, with 𝑁𝑆0 replaced by the

average ⟨𝑁𝑆0⟩ over all the cells in the dataset.

There is another kind of heterogeneity specific to this problem, which is the vari-

ability in the size of the completed vesicle. This variation affects the clathrin param-

eters that determine 𝑘𝑎 and 𝑘𝑢, as well as the initial phosphoinositide numbers. Since

the final vesicle size is tightly correlated with the lifetime of the coat formation event,

I reduced the size range by only analyzing data from events with lifetimes between

60 and 80 seconds, as indicated in Figure 4-5.

The dynamics of each sensor were observed in multiple cells, allowing an empirical
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assessment of the overall variability from cell to cell. In Figure 4-6, I average the sensor

fluorescence over all the 60-80 second events from each of the cells, after alignment

based on the end of the trajectory as described above. Each cell contained between

7 and 67 events within this lifetime window. The traces are colored by the relative

expression level of the sensor protein, as quantified by the background fluorescence

in each cell, with lighter traces corresponding to higher sensor concentrations. The

effect of the expression level variation is particularly visible in the PI(3)P sensor,

which shows a wide range of peak heights correlated with the line color. But dividing

each trace by its mean to normalize the intensities, as shown in the inset, causes all

these traces to agree reasonably well.

4.4 Kinetic Model

The core of my procedure for inferring PIP dynamics from the sensor readings is a

model of the sensor kinetics, which combines the conclusions of the control experi-

ments and additional background knowledge into a single set of formulas.

The model describes the dynamics of three subpopulations of sensor molecules, as

depicted in Figure 4-7: a sensor protein in the coat can be bound to clathrin, to a

specific phosphoinositide binding partner in the cell membrane, or to both. I denote

the mean number of sensor molecules in each state, averaged over many identically

prepared coats, as 𝑁𝑆𝐶 , 𝑁𝑆𝐿 and 𝑁𝑆𝐿𝐶 , respectively. The mean number of clathrin

triskelia in the coat is 𝑁𝐶 = (𝑁𝐶0 + 𝑁𝑆𝐶 + 𝑁𝑆𝐿𝐶)/3, and the mean copy number of

the relevant phosphoinositide in the coated region is 𝑁𝐿 = 𝑁𝐿0 + 𝑁𝑆𝐿 + 𝑁𝑆𝐿𝐶 . 𝑁𝐶0

and 𝑁𝐿0 represent the number of free binding sites in the clathrin lattice and the

membrane, and the factor of 3 comes from the fact that the clathrin lattice contains

three binding sites per triskelion.

As discussed above in Section 4.3, I assume that the clathrin number 𝑁𝐶 and

the total number of sensor molecules 𝑁𝑆 = 𝑁𝑆𝐶 + 𝑁𝑆𝐿 + 𝑁𝑆𝐿𝐶 are proportional to

the suitably averaged fluorescence signals observed in the experiment. My goal is to

infer the temporal dynamics of the unobservable quantity 𝑁𝐿 from observations of
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Figure 4-7: Color. Left: Model of sensor protein kinetics. Sensor can bind to its
specific PIP substrate in the membrane and to the clathrin lattice. Binding to one
speeds up binding to the other by a factor 𝑠. Top right: Model of clathrin kinetics.
Association rate 𝑘𝑎 and dissociation rate 𝑘𝑢 are both functions of the current number
of triskelia in the lattice 𝑁𝐶 . Bottom right: Michaelis-Menten enzyme kinetics. The
Michaelis constant 𝐾𝑀 is the concentration of substrate molecules at which half of
the enzymes are substrate-bound in the limit of low enzyme concentration.

𝑁𝐶 and 𝑁𝑆.

4.4.1 Sensor Kinetics

I model the kinetics of sensor binding as follows. Cytosolic sensor proteins, at con-

centration 𝑁𝑆0 molecules per unit volume, can enter the coat by binding either to

clathrin or to its phosphoinositide partner, with mean rates 𝑘𝐶
on𝑁𝐶0 and 𝑘𝐿

on𝑁𝐿0, re-

spectively. Once one of the sensor domains is bound, its spatial confinement enhances

the on-rate for the other domain, so that membrane-bound sensor binds clathrin at a

higher rate 𝑠𝑘𝐶
on𝑁𝐶0 and clathrin-bound sensor likewise binds the membrane at rate

𝑠𝑘𝐿
on𝑁𝐿0. The clathrin-binding and membrane-binding domains can unbind indepen-

dently of each other, with mean rates 𝑘𝐶
off and 𝑘𝐿

off respectively. The assumption of

independent unbinding forces the speedup factor 𝑠 to be the same for both membrane

and clathrin on-rates. Finally, the clathrin-binding domain can fall off due to disso-

ciation of the sensor-binding pocket when a clathrin triskelion leaves the coat, which

happens at rate 𝑘𝑢.

The kinetics of truncated auxilin (with the membrane-binding domain removed)

and of the phosphoinositide sensor proteins alone (without the clathrin-binding do-
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main) are modeled the same way, but with the on-rates to membrane or clathrin set

to zero.

Thus for a given sensor, the mean number of copies in each state in a single coat

evolves according to the following set of coupled differential equations:

𝑑𝑁𝑆𝐶

𝑑𝑡
= 𝑘𝐶

on𝑁𝐶0𝑁𝑆0 + 𝑘𝐿
off𝑁𝑆𝐿𝐶 − (𝑘𝐶

off + 𝑠𝑘𝐿
on𝑁𝐿0 + 𝑘𝑢)𝑁𝑆𝐶 (4.1)

𝑑𝑁𝑆𝐿

𝑑𝑡
= 𝑘𝐿

on𝑁𝐿0𝑁𝑆0 + (𝑘𝐶
off + 𝑘𝑢)𝑁𝑆𝐿𝐶 − (𝑘𝐿

off + 𝑠𝑘𝐶
on𝑁𝐶0)𝑁𝑆𝐿 (4.2)

𝑑𝑁𝑆𝐿𝐶

𝑑𝑡
= 𝑠𝑘𝐿

on𝑁𝐿0𝑁𝑆𝐶 + 𝑠𝑘𝐶
on𝑁𝐶0𝑁𝑆𝐿 − (𝑘𝐶

off + 𝑘𝐿
off + 𝑘𝑢)𝑁𝑆𝐿𝐶 (4.3)

The PI(3)P and PI(3,4)P2 sensors each include two copies of the lipid-binding domain,

and so the reaction network has to be expanded to include two new species: 𝑁𝑆𝐿𝐿 and

𝑁𝑆𝐿𝐿𝐶 . The expanded set of equations can be obtained from the above three equations

by adding an extra lipid-binding reaction at rate 𝑠𝐿𝑘
𝐿
on𝑁𝐿0, and a corresponding

dissociation reaction at rate 𝑘𝐿
off :

𝑑𝑁𝑆𝐶

𝑑𝑡
= 𝑘𝐶

on𝑁𝐶0𝑁𝑆0 + 𝑘𝐿
off𝑁𝑆𝐿𝐶 − (𝑘𝐶

off + 𝑠𝑘𝐿
on𝑁𝐿0 + 𝑘𝑢)𝑁𝑆𝐶 (4.4)

𝑑𝑁𝑆𝐿

𝑑𝑡
= 𝑘𝐿

on𝑁𝐿0𝑁𝑆0 + (𝑘𝐶
off + 𝑘𝑢)𝑁𝑆𝐿𝐶

− (𝑘𝐿
off + 𝑠𝑘𝐶

on𝑁𝐶0 + 𝑠𝐿𝑘
𝐿
on𝑁𝐿0)𝑁𝑆𝐿 + 𝑘𝐿

off𝑁𝑆𝐿𝐿 (4.5)
𝑑𝑁𝑆𝐿𝐿

𝑑𝑡
= 𝑠𝐿𝑘

𝐿
on𝑁𝐿0𝑁𝑆𝐿 + (𝑘𝐶

off + 𝑘𝑢)𝑁𝑆𝐿𝐿𝐶 − (𝑘𝐿
off + 𝑠𝑘𝐶

on𝑁𝐶0)𝑁𝑆𝐿𝐿 (4.6)

𝑑𝑁𝑆𝐿𝐶

𝑑𝑡
= 𝑠𝑘𝐿

on𝑁𝐿0𝑁𝑆𝐶 + 𝑠𝑘𝐶
on𝑁𝐶0𝑁𝑆𝐿

− (𝑘𝐶
off + 𝑘𝐿

off + 𝑘𝑢 + 𝑠𝐿𝑘
𝐿
on𝑁𝐿0)𝑁𝑆𝐿𝐶 + 𝑘𝐿

off𝑁𝑆𝐿𝐿𝐶 (4.7)
𝑑𝑁𝑆𝐿𝐿𝐶

𝑑𝑡
= 𝑠𝐿𝑘

𝐿
on𝑁𝐿0𝑁𝑆𝐿𝐶 + 𝑠𝑘𝐶

on𝑁𝐶0𝑁𝑆𝐿𝐿 − (𝑘𝐶
off + 𝑘𝐿

off + 𝑘𝑢)𝑁𝑆𝐿𝐿𝐶 . (4.8)

4.4.2 Phosphoinositide Kinetics

If all the kinetic parameters were known, one could infer 𝑁𝐿(𝑡) directly from these

equations and the observed signals 𝑁𝑆(𝑡) and 𝑁𝐶(𝑡). But as in most in vivo biosensor

inference tasks, many parameters are not known. This is partially due to the difficulty

of measuring weak interactions in standard biochemical assays. But the fundamental

90



problem lies in the fact that the parameters of any simple model of in vivo kinetics are

not fully determined by intrinsic properties of the molecules involved. In the crowded

environment of the cytosol and cell membrane, the molecules of interest do not form a

closed system, but in fact interact with thousands of other molecular species that are

not explicitly modeled. The parameters of the model are thus “effective” parameters,

which implicitly include the effect of all these extraneous interactions. The membrane

affinities 𝑘𝐿
on/𝑘

𝐿
off , for example, have been measured in vitro by a variety of different

techniques, but as we will see in Table 4.2, the reported values differ by up to an

order of magnitude from the effective affinity in the cell.

In the absence of known parameter values, the above equations define a family of

curves 𝑁𝐿(𝑡) compatible with a given data set [𝑁𝑆(𝑡), 𝑁𝐶(𝑡)]. Extracting and analyz-

ing this family is much easier if we first restrict the space of allowed 𝑁𝐿(𝑡) lineshapes

to a subspace of finite dimension. A mathematically natural way would be to rep-

resent 𝑁𝐿(𝑡) as a Fourier series, and truncate the series at the highest physically

allowed frequency. But the space of Fourier coefficients in this case would still have

a very high dimension, and would include many shapes (e.g., rapid oscillations) that

are a priori implausible. To obtain at least a rough sense of the phosphoinositide dy-

namics compatible with the data, I used physically motivated assumptions to restrict

𝑁𝐿(𝑡) to a space of only a few dimensions. This restriction represents an additional

assumption, which rules out some lineshapes that would otherwise be allowed by the

data.

Specifically, I assume that the PIP’s are generated by enzymes acting on pre-

existing membrane components, and removed by additional enzymes, all at fixed

concentration and with Michaelis-Menten kinetics. The turnover rate for each reac-

tion is determined by the number of enzymes 𝑁𝐸 in the coated vesicle, the turnover

number 𝑘cat and the Michaelis constant 𝐾𝑀 , as illustrated in Figure 4-7. This results

in the following differential equations for the mean copy numbers 𝑁𝐿, 𝑁
′
𝐿 of each

sensor-binding phosphoinositide species and its precursor, respectively, in the coated
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vesicle:

𝑑𝑁𝐿

𝑑𝑡
= 𝑘cat𝑁𝐸

𝑁 ′
𝐿

𝐾𝑀 + 𝑁 ′
𝐿

(4.9)

𝑑𝑁 ′
𝐿

𝑑𝑡
= −𝑘cat𝑁𝐸

𝑁 ′
𝐿

𝐾𝑀 + 𝑁 ′
𝐿

. (4.10)

My model of clathrin-associated phosphoinositide conversions includes four reac-

tions, each modeled by a set of equations like (4.9-4.10):

PI → PI(3)P (4.11)

PI(4, 5)P2 → PI(4)P (4.12)

PI(4)P → PI(3, 4)P2 (4.13)

PI(3)P → PI(3, 5)P2. (4.14)

There are only four reactions because PI(4,5)P2, PI(4)P and PI(3,4)P2 form a single

chain of transformations. Each reaction is characterized by two independent param-

eters, 𝑘cat𝑁𝐸 and 𝐾𝑀 .

Before vesicle fission, all new lipid species generated rapidly diffuse out of the coat.

Assuming a diffusion coefficient of 5.4 𝜇m2/s as reported in [28] for cell membranes on

sub-200nm length scales, I estimate that the mean time for a new molecule to leave

a half-completed 70nm-diameter vesicle is about 1 ms, whereas the typical turnover

time for a lipid-modifying enzyme is about 20 ms. Since there are typically only a few

copies of an enzyme in the coat, and certainly far fewer than 20, finding a pit with

even a single modified lipid still inside it should be a rare event. I include this effect

in my parameterization by keeping all enzyme activity turned off (𝑘cat = 0) until the

moment of vesicle fission.

I constrained the pre-fission phosphoinositide levels to be consistent with known

measurements of plasma membrane composition [41, 61]. I set the PI(3)P and

PI(3,4)P2 concentrations to be essentially zero (fixed at 0.001 molecules per coated re-

gion), since they are not supposed to be present in the plasma membrane. The initial

PI, PI(4)P and PI(4,5)P2 concentrations were left as free parameters, but constrained
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as described in Section 4.5 to have the right order of magnitude.

4.4.3 Clathrin Kinetics

Although the clathrin trajectory 𝑁𝐶(𝑡) can be obtained directly from the data, with-

out any modeling, I had to make some assumptions about the clathrin kinetics in

order to fix the rate 𝑘𝑢 that appears in the equations for the sensor dynamics. The

data can tell us the net rate of change of the clathrin copy number, but not how that

rate is partitioned between association and dissociation rates. It should be possible

to obtain this decomposition from the fluctuations in individual trajectories or from

photobleaching experiments, but some technical challenges still remain before these

techniques can yield reliable results in this system.

The equation for the clathrin dynamics can be written without loss of generality

as

𝑑𝑁𝐶

𝑑𝑡
= 𝑘𝑎(𝑁𝐶) − 𝑘𝑢(𝑁𝐶)𝑁𝐶 (4.15)

where both 𝑘𝑎 and 𝑘𝑢 can depend on 𝑁𝐶 , and 𝑘𝑢(𝑁𝐶) is the same quantity that

appears in the sensor dynamics.

I now choose 𝑘𝑢(𝑁𝐶) by setting both 𝑘𝑎(𝑁𝐶) and 𝑘𝑢(𝑁𝐶) to be linearly decreasing

functions of 𝑁𝐶 . This should be a good approximation in the regime where the coat is

nearly complete, and is also a reasonable approximation for any 𝑁𝐶 after fission. The

off-rate 𝑘𝑢 should decrease as the coat grows, because clathrin is primarily added and

removed from the edge of the coat, and the perimeter-to-area ratio is a monotonically

decreasing function of area. When the coat is more than halfway complete, the on-

rate 𝑘𝑎 should also decrease, because the perimeter itself is a decreasing function of

𝑁𝐶 .
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With these assumptions, the rates can be written as:

𝑘𝑢 = 𝑘0/1
𝑢

(︂
1 − 𝑁𝐶

𝑀
0/1
𝑢

)︂
(4.16)

𝑘𝑎 = 𝑘0/1
𝑎

(︂
1 − 𝑁𝐶

𝑀
0/1
𝑎

)︂
(4.17)

where the parameters 𝑘0
𝑢,𝑀

0
𝑢 , 𝑘

0
𝑎,𝑀

0
𝑎 govern the kinetics before fission, and are changed

to 𝑘1
𝑢,𝑀

1
𝑢 , 𝑘

1
𝑎,𝑀

1
𝑎 after fission. I chose these eight parameters to obtain the best fit

to the averaged clathrin fluorescence data.

4.4.4 Summary of Modeling Assumptions

All the assumptions contained in the above equations can be reduced to the following

four groups:

∙ Sensor kinetics: two domains, cooperative binding, independent unbinding; only

difference among sensors is off-rate from lipid

∙ Clathrin kinetics: phenomenological trajectory with kink at fission, linearly

decreasing rates

∙ Phosphoinositide kinetics: Michaelis-Menten conversion rates turn on at fission

∙ Correspondence rule: deterministic mass action kinetics describes evolution of

mean copy numbers.

4.5 Data Fitting and Sensitivity Analysis

Under the assumptions of Section 4.4, the task of inferring the most likely phospho-

inositide dynamics is reduced to an optimization problem. I can think of the model

as a function y(𝜃) that maps the 24-dimensional vector 𝜃 containing the model pa-

rameters {𝑘on}, {𝑘off}, {𝑠}, {𝑁𝐸}, {𝐾𝑀}, {𝑁𝑆0}, {𝑁𝐿(0)} to a vector y containing the

predicted mean fluorescence intensities at each time point for all four sensor proteins

and their truncated control versions. The observed mean fluorescence intensities are
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represented by another vector d that lives in the same space as y. By minimiz-

ing the norm of the vector d − y(𝜃), I can identify a vector 𝜃* that provides the

best fit to the data. The inferred phosphoinositide dynamics 𝑁𝐿(𝑡) are then found

by integrating the relevant kinetic equations from Section 4.4 using the parameters

{𝑁𝐸}, {𝐾𝑀}, {𝑁𝐿(0)} from 𝜃*.

But this result is not really meaningful without some quantification of uncertainty.

This is especially important in large kinetic models like this one, which are known

to generically contain “sloppy” directions in parameter space along which the norm

of d − y(𝜃) is practically constant [34, 96]. Steady-state concentrations, for exam-

ple, typically depend on ratios of creation and degradation rates, and the individual

parameters can take on any value as long as this ratio agrees with the data.

Software packages are now available that automatically and efficiently quantify

the uncertainty in a high-dimensional least-squares fit. But these algorithms must

be used with care, making sure that the underlying assumptions actually apply to a

given problem, and that the results are interpreted correctly. In this section, I review

the reasoning behind one of these algorithms, written by Ryan Gutenkunst during

his PhD at Cornell [77, 33] and describe how I applied it.

4.5.1 Bayesian Statistics

I want to obtain the probability distribution 𝑝(𝜃|d) quantifying the likelihood that a

given set of parameters 𝜃 correctly describes the system, given a set of noisy observa-

tions d. More precisely, I want to study 𝑝(ln𝜃|d), where the logarithm automatically

enforces the requirement that all the parameters be positive.

The conditional distribution 𝑝(ln𝜃|d) can be broken up into two factors using

Bayes’ Rule: 𝑝(ln𝜃|d) ∝ 𝑝(d| ln𝜃)𝑝(ln𝜃). The first factor is the probability of ob-

serving the given data d, given that 𝜃 is the true vector of parameters. To compute

this factor, I model the noise as a vector of independent Gaussian random variables

𝜉 (one for each data point) with standard deviations 𝜎𝜉. It will be notationally con-

venient to define a diagonal covariance matrix Σ𝜉 whose diagonal elements are the

squares of the standard deviations. Then the probability of making the observations d
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in a system described by 𝜃 is simply the probability of observing the noise realization

𝜉 = d− y(𝜃):

𝑝(d| ln𝜃) ∝ exp

[︂
−1

2
(d− y(ln𝜃))𝑇Σ−1

𝜉 (d− y(ln𝜃))

]︂
, (4.18)

where I have written the exponent in matrix notation and treated d and y as column

vectors. Superscript 𝑇 indicates a matrix transpose.

This noise model requires some justification in the context of the current problem.

The main source of variability in the fluorescence intensity trajectories is the intrinsic

stochasticity of the binding/unbinding dynamics. As illustrated in Figure 4-4, the

distribution of fluorescence intensities over all the trajectories at a given time point

is not Gaussian, but closer to Poissonian, and this difference is especially important

in the parts of the trajectory where the mean number of sensor molecules is of order

1. The reason the Gaussian noise model is justified is that each element of d is an

average of many independent observations. As long as the number of observations

is large enough, the central limit theorem guarantees that the distribution of this

sample mean will be nearly Gaussian. The variance of this Gaussian is simply the

variance of the distribution from which the individual samples are drawn, divided by

the number of samples. I approximated the variance of the underlying distribution

by the variance of the set of sampled values at each time point.

The second factor in Bayes’ formula is the prior probability 𝑝(lnd), which gives the

likelihood of 𝜃 being the true parameter set based on prior observations. This term

was employed in the fitting process to incorporate important information about the

initial numbers of lipids and the relative sensor expression levels that is not contained

in the data. I took 𝑝(ln𝜃) to be a product of independent Gaussian distributions,

one for each parameter, with means ln𝜃0 and standard deviations 𝜎0. Again, it will

be to define a diagonal matrix of variances Σ0 whose elements are the squares of the

elements of 𝜎0.
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The full expression for 𝑝(ln𝜃|d) can now be written as

𝑝(ln𝜃|d) ∝ exp

[︂
−1

2
𝐶(ln𝜃,d)

]︂
(4.19)

where the “cost function” is

𝐶d(ln𝜃) = (d− y(ln𝜃))𝑇Σ−1
𝜉 (d− y(ln𝜃)) + (ln𝜃 − ln𝜃0)

𝑇Σ−1
0 (ln𝜃 − ln𝜃0) (4.20)

Except for the extra term from the prior probabilities, this is the function that is

minimized in a standard weighted least-squares optimization. Equation (4.19) says

that the vector ln𝜃 that minimizes 𝐶d is most likely to be the true parameter set.

But depending on the width of the distribution 𝑝(ln𝜃|d), there may be many other

values that are almost as likely.

4.5.2 Estimating Cost Function

Near its maximum at ln𝜃, 𝑝(ln𝜃|d) can be approximated using a second-order Taylor

expansion of the cost function 𝐶d(ln𝜃) from Equation (4.20):

𝐶d(ln𝜃) = 𝐶d(ln𝜃) + ∇𝐶d(ln𝜃)𝑇 (ln𝜃 − ln𝜃)

+
1

2
(ln𝜃 − ln𝜃)𝑇𝐻(ln𝜃)(ln𝜃 − ln𝜃) + . . . . (4.21)

The gradient term ∇𝐶d(ln𝜃)𝑇 (ln𝜃 − ln𝜃) vanishes because ln𝜃 was defined as the

value that minimizes 𝐶d. 𝐻 is the matrix of second derivatives of 𝐶d, whose elements

are

𝐻𝑖𝑗 ≡
𝜕2𝐶d

𝜕 ln 𝜃𝑖𝜕 ln 𝜃𝑗
= − 2(d− y(ln𝜃))𝑇Σ−1

𝜉

𝜕2y(ln𝜃)

𝜕 ln 𝜃𝑖𝜕 ln 𝜃𝑗
(4.22)

− 2
𝜕y(ln𝜃)𝑇

𝜕 ln 𝜃𝑖
Σ−1

𝜉

𝜕y(ln𝜃)

𝜕 ln 𝜃𝑗
(4.23)

+ 2
(︀
Σ−1

0

)︀
𝑖𝑗
. (4.24)
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The likelihood function (4.19) thus becomes a Gaussian

𝑝(ln𝜃|d) ∼ exp

[︂
−1

2
(ln𝜃 − ln𝜃)𝑇Σ−1(ln𝜃 − ln𝜃)

]︂
(4.25)

where Σ = 2𝐻−1 is the covariance matrix of the distribution.

The problem of estimating the cost function is thus reduced to the problem of

estimating the Hessian of 𝐶d(ln𝜃). This task is greatly simplified in the case where d

lies in the space of possible model results, so that y(ln𝜃) = d. In this case, the first

term in Equation (4.22) vanishes, and the Hessian can be obtained directly from the

Jacobian 𝜕y(ln𝜃)
𝜕 ln 𝜃𝑗

. The Jacobian, in turn, can be robustly obtained by first analytically

differentiating the dynamical equations of the model with respect to each 𝜃𝑖 and then

using a standard ODE solver to obtain the sensitivity at each time point. Typically

d does not lie in the space of possible model results, and most of the discrepancy is

due to the fact that the model results are all smooth functions of time, but the noise

makes d jagged. Replacing d by y(ln𝜃) is then a natural way of smoothing the data,

and it makes sense to evaluate the cost function after performing this smoothing.

4.5.3 Implementation Details

The data vector d includes the average sensor fluorescence intensities at forty time

points for each of the four sensors, plotted in Figure 4-8, in addition to the intensities

from control experiments using only the clathrin-binding part of the sensor or only

the membrane-binding part. The measurement uncertainties that go into Σ𝜉 were

obtained by computing the standard error from the ensemble of fluorescence values

at each time point. If 𝑑𝛼𝑖 is the intensity corresponding to data element d𝑖 as observed

in a single endocytic event, then (Σ𝜉)𝑖𝑖 =
∑︀

𝛼
(𝑑𝛼𝑖 −⟨𝑑𝛼𝑖 ⟩)2

𝑁2 .

The prior uncertainties contained in Σ0 were all set to 10, 000 except for the

elements corresponding to the cytosolic sensor concentrations {𝑁𝑆0} and some of the

initial PIP concentrations {𝑁𝐿0}, which were set to 1. This left most of the parameters

effectively unconstrained: they were free to vary by a factor of 𝑒100 ∼ 1043 before the

contribution to the cost function became significant. The concentrations {𝑁𝑆0} and

98



Figure 4-8: Color. Averaged sensor data and inferred PIP dynamics. The right-hand
column shows comparisons between the experimental (traces with error bars) and
simulated (traces with solid lines) recruitment of the auxilin1-based phosphoinositide
sensors to the clathrin-coated structures using the best-fit model parameter. Error
bars represent ± standard deviation of the mean 𝜎𝜉. The corresponding phospho-
inositide conversion dynamics obtained from the model are plotted as dashed lines in
the left-hand plots. The colored band around the phosphoinositide traces represent
the middle fifty percent of the likelihood distribution of possible phosphoinositide
concentrations given the data, as described in Section 4.5.
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{𝑁𝐿0} are not well constrained by the data, because any change in these parameters

can be easily compensated by simply changing an on-rate or the number of enzymes.

This kind of situation is one of the sources of “sloppiness” in large models, where

the cost function is nearly flat along some directions in parameter space, and a good

effective theory can be found by eliminating those directions [96]. But I am interested

in the values of these on-rates and enzyme numbers, and have some prior knowledge

that can remove the sloppiness. The relative values of {𝑁𝑆0} should all have the same

order of magnitude, since the sensors were added using identical procedures, and the

remaining degree of freedom simply sets the units of concentration. Likewise, the

numbers of PI, PI(4)P and PI(4,5)P2 molecules initially present in the coated region

can be estimated from existing measurements and knowledge of the coat size [61, 2].

By making the cost function increase significantly when these parameters depart from

their estimated values by a factor of 𝑒, I ensure that the best fit and the uncertainty

ranges for all the free parameters are compatible with these biologically motivated

constraints.

The final choice I had to make was how to convert from fluorescence intensity to

absolute numbers of sensor molecules. It is possible, though challenging, to reliably

perform this conversion at single-molecule precision, by performing a delicate cali-

bration routine before each measurement. For the purposes of this experiment, such

precise calibration would have been out of place, because the concentration of sensor

molecules in the cells is itself variable from cell to cell. Instead, I took the rough

conversion factor corresponding to the microscope settings and laser power used in

these experiments, and applied it to all the data. The statistics of fluctuations in

fluorescence intensity in Figure 4-4, for portions of the trajectory with few sensors

present, show a definite peak near the nominal single-molecule fluorescence intensity.

This confirms that the factor is close to the true value.

After obtaining the best-fit parameter set 𝜃 and the Hessian 𝐻𝑖𝑗, I had to convert

this information into error bars on the inferred PIP trajectories and on the other

parameter values. For a Gaussian distribution one would use the standard deviation

for this purpose, but since I have approximated 𝑝(𝜃|d) by a log-normal distribution,
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this is no longer an appropriate choice. Instead, I divided the range of possible values

for each parameter into four intervals containing equal probability. The boundary

between the second and third intervals is the median, while the boundaries between

the first and second and between the third and fourth intervals become the two

ends of the confidence interval. The region between these boundaries, known as the

interquartile range, contains the middle half of the probability in the distribution, and

gives a meaningful measure of the width for an arbitrary distribution. In tables 4.1 and

4.2, I tabulate the mode and interquartile range for enzyme and sensor parameters,

respectively, computing the interquartile boundaries for these lognormal distributions

as 𝜃𝑖𝑒
±0.675Σ𝑖𝑖 .

This procedure integrates out the correlations in the original multivariate distri-

bution. It gives the range of likely values for each parameter individually, under the

assumption that the other parameters remain free to vary. But for evaluating the un-

certainties in the PIP trajectories, the parameter correlations are crucial. Each PIP

trajectory depends on at least four independent parameters, and some of the trajec-

tories are linked with each other (since PI(4)P comes from PI(4,5)P2, and PI(3,4)P2

comes from PI(4)P). To preserve these correlations, I sampled 1,000 parameter sets

from the full multivariate distribution 𝑝(𝜃|d) and integrated the PIP kinetics for each

one. This generated an ensemble of 1,000 trajectories, and allowed me to determine

the boundaries of the shaded regions in Figure 4-8 by finding the interquartile range

at each time point.

4.6 Conclusions

Figure 4-8 and Tables 4.1-4.2 display the results of this inference procedure, along

with the uncertainties in the inferred PIP dynamics and parameter values. With this

data in hand, we can return to the physical and biological questions that motivated

this analysis in Section 4.2.2.

101



4.6.1 PIP Concentrations

Figure 4-8 contains the inferred PIP concentrations as a function of time, with error

bars obtained as described in Section 4.5.

Most of the PIP trajectories look qualitatively different from the corresponding

sensor signals, due to the influence of the clathrin dynamics. The PI(3,4)P2 sensor

provides the most extreme example: the PI(3,4)P2 concentration increases monoton-

ically after fission, but the sensor exhibits a pulse similar to the PI(3)P and PI(4)P

sensor trajectories. It is easy to see why this happens: although the phosphoinositide

concentration keeps increasing, the clathrin concentration is falling, which eventually

reduces the overall affinity of the sensor for the vesicle. But this result now calls the

PI(3)P and PI(4)P trajectories into question: could the same fits have been obtained

with a monotonic increase in the concentrations of the corresponding lipids?

To answer this, we need to consider the ratio of the sensor concentrations before

and after uncoating. In the high-cooperativity regime indicated by the control experi-

ments, the maximum ratio with non-decreasing phosphoinositide concentration is the

ratio of initial to final clathrin concentrations. While the PI(3,4)P2 sensor trajectory

has a smaller ratio, and is compatible with a monotonically increasing underlying

signal, the other two sensors exhibit much larger ratios that can only be achieved if

the corresponding PIP concentrations decrease during uncoating.

Comparing the final sections of the clathrin and sensor trajectories also provides

information about the sensor dissociation rates. If these rates were much slower

than the rate of clathrin loss, then the decreasing parts of the sensor trajectories

would have the same shape as the clathrin signal, and only differ by an overall scale

factor describing the fraction of clathrin triskelia that have a sensor protein bound.

If anything, the sensor concentrations would decrease more slowly than the overall

clathrin, because the clathrin-binding region of the sensor helps to stabilize the part

of the coat where it is bound. The fact that the relative sensor signals for PI(4,5)P2,

PI(3)P and PI(4)P decrease more quickly than the clathrin signal implies that their

𝑘𝐿
off ’s must be considerably faster than 𝑘𝑢 = 0.5 s−1.
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𝑁𝐸 𝐾𝑀 (molec./coat) 𝑣max (molec./s)
PI→PI(3)P 1.6 (0.9, 2.6) 18 70 (40, 120)

PI(4)P→PI(3,4)P2 0.06 (0.05, 0.08) < 0.01 3.5 (2.9, 4.2)
PI(4,5)P2 →PI(4)P 25 (19, 32) 5000 45 (35, 60)
PI(3)P→PI(3,5)P2 1.0 (0.6, 1.6) 10 45 (30, 75)

Table 4.1: Best-fit enzyme parameters and confidence intervals, computed as de-
scribed in Section 4.5.3. Absolute enzyme numbers were obtained by setting
𝑘cat = 50 s−1, which is near the top of the typical range of turnover rates for
this kind of reaction.

4.6.2 Enzyme Numbers

Table 4.1 contains the best-fit parameters for the enzymes responsible for the PIP

dynamics. There are two interesting things to note about these numbers. The first is

that they are consistent with the diffusion-based trigger mechanism. The maximum

turnover rate for a given reaction is:

𝑣max =
𝑘cat𝑁𝐸

1 + 𝐾𝑀

𝑁max

(4.26)

where 𝑁max is the maximum number of substrate molecules encountered during the

trajectory. Table 4.1 contains an upper bound on 𝑣max computed by setting 𝑁max

equal to the initial number of PI molecules, since this is the maximum concentration

reached by any of the lipid species. The largest values of these quantities within

the confidence intervals are still very slow compared with the ∼ 1000molec./s rate

required to keep up with diffusion and maintain an average concentration of one

PIP molecule per coat inside the clathrin-coated region. I built this separation of

timescales into my kinetic model by keeping enzymatic activity turned off until the

moment of vesicle fission. If the rates required to fit the data had been significantly

larger, I would have needed to relax this assumption and explicitly model the balance

between local creation of new PIP’s and diffusion in the membrane.

Second, the mean number per clathrin-coated vesicle for most of the enzymes are

very small: all but the PI(4,5)P2 phosphatase of order unity or smaller. This means

that even a very weak association of an enzyme with clathrin is sufficient to generate

the trigger mechanism, and it is not surprising that some of the essential enzymes
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have not yet been identified [38].

Such strong sensitivity to a small change in local enzyme concentration makes

it easier to see how this trigger mechanism emerged over the course of evolutionary

history. Enzymes that modify PIP’s and proteins that detect them were already

present in abundance before this mechanism arose [13]. Proteins generically tend

to stick to each other, and the local concentration of many different protein species

should be at least slightly affected by the presence of a dense, extended protein coat.

It would be interesting to estimate the effect of the clathrin coat on concentrations

of known PIP kinases and phosphatases based on their non-specific affinity alone, to

see whether this would have been sufficient to generate the PIP-based trigger even

before evolutionary fine-tuning had time to take place.

The separation of timescales and the low enzyme copy numbers could have been

inferred even without the mathematical model. The key assumptions are that the

initial numbers of PI and PI(4,5)P2 are on the order of 100, and that the modifica-

tion of an enzyme-bound PIP takes about 20 ms. The first assumption implies that a

total catalytic rate of 25 molecules/s is sufficient to deplete each preexisting phospho-

inositide pool in the coated vesicle before the PI(3)P and PI(4)P sensors reach their

peak concentrations. And the second implies that this rate can be achieved with an

average of half an enzyme per coat, if the enzyme is running at maximum capacity.

The model helps us to think more carefully through the issues that could com-

plicate these estimates. First of all, the cooperative binding of the sensor to both

the clathrin coat and the membrane could easily have been strong enough to make

the sensor signal significantly lag behind the underlying PIP dynamics. If the disso-

ciation rate were much slower than the association rate per free PIP, then the peak

sensor concentration would not occur until the corresponding PIP’s had been almost

entirely cleared from the vesicle. So the PI and PI(4,5)P2 concentrations could be

depleted arbitrarily quickly and still generate the same timing for the PI(3)P and

PI(4)P sensor peaks, as long as the enzymes that clear the PI(3)P and PI(4)P act

sufficiently slowly. Thus the observed peak timing does not automatically guarantee

that the catalytic rates are slow enough for the diffusion-based trigger mechanism.
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The results of the model-based inference suggest that sensor dissociation is fast

enough that the peak sensor concentration should be nearly simultaneous with the

peak PIP concentration. The time interval between vesicle fission and the peak of the

PI(3)P and P(4)P sensor signal should thus be a good measure of the time required to

deplete the PI and PI(4,5)P2, as assumed in the direct estimate of the total catalytic

rate. When I discuss the PIP concentration trajectories below, I will explain which

features of the data give rise to this conclusion.

As for the enzyme copy numbers, the direct estimate assumed that the enzymes

operate at their maximum rate, with a new substrate molecule binding immediately

after the previous reaction has finished. The accuracy of this approximation depends

on the size of the Michaelis constant 𝐾𝑀 in Equation (4.9). At 18 molecules/vesicle,

the inferred Michaelis constant for the PI → PI(3)P reaction is still small enough

that the enzyme can nearly reach its maximum reaction velocity, and so the rough

estimate of enzyme number is not too far off. The estimated Michaelis constant for

the PI(4,5)P2 → PI(4)P reaction, however, is about 5300 molecules/vesicle, so the

enzyme never comes close to saturation. To achieve the required total rate of PI(4)P

synthesis, about 25 copies of the enzyme would be required. This result may reflect

the limitations of the model, which assumes that there is only one kind of enzyme

and that its local concentration is constant.

4.6.3 Sensor Affinities

Finally, the model predicts the affinities of the lipid-binding and clathrin-binding

domains of the sensors for their substrates, which I have tabulated in Table 4.2. To

obtain these predictions, I had to supply one more piece of information. The absolute

cytosolic sensor concentrations 𝑁𝑆0 are not constrained by the model, since they only

appear as products with other free parameters 𝑘𝐿
on and 𝑘𝐶

on. To estimate the absolute

scale for these concentrations, I will assume that binding of sensor molecules to their

PIP substrates is diffusion-limited: whenever the lipid-binding part hits the correct

phosphoinositide, it immediately binds. The absolute value of 𝑘𝐿
on is now set by the

diffusion coefficient of the sensors in the cytosol, which should produce an on-rate of
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𝑁𝑆0𝑘on (s−1) 𝑘off (s−1) 𝐾𝐷 (nM) Direct 𝐾𝐷

Clathrin 3 (2, 5) ×10−4 0.07 (0.06, 0.09) 200 (150, 400) –
PI(4,5)P2 0.03 (0.01, 0.06) 100 (40, 240) 3000 (2000, 4000) 2000 nM [62]
PI(3,4)P2 0.09 (0.07, 0.1) 4 (3, 6) 40 (30, 60) –

PI(3)P 0.07 (0.05, 0.10) 80 (40, 180) 1000 (500, 2000) –
PI(4)P 0.11 (0.06, 0.19) 60 (30, 90) 500 (300, 800) 20 nM [88]

Table 4.2: Best-fit kinetic parameters and affinities with confidence bounds, computed
as described in Section 4.5.3. Affinities were obtained by assuming that 𝑁𝑆0 = 1 cor-
responds to a cytosolic concentration of 1 nM. Direct in vitro measurements reported
in the literature for two of the sensors are listed for comparison.

about 100/𝜇M · 𝑠 for proteins of this size [75]. This implies that 𝑁𝑆0 ∼ 1 nM, which

is a small but plausible cytosolic concentration.

The affinities of the lipid-binding domains have been independently measured with

various biochemical assays. The reported values for the PI(4,5)P2 and PI(4)P sensors

are listed in Table 4.2 along with the predictions of the model. The moderate-affinity

PI(4,5)P2 sensor shows reasonable agreement between the biochemical measurements

and my in vivo estimate, but my estimate for the high-affinity PI(4)P sensor differs

from the literature by an order of magnitude. This disagreement can be seen directly

in the data by comparing the measured 𝑘off = 0.1 s−1 in the biochemical assays to the

rate at which the sensor signal is lost at the end of the averaged trajectory in Figure

4-8. The biochemical measurement implies that the time constant for the decay of

the signal should be at least 10 s, while in fact it is less than 5 s.

This sort of discrepancy is common in biochemistry, because so many different

factors can affect the apparent affinity of two molecules for each other in the complex

environment of the cytosol. One possible cause for the discrepancy in this case is my

use of a two-state model to describe the binding of the sensor to the phosphoinositide,

in which the sensor is either free or bound. It would be more accurate to include

three states: free, bound non-specifically to the membrane, and bound specifically

to the sensor, as proposed for example in [57]. In this model, the apparent off-rate

increases with decreasing phosphoinositide concentration. Since biochemical assays

are typically performed at PIP concentrations much higher than what is found at the

plasma membrane, the apparent affinities in the cell should seem weaker. It would
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be interesting to directly compare the off-rate from membranes with varying PIP

concentrations to test this hypothesis.
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Chapter 5

Accelerating Kinetics through

Nonequilibrium Driving

The goal of Chapter 4 was to identify the mechanism that couples the destabilization

of the clathrin coat to the fission of the vesicle from the plasma membrane. In the

introduction, I alluded to the challenge of designing a material that can respond to

such a trigger so rapidly. How does the cell maintain the mechanical robustness of the

clathrin lattice and its ability to exert force on the membrane, while making it so easy

to dissolve in response to a tiny signal? In this chapter, I explain why the combination

of these two features seems so strange from a thermodynamic perspective, and show

how it is more easily attained in a nonequilibrium material.

5.1 The Trade-off

The clathrin lattice is just one example out of many biological structures that combine

dynamic responsiveness with persistent force generation and resilience. As noted in a

recent review, this paradoxical union can be found at all biological length scales, from

microtubule networks to macroscopic tissues [20]. Efforts are underway to replicate

this phenomenon in synthetic systems, in order to create materials that can support

mechanical loads but also “heal” themselves on a reasonable time scale when damaged

[9].
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Figure 5-1: Color. Top left: The ratio of rates for adding and removing monomers
from a structure is fixed via Equation (2.43) by the free energy 𝐹 of the bound state
and the concentration 𝑐 of monomers in solution. Bottom left: If some parameter (like
the concentration) is suddenly changed by a small amount, the structure will relax to
a new equilibrium state over a time scale 𝜏 determined by the off-rate. Bottom right:
The minimum amount of work 𝑊min required to dislodge a single particle from the
structure is equal to the free energy change −𝐹 . Top right: These definitions imply
that the speed 𝜏−1 is exponentially suppressed with increasing strength 𝑊min if the
basic rate 𝑘 is held fixed.
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To locate the source of the difficulty, I will consider the generic self-assembly

process illustrated in Figure 5-1. A suspension of small particles (like proteins) at

concentration 𝑐 can stick to each other to spontaneously form a structure when 𝑐 is

large enough. Concretely, I assume that the particles can stochastically bind to a set

of 𝑁 pre-defined lattice sites in a Poisson process with rate 𝑐𝑘 for adding a particle to

an unoccupied site. The rate 𝑘off = 𝑘𝑒𝛽𝐹 for removal of a particle is then fixed by the

microscopic reversibility relation for Markov jump processes (2.43) given in Chapter

2. The binding energy 𝐹 (a negative number) depends on how many neighboring sites

are occupied. I will require that 𝐹 = 0 in the absence of neighbors, so that 𝑘off = 𝑘

is the rate at which an unbound particle can diffuse out of the lattice site. This

stipulation sets the units of volume in such a way that 𝑐 = 1 is the concentration at

which half the lattice sites would be filled in the absence of inter-particle interactions.

𝐹 controls the mechanical resilience of the material, since 𝑊min = −𝐹 is the

minimum amount of work required to remove a particle from the structure. It also

affects the rate at which the structure returns to its equilibrium size and configuration

after a perturbation. The recovery rate is set by the mean time 𝜏 required for a particle

to be spontaneously added or removed from a given lattice site. At equilibrium, the

total rates for adding and removing are equal, and the rate per site is approximately

equal to 𝑘off when the sites are mostly occupied: 𝜏 ≈ 1/𝑘off = 𝑒−𝛽𝐹/𝑘.

This does not immediately imply anything about the relationship between 𝜏 and

the strength 𝑊min = −𝐹 , because 𝑘 could also vary as a function of 𝐹 . But in many

self-assembly scenarios, the rate-limiting step for association of a new particle to the

structure is diffusion to the target site. The association rate 𝑘 per unit concentra-

tion will then be fixed by the viscosity of the medium and the size of the particle,

independently of the local force fields and contact surface geometry that determine

𝐹 . At a fixed particle size in a given medium, 𝑘 can thus be regarded as a constant,

generating an exponential trade-off between strength and recovery time. When −𝐹

becomes much larger than 𝑘𝐵𝑇 , 𝜏 can be orders of magnitude larger than the natural

timescale of the system 1/𝑘.
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5.2 Active Dissociation Model

In this section I present a toy model inspired by the clathrin/auxilin/Hsc70 system

that softens this trade-off by constantly dissipating chemical energy.

5.2.1 Transition Rates

I start with the basic model proposed in the previous section, and incorporate a

chemical driving force into the model by adding a second association/dissociation

pathway as illustrated in Figure 5-2. The monomers of actin filaments, microtubules,

clathrin coats, and several other macromolecular assemblies can be found in at least

two distinct internal states. There is an “active” state capable of binding strongly to

the structure, and an “inactive” state that binds much more weakly. For simplicity, I

require that both states have the same free energy in solution, and choose this as the

zero of free energy. I will denote the free energy of an active particle in the structure

as 𝐹𝐴, and that of an inactive particle as 𝐹𝐼 > 𝐹𝐴. Both these free energies will

depend on the number of neighbors in the structure. In the absence of coupling to

a chemical energy source, the rate 𝑘+ of transitions from the active to inactive state

and 𝑘− for the reverse transition are related by Equation (2.43):

𝑘−
𝑘+

= 𝑒𝛽(𝐹𝐼−𝐹𝐴). (5.1)

The ratios of association and dissociation rates for particles in each of the two states

includes a contribution from their concentrations 𝑐𝐴 and 𝑐𝐼 in the solution surrounding

the lattice. The chemical potentials 𝜇𝐴, 𝜇𝐼 of the reservoirs of active and inactive

particles are equal to 𝑘𝐵𝑇 ln 𝑐𝐴 and 𝑘𝐵𝑇 ln 𝑐𝐼 , respectively, because I have assumed

that the internal free energies of both conformations are the same. Equation (2.43)
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thus implies:

𝑘𝐴
on

𝑘𝐴
off

= 𝑒−𝛽(𝐹𝐴−𝜇𝐴) (5.2)

𝑘𝐼
on

𝑘𝐼
off

= 𝑒−𝛽(𝐹𝐼−𝜇𝐼). (5.3)

In Figure 5-2 I have chosen the units of concentration such that 𝑐𝐴 = 1 is the value at

which half the lattice sites would be occupied in the absence of interactions or driving

(𝐹𝐴 = 𝑘+ = 0), and have set the units of time in terms of the fixed diffusive time

scale so that 𝑘 = 𝑘𝐴
on/𝑐𝐴 = 1.

Coupling these internal state transformations to ATP or GTP hydrolysis drives

cycles of association-inactivation-dissociation-activation, as illustrated in Figure 5-

2. The coupling mechanism often introduces additional intermediate states: in the

clathrin system, for instance, a clathrin triskelion in the structure first binds to auxilin,

which in turn binds to Hsc70-ATP, and the ATP is finally hydrolyzed when the Hsc70

binds to the “inactive” conformation of the triskelion (cf. [78]). I will combine all these

steps into one, so that their net effect is to modify 𝑘+ and 𝑘−. The ratio of rates is

still given by Equation (2.43), but now includes the extra change in free energy due

to the hydrolysis of ATP. This change in free energy includes contributions from the

internal entropy of the complex, from the release of an inorganic phosphate into the

phosphate reservoir, and from the dissipation of the potential energy stored in the

Coulomb repulsion between negatively charged phosphates. To keep this free energy

distinct from the neighbor-dependent free energies of the structural components, I

will refer to it simply as the heat of the hydrolysis reaction 𝑄hyd. The rate ratio thus

becomes

𝑘−
𝑘+

= 𝑒𝛽(𝐹𝐼−𝐹𝐴−𝑄hyd). (5.4)

My decision to combine all the intermediate transitions into 𝑘+ and 𝑘− further implies

that the ratio 𝑐𝐴/𝑐𝐼 is equal to the ratio [ATP]/[ADP] of ATP to ADP concentrations.

This is easiest to see in systems like actin, which are always either bound to ATP
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or ADP. With the help of passive catalysts called nucleotide exchange factors, actin

monomers in solution can exchange ATP for ADP and vice versa. If the internal free

energies of the active/ATP-bound and inactive/ADP-bound states were equal, as I

have assumed for this model, then the rates of exchange in each direction would be

entirely determined by the ATP and ADP concentrations.

Since the net free energy change around a closed cycle must vanish, Equation

(2.43) says that the sum of the log-ratios of forward to reverse rates around the

cycle must be equal to the chemical work 𝒲 = ∆𝜇 = 𝜇ATP − 𝜇ADP associated with

converting a molecule of ATP to ADP:

𝛽∆𝜇 = ln
𝑐𝐴
𝑘𝐴
off

+ ln
𝑘+
𝑘−

+ ln
𝑘𝐼
off

𝑐𝐼
(5.5)

= ln
𝑐𝐴
𝑐𝐼

+ 𝛽𝑄hyd (5.6)

= ln
[ATP]

[ADP]
+ 𝛽𝑄hyd. (5.7)

5.2.2 Mean-Field Interactions

To complete the model, I need to specify how the particles interact with their neigh-

bors in the lattice, which determines how 𝐹𝐴 and 𝐹𝐼 depend on the overall microstate

of the structure. I will make the mean-field assumption that 𝐹𝐴 = −𝐽𝑚 is propor-

tional to the fraction of occupied sites 𝑚 ≡ (𝑁𝐴 + 𝑁𝐼)/𝑁 , where 𝑁𝐴 is the total

number of active particles in the structure 𝑁𝐼 the number of inactive, and 𝐽 sets the

energy scale. The binding energy of the inactive particles must satisfy 𝐹𝐼 ≤ 0 so that

the rate 𝑘 = 1 of free diffusion from a lattice site remains the upper bound on the off-

rate. As long as this is always satisfied, the binding energy difference ∆𝐹 ≡ 𝐹𝐼 − 𝐹𝐴

can be an arbitrary function of 𝑚, which will be eliminated from the final equations.

This model is now equivalent to 𝑁 globally coupled copies of the three-state rotor

illustrated in Figure 5-2, with a nonequilibrium driving force that provides a net drift

in one direction around the cycle. If the inactive monomers bind so poorly that they

make up a negligible percentage of the total structure occupancy at any given time

114



k+k�

m = 1m =
2

3
m =

7

9
m =

8

9

ADP

Qhyd = kBT ln
k+

k�
+ FI � FA

ATP

e
�FI

e �F
A

cI

cA

Figure 5-2: Color. Top left: Transition rates for expanded model with two possible
internal states for each monomer. If the active and inactive monomer concentrations
are kept away from their equilibrium values, the system relaxes to a nonequilibrium
steady state with a net drift around the cycle. Top right: Schematic of Hsc70-
mediated coupling of assembly dynamics to ATP hydrolysis. Hsc70 can only bind to
the “inactive” conformation of the clathrin in the lattice (square), which has a lower
overall affinity for its neighbors than the “active” conformation (circle). Binding to
clathrin causes Hsc70 to rapidly hydrolyze its bound ATP molecule while clamping
on to the clathrin with extremely high affinity. The rate of return to the active state
is thereby suppressed by a factor of up to 𝑒−𝛽𝑄hyd . Bottom: Simplified dynamics in
which number of inactive monomers in the lattice is much smaller than the number of
active monomers. The dynamics can now be stated entirely in terms of the fraction
𝑚 of occupied lattice sites.
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(𝑁𝐼 ≪ 𝑁𝐴), then a further simplification is possible: we can eliminate the inactive

state, so that each site is either unoccupied or occupied by an active monomer. A

sufficient condition on the rates for this approximation to hold is

𝑐𝐼 , 𝑘+ ≪ 𝑒𝛽𝐹𝐼 ≤ 1 (5.8)

where the second inequality follows from the fact that 𝐹𝐼 ≤ 0. This guarantees that

the incoming rates are much smaller than at least one of the outgoing rates, so that

the steady state will have much more probability concentrated in the states with

no particle or a bound active particle in a given site than with an inactive particle.

Alternatively, I could have made the ingoing rates smaller than the other outgoing

rate 𝑘−. But the physical mechanisms I am trying to understand with this model

all contain a highly irreversible inactivation reaction with 𝑘+ ≫ 𝑘−, which directly

violates this assumption.

Now there are two ways for a site to change state: either through direct associa-

tion/dissociation of an active monomer from the solution, or by transiently passing

through the inactive form. The dissociation rate via the inactive conformation is

simply the product of the inactivation rate 𝑘+ and the probability 𝑒𝛽𝐹𝐼/(𝑒𝛽𝐹𝐼 + 𝑘−)

that the site ends up with a different occupancy after the next jump (instead of re-

turning to its starting point). Likewise, the association rate on this pathway is the

product of the rate 𝑐𝐼 for adding an inactive particle to the lattice and the probability

𝑘−/(𝑒𝛽𝐹𝐼 + 𝑘−) that the site exits this state in the right direction.

5.2.3 Coarse-Grained Rates

This approximation makes it possible to express the dynamics entirely in terms of the

lattice occupancy 𝑚, as depicted in Figure 5-2, facilitating the computation of the

steady-state distribution 𝑝ss(𝑚). The transition rate 𝑤𝑚+1/𝑁,𝑚 from 𝑚 to 𝑚 + 1/𝑁

is the sum of the rates of all possible ways of accomplishing this transition: particles

can be added to any of the 𝑁(1 −𝑚) free sites, and they can be added to each site

by either of the two pathways. Similarly, the 𝑚 + 1/𝑁 to 𝑚 transition with rate
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𝑤𝑚,𝑚+1/𝑁 involves a sum over the two removal rates for all 𝑁(𝑚 + 1/𝑁) particles

currently in the structure:

𝑤𝑚+1/𝑁,𝑚 = 𝑁(1 −𝑚)

(︂
𝑐𝐴 + 𝑐𝐼

𝑘−
𝑘− + 𝑒−𝛽(𝐽𝑚−Δ𝐹 )

)︂
(5.9)

𝑤𝑚,𝑚+1/𝑁 = 𝑁

(︂
𝑚 +

1

𝑁

)︂(︂
𝑒−𝛽𝐽(𝑚+1/𝑁) + 𝑘+

𝑒−𝛽(𝐽(𝑚+1/𝑁)−Δ𝐹 )

𝑘− + 𝑒−𝛽(𝐽(𝑚+1/𝑁)−Δ𝐹 )

)︂
, (5.10)

where I have written the kinetics of the inactive state in terms of the free energy

difference ∆𝐹 ≡ 𝐹𝐼 − 𝐹𝐴. Before proceeding, it will be useful to express both rates

in terms of the thermodynamic quantities ∆𝜇 and 𝑄hyd using Equations (5.4) and

(5.5), which imply

𝑒𝛽Δ𝜇 =
𝑐𝐴
𝑐𝐼

𝑒𝛽𝑄hyd (5.11)

=
𝑐𝐴𝑘+
𝑐𝐼𝑘−

𝑒𝛽Δ𝐹 . (5.12)

In terms of these new quantities, I have:

𝑤𝑚+1/𝑁,𝑚 = 𝑁(1 −𝑚)𝑐𝐴(1 + 𝑒−𝛽Δ𝜇𝑞(𝑚)) (5.13)

𝑤𝑚,𝑚+1/𝑁 = 𝑁

(︂
𝑚 +

1

𝑁

)︂
𝑒−𝛽𝐽(𝑚+1/𝑁)(1 + 𝑞(𝑚 + 1/𝑁)) (5.14)

where

𝑞(𝑚) ≡ 𝑘+
𝑒−𝛽𝐽𝑚 + 𝑘+𝑒−𝛽𝑄hyd

(5.15)

contains all the dependence on 𝑘+ and 𝑄hyd.

5.3 Steady-State Solution

In this section, I find the steady-state distribution and an approximate expression for

the fluctuation dynamics of this model, which will allow me to compute the speed

𝜏−1, the strength 𝑊min and the chemical work rate 𝒲̇ .
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Figure 5-3: Color. Top: Equilibrium free energy density 𝑓eq(𝑚) at various values of
the coupling 𝐽 (left) and the concentration 𝑐𝐴 (right). Bottom left: Nonequilibrium
𝑓(𝑚) at various values of the kinetic parameters 𝑘+ and 𝑄hyd at fixed ∆𝜇 > 0.

5.3.1 Stationary State

The coarse-grained dynamics are one-dimensional, with hard boundaries at 𝑚 = 0

and 𝑚 = 1, so they cannot support any steady currents. Even in the presence of a

nonequilibrium driving force ∆𝜇 ̸= 0, the steady state must obey “detailed balance”

in the sense that

𝑤𝑚+1/𝑁,𝑚𝑝ss(𝑚) = 𝑤𝑚,𝑚+1/𝑁𝑝ss(𝑚 + 1/𝑁). (5.16)

This means that the model could also describe an undriven system whose free en-

ergy landscape is given by the logarithm of 𝑝ss. But as we will see, the functional

dependence of these energies on 𝑚 does not resemble any readily identifiable physical

situation.
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From Equation (5.16), it is easy to compute 𝑝ss(𝑚) up to an overall normalization

constant. It will be convenient to perform this computation in terms of the derivative

of the effective free energy per site 𝑓(𝑚), which I will define as

𝛽𝑓(𝑚) ≡ − lim
𝑁→∞

1

𝑁
ln 𝑝ss(𝑚). (5.17)

The derivative of this quantity can now be related to the ratio of rates:

𝑑(𝛽𝑓)

𝑑𝑚
≡ 𝛽 lim

𝑁→∞

𝑓(𝑚 + 1/𝑁) − 𝑓(𝑚)

1/𝑁
(5.18)

= lim
𝑁→∞

ln
𝑝ss(𝑚)

𝑝ss(𝑚 + 1/𝑁)
(5.19)

= lim
𝑁→∞

ln
𝑤𝑚,𝑚+1/𝑁

𝑤𝑚+1/𝑁,𝑚

(5.20)

= ln𝑚− ln(1 −𝑚) − 𝛽𝐽𝑚− ln 𝑐𝐴 + ln
1 + 𝑞

1 + 𝑒−𝛽Δ𝜇𝑞
. (5.21)

Integrating this expression, I find

𝑓(𝑚) = 𝑓eq(𝑚) + 𝑘𝐵𝑇

∫︁ 𝑚

0

𝑑𝑚′ ln
1 + 𝑞

1 + 𝑒−𝛽Δ𝜇𝑞
+ 𝒩 (5.22)

where 𝒩 is a normalization constant, and 𝑓eq(𝑚) is the equilibrium free energy

𝑓eq(𝑚) = 𝑘𝐵𝑇 [𝑚 ln𝑚 + (1 −𝑚) ln(1 −𝑚) −𝑚 ln 𝑐𝐴] − 𝐽

2
𝑚2. (5.23)

The remaining integral can be evaluated in terms of the dilogarithm function

Li2(𝑥) ≡ −
∫︁

𝑑𝑥
ln(1 − 𝑥)

𝑥
(5.24)

to give

𝑓(𝑚) = 𝑓eq(𝑚) +
𝑘𝐵𝑇

𝛽𝐽

(︂
Li2
[︀
−𝑘+(𝑒−𝛽𝑄hyd + 𝑒−𝛽Δ𝜇)𝑒𝛽𝐽𝑚

]︀
− Li2

[︀
−𝑘+(𝑒−𝛽𝑄hyd + 1)𝑒𝛽𝐽𝑚

]︀)︂
+ 𝒩 ′. (5.25)
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The shapes of 𝑓(𝑚) and 𝑓eq(𝑚) for various parameter values are illustrated in Figure

5-3.

My goal is to compute 𝜏 , 𝑊min and 𝒲̇ at the stable occupancy 𝑚* that min-

imizes 𝑓(𝑚). This point is where all the probability concentrates in the 𝑁 → ∞
limit. Equation (5.20) in the above derivation implies that 𝑑𝑓/𝑑𝑚 = 0 wherever

the reverse transition rate 𝑤−(𝑚) ≡ 𝑤𝑚,𝑚+1/𝑁 equals the forward transition rate

𝑤+(𝑚) ≡ 𝑤𝑚+1/𝑁,𝑚:

𝑤+(𝑚*) = 𝑤−(𝑚*) (5.26)

(1 −𝑚*)𝑐𝐴(1 + 𝑒−𝛽Δ𝜇𝑞) = 𝑚*𝑒−𝛽𝐽𝑚*
(1 + 𝑞) (5.27)

The two sides of this equation are plotted in Figure 5-4 for several different parameter

values, and the solutions are the 𝑚 values where the two lines cross. I have plotted

the left hand side at three values of 𝑐𝐴 with 𝐽 = 6𝑘𝐵𝑇 fixed, to show how the number

of solutions changes as 𝑐𝐴 is varied. For small 𝑐𝐴 values, the only solution is the global

minimum near 𝑚 = 0. As 𝑐𝐴 increases, a new local minimum appears near 𝑚 = 1,

separated from the small-𝑚 solution by a local maximum. The three solutions coexist

over a finite range of 𝑐𝐴 values, and at some point in this range the value of 𝑓(𝑚)

at large-𝑚 minimum becomes smaller than the value at the small-𝑚 minimum. This

discontinuous shift in the location of the global minimum of 𝑓(𝑚) is an example of a

first-order phase transition. As 𝑐𝐴 increases further, the minimum near 𝑚 = 0 and

the local maximum eventually disappear.

The critical values 𝑐*𝐴 that bound the three-solution region are those for which the

functions on the left and right sides of Equation (5.27) are tangent to each other at

some point. This means that both the functions and their derivatives must be equal.

In equilibrium, when ∆𝜇 = 0 or 𝑘+ = 0, the 𝑞-dependent terms cancel out or vanish,

and these two conditions take on a simple form that can be solved analytically:

(1 −𝑚*)𝑐*𝐴 = 𝑚*𝑒−𝛽𝐽𝑚*
(5.28)

−𝑐*𝐴 = (1 − 𝛽𝐽𝑚*)𝑒−𝛽𝐽𝑚*
(5.29)
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Figure 5-4: Color. Existence of solutions to Equation (5.27). The decreasing gray
lines are equal to the association rate 𝑤+ for various values of 𝑐𝐴, and the curved red
line is the dissociation rate 𝑤− at 𝛽𝐽 = 6. The stationary states of the dynamics
defined by the rates (5.13-5.14) occur where these two lines cross. Left: Equilibrium.
If 𝑐𝐴 is too small, as in the bottom gray line, the only solution occurs near 𝑚 = 0.
Right: Nonequilibrium steady state, with the same 𝐽 and same set of 𝑐𝐴 values. The
nonequilibrium terms destroy the large-𝑚 stationary state that existed at equilibrium
for the middle line.

At fixed 𝐽 , this is a set of two equations in two unknowns. For 𝐽 < 𝐽𝑐 = 4𝑘𝐵𝑇 , there

are no solutions, and no phase transition: the global minimum increases smoothly

from 𝑚 = 0 to 𝑚 = 1 with increasing 𝑐𝐴. When 𝐽 > 𝐽𝑐, eliminating the exponential

term generates a solvable quadratic equation in 𝑚*, satisfied by two (𝑚*, 𝑐*𝐴) pairs:

𝑚* =
1

2
±
√︂

1

4
− 1

𝛽𝐽
(5.30)

𝑐*𝐴 =
𝑚*

1 −𝑚* 𝑒
−𝛽𝐽𝑚*

. (5.31)

The first-order phase transition must occur somewhere between these two 𝑐*𝐴 values.

In the large 𝐽 limit, the phase transition threshold is easy to find because the two

minima are very close to 𝑚 = 0 and 𝑚 = 1. The logarithmic terms in the expression

(5.23) for 𝑓eq(𝑚) both vanish at these two points, so setting 𝑓eq(0) = 𝑓eq(1) yields

𝑐𝐴 = 𝑒−𝛽𝐽/2.

Out of equilibrium, with nonzero ∆𝜇 and 𝑘+, the 𝑞(𝑚) terms in Equation (5.27)
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make the solution much more complicated. But since the nonequilibrium correction

term in Equation (5.22) is strictly positive for ∆𝜇 > 0, the phase transition should

happen at a larger 𝑐𝐴 than in equilibrium.

Another effect of ∆𝜇 > 0 comes in to play due to my assumption that 𝑐𝐼 ≪ 1,

which ensures that inactive particles occupy a negligibly small fraction of the lattice.

By Equations (5.11-5.12), 𝑐𝐴 = 𝑒𝛽(Δ𝜇−𝑄hyd)𝑐𝐼 . The equilibrium ratio of concentra-

tions is given by the exponential of the internal free energy change 𝑄hyd due to the

hydrolysis reaction, and deviations from this ratio require a nonzero ∆𝜇. So if 𝑐𝐼 is

fixed to some suitably small value, say 𝑐𝐼 = 0.01, then increasing ∆𝜇 allows a larger

active concentration 𝑐𝐴 for a given 𝑄hyd. Even though larger ∆𝜇 destabilizes the

high-occupancy state at fixed 𝑐𝐴, this is more than compensated by the exponential

increase of 𝑐𝐴 ∝ 𝑒𝛽Δ𝜇, and the net result of increasing ∆𝜇 is to make high-𝑚 states

more probable.

5.3.2 Dynamics

To determine the speed 𝜏−1 of relaxation from perturbations, I need to go beyond

the steady-state distribution and also look at the dynamics of 𝑚(𝑡). The equation of

motion for 𝑚 at large but finite 𝑁 can be approximated by the overdamped Langevin

dynamics

𝑚̇ = 𝐴(𝑚) + 𝐵(𝑚)𝜉𝑡 (5.32)

with

𝐴(𝑚) =
1

𝑁

(︀
𝑤𝑚+1/𝑁,𝑚 − 𝑤𝑚−1/𝑁,𝑚

)︀
(5.33)

= (1 −𝑚)𝑐𝐴(1 + 𝑒−𝛽Δ𝜇𝑞) −𝑚𝑒−𝛽𝐽𝑚(1 + 𝑞) (5.34)
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and

𝐵2(𝑚) =
1

𝑁2

(︀
𝑤𝑚+1/𝑁,𝑚 + 𝑤𝑚−1/𝑁,𝑚

)︀
(5.35)

=
1

𝑁

[︀
(1 −𝑚)𝑐𝐴(1 + 𝑒−𝛽Δ𝜇𝑞) + 𝑚𝑒−𝛽𝐽𝑚(1 + 𝑞)

]︀
. (5.36)

In an equilibrium system with continuous degrees of freedom, the statistical force is

proportional to the derivative of free energy and we would have 𝐴 ∝ −𝑑𝑓/𝑑𝑚. But

since the true microscopic dynamics of this model really consists of discrete jumps,

𝐴(𝑚) is not directly related to 𝑓(𝑚). This is clear from the expressions for these two

quantities in terms of the rates, since 𝑓(𝑚) is equal to the ratio of forward to reverse

𝑤’s while 𝐴 is given by the difference. The usual continuum result is only guaranteed

to hold in a neighborhood around the points 𝑚* where 𝐴 = 𝑑𝑓/𝑑𝑚 = 0.

The rate at which a given site spontaneously changes occupancy can now be

written in terms of the noise amplitude 𝐵 as

𝜏−1 =
𝑁𝐵2(𝑚*)

2
(5.37)

= (1 −𝑚*)𝑐𝐴(1 + 𝑒−𝛽Δ𝜇𝑞) (5.38)

= 𝑚*𝑒−𝛽𝐽𝑚*
(1 + 𝑞). (5.39)

where I have used Equation (5.27) to simplify the expression in two different ways.

In the steady state, the rates for adding and removing particles must balance each

other, and so the response speed can be computed from either one.

Since 𝑚* is close to 1 in the high-strength states of interest, the acceleration of the

dynamics comes mainly from an increase in 𝑞, which was defined in Equation (5.15)

as

𝑞(𝑚) ≡ 𝑘+
𝑒−𝛽𝐽𝑚 + 𝑘+𝑒−𝛽𝑄hyd

. (5.40)

Recall that 𝑘+ ≪ 1 in order to ensure that inactive monomers take up a negligi-

ble fraction of occupied lattice sites. At fixed 𝑘+, 𝑞 increases with 𝑄hyd, up to an
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asymptotic value of

lim
𝑄hyd→∞

𝑞(𝑚) = 𝑘+𝑒
𝛽𝐽𝑚 (5.41)

which gives

lim
𝑄hyd→∞

𝜏−1 = 𝑚*𝑘+ + 𝑚*𝑒−𝛽𝐽𝑚*
. (5.42)

In this limit, every inactivation reaction leads to rapid ejection from the lattice, so

when 𝐽 is large the effective off-rate is simply 𝑘+. Even though 𝑘+ ≪ 1, an acceptable

value of 𝑘+ = 0.01 still accelerates the dynamics by a factor of 200 at 𝐽 = 10𝑘𝐵𝑇 .

As mentioned in Section 5.3.1 above, 𝑄hyd also affects the supply of active monomers

𝑐𝐴 at fixed 𝑐𝐼 ≪ 1. Taking 𝑄hyd → ∞ implies that ∆𝜇 → ∞ in order to keep

𝑐𝐴 = 𝑒𝛽(Δ𝜇−𝑄hyd)𝑐𝐼 above the phase transition threshold . But 𝜏−1 remains close to

the 𝑄hyd → ∞ limit as long as 𝑘+𝑒
−𝛽𝑄hyd ≪ 𝑒−𝛽𝐽 .

5.3.3 Energetics

To determine the work rate 𝒲̇ according to Equation (2.90) from Chapter 2, I need

to separate out the rates of change of 𝑚 due to the two particle reservoirs at chemical

potentials 𝜇𝐴 = 𝑘𝐵𝑇 ln 𝑐𝐴 and 𝜇𝐼 = 𝑘𝐵𝑇 ln 𝑐𝐼 :

𝑚̇𝐴 = 𝐴𝐴(𝑚) + 𝐵𝐴(𝑚)𝜉𝐴𝑡 (5.43)

𝑚̇𝐼 = 𝐴𝐼(𝑚) + 𝐵𝐼(𝑚)𝜉𝐼𝑡 (5.44)

with

𝐴𝐴 = (1 −𝑚)𝑐𝐴 −𝑚𝑒−𝛽𝐽𝑚 (5.45)

𝐴𝐼 = (1 −𝑚)𝑐𝐴𝑒
−𝛽Δ𝜇𝑞 −𝑚𝑒−𝛽𝐽𝑚𝑞 (5.46)

(𝐵𝐴)2 =
1

𝑁
[(1 −𝑚)𝑐𝐴 + 𝑚𝑒−𝛽𝐽𝑚] (5.47)

(𝐵𝐼)2 =
1

𝑁

[︀
(1 −𝑚)𝑐𝐴𝑒

−𝛽Δ𝜇𝑞 + 𝑚𝑒−𝛽𝐽𝑚𝑞
]︀
. (5.48)
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In terms of these quantities, the chemical work rate is

𝒲̇ = 𝑁(𝜇𝐴𝑚̇
𝐴 + 𝜇𝐼𝑚̇

𝐼). (5.49)

As discussed in Section 2.6.2, this equation with the Langevin expressions (5.43-5.44)

correctly describes the first two cumulants of the distribution of work rates, but is

insufficient for the computation of Φex except near the steady state when ∆𝜇 → 0.

In the limit of small ∆𝜇, the nonequilibrium correction to the steady-state distri-

bution can be computed using Equations (2.73) and (2.97) (with 𝜖 = 0) from Chapter

2. This gives

𝑓(𝑚) = 𝑓eq(𝑚) − 1

𝑁
𝒲ex(𝑚) + 𝒩 (5.50)

where 𝒩 is a constant independent of 𝑚 and the excess work is

𝒲ex(𝑚) = 𝑁(𝜇̄− 𝜇𝐴)(𝑚−𝑚*). (5.51)

I have subtracted off 𝜇𝐴 from 𝜇̄ because the chemical work of the reservoir of active

particles is already included in 𝑓eq(𝑚) as defined in Equation (5.23). The average

chemical potential 𝜇̄ is defined in Equation (2.98), giving:

𝜇̄ =
𝜇𝐴

𝑑𝐴𝐴

𝑑𝑚
+ (𝜇𝐴 − ∆𝜇)𝑑𝐴

𝐼

𝑑𝑚
𝑑𝐴𝐴

𝑑𝑚
+ 𝑑𝐴𝐼

𝑑𝑚

(5.52)

= 𝜇𝐴 − ∆𝜇
𝑞

1 + 𝑞
+ 𝑂(∆𝜇2). (5.53)

The resulting prediction

𝑓(𝑚) = 𝑓eq(𝑚) + ∆𝜇
𝑞

1 + 𝑞
(𝑚−𝑚*) + 𝒩 ′ (5.54)

agrees with the first-order Taylor expansion of Equation (5.22) about ∆𝜇 = 0 near

𝑚 = 𝑚*.

For ∆𝜇 of order 𝑘𝐵𝑇 and larger, the accuracy of this prediction breaks down. But
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Equation (5.49) still correctly describes the mean and typical fluctuations of the work

rate. The mean work rate at 𝑚 = 𝑚* can be written in a relatively compact form

using the fact that 𝐴𝐴 = −𝐴𝐼 at 𝑚*:

⟨𝒲̇⟩𝑚* = 𝑁∆𝜇

[︂
1 + 𝑞

1 + 𝑒−𝛽Δ𝜇𝑞
− 1

]︂
𝑚*𝑒−𝛽𝐽𝑚*

. (5.55)

Combining Equations (5.39) and (5.55) generates an expression for the chemical

work rate in terms of the speed 𝜏−1:

⟨𝒲̇⟩𝑚* = 𝑁∆𝜇
(𝑒𝛽Δ𝜇 − 1)(𝜏−1 −𝑚*𝑒−𝛽𝐽𝑚*

)

𝜏−1 + (𝑒𝛽Δ𝜇 − 1)𝑚*𝑒−𝛽𝐽𝑚* 𝑚*𝑒−𝛽𝐽𝑚*
. (5.56)

At a given 𝐽 and 𝜏−1, the work rate is determined by ∆𝜇, increasing from zero as ∆𝜇

increases. The minimum work rate at a given strength and speed is thus determined

by the minimum ∆𝜇 required to maintain the existence of a high-occupancy steady

state 𝑚*.

5.4 Cost of Acceleration

5.4.1 Results

With the expressions for the steady state 𝑚*, the speed 𝜏−1 and the work rate ⟨𝒲̇⟩
in hand, I can now proceed to investigate how the constant supply of chemical work

affects the speed-strength trade-off.

To do this, I fix 𝑐𝐼 = 0.01 and 𝑘+ = 0.01 at values compatible with the assumption

of negligible inactive population on the lattice, as discussed in Section 5.2.2. The

concentration 𝑐𝐴 of active monomers is now controlled by ∆𝜇 and 𝑄hyd via 𝑐𝐴 =

𝑒𝛽(Δ𝜇−𝑄hyd)𝑐𝐼 as in Section 5.3.1. The minimal work rate compatible with a given 𝑐𝐼

and 𝑄hyd is found when ∆𝜇 is just barely large enough to keep 𝑐𝐴 on the assembled

side of the phase transition presented in Section 5.3.1. In the first panel of Figure 5-5

I plot 𝑊min, 𝜏−1 and ⟨𝒲̇⟩ at this minimal ∆𝜇 value as I sweep over 𝐽 and 𝑄hyd. In

the second panel, I show the full 𝑓(𝑚) for a subset of the parameter values included
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Figure 5-5: Color. Left: Minimum work rate as a function of speed and strength at
𝑘+ = 0.01, 𝑐𝐼 = 0.01. The solid black line is the equilibrium trade-off with 𝑘+ = 0,
and the dotted line is the maximum speed at the given 𝑘+ value, as given by Equation
(5.42). Right: Plots of 𝑓(𝑚) at the parameter values corresponding to the rightmost
set of colored dots in the first panel, which all have 𝐽 = 12𝑘𝐵𝑇 . The chemical
potential difference ∆𝜇 is tuned to the phase transition threshold for each curve,
where the probabilities of the low-𝑚 and high-𝑚 local minima are equal.

in the sweep, highlighting the fact that ∆𝜇 is tuned to give the low-𝑚 and high-𝑚

local minima the same probability.

The solid black line in the first panel is the equilibrium trade-off from Section

5.1. The dotted line is the maximum possible speed 𝜏−1 = 𝑘+𝑚
* +𝑚*𝑒−𝐽𝑚* as given

by Equation (5.42). This speed is achieved in limit of infinite 𝑄hyd, and therefore

infinite ⟨𝒲̇⟩. The colored dots between the two lines are the results obtained from

the 𝐽,𝑄hyd sweep as just described. As 𝑄hyd increases at fixed 𝐽 , 𝜏−1 increases while

the strength 𝑊min = 𝐽𝑚* decreases. This is the reason why the dots are arranged in

slanted lines.

A work rate of about ⟨𝒲̇⟩ ≈ 0.03𝑘𝐵𝑇𝑁𝑘 is sufficient to nearly achieve the maxi-

mum 𝜏−1 at a given strength 𝑊min. This work rate is equal to 5𝑘𝐵𝑇 per lattice site

per dissociation event at the maximum speed in the large 𝐽 limit 𝜏−1 ≈ 0.006𝑘. For

comparison, the chemical work corresponding to conversion of a single ATP molecule

to ADP under typical cellular conditions is about 20 𝑘𝐵𝑇 [75]. This maximum speed

is much slower than the fixed diffusion rate 𝑘, but it is much faster than the equilib-

rium speed. At a strength of 𝑊min = 8𝑘𝐵𝑇 , supplying 5𝑘𝐵𝑇 of chemical work per

dissociation event accelerates 𝜏−1 by a factor of 20.
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5.4.2 Discussion

This model is a simple example of a generic mechanism for combining strength with

rapid relaxation dynamics in a self-assembling structure. The mechanism relies on

component parts that can exist in at least two distinct internal states. In the “active”

state, they stick to each other, and spontaneously assemble. In the “inactive” state,

they do not stick, and spontaneously disassemble. A nonequilibrium steady state is

set up when the inactive state has a much lower internal free energy than the active

state, and the concentration of inactive monomers is kept low by some active process.

Then a steady cycle is set up in which sticky monomers temporarily assemble, and

then disassemble as they switch to the weakly binding state. My results indicate that

significant acceleration can be achieved at a given target strength even if the internal

state changes slowly compared to the diffusive timescale for freely entering or leaving

a binding site.

The concentrations of active and inactive monomers play a crucial role in this

phenomenon. It is not enough simply to have component parts that spontaneously

lose their stickiness some time after entering the structure. If the inactive particles

that dissociate into the surrounding bath are not removed, and replaced with active

particles, the active particles will eventually run out, leaving a solution of inactive

particles that do not stick to each other. This is what I mean by a “nonequilib-

rium” self-assembly process: the structure depends on the constant activity of some

(chemical) work source, and dissolves when that activity ceases.

Under my current set of assumptions and constraints, increasing 𝑘+ allows higher

speeds to be achieved at lower work rates. But if 𝑘+ becomes too large, a significant

fraction of the particles on the lattice will be in the inactive state, where they bind

their neighbors much more weakly. This decreases the strength of the structure, since

these weak binders take up space on the lattice without contributing much to the total

binding energy. The effect is more dramatic at lower dimensions, because a cluster

of inactive particles can span the whole structure and effectively break it into several

disconnected pieces. Since the mechanical integrity of the structure requires that most
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of its components be active, the small 𝑘+ regime is where the speed-strength trade-off

becomes most relevant. It would be interesting to look at a more general solution

not subject to the inequality (5.8) to determine more precisely how the strength

breaks down at higher 𝑘+ values. But many important features of the breakdown of

mechanical integrity in this regime depend on structural features like the spanning

clusters just mentioned, which are not present in the mean-field model and are not

fully captured by my measure of strength 𝑊min. Progress in this direction requires

numerical simulations or experiments on specific systems.

This model displays several striking features that are worth exploring in more

depth. As the coupling strength 𝐽 increases, the lattice occupancy 𝑚* at the minimum

dissipation rate for a given speed decreases. Asymptotically, it appears that the

occupancy is inversely proportional to the coupling strength, so that their product

𝐽𝑚* (the “strength” of the structure) approaches a constant plateau in the large 𝐽

limit. The degree to which a structure’s turnover dynamics can be sped up while

preserving its strength depends on where this plateau occurs. But it is not yet clear

why this happens, and which parameters are most responsible. This system also

displays rich phase behavior at high 𝐽 , apparently containing an additional first-

order phase transition between two mostly-occupied states in addition to the original

assembly transition. These features need to be investigated in more detailed models,

and in lower dimensions, to determine whether they are merely artifacts of the mean-

field approximation.

The results of Chapter 2 may prove useful for obtaining intuition about these

more complex models. My current model is simple enough that the exact steady-state

distribution can be obtained analytically, and so I had no use for the calculation based

on excess work contained in Equation (5.54). But in a model that does not admit of

exact results, this approach may provide a basis for new approximation schemes.
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Chapter 6

Conclusions

Over the course of this dissertation, I have addressed two fundamental questions

about driven steady states: How far can ideas from equilibrium thermodynamics be

extended into this nonequilibrium regime? And what new material properties become

available when the time-reversal symmetry of thermal equilibrium is broken?

In Chapter 2, I determined the range of validity of a variational procedure (2.73)

that generalizes the idea of free energy minimization to predict the properties of near-

equilibrium steady states. I showed that this prediction remains accurate beyond the

traditional linear response regime of vanishingly small nonequilibrium driving force.

The driving force can be made arbitrarily strong, as long as the fluctuation dynamics

of the observables of interest remain well described by a linear overdamped Langevin

equation. The quantity minimized in this generalization is obtained by subtracting

the mean external work done on the way to a fluctuation from the equilibrium free

energy. This mean work can be expressed up to a normalization constant in terms of

the instantaneous work rate and a relaxation time. My result thus provides a route

for generating physical intuition about the behavior of complex driven systems in

terms of these familiar quantities.

When the fluctuation dynamics of the observables are nonlinear, the accuracy of

my variational prediction depends on the size of the nonlinearity. I showed that the

simplified variational principle remains accurate as long as the nonlinearity changes

the work on the way to a typical fluctuation by significantly less than 𝑘𝐵𝑇 .
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I illustrated these results with the example of a driven Brownian colloid in Chapter

3. This system naturally exhibits a strong dependence of relaxation time on the

strength of the driving force, which allows Equation (2.73) to accurately predict the

nonlinear response of the shear stress to an applied shear flow. I numerically simulated

the dynamics of such a colloid, and extracted both the mean and the variance of

the work done on the way to typical fluctuations of the shear stress. I used these

measurements to confirm that the generalization of free energy minimization provides

a good prediction of the actual mean shear stress in the limit of large system size.

At very high values of the shear rate, where the prediction begins to depart slightly

from the real value, the correction term involving the work variance fully accounted

for the error.

The thermodynamic perspective of Equation (2.73) allowed me to capture the full

nonlinear response of the shear stress with a phenomenological model of the depen-

dence of the relaxation time on shear rate, which is readily generalizable to systems

with more complex microscopic details. In the absence of shear, the relaxation time

depends on how fast the particles can randomize their positions through Brownian

motion, which is determined by the diffusion coefficient and the number density of

particles. The Green-Kubo relation of linear response theory relates the viscosity

of the suspension to this equilibrium relaxation time. But the imposed shear flow

can accelerate the randomization by convectively stirring the particles, resulting in a

relaxation time that asymptotically decreases as the inverse of the shear rate. My vari-

ational principle generalizes the Green-Kubo relation to this strongly driven regime,

showing how the decreased relaxation time generates a decrease in viscosity.

I then turned to the second question, inspired by the surprising properties of the

driven protein structures involved in clathrin-mediated endocytosis. This is a complex

process involving many physically interesting features, including self-assembling func-

tional structures, active disaggregation mechanisms and membrane-based information

processing. Chapter 4 describes the essential features of this process, and presents

the results of an experimental investigation of the regulation of the disaggregation

mechanism.
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We wanted to measure the changes in concentration of information-bearing mem-

brane components throughout the process, using fluorescent “sensor” proteins that

specifically bind to these components and to the clathrin coat. But as often hap-

pens in biology, many of the parameters values (such as binding affinities) required

to extract the quantities of interest from the sensor data could not be independently

measured. Even though some affinity measurements have been made on the isolated

component parts, the effective values change considerably when the protein is inserted

into the crowded and heterogeneous environment of the cell.

Most of my effort in the collaboration was dedicated to systematically accounting

for this uncertainty. I first reduced the uncertainty as much as possible by integrat-

ing the available prior knowledge into a mathematical model of the concentration

changes and sensor binding. After finding the parameter values that best fit the

data, I quantified the remaining uncertainty by calculating the sensitivity of the sen-

sor signal to changes in parameters. The uncertainties in the binding affinities and

enzymatic conversion rates were small enough to provide some guidance for future

experiments investigating in vivo binding kinetics or searching for the enzymes that

trigger uncoating.

In Chapter 5, I explored the novel physical properties of a class of nonequilibrium

structures that includes the clathrin coats of my experimental collaboration, as well

as networks of actin or microtubules and synthetic self-healing materials that mimic

their behavior. Clathrin coats display a remarkable combination of strength and

speed, sustaining sufficient mechanical force to bend the cell membrane, but dissolv-

ing in seconds when the vesicle is complete. I first investigated the physical reason

for the intuitive surprise we feel when observing such phenomena, by identifying the

physical quantities associated with the relevant sense of “speed” and “strength.” Af-

ter explaining how these properties become incompatible in thermal equilibrium when

the basic time scale of the dynamics is constrained, I developed a simple stochastic

model to show how this trade-off can be softened by an active disassembly path-

way, and computed the dissipation rate required to attain a given degree of dynamic

acceleration at a given strength.
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Over the course of these investigations, I have not only developed new tools for

understanding complex driven systems, but have also gained a deeper grasp of what

this “understanding” looks like. The central challenge is to identify which of the myr-

iad parameters characterizing the exact state of a given system are actually relevant

for controlling the properties of interest. I faced this challenge most directly in my

experimental collaboration, where I combined qualitative arguments and recently de-

veloped computational methods to estimate the sensitivity of our data set to arbitrary

perturbations in the full 16-dimensional parameter space. But this was also the un-

derlying goal of my extended linear response theory, which expressed the properties

of a nonequilibrium steady state in terms of the free energy, the relaxation time and

the work rate. In this regime, microscopic properties of the individual components

can only affect the observable features of the whole macroscopic system via these

three quantities. My driven self-assembly model is also aimed in this direction, since

it provides a tractable mathematical platform for teasing out the factors that control

strength and turnover speed in different regimes.

I have developed these last two lines of research to the point where they can

provide some initial guidance for sorting through the bewildering array of parameters

in experimental or numerical studies of technologically interesting systems – including

biological entities and synthetic driven materials. Feedback from these applications

is essential for developing the ideas in their most productive direction. By gradually

refining our concepts in response to successes or failures in predictive control, we may

finally find a comfortable home for living matter within the umbrella of physics.
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Appendix A

Microscopic Reversibility in the

Langevin Equation

In the main text, I described the physical basis of microscopic reversibility in general

terms, and expressed it in terms of standard expressions for reservoir entropies. But

any given application of these results will involve additional modeling assumptions,

which can sometimes capture the phenomenon of interest quite well while distorting its

thermodynamic properties (cf. [39]). Before applying results based on the microscopic

reversibility relation (2.24) to the statistics of a particular model containing its own

definitions of work and energy, it is important to verify explicitly that this relation is

consistent with the equations of the model.

In this appendix, I perform this verification for two different interpretations of the

Langevin Equation. I first consider the full dynamics of Brownian motion contained in

Equations (2.44) and (2.45), with a 𝛿-correlated random force as defined in Equations

(2.46-2.48). Then I examine the coarse-grained versions underlying the simulation of

Chapter 3 and the general discussion of flow-driven systems in Chapter 2.

The core mathematical result required for applying the microscopic reversibility re-

lation to a Langevin equation is the explicit expression for the trajectory probabilities

in terms of the equation parameters. This result is independent of the physical inter-

pretation, and is best expressed in generic terms to avoid confusion with the physics.

Consider the following Langevin equation for the evolution of a 𝑑-dimensional vector
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x:

ẋ = A𝑡(x𝑡) + 𝐵𝑀𝜉𝑡 (A.1)

where the deterministic part A𝑡(x𝑡) is a function of x𝑡 that can also depend explicitly

on time. The matrix 𝑀 is included to admit the possibility of situations like Equations

(2.44-2.45) where some of the dynamical variables are not directly coupled to the noise

term. This matrix is equal to the identity matrix, except that some of the elements can

be set to zero to remove the 𝜉-dependence from the corresponding equations. I will

denote by x′ a reduced state vector containing only those variables that are directly

subject to noise, and by A′
𝑡(x𝑡) the corresponding force vector. For simplicity, I will

take 𝐵 to be a scalar in this section.

The probability of observing a given trajectory x𝒯
0 , given that the system is initial-

ized at the correct value x0, is simply the probability of observing the noise realization

𝜉𝒯0 that generates this trajectory when Equation (A.1) is integrated. The result can

be expressed as (cf. [26, 43]):

𝑝[x𝒯
0 |x0] = exp

[︂
−
∫︁ 𝒯

0

𝑑𝑡

(︂
1

2𝐵2
[ẋ′ −A′

𝑡]
2 +

1

2
∇ ·A′

𝑡

)︂]︂
(A.2)

where the product A′
𝑡 · ẋ is performed under the Stratonovich interpretation [29].

A.1 Langevin Equation for Brownian Motion

For the case of Brownian motion (2.44-2.45) in 𝑑 dimensions, the probability of a

trajectory x𝒯
0 = (p𝒯

0 ,q
𝒯
0 ) is found by appropriately substituting for A′

𝑡, 𝐵 and x in

Equation (A.1):

𝑝[x𝒯
0 |x0, 𝜆

𝒯
0 ] = exp

[︃
−
∫︁ 𝒯

0

𝑑𝑡

(︃
1

2𝑘2

[︂
ṗ𝑡 − f(q𝑡, 𝜆𝑡) +

𝑏

𝑚
p𝑡

]︂2
− 𝑑

𝑏

2𝑚

)︃]︃
. (A.3)
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The reverse trajectory probability is found by transforming p → −p:

𝑝[x̂𝒯
0 |x*

𝒯 , 𝜆̂
𝒯
0 ] = exp

[︃
−
∫︁ 𝒯

0

𝑑𝑡

(︃
1

2𝑘2

[︂
ṗ𝒯 −𝑡 − f(q𝒯 −𝑡, 𝜆𝒯 −𝑡) −

𝑏

𝑚
p𝒯 −𝑡

]︂2
− 𝑑

𝑏

2𝑚

)︃]︃
(A.4)

= exp

[︃
−
∫︁ 𝒯

0

𝑑𝑡

(︃
1

2𝑘2

[︂
ṗ𝑡 − f(q𝑡, 𝜆𝑡) −

𝑏

𝑚
p𝑡

]︂2
− 𝑑

𝑏

𝑚

)︃]︃
(A.5)

where I have changed the variable of integration from 𝑡 to 𝒯 − 𝑡 and inverted the

limits of integration in the second line. Combining these expressions yields:

𝑝[x̂𝒯
0 |x*

𝒯 , 𝜆̂
𝒯
0 ]

𝑝[x𝒯
0 |x0, 𝜆𝒯

0 ]
= exp

[︂
𝑏

𝑚𝑘2
∆p2 − 2𝑏

𝑚𝑘2

∫︁ 𝒯

0

𝑑𝑡 f · p𝑡

]︂
. (A.6)

Now I split the force into an externally supplied part and a part due to an internal

potential energy landscape:

f = fext(q, 𝜆) −∇𝑈(q, 𝜆). (A.7)

With these definitions, I can rearrange (A.6) into a more suggestive form:

𝑝[x̂𝒯
0 |x*

𝒯 , 𝜆̂
𝒯
0 ]

𝑝[x𝒯
0 |x0, 𝜆𝒯

0 ]
= exp

[︂
−2𝑏

𝑘2

∫︁ 𝒯

0

𝑑𝑡

(︂
fext ·

p𝑡

𝑚
+

𝜕𝑈

𝜕𝜆
𝜆̇𝑡

)︂
+

(︂
𝑏

𝑚𝑘2
∆p2 +

2𝑏

𝑘2
∆𝑈

)︂]︂
,

(A.8)

where I have used the chain rule 𝑑𝑈 = ∇𝑈 · q̇ 𝑑𝑡 + 𝜕𝜆𝑈𝜆̇𝑡 𝑑𝑡 to express the ∇𝑈 term

in terms of 𝜕𝜆𝑈 and ∆𝑈 . This is allowed thanks to the Stratonovich interpretation of

the product stipulated above. The integral on the right-hand side is equal to 𝛽 times

the work done and the final term in parentheses to 𝛽 times the change in energy when

𝑘2 = 2𝑘𝐵𝑇𝑏. (A.9)

I have thus confirmed that Equations (2.44-2.45) satisfy the microscopic reversibility

relation for generic choices of fext and 𝑈 , including the possibility of external manip-
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ulation of control parameters 𝜆, and found the value of 𝑘 that makes this happen.

Note that the expression for the work

𝑊 =

∫︁ 𝒯

0

(︂
fext ·

p𝑡

𝑚
+

𝜕𝑈

𝜕𝜆
𝜆̇𝑡

)︂
(A.10)

includes a new term fext ·p𝑡/𝑚 that was not present in the original definition of work

within the Hamiltonian derivation (2.26). This term accounts for the possibility of a

non-conservative force, which drags the particle in a loop while continually dissipating

heat. When actually realized in experiments, such forces are always produced by

periodic variations in some control parameters 𝜆. But representing the net effect of

sufficiently rapid variations as a constant nonconservative force greatly simplifies the

analysis.

A.2 Colloid Simulation with Externally Imposed Flows

Consider the general form of the overdamped Langevin equation of Equations (3.1)

and (3.2) from Chapter 3, describing the motion of 𝑁 identical colloidal particles with

drag coefficient 𝑏 in 𝑑 dimensions:

𝑏ẋ = f(x) +
√︀

2𝑘𝐵𝑇𝑏𝜉𝑡. (A.11)

The 𝑑𝑁 -dimensional vector x contains the positions of all 𝑁 particles, and the force

vector f(x) mediates interactions among them.

The trajectory probabilities of (A.11) can be computed using the general form

(A.1), yielding:

𝑝[x𝒯
0 |x0] ∝ exp

[︂
−
∫︁ 𝒯

0

𝑑𝑡

(︂
(ẋ− f/𝑏)2

4𝑘𝐵𝑇/𝑏
+

1

2
∇ · f

𝑏

)︂]︂
. (A.12)

I now consider the case where f = −∇𝑈 + 𝑏u includes a conservative force f𝑐 = −∇𝑈

and a contribution 𝑏u from the local solvent velocity u.

Applying the time-reversal operation to the trajectory probability expression re-
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verses the signs of both ẋ and u. In a real experiment, this reversal would come

(for example) from reversing the magnetic field in an electric motor driven by sinu-

soidal voltage oscillations. This justifies my continued use of the symbols 𝜆𝒯
0 and 𝜆̂𝒯

0

to distinguish between the forward and reverse dynamics. The left-hand side of the

microscopic reversibility relation (2.24) now reads:

𝑝[x̂𝒯
0 |x*

𝒯 , 𝜆̂
𝒯
0 ]

𝑝[x𝒯
0 |x0, 𝜆𝒯

0 ]
= exp

[︂
1

𝑘𝐵𝑇

∫︁ 𝒯

0

𝑑𝑡∇𝑈 · ẋ− 1

𝑘𝐵𝑇

∫︁ 𝒯

0

𝑑𝑡∇𝑈 · u
]︂

(A.13)

By the chain rule, the first term in the exponential is simply the change in energy

∆𝑈 over the trajectory (the control parameters driving the motor do not affect the

interparticle potential, so there is no 𝜕𝜆𝑈 term). To understand the second term,

note that my assumption of overdamped dynamics implies that the total force on

each particle is always zero. The force exerted by the solvent must exactly cancel the

force due to interparticle interactions or external fields, and thus equals ∇𝑈 . I have

already defined that the local speed of the solvent is equal to u, and so the work done

by the imposed flow field is

𝒲 =

∫︁ 𝒯

0

𝑑𝑡∇𝑈 · u. (A.14)

Note that the work rate 𝒲̇ = ∇𝑈 · u is fully determined by the particle positions x

(which fix 𝑈 and its derivatives), and is independent of the velocities.

Using the First Law of thermodynamics (2.32), I find

𝑄 = −∆𝑈 + 𝒲 = −
∫︁ 𝒯

0

𝑑𝑡∇𝑈 · ẋ +

∫︁ 𝒯

0

𝑑𝑡∇𝑈 · u. (A.15)

But this is exactly equal to −𝑘𝐵𝑇 times the exponent in Equation (A.13). I have

thus verified the microscopic reversibility equation (2.24) with ∆𝑆𝑒 = 𝑄/𝑇 :

𝑝[x̂𝒯
0 |x*

𝒯 , 𝜆̂
𝒯
0 ]

𝑝[x𝒯
0 |x0, 𝜆𝒯

0 ]
= 𝑒

− 𝑄
𝑘𝐵𝑇 . (A.16)

The simple shear flow field investigated in Chapter 3 is u =
∑︀

𝑖 𝛾̇𝑦𝑥̂𝑖, where 𝑥̂𝑖 is the
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unit vector in the 𝑥 direction for particle 𝑖. The work is then given by

𝒲 = 𝛾̇
∑︁
𝑖

∫︁ 𝒯

0

𝑑𝑡
𝜕𝑈

𝜕𝑥𝑖

𝑦𝑖 (A.17)

which is exactly what I found in Equations (3.6) and (3.7) using the result of Appendix

D for the force required to move the top wall of the container.
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Appendix B

Dual Processes in Multiple

Dimensions

The theory of Chapter 2 is based on the statistics of trajectories that generate a given

fluctuation. These statistics are conveniently expressed in terms of a “dual” dynamics,

in which the ensemble of trajectories initialized at a given point X = X0 is the time-

reverse of the ensemble of trajectories ending at X0 in the original dynamics. I can

state this requirement mathematically by requiring that the conditional trajectory

probabilities 𝑝†[X𝒯
0 |X0] satisfy:

𝑝ss(X0)𝑝[X𝒯
0 |X0] = 𝑝ss(X

*
𝒯 )𝑝†[X̂𝒯

0 |X*
𝒯 ]. (B.1)

I will restrict my attention to the case X* = X where the phase space region corre-

sponding to X is symmetric under time reversal.

For a general multidimensional Langevin equation

Ẋ = F(X) + 𝐵(X)𝜉𝑡 (B.2)

with steady-state distribution

𝑝ss(X) = 𝑒−𝜑(X) (B.3)
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the dual dynamics are given by [36, 15]:

Ẋ = −F−𝐵2∇𝜑 + 𝐵𝜉. (B.4)

The fluctuation trajectories are found by flipping the direction of time, so that

Ẋ = F + 𝐵2∇𝜑 + 𝐵𝜉. (B.5)

and the initial condition is changed into a final condition, requiring that all trajectories

end at the same point X = X𝒯 .

Now I specialize to the linear case F = −𝐴X, where 𝐴 is a constant matrix

independent of X. To find the dual dynamics, I need the steady-state distribution

so I can compute ∇𝜑. To simplify the notation, I first rescale X according to the

noise strength for each degree of freedom. The equation of motion for the rescaled

variables X̂ = 𝐵−1X becomes

˙̂
X = −𝐵−1𝐴𝐵 + 𝜉 ≡ −𝐴 + 𝜉. (B.6)

I can now find the steady state by solving the Fokker-Planck Equation

0 = 𝜕𝑡𝑝ss = −∇𝑇

(︂
−𝐴X̂𝑝ss −

1

2
∇𝑝ss

)︂
(B.7)

= −∇𝑇𝑝ss(X̂)

(︂
−𝐴X̂ +

1

2
∇𝜑

)︂
(B.8)

where ∇𝑇 is a row vector formed by the partial derivative operators 𝜕𝑖. If 𝐴 is

symmetric, the only solution is ∇𝜑 = 2𝐴X, and so the dual dynamics are simply

˙̂
X = 𝐴X̂ + 𝜉. (B.9)

In general, the calculation is slightly more complicated, because X may relax to zero

while circulating around the origin instead of traveling there directly. In that case,

the fluctuation ensemble should reverse the sign of the direct part of the relaxation
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while maintaining the same direction of circulation. To find the dual dynamics in this

case, it is helpful to write Equation (B.7) in terms of 𝜑:

(∇𝜑)𝑇
(︂
−𝐴X̂ +

1

2
∇𝜑

)︂
= −Tr(𝐴) +

1

2
∇2𝜑. (B.10)

Since the equations of motion are linear and the noise is Gaussian, X is a sum of

Gaussian random variables, and thus always follows a Gaussian distribution itself.

This means that the logarithm 𝜑 of the steady-state distribution must be quadratic

in X̂:

𝜑 = X̂𝑇𝐶X̂ (B.11)

where 𝐶 is a positive definite symmetric matrix (if it had an antisymmetric part, this

would vanish in the evaluation of the quadratic form). So Equation (B.10) becomes

2X𝑇𝐶(−𝐴 + 𝐶)X̂ = Tr(−𝐴 + 𝐶). (B.12)

Since the right-hand side does not depend on X̂, the only way to make this true for all

X̂ is to make both sides vanish, which implies that the symmetric part of the matrix

between the X̂𝑇 and X̂ on the left hand side must vanish. 𝐶 must therefore satisfy

these two equations:

𝐶(−𝐴 + 𝐶) + (−𝐴 + 𝐶)𝑇𝐶 = 0 (B.13)

Tr(−𝐴 + 𝐶) = 0. (B.14)

The first condition can be simplified to

𝐴 + 𝐶−1𝐴𝑇𝐶 = 2𝐶. (B.15)

Now the equation for the fluctuation trajectories can be found by plugging in to
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Equation (B.5):

˙̂
X = (−𝐴 + 2𝐶)X̂ + 𝜉 (B.16)

= 𝐶−1𝐴𝑇𝐶X̂ + 𝜉. (B.17)

Using 𝐶 = 𝐵𝐶𝐵 to switch the first term back to the original variables yields

𝐶−1𝐴𝑇𝐶X̂ = 𝐵−1𝐶−1𝐵−1𝐵𝐴𝑇𝐵−1𝐵𝐶𝐵𝐵−1𝐵X = 𝐵−1𝐶−1𝐴𝑇𝐶X. (B.18)

Thus I conclude that the ensemble leading from the steady state to the fluctuation

X(0) is described by

Ẋ = 𝐶−1𝐴𝑇𝐶X + 𝐵𝜉, (B.19)

where 𝐶−1𝐴𝑇𝐶 is denoted in the main text as 𝐴.

This can be further simplified if 𝐴 is normal, i.e., if 𝐴𝐴𝑇 = 𝐴𝑇𝐴. To see this, I

first decompose 𝐴 = 𝐴𝑆 + 𝐴𝐴 into a symmetric part 𝐴𝑆 = 𝐴𝑇
𝑆 and an antisymmetric

part 𝐴𝐴 = −𝐴𝑇
𝐴, without loss of generality. Then 𝐴𝐴𝑇 = 𝐴𝑇𝐴 implies that the

symmetric and antisymmetric parts commute: [𝐴𝑆, 𝐴𝐴] = 0. I now guess that 𝐶 =

𝐴𝑆. [𝐴𝑆, 𝐴𝐴] = 0 now implies [𝐶,𝐴𝐴] = 0 and therefore also [𝐶,𝐴] = 0. Using

this fact in the first of the two conditions (B.13-B.14) and noting that antisymmetric

matrices are traceless, I can easily verify that both are satisfied, confirming that the

steady-state distribution is indeed given in the rescaled variables by 𝐶 = 𝐴𝑆. Inserting

this into Equation (B.16) and proceeding through the rest of the steps eliminates the

change of basis in the first term of (B.19), yielding

Ẋ = 𝐴𝑇X + 𝐵𝜉. (B.20)

The normality of 𝐴 is determined by the physical properties of the system, and

cannot in general be achieved by a simple change of basis. Even when 𝐴 can be

made normal by an appropriate (non-unitary) basis change, another non-unitary basis

152



change is required to transform from 𝐴 to 𝐴, which can make 𝐴 non-normal.
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Appendix C

Perturbative Calculations of Work

Statistics for Nonlinear Macroscopic

Dynamics

In this chapter, I compute 𝒲ex(𝑋) and Φex(𝑋) for the one-dimensional nonlinear

macroscopic dynamics (2.79) to first order in the small parameter 𝜖 that controls

the size of the nonlinearity. The calculation is slightly different depending on the

choice of thermodynamic interpretation. I first consider the case where the work

comes from an externally imposed flow field. The other forms of driving, including

nonconservative forces, time-varying conservative forces, energy/matter transport and

chemical reactions, all share the same basic structure for the core computation, and

are considered together in the second subsection.

C.1 Mathematical Preliminaries

The ensemble of fluctuation trajectories 𝑋0
−𝒯 that end in a given state 𝑋0 is fully con-

tained in Equation (2.79), independent of the interpretation. Combining Equations
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(2.80), (2.81) and (2.82) yields for 𝑋𝑡:

𝑋𝑡 = 𝑒𝐴𝑡(𝑋0 + 𝑓𝑡) −
𝜖

2

∫︁ 0

𝑡

𝑑𝑡′ 𝑒𝐴(𝑡−𝑡′)[𝑒𝐴𝑡′(𝑋0 + 𝑓𝑡′)]
2 + 𝑂(𝜖2) (C.1)

where 𝑓𝑡 = −
∫︀ 0

𝑡
𝑒−𝐴𝑡′𝐵𝜉𝑡′𝑑𝑡

′. The only random term in this expression that is not

Gaussian is 𝑓 2
𝑡′ . It turns out that this term will only enter the calculations as part

of a 𝑋0-independent term or at order 𝜖2. So the 𝑋0-dependent terms at order 𝜖 in

𝒲ex and Φex depend only on the average ⟨𝑋𝑡⟩𝑋0 and two-point function ⟨𝑋𝑡𝑋𝑡′⟩𝑐𝑋0
≡

⟨𝑋𝑡𝑋𝑡′⟩𝑋0 − ⟨𝑋𝑡⟩𝑋0⟨𝑋𝑡′⟩𝑋0 . I now proceed to compute these quantities in terms of

the given parameters.

Since ⟨𝑓𝑡⟩ = 0, the conditional average is

⟨𝑋𝑡⟩𝑋0 = 𝑒𝐴𝑡𝑋0 −
𝜖

2𝐴
𝑒𝐴𝑡(1 − 𝑒𝐴𝑡)𝑋2

0 + 𝑂(𝜖2) + 𝒩 (C.2)

where the constant 𝒩 contains the 𝑓 2
𝑡′ term, which is independent of 𝑋0.

The two-point function is

⟨𝑋𝑡𝑋𝑡′⟩𝑐𝑋0
= 𝜖𝑋0

[︂∫︁ 0

𝑡′
𝑑𝑡′′ 𝑒𝐴(𝑡+𝑡′+𝑡′′)⟨𝑓𝑡𝑓𝑡′′⟩ +

∫︁ 0

𝑡

𝑑𝑡′′ 𝑒𝐴(𝑡+𝑡′+𝑡′′)⟨𝑓𝑡′𝑓𝑡′′⟩
]︂

+ 𝑒𝐴(𝑡+𝑡′)⟨𝑓𝑡𝑓 ′
𝑡⟩ + 𝜖𝒩 ′ + 𝑂(𝜖2) (C.3)

where 𝒩 ′ is another constant independent of 𝑋0.

Further simplification requires computing ⟨𝑓𝑡𝑓𝑡′⟩. I first consider the case |𝑡′| ≥ |𝑡|:

⟨𝑓𝑡𝑓𝑡′⟩ = 𝐵2

∫︁ 0

𝑡

𝑑𝑠

∫︁ 0

𝑡′
𝑑𝑢 𝑒−𝐴(𝑠+𝑢)⟨𝜉(𝑠)𝜉(𝑢)⟩

= 𝐵2

∫︁ 0

𝑡

𝑑𝑠

∫︁ 𝑡

𝑡′
𝑑𝑢 𝑒−𝐴(𝑠+𝑢)𝛿(𝑠− 𝑢)

+ 𝐵2

∫︁ 0

𝑡

𝑑𝑠

∫︁ 0

𝑡

𝑑𝑢 𝑒−𝐴(𝑠+𝑢)𝛿(𝑠− 𝑢)

= 𝐵2

∫︁ 0

𝑡

𝑑𝑠 𝑒−2𝐴𝑠 =
𝐵2

2𝐴
(𝑒−2𝐴𝑡 − 1). (C.4)
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If |𝑡′| ≤ |𝑡|, this becomes

⟨𝑓𝑡𝑓𝑡′⟩ =
𝐵2

2𝐴
(𝑒−2𝐴𝑡′ − 1). (C.5)

Combining the two answers yields

⟨𝑓𝑡𝑓𝑡′⟩ =
𝐵2

2𝐴
(𝑒−2𝐴𝑡𝑚 − 1) (C.6)

where 𝑡𝑚 is equal to whichever of 𝑡, 𝑡′ has the smaller absolute value. Inserting this

back into the expression for the two-point function of 𝑋𝑡, I find

⟨𝑋𝑡𝑋𝑡′⟩𝑐𝑋0
= 𝜖𝑋0

𝐵2

2𝐴2

[︁
−𝑒−𝐴(𝑡−2𝑡′) − 4𝑒𝐴(𝑡′+𝑡) + 3𝑒𝐴𝑡′ + 𝑒𝐴(𝑡+2𝑡′) + 𝑒𝐴(𝑡′+2𝑡)

]︁
+

𝐵2

2𝐴
(𝑒−𝐴|𝑡−𝑡′| − 𝑒𝐴(𝑡+𝑡′)) + 𝜖𝒩 ′ + 𝑂(𝜖2). (C.7)

Enforcing symmetry under 𝑡 → 𝑡′ yields

⟨𝑋𝑡𝑋𝑡′⟩𝑐𝑋0
= 𝜖𝑋0

𝐵2

2𝐴2

[︁
−𝑒−𝐴(|𝑡−𝑡′|−𝑡𝑀 ) − 4𝑒𝐴(𝑡′+𝑡) + 3𝑒𝐴𝑡𝑀 + 𝑒𝐴(𝑡+2𝑡′) + 𝑒𝐴(𝑡′+2𝑡)

]︁
+

𝐵2

2𝐴
(𝑒−𝐴|𝑡−𝑡′| − 𝑒𝐴(𝑡+𝑡′)) + 𝜖𝒩 ′ + 𝑂(𝜖2). (C.8)

where 𝑡𝑀 is whichever of 𝑡, 𝑡′ has the larger absolute value.

For some of the calculations, I will need to use the fact that the integral of the

expression in brackets over all times is:

∫︁ 0

−∞
𝑑𝑡

∫︁ 0

−∞
𝑑𝑡′
[︂
−𝑒−𝐴(|𝑡−𝑡′|−𝑡𝑀 ) − 4𝑒𝐴(𝑡′+𝑡)

+ 3𝑒𝐴𝑡𝑀 + 𝑒𝐴(𝑡+2𝑡′) + 𝑒𝐴(𝑡′+2𝑡)

]︂
=

2

𝐴2
. (C.9)
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I will also make use of the correlator between 𝑋𝑡 and 𝜉𝑡′ :

⟨𝑋𝑡𝜉𝑡′⟩𝑋0 = 𝜖𝑋0

∫︁ 0

𝑡

𝑒𝐴(𝑡+𝑡′′)⟨𝑓𝑡′′𝜉𝑡′⟩𝑑𝑡′′ + 𝑒𝐴𝑡⟨𝑓𝑡𝜉𝑡′⟩ + 𝜖𝒩 ′′ + 𝑂(𝜖2) (C.10)

= −𝜖𝑋0𝐵

∫︁ 0

𝑡

𝑒𝐴(𝑡+𝑡′′−𝑡′)Θ(𝑡′ − 𝑡′′)𝑑𝑡′′ −𝐵𝑒𝐴(𝑡−𝑡′)Θ(𝑡′ − 𝑡) + 𝜖𝒩 ′′ + 𝑂(𝜖2)

(C.11)

= −𝐵Θ(𝑡′ − 𝑡)𝑒𝐴(𝑡−𝑡′)[𝜖𝑋0
1

𝐴
(𝑒𝐴𝑡′ − 𝑒𝐴𝑡) + 1] + 𝜖𝒩 ′′ + 𝑂(𝜖2) (C.12)

where 𝒩 ′′ again is independent of 𝑋0 and Θ(𝑥) is the Heaviside step function, equal

to zero for 𝑥 < 0 and 1 for 𝑥 ≥ 0.

Because I will only be looking at the Gaussian part of the fluctuations, all higher-

order correlations can be expressed in terms of the two-point function and the average.

In particular, I will need the fact that

⟨𝑋𝑡, 𝑋
2
𝑡′⟩𝑐𝑋0

≡ ⟨𝑋𝑡𝑋
2
𝑡′⟩𝑋0 − ⟨𝑋𝑡⟩𝑋0⟨𝑋2

𝑡′⟩𝑋0 (C.13)

= 2⟨𝑋𝑡′⟩𝑋0⟨𝑋𝑡𝑋𝑡′⟩𝑐𝑋0
(C.14)

and that

⟨𝑋2
𝑡 , 𝜉𝑡′⟩𝑐𝑋0

= 2⟨𝑋𝑡𝜉𝑡′⟩𝑋0⟨𝑋𝑡⟩𝑋0 . (C.15)

C.2 Driving by Imposed Flow

When the system is driven by an imposed flow field as discussed in Appendix A

above, the macroscopic variable can be chosen as the excess current 𝐽 − 𝐽ss beyond

the steady-state mean value 𝐽ss. Then the work is 𝒲 = 𝑉 ℱ
∫︀ 0

−𝒯 𝑑𝑡𝑋𝑡 + 𝒲0 where

𝒲0 is a constant, independent of the trajectory 𝑋0
−𝒯 .

The excess work defined in Equations (2.59) and (2.57) can be found by integrating
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the exponentials in Equation (C.2):

𝒲ex(𝑋0) = 𝑉 ℱ
∫︁ 0

−∞
𝑑𝑡 (⟨𝑋𝑡⟩𝑋0 − ⟨𝑋𝑡⟩ss)

=
𝑉 ℱ
𝐴

𝑋0 + 𝜖
𝑉 ℱ
4𝐴2

𝑋2
0 + 𝑂(𝜖2)

= 𝒲(0)
ex (𝑋0) + 𝜖

𝑉 ℱ
4𝐴(ℱ)2

(𝑋2
0 − ⟨𝑋2

0 ⟩ss) + 𝑂(𝜖2), (C.16)

where 𝒲(0)
ex (𝑋0) is the answer obtained in Equation (2.71) under the linear dynamics

alone.

To compute the higher cumulants, I first note that the non-Gaussian term 𝜖𝑓 2
𝑡′

in Equation (C.1) can only be part of an 𝑋0-dependent term in ∆⟨𝒲𝑛⟩𝑐 when it is

multiplied by some nonzero power of the 𝜖𝑋0𝑓𝑡′ term. It therefore contributes only to

the 𝑂(𝜖2) part of the expression and to the overall normalization. The remaining part

of the work can be expressed as a sum of independent Gaussian random variables 𝜉𝑡,

so it is itself a Gaussian random variable and has no nonzero cumulants beyond the

variance.

The excess variance can be computed from the expression for the two-point func-

tion (C.8) and its integral obtained above:

∆⟨𝒲2⟩𝑐(𝑋0) = 𝑉 2ℱ2

∫︁ 0

−∞
𝑑𝑡

∫︁ 0

−∞
𝑑𝑡′ (⟨𝑋𝑡𝑋𝑡′⟩𝑐𝑋0

− ⟨𝑋𝑡𝑋𝑡′⟩𝑐ss) (C.17)

= 𝑉 2ℱ2𝜖
𝐵2

𝐴4
𝑋0 + 𝑂(𝜖2). (C.18)

Since the higher cumulants are higher-order in 𝜖, the excess fluctuations are:

Φex(𝑋) = 𝜖
𝛽2𝑉 2ℱ2𝐵2

2𝐴4
𝑋 + 𝑂(𝜖2) (C.19)

= 𝜖𝛽𝒲ex(𝑋) + 𝑂(𝜖2) (C.20)

so that 𝜖 = 𝜖𝛽𝑉 ℱ𝐵2

2𝐴3 is the appropriate dimensionless version of 𝜖 that controls how

quickly the expansion of ln 𝑝ss about the linearized dynamics converges.
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C.3 Driving by Thermal/Chemical/Mechanical forces

The work rate for the chemical driving of Equation (2.95) takes the form

𝒲̇ = 𝑎𝑡𝑋 + 𝜖𝑐𝑡𝑋
2 + 𝑏𝑡𝜉𝑡 + 𝒲̇0 (C.21)

where 𝑎𝑡, 𝑏𝑡 and 𝑐𝑡 are independent of 𝑋. The work rates for thermal and mechanical

driving take this same form to first order around the linearized dynamics. I have

included the subscript 𝑡 in order to set up a framework that includes the possibility

of periodically varying driving forces, although I do not directly apply this formalism

to such cases in the present work.

The excess work is

𝒲ex(𝑋0) =

∫︁ 0

−∞
𝑑𝑡 [𝑎𝑡(⟨𝑋𝑡⟩𝑋0 − ⟨𝑋𝑡⟩ss) + 𝜖𝑐𝑡(⟨𝑋2

𝑡 ⟩𝑋0 − ⟨𝑋2
𝑡 ⟩ss)]. (C.22)

For time-independent thermal or chemical driving, the integral of the first term is

identical to what was computed in the previous section, and the second term reduces

to

⟨𝑋2
𝑡 ⟩𝑋0 = 𝑒2𝐴𝑡𝑋2

0 + 𝑂(𝜖) (C.23)

since ⟨𝑋2
𝑡 ⟩𝑐𝑋0

is 𝑂(𝜖). This gives:

𝒲ex(𝑋0) =
𝑎

𝐴
𝑋0 + 𝜖

(︁ 𝑎

4𝐴2
+

𝑐

2𝐴

)︁
𝑋2

0 + 𝑂(𝜖2) + 𝒩 (C.24)

where 𝒩 contains terms independent of 𝑋0.

The 𝑋0-dependent parts of the work fluctuations are Gaussian up to order 𝜖 for

the same reasons stated in the previous section. The excess variance is given by

∆⟨𝒲2⟩𝑐(𝑋0) =

∫︁ 0

−∞
𝑑𝑡

∫︁ 0

−∞
𝑑𝑡′ (𝑎𝑡𝑎𝑡′⟨𝑋𝑡𝑋𝑡′⟩𝑐𝑋0

+ 4𝜖𝑎𝑡𝑐𝑡′⟨𝑋𝑡′⟩𝑋0⟨𝑋𝑡𝑋𝑡′⟩𝑐𝑋0

+ 2𝑎𝑡𝑏𝑡′⟨𝑋𝑡𝜉𝑡′⟩𝑋0 + 4𝜖𝑐𝑡𝑏𝑡′⟨𝑋𝑡𝜉𝑡′⟩𝑋0⟨𝑋𝑡⟩𝑋0) + 𝑂(𝜖2) + 𝒩 (C.25)
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where I have expressed all higher-order correlations in terms of the average and two-

point functions, as explained in Section C.1 above.

For constant driving, plugging in the expressions from Section C.1 gives:

Φex(𝑋0) =
𝛽2

2
∆⟨𝒲2⟩𝑐(𝑋0) + 𝑂(𝜖2) (C.26)

=
𝛽2

2
𝜖

(︂
𝑎2𝐵2

𝐴4
+

2𝑎𝑐𝐵2

𝐴3
− 𝑎𝑏𝐵

𝐴3
− 3𝑐𝑏𝐵

𝐴2

)︂
𝑋0 + 𝑂(𝜖2) (C.27)

= 𝛽𝒲ex(𝑋0)𝜖 + 𝑂(𝜖2). (C.28)

where the new dimensionless expansion parameter is

𝜖 = 𝛽𝜖

(︂
𝑎𝐵2

2𝐴3
+

𝑐𝐵2

𝐴2
− 𝑏𝐵

2𝐴2
− 3𝑐𝑏𝐵

2𝑎𝐴

)︂
. (C.29)
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Appendix D

Physical Justification of Mean Wall

Stress

Formulas for determining the particle contribution to the shear stress of a colloidal

suspension have been known for a long time, and received an especially careful treat-

ment by G.K. Batchelor in the 1970’s [4, 5]. The established literature mainly deals

with the mean shear stress, either averaged over an infinite ensemble of systems or

over an infinitely large system. The statistical uniformity of the system can then be

invoked to argue that the mean stress over a typical 2-D slice through the system

is equal to the mean stress averaged over the whole system volume. Although the

wall is not a typical 2-D slice, because the boundary condition modifies the particle

distribution, the fact that there is no mean net force on any part of the system when

it is in steady state implies that the mean stress on all parallel 2-D slices must be the

same. The average over an infinite system volume must therefore also be equal to the

average over an infinite wall [4].

For the purpose of this paper, it is not enough to know the ensemble- or infinite-

system-averaged mean. I need to look at the fluctuations about the mean in order

to apply my procedure for empirically determining the mean renormalized work and

the equilibrium free energy as a function of the shear stress. Therefore I need to go

back through the derivation, and examine the instantaneous value of the shear stress

at the wall in a suspension of a finite number of particles.
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In this appendix, I prove that the instantaneous shear stress exerted by the fluid

on the moving wall of the shear apparatus described in Chapter 3, averaged over the

moving wall area, is

𝜎wall
𝑥𝑦 = 𝜎𝐼

𝑥𝑦 + 𝜎0
𝑥𝑦 (D.1)

where 𝜎𝐼
𝑥𝑦 is defined by

𝜎𝐼
𝑥𝑦 ≡

1

2𝑉

∑︁
𝑖 ̸=𝑗

x̂ · F𝑖𝑗∆𝑦𝑖𝑗. (D.2)

and 𝜎0
𝑥𝑦 is independent of the particle positions.

I start by giving some necessary background on the behavior of shear stress in

low-Re Newtonian fluids. To make this proof accessible to readers less familiar with

hydrodynamics, I then map to a mathematically analogous problem in electrostatics

(which turns out to be a homework problem from Griffiths’ Electricity and Magnetism

[31, problem 3.44a]). After presenting the solution to this electrostatics problem, I

finally map back to hydrodynamics to obtain my final result.

D.1 Stress in Newtonian Fluids

The shear stress 𝜎𝑥𝑦 is an off-diagonal component of the 3-by-3 stress tensor 𝜎. 𝜎 is

defined at each point in the fluid such that n̂ · 𝜎 is the force per unit area exerted

from below on a surface element at that location with unit normal vector n̂. By

“from below,” I mean from the side opposite to the direction of the normal vector. I

will focus on the 𝑥 column 𝜎 · x̂ to obtain a vectorial quantity that will be easier to

visualize.

By the definition of the stress tensor above, the 𝑥-component of the force on a
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region Ω of fluid is given by

𝐹𝑥 = −
∫︁
𝜕Ω

𝑑A · 𝜎 · x̂ (D.3)

= −
∫︁
Ω

𝑑𝑉∇ · 𝜎 · x̂ (D.4)

where 𝑑A is an infinitesimal area element of the boundary 𝜕Ω pointing along the

outward normal direction, and 𝑑𝑉 is an infinitesimal volume element. I add the minus

sign because I am computing the force on this surface from the outside. The second

line results from the divergence theorem. Since this holds for every possible region Ω,

I conclude that the integrand of equation (D.4) is equal to minus the 𝑥 component of

force per unit volume 𝑓𝑥 exerted by the surrounding fluid on an infinitesimal volume

element:

∇ · 𝜎 · x̂ = −𝑓𝑥. (D.5)

Finally, I must invoke the assumption that the solvent in which the particles are

suspended is a Newtonian fluid, which implies

𝜎 · x̂ = −𝜂0∇𝑢𝑥 (D.6)

where 𝑢𝑥 is the 𝑥-component of the fluid velocity field, and 𝜂0 is the (constant)

viscosity of the solvent. Combining this with the previous equation gives us the set

of equations

𝜂0∇2𝑢𝑥 = 𝑓𝑥 (D.7)

𝜎 · x̂ = −𝜂0∇𝑢𝑥 (D.8)

that together fully determine 𝜎 · x̂ for a given set of boundary conditions.
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D.2 Mapping to Electrostatics

Equations (D.7) and (D.8) suggest a mapping to electrostatics. 𝜂0𝑢𝑥 is the analog

to the electric potential 𝜑, 𝜎 · x̂ is the analog to the electric field E, and −𝑓𝑥 is

the analogue to the charge density 𝜌. With these mappings, the mathematics of the

problem are identical to electrostatics, and I can do everything in terms of E, 𝜑 and

𝜌 until I map back at the end.

The only remaining piece of setup is to map the boundary conditions and the

“charge distribution.” The non-slip boundary condition requires that every part of the

fluid in contact with a non-rotating rigid surface must share the same velocity. Since

the electric potential 𝜑 is the analog of the 𝑥-component of velocity, this implies that

non-rotating surfaces behave like perfect conductors - they are always equipotentials.

In particular, the constraint that the bottom wall is fixed and the top wall moves at

constant velocity 𝑣 implies that the walls of the shear cell become parallel conducting

plates separated by a distance 𝑑, with fixed electric potential difference ∆𝜑. The

problem of determining the total force on the walls is thus equivalent to determining

the induced charge on these conducting plates.

The particles, however, are allowed to rotate. Their boundary conditions are there-

fore more complicated, involving the other columns of the stress tensor. Specifically,

I have

u = Ω × r⊥ + ucm (D.9)

for all points on the surface of the sphere, where r⊥ is the vector pointing from the

center of the sphere to the surface point, projected onto a plane perpendicular to the

angular velocity vector Ω. Ω and the center-of-mass velocity ucm are free parameters

that must be adjusted so as to be consistent with equations (D.7) and (D.8). The

resulting restriction on 𝜎 is

𝜎 = −𝜂0∇ (Ω × r⊥ + ucm) . (D.10)
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To determine the charge distribution, I use my assumption of low Re to require

the total force on any volume element to vanish. In the electrostatic analogy, this

implies that the solvent is uncharged, and all charge must reside at the walls or on

the particles. The interparticle repulsion exerts force on each particle that must be

canceled by the friction of the fluid in order to satisfy the requirement of zero total

force. This implies that the total “charge” on each particle must be 𝑞𝑖 =
∑︀

𝑗 ̸=𝑖 F𝑗𝑖 · x̂,

where F𝑗𝑖 is the force exerted on particle 𝑖 by particle 𝑗. The distribution of this total

charge over the surface of each sphere is not fixed in advance, however, and must

be determined by solving equations (D.7) and (D.8) (along with the corresponding

equations for the other components of the stress tensor) with the boundary conditions

just described. The decision to “ignore hydrodynamic interactions” mentioned in the

main text allows us to greatly simplify the problem of determining these distributions,

by solving the equations for each particle individually, with boundary condition E →
−(∆𝜑/𝑑)ŷ far from the sphere. This approximation ignores the effect of the other

particles and of the induced wall charge on the charge distribution over each sphere.

The solutions obtained under this approximation are independent of the particle

positions, which will be important later on.

D.3 Obtaining the Induced Charge on the Conduct-

ing Plate

My problem is thus reduced to determining the induced charge on a pair of conducting

parallel plates at fixed electric potential due to a given charge distribution inside.

I start by splitting the charge on the plates into two parts, following the strategy

of Batchelor in his treatment of the effect of particle interactions on mean shear stress

[5]. The derivation will resemble Batchelor’s in many ways, despite the electrostatic

language, but adds a new element by considering the wall stress due to a given

instantaneous configuration of particles as opposed to an ensemble average of all

possible configurations.
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The first part of the charge is the part required to maintain the electric potential

difference ∆𝜑 in the absence of any additional charges between the plates: 𝑄0 =

𝐴∆𝜑/𝑑 on the top and −𝑄0 on the bottom. To find the remaining charge, I can

solve for the case where the two plates are grounded. When I add up the two charge

distributions, the resulting field is guaranteed to produce the desired constant electric

potential difference. The case of grounded plates is problem 3.44a in Griffiths, as

mentioned above, and I will follow his method to solve it [31].

Griffiths starts by having the student derive a relation known as Green’s Reci-

procity Theorem. (This theorem is closely related to a result due to Lorentz in

hydrodynamics, which Batchelor employs in his analysis [63].) Consider two distinct

charge distributions 𝜌1(r) and 𝜌2(r), which produce electric fields E1(r) and E2(r),

with electric potentials 𝜑1(r) and 𝜑2(r). Now use the Maxwell Equation ∇ · E = 𝜌

and the definition of electric potential E = −∇𝜑 to obtain

∫︁
𝑑𝑉E1 · E2 = −

∫︁
𝑑𝑉∇𝜑1 · E2 =

∫︁
𝑑𝑉 𝜑1∇ · E2

=

∫︁
𝑑𝑉 𝜑1𝜌2 (D.11)

= −
∫︁

𝑑𝑉∇𝜑2 · E1 =

∫︁
𝑑𝑉 𝜑2∇ · E1

=

∫︁
𝑑𝑉 𝜑2𝜌1 (D.12)

where I are integrating over all space, and have used integration by parts to switch

the ∇ from 𝜑 to E.

I thus obtain Green’s Reciprocity Theorem:

∫︁
𝑑𝑉 𝜑1𝜌2 =

∫︁
𝑑𝑉 𝜑2𝜌1. (D.13)

Now I use this relation to compute the induced charge on my plates. I will start by

computing the induced charge due to a point charge 𝑞 at location r = (𝑥, 𝑦, 𝑧). I will

work in coordinates where the bottom plate is at 𝑦 = 0 and the top is at 𝑦 = 𝑑.

To apply the Reciprocity Theorem, I choose for 𝜌1 the charge distribution we’re
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interested in, with the point charge between the grounded parallel plates. I define

𝑄+ as the total induced charge on the top plate and 𝑄− as the total induced charge

on the bottom plate. For 𝜌2, I choose a charge distribution with conducting plates

in the same locations, but with the top plate fixed at electric potential 𝜑0 above

the bottom one, and with no charge in the space between them. The LHS of the

Reciprocity Theorem vanishes, because 𝜑1 = 0 whenever 𝜌2 is nonzero. The RHS

has a contribution from the charge distribution on the top plate, and a contribution

from the particle. If the plates are infinite, then the potential a distance 𝑦 above the

bottom plate in scenario 2 is exactly (𝑦/𝑑)𝜑0. This will still be a good approximation

in a finite system for charges that are not too close to the edges of the system, which

will be true for the charges on the vast majority of the spheres when the number of

spheres is large. Thus I obtain:

0 = 𝜑0𝑄+ + 𝜑0
𝑦

𝑑
𝑞. (D.14)

Solving for 𝑄+, I find

𝑄+ = −𝑦

𝑑
𝑞. (D.15)

Now I again use the linearity of my equations to obtain the total induced charge by

summing up the contributions from all the infinitesimal charge elements in the distri-

bution. A convenient way to perform this sum is to split up the charge distribution

on each sphere into two parts: a spatially uniform part equal to the mean surface

charge on the sphere, and spatially varying part that integrates to zero over each

sphere surface.

D.3.1 Contribution of Variations about the Mean

I start by computing the contribution of the second part of the charge distribution.

Since this part of the charge sums to zero on each sphere, every positive charge 𝛿𝑞 has

a corresponding negative charge −𝛿𝑞 somewhere else on the sphere. The net induced
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charge from each such pair is

𝛿𝑄+ =
𝛿𝑞

𝑑
(𝑦− − 𝑦+) (D.16)

where 𝑦− and 𝑦+ are the coordinates of the +𝛿𝑞 and −𝛿𝑞 charges, respectively. Now

recall that by ignoring hydrodynamic interactions, I can solve for the charge distribu-

tion over each sphere without knowing its position relative to the plates or the other

particles. Furthermore, the linearity of the governing equations implies that the vari-

ations about the mean charge density are independent of the size of the mean. This

implies that the 𝑦-distance 𝑦− − 𝑦+ between any pair of charges on a single sphere is

independent of the spatial configuration of the particles and of the total charge 𝑞𝑖 of

the particle in question.

Summing over all pairs of charges from all the spheres in the sample, I define the

quantity

𝑄𝐻 =
∑︁

𝛿𝑄+ (D.17)

as the total induced charge due to the variations about the mean charge on the surface

of the spheres. This quantity is independent of the particle positions, and just adds

a constant offset to the total charge. The 𝐻 subscript stands for “hydrodynamic,”

because this contribution comes purely from the friction of the flow field around each

particle.

D.3.2 Contribution of the Mean Charge

To complete my calculation, I must compute the charge induced on the plate by

a given configuration of uniformly charged spheres. Since the field of a uniformly

charged sphere is equivalent to the field of a point charge (for points outside the

surface of the sphere), I can simply evaluate the point charge solution derived above
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for every particle, and add them all up. I thus find

𝑄𝐼 = −
∑︁
𝑖

𝑦𝑖
𝑑
𝑞𝑖. (D.18)

Combining the above results, I find that the total induced charge on the top plate is

𝑄 = 𝑄𝐼 + 𝑄0 + 𝑄𝐻 , with 𝑄𝐼 the only term that depends on the particle positions.

D.4 Mapping Back to Hydrodynamics

I can now map back into the original variables (recalling that charge is equivalent to

minus the force exerted by the fluid) in order to obtain the total force exerted by the

fluid on the moving wall of the shear apparatus:

𝐹wall =
∑︁ 𝑦𝑖

𝑑

(︃∑︁
𝑗 ̸=𝑖

x̂ · F𝑗𝑖

)︃
+ 𝐹0 + 𝐹𝐻 . (D.19)

I can simplify this expression by using the fact that F𝑗𝑖 = −F𝑖𝑗:

𝐹wall =
1

2𝑑

∑︁
𝑖 ̸=𝑗

x̂ · F𝑖𝑗∆𝑦𝑖𝑗 + 𝐹0 + 𝐹𝐻 . (D.20)

Finally, I can divide through by the area 𝐴 of the wall to obtain the mean shear stress

exerted on the wall by the fluid:

𝜎wall
𝑥𝑦 = 𝜎𝐼

𝑥𝑦 + 𝜎0
𝑥𝑦 + 𝜎𝐻

𝑥𝑦 (D.21)

where

𝜎𝐼
𝑥𝑦 =

1

2𝑉

∑︁
𝑖 ̸=𝑗

x̂ · F𝑖𝑗∆𝑦𝑖𝑗 (D.22)

and the other two terms are independent of the particle positions. For notational

simplicity, I combine them into one term in the main text, which I call 𝜎0
𝑥𝑦.
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