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Abstract

In this thesis, we consider online optimization problems that are characterized by
incrementally revealed input data and sequential irrevocable decisions that must be
made without complete knowledge of the future. We employ a combination of mixed
integer optimization (MIO) and robust optimization (RO) methodologies in order to
design new efficient online algorithms that outperform state-of-the-art methods for
many important practical applications. We empirically demonstrate that RO-based
algorithms are computationally tractable for instances of practical size, generate more
cost-effective decisions and can simultaneously model a large class of similar online
problems due to exceptional modeling power of MIO.

In Part I, we consider the well-known 𝐾-server problem from the perspective
of robust adaptive optimization. We propose a new tractable mixed integer linear
formulation of the 𝐾-server problem that incorporates both information from the
past and uncertainty about the future. By combining ideas from classical online
algorithms developed in the computer science literature and robust and adaptive
optimization developed in the operations research literature we propose a new method
that (a) is computationally tractable, (b) almost always outperforms all other methods
in numerical experiments, and (c) is stable with respect to potential errors in the
assumptions about the future.

In Part II, we consider several extensions of the asset-based weapon-to-target as-
signment problem whose objective is to protect ships in a fleet from incoming threats.
We demonstrate that the new highly nonlinear MIO formulation (a) can be combined
with lazy constraints techniques allowing the system designer to find optimal solu-
tions in real time, (b) can be extended to the multiperiod setting, and (c) admits a
decentralized solution with limited loss of optimality.

In Part III, we present a novel covariate-adaptive optimization algorithm for online
allocation in clinical trials. The new approach leveraging MIO and RO techniques
(a) guarantees a better between-group covariate balance in comparison with state-
of-the-art methods, (b) yields statistical power at least as high as, and sometimes
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significantly higher than, randomization-based algorithms, and (c) is well protected
against selection, investigator and accidental bias.
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Chapter 1

Introduction

Every computational algorithm that solves a particular numerical problem performs

a sequence of operations with input data in order to generate a final output deci-

sion. There are two large classes of algorithms that differ from each other based on

availability of all problem data ahead of time. An offline algorithm is given all input

data from the very beginning, while an online algorithm, on contrary, receives prob-

lem data sequentially piece by piece and is obliged to immediately respond without

knowing the future data with certainty.

The primary focus of this thesis is the class of online problems that has nu-

merous important applications. First, some remarkable optimization problems are

intrinsically online, for instance, in the decision-making domains where waiting for

all relevant information is costly or impossible (multi-armed bandit, secretary, paging

problems). Second, there are some fundamental optimization problems that can be

formulated and considered as deterministic programs (bin packing, load balancing,

scheduling and matching). However, their online counterparts may have much higher

relevance and practical value. The reason is that the offline formulations typically

exploit estimations of future parameters (but the quality of the best available forecast

can be poor) and they do not address potential unexpected events that may dramat-

ically affect the system. The online approach may significantly alleviate both these

concerns.

In this introductory chapter, we briefly discuss existing frameworks for model-
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ing and solving online problems (Section 1.1). We also present a generic modeling

approach based on a combination of Mixed Integer Optimization (MIO) and Robust

Optimization (RO) that is the core of all online algorithms designed in this thesis. The

proposed optimization-based framework has a large number of modeling, qualitative

and numerical advantages that we discuss in Section 1.2. Finally, in Section 1.3, we

introduce three optimization problems from different decision-making domains that

serve as practical examples that the proposed MIO approach may significantly outper-

form existing online algorithms in terms of efficiency, robustness and computational

tractability.

1.1 Online Computation and Optimization

The generic concept of an optimization problem 𝑃 includes several standard ingredi-

ents: input data 𝐷, decision variables 𝑋 that belong to a feasible set 𝐹 (𝐷) as well as

the system performance measure or a cost function 𝐶(𝐷,𝑋). In offline computation,

the problem data 𝐷 are assumed to be known exactly and to be fully available for

the decision-maker in the very beginning of the calculation process. In an online set-

ting, however, a sequence of actions produced by an algorithm must be made based

on the past and current fragments of the input data, while information about the

future remains uncertain. More precisely, the sequential model of the online problem

assumes that there is a discrete sequence of time periods 𝑡 = 1, . . . , 𝑁 , and input

data 𝐷 = (𝐷1, . . . , 𝐷𝑁) are revealed incrementally, that is, at any given time-step

𝜏 ∈ {1, . . . , 𝑁} a decision 𝑋𝜏 (as a fragment of a series of actions 𝑋 = (𝑋1, . . . , 𝑋𝑁))

must be made solely based on 𝐷1, . . . , 𝐷𝜏 .

Let 𝜉 denote the vector of variables representing uncertainty of the future input

data that affects the optimization problem 𝑃 . In this case, online optimization of

𝐶(𝐷,𝑋; 𝜉) under uncertainty 𝜉 admits a large number of modeling approaches that

vary in assumptions about uncertain parameters, computational complexity and level

of conservatism. Below we briefly outline a few popular methodologies for online op-

timization including stochastic optimization, competitive analysis and RO approach,
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which is a primary tool used in this thesis.

Stochastic Optimization

One of the frameworks to studying online algorithms is stochastic optimization,

whereby one may model uncertain parameters 𝜉 of the problem 𝑃 as random vari-

ables with some additional assumptions about their probabilistic distribution. This

approach implies that the objective function 𝐶(𝐷,𝑋; 𝜉) and constraints describing

the feasible set 𝐹 (𝐷; 𝜉) can be random. The stochasticity in linear problems was first

considered and modeled by Dantzig in his seminal work [1955], while Charnes and

Cooper [1959] introduced a concept of chance constrained and percentile optimization.

In the setting of partially random input data, one may study the system perfor-

mance in terms of expected value of the cost function

min
𝑋∈𝐹 (𝐷; 𝜉)

E𝜉∼Ξ

[︁
𝐶(𝐷,𝑋; 𝜉)

]︁
, (1.1)

where mathematical expectation is calculated with respect to uncertainty parameters

𝜉 that follow some prespecified distribution Ξ.

Stochastic optimization has been applied widely to different online problems,

for instance, scheduling [Rothkopf, 1966, Möhring et al., 1984], routing [Bent and

Van Hentenryck, 2003, Oyola et al., 2016], matching problems [Karp et al., 1990], as

well as combinatorial auctions [Hoos and Boutilier, 2000] and ad allocation problems

[Mehta et al., 2007]. However, this approach has several major drawbacks. First, it is

not always possible to identify or even approximate properly underlying probability

distribution Ξ due to a lack of relevant historical data, especially if this distribution

is not stable and varies over time. Second, even if we are able to determine a good

distribution fit to the available data, results of optimization (1.1) can be very sensitive

to assumptions about probability distribution Ξ. Finally, in a multiperiod dynamic

scenario, computational complexity of problem (1.1) grows exponentially in a length

of the optimization horizon. While recent computational advances permit stochastic

linear formulations to be solved efficiently, generic nonlinear models or models with

integrality constraints still impose major tractability challenges for practitioners.

19



Competitive Analysis

An alternative approach to solving problems with incrementally revealed data,

that does not require any assumptions about neither probability distribution nor the

structure of the uncertainty, is competitive analysis. The key idea of this framework

is to measure the performance of an online algorithm A in terms of its competitive

ratio, that for cost minimization problems can be defined as follows:

sup
𝐼∈ℐ

𝐶A(𝐼)

𝐶𝑂𝑃𝑇 (𝐼)
, (1.2)

where supremum is taken with respect to all possible instances of input data ℐ and

OPT denotes the optimal offline method that has full knowledge of the future.

Probably the first description of ideas behind competitive analysis applied to al-

location of jobs among identical computer processors is due to Graham [1969], while

Yao considered the performance of heuristic online bin packing algorithms in [1980].

The first methodical analysis of online algorithms was published by Sleator and Tar-

jan [1985] and Karlin et al. [1986]. We refer the reader to [Borodin and El-Yaniv,

2005, Albers, 1996] as well as [Jaillet and Wagner, 2010] for a comprehensive survey

of a wide selection of applications and techniques leveraging competitive analysis.

At the same time, this online computation framework has a number of practical

limitations. First, given that the competitive ratio defined by (1.2) is a worst-case

metric with respect to all possible realizations of input data, the resulting online

algorithms may generate overly conservative decisions. Furthermore, there are no

straightforward parameters that a decision maker can tune in order to control the

level of conservatism. Second, online algorithms are typically heuristic (therefore,

potentially suboptimal) and ad hoc, that is each online problem usually requires its

own new approach for designing a method that would solve it efficiently. Finally,

competitive analysis framework does not incorporate any assumptions about the un-

certain future (despite the fact that some valuable information may be available) and

relies only on the historical data observations.

Robust Optimization
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The primary goal of the RO framework is to protect the system against all possible

realizations of uncertainty that reside in prespecified deterministic uncertainty set,

rather than assume probability distributions describing the system stochasticity. This

immunization can be modeled via the following formulation:

min
𝑋∈𝐹 (𝐷; 𝜉)

max
𝜉∈𝑈(Γ)

𝐶(𝐷,𝑋; 𝜉),

where uncertainty set 𝑈(Γ) is parametrized by Γ, which controls the size of the set

and the level of the model conservatism.

Robust optimization methodology was first introduced by Ben-Tal and Nemirovski

[1998, 1999], who considered the linear programming formulations with ellipsoidal un-

certainty sets that turned out to be equivalent to computationally tractable second

order cone problems. The pioneering work on robust solutions of quadratic and

semidefinite programs is due to El Ghaoui and Lebret [1997], El Ghaoui et al. [1998].

Bertsimas and Sim [2003, 2004], Bertsimas et al. [2004] discuss risk measures and

trade-offs between system efficiency and its robustness with respect to input data un-

certainty. The authors demonstrate that linear programs with polyhedral uncertainty

sets admit robust counterparts in a form of tractable linear optimization problem, and

that the price of injected robustness is low. We refer the reader to [Ben-Tal et al.,

2009, Bertsimas et al., 2011, Gorissen et al., 2015] for both theoretical and practical

details on RO.

In this thesis, we leverage robust optimization methodology in order to model

system uncertainty. The major practical benefits of this approach that motivate its

implementation are:

1. Numerical tractability, i.e., the ability to solve instances of practical size within

reasonable time for a giving application.

2. Avoiding the difficulty of fitting a probability distribution to available data.

3. Efficient system performance with low price of robustness.

4. Ability to regulate the level of model conservatism.
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5. Probabilistic guarantees of problem feasibility [Bertsimas and Sim, 2004].

6. Practical data-driven guidelines for constructing uncertainty sets based on his-

torical data [Bertsimas and Brown, 2009, Bertsimas et al., 2017].

1.2 Proposed Framework

Mixed Integer Optimization is recognized to be a powerful and universal tool to

modeling and solving a wide spectrum of both offline and online problems [Jünger

et al., 2009]. At the same time, it is well known that even in the simpler offline setting

solving a nominal optimization problem that exploits estimated parameters can be

practically useless due to severe sub-optimality, sensitivity or even infeasibility of a

generated solution. Needless to say, that in the online framework, the problem of

uncertain input data becomes even more relevant.

In this thesis, we employ a combination of MIO and RO methodologies to process

online optimization problems under uncertainty. The benefit of implementing this

combination is threefold. First, it turns out that many important online problems

from different decision-making domains can be modeled in the form of mixed integer

multiperiod optimization problem due to exceptional modeling power of MIO. Second,

there is a natural split of input parameters into two groups: certain (that have already

been realized and are known to an algorithm) and uncertain (that represent unknown

future fragments of input data). Finally, RO methodology allows the system designer

to incorporate useful and relevant information about future parameters by means

of uncertainty set rather than just to use only historical observations. The generic

schema that we leverage in this thesis in order to produce efficient RO algorithms for

specific complex online problems can be described as follows:

1. Formulate an online problem as a mixed integer (potentially nonlinear) discrete-

time multiperiod optimization problem.

2. Employ robust optimization techniques and solve the problem. Extract current

time-step decisions from the optimal solution.
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3. Address specific practical needs of the online problem: reduction of solving time,

incorporation of communication, injection of randomization, etc.

4. Run computational experiments demonstrating the edge of RO-based algo-

rithms in comparison with existing heuristics.

This schema is not new and proven to be practically advantageous in many fields

including supply chain [Thiele, 2004], finance [Bandi and Bertsimas, 2014], energy

[Bertsimas et al., 2013], etc. We build upon recent advances in mathematical opti-

mization and amplify the power of MIO and RO approach by considering new impor-

tant applications. We also demonstrate the following advantages of the optimization

framework that augment the list in the end of Section 1.1:

∙ Universality. MIO formulations are often flexible and, therefore, model a class

of similar online problems.

∙ Fast computation. MIO formulations can be combined with lazy constraints

techniques in order to expedite solving of large-scale and nonlinear problems.

∙ Decentralization. When combined with RO techniques, MIO problems modeling

the centralized multi-agent setting may admit extensions to the distributed

setting via introduction of auxiliary communication decision variables.

1.3 Thesis Outline and Main Contributions

The primary objective of this thesis is to demonstrate that the aforementioned advan-

tages of robust and mixed-integer optimization often allow a practitioner to design

brand new efficient algorithms for solving online problems that outperform state-of-

the-art methods. We consider three applied online optimization problems under un-

certainty originating from different decision-making domains: scheduling and dynamic

resource allocation (Chapter 2), multi-agent cooperation (Chapter 3) and sequential

clinical trials (Chapter 4). We empirically prove that in all three considered settings
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robust optimization-based algorithms are computationally tractable for instances of

practical size, and they generate decisions with better final objective values.

Chapter 2. The 𝐾-Server Problem.

In Chapter 2, we reconsider the well-known 𝐾-server problem from the perspective

of mixed integer, robust and adaptive optimization. Existing online methods typically

exploit only information from the past in order to make the next decision. We propose

a new tractable mixed integer linear formulation of the 𝐾-server problem that includes

both information from the past and available assumptions about the future.

Combining ideas behind an existing online method called the Work Function Al-

gorithm and adjustable robust optimization, we design a new method that inherits

positive properties of both approaches:

(a) It is computationally tractable.

(b) It gradually outperforms pure online algorithms and classical adaptive optimiza-

tion methods when increasing information about the future becomes available.

(c) It is stable with respect to potential errors in the assumptions about the future.

Research in Chapter 2 is a joint work with Prof. Dimitris Bertsimas and Prof.

Patrick Jaillet. The paper titled “The 𝐾-Server Problem via a Modern Optimization

Lens” is submitted to INFORMS Journal on Computing.

Chapter 3. The Fleet Defense Problem.

In Chapter 3, we consider several extensions of the asset-based weapon-to-target

assignment problem whose objective is to protect assets in a fleet from incoming

threats.

(a) We prove that this highly nonlinear mixed integer optimization problem can

be efficiently solved with lazy constraints techniques, and therefore optimal

solutions can be obtained online for instances of practical size.

(b) We design a new MIO formulation for multiperiod scenarios, when the fleet has

to plan the defense strategy for several consecutive attacks.
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(c) We develop communication and coordination protocols for the decentralized

version of the problem, in which captains of the assets have to make local deci-

sions based on their own objectives and some limited communication with other

ships. The suggested protocol uses robust optimization principles and gener-

ates weapon assignments that significantly improve upon a no-communication

decentralized solution.

Research in Chapter 3 is a joint work with Prof. Dimitris Bertsimas and Prof.

Patrick Jaillet. The paper titled “Multiperiod Optimization for Fleet Defense: Cen-

tralized and Distributed Approaches” is submitted to European Journal of Operational

Research.

Chapter 4. Sequential Clinical Trials.

Pharmaceutical companies spend tens of billions of dollars each year to operate

multi-year clinical trials needed for the approval of new drugs. In Chapter 4, we

present a novel covariate-adaptive optimization algorithm for online allocation in

clinical trials that leverages robust mixed integer optimization and has the following

practical benefits:

(a) In all tested scenarios, the proposed method guarantees a better between-groups

covariate balance in comparison with state-of-the-art covariate-adaptive ran-

domization approaches.

(b) A new algorithm also yields statistical power at least as high as, and sometimes

significantly higher than, randomization-based methods. We present a setting

in which our algorithm achieves a desired level of power at a sample size 25-50%

smaller than that required with state-of-the-art approaches.

(c) We empirically demonstrate that the proposed algorithm is well protected against

selection, investigator and accidental bias.

(d) We prove that a complex robust optimization formulation with second order

constraints and ellipsoidal uncertainty set admits a closed-form solution, what
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makes suggested algorithm to be applicable not just for clinical trials, but also

for settings requiring real-time decisions.

Research in Chapter 4 is a joint work with Prof. Dimitris Bertsimas and Alexander

M. Weinstein. The paper titled “Covariate-adaptive Optimization in Online Clinical

Trials” is submitted to Biometrics.
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Chapter 2

The 𝐾-Server Problem

2.1 Introduction

The 𝐾-server problem, introduced by Manasse et al. [1990], is one of the most funda-

mental problems considered from the perspective of online algorithms and competitive

analysis [Borodin and El-Yaniv, 2005]. Given a metric space 𝑆, 𝐾 mobile servers are

initially located at some predefined points in that space. Over time, service requests

appear successively at different locations in the space. Upon knowing the location of

the request, one has to immediately dispatch one of 𝐾 servers to this location. The

cost associated with the assignment is the distance between the location of the server

and the location of the request. The objective is to minimize the total cost of serving

requests, that is the sum of distances traveled by all servers over a given time horizon.

The typical setting for the 𝐾-server problem requires that assignment decisions be

made in online fashion, that is, by considering only the current and the past requests.

The offline version of the 𝐾-server is to find an optimal strategy of serving a finite

sequence of known requests.

In the online context, one does not have information about precise locations of

future requests, this is why online algorithms may incur significantly worse costs

than an optimal offline method. One of the common ways to assess the quality of

an online algorithm is via its competitive ratio, that is the worst-case ratio between

the performance of the online algorithm and the optimal offline clairvoyant over all
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instances of the problem [Sleator and Tarjan, 1985, Borodin and El-Yaniv, 2005].

The 𝐾-server problem together with its variants have many practical applications.

First of all, the 𝐾-server problem is a generalization of important caching/paging

problems that arise in disciplines such as computer science [Sleator and Tarjan, 1985],

statistics [Raghavan, 1992], mathematics [Du and Hwang, 1993] and many others.

The so-called Cable News Network (CNN) problem where servers move along the

lines [Koutsoupias and Taylor, 2000], as well as its simpler versions, such as the

bridge and the cow path problem, are also examples that possess the structure of

the 𝐾-server problem. Additionally, this problem has applications in graph theory,

certain scheduling problems [Burley, 1996] and in the theory of metrical task systems

[Borodin et al., 1992].

Many online algorithms for solving the 𝐾-server problem have been suggested

in the literature [Rudec et al., 2013, Floratos and Boppana, 1997]. They differ in

their competitive ratios, tractability and amount of historical data they use in order

to make the online assignment decisions. In general, the more information is used,

the better the performance of the online method is. The Work Function Algorithm

(WFA) [Borodin and El-Yaniv, 2005] is one of the most important online algorithms

for the 𝐾-server problem from both theoretical perspective of competitiveness and

practical performance [Rudec et al., 2013]. It considers the full amount of historical

data to make its online decisions, as opposed to other simpler online methods.

In practice, it is often the case that information about past observations can lead

to some reasonable, data-driven assumptions about the future. In this chapter, the

online version of the 𝐾-server problem is considered from the perspective of mixed

integer optimization (MIO), robust optimization (RO) and adaptive optimization.

We combine several optimization techniques and present a new holisitic adaptive

optimization method that simultaneously incorporates both information from the

past and assumptions about the future, giving a significant edge in the performance

of the algorithm.

More specifically, the major contributions of this chapter can be summarized as

follows:
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1. We propose a new MIO formulation of the offline version of the 𝐾-server prob-

lem. This formulation is computationally tractable and can model many prac-

tical generalizations of the classical problem.

2. We introduce robust and affine adaptive counterparts of the online 𝐾-server

problem by modeling the uncertainty of the positions of future requests as an

uncertainty set in the context of the new MIO approach. To the best of our

knowledge, this is the first application of robust optimization to online algo-

rithms.

3. We design a new algorithm called the Holistic Adaptive Robust Optimization

(HARO) method by combining ideas of the WFA and affine adaptive robust

optimization (AARO) techniques. To the best of our knowledge, this is the

first algorithm that combines ideas from the computer science and operations

research tradition in the context of online algorithms.

4. We empirically demonstrate that the HARO method is tractable and almost

always outperforms all other methods considered including WFA and AARO.

HARO remains the best method for various settings: finite and continuous met-

ric space 𝑆, uniform and non-uniform distribution of the requests and different

number of servers and locations. Moreover, HARO is stable with respect to

potential errors in the uncertainty set describing the future time stages.

The rest of the chapter is organized as follows. In Section 2.2, we briefly discuss

existing online algorithms for solving the 𝐾-server problem. We represent the offline

variant of the 𝐾-server problem as a mixed binary optimization problem. We also

give a MIO formulation of the WFA procedure. In Section 2.3, we extend the offline

formulation from Section 2.2 to the online setting of the 𝐾-server problem and design

its RO and AARO counterparts. In Section 2.4, we introduce the new HARO method

combining the formulations of WFA and AARO algorithms. In Section 2.5, we con-

sider generalizations of the HARO approach that can be adapted to different settings.

We consider various types of the underlying metric space 𝑆 (multidimensional and/or
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finite) with different distance functions, as well as weighted version of the HARO al-

gorithm. In Section 2.6, we give examples of possible uncertainty sets and describe a

way to measure varying amount of information about future requests. In Section 2.7,

we present our numerical results and empirically prove the computational tractability,

efficiency and stability of the proposed HARO method.

2.2 Problem Formulation and Existing Methods

In this section, we first describe in detail the specific variants of the 𝐾-server prob-

lem that we consider. We also present a brief overview of the most frequently used

online algorithms for solving this class of problems. Finally, we introduce a new MIO

formulation of the offline 𝐾-server problem and a MIO formulation generating the

decisions made by the WFA. For the sake of clarity, the formulations in this section

are designed for problems with many simplifying assumptions, most of which will be

relaxed in Section 2.5.

2.2.1 Basic One-dimensional Version of the 𝐾-Server Problem

We consider a one-dimensional continuous compact metric space 𝑆 = [0, 1] with

standard Euclidean metric 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|. We assume that there are 𝐾 mobile

servers within 𝑆 that should respond to the requests that appear sequentially in 𝑆.

The starting locations of the servers, x̂0 = {𝑥̂0
𝑘 ∈ 𝑆 | 𝑘 = 1, . . . , 𝐾}, are assumed to

be known and form the initial configuration of the system. In what follows, we put

a “hat” symbol on variables with known values to emphasize the difference between

input data and uncertain parameters of the problem.

The sequence of request locations {𝜎𝑡 ∈ 𝑆 | 𝑡 ≥ 1, 𝑡 ∈ Z} appears in an online

fashion. At any time-step 𝜏 , the locations of only the first 𝜏 requests {𝜎̂1, . . . , 𝜎̂𝜏}

are known to the online decision maker. At time-step 𝜏 the new revealed request

at location 𝜎̂𝜏 should be immediately served by a server 𝑘 ∈ {1, . . . , 𝐾}, where 𝑘 is

chosen according to a proposed algorithm A, and before the next request is revealed

at time-step 𝜏 + 1. In this case, the configuration of the system, described by the
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vector of the locations of all 𝐾 servers, x𝜏 , changes according to the rule

x𝜏−1 = {𝑥𝜏−1
1 , . . . , 𝑥𝜏−1

𝑘−1, 𝑥
𝜏−1
𝑘 , 𝑥𝜏−1

𝑘+1, . . . , 𝑥
𝜏−1
𝐾 } ↦→

x𝜏 = {𝑥𝜏−1
1 , . . . , 𝑥𝜏−1

𝑘−1, 𝜎̂𝜏 , 𝑥
𝜏−1
𝑘+1, . . . , 𝑥

𝜏−1
𝐾 }.

When the server 𝑘 is assigned to the new request at location 𝜎̂𝜏 it incurs the cost

𝑑(𝑥𝜏−1
𝑘 , 𝜎̂𝜏 ) ≥ 0, where 𝑥𝜏−1

𝑘 ∈ 𝑆 denotes the position of server 𝑘 at the end of time-

step 𝜏 − 1. The objective of an online algorithm A is to minimize the overall total

distance traveled by all 𝐾 servers. The basic version of the 𝐾-server problem assumes

that a request cannot be canceled or postponed, does not incur service time while

being served, and that the time it takes for a server to move between locations is

negligible. As a result, when a new request 𝜎̂𝜏 appears, all 𝐾 servers are available to

be assigned.

2.2.2 Offline and Online Algorithms

In this subsection, we briefly discuss various well-known algorithms (both offline and

online) for solving the 𝐾-server problem [Rudec et al., 2013, Floratos and Boppana,

1997].

First of all, if the sequence of requests 𝜎 is finite of known length 𝑁 , and all

components of the vector 𝜎 = (𝜎1, . . . , 𝜎𝑁) are known ahead of time, then the corre-

sponding offline linear optimization problem can be modeled as a standard network

flow optimization problem [Chrobak et al., 1991, Bazaraa et al., 2011] that can be

solved efficiently. The objective value of such an offline optimal solution represents a

benchmark for evaluating the performance of online algorithms.

One way of measuring the quality of an online algorithm A is its competitive

ratio as introduced in Sleator and Tarjan [1985]. Let us assume that 𝐶𝑂𝑃𝑇 (x̂0,𝜎)

and 𝐶A(x̂0,𝜎) are the total costs incurred by an offline algorithm OPT and an online

algorithm A, respectively, for the 𝐾-server problem with initial locations of the servers

x̂0 and a sequence of requests 𝜎. If there are constants 𝑐1 > 0 and 𝑐2 such that for
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any input data of the problem x̂0 and 𝜎 the following inequality holds

𝐶A(x̂0,𝜎) ≤ 𝑐1 · 𝐶𝑂𝑃𝑇 (x̂0,𝜎) + 𝑐2, (2.1)

then the algorithm A is said to be 𝑐1-competitive. In that case, the competitive

ratio of A is defined as the infimum of all 𝑐1 such that A is 𝑐1-competitive. When

no such finite constants exist, then the online algorithm A is sometimes called non-

competitive.

Probably the most straightforward deterministic online algorithm for solving the

𝐾-server problem is GREEDY. This method assigns the closest server to the request.

Despite the fact that it is not competitive for any fixed value of 𝑐1, the empirical

experiments presented in [Rudec et al., 2013] demonstrate that in many different

settings GREEDY performs reasonably well. BALANCE is another deterministic

non-competitive algorithm that tries to keep the total traveled distance by all servers

as equal as possible. It assigns a server whose cumulative distance traveled so far plus

the distance to the new request location is smallest [Chrobak et al., 1991].

In contrast to deterministic algorithms (like GREEDY and BALANCE), random-

ized algorithms contain random steps as part of their design. In this case, the notion of

a competitive ratio can be generalized from the perspective of expected costs produced

by the algorithms [Borodin and El-Yaniv, 2005]. The competitiveness of randomized

online algorithms depends on the adversary model under consideration (oblivious,

adaptive online or adaptive offline). We will assume here an oblivious adversary that

knows the probability distributions underlying the proposed randomized algorithm

A, but not their realizations. In this case, one modifies the definition (2.1) as

E𝐶A(x̂0,𝜎) ≤ 𝑐1 · 𝐶𝑂𝑃𝑇 (x̂0,𝜎) + 𝑐2, (2.2)

where E[·] is the mathematical expectation operator taken with respect to the random

choices made by A.

A natural randomized online algorithm, called RAND, chooses a server for each

request randomly with equal probability. However, it ignores historical data and dis-
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tances from the servers to the current request location. The HARMONIC algorithm,

introduced by Raghavan and Snir [1989], randomizes between servers with probabil-

ities inversely proportional to distances between their locations and the position of

the request. This method is also memoryless and 𝑂(2𝐾 𝑙𝑜𝑔(𝐾))-competitive against

an adaptive online adversary [Bartal and Grove, 2000], and no better result is known

for HARMONIC, even against the weaker oblivious adversary.

One of the most important online algorithms for the 𝐾-server problem is WFA

[Rudec et al., 2013, Koutsoupias and Papadimitriou, 1995]. At time-step 𝜏 this de-

terministic method selects a server 𝑘* as the solution of the following optimization

problem:

𝑘* = arg min
𝑘=1,...,𝐾

{︁
𝐶𝑂𝑃𝑇

(︀
x̂0, 𝜎̂1, . . . , 𝜎̂𝜏 , x̂

𝜏 (𝑘)
)︀

+ 𝑑(𝑥̂𝜏−1
𝑘 , 𝜎̂𝜏 )

}︁
, (2.3)

where the vector x̂𝜏 (𝑘) =
(︀
𝑥̂𝜏
1(𝑘), . . . , 𝑥̂𝜏

𝐾(𝑘)
)︀

is defined as follows:

𝑥̂𝜏
𝑗 (𝑘) =

⎧⎪⎨⎪⎩𝑥̂𝜏−1
𝑗 , if 𝑗 ̸= 𝑘

𝜎̂𝜏 , if 𝑗 = 𝑘.

The first term in (2.3), 𝐶𝑂𝑃𝑇

(︀
x̂0, 𝜎̂1, . . . , 𝜎̂𝜏 , x̂

𝜏 (𝑘)
)︀
, is called the work function. It

represents the optimal value of the offline problem with the known sequence of re-

quests 𝜎̂1, . . . , 𝜎̂𝜏 and fixed initial and final configurations x̂0 and x̂𝜏 (𝑘), respectively.

Intuitively, WFA tries to find a good balance between a strategic solution (represented

by the work function term) and a greedy solution (second term of (2.3)). There are

some important generalizations of the WFA method [Rudec et al., 2013], including

a truncated version 𝑤-WFA, when only the most recent 𝑤 observations are included

into the optimization of the work function

𝐶𝑂𝑃𝑇

(︀
x̂𝜏−𝑤, 𝜎̂𝜏−𝑤, . . . , 𝜎̂𝜏 , x̂

𝜏 (𝑘)
)︀
, (2.4)

and a weighted counterpart WFA𝜆 proposed for some applications [Burley, 1996], in
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which there is a positive constant weight 𝜆 in front of the second term

𝐶𝑂𝑃𝑇

(︀
x̂0, 𝜎̂1, . . . , 𝜎̂𝜏 , x̂

𝜏 (𝑘)
)︀

+ 𝜆 · 𝑑(𝑥̂𝜏−1
𝑘 , 𝜎̂𝜏 ).

For many online problems, WFA gives the best possible competitive ratio or it is

conjectured to be best possible Borodin and El-Yaniv [2005]. For example, for the

classical 𝐾-server problem it has the best known competitive ratio of 2𝐾 − 1 for

any metric space, and a competitive ratio of 𝐾 for some special cases of the prob-

lem [Chrobak et al., 1991, Koutsoupias and Papadimitriou, 1995, Koutsoupias, 1999].

Moreover, in many practical settings, WFA demonstrates superior empirical perfo-

mance in terms of total cost incurred compared to other online algorithms [Rudec

et al., 2013, Bartal and Grove, 2000]. The empirical ratio between the cost incurred

by WFA and OPT in practice is significantly smaller than the theoretical upper bound

of 2𝐾 − 1.

Taking into account the theoretical and practical value of WFA, we use this al-

gorithm as a starting point for constructing a more efficient method for solving the

𝐾-server problem from a robust and adaptive optimization point of view.

2.2.3 MIO Formulation of the Offline 𝐾-Server Problem

Let us formulate the offline version of the 𝐾-server described in Section 2.2.1 as a

multiperiod mixed binary linear problem. This model will be easily extended to more

realistic settings later by virtue of the strong modeling power of MIO.

Following the basic notation introduced in Section 2.2.1, we first define the decision

variables used in our formulation:

𝑥𝑡
𝑘 ∈ [0, 1] represents the position of server 𝑘 ∈ {1, . . . , 𝐾} at the end of time-step

𝑡 ∈ {1, . . . , 𝑁};

𝑦𝑡𝑘 ∈ {0, 1} is a binary assignment indicator equal to 1 if server 𝑘 is assigned to

request 𝜎̂𝑡.

The objective function minimizing the cumulative distance traveled by all servers
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can then be expressed as

min
𝐾∑︁
𝑘=1

𝑁∑︁
𝑡=1

|𝑥𝑡
𝑘 − 𝑥𝑡−1

𝑘 |,

where we have

𝑥𝑡
𝑘 = 𝑥𝑡−1

𝑘 + 𝑦𝑡𝑘(𝜎̂𝑡 − 𝑥𝑡−1
𝑘 ), (2.5)

that is, the location of server 𝑘 at time-step 𝑡 is either the same as it was at the

previous time-step 𝑡− 1, if 𝑦𝑡𝑘 = 0 (i.e., if server 𝑘 is not dispatch to request 𝜎̂𝑡), or is

equal to 𝜎̂𝑡, if 𝑦𝑡𝑘 = 1.

Therefore, the offline 𝐾-server problem can be formulated as the following multi-

period optimization problem:

min
x,y

𝐾∑︀
𝑘=1

𝑁∑︀
𝑡=1

|𝑥𝑡
𝑘 − 𝑥𝑡−1

𝑘 |

s.t. 𝑥𝑡
𝑘 = 𝑥𝑡−1

𝑘 + 𝑦𝑡𝑘(𝜎̂𝑡 − 𝑥𝑡−1
𝑘 ), 𝑡 = 1, . . . , 𝑁, 𝑘 = 1, . . . , 𝐾

𝑥0
𝑘 = 𝑥̂0

𝑘, 𝑘 = 1, . . . , 𝐾
𝐾∑︀
𝑘=1

𝑦𝑡𝑘 = 1, 𝑡 = 1, . . . , 𝑁

0 ≤ 𝑥𝑡
𝑘 ≤ 1, 𝑦𝑡𝑘 ∈ {0, 1}, 𝑡 = 1, . . . , 𝑁, 𝑘 = 1, . . . , 𝐾.

(2.6)

Formulation (4.2) is nonlinear due to products of the form 𝑦𝑡𝑘𝑥
𝑡−1
𝑘 . These products

can easily be linearized by introducing 𝑧𝑡𝑘 = 𝑦𝑡𝑘𝑥
𝑡−1
𝑘 and the following additional

constraints:

𝑥𝑡
𝑘 = 𝑥𝑡−1

𝑘 + 𝑦𝑡𝑘𝜎̂𝑡 − 𝑦𝑡𝑘𝑥
𝑡−1
𝑘 = 𝑥𝑡−1

𝑘 + 𝑦𝑡𝑘𝜎̂𝑡 − 𝑧𝑡𝑘,

where

𝑧𝑡𝑘 ≤ 𝑦𝑡𝑘, 𝑧𝑡𝑘 ≤ 𝑥𝑡−1
𝑘 , 𝑧𝑡𝑘 ≥ 𝑦𝑡𝑘 + 𝑥𝑡−1

𝑘 − 1.

As a result, the offline 𝐾-server problem can be formulated as a mixed binary linear

optimization problem:

min
x,y,z,v

𝐾∑︁
𝑘=1

𝑁∑︁
𝑡=1

𝑣𝑡𝑘
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s.t. For 𝑘 = 1, . . . , 𝐾; 𝑡 = 1, . . . , 𝑁 :

𝑣𝑡𝑘 ≥ 𝑥𝑡
𝑘 − 𝑥𝑡−1

𝑘

𝑣𝑡𝑘 ≥ −(𝑥𝑡
𝑘 − 𝑥𝑡−1

𝑘 )

𝑥𝑡
𝑘 = 𝑥𝑡−1

𝑘 + 𝑦𝑡𝑘𝜎̂𝑡 − 𝑧𝑡𝑘

𝑧𝑡𝑘 ≤ 𝑦𝑡𝑘 (2.7)

𝑧𝑡𝑘 ≤ 𝑥𝑡−1
𝑘

𝑧𝑡𝑘 ≥ 𝑦𝑡𝑘 + 𝑥𝑡−1
𝑘 − 1

0 ≤ 𝑥𝑡
𝑘, 𝑧

𝑡
𝑘 ≤ 1, 𝑦𝑡𝑘 ∈ {0, 1}

𝑥0
𝑘 = 𝑥̂0

𝑘, 𝑘 = 1, . . . , 𝐾

𝐾∑︁
𝑘=1

𝑦𝑡𝑘 = 1, 𝑡 = 1, . . . , 𝑁.

2.2.4 MIO Formulation of the WFA

WFA (2.3) makes successive assignment decisions for the 𝐾-server problem. At each

time-step 𝜏 (for 1 ≤ 𝜏 ≤ 𝑁), one may obtain this assignment decision as part of an

optimal solution of a MIO formulation that we present in this section.

According to the definition of WFA for a fixed time-step 𝜏 , in order to make

a locally optimal assignment decision 𝑦𝜏𝑘* , we need to know the initial locations of

the servers {𝑥̂0
𝑘 | 𝑘 = 1, . . . , 𝐾}, the sequence of requests {𝜎̂𝑡 | 𝑡 = 1, . . . , 𝜏} and the

locations of the servers at the end of time-step 𝜏 − 1, that is,

x̂𝜏−1 =
(︀
𝑥̂𝜏−1
1 , . . . , 𝑥̂𝜏−1

𝐾

)︀
.

Similarly to (2.7), instead of solving 𝐾 optimization problems of the type (2.3), we

find an optimal assignment 𝑘* by solving the following consolidated optimization

problem:

min
x,y,z,v

𝐾∑︁
𝑘=1

𝜏∑︁
𝑡=1

𝑣𝑡𝑘 +
𝐾∑︁
𝑘=1

𝑦𝜏𝑘 · 𝑑(𝑥̂𝜏−1
𝑘 , 𝜎̂𝜏 )
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s.t. For 𝑘 = 1, . . . , 𝐾 :

𝑣𝑡𝑘 ≥ 𝑥𝑡
𝑘 − 𝑥𝑡−1

𝑘 , 𝑡 = 1, . . . , 𝜏

𝑣𝑡𝑘 ≥ −(𝑥𝑡
𝑘 − 𝑥𝑡−1

𝑘 ), 𝑡 = 1, . . . , 𝜏

𝑥𝑡
𝑘 = 𝑥𝑡−1

𝑘 + 𝑦𝑡𝑘𝜎̂𝑡 − 𝑧𝑡𝑘, 𝑡 = 1, . . . , 𝜏 − 1

𝑥𝜏
𝑘 = 𝑥̂𝜏−1

𝑘 + 𝑦𝜏𝑘(𝜎̂𝜏 − 𝑥̂𝜏−1
𝑘 ) (2.8)

𝑧𝑡𝑘 ≤ 𝑦𝑡𝑘, 𝑡 = 1, . . . , 𝜏 − 1

𝑧𝑡𝑘 ≤ 𝑥𝑡−1
𝑘 , 𝑡 = 1, . . . , 𝜏 − 1

𝑧𝑡𝑘 ≥ 𝑦𝑡𝑘 + 𝑥𝑡−1
𝑘 − 1, 𝑡 = 1, . . . , 𝜏 − 1

𝑥0
𝑘 = 𝑥̂0

𝑘

0 ≤ 𝑥𝑡
𝑘, 𝑧

𝑡
𝑘 ≤ 1, 𝑦𝑡𝑘 ∈ {0, 1}, 𝑡 = 1, . . . , 𝜏

𝐾∑︁
𝑘=1

𝑦𝑡𝑘 = 1, 𝑡 = 1, . . . , 𝜏.

The only difference with the offline formulation (2.7) is that the locations of the

servers at the last time-step 𝜏 are constrained by the given configuration x̂𝜏−1 and the

objective function is augmented with the second “greedy” summand as in definition

(2.3).

The formulations of more complex problem settings with multidimensional and

finite metric spaces are discussed in Section 2.5.

2.3 The 𝐾-Server Problem from a RO Perspective

In the previous section, both formulations (2.7) and (2.8) assume that all request

locations explicitly used in the optimization programs are certain. More specifically,

vector (𝜎̂1, . . . , 𝜎̂𝑁) is a part of the input data for the offline formulation (2.7), and

vector (𝜎̂1, . . . , 𝜎̂𝜏 ) is certain in the WFA formulation (2.8) at time-step 𝜏 .

In our RO-based online algorithm framework described in Section 2.3.1, at each

time-step 𝜏 (for 1 ≤ 𝜏 ≤ 𝑁) the allocation decisions {𝑦𝜏𝑘}𝐾𝑘=1 are made by solving one

instance of a robust MIO formulation under uncertainty (2.14). More precisely, we
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build upon the deterministic formulation (2.7), assuming that at time-step 𝜏 requests

𝜎̂ = (𝜎̂1, . . . , 𝜎̂𝜏 ) are exactly known, while the future requests 𝜎 = (𝜎𝜏+1, . . . , 𝜎𝑁)

are only known up to some uncertainty. We model this uncertainty using a robust

optimization approach [Ben-Tal and Nemirovski, 2008, Bertsimas et al., 2011]. As op-

posed to stochastic optimization, it does not require the knowledge of the probability

distribution for the parameters 𝜎, but rather assumes that the uncertain data reside

in a so-called uncertainty set 𝑈 represented by a predefined bounded polyhedral set

𝑈 = {A𝜎 ≤ b,𝜎 ≥ 0}, (2.9)

where A is a given 𝑚 × (𝑁 − 𝜏) matrix and b is a given 𝑚 × 1 vector. This set of

inequalities (2.9) describes hard constraints, that is, constraint violation is impossible

for any realization of parameters 𝜎 in the uncertainty set. The robust optimiza-

tion approach developed in Section 2.3.1 leads to computationally tractable online

algorithm for the 𝐾-server problem. Moreover, it will allow us to design (in Sec-

tion 2.3.2) more advanced adaptive robust optimization methods that outperform the

basic robust counterpart.

2.3.1 Multiperiod RO Formulation of the 𝐾-Server Problem

In order to extend the deterministic formulation (2.7) to the online setting with

partially unknown values of request locations (namely, 𝜎𝜏+1, . . . , 𝜎𝑁 are uncertain at

time-step 𝜏), we need to modify two types of equalities.

First, given that any server assignment 𝑦𝑡𝑘 = 1 incurs a non-negative traveling

cost, we substitute the requirement that exactly one of 𝐾 servers should be assigned

to each of the requests with the following equivalent inequality

𝐾∑︁
𝑘=1

𝑦𝑡𝑘 ≥ 1, 𝑡 = 𝜏, . . . , 𝑁.

Second, we eliminate the following identities (used to keep track of the locations of
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the servers)

𝑥𝑡
𝑘 = 𝑥𝑡−1

𝑘 + 𝑦𝑡𝑘(𝜎̂𝑡 − 𝑥𝑡−1
𝑘 ), (2.10)

as well as the variables x from formulation (2.7). In order to do it, we notice that

the location 𝑥𝑡
𝑘 of server 𝑘 at the end of time-step 𝑡 (for 𝜏 ≤ 𝑡 ≤ 𝑁) can be expressed

as a function of the initial location 𝑥̂𝜏−1
𝑘 (part of the input data at time-step 𝜏),

the sequence of requests 𝜎 and the assignment decisions y = {𝑦𝑡𝑘 | 𝑘 = 1, . . . , 𝐾, 𝑡 =

𝜏, . . . , 𝑁}. Namely,

𝑥𝑡
𝑘 = 𝑢[𝑘, 𝑡, 𝜏 − 1] 𝑥̂𝜏−1

𝑘 + 𝑢[𝑘, 𝑡, 𝜏 ]𝜎̂𝜏 +
𝑡∑︁

𝑗=𝜏+1

𝑢[𝑘, 𝑡, 𝑗]𝜎𝑗, (2.11)

where u =
{︀
𝑢[𝑘, 𝑡, 𝑗]

}︀
are new binary variables uniquely determining locations of the

servers defined as

𝑢[𝑘, 𝑡, 𝑗] = 𝑦𝑗𝑘 ·
𝑡∏︁

𝑖=𝑗+1

(1−𝑦𝑖𝑘), 𝑘 = 1, . . . , 𝐾, 𝑡 = 𝜏−1, . . . , 𝑁, 𝑗 = 𝜏−1, . . . , 𝑡. (2.12)

For any time-step 𝑡, the server 𝑘 can be in one of the following 𝑡 − 𝜏 + 2 locations:

𝑥̂𝜏−1
𝑘 , 𝜎̂𝜏 or 𝜎𝑗 (for 𝑗 = 𝜏 + 1, . . . 𝑡). Hence, the binary indicators u must satisfy the

following constraint:
𝑡∑︁

𝑗=𝜏−1

𝑢[𝑘, 𝑡, 𝑗] = 1.

To see this let us consider all possible options. If the server 𝑘 was not assigned to any

of the requests 𝜎𝜏 , . . . , 𝜎𝑡, then it is at its initial location 𝑥̂𝜏−1
𝑘 ,corresponding in (2.11)

to the case 𝑢[𝑘, 𝑡, 𝜏−1] = 1. If the last time the server 𝑘 was assigned to a request was

𝑗 (for some 𝑗 ∈ {𝜏, . . . , 𝑡}), and was not assigned to any of the subsequent requests

𝜎𝑗+1, . . . , 𝜎𝑡, then at time-step 𝑡 it is at the location of request 𝜎𝑗, corresponding to

the case 𝑢[𝑘, 𝑡, 𝑗] = 1. We add dummy variables 𝑦𝜏−1
𝑘 := 1 (for 𝑘 = 1, . . . , 𝐾) to make

definition (2.12) correct when 𝑗 = 𝜏 − 1.

We also substitute the change of location of the server 𝑘 at time-step 𝑡 ∈ {𝜏, . . . , 𝑁}

(previously expressed as 𝑥𝑡
𝑘 − 𝑥𝑡−1

𝑘 in (2.7) and (2.8)) by a new expression 𝑑𝑡𝑘 defined
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as follows:

𝑑𝑡𝑘(u,𝜎) =
(︀
𝑢[𝑘, 𝑡, 𝜏 − 1]− 𝑢[𝑘, 𝑡− 1, 𝜏 − 1]

)︀
𝑥̂𝜏−1
𝑘 +

(︀
𝑢[𝑘, 𝑡, 𝜏 ]− 𝑢[𝑘, 𝑡− 1, 𝜏 ]

)︀
𝜎̂𝜏+

+
𝑡−1∑︁

𝑗=𝜏+1

(︀
𝑢[𝑘, 𝑡, 𝑗]− 𝑢[𝑘, 𝑡− 1, 𝑗]

)︀
𝜎𝑗 + 𝑢[𝑘, 𝑡, 𝑡]𝜎𝑡. (2.13)

Expression (2.13) depends on allocation decisions u and uncertain parameters 𝜎, and

is derived from the change of variables (2.11). Hence, in the RO-based algorithm

framework, we solve the following formulation (2.14) at each time-step 𝜏 (for 1 ≤ 𝜏 ≤

𝑁):

min
y,v,u

𝐾∑︁
𝑘=1

𝑁∑︁
𝑡=𝜏

𝑣𝑡𝑘 (2.14a)

s.t. For 𝑘 = 1, . . . , 𝐾; 𝑡 = 𝜏, . . . , 𝑁 :

𝑣𝑡𝑘 ≥ 𝑑𝑡𝑘(u,𝜎), ∀𝜎 ∈ 𝑈 (2.14b)

𝑣𝑡𝑘 ≥ −𝑑𝑡𝑘(u,𝜎), ∀𝜎 ∈ 𝑈 (2.14c)

𝑢[𝑘, 𝑡, 𝑗] ≤ 𝑦𝑗𝑘, 𝑗 = 𝜏 − 1, . . . , 𝑡 (2.14d)

𝑢[𝑘, 𝑡, 𝑗] ≤ 1− 𝑦𝑖𝑘, 𝑗 = 𝜏 − 1, . . . , 𝑡, 𝑖 = 𝑗 + 1, . . . , 𝑡 (2.14e)

𝑢[𝑘, 𝑡, 𝑗] ≥ 𝑦𝑗𝑘 +
𝑡∑︁

𝑖=𝑗+1

(1− 𝑦𝑖𝑘)− (1 + (𝑡− 𝑗)− 1),

𝑗 = 𝜏 − 1, . . . , 𝑡 (2.14f)
𝑡∑︁

𝑗=𝜏−1

𝑢[𝑘, 𝑡, 𝑗] = 1 (2.14g)

0 ≤ 𝑢[𝑘, 𝑡, 𝑗] ≤ 1, 𝑗 = 𝜏 − 1, . . . , 𝑡

𝑦𝑡𝑘 ∈ {0, 1}

𝑦𝜏−1
𝑘 = 1; 𝑢[𝑘, 𝜏 − 1, 𝜏 − 1] = 1, 𝑘 = 1, . . . , 𝐾 (2.14h)
𝐾∑︁
𝑘=1

𝑦𝑡𝑘 ≥ 1, 𝑡 = 𝜏, . . . , 𝑁. (2.14i)

The objective function (2.14a) is to minimize the total distance traveled as defined
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by constraints (2.14b) - (2.14c) and expressions (2.13). Inequalities (2.14d) - (2.14f)

characterize the linear representation of variables u (2.12). Identity (2.14g) states

that server 𝑘 at time-step 𝑡 must be in exactly one of possible locations indexed by

𝑗 = 𝜏−1, . . . , 𝑡. Constraints (2.14h) define initial values of variables, while inequalities

(2.14i) guarantee that we assign at least one server for each request.

The formulation (2.14) includes the uncertain parameters 𝜎 only in the first two

groups of inequalities describing the feasible set. As such, it is a regular robust

mixed integer linear optimization problem and has been shown to be computationally

tractable by virtue of standard duality techniques [Bertsimas et al., 2011]. We solve

the RO problem (2.14), observe an optimal solution y* and assign the server 𝑘 at

time-step 𝜏 to the request 𝜎̂𝜏 , if (𝑦𝜏𝑘)* = 1.

Similarly to the idea of the truncated 𝑤-WFA method defined in (2.4), we in-

troduce a new parameter 𝑇 for the RO formulation, which controls (and fixes) the

number of subsequent time periods taken into consideration. That is, in order to

make a decision at time-step 𝜏 , we consider the uncertainty set 𝑈 associated to

the next 𝑇 requests (𝜎𝜏+1, . . . , 𝜎𝜏+𝑇 ) only, as opposed to all remaining 𝑁 − 𝜏 re-

quests (𝜎𝜏+1, . . . , 𝜎𝑁). The truncated version of the RO formulation with parameter

𝑇 (that we denote as RO(𝑇 )) has an identical form (2.14) with the only difference in

the limits for time index 𝑡. For RO(𝑇 ) algorithm, we substitute 𝑡 = 𝜏, . . . , 𝑁 with

𝑡 = 𝜏, . . . ,min(𝜏 + 𝑇,𝑁), where the new upper bound on time index guarantees that

𝑡 is always less or equal than the problem time horizon 𝑁 .

2.3.2 Affinely Adjustable Robust Formulation

In this subsection, we develop an online algorithm for the 𝐾-server problem based

on an affinely adjustable robust optimization (AARO) approach, which is a natu-

ral extension to the robust formulation (2.14). AARO is an efficient methodology

for solving multiperiod optimization problems that was first suggested by Ben-Tal

et al. [2004] and proven to yield less conservative solutions compared to the robust

optimization approach in a computationally tractable way.

The motivation for designing an AARO extension to our case is twofold. First,

41



the 𝐾-server problem is by definition a multiperiod optimization problem, justifying a

natural split of variables into two groups: non-adjustable here-and-now decisions that

should be implemented before uncertain parameters 𝜎 are realized, and adjustable

wait-and-see variables that can be determined after realization of the uncertain loca-

tions of future requests. Second, when the uncertainty set 𝑈 is not very restrictive

and does not provide a lot of information about positions of future requests, consider-

ation of the worst-case scenario (which is intrinsic to robust optimization perspective)

may lead to risk-averse and therefore potentially suboptimal solutions. The AARO

approach addresses both of these issues.

Following the idea behind AARO [Ben-Tal et al., 2004], we increase the adaptabil-

ity of the model by assuming that variables 𝑦𝑡𝑘 are affine functions of the uncertainty.

More precisely, at time-step 𝜏 ∈ {1, . . . , 𝑁} we set

𝑦𝑡𝑘 = 𝛽[𝑘, 𝑡, 𝜏 ] +
𝑡∑︁

𝑝=𝜏+1

𝛽[𝑘, 𝑡, 𝑝]𝜎𝑝, 𝑘 = 1, . . . , 𝐾, 𝑡 = 𝜏, . . . 𝑁, (2.15)

where 𝛽 =
{︀
𝛽[𝑘, 𝑡, 𝑝]

}︀
become new decision variables replacing variables y. We do

keep here-and-now decisions (previously modeled by 𝑦𝜏𝑘 , 𝑘 = 1, . . . , 𝐾) as binary

variables by imposing

𝛽[𝑘, 𝜏, 𝜏 ] ∈ {0, 1}, 𝑘 = 1, . . . , 𝐾,

while wait-and-see decisions (modeled by 𝑦𝑡𝑘, for 𝑘 = 1, . . . , 𝐾, 𝑡 = 𝜏 + 1, . . . , 𝑁) are

relaxed to be continuous variables

0 ≤ 𝑦𝑡𝑘 ≤ 1, 𝑡 = 𝜏 + 1, . . . , 𝑁,

and interpreted as probabilities that at time-step 𝑡 the server 𝑘 will be assigned to

request 𝜎𝑡. The auxiliary variables u,v from formulation (2.14) remain unchanged.

In the online AARO algorithm framework, we solve one instance of the problem

(2.16) at each time-step 𝜏 (for 1 ≤ 𝜏 ≤ 𝑁). It is a standard mixed integer linear robust
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optimization problem obtained from formulation (2.14) by substituting variables 𝑦𝑡𝑘

according to formula (2.15) as follows:

min
𝛽,u,v

𝐾∑︁
𝑘=1

𝑁∑︁
𝑡=𝜏

𝑣𝑡𝑘

s.t. For 𝑘 = 1, . . . , 𝐾; 𝑡 = 𝜏, . . . , 𝑁 :

𝑣𝑡𝑘 ≥ 𝑑𝑡𝑘(u,𝜎), ∀𝜎 ∈ 𝑈

𝑣𝑡𝑘 ≥ −𝑑𝑡𝑘(u,𝜎), ∀𝜎 ∈ 𝑈

𝑢[𝑘, 𝑡, 𝑗] ≤ 𝛽[𝑘, 𝑗, 𝜏 ] +

𝑗∑︁
𝑝=𝜏+1

𝛽[𝑘, 𝑗, 𝑝]𝜎𝑝, 𝑗 = 𝜏 − 1, . . . , 𝑡, ∀𝜎 ∈ 𝑈

𝑢[𝑘, 𝑡, 𝑗] ≤ 1−
(︁
𝛽[𝑘, 𝑖, 𝜏 ] +

𝑖∑︁
𝑝=𝜏+1

𝛽[𝑘, 𝑖, 𝑝]𝜎𝑝

)︁
,

𝑗 = 𝜏 − 1, . . . , 𝑡, 𝑖 = 𝑗 + 1, . . . , 𝑡, ∀𝜎 ∈ 𝑈

𝑢[𝑘, 𝑡, 𝑗] ≥
(︁
𝛽[𝑘, 𝑗, 𝜏 ] +

𝑗∑︁
𝑝=𝜏+1

𝛽[𝑘, 𝑗, 𝑝]𝜎𝑝

)︁
+ (2.16)

+
𝑡∑︁

𝑖=𝑗+1

(︁
1− (𝛽[𝑘, 𝑖, 𝜏 ] +

𝑖∑︁
𝑝=𝜏+1

𝛽[𝑘, 𝑖, 𝑝]𝜎𝑝)
)︁
− (1 + (𝑡− 𝑗)− 1),

𝑗 = 𝜏 − 1, . . . , 𝑡, ∀𝜎 ∈ 𝑈

0 ≤ 𝑢[𝑘, 𝑡, 𝑗] ≤ 1, 𝑗 = 𝜏 − 1, . . . , 𝑡

𝑡∑︁
𝑗=𝜏−1

𝑢[𝑘, 𝑡, 𝑗] = 1

𝐾∑︁
𝑘=1

(︁
𝛽[𝑘, 𝑡, 𝜏 ] +

𝑡∑︁
𝑝=𝜏+1

𝛽[𝑘, 𝑡, 𝑝]𝜎𝑝

)︁
≥ 1, 𝑡 = 𝜏, . . . , 𝑁, ∀𝜎 ∈ 𝑈

0 ≤ 𝛽[𝑘, 𝑡, 𝜏 ] +
𝑡∑︁

𝑝=𝜏+1

𝛽[𝑘, 𝑡, 𝑝]𝜎𝑝 ≤ 1, 𝑡 = 𝜏 + 1, . . . , 𝑁, 𝑘 = 1, . . . , 𝐾, ∀𝜎 ∈ 𝑈

𝛽[𝑘, 𝜏, 𝜏 ] ∈ {0, 1}, 𝑘 = 1, . . . , 𝐾

𝑢[𝑘, 𝜏 − 1, 𝜏 − 1] = 1; 𝛽[𝑘, 𝜏 − 1, 𝜏 ] = 1, 𝑘 = 1, . . . , 𝐾.

The resulting optimization problem (2.16) is a relaxation of the robust counterpart
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(2.14), since products of binary variables y defining 𝑢[𝑘, 𝑡, 𝑗] in (2.12) are now ap-

proximated by the corresponding affine expressions in terms of continuous variables

𝛽, (see (2.15)), as opposed to the binary variables y. The last group of constraints

in (2.16) replaces the convention 𝑦𝜏−1
𝑘 = 1 used in formulation (2.14).

The optimization problem (2.16) yields an optimal solution 𝛽* that uniquely

identifies the optimal server assignment at the current time-step 𝜏 . Namely, if

𝛽*[𝑘, 𝜏, 𝜏 ] = 1 for some 𝑘 ∈ {1, . . . , 𝐾}, then the server 𝑘 is assigned to the request

𝜎𝜏 .

The truncated problem formulation AARO(𝑇 ) is defined similarly to RO(𝑇 ) as

described in Section 2.3.1, i.e., at time-step 𝜏 we restrict the number of time periods

in the optimization problem (2.16) from 𝑡 = 𝜏, . . . , 𝑁 to 𝑡 = 𝜏, . . . ,min(𝜏 + 𝑇,𝑁).

Let us denote the feasible set in formulation (2.16) with up to 𝑇 future time periods

(𝑡 = 𝜏, . . . ,min(𝜏+𝑇,𝑁)) by ℱ(𝜏, 𝑇, x̂𝜏−1, 𝐾,𝑁, 𝑈), where paramaters 𝜏, 𝑇, x̂𝜏−1, 𝐾,𝑁, 𝑈

uniquely determine the optimization problem (2.16). In this case, a short represen-

tation of the AARO(𝑇 ) problem (2.16) that we will use in subsequent sections is as

follows:

min
𝛽,u,v

𝐾∑︀
𝑘=1

𝑁∑︀
𝑡=𝜏

𝑣𝑡𝑘

s.t. 𝛽,u,v ∈ ℱ(𝜏, 𝑇, x̂𝜏−1, 𝐾,𝑁, 𝑈).

(2.17)

2.4 Holistic Adaptive Robust Optimization Approach

Both the WFA and AARO approaches for the 𝐾-server problem have their own

merits. The main idea behind the design of the WFA is to reconsider past decisions

in order to help find a high-quality assignment for the current one. On the other hand,

the AARO method exploits information about future requests using uncertainty set

in order to improve the current decision. The main purpose of this section is to

introduce a new holistic method for solving multiperiod optimization problems which

simultaneously incorporates information from the past and assumptions about the

future. This holistic adaptive robust optimization (HARO) approach is a combination

of the WFA method (involving past observations) and the AARO method (modeling
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future uncertainty in adaptive manner by means of robust optimization).

The HARO approach can be seen as a natural extension of WFA in the following

way. The basic definition of WFA contains a “greedy” term:

𝑑(𝑥̂𝜏−1
𝑘 , 𝜎̂𝜏 ) in definition (2.3), or equivalently

𝐾∑︀
𝑘=1

𝑦𝜏𝑘 · 𝑑(𝑥̂𝜏−1
𝑘 , 𝜎̂𝜏 ) in formulation (2.8),

which contains only information about the location of the current request 𝜎̂𝜏 and pro-

vides the distance that server will travel at the current time-step 𝜏 . Within the HARO

framework, the uncertainty set 𝑈 now contains additional information about future

requests 𝜎 (not available before), and it is now possible to augment this “greedy”

term. Instead of describing only one immediate time period, the “greedy” term is

replaced by an expression giving an uncertain cumulative distance traveled by all

servers during the next 𝑁 − 𝜏 stages indexed by 𝑡 = 𝜏 + 1, . . . , 𝑁 .

At each time-step 𝜏 (for 1 ≤ 𝜏 ≤ 𝑁), an optimal assignment 𝑘* generated by the

HARO algorithm is now defined as follows:

𝑘* = arg min
𝑘=1,...,𝐾

{︁
𝐶𝑂𝑃𝑇 (x̂0, 𝜎̂1, . . . , 𝜎̂𝜏 , x̂

𝜏 (𝑘)) + 𝑑(𝑥̂𝜏−1
𝑘 , 𝜎̂𝜏 )+

+ 𝐶𝐴𝐴𝑅𝑂

(︀
(𝜎𝜏+1, . . . , 𝜎𝑁) ∈ 𝑈

)︀}︁
, (2.18)

where the first two terms are identical to the definition in WFA (2.3). The last term

𝐶𝐴𝐴𝑅𝑂

(︀
(𝜎𝜏+1, ..., 𝜎𝑁) ∈ 𝑈

)︀
=

𝐾∑︁
𝑘=1

𝑁∑︁
𝑡=𝜏+1

(𝑣𝑡𝑘)*

represents the total distance that servers will travel over the next 𝑁 − 𝜏 time-steps

(𝑡 = 𝜏 + 1, . . . , 𝑁) according to the optimal solution v* of the AARO method from

Section 2.3.2. The last time-step of WFA (indexed by 𝜏 in (2.3)) and the first time-

step of AARO (indexed by 𝜏 in (2.16) as well) now both simultaneously represent the

current time-step of the multiperiod optimization problem (2.18). This is the only

time-step where time periods of WFA and AARO formulations overlap.

Let us define the HARO(𝑤, 𝑇 ) method as a merger of the 𝑤-WFA and AARO(𝑇 )

methods. More specifically, we formulate HARO(𝑤, 𝑇 ) as a mixed binary optimization
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model with 𝑤 + 𝑇 + 1 time-steps, where the WFA block has 𝑤 periods, the AARO

block has 𝑇 periods, and the current time-step has index 𝜏 . In order to solve one

stage of the HARO(𝑤, 𝑇 ) problem at time-step 𝜏 we need the following input data:

1. The previous request locations: 𝜎̂max(𝜏−𝑤,1), . . . , 𝜎̂𝜏 , where 𝜎̂𝜏 is the position

of the current request to be served. The definition of the first time index

𝑡 = max(𝜏 − 𝑤, 1) guarantees that it is always greater or equal than 1.

2. The current configuration of the system, that is, vector x̂𝜏−1 = (𝑥̂𝜏−1
1 , . . . , 𝑥̂𝜏−1

𝐾 )

of server locations at the end of previous time-step 𝑡 = 𝜏 − 1.

3. The configuration of the system at the end of time-step 𝑡 = max(𝜏 − 𝑤 − 1, 0),

that is, vector x̂max(𝜏−𝑤−1,0) representing the starting configuration of the WFA

block.

4. The description of the uncertainty set 𝑈 of the form (2.9) for up to 𝑇 future

request locations (𝜎𝜏+1, . . . , 𝜎min(𝜏+𝑇,𝑁)).

In the HARO(𝑤, 𝑇 ) online framework, at each time-step 𝜏 (for 1 ≤ 𝜏 ≤ 𝑁) we solve

the formulation (2.19), which is by construction a combination of the 𝑤-WFA and

AARO(𝑇 ) formulations:

min
x,y,z
𝛽,u,v

𝐾∑︁
𝑘=1

𝜏∑︁
𝑡=max(𝜏−𝑤,1)

𝑣𝑡𝑘 +
𝐾∑︁
𝑘=1

𝑦𝜏𝑘 · 𝑑(𝑥̂𝜏−1
𝑘 , 𝜎̂𝜏 ) +

𝐾∑︁
𝑘=1

min(𝜏+𝑇,𝑁)∑︁
𝑡=𝜏+1

𝑣𝑡𝑘

s.t. For 𝑘 = 1, . . . , 𝐾 :

𝑣𝑡𝑘 ≥ 𝑥𝑡
𝑘 − 𝑥𝑡−1

𝑘 , 𝑡 = max(𝜏 − 𝑤, 1), . . . , 𝜏

𝑣𝑡𝑘 ≥ −(𝑥𝑡
𝑘 − 𝑥𝑡−1

𝑘 ), 𝑡 = max(𝜏 − 𝑤, 1), . . . , 𝜏

𝑥𝑡
𝑘 = 𝑥𝑡−1

𝑘 + 𝑦𝑡𝑘 𝜎̂𝑡 − 𝑧𝑡𝑘, 𝑡 = max(𝜏 − 𝑤, 1), . . . , 𝜏 − 1

𝑥
max(𝜏−𝑤,1)
𝑘 = 𝑥̂

max(𝜏−𝑤−1,0)
𝑘 + 𝑦

max(𝜏−𝑤,1)
𝑘 (𝜎̂max(𝜏−𝑤,1) − 𝑥̂

max(𝜏−𝑤−1,0)
𝑘 )

(2.19a)

𝑥𝜏
𝑘 = 𝑥̂𝜏−1

𝑘 + 𝑦𝜏𝑘 (𝜎̂𝜏 − 𝑥̂𝜏−1
𝑘 ) (2.19b)

𝑧𝑡𝑘 ≤ 𝑦𝑡𝑘, 𝑡 = max(𝜏 − 𝑤, 1), . . . , 𝜏 − 1
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𝑧𝑡𝑘 ≤ 𝑥𝑡−1
𝑘 , 𝑡 = max(𝜏 − 𝑤, 1), . . . , 𝜏 − 1

𝑧𝑡𝑘 ≥ 𝑦𝑡𝑘 + 𝑥𝑡−1
𝑘 − 1, 𝑡 = max(𝜏 − 𝑤, 1), . . . , 𝜏 − 1

𝑦𝜏𝑘 = 𝛽[𝑘, 𝜏, 𝜏 ] (2.19c)

0 ≤ 𝑥𝑡
𝑘, 𝑧

𝑡
𝑘 ≤ 1, 𝑦𝑡𝑘 ∈ {0, 1}, 𝑡 = max(𝜏 − 𝑤, 1), . . . , 𝜏

𝐾∑︁
𝑘=1

𝑦𝑡𝑘 = 1, 𝑡 = max(𝜏 − 𝑤, 1), . . . , 𝜏 − 1

𝛽,u,v ∈ ℱ(𝜏, 𝑇, x̂𝜏−1, 𝐾,𝑁, 𝑈). (2.19d)

The formulation (2.19) has a similar structure as the formulation (2.8) which rep-

resented the WFA method. Equations (2.19a) and (2.19b) fix configurations of the

system at time-steps 𝑡 = max(𝜏 − 𝑤 − 1, 0) and 𝑡 = 𝜏 − 1, respectively, as required

by the 𝑤-WFA definition. The most important binary assignment variables for the

current time-step 𝑡 = 𝜏 are modeled by 𝑦𝜏𝑘 and 𝛽[𝑘, 𝜏, 𝜏 ], 𝑘 = 1, . . . , 𝐾 in the WFA

and AARO blocks, respectively. These decision variables are consistent with each

other due to equations (2.19c). The last group of constraints (2.19d) duplicates the

AARO(𝑇 ) block (2.17) complementing the MIO formulation of the HARO(𝑤, 𝑇 ) al-

gorithm.

The HARO approach is a computationally tractable method that is stable with

respect to errors in the uncertainty set. As we will see in Section 2.7 where we present

numerical experiments, the HARO framework demonstrates superior performance in

terms of objective value as opposed to the existing online algorithms and the adaptive

algorithms under uncertainty (RO, AARO).

2.5 Generalizations of the 𝐾-Server Problem

In the previous sections, we have considered the simplest version of the 𝐾-server

problem on a one-dimensional continuous metric space in order to introduce our

proposed mixed integer, robust and adaptive optimization approaches. In this section,

we discuss extensions of the basic formulation of the 𝐾-server problem to more general

settings.
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Multidimensional continuous metric space

If the metric space is the unit cube of dimension 𝐷 ≥ 2, 𝑆 = [0, 1]𝐷, then all requests

𝜎 and server locations x become vectors of dimension 𝐷 and we can adjust the

dynamics equation (2.5) as follows:

𝑥𝑡
𝑘,𝑑 = 𝑥𝑡−1

𝑘,𝑑 + 𝑦𝑡𝑘(𝜎𝑡,𝑑 − 𝑥𝑡−1
𝑘,𝑑 ), 𝑑 = 1, . . . , 𝐷.

If the distance between points in the metric space 𝑆 is induced by the first norm

‖ ·‖1 or infinity norm ‖ ·‖∞, then all previous formulations (OPT, WFA, RO, AARO,

HARO) remain linear and have almost identical form as before. The only difference

is that now it is necessary to introduce variables

𝑣𝑡𝑘,𝑑 = |𝑥𝑡
𝑘,𝑑 − 𝑥𝑡−1

𝑘,𝑑 |, 𝑑 = 1, . . . , 𝐷,

instead of just the one-dimensional counterparts 𝑣𝑡𝑘 used when 𝐷 = 1.

Moreover, for the case of the infinity norm ‖ · ‖∞, the distance traveled by all

servers at time-step 𝑡 = 1, . . . , 𝑁 , 𝑣𝑡, can be expressed using inequalities

𝑣𝑡 ≥ 𝑣𝑡𝑘,𝑑, 𝑘 = 1, . . . , 𝐾, 𝑑 = 1, . . . , 𝐷,

instead of a sum 𝑣𝑡 =
𝐾∑︀
𝑘=1

𝐷∑︀
𝑑=1

𝑣𝑡𝑘,𝑑, as is the case for the first norm ‖ · ‖1.

Finite metric space

We consider the setting when the metric space 𝑆 consists of a finite number of fixed

points {𝛼𝑙 | 𝑙 = 1, . . . , 𝐿} ⊂ [0, 1]𝐷, where 𝐷 is the dimension of the embedding Eu-

clidean space. In this setting, we replace the previously considered uncertain param-

eters 𝜎 = (𝜎𝜏+1, . . . , 𝜎𝑁) (representing the positions of requests) with new uncertain
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parameters 𝜈 = { 𝜈𝑡
𝑙 | 𝑡 = 𝜏 + 1, . . . , 𝑁, 𝑙 = 1, . . . , 𝐿} defined as follows:

𝜈𝑡
𝑙 =

⎧⎪⎨⎪⎩1, if request 𝜎𝑡 is at location 𝛼𝑙,

0, otherwise.
(2.20)

The connection between the old and new uncertain parameters is given by a linear

equation

𝜎𝑡,𝑑 =
𝐿∑︁
𝑙=1

𝛼𝑙,𝑑 · 𝜈𝑡
𝑙 , 𝑡 = 𝜏 + 1, . . . , 𝑁, 𝑑 = 1, . . . , 𝐷. (2.21)

Hence, in case of a finite metric space equipped with distance 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖1 or

𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖∞ the HARO algorithm for the 𝐾-server problem can be modeled

similarly to (2.19) using the linear change of variables (2.21). The only difference is

that now a polyhedral uncertainty set should be expressed in terms of the parameters

𝜈, rather than 𝜎, in the following way:

𝑈𝜈 = {A𝜈𝜈 ≤ b𝜈 , 𝜈 ≥ 0}, (2.22)

where the new parameters 𝜈 are supposed to be binary variables. We relax this

integrality assumption and consider 0 ≤ 𝜈𝑡
𝑙 ≤ 1 in order to use the same duality

methodology as in (2.14), (2.16) and (2.19). In this setting, we treat the uncertain

parameters 𝜈𝑡
𝑙 as probabilities Pr(𝜎𝑡 = 𝛼𝑙) that request 𝜎𝑡 is located at location 𝛼𝑙.

Finite metric space with predefined distances

The network formulation of OPT and WFA for the 𝐾-server with given pairwise

distances 𝑑𝑙𝑙′ = 𝑑(𝛼𝑙, 𝛼𝑙′) in the form of minimum cost maximum flow problem is due

to Chrobak et al. [1991] and Rudec et al. [2013], respectively. One may construct

the robust counterparts of the nominal problems, for instance, introducing binary

indicators

𝜂[𝑡1, 𝑙; 𝑡2, 𝑙
′] := 𝜈𝑡1

𝑙 𝜈
𝑡2
𝑙′ .
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However, the dimension of the uncertainty vector 𝜂 in RO methods grows quadrat-

ically fast as a function of the number of locations 𝐿 in the space 𝑆, and it makes

these methods significantly slower than the formulations designed in Sections 2.3 and

2.4. This is why the case of a finite space 𝑆 with predefined distances is beyond the

scope of this chapter.

Weighted version of HARO

One of the natural extensions of the WFA online assignment policy is its weighted

version WFA𝜆 defined as

𝑘* = arg min
𝑘=1,...,𝐾

{︁
𝐶𝑂𝑃𝑇 (x̂0, 𝜎̂1, . . . , 𝜎̂𝜏 , x̂

𝜏 (𝑘)) + 𝜆 · 𝑑(𝑥̂𝜏−1
𝑘 , 𝜎̂𝜏 )

}︁
, (2.23)

where the positive parameter 𝜆 gives the relative priority of the “greedy” term over

the work function term. It is known that in some settings, the incorporation of a

nontrivial weight 0 < 𝜆 < 1 can lead to a better performance for the online algorithm

[Burley, 1996, Sitters, 2014]. In our case, we can introduce a weighted version of

HARO𝜆 as

𝑘* = arg min
𝑘=1,...,𝐾

{︁
𝐶𝑂𝑃𝑇 (x̂0, 𝜎̂1, . . . , 𝜎̂𝜏 , x̂

𝜏 (𝑘)) + 𝑑(𝑥̂𝜏−1
𝑘 , 𝜎̂𝜏 )+

+ 𝜆 · 𝐶𝐴𝐴𝑅𝑂

(︀
(𝜎𝜏+1, . . . , 𝜎𝜏 ) ∈ 𝑈

)︀}︁
, (2.24)

which may improve the performance of the HARO approach, for instance, in case of

large uncertainty sets that are not very restrictive and the weight of the AARO term,

𝜆, is chosen to be less than 1.

2.6 Construction of Uncertainty Sets

In this section, we give examples of uncertainty sets that can be used in practice and

introduce one possible way to measure different levels of information about future

requests. We will use this “varying information level” scale in order to empirically
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demonstrate in Section 2.7 that the performance of all robust optimization methods

(RO, AARO and HARO) improves as more information becomes available.

In order to quantify the amount of available information about a future request

𝜎̄, we simply use a metric-based notion of neighborhood 𝒩 (𝜎̄, 𝑟), defined as the ball

centered around the true location of the request and of radius 𝑟, that is,

𝒩 (𝜎̄, 𝑟) = {𝑥 ∈ 𝑆 | 𝑑(𝑥, 𝜎̄) ≤ 𝑟},

where 𝑑(·, ·) is a chosen distance of the metric space. For the case of continuous metric

space 𝑆 = [0, 1]𝐷 with the uniform norm ‖ · ‖∞ and radius 𝑟 ≥ 0, we have

𝒩 (𝜎̄, 𝑟) = {𝑥 ∈ 𝑆 | ‖𝑥− 𝜎̄‖∞ ≤ 𝑟}.

In the context of a finite metric space, the neighborhood 𝒩 (𝜎̄, 𝑟) with integral radius

𝑟 ∈ {1, . . . , |𝑆|} consists of 𝑟 closest neighbors to the point 𝜎̄ including itself.

Having specified the notion of the neighborhood, one may now consider the fol-

lowing family of uncertainty sets at any given time-step 𝜏 :

𝑈𝜏 (𝑇, 𝑟) = {(𝜎𝜏+1, . . . , 𝜎𝜏+𝑇 ) |𝜎𝑡 ∈ 𝒩 (𝜎𝑡, 𝑟), 𝑡 = 𝜏 + 1, . . . , 𝜏 + 𝑇}, (2.25)

where 𝑇 denotes time horizon and {𝜎̂𝑡 | 𝑡 = 𝜏 + 1, . . . , 𝜏 + 𝑇} are true locations of

future requests. Generally speaking, we do not know the exact locations of 𝑇 future

requests {𝜎̂𝑡 | 𝑡 = 𝜏+1, . . . , 𝜏+𝑇}, but only their surrounding neighborhoods of radius

𝑟. In this case, the parameter 𝑟 measures how precise the information is. Moreover,

for both cases of continuous and finite metric spaces, the uncertainty set 𝑈𝜏 (𝑇, 𝑟)

can be represented as a bounded polyhedron of the form (2.9) or (2.22), expressed in

terms of 𝜎 or 𝜈, respectively.

In the next section, we use uncertainty sets of type (2.25) in order to show the

increasing advantage of the HARO method as the amount of available information

grows. At the same time, other types of polyhedral uncertainty sets describing fu-

ture requests are also possible. One possible example is a Central Limit Theorem-
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motivated set defined as

𝑈 =
{︁

(𝜎𝜏+1, . . . , 𝜎𝜏+𝑇 ) |
⃒⃒⃒∑︀𝜏+𝑇

𝑡=𝜏+1 𝜎𝑡 − 𝜇̄

𝑠
√
𝑇

⃒⃒⃒
≤ Γ

}︁
,

where 𝜇̄ and 𝑠 denote empirical mean and standard deviation of requests 𝜎, respec-

tively, and Γ is a predefined level of robustness [Bertsimas et al., 2011]. In case of a

finite metric space, parameters 𝜈 defined in (2.20) allow a practitioner to incorporate

information about the distribution of future requests. For instance, inequalities

𝜌 ≤
∑︁

𝑙:𝛼𝑙∈𝑆0

𝜈𝑡
𝑙 ≤ 𝜌

state that at time-step 𝑡 probability that request 𝜎𝑡 will emerge somewhere in a subset

𝑆0 ⊂ 𝑆 is bounded by pre-specified parameters 𝜌 and 𝜌.

2.7 Numerical Experiments

In this section, we provide empirical evidence that the HARO method (2.19) designed

in Section 2.4 for the 𝐾-server problem is computationally tractable, and almost uni-

formly outperforms existing online methods, as well as adaptive optimization meth-

ods. We show that the HARO algorithm gradually improves as more information

about the future requests becomes available, and that it is stable with respect to

possible mistakes in the assumptions about uncertain request locations.

The 𝐾-server problem as well as the proposed HARO method are characterized

by many different parameters. The most significant ones are:

∙ The underlying metric space 𝑆 (continuous or finite) with distance metric 𝑑;

∙ The number of servers 𝐾 and their initial locations x0 in 𝑆;

∙ The distribution of requests (uniform or non-uniform) in space 𝑆;

∙ The number of locations 𝐿 in case of finite metric space 𝑆;
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∙ The length of the WFA optimization window 𝑤 and the AARO optimization

window 𝑇 in the definition of the HARO(𝑤, 𝑇 ) method;

∙ The uncertainty set 𝑈 describing future requests;

∙ The computational time required to find high-quality solution.

The benchmark method in all our experiments is the optimal offline algorithm

OPT. We implemented OPT and WFA as network flow problems according to Rudec

et al. [2013]. Of all heuristic online algorithms presented in Section 2.2.1, only results

for GREEDY and WFA are reported, since the rest of the methods (RAND, HAR-

MONIC, BALANCE) resulted in all of our experiments in worse objective values. We

coded all algorithms in Julia/JuMP [Lubin and Dunning, 2015, Dunning et al., 2017]

and solved them with Gurobi 6.5 on a computer with 2.5Hz Intel Core i7 processor

and 16GB of memory.

In all experiments, the overall sequence of requests corresponds to 1000 time-

steps, while the length of the windows in the HARO(𝑤, 𝑇 ) method varies from 10

to 30 for 𝑤, and from 5 to 15 for 𝑇 . Each of the six methods that we test (OPT,

GREEDY, WFA, RO(𝑇 ), AARO(𝑇 ), HARO(𝑤, 𝑇 )) generates a sequence of server

assignments y* = (𝑦*1, . . . , 𝑦
*
1000). Having obtained a sequence y*, one can calculate

the total distance traveled by all servers on the 1000 requests. In all experiments, we

report the empirical competitive ratios, that is the ratio between the cost incurred

by a given algorithm and the optimal offline cost produced by the offline clairvoyant

OPT. The length of the request sequence 𝑁 = 1000 was empirically proved to be

sufficient to statistically differentiate the behavior of the six methods considered in

our experiments. The typical convergence rate of the empirical competitive ratios

with respect to the length 𝑁 is presented in Figure 2-1.

The metric space 𝑆 is either [0, 1]2 for the continuous case, or a set of 𝐿 randomly

generated points in [0, 1]2 for the finite case. The distance between locations is cal-

culated using the metric 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖1. The vector of initial locations for the

servers x0 is generated uniformly at random. By default, the uncertainty sets 𝑈𝜏 (𝑇, 𝑟)

(2.25) do not include possible errors and the points 𝜎̂𝑡, 𝑡 = 𝜏 + 1, . . . , 𝜏 + 𝑇 represent
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Figure 2-1: Convergence of the empirical competitive ratios with respect to 𝑁

the true locations of the future requests.

In case of the continuous metric space 𝑆, we test the performance of each RO-

based algorithm with the same sequence of requests 𝜎̂ = (𝜎̂1, . . . , 𝜎̂1000), but different

levels of information that is available about the next 𝑇 requests. We model this

varying level of information by the uncertainty sets 𝑈𝜏 (𝑇, 1
𝑛
), for 𝑛 = 1, . . . , 10. For

any fixed value of 𝑛, the decision maker knows that the next 𝑇 uncertain requests 𝜎𝑡

belong to the corresponding intervals of type

𝜎̂𝑡 −
1

𝑛
≤ 𝜎𝑡 ≤ 𝜎̂𝑡 +

1

𝑛
. (2.26)

In the context of finite metric space 𝑆, we run all online algorithms 12 times with iden-

tical sequence of requests 𝜎̂ = (𝜎̂1, . . . , 𝜎̂1000), but with gradually increasing amount

of information represented by uncertainty sets

𝑈𝜏

(︁
𝑇, ⌈𝐿

(︀
1− 𝑛− 1

12

)︀
⌉
)︁
.

Generally speaking, for any given 𝑡 = 𝜏+1, . . . , 𝜏+𝑇 , parameter 𝑛 = 1, . . . , 12 controls

the number of neighboring locations that contain a true (but uncertain) location 𝜎̂𝑡.

In both scenarios, the larger values of 𝑛 correspond to more precise information about
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the future requests.

In our experiments, we consider two types of request distributions over space 𝑆.

The uniform distribution models scenario when requests appear in different locations

of 𝑆 with equal probability. The non-uniform distribution is defined as follows.

When 𝑆 = [0, 1]2, we consider a right top quadrant of the square 𝑆 = {(𝑥, 𝑦) | 0.5 ≤

𝑥, 𝑦 ≤ 1} ⊂ 𝑆 and generate 50% of all requests in 𝑆 (permuted randomly), and the

remaining 50% of requests are sampled outside this subset 𝑆. In case of finite metric

space 𝑆, we first randomly select 25% of locations 𝐿 and then again assign 50% of all

requests to the specified subset of points 𝑆.

In the next subsections, we conduct numerical experiments to empirically answer

the following questions:

1. Does the HARO method generate more efficient solutions than other server

assignment algorithms?

2. How stable the HARO method is with respect to potential noise in the descrip-

tion of the future?

3. How does the performance of the HARO(𝑤, 𝑇 ) approach change with respect

to parameters 𝑤 and 𝑇?

4. Does the HARO method preserve its strong performance across various scenarios

defined by the number of servers and locations and the distribution of requests?

2.7.1 Performance of the Methods

In this experiment, we demonstrate that the HARO(𝑤, 𝑇 ) method outperforms the

best existing online algorithms (GREEDY, WFA) and adaptive methods (RO(𝑇 ),

AARO(𝑇 )) in terms of the objective value for all tested levels of information about the

future. We consider four different scenarios: when the metric space 𝑆 is continuous or

finite, and when distribution of requests is uniform or not, as defined in the beginning

of this section.
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Other parameters of the experiment are: 𝑇 = 5, 𝑤 = 20, 𝐾 = 7, and 𝐿 = 25 (when

space 𝑆 is finite). Given that 𝑁 = 1000 is large enough, we report the performance

results based on one realization of the sequence 𝜎̂ = (𝜎̂1, . . . , 𝜎̂1000) that yields an

accurate representation of the behaviors of the six methods in expectation. The

simulation results presented in Figure 2-2 infer the following conclusions:

1. All three proposed methods (RO(𝑇 ), AARO(𝑇 ), HARO(𝑤, 𝑇 )) improve as the

amount of available information measured by parameter 𝑛 grows. The perfor-

mance of online heuristic algorithms GREEDY and WFA by construction does

not depend on 𝑛 what can be seen in Figure 2-2.

2. In all four scenarios, the asymptotic empirical competitive ratio of the RO-based

methods (RO(𝑇 ), AARO(𝑇 ), HARO(𝑤, 𝑇 )) is approximately the same, and it

is between 1.08 and 1.13 depending on the particular experiment. This level is

strictly greater than 1, because even for large values of information precision 𝑛,

our model incorporates information only about the very next 𝑇 = 5 requests.

3. For small values of 𝑛, RO(𝑇 ) method yields solutions that are too conservative

with worse objective values. It illustrates the situation when there is almost

no information about the next 𝑇 requests, and RO(𝑇 ) tries to find server as-

signments against the worst-case scenario. The adjustable counterpart of RO

algorithm (AARO(𝑇 )) has a slightly better performance than RO(𝑇 ) for small

values of 𝑛, but after some point RO(𝑇 ) and AARO(𝑇 ) results are almost in-

distinguishable.

4. Given that the weighted version of HARO (2.24) with 𝜆 = 0 is the WFA and

with 𝜆 large enough is the AARO algorithm, the HARO approach with small

value of parameter 𝜆 ≈ 0 outperforms a regular HARO approach with 𝜆 = 1

for small values of 𝑛.

5. AARO(𝑇 ) quickly starts to perform at least as well as existing heuristics

(GREEDY, WFA) at the information level 𝑛 ≈ 3. For both continuous and finite
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space 𝑆 this corresponds to eliminating approximately a quarter of irrelevant

locations for the next 𝑇 = 5 requests.

6. The HARO(𝑤, 𝑇 ) algorithm, as a combination of stable WFA and adaptive

AARO(𝑇 ) methods, does not have high empirical competitive ratios for small

values of 𝑛 and at the same time improves with increasing of the available

information. In most of the cases, even for large values of 𝑛, HARO(𝑤, 𝑇 )

method outperforms AARO(𝑇 ) algorithm.

7. In case of the finite metric space 𝑆, AARO(𝑇 ) requires more information (com-

pared to the case of continuous 𝑆) in order to approach the quality of existing

methods GREEDY and WFA. This is why the benefit of the HARO(𝑤, 𝑇 ) al-

gorithm over AARO(𝑇 ) becomes more pronounced for finite spaces.

8. The average computational time needed to find an optimal assignment pro-

duced by the HARO(𝑤, 𝑇 ) algorithm at any given time-step is 2.35 𝑠 when 𝑆 is

continuous and 4.11 𝑠 when 𝑆 is finite.

9. Overall, the empirical performance of HARO(𝑤, 𝑇 ) algorithm is the best out of

all considered methods (GREEDY, WFA, RO(𝑇 ), AARO(𝑇 )) regardless of the

information level 𝑛, characteristics of the metric space and the distribution of

requests.

2.7.2 Sensitivity of the HARO Approach with Respect to Noise

The second experiment demonstrates the stability of HARO(𝑤, 𝑇 ) algorithm with

respect to noise in the description of the uncertainty sets 𝑈𝜏 (𝑇, 𝑟). More precisely, we

introduce a new parameter 𝜇 which is equal to the probability that the true location

of future request 𝜎̂𝑡 is mistakenly replaced with some random point 𝜎𝑡(𝜇) in 𝑆, for

𝑡 = 𝜏 + 1, . . . , 𝜏 + 𝑇 . That is, we define the perturbed version of the uncertainty set

as follows:

𝑈̃𝜇
𝜏 (𝑇, 𝑟) =

{︀
(𝜎𝜏+1, . . . , 𝜎𝜏+𝑇 ) |𝜎𝑡 ∈ 𝒩

(︀
𝜎̃𝑡(𝜇), 𝑟

)︀
, 𝑡 = 𝜏 + 1, . . . , 𝜏 + 𝑇

}︀
,
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where for each 𝑡 = 𝜏 + 1, . . . , 𝜏 + 𝑇 the perturbed request 𝜎𝑡(𝜇) is defined by

𝜎𝑡(𝜇) =

⎧⎪⎨⎪⎩𝜎̂𝑡, with probability 1− 𝜇,

𝛼𝑙, with probability 𝜇, for some randomly chosen 𝑙 ∈ {1, . . . , 𝐿}.
(2.27)

For this experiment we select the finite space 𝑆 with 𝐿 = 30 locations and a uni-

form distribution of requests 𝜎̂. We fix the level of available information 𝑛 = 4, and

set parameters 𝐾 = 10, 𝑁 = 7, 𝑤 = 15. From Figure 2-3 we infer that when the

distortion probability 𝜇 = 0 and, therefore, there are no errors in provided informa-

tion, then the HARO(𝑤, 𝑇 ) method performs significantly better than GREEDY and

WFA. Apparently, the mistakes in uncertainty set 𝑈̃𝜇
𝜏 (𝑇, 𝑟) aggravate the efficiency

of the HARO(𝑤, 𝑇 ) algorithm, but deterioration of the method performance is slow.

The HARO(𝑤, 𝑇 ) method starts to perform at the level of the best existing online

algorithm when the probability of distortion 𝜇 is greater than 40% for each of the

time-steps 𝑡 = 𝜏 + 1, . . . , 𝜏 + 𝑇 .

We also tested HARO(𝑤, 𝑇 ) algorithm with assymetric uncertainty sets 𝑈𝜏 (𝑇, 𝑟),

when the true location of request 𝜎̂𝑡 was not necessarily in the middle of the uncer-

tainty interval as in (2.26), but rather just a random point of an interval of length
2
𝑛
:

𝜎̂𝑡 − (1− 𝜃𝑡)
2

𝑛
≤ 𝜎𝑡 ≤ 𝜎̂𝑡 + 𝜃𝑡

2

𝑛
,

where parameters 𝜃𝑡 were generated uniformly at random between 0 and 1. This pivot

in the definition of the uncertainty sets did not observably change the performance

of the HARO(𝑤, 𝑇 ) method presented in Figure 2-2.

2.7.3 Sensitivity of the HARO Approach with Respect to the

Number of Time-steps

In this experiment, we demonstrate the influence of parameters 𝑤 and 𝑇 on the

performance of the HARO(𝑤, 𝑇 ) method, which are equal to the number of time-

steps in AARO and WFA blocks, respectively. On average, the more information
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about the future and the past is incorporated to the formulation (provided by larger

values of 𝑤 and 𝑇 ), the better decisions the HARO(𝑤, 𝑇 ) method generates. However,

we also discuss a trade-off between the efficiency of the HARO(𝑤, 𝑇 ) algorithm and

the computational time needed to find optimal assignments.

We consider continuous metric space 𝑆 with 𝐾 = 5 servers with a uniform dis-

tribution of requests and standard uncertainty sets (2.25). Computational results

presented in Figure 2-4 imply that for any fixed value of 𝑇 increasing the window

size 𝑤 improves the performance of HARO(𝑤, 𝑇 ) algorithm, particularly for small

values of information level 𝑛. Furthermore, there is a substantial improvement in the

efficiency of the HARO(𝑤, 𝑇 ) algorithm when length of an adaptive window grows

from 𝑇 = 5 to 𝑇 = 10. First of all, when 𝑇 = 10 the method on average has a steeper

slope for 1 ≤ 𝑛 ≤ 4, and it converges to lower empirical competitive ratio 1.06, rather

than 1.07 for HARO(𝑤, 𝑇 ) with 𝑇 = 5. At the same time, there is no observable

change when parameter 𝑇 is increased from 10 to 15. Probably, for 𝐾 = 5 servers

knowing the approximate locations of the next 𝑇 = 10 requests is already sufficient.

It is worth mentioning, that the vast majority of variables in formulation (2.19)

are auxiliary, and only vector y*(𝜏) = {(𝑦𝜏𝑘)* | 𝑘 = 1, . . . , 𝐾} determines which server

𝑘 = 1, . . . , 𝐾 should be assigned at the current time-step 𝜏 . A typical behavior of

the solution progress is that the optimal assignment values y*(𝜏) are obtained by

Gurobi in seconds and remain unchanged after this, while it takes from minutes to

tens of minutes (depending on the instance size) to optimize over auxiliary variables

and prove the optimality of vector y*(𝜏). Table 2.1 displays average computational

times needed to find the optimal values of binary assignment variables y*(𝜏) for each

of the variants of HARO(𝑤, 𝑇 ) approach. As a result, we infer that the HARO(𝑤, 𝑇 )

algorithm provides the decision maker with a high-quality recommendation within

seconds for instances of practical size.
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Table 2.1: Average time needed to find an optimal assignment for one time-step of
the HARO(𝑤, 𝑇 ) method

T=5 T=10 T=15
w=10 1.21 s 6.75 s 10.52 s
w=20 2.2 s 17.96 s 28.4 s
w=30 5.17 s 27.33 s 43.97 s

2.7.4 Advantage of the HARO Approach

In this experiment, we demonstrate a substantial advantage of the HARO(𝑤, 𝑇 ) algo-

rithm over existing online methods (GREEDY, WFA) in various scenarios that differ

by a number of servers 𝐾, locations 𝐿 and distribution of requests in space 𝑆. In some

sense, we extend the first experiment from Section 2.7.1 for finite metric space 𝑆 to

a large number of possible combinations of 𝐾 and 𝐿, but present results in a more

concise form. Instead of reporting a vector of length 12 describing the performance of

the HARO(𝑤, 𝑇 ) method for various 𝑛 = 1, . . . , 12, we present in Tables 2.2 and 2.3 a

scalar which is equal to the average empirical competitive ratio of HARO approach:

HARO (mean) =
1

12

12∑︁
𝑛=1

Cost of HARO(𝑤, 𝑇 ) with information level 𝑛
Cost of OPT

. (2.28)

Having fixed optimization window sizes 𝑤 = 15 and 𝑇 = 5, we infer from Monte Carlo

simulations that on average empirical competitive ratio of all methods (including

HARO(𝑤, 𝑇 )) increases when number of servers 𝐾 grows or number of locations 𝐿

decreases. The empirical competitive ratios of the HARO(𝑤, 𝑇 ) algorithm are higher

when the distribution of requests 𝜎̂ is non-uniform (Table 2.3) for large enough values

of 𝐿, when compared to the corresponding experiments with uniformly distributed

requests.

In all tested scenarios the HARO(𝑤, 𝑇 ) algorithm has a similar behavior to one

presented in Section 2.7.1 and it almost uniformly outperforms existing online meth-

ods. The mean advantage of the HARO(𝑤, 𝑇 ) method defined in (2.28) varies from

2% (𝐾 = 3, 𝐿 = 25, Table 2.2) to 26% (𝐾 = 10, 𝐿 = 15, Table 2.3).
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Table 2.2: Performance of the methods (uniform request distribution)

Number of locations, 𝐿 15 25 40
Number of servers, 𝐾 3 5 10 3 5 10 3 5 10

GREEDY 1.23 1.41 1.58 1.17 1.37 1.55 1.15 1.23 1.33

WFA 1.24 1.43 1.51 1.24 1.45 1.48 1.21 1.27 1.39

HARO (mean) 1.17 1.35 1.40 1.15 1.29 1.31 1.11 1.21 1.30

Table 2.3: Performance of the methods (non-uniform request distribution)

Number of locations, 𝐿 15 25 40
Number of servers, 𝐾 3 5 10 3 5 10 3 5 10

GREEDY 1.18 1.36 1.56 1.32 1.46 1.69 1.26 1.41 1.43

WFA 1.19 1.34 1.39 1.22 1.47 1.67 1.23 1.39 1.44

HARO (mean) 1.15 1.33 1.30 1.16 1.39 1.53 1.16 1.28 1.36

2.8 Conclusion

In this chapter, we have considered the 𝐾-server problem from the perspective of

mixed integer, robust and adaptive optimization. We have designed new tractable

MIO formulations for the offline version of the problem as well as for the online WFA.

We have also introduced new algorithms that employ robust optimization methodol-

ogy and include into consideration assumptions about future locations of requests.

We have merged ideas behind an efficient WFA method and adaptive optimization

techniques (AARO) and designed a new holistic algorithm (HARO) that simultane-

ously incorporates data describing the past and information about the future time

periods. We have empirically demonstrated that HARO method is computationally

tractable and almost uniformly yields lower objective cost than existing online heuris-

tic algorithms and standard robust optimization approaches. Regardless of the level

of available information about the future time periods, of the structure of the metric

space, of the distribution of requests and number of servers, the HARO algorithm

has led to lower empirical competitive ratio than other methods we have considered.

Finally, we have shown that the HARO method is stable with respect to potential

errors in the modeling of the uncertainty set associated with future requests.
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(a) 𝑆 is continuous; uniform distribution of 𝜎
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(b) 𝑆 is finite; uniform distribution of 𝜎
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(c) 𝑆 is continuous; non-uniform distribution of 𝜎
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Figure 2-2: Empirical performance of online algorithms
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Figure 2-3: Performance of HARO with perturbed sets 𝑈̃𝜇
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(b) Performance of HARO with 𝑁 = 10 and 𝑤 ∈
{10, 20, 30}
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(c) Performance of HARO with 𝑁 = 15 and 𝑤 ∈
{10, 20, 30}

Figure 2-4: Sensitivity of the HARO(𝑤, 𝑇 ) approach with respect to 𝑤 and 𝑇
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Chapter 3

The Fleet Defense Problem

3.1 Introduction

In this chapter, we consider generalizations of the asset-based weapon-to-target as-

signment (WTA) problem, first introduced by Manne [1958], which is one of the

most fundamental defense-related applications of operations research. We model the

situation when a set of ships that have access to various weapons need to decide

how to deploy their weapons optimally in order to protect themselves against a va-

riety of incoming threats. Each ship has a limited number of kinetic (hard-kill) and

non-kinetic (soft-kill) weapons. The hard-kill weapons aims at physically destroying

an incoming missile, while soft-kill weapons use electronics to deflect threats from

ships, for instance, by jamming or creating an imaginary target. The use of soft-kill

weapons provides flexibility but adds complexity to the allocation of weapons to tar-

gets since such weapon not only can simultaneously affect multiple threats, but can

also adversely deflect a missile from one ship towards another one.

A fleet defense optimization problem has two main objectives. The first one is

to maximize the assets survival probabilities, and the second one is to minimize the

resource used. The second objective is important when there are potential attacks

over several periods, and there is a need to conserve weapons to address future raids

of incoming threats.
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3.1.1 Previous research

The single period weapon resource coordination problem has been studied before. In

most of the cases researchers addressed the problem of coordinating only hard-kill

weapons, which is known as the classical WTA problem [Manne, 1958]. It assumes

that each assignment of weapons to target has its own efficacy, and the decision maker

tries to find an optimal allocation of available weapons against incoming threats.

Existing formulations of the WTA problem include defense of a single ship as well as

of multiple assets.

The formulation of the single ship defense problem can be written as an integer

optimization problem with convex logarithmic objective [Ahuja et al., 2007]. This

problem is nonlinear since several weapons may target the same threat. In this case,

the probability of survival of the threat decreases proportionally to the product of the

efficacies of the assigned weapons. The major drawback of this formulation is that

it is not computationally tractable for even small instances with 20 weapons and 20

threats. This is why Ahuja et al. [2007] proposed network flow based heuristics. An

alternative heuristic to the single ship defense problem involving enumeration of all

possible assignments of multiple weapons against a particular threat is presented in

[Bogdanowicz and Coleman, 2008b].

Another popular approach to address the single ship WTA problem is to assume

that each threat can only be engaged by at most one weapon system and therefore

eliminate non-linearity in the formulation. Under this simplifying assumption, various

algorithms have been proposed based on auction theory [Cheung and Chung, 2010,

Bertsekas, 1990] or elaborate greedy methods [Bogdanowicz and Coleman, 2008a].

The multi-asset WTA problem with hard-kill weapons is even more complex and

nonlinear than the single-asset one since one threat may simultaneously target more

than one ship. Hosein and Athans [1990] have suggested a heuristic method assum-

ing that all weapons have the same efficacy, while other approximating algorithms

without this assumption based on simulated annealing techniques have been pre-

sented in [Malhotra and Jain, 2001, Bisht, 2004]. There are also methods based on
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network flow and auction theory that address the multi-asset WTA problem under

the assumption that one threat can be engaged by at most one available hard-kill

weapon [Bogdanowicz and Coleman, 2008a, 2007]. Murphey [2000] and Cai et al.

[2006] provide comprehensive surveys of different variants of the WTA problem.

Becker et al. [2013] recently obtained some important results on the weapon co-

ordination problem with multiple ships in a fleet. First, they modeled the exact cen-

tralized WTA problem with both hard-kill and soft-kill weapons in a form of a binary

second-order cone problem (SOCP) [Boyd and Vandenberghe, 2004]. Optimization

problems of this type can be efficiently solved for offline purposes by commercial

solvers for instances of typical size [Gurobi Optimization Inc., 2016]. The authors

also developed a heuristic based on linearization of second-order cone formulation

that is fast enough for real-time applications. In this case, the optimal solution of

the SOCP serves as a benchmark for the online heuristic. Finally, they considered a

decentralized setting, for which they adapted their heuristic method and introduced

a message passing algorithm. Their decomposition approach allows each ship to solve

its local defense subproblem with updated data from other assets. However, the total

amount of data that needs to be broadcast among ships is relatively large for such an

online decision making, and therefore this protocol cannot be applied in many real

world situations.

3.1.2 Contributions

In what follows, we denote by the fleet defense problem (FDP) any extension of

the classical WTA problem that includes at least one additional feature: resource

minimization objective, both hard-kill and soft-kill weapons, multiple consecutive

raids or communication between agents in the decentralized setting. This chapter

generalizes and improves some of the results on the FDP introduced in [Becker et al.,

2013]. Our main contributions are as follows.

1. In Section 3.2, we develop an efficient algorithm solving the exact SOCP for-

mulation of multi-asset FDP with hard-kill and soft-kill weapons in real time
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for instances of practical size. Our approach uses lazy constraints techniques

applied to the highly nonlinear mixed-binary fleet defense optimization problem.

2. We propose in Section 3.3 a new method to address the multiperiod FDP in-

troducing binary adaptive survival indicators and leveraging modeling power of

MIO. The new multiperiod formulation generates more efficient weapon assign-

ments in case of a sequence of attacks and remains computationally tractable.

3. We extend in Section 3.4 the FDP to a decentralized setting under uncertainty

using a Robust Optimization (RO) approach. In this setting, each ship opti-

mizes by itself with some limited communication with other ships and limited

information on the severity of the threats to its companions and on the efficacy

of their weapons.

4. We demonstrate in Section 3.5 using extensive computational experiments that

both single and multiperiod formulations of the FDP can be solved online for

instances of typical size. We also show the effectiveness of the suggested RO-

based communication and cooperation protocol in comparison with a completely

decentralized setting with no communication among ships and the idealistic

centralized coordination.

The lazy constraints methodology and the approach for modeling multiple periods

(that we develop in Sections 3.2 and 3.2, respectively) may be useful for address-

ing other challenging problems, such as transportation problems with nonlinear sys-

tem effects [Manne, 1958] and constrained resource allocation problems [Leboucher

et al., 2013]. The way we introduce communication decision variables (Section 3.4)

may also be useful to model cooperation between agents in multi-agent optimization

frameworks as developed in [Terelius et al., 2011] and [Lobel et al., 2011].
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3.2 An Optimization Model for the Single Period

FDP

In this section, we describe a nonlinear MIO formulation of the single period FDP

that incorporates both hard-kill and soft-kill weapons [Becker et al., 2013]. We also

develop a new lazy constraints algorithm that efficiently solves this nonlinear problem

by leveraging separating hyperplanes for polynomial constraints.

3.2.1 A Centralized Mathematical Formulation

Following Becker et al. [2013], we assume in this chapter that all threats have a

lethality value of 1, that is a ship is destroyed if it is hit by any given threat. In a

centralized setting, we also presume that all ships in the fleet have common knowledge

about where the incoming threats are headed, as well as assets can accurately estimate

their weapons efficacy against these threats.

Notation:

A. Indices

𝑠 Ship index

𝑖 Weapon index

𝑗, 𝑘 Threat index

B. Sets

𝑆 Ships in a fleet

𝑇 Incoming threats

𝑊 All available weapons

𝐻 Hard-kill weapons

𝐻𝑠 Hard-kill weapons on board ship 𝑠

𝐾 Soft-kill weapons

𝐾𝑠 Soft-kill weapons on board ship 𝑠

𝐴𝑖𝑗 Set of threats affected, if threat 𝑗 is engaged by soft-kill weapon 𝑖

𝐵𝑘 Set of all soft-kill interactions that afffect threat 𝑘
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C. Data and Parameters

𝑄𝑗𝑠 Probability that threat 𝑗 targets ship 𝑠

𝑃𝑖𝑗 Probability that hard-kill weapon 𝑖 destroys threat 𝑗, if weapon 𝑖

is fired against 𝑗

𝑅(𝑗, 𝑠 | 𝑖, 𝑘) Probability that threat 𝑗 targets ship 𝑠, if soft-kill weapon 𝑖

is fired against threat 𝑘

𝛾𝑠 Asset survivability threshold

𝛼𝑠 Asset priority value

𝑟𝑖 Weapon 𝑖 firing cost

𝜆 Sufficiently large penalty for lack of survival probability

D. Decision variables

𝑥𝑖𝑗 Binary decision to fire weapon 𝑖 against threat 𝑗

𝑦𝑗 Binary decision to have no soft-kill interactions with threat 𝑗

𝐷𝑗𝑠 Probability that threat 𝑗 will leak through the defense and destroy ship 𝑠

𝑤𝑠 Multiplicative slack variable for survival constraint of ship 𝑠

The fleet consists of 𝑆 ships and needs to protect itself from the set of incoming

threats 𝑇 . Each ship 𝑠 in the fleet has two sets of weapons: hard-kill (denoted by

𝐻𝑠) and soft-kill (𝐾𝑠). The binary decision variable 𝑥𝑖𝑗 is equal to 1, if weapon

𝑖 ∈ 𝑊 =
⋃︀
𝑠∈𝑆

(𝐻𝑠 ∪𝐾𝑠) is to against the threat 𝑗 ∈ 𝑇 . An assignment of weapon 𝑖 to

any given threat incurs firing cost 𝑟𝑖. There is a threat targeting probability matrix

Q = {𝑄𝑗𝑠} for 𝑗 ∈ 𝑇 , 𝑠 ∈ 𝑆, as well as hard-kill weapon efficiency matrix P = {𝑃𝑖𝑗}

for 𝑖 ∈ 𝐻, 𝑗 ∈ 𝑇.

We assume that an assignment of a soft-kill weapon 𝑖 ∈ 𝐾 =
⋃︀
𝑠∈𝑆

𝐾𝑠 to threat

𝑘 ∈ 𝑇 may affect other threats, and introduce in this case new threat targeting

probabilities R = {𝑅(𝑗, 𝑠 | 𝑖, 𝑘)} for 𝑗 ∈ 𝑇 , 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐾, 𝑘 ∈ 𝑇 . For all soft-kill

weapons 𝑖 ∈ 𝐾 and threats 𝑗 ∈ 𝑇 , set 𝐴𝑖𝑗 consists of all threats affected, if weapon 𝑖

is assigned to threat 𝑗. We denote the set of all soft-kill assignments (𝑖, 𝑗) ∈ 𝐾 × 𝑇

that can affect threat 𝑘 ∈ 𝑇 as 𝐵𝑘 = {(𝑖, 𝑗) : 𝑘 ∈ 𝐴𝑖𝑗}.

In this formulation, we do not allow any given threat 𝑗 to be affected by more than

one soft-kill weapon. In order to model this, we introduce auxiliary binary variable
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𝑦𝑗 equal to 1, if threat 𝑗 is not affected by any of soft-kill weapons. We also denote

the probability that threat 𝑗 hits an asset 𝑠 by 𝐷𝑗𝑠 ∈ [0, 1], for 𝑗 ∈ 𝑇 , 𝑠 ∈ 𝑆.

Each ship 𝑠 ∈ 𝑆 in the fleet has a couple of predefined and globally known pa-

rameters: 𝛼𝑠 is an asset priority that reflects the importance of the ship, and 𝛾𝑠 is

a probabilistic survival threshold. We assume that ship 𝑠 does not need additional

protection if its survival probability is at least 𝛾𝑠.

We introduce a continuous multiplicative slack variable 𝑤𝑠 that indicates by how

much the survival probability of ship 𝑠 is below its survival threshold. If ship 𝑠 is

protected with probability at least 𝛾𝑠, then 𝑤𝑠 = 1, and 𝑤𝑠 is strictly greater than one,

otherwise (see Eq. (3.1c) below). The latter case implies a penalty in the objective

function (see Eq. (3.1a) below). If the penalty 𝜆 is large enough, then the decision

maker always prefers to fire an additional missile (if there is one available) to reduce

a slack 𝑤𝑠, rather than to save this weapon.

Having introduced necessary notations, we formulate the centralized multi-asset

single period FDP in the form of nonlinear mixed-binary optimization problem as

follows:

min
x,y,
w,D

∑︁
𝑖∈𝑊

∑︁
𝑗∈𝑇

𝑟𝑖 𝑥𝑖𝑗 + 𝜆 ·
∑︁
𝑠∈𝑆

𝛼𝑠(𝑤𝑠 − 1) (3.1a)

s.t. 1 ≤ 𝐷𝑗𝑠

(︂
(𝑄𝑗𝑠)

−1 · 𝑦𝑗 +
∑︁

(𝑖,𝑘)∈𝐵𝑗

(︀
𝑅(𝑗, 𝑠 | 𝑖, 𝑘)

)︀−1 · 𝑥𝑖𝑘

)︂∏︁
𝑖∈𝐻

(︁
1 +

𝑃𝑖𝑗 𝑥𝑖𝑗

1− 𝑃𝑖𝑗

)︁
,

∀𝑠 ∈ 𝑆, 𝑗 ∈ 𝑇 (3.1b)

𝛾𝑠 ≤ 𝑤𝑠

∏︁
𝑗∈𝑇

(1−𝐷𝑗𝑠), ∀𝑠 ∈ 𝑆 (3.1c)

∑︁
𝑗∈𝑇

𝑥𝑖𝑗 ≤ 1, ∀𝑖 ∈ 𝑊 (3.1d)

𝑦𝑗 +
∑︁

(𝑖,𝑘)∈𝐵𝑗

𝑥𝑖𝑘 = 1, ∀𝑗 ∈ 𝑇 (3.1e)

1 ≤ 𝑤𝑠, ∀𝑠 ∈ 𝑆 (3.1f)

0 ≤ 𝐷𝑗𝑠 ≤ 1, ∀𝑠 ∈ 𝑆, 𝑗 ∈ 𝑇 (3.1g)
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𝑥𝑖𝑗, 𝑦𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑊, 𝑗 ∈ 𝑇. (3.1h)

The objective function (3.1a) consists of two parts. The first double sum is equal to

the total weapon firing cost, while the second one represents the total penalty in case

some ships have survival probabilities below predefined thresholds. If problem data

admit a solution with all ships having survival probabilities greater than or equal to

their corresponding survival thresholds, then all auxiliary multiplicative slacks 𝑤𝑠 = 1

for all 𝑠 ∈ 𝑆, and the cost function of the FDP (3.1a) is to minimize total weapons

used. In a stressed scenario, when it is impossible to protect all ships in the fleet with

probabilities above their survival thresholds, the cost function models a preferential

defense strategy trying to maximize survival probabilities of the most important ships

of the fleet with higher priority ranks 𝛼𝑠.

Given that higher priority ships have larger values of parameter 𝛼𝑠, the optimizer

always prefers to protect important assets to their survivability thresholds before less

important ones.

The probability 𝐷𝑗𝑠 that threat 𝑗 will leak through the defense and destroy ship

𝑠 is given by:

𝐷𝑗𝑠 =

{︂
(𝑄𝑗𝑠)

𝑦𝑗
∏︁

(𝑖,𝑘)∈𝐵𝑗

(︁
𝑅(𝑗, 𝑠 | 𝑖, 𝑘)

)︁𝑥𝑖𝑘

}︂∏︁
𝑖∈𝐻

(1− 𝑃𝑖𝑗)
𝑥𝑖𝑗 , (3.2)

where 𝑄𝑗𝑠 denotes the initial probability that threat 𝑗 targets ship 𝑠. If there are no

soft-kill interactions with threat 𝑗, that is 𝑦𝑗 = 1, then the second product in brackets

∏︁
(𝑖,𝑘)∈𝐵𝑗

(︁
𝑅(𝑗, 𝑠 | 𝑖, 𝑘)

)︁𝑥𝑖𝑘

= 1,

since 𝑥𝑖𝑘 = 0 for all (𝑖, 𝑘) ∈ 𝐵𝑗 according to Eq. (3.1e), and therefore the targeting

probability 𝑄𝑗𝑠 remains unchanged. But the initial targeting probability 𝑄𝑗𝑠 can be

substituted with another value 𝑅(𝑗, 𝑠 | 𝑖, 𝑘), if soft-kill weapon 𝑖 ∈ 𝐾 is fired against

threat 𝑘 ∈ 𝑇 , that is 𝑥𝑖𝑘=1, and this interaction (𝑖, 𝑘) is in a set of soft-kill assignments
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𝐵𝑗 that affect threat 𝑗. The last product

∏︁
𝑖∈𝐻

(1− 𝑃𝑖𝑗)
𝑥𝑖𝑗

in the right hand side of (3.2) defines the probability that threat 𝑗 is not destroyed by

any of the independent hard-kill weapons 𝑖 ∈ 𝐻. Given that all decision variables 𝑥𝑖𝑗

and 𝑦𝑗 in Eq. (3.2) are binary, an alternative way to the define destruction probability

𝐷𝑗𝑠 is as follows:

𝐷𝑗𝑠 =

{︂
(𝑄𝑗𝑠)

−1𝑦𝑗 +
∑︁

(𝑖,𝑘)∈𝐵𝑗

(︁
𝑅(𝑗, 𝑠 | 𝑖, 𝑘)

)︁−1

𝑥𝑖𝑘

}︂−1

·
∏︁
𝑖∈𝐻

(︁
1 +

𝑃𝑖𝑗 𝑥𝑖𝑗

1− 𝑃𝑖𝑗

)︁−1

. (3.3)

In order to be able to invert elements of matrices P,Q,R in Eq. (3.3), we assume

that all probabilities are between 𝜀 and 1− 𝜀, for some small predefined value 𝜀 > 0.

Thus, Ineq. (3.1b) expresses that the probability 𝐷𝑗𝑠 that threat 𝑗 destroys a ship 𝑠

is bounded below by the probability that 𝑗 is attacking asset 𝑠 and it is not ruined

by all hard-kill weapons fired against 𝑗.

Since the lethality value of all threats equals one, the probability that ship 𝑠 ∈

𝑆 survives in a raid is equal to the probability that ship is not damaged by all

independent threats, which we can express as

∏︁
𝑗∈𝑇

(1−𝐷𝑗𝑠). (3.4)

Given that the auxiliary multiplicative slack 𝑤𝑠 is heavily penalized in the cost func-

tion (3.1a), we will always have 𝑤𝑠 = 1 in an optimal solution for ship 𝑠, whose

survival probability (3.4) is at least 𝛾𝑠. Hence, Ineq. (3.1c) states the survivability

threshold for ship 𝑠.

We express the requirement that each weapon can be engaged no more than once

by Ineq. (3.1d). Equation (3.1e) states that each threat 𝑗 ∈ 𝑇 can be affected by at

most one soft-kill weapon. The last group of constraints (3.1f) – (3.1h) defines upper

and lower bounds or imposes integrality for decision variables of the problem.
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The only nonlinear constraints of the problem (3.1) are (3.1b) and (3.1c). Both

of them can be easily reformulated in the following form:

1 ≤
∏︁
𝑖∈ℐ

𝑢𝑖, where variables 𝑢𝑖 are non-negative, and ℐ is some finite index set.

(3.5)

Becker et al. [2013] proved that inequality of the form (3.5) defines a convex set and

has a representation as a projection of a system of rotated second-order cone constrat-

ints. Hence, the FDP (3.1) can be solved offline by commercial solvers (for instance,

Gurobi Optimization Inc. [2016]) as a convex quadratically-constrained binary opti-

mization problem [Boyd and Vandenberghe, 2004] within minutes depending on the

instance size. While this approach yields an optimal solution to the FDP that can

serve as a benchmark, it cannot be used in real time.

3.2.2 Lazy Constraints Algorithm for the FDP

In this subsection, we propose a new efficient algorithm for solving problem (3.1)

leveraging the special structure of nonlinear inequalities (3.1b), (3.1c) and MIO lazy

constraints techniques [IBM Knowledge Center, 2017].

Algorithm 3.1 LAZY method for the FDP
1: procedure LAZY(Q,P,R,𝛼,𝛾)
2: Predefine computational tolerance 𝛿 > 0.
3: Solve relaxation of (3.1) with the omitted nonlinear constrains (3.1b), (3.1c).
4: Denote the feasible set of the relaxed problem by 𝒫 and its optimal solution

by X = (x*,y*,w*,D*).
5: while solution X does not satisfy constraints (3.1b), (3.1c) with tolerance 𝛿

do
6: Find a hyperplane 𝜋 separating the current solution X from the feasible

set 𝒫 .
7: Update 𝒫 by adding to the set of its constraints the separating inequality

that represents 𝜋.
8: Re-solve the relaxation of problem (3.1) with the augmented 𝒫 .
9: Update the optimal solution X.

10: return x*, i.e., assignments of weapons to threats.

In order to implement LAZY algorithm, we next derive in closed form the separating
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hyperplanes associated with nonlinear constraints (3.1b), (3.1c) of the form (3.5).

Lemma 3.1. Let us consider a convex set Σ =
{︁
x ∈ R𝑛

+ | 𝛾 ≤
𝑛∏︀

𝑖=1

𝑥𝑖

}︁
for some 𝛾 > 0.

Then any point y ∈ R𝑛
+∖Σ can be separated from set Σ by the separating hyperplane

𝑛∑︁
𝑖=1

𝑥𝑖

𝑦𝑖
= 𝑛, (3.6)

where point ŷ = (𝑦1, . . . , 𝑦𝑛) ∈ R𝑛
+ ∩ Σ is defined in one of the following ways:

1) 𝑦𝑖 = 𝑦𝑖 𝑡
*, for 𝑖 = 1, . . . , 𝑛 and 𝑡* = 𝑛

√︂
𝛾

𝑦1𝑦2 . . . 𝑦𝑛
; or (3.7a)

2) 𝑦𝑖 =
1

2

(︀
𝑦𝑖 +

√︁
𝑦2𝑖 − 4𝜇*𝛾

)︀
, for 𝑖 = 1, . . . , 𝑛, and 𝜇* is the unique root (3.7b)

of the equation 𝑔(𝜇) = 0, where

𝑔(𝜇) =
𝑛∏︁

𝑖=1

(︃
𝑦𝑖 +

√︀
𝑦2𝑖 − 4𝜇𝛾

2

)︃
− 𝛾. (3.8)

The first definition of point ŷ (3.7a) characterizes linear projection of point y onto

the boundary of a convex set Σ, while the second one (3.7b) defines an orthogonal

projection (Figure 3-1).

(a) Linear projection of point y (b) Orthogonal projection of point y

Figure 3-1: Separating hyperplanes for set Σ.

Proof. Case 1 (3.7a). Let us introduce the function 𝑓(x) =
𝑛∏︀

𝑖=1

𝑥𝑖 − 𝛾, for x ∈ R𝑛
+.

If point y ∈ R𝑛
+ does not belong to set Σ, then it is below the graph of the function
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𝑓(x) (Figure 3-1a). Hence, we consider point ŷ = (𝑦1, 𝑦2, . . . , 𝑦𝑛) such that the

components of ŷ are proportional to the components of y, and point ŷ belongs to

the surface 𝑓(x) = 0, that is, the boundary of convex set Σ. In other words, for some

𝑡 > 0 the following system of equations holds:⎧⎪⎪⎨⎪⎪⎩
𝑦𝑖 = 𝑦𝑖 𝑡, 𝑖 = 1, . . . , 𝑛
𝑛∏︀

𝑖=1

𝑦𝑖 − 𝛾 = 0.

We denote the unique solution of this system of equations with respect to variable 𝑡

as

𝑡* = 𝑛

√︂
𝛾

𝑦1𝑦2 . . . 𝑦𝑛
> 1.

We next find a tangent hyperplane to the smooth function 𝑓(x) at point ŷ according

to the formula

∇𝑓(ŷ)⊤(x− ŷ) = 0.

Since 𝜕𝑓
𝜕𝑥𝑖

(ŷ) =
∏︀
𝑗 ̸=𝑖

𝑦𝑗 = 𝛾
𝑦𝑖

for all 𝑖 = 1, . . . , 𝑛, then the hyperplane has the form

𝑛∑︁
𝑖=1

𝛾

𝑦𝑖
(𝑥𝑖 − 𝑦𝑖) = 0,

what is equivalent to (3.6). This tangent hyperplane indeed separates point y from

the convex set Σ considering

𝑛∑︁
𝑖=1

𝛾

𝑦𝑖
(𝑦𝑖 − 𝑦𝑖) =

𝑛∑︁
𝑖=1

𝛾 · 𝑦𝑖
𝑦𝑖

(1− 𝑡*) =
𝑛∑︁

𝑖=1

𝛾 (1− 𝑡*)

𝑡*
< 0.

Case 2 (3.7b). The orthogonal projection ŷ of the point y onto the convex set Σ is

the unique solution of the optimization problem

min
x

1

2
‖x− y‖22

s.t. 𝑥1𝑥2 . . . 𝑥𝑛 = 𝛾

𝑥𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛.

76



The Lagrangian function for this problem has the form

𝐿(x, 𝜇) =
1

2

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)
2 + 𝜇(𝑥1𝑥2 . . . 𝑥𝑛 − 𝛾).

The Karush-Kuhn-Tucker optimality conditions [Boyd and Vandenberghe, 2004] im-

ply that

𝑥𝑖 = 𝑦𝑖 − 𝜇* 𝛾

𝑥𝑖

, 𝑥𝑖 > 0, for 𝑖 = 1, . . . , 𝑛,

while a non-positive optimal Lagrange multiplier 𝜇* can be found from the equation

𝑛∏︁
𝑖=1

𝑥𝑖 =
𝑛∏︁

𝑖=1

𝑦𝑖 +
√︀

𝑦2𝑖 − 4𝜇𝛾

2
= 𝛾.

Since 𝑦𝑖 ≥ 0 for 𝑖 = 1, . . . , 𝑛 and 𝛾 > 0, it is easy to see that for 𝜇 ≤ 0 the function 𝑔(𝜇)

defined in (3.8) is strictly monotonically decreasing as a composition of decreasing

functions. Moreover, 𝑔(0) =
𝑛∏︀

𝑖=1

𝑦𝑖 − 𝛾 < 0 and

𝑔
(︀
−𝛾

2
𝑛
−1
)︀

=
𝑛∏︁

𝑖=1

𝑦𝑖 +

√︁
𝑦2𝑖 + 4𝛾

2
𝑛

2
− 𝛾 ≥

𝑛∏︁
𝑖=1

√︁
4𝛾

2
𝑛

2
− 𝛾 ≥ 0.

Thus, there is a unique solution 𝜇* of the equation 𝑔(𝜇) = 0 in the interval [−𝛾 2
𝑛
−1, 0],

that can be found numerically with binary search techniques. Having found the

optimal value of Lagrange multiplier 𝜇*, we determine the orthogonal projection ŷ

in closed form (3.7b). Finally, we construct a tangent hyperplane to the convex set

Σ at ŷ of the form (3.6). Separation of point y by the tangent hyperplane from Σ is

due to the inequality

𝑛∑︁
𝑖=1

𝛾

𝑦𝑖
(𝑦𝑖 − 𝑦𝑖) =

𝑛∑︁
𝑖=1

2𝛾

𝑦𝑖 +
√︀

𝑦2𝑖 − 4𝜇*𝛾

𝑦𝑖 −
√︀

𝑦2𝑖 − 4𝜇*𝛾

2
=

𝑛∑︁
𝑖=1

(︁
𝑦𝑖 −

√︀
𝑦2𝑖 − 4𝜇*𝛾

)︁2
4𝜇* < 0,

that completes the proof since 𝜇* is strictly negative. �
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3.3 An Optimization Model for the Multiperiod FDP

This section develops a nonlinear MIO formulation of the FDP for the case of multiple

consecutive attacks. The extended multiperiod setting has to address a tradeoff be-

tween securing the survival probabilities above the thresholds in the immediate attack

and weapon conservation objectives for future attacks. We also model a possibility

that some of the assets of the fleet can be destroyed in the current raid, and therefore

there is no need to protect them in consecutive attacks. Furthermore, we assume

that in the multiperiod FDP it is prohibited to use weapons of destroyed ships in

subsequent raids.

Notation (continued):

A. Indices

𝜏 Time-step, attack number

B. Sets

𝑇 𝜏 Incoming threats at time-step 𝜏

𝐴𝜏
𝑖𝑗 Set of threats affected, if at time-step 𝜏 threat 𝑗 is engaged by

soft-kill weapon 𝑖

𝐵𝜏
𝑘 Set of all soft-kill interactions at time-step 𝜏 that afffect threat 𝑘

C. Data and Parameters

𝑄𝜏
𝑗𝑠 Probability that at time-step 𝜏 threat 𝑗 targets ship 𝑠

𝑃 𝜏
𝑖𝑗 Probability that at time-step 𝜏 hard-kill weapon 𝑖 destroys

threat 𝑗, if 𝑖 is fired against 𝑗

𝑅𝜏 (𝑗, 𝑠 | 𝑖, 𝑘) Probability that at time-step 𝜏 threat 𝑗 targets ship 𝑠,

if soft-kill weapon 𝑖 is fired against threat 𝑘

𝑁 Number of time-steps (attacks)

𝑀 Large enough number

D. Decision variables at time-step 𝜏

78



𝑥𝜏
𝑖𝑗 Binary decision to fire weapon 𝑖 against threat 𝑗

𝑦𝜏𝑗 Binary decision to have no soft-kill interactions with threat 𝑗

𝐷𝜏
𝑗𝑠 Probability that threat 𝑗 will destroy ship 𝑠

𝑤𝜏
𝑠 Multiplicative slack variable for survival constraint of ship 𝑠

𝑢𝜏
𝑠 Binary destruction indicator equals 1 if 𝑠 is destroyed before time-step 𝜏

Similar to the single period setting, each of the 𝑁 attacks (indexed by 𝜏 =

1, . . . , 𝑁) consists of a set of threats 𝑇 𝜏 . We denote the probability that at time-

step 𝜏 threat 𝑗 ∈ 𝑇 𝜏 targets ship 𝑠 ∈ 𝑆 as 𝑄𝜏
𝑗𝑠. The corresponding weapon efficacy

matrices are represented by P𝜏 = {𝑃 𝜏
𝑖𝑗} for all raids 𝜏 = 1, . . . , 𝑁 , weapons 𝑖 ∈ 𝑊 and

threats 𝑗 ∈ 𝑇 𝜏 . The possible changes in threat targeting probabilities induced by the

implementation of soft-kill weapons are described by matrices R𝜏 = {𝑅𝜏 (𝑗, 𝑠 |𝑖, 𝑘)}.

Finally, sets of soft-kill interactions 𝐵𝜏
𝑘 that affect threat 𝑘 ∈ 𝑇 𝜏 are defined as in

Section 3.2.1 for all time-steps 𝜏 = 1, . . . , 𝑁 .

The global objective of the multiperiod FDP is to protect its ships in all attacks in

the most resource-efficient way, that is minimizing weapons used. If the ideal scenario

when all ships are protected with survival probabilities above predefined thresholds

is infeasible, we implement preferential defense strategy that ensures that the most

valuable assets are defended with a higher priority. In order to model this strategy,

we use the same decision variables 𝑥𝜏
𝑖𝑗, 𝑦

𝜏
𝑗 , 𝑤

𝜏
𝑠 , 𝐷

𝜏
𝑗𝑠 as in single period formulation (3.1)

with the only difference that now they have an additional time-index 𝜏 = 1, . . . , 𝑁 .

The only new variables that we need for the multiperiod setting are binary destruction

indicators 𝑢𝜏
𝑠 that are equal to 1, if ship 𝑠 is destroyed before the beginning of attack

𝜏 = 1, . . . , 𝑁 . Thus, the multiperiod FDP is given by a similar to (3.1) formulation:

min
x,y,w
u,D

𝑁∑︁
𝜏=1

(︃∑︁
𝑖∈𝑊

∑︁
𝑗∈𝑇 𝜏

𝑟𝑖 𝑥
𝜏
𝑖𝑗 + 𝜆 ·

∑︁
𝑠∈𝑆

𝛼𝑠(𝑤
𝜏
𝑠 − 1)

)︃
(3.9a)

s.t. 1 ≤ 𝐷𝜏
𝑗𝑠

(︂
(𝑄𝜏

𝑗𝑠)
−1 · 𝑦𝜏𝑗 +

∑︁
(𝑖,𝑘)∈𝐵𝜏

𝑗

(︀
𝑅𝜏 (𝑗, 𝑠 | 𝑖, 𝑘)

)︀−1 · 𝑥𝜏
𝑖𝑘

)︂∏︁
𝑖∈𝐻

(︁
1 +

𝑃 𝜏
𝑖𝑗

1− 𝑃 𝜏
𝑖𝑗

𝑥𝜏
𝑖𝑗

)︁
,

∀ 𝜏 = 1, . . . , 𝑁 ; 𝑠 ∈ 𝑆, 𝑗 ∈ 𝑇 𝜏 (3.9b)
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𝛾𝑠 ≤
(︀
𝑤𝜏

𝑠 + 𝑀𝑢𝜏
𝑠

)︀ ∏︁
𝑗∈𝑇 𝜏

(1−𝐷𝜏
𝑗𝑠), ∀ 𝜏 = 1, . . . , 𝑁 ; 𝑠 ∈ 𝑆 (3.9c)

𝑁∑︁
𝜏=1

∑︁
𝑗∈𝑇 𝜏

𝑥𝜏
𝑖𝑗 ≤ 1, ∀𝑖 ∈ 𝑊 (3.9d)

𝑦𝜏𝑗 +
∑︁

(𝑖,𝑘)∈𝐵𝜏
𝑗

𝑥𝜏
𝑖𝑘 = 1, ∀ 𝜏 = 1, . . . , 𝑁 ; 𝑗 ∈ 𝑇 𝜏 (3.9e)

𝑢1
𝑠 = 0, ∀𝑠 ∈ 𝑆 (3.9f)
𝑤𝜏

𝑠 − 1

𝑀
≤ 𝑢𝜏+1

𝑠 ≤𝑀(𝑤𝜏
𝑠 − 1), ∀ 𝜏 = 1, . . . , 𝑁 − 1; 𝑠 ∈ 𝑆 (3.9g)

𝑢𝜏
𝑠 ≤ 𝑢𝜏+1

𝑠 , ∀ 𝜏 = 1, . . . , 𝑁 − 1; 𝑠 ∈ 𝑆 (3.9h)

𝑥𝜏
𝑖𝑗 ≤ 1− 𝑢𝜏

𝑠 , ∀𝜏 = 1, . . . 𝑁 ; 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐻𝑠 ∪𝐾𝑠, 𝑗 ∈ 𝑇 𝜏 (3.9i)

1 ≤ 𝑤𝜏
𝑠 , ∀ 𝜏 = 1, . . . , 𝑁 ; 𝑠 ∈ 𝑆 (3.9j)

0 ≤ 𝐷𝜏
𝑗𝑠 ≤ 1, ∀ 𝜏 = 1, . . . , 𝑁 ; 𝑠 ∈ 𝑆, 𝑗 ∈ 𝑇 (3.9k)

𝑥𝜏
𝑖𝑗, 𝑦

𝜏
𝑗 , 𝑢

𝜏
𝑠 ∈ {0, 1}, ∀ 𝜏 = 1, . . . , 𝑁 ; 𝑖 ∈ 𝑊, 𝑗 ∈ 𝑇, 𝑠 ∈ 𝑆. (3.9l)

The objective function (3.9a) models the preferential defense strategy, while each

constraint of type (3.9b) defines a lower bound on the probability 𝐷𝜏
𝑗,𝑠 that threat

𝑗 ∈ 𝑇 𝜏 ruins ship 𝑠 at time-step 𝜏 . Similarly as before, Ineq. (3.9c) states the

survivability threshold for asset 𝑠 at time-step 𝜏 . The only difference is that now we

substitute multiplicative slack 𝑤𝜏
𝑠 with a sum

𝑤𝜏
𝑠 + 𝑀𝑢𝜏

𝑠 , (3.10)

where 𝑀 is a large enough number. If ship 𝑠 is not destroyed at the beginning of

time-step 𝜏 and we need to protect it, that is 𝑢𝜏
𝑠 = 0, then factor (3.10) does not

change and equals 𝑤𝑠 as before (3.1). At the same time, if ship 𝑠 was destroyed in

one of the preceding raids, that is 𝑢𝜏
𝑠 = 1, then Ineq. (3.9c) does not impose any

constraints on the remaining decision variables w,D and is automatically satisfied.

It means that we do not need to defend already destroyed ships.

Inequalities (3.9d) express that we cannot fire a weapon more than once, while

equations of type (3.9e) state that at any given time-step 𝜏 = 1, . . . , 𝑁 each threat
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𝑗 ∈ 𝑇 𝜏 can be affected by at most one soft-kill weapon to avoid interdependencies.

Constraints (3.9f) – (3.9h) define destruction indicators 𝑢𝜏
𝑠 . In the beginning of

the first raid 𝜏 = 1 all ships in the fleet are operating (3.9f). If at time-step 𝜏 ship

𝑠 is protected with probability at least 𝛾𝑠, then 𝑤𝑠 = 1 and 𝑢𝜏+1
𝑠 = 0 (3.9g). At

the same time, if 𝑤𝜏
𝑠 > 1, that is, ship 𝑠 is not defended with probability at least 𝛾𝑠

at time-step 𝜏 , then Ineq. (3.9g) force the destruction indicator 𝑢𝜏+1
𝑠 to switch its

value to 1. In this case, we consider asset 𝑠 to be destroyed in all consecutive raids

𝜏 + 1, . . . , 𝑁 , which is represented by the set of constraints (3.9h).

Inequalities (3.9i) prohibit to use weapons of destroyed assets. Finally, we define

upper and lower bounds or impose integrality for decision variables of the problem in

the last group of constraints (3.9j) – (3.9l).

The decision maker should solve multistage optimization problem (3.9) updating

uncertain parameters in the end of each attack. More precisely, binary survival indi-

cators 𝑢𝜏
𝑠 for 𝑠 ∈ 𝑆 and 𝜏 = 1, . . . , 𝑁 are based on estimated survival probabilities

(3.9c). At the same time, it is possible that ship 𝑠 will be destroyed even if its survival

probability is higher than the corresponding threshold 𝛾𝑠, and vice versa. On the other

hand, in the end of each attack 𝜏 a true ship survivability vector û𝜏 = (𝑢̂𝜏
1, . . . , 𝑢̂

𝜏
𝑆)

becomes available for the decision maker, that allows her to substitute an estimated

vector u𝜏 with the accurate one û𝜏 .

The only nonlinear constraints (3.9b) and (3.9c) in optimization problem (3.9)

again have the form of (3.5). This is why it is possible to solve the multiperiod FDP

as a convex mixed-binary SOCP. Moreover, we will demonstrate in Section 3.5 that

it is possible to solve instances of (3.9) of typical size in real time leveraging lazy

constraints algorithm designed in Section 3.2.2.
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3.4 Decentralized Approach for the Fleet Defense

Problem

The optimization problems introduced in Sections 3.2 and 3.3 are designed for the

setting when all data about threats and weapons are globally known to all ships.

However, in practice it is not always the case since each ship possesses some local

information about the field of action. Furthermore, there is usually not enough time to

broadcast all the local data to other ships, allow everyone to solve the same centralized

optimization problem and execute the local part of the global optimal solution. This

is why designing a distributed approach is important for practical applications of the

FDP. In this setting, solving the global optimization problem is similar to many multi-

agent communication and coordination problems, for instance, [Ren and Sorensen,

2008, Sariel and Balch, 2006, Maza et al., 2011], when several independent players

cooperate in order to achieve a common goal.

In this section, we introduce a decentralized algorithm for solving the FDP lever-

aging and improving ideas formulated in [Becker et al., 2013]. The authors suggested

an iterative cooperation protocol utilizing so-called leakage and linkage matrices that

should be broadcast. These messages contain information about local weapon assign-

ments as well as effectiveness parameters and allow other ships to update their local

decisions in order to improve fleet-wide objectives. The main disadvantage of the

existing communication protocol (ECP) from [Becker et al., 2013] is that the total

size of the broadcast messages can be prohibitively large for practical applications.

A brief comparison of the ECP and the new communication protocol (NCP) that we

present here is summarized in Section 3.4.2.

Our new approach for distributed operations and communication is optimization-

based. Namely, we do not broadcast all information about the field of action. In con-

trast, we determine essential fragments of information that should be shared among

ships as an optimal solution of the specific two-stage RO problem (see Eq. (3.11) and

Eq. (3.14) below).

We design the new protocol for the case of a single attack (𝑁 = 1) and the presence
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of hard-kill weapons only (𝐾 = ∅).

Notation (continued):

A. Indices

𝑠′, 𝑠′′ Ship index

B. Sets

𝑇𝑠 Incoming threats that target ship 𝑠 with non-zero probability

𝑈𝑗𝑠′(𝑠) Uncertainty set for targeting probability 𝑄̃𝑗𝑠′(𝑠)

U(𝑠) Cartesian product of sets 𝑈𝑗𝑠′(𝑠) with respect to 𝑗 and 𝑠′

f* Optimal values of communication decision variables

C. Data and Parameters

𝛿𝑠 Minimum accuracy of weapons of ship 𝑠

𝑄̃𝑗𝑠′(𝑠) Uncertain probability that threat 𝑗 targets ship 𝑠′ after the first stage

of the protocol computed from the perspective of ship 𝑠

𝑄̂𝑗𝑠′(𝑠) Upper bound on probability 𝑄̃𝑗𝑠′(𝑠)

𝐹𝑠 Maximum number of messages that ship 𝑠 can broadcast

D. Decision variables

𝑓𝑗𝑠 Binary decision of ship 𝑠 to broadcast a message that it fires at least

one weapon against threat 𝑗

3.4.1 The Cooperation Protocol

Following [Becker et al., 2013], we assume that all data of the FDP described in

Section 3.2 are split into globally known and individually known blocks. On one

hand, every ship 𝑠 in the fleet possesses the following global data:

∙ Initial targeting probabilities: 𝑄𝑗𝑠′ , ∀𝑠′ ∈ 𝑆, 𝑗 ∈ 𝑇

∙ Probabilistic survival thresholds: 𝛾𝑠′ , ∀𝑠′ ∈ 𝑆

∙ Asset priorities: 𝛼𝑠′ , ∀𝑠′ ∈ 𝑆
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∙ Predefined minimum accuracy of hard-kill interceptors: 𝛿𝑠′ , ∀𝑠′ ∈ 𝑆.

On the other hand, each ship 𝑠 has some private data about its weapons that are not

available to other ships:

∙ Efficiency of the weapons against all threats: 𝑃𝑖𝑗, ∀𝑖 ∈ 𝐻𝑠, 𝑗 ∈ 𝑇

∙ Cost of own weapons: 𝑟𝑖, ∀𝑖 ∈ 𝐻𝑠.

Moreover, when ship 𝑠 makes some local (possibly tentative) weapon assignment

decisions, they are also not available for the rest of the fleet unless explicitly broadcast.

Having defined two types of data, the architecture of cooperation among ships

under the assumption of limited time for communication can be outlined as three

consecutive steps:

1. Each ship independently solves an optimization problem that simultaneously

generates an initial self-defense strategy and determines which information about

local weapon assignments should be broadcast.

2. Ships broadcast messages across the fleet.

3. Ships update their initial solutions based on revealed information from compan-

ions.

The details of each of the steps including explicit optimization formulations to be

solved, connections between weapon assignments and messages to broadcast as well

as updating rules for targeting probabilities are discussed below.

Step 1: Initial Solution
In this step, each ship calculates a preliminary solution that employs globally

known data and local information about its own weapons. We propose an optimization-

based variant of (3.1) for the initial solution that realizes a self-defense strategy. In

this model, each ship tries to maximize the survival probabilities across the fleet with

a much higher emphasis on defending itself. On top of this, each ship simultaneously
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tries to identify which information about its weapon assignments would be the most

useful to know for companions and therefore should be broadcast.

This decentralized optimization problem for a fixed ship 𝑠 ∈ 𝑆 can be represented

as follows:

𝑧1(𝑠) = min
x,w,
f ,D

∑︁
𝑖∈𝐻𝑠

∑︁
𝑗∈𝑇

𝑟𝑖 𝑥𝑖𝑗 + 𝜆 · 𝛼𝑠(𝑤𝑠 − 1) + 𝜇 ·
∑︁

𝑠′∈𝑆∖{𝑠}

𝛼𝑠′(𝑤𝑠′ − 1) (3.11a)

s.t. 1 ≤ (𝑄𝑗𝑠)
−1𝐷𝑗𝑠

∏︁
𝑖∈𝐻𝑠

(︁
1 +

𝑃𝑖𝑗 𝑥𝑖𝑗

1− 𝑃𝑖𝑗

)︁
, ∀𝑗 ∈ 𝑇𝑠 (3.11b)

𝐷𝑗𝑠′ = 𝑄𝑗𝑠′(1− 𝛿𝑠𝑓𝑗𝑠), ∀𝑠′ ∈ 𝑆∖{𝑠}, 𝑗 ∈ 𝑇𝑠′ (3.11c)∑︁
𝑗∈𝑇

𝑓𝑗𝑠 ≤ 𝐹𝑠 (3.11d)

∑︁
𝑖∈𝐻𝑠

𝑥𝑖𝑗 ≥ 𝑓𝑗𝑠, 𝑗 ∈ 𝑇 (3.11e)

𝛾𝑠′ ≤ 𝑤𝑠′

∏︁
𝑗∈𝑇

(1−𝐷𝑗𝑠′), ∀𝑠′ ∈ 𝑆 (3.11f)

∑︁
𝑗∈𝑇

𝑥𝑖𝑗 ≤ 1, ∀𝑖 ∈ 𝐻𝑠 (3.11g)

1 ≤ 𝑤𝑠′ , ∀𝑠′ ∈ 𝑆 (3.11h)

0 ≤ 𝐷𝑗𝑠′ ≤ 1, ∀𝑠′ ∈ 𝑆, 𝑗 ∈ 𝑇 (3.11i)

𝑥𝑖𝑗, 𝑓𝑗𝑠 ∈ {0, 1}, ∀𝑖 ∈ 𝐻𝑠, 𝑗 ∈ 𝑇. (3.11j)

Optimization problem (3.11) employs new binary decision variables f : we set

variable 𝑓𝑗𝑠 to be equal to 1, if a ship 𝑠 ∈ 𝑆 decides to broadcast a message that

it fires at least one weapon at threat 𝑗 ∈ 𝑇 . It is important to note that, due

to communication constraints, ship 𝑠 does not specify neither the total amount of

weapons fired at 𝑗, nor the efficiency of the assigned weapons.

The objective function (3.11a) is similar to the objective from the centralized

case (3.1a) with the only difference that now the importance of saving the ship 𝑠

(measured by penalty factor 𝜆) is much higher than the importance of protecting

other companions (represented by a factor 𝜇). Inequalities (3.11b) define destruction
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probabilities 𝐷𝑗𝑠 for the ship 𝑠 as before (3.1b), conditional on the presence of hard-

kill weapons only.

On the other hand, we define destruction probabilities 𝐷𝑗𝑠′ for the rest of the

ships 𝑠′ ̸= 𝑠 in a new way (3.11c). The key idea is that another ship 𝑠′ knows that

ship 𝑠 fires at least one weapon at threat 𝑗 ∈ 𝑇𝑠′ only if ship 𝑠 notifies everyone

about it, which corresponds to the case 𝑓𝑗𝑠 = 1. In this scenario, ship 𝑠′ realizes

that the initial targeting probability 𝑄𝑗𝑠′ can be decreased. More precisely, it can be

multiplied by (1− 𝛿𝑠), where 𝛿𝑠 is a globally known minimum accuracy of weapons of

ship 𝑠. Thus, from the perspective of ship 𝑠, Eq. (3.11c) illustrates by how much ship

𝑠 will help ship 𝑠′, if it fires at least one weapon against threat 𝑗 ∈ 𝑇𝑠′ and broadcasts

a corresponding message.

Inequality (3.11d) states that the total number of messages that ship 𝑠 can broad-

cast is at most 𝐹𝑠, while constraint (3.11e) makes weapon assignments x and com-

munication decisions f consistent with each other. The rest of the constraints are

identical to the centralized formulation (3.1).

It is possible to solve the decentralized version of the FDP (3.11) with 𝐾𝑠 = ∅

by lazy constraints techniques almost instantly (see Section 3.5). This formulation

is computationally easier than the centralized version since there are only hard-kill

weapons and a large number of nonlinear constraints of type (3.11b) are substituted

with linear equations (3.11c). Since these computations are organized independently

for all assets 𝑠 ∈ 𝑆, then the initial solutions become available within a matter of

seconds after a set of threats 𝑇 = {𝑇𝑠 : 𝑠 ∈ 𝑆} is detected.

It is worth mentioning that the fully decentralized scenario of the FDP without

communication when ships independently try to protect only themselves also has

the form of optimization problem (3.11). In this case, it is sufficient to assume zero

communication capacities 𝐹𝑠 = 0 for all 𝑠 ∈ 𝑆 and zero penalty 𝜈 = 0 for violations

of survival of other ships.

Step 2: Broadcasting Messages
At the second stage of the protocol, ships broadcast information about their initial

weapon assignments according to the optimal values of communication variables f* =
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{𝑓 *
𝑗𝑠 | 𝑗 ∈ 𝑇, 𝑠 ∈ 𝑆} derived by the solutions of (3.11).

Step 3: Updating Weapon Allocation

Based on the messages from Step 2, each ship 𝑠 may update estimations of target-

ing probabilities Q since some of the threats become less dangerous. We introduce

uncertain parameters 𝑄̃𝑗𝑠′(𝑠), for 𝑗 ∈ 𝑇 , 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆∖{𝑠} representing a proba-

bility that threat 𝑗 targets ship 𝑠′ after the first stage of the protocol measured from

the perspective of ship 𝑠.

Given that variables f contain only a portion of information about weapon assign-

ments and the number of these messages is limited, for all ships in a fleet targeting

probabilities Q̃ remain uncertain. We can introduce the corresponding uncertainty

sets as

𝑈𝑗𝑠′(𝑠) =
{︀
𝑄̃𝑗𝑠′(𝑠) | 0 ≤ 𝑄̃𝑗𝑠′(𝑠) ≤ 𝑄̂𝑗𝑠′(𝑠)

}︀
, (3.12)

where upper bound 𝑄̂𝑗𝑠′(𝑠) is determined by globally available data:

𝑄̂𝑗𝑠′(𝑠) = 𝑄𝑗𝑠′

∏︁
𝑠′′ ̸=𝑠

(1− 𝑓 *
𝑗𝑠′′𝛿𝑠′′). (3.13)

Equation (3.13) states that from the perspective of ship 𝑠 ∈ 𝑆 threat 𝑗 ∈ 𝑇 targets

ship 𝑠′ ∈ 𝑆 with initial probability 𝑄𝑗𝑠′ discounted by (1 − 𝑓 *
𝑗𝑠′′𝛿𝑠′′) for any ship 𝑠′′

different from 𝑠 that fires at least one weapon against this threat.

We denote by U(𝑠) the cartesian product of sets defined in (3.12) that aggregate

estimations of targeting probabilities 𝑄̃𝑗𝑠′(𝑠) from the perspective of ship 𝑠 as follows

U(𝑠) =
{︁(︀

𝑄̃11(𝑠), . . . , 𝑄̃𝑇𝑆(𝑠)
)︀
| 𝑄̃𝑗𝑠′(𝑠) ∈ 𝑈𝑗𝑠′(𝑠) for 𝑗 ∈ 𝑇, 𝑠′ ∈ 𝑆

}︁
.
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In this step of the protocol, each ship 𝑠 solves the FDP under uncertainty with respect

to Q̃(𝑠) incorporating additional information modeled by the set U(𝑠) as follows:

𝑧3(𝑠) = min
x,w,D

max
Q̃(𝑠)∈U(𝑠)

∑︁
𝑖∈𝐻𝑠

∑︁
𝑗∈𝑇

𝑟𝑖 𝑥𝑖𝑗 + 𝜆 · 𝛼𝑠(𝑤𝑠 − 1) + 𝜇 ·
∑︁

𝑠′∈𝑆∖{𝑠}

𝛼𝑠′(𝑤𝑠′ − 1)

(3.14a)

s.t. 1 ≤
(︁
𝑄̃𝑗𝑠′(𝑠)

)︁−1

𝐷𝑗𝑠′

∏︁
𝑖∈𝐻𝑠′

(︁
1 +

𝑃𝑖𝑗 𝑥𝑖𝑗

1− 𝑃𝑖𝑗

)︁
, ∀𝑠′ ∈ 𝑆, 𝑗 ∈ 𝑇𝑠′

(3.14b)∑︁
𝑖∈𝐻𝑠

𝑥𝑖𝑗 ≥ 𝑓 *
𝑗𝑠, 𝑗 ∈ 𝑇 (3.14c)

𝛾𝑠′ ≤ 𝑤𝑠′

∏︁
𝑗∈𝑇

(1−𝐷𝑗𝑠′), ∀𝑠′ ∈ 𝑆 (3.14d)

∑︁
𝑗∈𝑇

𝑥𝑖𝑗 ≤ 1, ∀𝑖 ∈ 𝐻𝑠 (3.14e)

1 ≤ 𝑤𝑠′ , ∀𝑠′ ∈ 𝑆 (3.14f)

0 ≤ 𝐷𝑗𝑠′ ≤ 1, ∀𝑠′ ∈ 𝑆, 𝑗 ∈ 𝑇 (3.14g)

𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝐻𝑠, 𝑗 ∈ 𝑇. (3.14h)

Problem (3.14) is a nonlinear robust optimization problem [Ben-Tal et al., 2009,

Bertsimas et al., 2011]. The objective function (3.14a) reflects that the decision maker

controls only weapon assignment variables x (and auxiliary dependent variables w

and D), while targeting probabilities Q̃(𝑠) are uncertain parameters.

Inequalities (3.14b) determine the destruction probabilities 𝐷𝑗𝑠′ as before with the

only difference that now the first factor
(︁
𝑄̃𝑗𝑠′(𝑠)

)︁−1

is not a constant, but rather an

uncertain parameter. Given that each inequality (3.14b) should hold for all values

of 𝑄̃𝑗𝑠′(𝑠) in set 𝑈𝑗𝑠′(𝑠), it is easy to see that (3.14b) should remain feasible for the

smallest possible value of
(︁
𝑄̃𝑗𝑠′(𝑠)

)︁−1

or, equivalently, for the largest possible value

of 𝑄̃𝑗𝑠′(𝑠). This value is known to be equal to 𝑄̂𝑗𝑠′(𝑠) as defined in (3.13). Thus, the

robust optimization problem (3.14) is equivalent to a regular optimization problem

if all uncertain parameters 𝑄̃𝑗𝑠′(𝑠) are substituted with the largest possible values
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𝑄̂𝑗𝑠′(𝑠), that represent the most risk-averse scenario, and maximization with respect

to Q̃(𝑠) in (3.14a) is omitted. As such, formulation (3.14) can be efficiently solved

by a combination of standard RO techniques [Bertsimas et al., 2011] and the LAZY

algorithm from Section 3.2.2.

Inequalities (3.14c) state that if ship 𝑠 announced at the first step of the commu-

nication protocol to allocate at least one weapon to threat 𝑗 ∈ 𝑇 (i.e. 𝑓 *
𝑗𝑠 = 1), then

it should stick to the broadcast decision. The rest of the constraints are identical to

formulations (3.1) and (3.11).

The implementation of the robust optimization methodology for solving the FDP

(3.14) delivers two major benefits. First, it allows us to model uncertainty with

respect to targeting probabilities Q̃(𝑠) remaining after communication at Step 2 by

means of sets U(𝑠). Second, consideration of the most risk-averse scenario represented

by inner maximization in (3.14) is a reasonable choice given the danger and liability

involved when solving the fleet defense problem.

3.4.2 Discussion

The main differences between the ECP from Becker et al. [2013] and the NCP designed

in Section 3.4.1 can be summarized as follows:

1. The ECP is based on a linearized heuristic of the binary second-order cone

optimization problem (3.1) aiming to make it fast enough for real world scenar-

ios, while the NCP efficiently solves exact nonlinear problems (3.11) and (3.14)

leveraging lazy constraints techniques.

2. The ECP involves an iterative process of alternation between local computa-

tions and message broadcasting until a stopping condition is met. In contrast,

the NCP considers a more stressful scenario with sharp time limits for commu-

nication, and therefore it has exactly three steps.

3. The architecture of the ECP assumes that information that ships share among

each other (leakage and linkage matrices) is predefined and always the same
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regardless of its importance. At the same time, a new protocol broadcasts not

all data, but only its most useful pieces. Messages that ships transmit according

to the NCP are defined as a part of an optimal solution of the optimization

problem (3.11).

4. When the ECP is employed, then the total size of transmitted messages (con-

sisting of several matrices) is fixed and may be too large for many practical

situations. In contrast, the NCP allows the decision maker to control a number

of messages that can be broadcast by tuning input parameters of the optimiza-

tion problem (3.11) that represent communication capacities.

Another important advantage of the NCP designed in Section 3.4.1 is that its

implementation can dramatically improve the global fleet objective

Z𝑡𝑜𝑡𝑎𝑙 =
∑︁
𝑠∈𝑆

𝑧(𝑠), (3.15)

where

𝑧(𝑠) =
∑︁
𝑖∈𝐻𝑠

∑︁
𝑗∈𝑇

𝑟𝑖 𝑥𝑖𝑗 + 𝜆 · 𝛼𝑠(𝑤𝑠 − 1) + 𝜇 ·
∑︁

𝑠′∈𝑆∖{𝑠}

𝛼𝑠′(𝑤𝑠′ − 1). (3.16)

The value of 𝑧(𝑠) represents the total weapon costs fired by ship 𝑠 and a penalty

if some of the ships in the fleet are not protected with required probabilities. We

can compute this sum Z𝑡𝑜𝑡𝑎𝑙 before and after implementation of the protocol. More

precisely,

Z𝑠𝑡𝑎𝑟𝑡
𝑡𝑜𝑡𝑎𝑙 =

∑︁
𝑠∈𝑆

𝑧1(𝑠) and Z𝑓𝑖𝑛𝑎𝑙
𝑡𝑜𝑡𝑎𝑙 =

∑︁
𝑠∈𝑆

𝑧3(𝑠)

where 𝑧1(𝑠) and 𝑧3(𝑠) are the optimal solution values of (3.11) and (3.14), respectively.

The main idea of possible improvement is that the primary goal of the protocol is

to increase survival probabilities of insufficiently protected ships and thereby reduce

heavily penalized slack variables 𝑤𝑠 (3.16). In other words, it is not necessarily true

that implementation of the protocol leads to a reduction of total weapon costs in
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comparison with the completely decentralized scenario, since some ships may spend

additional weapons to protect insecure companions and therefore increase the total

weapon expenses. At the same time, there is a dominating factor 𝜆 representing the

paradigm that the fleet is much more concerned about survival of the ships than

weapon costs. As a result, a solution with higher survival probabilities may result in

a significant reduction of the objective value Z𝑡𝑜𝑡𝑎𝑙.

The cooperation protocol described in Section 3.4.1 may only decrease targeting

probabilities for all ships in the fleet. Namely, Step 2 implies that 𝑄̂𝑗𝑠′(𝑠) ≤ 𝑄𝑗𝑠′ for

all ships 𝑠, 𝑠′ ∈ 𝑆 and threats 𝑗 ∈ 𝑇 according to (3.13). Thus, the main advantage of

the suggested communication protocol is that survival probabilities of all ships may

only increase and the objective values 𝑧(𝑠) of all ships may only decrease going from

Step 1 to Step 3, which we prove formally in the following proposition.

Proposition 3.1. For any input data Q,P,F̂, r,𝛼, 𝛿, 𝜆, 𝜇 and any ship 𝑠 ∈ 𝑆 the

following inequality between objective values of optimization problems (3.11) and

(3.14) holds:

𝑧3(𝑠) ≤ 𝑧1(𝑠). (3.17)

Proof. In order to prove (3.17) we will show that the optimal solution (x*,w*, f*,D*)

of optimization problem (3.11) is feasible for problem (3.14). Combining definitions

(3.12) and (3.13) we obtain that

𝑄̃𝑗𝑠′(𝑠) ≤ 𝑄̂𝑗𝑠′(𝑠) ≤ 𝑄𝑗𝑠, 𝑗 ∈ 𝑇, 𝑠′, 𝑠 ∈ 𝑆. (3.18)

For any fixed index 𝑗 ∈ 𝑇𝑠, Ineq. (3.11b) defining destruction probability 𝐷𝑗𝑠 at

optimum has the following form

𝐷*
𝑗𝑠 ≥ 𝑄𝑗𝑠

(︂ ∏︁
𝑖∈𝐻𝑠

(︁
1 +

𝑃𝑖𝑗 𝑥
*
𝑖𝑗

1− 𝑃𝑖𝑗

)︁)︂−1

.
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If targeting probabilities 𝑄𝑗𝑠 are substituted with lower values 𝑄̃𝑗𝑠(𝑠) as in (3.14b),

then the current solution D* is still feasible due to

𝐷*
𝑗𝑠 ≥ 𝑄𝑗𝑠

(︂ ∏︁
𝑖∈𝐻𝑠

(︀
1 +

𝑃𝑖𝑗 𝑥
*
𝑖𝑗

1− 𝑃𝑖𝑗

)

)︂−1

≥ 𝑄̃𝑗𝑠(𝑠)

(︂ ∏︁
𝑖∈𝐻𝑠

(︀
1 +

𝑃𝑖𝑗 𝑥
*
𝑖𝑗

1− 𝑃𝑖𝑗

)

)︂−1

,

which holds for all 𝑄̃𝑗𝑠(𝑠) ∈ 𝑈𝑗𝑠(𝑠) defined by (3.12).

Now we need to prove that the destruction probabilities 𝐷𝑗𝑠′ defined by Eq. (3.11c)

are also feasible for inequalities (3.14b). Indeed, if 𝑓 *
𝑗𝑠 = 0, then inequality

1 ≤
(︁
𝑄̃𝑗𝑠′(𝑠)

)︁−1

𝑄𝑗𝑠′(1− 𝛿𝑠𝑓
*
𝑗𝑠)
∏︁
𝑖∈𝐻𝑠′

(︁
1 +

𝑃𝑖𝑗 𝑥
*
𝑖𝑗

1− 𝑃𝑖𝑗

)︁
(3.19)

is straightforward, given that (3.18) is true and each factor in the last product is

greater or equal than 1. If 𝑓 *
𝑗𝑠 = 1, then Ineq. (3.11e) states that there exist at least

one weapon, say 𝑖0 ∈ 𝐻𝑠, that ship 𝑠 fires at threat 𝑗, i.e. 𝑥*
𝑖0 𝑗

= 1. In this case, Ineq.

(3.19) still holds, since

(1− 𝛿𝑠𝑓
*
𝑗𝑠)
∏︁
𝑖∈𝐻𝑠′

(︁
1 +

𝑃𝑖𝑗 𝑥
*
𝑖𝑗

1− 𝑃𝑖𝑗

)︁
≥ (1− 𝛿𝑠)

(︁
1 +

𝑃𝑖0 𝑗

1− 𝑃𝑖0 𝑗

)︁
=

1− 𝛿𝑠
1− 𝑃𝑖0 𝑗

≥ 1,

by definition of minimum accuracy of hard-kill weapons 𝛿𝑠.

The rest of the constraints in (3.14) are identical to formulation (3.11) and, there-

fore, remain valid. �

Combining result (3.17) from Proposition 3.1 and definition (3.15), we imply that

𝑍𝑓𝑖𝑛𝑎𝑙
𝑡𝑜𝑡𝑎𝑙 ≤ 𝑍𝑠𝑡𝑎𝑟𝑡

𝑡𝑜𝑡𝑎𝑙 .

3.5 Computational Results

In this section, we empirically demonstrate the practical effectiveness of the MIO

approach and lazy constraints techniques for both centralized and distributed coun-

terparts of the FDP. Together with RO-based communication protocol, they allow

the decision maker to obtain high-quality solutions of the FDP of typical size in real
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time.

3.5.1 Advantage of the MIO Approach

In this experiment, we present a simple heuristic algorithm that can be employed as

a benchmark for solving the FDP. We empirically validate that the MIO approach to

the FDP developed in Section 3.2 significantly outperforms this heuristic algorithm

providing a better protection for the fleet and spending less weapons for this defense.

One possible way to introduce a heuristic method (that we denote by GREEDY)

is to sort all incoming threats from the most dangerous to the fleet to the least

dangerous, and then sequentially assign the most efficient weapons against these

sorted threats. A rigorous definition of the algorithm is as follows.

Algorithm 3.2 GREEDY method for the FDP
1: procedure GREEDY(Q,P,𝛼,𝛾)
2: Set weapon assignment matrix x = 0.
3: while there exists a ship 𝑠 with survival probability below 𝛾𝑠 and there exists

an unused weapon do
4: Sort threats 𝑗 ∈ 𝑇 by

∑︀
𝑠∈𝑆

𝛼𝑠𝑄𝑗𝑠 in a decreasing order.

5: Pick the first (and therefore the most dangerous) threat; denote it by 𝑗0 .
6: Assign the most efficient unused weapon 𝑖0 against 𝑗0, i.e., 𝑖0 =

argmax𝑖∈𝐻 𝑃𝑖𝑗0 and set 𝑥𝑖0𝑗0 = 1.
7: Update 𝑄𝑗0𝑠 ← 𝑄𝑗0𝑠(1− 𝑃𝑖0𝑗0) for 𝑠 ∈ 𝑆.
8: return x, i.e., assignments of weapons to threats.

In order to demonstrate that in practice the MIO approach generates much more

efficient solutions to the FDP than GREEDY method, we consider an example of

the fleet defense scenario as in [Becker et al., 2013]. This one time-period problem is

described by the following parameters:

∙ Fleet: There are three ships of equal importance, i.e., 𝑆 = 3 and 𝛼𝑠 = 1 for

𝑠 ∈ 𝑆. Asset survival thresholds 𝛾𝑠 are generated uniformly between 0.7 and

0.95, and 𝜆 = 1000.

∙ Threats: There are nine threats in the field of action (𝑇 = 9). Targeting matrix
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Q is defined by nonzero elements:

𝑄11 = 𝑄13 = 𝑄41 = 𝑄42 = 𝑄72 = 𝑄73 = 0.5 and

𝑄21 = 𝑄31 = 𝑄52 = 𝑄62 = 𝑄83 = 𝑄93 = 1.

∙ Weapons: Each ship has 5 hard-kill missiles on board. Components of efficacy

matrix P are uniformly generated at random between 0.5 and 1. Firing costs

𝑟𝑖 are equal to 1 for all weapons 𝑖 ∈ 𝑊.

We run 1000 Monte Carlo simulations solving generated FDP instances by the

GREEDY and the MIO methods and compare solutions that both methods yield. In

46% of the scenarios the solutions turned out to be identical, while in 54% of the

scenarios the solutions produced by the GREEDY method were less efficient. The

GREEDY method allocated on average 14.5% more weapons for fleet defense than

the MIO approach. Moreover, in 3.5% of the cases the MIO algorithm protected

all the ships in the fleet with required probabilities, while the GREEDY algorithm

allocated all available weapons and nevertheless some of the ships were left insecure.

3.5.2 Performance of the Lazy Constraints Method

This section compares the computational performance of the two formulations of the

centralized fleet defense problem (3.1): the SOCP formulation, that can be derived

from the results of paper [Becker et al., 2013], and a formulation with lazy constraints

presented in Section 3.2.2. The lazy constraints algorithm may employ linear projec-

tion (3.7a) or orthogonal projection (3.7b) of a testing point. Therefore, in order to

model the nonlinear constraints (3.1b) it is possible to use linear projections, orthogo-

nal projections or both, i.e., there are three available variants. The same independent

decisions can be made for constraints (3.1c), that gives us in total 9 different methods

to solve the problem with lazy constraints techniques.

Based on the different ways to project testing points, we define the parallelized

method as follows. For each instance of the FDP, we run 9 methods described above
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in parallel, and terminate computation when one the arms solves the optimization

problem to optimality.

In order to demonstrate that the parallelized lazy constraint method is remarkably

faster than the SOCP method we consider the same FDP scenario as described in the

previous experiment. The only difference is that now we add soft-kill weapons.

∙ Weapons: Each ship has 5 hard-kill missiles and 1 soft-kill weapon on board.

Components of the efficacy matrix P are generated uniformly between 0.5 and

1. A soft-kill weapon can be fired by a ship only at threats that target this ship

with probability 1. This assignment destroys a threat with probability 0.3 and

redirects a threat to a neighboring asset with probability 0.2. It does not make

any effect with probability 0.3. Firing costs 𝑟𝑖 are equal to 1 for all weapons

𝑖 ∈ 𝑊.

We evaluated two methods to solve the FDP - the SOCP and the parallelized

lazy constraints algorithm - measuring computational time needed to find an optimal

weapon allocation and to prove its optimality. The results of the second-order conic

formulation are presented in Table 3.1, while computational times for an algorithm

based on lazy constraints are reported in Table 3.2.

Table 3.1: Computational time of the SOCP method.

Average time Minimum time Maximum time
First integer solution 32 s 3 s 73 s
Optimal solution found 389 s 3 s 570 s
Optimality is proven 545 s 125 s 956 s

The algorithm with iteratively added linear separating hyperplanes has starkly

better performance than SOCP method. In this particular example, an average ac-

celeration of finding the optimal solution of the FDP is equal to 389
3.93

= 98.9 times.

If instead of the parallelized method we randomly choose one of the nine lazy

constraints methods described in the beginning of this section, then the average time

needed to find an optimal solution of this FDP is 6.4 s. It implies that even with-

out solving this problem in parallel, we can guarantee a significant acceleration of

computation.
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Table 3.2: Computational time of the parallelized lazy constraints method.

Average time Minimum time Maximum time
First integer solution 0.19 s 0.01 s 2.1 s
Optimal solution found 3.93 s 0.4 s 7.4 s
Optimality is proven 16.91 s 4.1 s 27.8 s

3.5.3 Sensitivity Analysis

In this experiment, we explore the influence of major parameters (survival threshold,

weapons efficiency and number of threats) on the computational time needed to solve

the FDP. The default setting is defined as follows:

∙ Fleet: There is one ship 𝑆 = 1 with priority 𝛼1 = 1. Number of periods 𝑁 = 1,

threshold 𝛾 is randomly generated between 0.7 and 0.95, penalty 𝜆 = 1000.

∙ Threats: The total number of threats 𝑇 = 5 and components of targeting vector

Q = (𝑄𝑗1, . . . , 𝑄𝑗 𝑇 ) are generated uniformly at random between 0 and 1.

∙ Weapons: The number of hard-kill interceptors 𝐻 = 10 with uniformly random

efficiency between 0.5 and 1. There is also one soft-kill weapon 𝐾 = 1, which

deflects the threat with probability 0.6 and does not change anything with

probability 0.4.

Having fixed default parameters, we sequentially perturb each of them to find out how

it affects the computational time for solving the corresponding optimization problem.

For each of the scenarios we generate 1000 Monte Carlo simulations and solve them

with the parallelized method. In Table 3.3 we report 95% quantiles of computational

time needed to find the optimal solution and to prove that this solution is indeed

optimal. In other words, in 95% of all simulations the optimal solution was found

and proved to be optimal faster than times indicated in the corresponding cells of

the table. The time needed to obtain the first integer solution was always below 1

second, and therefore omitted.

Case 1: Changes in survival threshold 𝛾. These empirical results allow us to make

the following practical conclusion. If the survival threshold of ship 𝑠 belongs, for
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instance, to the interval [0.9, 0.95] and the decision maker terminates the computation

of the FDP after 0.6 s, then with 95 % probability the best integer solution found

by this time is optimal. Furthermore, we infer that the growth of survival threshold

implies the growth of computational time since it becomes more difficult to protect a

ship with a higher probability.

Table 3.3: Sensitivity of the computational time with respect to problem parameters.

Case 1: Range for 𝛾 [0.7, 0.75] [0.7, 0.95] [0.9, 0.95] [0.95, 1]
95% Quantile (Opt found) 0.17 s 0.43 s 0.6 s 10.7 s
95% Quantile (Opt proven) 0.37 s 1.53 s 3.7 s 15.7 s
Case 2: Range for 𝑃𝑖𝑗 [0.5, 0.7] [0.6, 1] [0.75, 1] [0.9, 1]
95% Quant. (Opt found) 9.41 s 0.39 s 0.46 s 0.12 s
95% Quant. (Opt proven) 30.1 s 2.39 s 1.67 s 0.32 s
Case 3: Number of threats 𝑇 𝑇 = 3 𝑇 = 5 𝑇 = 7 𝑇 = 9
95% Quantile (Opt found) 0.06 s 3.93 s 14.7 s 26.4 s
95% Quantile (Opt proved) 0.11 s 16.9 s 28.1 s 30.2 s

Case 2: Changes in weapons efficiency 𝑃𝑖𝑗. This case study validates that the

growth of weapons accuracy naturally implies the simplification of the fleet defense

optimization problem, what reduces the overall computational time.

Case 3: Changes in a number of threats 𝑇 . The last section of Table 3.3 demon-

strates the growth of computational time needed to solve more and more stressing

scenarios with a sequentially increasing number of incoming threats.

The conducted numerical experiments make evident that the FDP can be solved by

the parallelized method within a matter of seconds (that is, online) for the instances of

practical size and reasonable values of underlying parameters. The more stressful the

scenario becomes (described by higher survival probability thresholds, lower weapon

efficiency or a larger number of incoming threats), the more computational time is

needed to find the optimal solution.

3.5.4 Scaling Experiments

In this subsection, we discuss the scalability of the fleet defense optimization problem

with respect to the size of the fleet and the total number of attacks. As opposed to
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the previous experiment, we now increase all major parameters of the problem pro-

portionally to one selected parameter, rather than change a single parameter keeping

the rest of them fixed. The default setting is defined as follows:

∙ Fleet: Survival thresholds 𝛾𝑠 for 𝑠 ∈ 𝑆 are uniformly generated at random

between 0.7 and 0.95, asset priorities 𝛼𝑠 for 𝑠 ∈ 𝑆 are random integers from 1

to 10 and 𝜆 = 1000.

∙ Threats: Total number of threats is defined by a vector (𝑇 1, . . . , 𝑇𝑁), where 𝑁

is a number of subsequent attacks. Components 𝑄𝜏
𝑗𝑠 of targeting matrices Q𝜏

are randomly generated for 𝜏 ∈ {1, . . . , 𝑁}, 𝑗 ∈ 𝑇 𝜏 and 𝑠 ∈ {1, . . . , 𝑆} in such

a way, that any missile 𝑗 cannot target more than 3 ships.

∙ Weapons: Each ship has 5 hard-kill weapons per time period with a random

efficiency 𝑃 𝜏
𝑖𝑗 between 0.6 and 1. Moreover, each ship holds one soft-kill weapon

per period. Each soft-kill weapon deflects a threat from the fleet with probability

0.3, it redirects a threat to another asset with probability 0.4 and does not affect

the missile with probability 0.4.

Similarly to the previous experiment, we generate 1000 Monte Carlo simulations in

order to measure 95% quantile of computational times needed to find an optimal

solution and to prove its optimality.

Case 1: Scaling with respect to a number of ships 𝑆. This scenario is defined by

a fixed number of attacks 𝑁 = 1 and a changing size of the fleet 𝑆. A total number

of hard-kill weapons 𝐻, soft-kill weapons 𝐾 as well as a total number of incoming

threats 𝑇 depend on 𝑆 as follows:

𝐻 = 5 · 𝑆, 𝐾 = 𝑆 and 𝑇 = 3 · 𝑆.

Case 2: Scaling with respect to a number of time periods 𝑁 . In this setting, we

keep a number of ships 𝑆 fixed and equal to 3, while the number of subsequent attacks
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𝑁 varies. We define major parameters of the FDP to be linear functions of 𝑁 :

𝐻𝑠 = 5 ·𝑁 ; 𝐾𝑠 = 𝑁 for 𝑠 ∈ 𝑆 ; 𝑇 𝜏 = 3 for 𝜏 ∈ {1, . . . , 𝑁}.

Table 3.4: Computational time of the parallelized method.

Size of the fleet S 𝑆 = 2 𝑆 = 4 𝑆 = 6 𝑆 = 8
95% Quantile (Opt found) 1.23 s 6.01 s 15.4 s 22.8 s
95% Quantile (Opt proved) 25.4 s 30.3 s 41.3 s 63 s

Number of attacks N 𝑁 = 1 𝑁 = 2 𝑁 = 3
95% Quantile (Opt found) 0.15 s 0.84 s 1.81 s
95% Quantile (Opt proved) 0.26 s 2.42 s 8.54 s

Table 3.4 demonstrates one more time that the FDP can be solved within a matter

of seconds for instances of typical size with reasonable sizes of a campaign 𝑆 and a

number of time periods 𝑁 . The results from Table 3.4 also imply that the computa-

tional time needed to find the optimal solution of the FDP and to prove its optimality

exhibits a moderate growth as a function of parameters 𝑆 and 𝑁 .

3.5.5 Advantage of the Multiperiod Approach

In this experiment, we consider the multiperiod scenario for the FDP described in

Section 3.3. Our primary goal is to demonstrate that in this case the method based

on the multiperiod formulations (3.9) significantly outperforms the method based

on myopic single period formulations (3.1). More precisely, in case of a sequence of

attacks (indexed by 𝜏 = 1, . . . , 𝑁), the decision maker at any given time-step 𝜏 can

organize the fleet defense in two different ways:

Method A. She can solve the single period optimization problem of type (3.1)

that comprises data describing only the current time period 𝜏 , i.e., P𝜏 ,Q𝜏 ,R𝜏 .

Method B. She can solve the multiperiod optimization problem of type (3.9)

that comprises data describing the current and the future time periods, i.e.,

P𝑡,Q𝑡,R𝑡 for 𝑡 = 𝜏, . . . , 𝑁 .
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The numerical experiment is defined as follows:

∙ Fleet: The size of the fleet 𝑆 = 4 and ship priorities are 𝛼𝑠 = 𝑠 for 𝑠 = 1, . . . , 𝑆.

The number of periods 𝑁 = 3, thresholds 𝛾𝑠 are randomly generated between

0.7 and 0.95, and the penalty 𝜆 = 1000.

∙ Threats: The number of threats per period 𝑇 𝜏 = 4 for 𝜏 = 1, . . . , 𝑁 . At each

time-step 𝜏 = 1, . . . , 𝑁 , there is one threat that targets a randomly chosen ship

with probability 1, while the remaining threats can target up to two ships with

probabilities generated uniformly at random.

∙ Weapons: The number of hard-kill interceptors 𝐻 = 11 with uniformly random

efficiency between 0.5 and 1. Each ship carries one soft-kill weapon, which

destroys the threat with probability 0.3, redirects it to a neighboring ship with

probability 0.4 and does not change anything with probability 0.3.

At the end of each time-step 𝜏 = 1, . . . , 𝑁 we simulate a possible destruction of the

ships as follows. Let us assume that ship 𝑠 was protected with a probability 𝑝𝜏𝑠 . If

𝑝𝜏𝑠 is at least as high as 𝛾𝑠, then we assume that this ship is secure. Otherwise, the

survival of ship 𝑠 at the end of time-step 𝜏 is modeled by Bernoulli random variable

𝜉𝜏𝑠 with parameter 𝑝𝜏𝑠 .

We compare the performance of the methods A and B in terms of four character-

istics describing the quality of the FDP solution:

1. The total number of ships that survive the sequence of attacks,∑︀
𝑠∈𝑆

max
(︁
I
{︀
𝑤𝑁

𝑠 = 1
}︀
, I
{︀
𝑤𝑁

𝑠 > 1 and 𝜉𝑁𝑠 ≤ 𝑝𝑁𝑠
}︀)︁

.

2. The total weighted number of surviving ships, where ship priorities are used as

weights,
∑︀
𝑠∈𝑆

𝛼𝑠 ·max
(︁
I
{︀
𝑤𝑁

𝑠 = 1
}︀
, I
{︀
𝑤𝑁

𝑠 > 1 and 𝜉𝑁𝑠 ≤ 𝑝𝑁𝑠
}︀)︁

.

3. The total number of weapons fired at threats,
𝑁∑︀
𝜏=1

∑︀
𝑖∈𝑊

∑︀
𝑗∈𝑇 𝜏

𝑥𝑖𝑗.

4. The total number of weapons wasted due to the destruction of the ships.

100



Table 3.5 demonstrates the empirical results of one thousand Monte Carlo simulations.

Given that Method B is exposed to more relevant information about the field of action,

it is able to produce more efficient and strategic weapon assignments. We observe that

the average number of surviving ships is higher and the average number of destroyed

weapons is lower when Method B is employed.

Table 3.5: Comparison of methods solving the multiperiod FDP

Method Ships survived Weighted ships Weapons fired Weapon wasted
A: Single period 3.17 8.1 13.15 0.45
B: Multiperiod 3.59 8.95 13.37 0.17

3.5.6 Cooperation Protocol Results

In this experiment, we compare the performance of the three algorithms solving the

FDP from the perspective of global fleet objectives:

1. Decentralized: In this setting ships in the fleet do not communicate with each

other and execute independent self-defense plans.

2. Communication protocol: Ships in the fleet have some communication capability

and cooperate according to the steps described in Section 3.4.

3. Centralized: All information about the field of action is globally known, so the

exact solution of fleet-wide optimization problem is calculated and implemented.

Similarly to the previous experiment, we consider four characteristics that describe

the quality of a FDP solution produced by an algorithm:

1. The total number of ships that survive,
∑︀
𝑠∈𝑆

I
{︀
𝑤𝑠 = 1

}︀
.

2. The total weighted number of surviving ships, where ship priorities are used as

weights,
∑︀
𝑠∈𝑆

𝛼𝑠 · I
{︀
𝑤𝑠 = 1

}︀
.

3. The average value of a multiplicative slack variable, 1
|𝑆|
∑︀
𝑠∈𝑆

𝑤𝑠−1
𝑤𝑠

. This value

displays by how much on average a survival probability of a ship is below a

corresponding survival threshold.
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4. The total number of weapons spent,
∑︀
𝑠∈𝑆

∑︀
𝑖∈𝑊𝑠

∑︀
𝑗∈𝑇

𝑥𝑖𝑗.

In this case study we consider a scenario defined by parameters similar to the previous

experiments:

∙ Fleet: Number of attacks 𝑁 = 1, the size of the campaign 𝑆 = 5, thresholds

𝛾𝑠 for 𝑠 ∈ 𝑆 are uniformly generated at random between 0.7 and 0.95, penalty

constants 𝜆 = 1000 and 𝜈 = 10, asset priorities 𝛼𝑠 = 𝑠 for 𝑠 = 1, . . . , 𝑆. Each

ship can send up to 2 messages at Step 1 of the communication protocol, i.e.,

𝐹𝑠 = 2 for 𝑠 = 1, . . . , 𝑆.

∙ Threats: Total number of threats 𝑇 equals 5, and elements of a targeting matrix

Q are randomly generated in such a way that every missile may target up to 5

ships.

∙ Weapons: Each asset has only hard-kill interceptors with random effectiveness

parameters between 0.5 and 1. This makes minimum weapon accuracy 𝛿𝑠 equal

to 0.5 for all ships 𝑠 ∈ 𝑆. A total number of weapons 𝐻 equals 15, and these

weapons are randomly split between the ships of the fleet. Firing costs 𝑟𝑖 are

set to 1 for all interceptors.

One thousand of Monte Carlo runs reveal the comparative performance presented in

Table 3.6.

Table 3.6: Comparison of algorithms solving the FDP

Ships survived Weighted ships Average slack Total weapons
Decentralized 2.15 6.56 0.281 12.6
Protocol 3.2 9.92 0.103 14.96
Centralized 4.94 14.9 7e-4 11.58

A completely distributed approach with ships solving their local survival problems

without any communication with each other has the worst performance in terms of

fleet-wide objectives. In this setting, on average only 2.15 out of 5 ships can protect

themselves with the required probabilities. The weighted sum of secure ships is 6.56

out of perfect 15 = 1 + · · · + 5, and each ship has a survival probability which
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is on average 28.1% below the required threshold. According to the decentralized

algorithm, the fleet spends on average 12.6 weapons to organize its defense.

At the same time, the implementation of the cooperation protocol with even very

limited communication among the ships significantly improves the global objectives

of the fleet. More precisely, a number of ships that can be classified as secure grows

by more than one ship (3.2 − 2.15 = 1.05), and this additional ship has one of the

highest priorities in the fleet (9.92− 6.56 = 3.36). An average survivability slack also

improves substantially from 28.1% to 10.3%. On the other hand, a total number of

weapons needed to protect the fleet goes up from 12.6 to almost maximum possible

14.96 weapons, since now ships try to assist insecure companions after protecting

themselves.

Table 3.6 demonstrates that the best algorithm for solving the FDP is the idealistic

centralized approach. In order to protect the fleet from 5 threats it takes on average

11.58 weapons. Moreover, almost all 5 ships of the fleet survive with a negligibly

small average value of the multiplicative slack. At the same time, the centralized

method has two major issues that make it impractical. First, it does not take into

consideration the local availability of some data. Second, it is relatively slow from a

tractability perspective. The communication protocol suggested in Section 3.4 and

the lazy constraint algorithm introduced in Section 3.2 considerably alleviate both

these limitations.

3.5.7 Discussion

The major contributions of this numerical section can be summarized as follows:

1. By definition, the MIO approach to the fleet defense problem allocates available

weapons in the most efficient way. Therefore, this approach not only saves some

of the weapons in comparison with another reasonable heuristic algorithm, but

also significantly increases the survival probabilities of the ships in the campaign.

2. Despite the fact that the initial optimization problem for the FDP is highly non-

linear, the lazy constraints algorithm is computationally effective. It is almost
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two orders of magnitude faster than the SOCP approach that was employed

before.

3. Implementation of the lazy constraint method allows us to solve the FDP in real

time for instances of typical size and reasonable values of major underlying pa-

rameters. We can solve instances with several time periods and large campaign

size within seconds as well. Moreover, in case of several attacks, utilization of

the multiperiod formulation generates more efficient weapon assignments.

4. The suggested optimization based cooperation protocol provides a significant

improvement with respect to a decentralized setting even with small commu-

nication capacities. It substantially increases the survival probabilities of the

ships and a number of surviving ships.

3.6 Conclusion

In this chapter, we considered the fleet defense problem whose objective is to assign

available weapons in order to protect ships from incoming threats. The exact for-

mulation has a form of a highly nonlinear mixed-integer optimization problem. This

optimization problem admits a SOCP reformulation that can be solved within min-

utes for instances of practical size. In order to expedite the process and be able to

solve the FDP online, we developed a new approach employing lazy constraints tech-

niques. We also designed a new extended MIO formulation for the multiperiod fleet

defense problem, that is characterized by a sequence of independent attacks. In this

scenario, the multiperiod optimization problem takes into account more information

about the field of action and therefore improves the fleet-wide objectives of protecting

the ships while minimizing the weapon costs.

Furthermore, we considered not only the centralized version of the FDP, but also

its decentralized counterpart. For this setting we developed a cooperation protocol

allowing the ships some limited communication and leveraging robust optimization

methodologies. For this protocol, we were able to design two auxiliary optimization
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problems whose optimal solutions uniquely determine information that ships should

broadcast and how they should exploit additional information from companions to

update their local plans.

Finally, we conducted extensive numerical experiments and empirically demon-

strated that both the single and multiperiod formulations of the FDP can be solved

online for instances of typical size with reasonable values of underlying parameters.

We also showed effectiveness of the suggested RO-based cooperation protocol in com-

parison with a completely distributed setting with no communication among ships

and the idealistic centralized coordination.
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Chapter 4

Sequential Clinical Trials

4.1 Introduction

The annual expenditure of global pharmaceutical companies on research and devel-

opment was $46.4 billion in 2010; of this, $32.5 billion was due to the high expense of

clinical trials [Berndt and Cockburn, 2013]. Drug approval requires multiple phases

of clinical trials that typically take years to complete [U.S. Food and Drug Adminis-

tration, 2015]. We present an algorithm that can decrease the sample size needed to

conduct a clinical trial by as much as 25-50% in certain settings, and thus substan-

tially reduce both the cost of conducting clinical trials and the time it takes for novel

effective therapies to reach patients.

The study of treatment allocation for controlled experiments dates back to Fisher

[1935]. Randomization has been favored historically as a way to control for selection

bias. However, randomization can yield another accidental bias identified by Efron

[1971], in which there is an imbalance in the distributions of known or hidden covari-

ates across randomly assigned treatment groups. There have been many attempts in

the literature to address this accidental bias in both the offline and online allocation

settings. For the offline problem, some prominent mechanisms are pairwise matching

[Rosenbaum and Rubin, 1985, Greevy et al., 2004], rerandomization [Morgan and

Rubin, 2012], and the finite selection model [Morris, 1979]. Bertsimas et al. [2015]

used an alternative offline optimization-based approach.
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For the online sequential allocation problem, Rosenberger and Sverdlov [2008]

provide an excellent review of the available heuristics for covariate-adaptive random-

ization, including prestratification and biased coin designs. Many of the existing

heuristics stem from variations of the biased coin design first introduced by Efron

[1971], including nonrandomized minimization [Taves, 1974], randomized minimiza-

tion [Pocock and Simon, 1975], and designs that attempt to minimize the variance

of the treatment effect [Atkinson, 1982] or minimize loss of information [Antognini

and Zagoraiou, 2011]. These biased coin designs outperform pure randomization and

represent the current state of the art for online allocation. More recently, Kapelner

and Krieger [2014] introduced a pooled sequential matching algorithm, which dis-

cards covariate data as soon as each subject is matched. Bhat et al. [2015] propose a

dynamic programming algorithm for sequential allocation that comes with computa-

tional challenges for which they provide an approximation algorithm.

In this chapter, we develop a novel covariate-adaptive optimization mechanism for

online allocation, which outperforms state-of-the-art covariate-adaptive randomiza-

tion methods. We extend the offline mixed-integer optimization approach presented

in Bertsimas et al. [2015] to the online setting in which patients arrive sequentially

and each patient’s covariate data cannot be observed until the time of her arrival. The

new algorithm takes the form of a sequence of mixed-integer nonlinear optimization

problems. The uncertainty about future subjects is modeled by robust optimization

techniques with a quadratic uncertainty set [Ben-Tal et al., 2002, Bertsimas et al.,

2011].

The new method, henceforth referred to as the covariate-adaptive robust opti-

mization (CA-RO) algorithm, delivers the following benefits:

1. In all tested scenarios, the CA-RO method achieved statistical power at least

as high as, and sometimes significantly higher than, covariate-adaptive ran-

domization (CA-RAND) approaches. We present an example of a nonlinear

covariate-response setting for which the CA-RO method achieved a desired level

of statistical power at a sample size 25-50% smaller than that required with the

best CA-RAND approach.

108



2. We present theoretical and empirical evidence that the optimization approach

compares favorably with CA-RAND methods with respect to three advantages

of complete randomization described by Efron [1971]: freedom from selection

bias; freedom from accidental bias with respect to observed and hidden covari-

ates; and, a reasoned basis for inference.

3. The algorithm is sufficiently general to produce assignments among multiple

groups 𝑝 = 1, . . . ,𝑚 with multiple observed covariates per subject. The CA-RO

algorithm can also be extended to the setting where it is possible to aggregate

subjects into small clusters of size 𝑟 prior to making group assignments.

4. The CA-RO algorithm is computationally tractable for instances of practical

size. Our choice of uncertainty set allows us to extract a closed-form solution

for the robust constraints. Hence, we are able to solve the optimization by enu-

meration with complexity 𝒪(𝑚𝑟). In all observed instances, CA-RO provides

the decision-maker with a high-quality assignment recommendation instanta-

neously via enumeration.

The rest of the chapter is organized as follows. In Section 4.2, we briefly revisit the

optimization-based allocation algorithm for the offline setting from Bertsimas et al.

[2015] This offline algorithm will form the basis for the online CA-RO approach we

develop in Section 4.3. At the end of Section 4.3, we present computational results

from experiments demonstrating the effectiveness of CA-RO in reducing between-

group covariate imbalance. In Section 4.4, we provide empirical evidence that the

CA-RO algorithm achieves a high level of statistical power with much smaller sample

size as compared to CA-RAND methods when the covariate-response relationship is

non-linear. In Section 4.5, we discuss the experimental bias and inference properties

of the CA-RO approach and demonstrate that it compares favorably with CA-RAND

methods. Section 4.6 contains concluding remarks.
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4.2 Offline Optimization Approach

In this section, we describe a MIO approach to assign groups for the setting when

pre-treatment covariate values of all subjects are known ahead of time [Bertsimas

et al., 2015]. The decision-maker knows a priori the total number of subjects 𝑁 in

the experiment and the respective covariates w = (𝑤1, . . . , 𝑤𝑁) of all subjects. Thus,

she can make treatment allocations using this full information. This may be the case,

for example, in laboratory cancer drug testing on mice.

The decision-maker will assign 𝑘 := 𝑁/𝑚 subjects to each of 𝑚 ≥ 2 treatment

groups. The objective of the assignment is to minimize the maximum discrepancy

between any two groups in the weighted sum of the first and second moments of the

covariates. Without loss of generality, we assume that the vector of covariates w

is normalized and has zero sample mean and unit sample variance. The parameter

𝜌 regulates the relative weight of the first and the second moments. The binary

decision variables are x = {𝑥𝑖𝑝 | 𝑖 = 1, . . . , 𝑁, 𝑝 = 1, . . . ,𝑚}, where 𝑥𝑖𝑝 = 1 if subject

𝑖 is assigned to group 𝑝, and 𝑥𝑖𝑝 = 0, otherwise. We can express the mean and second

moment of each of the groups 𝑝 ∈ {1, . . . ,𝑚} as follows:

𝜇𝑝(x) =
1

𝑘

𝑁∑︁
𝑖=1

𝑤𝑖 𝑥𝑖𝑝 and 𝜎2
𝑝(x) =

1

𝑘

𝑁∑︁
𝑖=1

𝑤2
𝑖 𝑥𝑖𝑝.

Hence, the optimal offline assignment can be found using the following MIO problem,

which we henceforth refer to as the OPT algorithm:

min
x

max
𝑝<𝑞

(︁
|𝜇𝑝(x)− 𝜇𝑞(x)|+ 𝜌|𝜎2

𝑝(x)− 𝜎2
𝑞 (x)|

)︁
=

min
x,𝑑

𝑑

s.t. ∀𝑝 < 𝑞 = 1, . . . ,𝑚 :

𝑑 ≥ 𝜇𝑝(x)− 𝜇𝑞(x) + 𝜌𝜎2
𝑝(x)− 𝜌𝜎2

𝑞 (x)

𝑑 ≥ 𝜇𝑝(x)− 𝜇𝑞(x) + 𝜌𝜎2
𝑞 (x)− 𝜌𝜎2

𝑝(x) (4.1)

𝑑 ≥ 𝜇𝑞x)− 𝜇𝑝(x) + 𝜌𝜎2
𝑝(x)− 𝜌𝜎2

𝑞 (x)
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𝑑 ≥ 𝜇𝑞(x)− 𝜇𝑝(x) + 𝜌𝜎2
𝑞 (x)− 𝜌𝜎2

𝑝(x)

𝑥𝑖𝑝 ∈ {0, 1}
𝑁∑︁
𝑖=1

𝑥𝑖𝑝 = 𝑘, ∀𝑝 = 1, . . . ,𝑚

𝑚∑︁
𝑝=1

𝑥𝑖𝑝 = 1, ∀𝑖 = 1, . . . , 𝑁

𝑥𝑖𝑝 = 0 ∀𝑖 < 𝑝.

The final constraint reduces the redundancy due to permutation symmetry in

group numbering.

In all tested scenarios from Bertsimas et al. [2015], the OPT method generates

groups with covariate discrepancy that is exponentially lower in the group size 𝑘

than those created by randomization. The expected average covariate discrepancy

decreases from 𝑂(𝑘−1/2) for randomization to 𝑂(2−𝑘) for the OPT algorithm. Fur-

thermore, the OPT algorithm demonstrates exceptional precision in estimating small

treatment effects and superior statistical power given a fixed treatment effect.

For the remainder of this chapter, the OPT algorithm will serve as a prescient

benchmark for the performance of methods in the setting of sequential online alloca-

tion.

4.3 Covariate-Adaptive Optimization Algorithms

In this section, we introduce the proposed CA-RO algorithm, develop an extension

in which aggregation of decisions is allowed, and describe the results of empirical

experiments comparing the covariate balance of CA-RO versus CA-RAND methods.

4.3.1 CA-RO Algorithm

To extend the model from Section 4.2 to the online setting, we consider the problem

of 𝑁 subjects arriving sequentially. The decision-maker knows a priori the number

of subjects 𝑘 that will be assigned to each of 𝑚 ≥ 2 treatment groups, such that
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𝑁 = 𝑘𝑚.

At each time-step 𝑡 = 1, . . . , 𝑁 , where 𝑡 indexes both the period and the subject,

the decision-maker observes the covariate vector w𝑡 ∈ R𝑆, where 𝑆 is the number

of covariates observed for each subject. We assume that this sequence of random

covariate vectors is exchangeable, such that any ordering of the subjects’ arrival is

equally likely. The decision-maker then sets a decision {𝑥𝑡𝑝}𝑚𝑝=1 ∈ {0, 1}𝑚, where

𝑥𝑡𝑝 = 1, if the decision-maker assigns subject 𝑡 to group 𝑝 ∈ {1, . . . ,𝑚}, and 𝑥𝑡𝑝 = 0,

otherwise. In the CA-RO algorithm, the choice of {𝑥𝑡𝑝}𝑚𝑝=1 is made by solving one

instance of robust MIO formulation (4.3) at each time-step. The data for the opti-

mization at time-step 𝑡 include the covariate observations {w𝑖}𝑡𝑖=1 and assignments

x̂ := {𝑥̂𝑖𝑝

⃒⃒
𝑖 = 1, . . . , 𝑡 − 1, 𝑝 = 1, . . . ,𝑚} ∈ {0, 1}(𝑡−1)×𝑚 made at all previous time-

steps. We define expressions for the sample mean w̄𝑡 and the empirical covariance

matrix Σ𝑡 at time-step 𝑡 as follows:

w̄𝑡 :=
1

𝑡

𝑡∑︁
𝑖=1

w𝑖 and Σ𝑡 :=
1

𝑡

𝑡∑︁
𝑖=1

(w𝑖 − w̄𝑡)(w𝑖 − w̄𝑡)
⊤.

We also define uncertain parameters w̃ := {w̃𝑖 ∈ R𝑆}𝑁𝑖=𝑡+1, which represent the

unknown covariates for future subjects.

The objective of the CA-RO algorithm is to produce 𝑚 groups whose covariate

distributions are as similar as possible. We measure the proximity between two groups

𝑝 and 𝑞 in terms of the mean 𝜇𝑠
𝑝 and approximated variance 𝜎𝑠

𝑝 of group 𝑝 = 1, . . . ,𝑚

with respect to covariate 𝑠 = 1, . . . , 𝑆. At time-step 1 ≤ 𝑡 ≤ 𝑁 , these sample statistics

are defined as follows:

𝜇𝑠
𝑝 :=

1

𝑘

{︁ 𝑡−1∑︁
𝑖=1

𝑤𝑠
𝑖 𝑥̂𝑖𝑝 + 𝑤𝑠

𝑡𝑥𝑡𝑝 +
𝑁∑︁

𝑖=𝑡+1

𝑤̃𝑠
𝑖𝑥𝑖𝑝

}︁
,

𝜎𝑠
𝑝 :=

1

𝑘

{︁ 𝑡−1∑︁
𝑖=1

(𝑤𝑠
𝑖 − 𝑤̄𝑠

𝑡 )
2𝑥̂𝑖𝑝 + (𝑤𝑠

𝑡 − 𝑤̄𝑠
𝑡 )

2𝑥𝑡𝑝 +
𝑁∑︁

𝑖=𝑡+1

(𝑤̃𝑠
𝑖 − 𝑤̄𝑠

𝑡 )
2𝑥𝑖𝑝

}︁
,

where x := {𝑥𝑖𝑝 ∈ {0, 1}
⃒⃒
𝑖 = 𝑡, . . . , 𝑁, 𝑝 = 1, . . . ,𝑚} are the binary assignment

decision variables. We model the decision at each time-step 𝑡 = 1, . . . , 𝑁 by the
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following optimization problem:

min
x

max
𝑝<𝑞

𝑆∑︁
𝑠=1

|𝜇𝑠
𝑝 − 𝜇𝑠

𝑞|+ 𝜌|𝜎𝑠
𝑝 − 𝜎𝑠

𝑞 |. (4.2)

Given that the values of future covariates w̃ are unknown, we employ robust opti-

mization [Ben-Tal et al., 2002] to model formulation (4.2) under uncertainty:

min
x,M,V,𝑧

𝑧

s.t. 𝑧 ≥
𝑆∑︁

𝑠=1

𝑀 𝑠
𝑝𝑞 + 𝜌𝑉 𝑠

𝑝𝑞, ∀𝑝 < 𝑞

𝑀 𝑠
𝑝𝑞 ≥ 𝜇𝑠

𝑝 − 𝜇𝑠
𝑞, ∀𝑝 < 𝑞, 𝑠 = 1, . . . , 𝑆, ∀w̃ ∈ 𝑈𝑤

𝑀 𝑠
𝑝𝑞 ≥ 𝜇𝑠

𝑞 − 𝜇𝑠
𝑝, ∀𝑝 < 𝑞, 𝑠 = 1, . . . , 𝑆, ∀w̃ ∈ 𝑈𝑤

𝑉 𝑠
𝑝𝑞 ≥ 𝜎𝑠

𝑝 − 𝜎𝑠
𝑞 , ∀𝑝 < 𝑞, 𝑠 = 1, . . . , 𝑆, ∀w̃ ∈ 𝑈𝑤 (4.3)

𝑉 𝑠
𝑝𝑞 ≥ 𝜎𝑠

𝑞 − 𝜎𝑠
𝑝, ∀𝑝 < 𝑞, 𝑠 = 1, . . . , 𝑆, ∀w̃ ∈ 𝑈𝑤

𝑡−1∑︁
𝑖=1

𝑥̂𝑖𝑝 + 𝑥𝑡𝑝 +
𝑁∑︁

𝑖=𝑡+1

𝑥𝑖𝑝 = 𝑘, ∀𝑝 = 1, . . . ,𝑚

𝑚∑︁
𝑝=1

𝑥𝑖𝑝 = 1, ∀𝑖 = 𝑡, . . . , 𝑁

In this formulation, we use the uncertainty set 𝑈𝑤 defined as follows:

𝑈𝑤 =
{︁
w̃ ∈ R(𝑁−𝑡)×𝑆

⃒⃒
w̃𝑖 = w̄𝑡 + (Σ𝑡)

1
2 𝜀𝑖, 𝑖 = 𝑡 + 1, . . . , 𝑁, 𝜀 ∈ 𝑈𝜀

}︁
,

where perturbation vector 𝜀 = (𝜀𝑡+1, . . . , 𝜀𝑁) belongs to the ellipsoidal uncertainty

set 𝑈𝜀:

𝑈𝜀 =
{︁
𝜀 ∈ R(𝑁−𝑡)×𝑆

⃒⃒⃒
||𝜀||2 =

⎯⎸⎸⎷ 𝑁∑︁
𝑖=𝑡+1

𝑆∑︁
𝑠=1

(𝜀𝑠𝑖 )
2 ≤ Γ

√︀
(𝑁 − 𝑡)𝑆

}︁
. (4.4)

The robustness parameter Γ controls the size of the ellipsoid and represents the level
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of conservatism of the uncertainty set. In order to protect against experimental biases,

we suggest that Γ should be chosen independently at random for each time-step (see

Section 4.5).

Formulation (4.3) takes the form of a mixed-binary quadratic robust optimization

problem with conic uncertainty set. In Section A.1 of the Appendix, we demonstrate

that the following auxiliary optimization problems with respect to the uncertain vari-

ables w̃,

max
w̃∈𝑈𝑤

(︀
𝜇𝑠
𝑝 − 𝜇𝑠

𝑞

)︀
and max

w̃∈𝑈𝑤

(︀
𝜎𝑠
𝑝 − 𝜎𝑠

𝑞

)︀
,

admit closed-form solutions. Therefore, formulation (4.3) is equivalent to a mixed-

binary optimization problem that can be solved via simple enumeration of 𝑚 scenar-

ios.

4.3.2 Aggregated CA-RO algorithm

The development of a partially online method is motivated by the opportunity pre-

sented when multiple subjects enroll in a clinical trial within a short period of time.

Under these circumstances, the decision-maker may be able to make a joint decision

regarding the simultaneous assignment of this sub-cohort of subjects to treatment

groups.

For this analysis, we will distinguish the notion of time from the arrival of subjects.

Time will be indexed by periods 𝑡 = 1, . . . , 𝑇 . Subjects will be indexed separately

by 𝑖 = 1, . . . , 𝑁 with covariate vectors w𝑖 ∈ R𝑆, where 𝑁 ≥ 𝑇 . Both the number of

periods 𝑇 and the number of subjects 𝑁 are known a priori. We assume that at time

𝑡 the decision-maker has observed the covariate values for 𝑟𝑡 ≥ 1 unassigned subjects

who have arrived during time period 𝑡. Let us define 𝑛𝑡 :=
∑︀𝑡

𝑗=1 𝑟𝑗 to represent

the number of subjects who have arrived as of time 𝑡. We also introduce the vector

r𝑡 := {𝑟𝑗}𝑡𝑗=1. We can then define the following expressions to represent the sample

mean and approximated variance of group 𝑝 with respect to covariate 𝑠 at time 𝑡:

𝜇𝑠
𝑝(r𝑡) =

1

𝑘

{︁ 𝑛𝑡−1∑︁
𝑖=1

𝑤𝑠
𝑖 𝑥̂𝑖𝑝 +

𝑛𝑡∑︁
𝑖=𝑛𝑡−1+1

𝑤𝑠
𝑖𝑥𝑖𝑝 +

𝑁∑︁
𝑖=𝑛𝑡+1

𝑤̃𝑠
𝑖𝑥𝑖𝑝

}︁
, and
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𝜎𝑠
𝑝(r𝑡) =

1

𝑘

{︁ 𝑛𝑡−1∑︁
𝑖=1

(𝑤𝑠
𝑖 − 𝑤̄𝑠

𝑡 )
2𝑥̂𝑖𝑝 +

𝑛𝑡∑︁
𝑖=𝑛𝑡−1+1

(𝑤𝑠
𝑖 − 𝑤̄𝑠

𝑡 )
2𝑥𝑖𝑝 +

𝑁∑︁
𝑖=𝑛𝑡+1

(𝑤̃𝑠
𝑖 − 𝑤̄𝑠

𝑡 )
2𝑥𝑖𝑝

}︁
.

In the aggregated CA-RO algorithm, we solve formulation (4.3) at each time-

step 𝑡, but we replace the expressions 𝜇𝑠
𝑝 and 𝜎𝑠

𝑝 with their generalized counterparts

𝜇𝑠
𝑝(r𝑡) and 𝜎𝑠

𝑝(r𝑡), respectively. The optimal solutions {𝑥*
𝑖𝑝 ∈ {0, 1} | 𝑖 = 𝑛𝑡 − 𝑟𝑡 +

1, . . . , 𝑛𝑡, 𝑝 = 1, . . . ,𝑚} to the corresponding MIO problem are used to make the

assignments at period 𝑡 for 𝑟𝑡 subjects. The problem can be solved at time 𝑡 by

enumeration with complexity 𝒪(𝑚𝑟𝑡), and is therefore computationally tractable for

instances of practical size.

If the aggregation level is uniform across time such that 𝑟𝑡 = 𝑟 for all 𝑡 = 1, . . . , 𝑇−

1 and 𝑟𝑇 = 𝑁 − (𝑇 − 1)𝑟, we define the CA-RO(𝑟) algorithm with aggregation level

𝑟. We observe that the CA-RO(1) algorithm is equivalent to the fully online CA-RO

algorithm and the CA-RO(𝑁) algorithm is equivalent to the OPT algorithm from

Section 4.2.

It is reasonable to assume that larger values of the aggregation parameter 𝑟 lead

to better performance of the partially online algorithm in terms of both covariate

balance and statistical power. With a higher level of aggregation, the decision-maker

has more information at the time of each decision. In Section 4.3.4, we provide

empirical evidence for this relationship.

4.3.3 Practical Considerations

When using the CA-RO algorithm in practice, we suggest a few modifications and

parameter selection guidelines.

1. At the beginning of the assignment process, group indices 𝑝 = 1, . . . ,𝑚 can

be randomly assigned to each of the treatment conditions. In this way, the

CA-RO algorithm is used to identify groups that are well-balanced with respect

to observed covariates, but plays no role in determining which group should

receive which treatment.
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2. In the objective of formulation (4.3), the parameter 𝜌 controls the tradeoff

between imbalance in the sample mean and the approximated variance. In

practice, to facilitate an intuitive choice of 𝜌, it is convenient to substitute the

objective max
𝑝<𝑞

𝑆∑︀
𝑠=1

[︁
𝑀 𝑠

𝑝𝑞 + 𝜌
√︀

𝑉 𝑠
𝑝𝑞

]︁
, which puts the expressions for first and sec-

ond moments on the same scale. This substitution of a nonlinear objective is

tractable because we are able to solve the optimization efficiently by enumera-

tion. In the experiments that follow, we use this nonlinear objective with 𝜌 = 6,

which we found to yield strong results across many instances that were robust

to perturbations of 𝜌.

3. At the beginning of the time horizon, we ensure that all groups have been

randomly assigned at least one subject before we apply the optimization in

formulation (4.3).

4. Toward the end of the time horizon, we set the robustness parameter Γ = 0 so

as to make our algorithm more greedy and avoid overly conservative assignment

decisions.

In all tested experiments, the CA-RO(𝑟) algorithms for 𝑟 ∈ {1, 3, 5} produced assign-

ment recommendations instantaneously, which suggests that the method can be used

not just for clinical trials, but also for settings requiring real-time decisions, such as

Internet applications.

4.3.4 Empirical Performance

In this subsection, we evaluate the empirical performance of the CA-RO algorithm.

First, we review four state-of-the-art CA-RAND methods, which serve as benchmarks

for the CA-RO algorithm. Second, we compare the performance of the CA-RO al-

gorithm at various aggregation levels with pure randomization and these CA-RAND

methods.

When evaluating the performance of CA-RO, we consider pure randomization

(RAND) along with the matching on-the-fly algorithm of Kapelner and Krieger [2014]
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(KK), and three biased coin designs: the minimization method of Pocock and Si-

mon [1975] (PS), the 𝐷𝐴-optimal design of Atkinson [1982] (DA), and the covariate-

adaptive biased coin design of Antognini and Zagoraiou [2011] (AZ). The biased coin

design methodology with 𝑚 = 2, generically defined as

𝜑𝑡 = Pr
(︁
𝑥𝑡1 = 1

⃒⃒⃒
x̂1, . . . , x̂𝑡−1; 𝑤1, . . . , 𝑤𝑡

)︁
= 𝐹

(︁
x̂1, . . . , x̂𝑡−1; 𝑤1, . . . , 𝑤𝑡

)︁
,

forms the basis of the PS, DA and AZ methods, with function 𝐹 (·) defined separately

for each method. For the PS method,

𝜑𝑡 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
2
, if 𝐷(𝑡) = 0,

𝑝, if 𝐷(𝑡) < 0,

1− 𝑝, if 𝐷(𝑡) > 0,

where 𝑝 is the bias parameter and 𝐷(𝑡) represents the covariate imbalance between

the two groups after 𝑡− 1 subjects have been assigned. For the DA method,

𝜑𝑡 =
(1− 𝜁)2

(1− 𝜁)2 + (1 + 𝜁)2
, where 𝜁 =

𝑤𝑡

𝑡−1∑︀
𝑖=1

𝑤𝑖(𝑥𝑖1 − 𝑥𝑖2)

𝑡−1∑︀
𝑖=1

𝑤2
𝑖

for the case of one-dimensional covariates. For the AZ method, we have 𝜑𝑡 =

𝐺𝑗(𝐷𝑡(𝜔𝑗)), where

𝐺𝑗(𝜁) =

⎧⎪⎨⎪⎩
1
2
, 0 ≤ 𝜁 ≤ 1,

(𝜁𝐽 + 1)−1, 𝜁 > 1,

and 𝐺𝑗(−𝜁) + 𝐺𝑗(𝜁) = 1, ∀𝜁 ∈ Z,

for discrete levels of the covariate space indexed by 𝑗 = 0, . . . , 𝐽 . In this description,

𝐷𝑡(𝜔𝑗) denotes the imbalance between the two groups within the level 𝜔𝑗. In the KK

method, subjects are either randomized to treatment groups or paired via a matching

criterion based on the pairwise Mahalanobis distance. In the latter case, the new

paired subject is assigned to the treatment opposite its pair in order to balance the
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groups.

We now discuss the empirical performance of the various algorithms with respect

to covariate balance. For 𝑁 ∈ {20, 60, 100} and 𝑚 = 2, we simulated 3,000 unique sets

of covariate values drawn i.i.d. from a standard normal distribution. We evaluated

nine algorithms - RAND, PS, DA, AZ, KK and CA-RO(𝑟) (with four different values

of 𝑟) - to measure the average worst pairwise difference in generalized moments across

groups (Table 4.1). For this and all subsequent experiments when evaluating the CA-

RO algorithm at any level of aggregation, we chose the robustness parameter Γ in

uncertainty set (4.4) independently and uniformly at random from the interval [0.5,

4] at each time-step. In terms of the discrepancy in the first moment, CA-RO was

always among the best methods. The discrepancy in the second moment, which

closely approximates the discrepancy in the variance in this setting, was always lower

for CA-RO than for the best CA-RAND method. The discrepancy in higher moments,

generalized moments of log(|𝑤|), and 1/𝑤 for CA-RO methods was always comparable

with other CA-RAND algorithms. As we expected, the advantage of optimization

increases with 𝑟 and the offline OPT algorithm has starkly better performance than

other approaches.

We found similar results from additional experiments in which the covariates were

generated from alternative distributions, including uniform and long-tailed Cauchy

distributions.

4.4 Statistical Power of CA-RO Algorithm

A common pre-condition for the approval of any clinical trial is to demonstrate that

the trial will have a sample size sufficient to make sound statistical inferences with

high probability. These inferences include both statistical power, the ability to detect

a positive treatment effect when one exists, and a low type I error rate, the ability to

correctly identify an ineffective treatment. In classical statistical models, the power

of a randomized controlled trial can be derived from the sample size and significance

level, given an estimated treatment effect. Randomized allocation can yield an acci-
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dental imbalance in covariates between treatment groups that can impact the ability

to make experimental inferences. Traditionally, when estimating treatment effects,

practitioners have been satisfied to control for this covariate imbalance a posteriori

via regression methods [Lin, 2013].

We provide strong empirical evidence that such post hoc adjustments may produce

suboptimal effect estimation, particularly when the relationship between covariates

and response is nonlinear. By testing a variety of covariate-response models, we

show that, at any fixed sample size, the statistical power of a clinical trial is at least

as high when covariate-adaptive optimization is used rather than covariate-adaptive

randomization. In settings where the covariate-response relationship was nonlinear,

we observe that the power under the CA-RO algorithm is significantly higher than

for state-of-the-art CA-RAND methods. Therefore, in certain settings, the use of

covariate-adaptive optimization could allow decision-makers to achieve desired levels

of statistical power with significantly smaller sample size as compared with CA-RAND

mechanisms. Given the high cost of enrolling human subjects in clinical trials, the

ability to achieve needed statistical power with much smaller sample size can result

in significant cost savings for the healthcare industry and society at large.

4.4.1 Test for Statistical Power

In order to compare statistical power under CA-RAND and CA-RO online allocation

procedures, we apply a hypothesis testing framework based on simulation [Bertsimas

et al., 2015].

Let us assume there are 𝑚 = 2 groups: a treatment group, which will be admin-

istered a given therapy, and a control group, which will be administered a placebo.

There are 𝑁 subjects in the trial, such that 𝑘 = 𝑁/2 subjects will be assigned to each

of the groups. At each time-step 𝑡 = 1, . . . , 𝑁 , the decision-maker observes the values

of a covariate vector w𝑡 and makes a binary assignment 𝑥𝑡, where 𝑥𝑡 = 1 indicates

the treatment group (1) and 𝑥𝑡 = 0 indicates the control group (0). Let 𝑣𝑡 be the

response measured after the assigned treatment was administered for subject 𝑡. We

adopt the potential outcomes framework of Rosenbaum and Rubin [1983], such that
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each subject has a pair of potential outcomes (𝑣
(1)
𝑡 , 𝑣

(0)
𝑡 ), where the superscript indi-

cates treatment or control and only one of these two outcomes can be observed. Under

this framework, we have the following relationship between the observed response and

the potential outcomes: 𝑣𝑡 = 𝑣
(1)
𝑡 𝑥𝑡 + 𝑣

(0)
𝑡 (1− 𝑥𝑡).

Given 𝑣𝑡 for each subject 𝑡 = 1, . . . , 𝑁 , we can estimate the average treatment

effect 𝛿. We adopt two estimators for 𝛿 from Lin [2013]:

1. 𝛿unadj := 1
𝑘

[︁∑︀𝑁
𝑡=1 𝑣𝑡𝑥𝑡 −

∑︀𝑁
𝑡=1 𝑣𝑡(1− 𝑥𝑡)

]︁
2. 𝛿adj := 𝛽𝑥, where 𝛽𝑥 is the estimated coefficient on 𝑥𝑡 in the ordinary least

squares regression 𝑣𝑡 = 𝛽0 + 𝛽𝑥𝑥𝑡 + 𝛽⊤
𝑤w𝑡.

To test the significance of this observed effect 𝛿, we adopt Fisher’s sharp null

hypothesis [Fisher, 1935], which states that every subject 𝑡 = 1, . . . , 𝑁 would have

had the same response to treatment regardless of which treatment was assigned. In

other words, under the sharp null hypothesis, we have 𝑣𝑡 = 𝑣
(1)
𝑡 = 𝑣

(0)
𝑡 . Equipped

with a complete set of potential outcomes for each subject, we can estimate the

average treatment effect under alternative random allocations of subjects 1, . . . , 𝑁 . If

we compute the average treatment effect 𝛿𝑏 as our test statistic for each alternative

allocation 𝑏 = 1, . . . , 𝐵, we can then estimate the 𝑝-value for our observed 𝛿, using a

two-sided test, as

𝑝 =
1

1 + 𝐵

(︁
1 +

𝐵∑︁
𝑏=1

I
[︁⃒⃒
𝛿𝑏
⃒⃒
≥
⃒⃒
𝛿
⃒⃒]︁)︁

.

We reject the null hypothesis if 𝑝 ≤ 𝛼 for some pre-specified significance level 𝛼;

otherwise, we accept the null hypothesis.

In order to estimate the statistical power under a given algorithm A, we generate 𝑄

random samples of 𝑁 subjects with covariates drawn i.i.d. from a fixed distribution.

We apply the hypothesis test described above for all random samples, and measure

the number of samples 𝑄reject for which the null hypothesis is rejected. We evaluate

the probability that the null hypothesis will be rejected by computing the ratio 𝜆 :=

𝑄reject/𝑄. If the true treatment effect 𝛿0 is nonzero, then 𝜆 estimates the power of

the experiment; otherwise, 𝜆 estimates the type I error rate.
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The alternative allocations for the hypothesis test can be generated randomly

using Monte Carlo simulation to approximate the distribution of possible allocations

under random assignment mechanism A. If Monte Carlo simulation does not yield

a sufficiently diverse set of allocations within computational limits, one can generate

bootstrapped resamples of covariate vectors w𝑏
𝑡 , 𝑡 = 1, . . . , 𝑁 drawn uniformly at

random from the set 𝒲 = {w1, . . . ,w𝑁} [Efron and Tibshirani, 1994]. Based on the

observations from the original experiment and under the null hypothesis, we have

complete mappings 𝑣(1)(·) : 𝒲 → R and 𝑣(0)(·) : 𝒲 → R, which represent the

potential outcomes under treatment and control, respectively, for individuals with

covariates in 𝒲 . Therefore, for each subject in a given bootstrapped sample, we

observe the response under her random allocation 𝑥𝑏
𝑡 as 𝑣𝑏𝑡 = 𝑣(1)(w𝑏

𝑡) · 𝑥𝑏
𝑡 + 𝑣(0)(w𝑏

𝑡) ·

(1− 𝑥𝑏
𝑡).

4.4.2 Computational Results

To evaluate the statistical power of the CA-RO algorithm relative to CA-RAND

methods, we simulated clinical trials under three different hidden realities, each char-

acterized by a unique model relating treatment response to subject covariates. We

assumed each subject 𝑡 = 1, . . . , 𝑁 had a covariate vector w𝑡 = (𝑤1
𝑡 , 𝑤

2
𝑡 ) of dimension

𝑆 = 2, whose components were drawn i.i.d. from a standard normal distribution.

The covariate-response models were as follows:

∙ Nonlinear (NL): 𝑣𝑡 = 𝛿0𝑥𝑡 + (𝑤1
𝑡 )

2 − (𝑤2
𝑡 )

2 + 𝜖𝑡 ,

∙ Linear (LIN): 𝑣𝑡 = 𝛿0𝑥𝑡 + 2(𝑤1
𝑡 ) + 2(𝑤2

𝑡 ) + 𝜖𝑡 ,

∙ No relationship (NR): 𝑣𝑡 = 𝛿0𝑥𝑡 + 𝜖𝑡 ,

where 𝛿0 is the ground-truth additive treatment effect and 𝜖𝑡 is a Gaussian noise term

with mean 0 and standard deviation 0.75.

For each covariate-response model, we evaluated statistical power 𝜆 under the

CA-RAND and CA-RO algorithms by applying the hypothesis test described in Sec-

tion 4.4.1 with both estimators 𝛿unadj and 𝛿adj (Figure 4-1). We considered 𝑁 ∈

121



{40, 80, 120} with 𝛿0 = 0.5, 𝑄 = 800, 𝐵 = 500, and significance level 𝛼 = 0.05. For

all scenarios, the power of the experiment increases with 𝑁 .

∙ In the NR scenario, post hoc regression adjustment does not improve power for

any of the methods. All methods yield similar power since there is no benefit

from covariate balance.

∙ Conversely, in the linear response setting (LIN), regression adjustment increases

statistical power substantially for all methods. When using the 𝛿unadj estima-

tor, CA-RO(1) yields higher power relative to randomization and CA-RAND

methods. However, post hoc regression adjustment using ordinary least squares,

which exactly replicates the covariate-response model with additive treatment

effect, reduces the need for the a priori covariate balance provided by CA-RO.

Power evaluated using 𝛿adj is equally high across all methods.

∙ Finally, in the nonlinear response scenario described above (NL), there is vir-

tually no benefit to using regression adjustment. In this setting, CA-RO(1)

yields much higher statistical power than pure randomization and CA-RAND

methods. The advantage of CA-RO grows with the sample size 𝑁 .

We conducted additional experiments under a variety of nonlinear models and found,

in all tested scenarios, that CA-RO had power at least as high as (and often higher

than) randomization-based methods. The NL scenario is an example in which the

benefit of CA-RO was particularly dramatic.

We also ran simulations in which the 𝑝-values were estimated using a one-sided

test rather than a two-sided test. As one might expect, for fixed 𝛿0 and distribution

of noise 𝜖, power was higher for all methods under the one-sided test. However, in

all tested scenarios, the CA-RO algorithm maintained a similar advantage relative to

other methods.

In Table 4.2, we show the results for the NL setting under the CA-RO(𝑟) assign-

ment mechanism with aggregation levels 𝑟 ∈ {1, 3, 5, 𝑁} for 𝑁 = 40. As we expect,

the power increases with the aggregation level 𝑟.
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In Figure 4-1, we show that, under some covariate-response models, CA-RO yields

higher power at fixed sample sizes than other methods. This motivates a complemen-

tary question: What is the sample size required to achieve a desired level of statistical

power? We considered the NL scenario and tested values of 𝛿0 from 0.75 to 1.75 to

estimate 𝑁*
A(𝛿0), the minimum number of subjects per group needed to achieve power

of at least 80% when assignment mechanism A is employed (Figure 4-2a). With a

large effect size of 𝛿0 = 1.75, statistical power of 80% was achieved with a sample

size of 22 using the CA-RO(1) algorithm compared with a sample size of 30 using

the best CA-RAND method (in this case, PS). With a small effect size of 𝛿0 = 0.75,

the advantage of optimization was even bigger; a sample size of 58 was sufficient to

achieve 80% power, compared with a sample size of 122 using the best CA-RAND

method (again, PS). For a given treatment effect 𝛿0, the threshold sample size needed

to achieve 80% power under the CA-RO algorithm was reduced by at least 25% rela-

tive to the best CA-RAND method (Figure 4-2b). If we consider the NL setting with

𝛿0 = 0.75 as an example, the CA-RO method may enable the execution and analysis

of some clinical trials that would otherwise be infeasible given the prohibitively large

sample size required to achieve a sufficient level of statistical power when CA-RAND

methods are employed.

Table 4.3 demonstrates that the minimum sample size 𝑁*
A(𝛿0) decreases further

as the aggregation level 𝑟 of CA-RO(𝑟) algorithm grows. Relative to state-of-the-art

CA-RAND methods, the CA-RO approach can dramatically reduce the number of

subjects enrolled in a trial without sacrificing statistical power.

We also evaluate the rate of type I errors for CA-RO(1) with 𝛿0 = 0 with 𝑄 = 800

and 𝐵 = 500 for 𝑁 ∈ {40, 80, 120} and for each of the three covariate-response scenar-

ios described above, using the regression-adjusted treatment effect estimator (Table

4.4). We observe that, for each setting, the type I error is a decreasing function of 𝑁 .

Type I error rates for all algorithms tested are shown in Section A.2 of the Appendix.

PS, the CA-RAND method with the best statistical power in this experiment, had a

mean type I error rate that was uniformly higher than that produced by CA-RO(1).
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4.5 Unbiasedness of CA-RO Approach

In this section, we provide empirical and theoretical evidence that the CA-RO algo-

rithm introduced in Section 4.3 exhibits the same statistical advantages ascribed to

complete randomization by Efron [1971]: freedom from selection bias, freedom from

accidental bias with respect to observed and hidden covariates, and a reasoned basis

for inference.

4.5.1 Freedom from Selection Bias

The CA-RO algorithm protects against selection bias, the possibility that an investiga-

tor could consciously or unconsciously influence the order of subject enrollment based

on deterministic knowledge of the next treatment assignment. Through computer sim-

ulation, we demonstrate that, by selecting the robustness parameter Γ independently

and uniformly at random with support [0.5, 4] at each time-step, the CA-RO method

yields sufficiently random treatment assignments as to protect against this type of

selection bias. For 𝑁 from 30 to 100, we randomly generated 30 unique sequences

of covariates w ∈ R𝑁 drawn independently from 𝒩 (0, 1). We used the CA-RO(1)

algorithm to generate 3,000 random assignments of the 𝑁 subjects to two groups.

We observe that one cannot determine the sequence of future assignments based on

knowledge of the algorithm because, on average, the total number of possible alloca-

tions is large (Figure 4-3a) and no individual assignment sequence has a likelihood

higher than 6% (Figure 4-3b).

A concern that directly competes with selection bias is certifiability. When used

with a fixed and predefined sequence of robustness parameters Γ𝑡, 𝑡 = 1, . . . , 𝑁 , the

CA-RO algorithm is a sequence of deterministic optimization problems, each of which

can be reproduced. This reproducibility provides a natural method for certifying a

posteriori that the algorithm’s recommendation was followed, given knowledge of the

subjects’ covariates and arrival order. If certifiability is deemed to be of greater con-

cern than selection bias in the context of a particular experimental setting, one can

apply the CA-RO algorithm with fixed robustness parameters in order to achieve full
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certifiability of assignments. Conversely, certifiability is not achievable using random-

ized methods unless the random seed used to initialize the algorithm is provided.

4.5.2 Freedom from Accidental Covariate Imbalance

We have shown in the empirical results from Section 4.3.4 that the CA-RO method

produces consistently better balance in the first two moments across groups com-

pared with simple randomization and other existing CA-RAND approaches. In this

subsection, we show that, despite only considering the observed covariates w ∈ R𝑁

when making assignment decisions, the CA-RO algorithm provides the same level of

protection as CA-RAND methods against irregular allocation with respect to other,

potentially unseen factors.

We consider two natural cases for the dependence of hidden factors on the observed

covariates w: no correlation and continuous dependence.

1. If there is a hidden factor that is uncorrelated with observed covariates w, the

CA-RO algorithm generates an allocation which is as random with respect to

the hidden covariates as that produced by randomized methods.

2. The second case, when the unseen covariate is a continuous function of the

observed covariate, warrants further discussion. We see empirically that, when

unseen factor 𝑓 has a polynomial or logarithmic conditional expectation in scalar

random variable 𝑤, the discrepancy in higher moments and generalized moments

𝑓 = log(|𝑤|) and 𝑓 = 1/𝑤 for CA-RO methods is always comparable with (and

often lower than) the mismatch produced by CA-RAND algorithms (Table 4.1).

In the remainder of this subsection, we present formal theoretical evidence that

this empirical relationship extends to the general case of continuous dependence.

To examine this general case, we assume that there are two different assignment

algorithms A and B (e.g. CA-RO(1) and PS), and an unseen factor 𝑓 that can be

modeled in the form

𝑓 = 𝑔(𝑤) + 𝜖, (4.5)
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where 𝑔(·) is a Lipschitz function with constant 𝐿 and 𝜖 is some noise function. When

generating groups of size 𝑘 by algorithm A, let us denote the maximum discrepancy

in means with respect to unseen covariate 𝑓 by:

𝑧𝑓A := max
𝑝<𝑞

1

𝑘

⃒⃒⃒ ∑︁
𝑖∈I𝑝(A)

𝑔(𝑤𝑖)−
∑︁

𝑖∈I𝑞(A)

𝑔(𝑤𝑖)
⃒⃒⃒
,

where 𝐼𝑝(A), 𝐼𝑞(A) ⊂ {1, . . . , 𝑁} are disjoint index sets respectively describing groups

𝑝 and 𝑞 produced by algorithm A. The maximum discrepancy 𝑧𝑓B between groups

generated by algorithm B is defined analogously.

In Proposition 4.1, we derive probabilistic upper bounds on the the values of 𝑧𝑓A and

|𝑧𝑓A − 𝑧𝑓B|, where A is the CA-RO(1) approach and B is any CA-RAND method. The

first upper bound on 𝑧𝑓A, given by (4.6a), demonstrates that the maximum discrep-

ancy in means with respect to unseen covariate 𝑓 is controlled by the corresponding

discrepancy with respect to the observed covariate 𝑤. The second upper bound on

|𝑧𝑓A − 𝑧𝑓B|, given by (4.6b), indicates that the maximum discrepancy in means with

respect to unseen covariate 𝑓 is as well-controlled under CA-RO(1) as under any other

CA-RAND algorithm.

Proposition 4.1. Let us consider the simplest case where subjects with scalar co-

variates 𝑤𝑖, 𝑖 = 1, . . . , 2𝑘 are assigned to 𝑚 = 2 groups. For any assignment algo-

rithms A and B that produce groups of equal size 𝑘, and for any Lipschitz function

𝑔(·) ∈ Lip(𝐿), the following inequalities hold:

𝑧𝑓A ≤ 𝐿 · 𝜃*(A), (4.6a)

|𝑧𝑓A − 𝑧𝑓B| ≤ 2𝐿 · 𝜉*(A,B). (4.6b)

In (4.6a), 𝜃*(A) is the optimal objective value of the auxiliary pairwise matching

problem:

𝜃*(A) := min
y

1

𝑘

∑︁
𝑖∈I1(A)

∑︁
𝑗∈I2(A)

|𝑤𝑖 − 𝑤𝑗| 𝑦𝑖𝑗
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s.t.
∑︁

𝑖∈I1(A)

𝑦𝑖𝑗 = 1, ∀𝑗 ∈ I2(A) (4.7)

∑︁
𝑗∈I2(A)

𝑦𝑖𝑗 = 1, ∀𝑖 ∈ I1(A)

𝑦𝑖𝑗 ∈ {0, 1}.

In (4.6b), we define the value 𝜉*(A,B) := min
𝑐=1,2

𝜉𝑐(A,B), where 𝜉𝑐(A,B) is the

optimal value of the problem

𝜉𝑐(A,B) := min
y

∑︀
𝑖∈𝑆𝑐

1

∑︀
𝑗∈𝑆𝑐

2

|𝑤𝑖 − 𝑤𝑗| 𝑦𝑖𝑗

s.t.
∑︀
𝑖∈𝑆𝑐

1

𝑦𝑖𝑗 = 1, ∀𝑗 ∈ 𝑆𝑐
2∑︀

𝑗∈𝑆𝑐
2

𝑦𝑖𝑗 = 1, ∀𝑖 ∈ 𝑆𝑐
1

𝑦𝑖𝑗 ∈ {0, 1},

(4.8)

and auxiliary sets of indices 𝑆𝛽
𝛼, for 𝛼, 𝛽 = 1, 2 have the form

𝑆1
1 = I1(A) ∩ I2(B) and 𝑆1

2 = I2(A) ∩ I1(B);

𝑆2
1 = I1(A) ∩ I1(B) and 𝑆2

2 = I2(A) ∩ I2(B).

(These sets describe the differences between the groups produced by algorithms A

and B.)

Proof. The proof of Proposition 4.1 is presented in Section A.3 of the Appendix. �

Having obtained theoretical upper bounds (4.6), we conducted numerical exper-

iments to measure the values of the average pairwise distances 𝜃*(A) and 𝜉*(A,B)

defined in (4.7) and (4.8), respectively. We fixed A = CA-RO(1) and chose B from

among RAND, PS, DA, AZ and KK, where the randomization methods were modified

to ensure they would produce equal-sized groups at the end of the horizon. We ran-

domly generated populations of size 𝑁 between 60 and 100, where each subject had

a scalar standard normal covariate 𝑤𝑖. After executing both chosen algorithms A and

B, we identified the index sets 𝑆𝛽
𝛼, for 𝛼, 𝛽 = 1, 2 and solved the auxiliary optimization

127



problems (4.7) and (4.8). After 3,000 simulations, we observed that, in more than

99% of instances, the average discrepancy 𝜃*
(︀
CA-RO(1)

)︀
≤ 0.35; the corresponding

upper bounds for 𝜉*
(︀
CA-RO(1),B

)︀
for various choices of B are reported in Table 4.5.

Given that, by definition, the distances 𝜃* and 𝜉* scale linearly with respect to the

covariates 𝑤𝑖, 𝑖 = 1, . . . , 𝑁 , one may derive the probabilistic counterparts of upper

bounds (4.6):

𝑧𝑓CA-RO(1) ≤ 0.35𝐿 · 𝜎

max
B∈{RAND, PS, DA, AZ, KK}

|𝑧𝑓CA-RO(1) − 𝑧𝑓B| ≤ 0.51𝐿 · 𝜎

where 𝜎 is the standard deviation of attributes 𝑤. The constant 0.51 in the right-hand

side of the second bound is derived from the maximum discrepancy among CA-RAND

methods in Table 4.5.

The result of Proposition 4.1 can be extended to the case of general continuous

functions 𝑔(·) under the assumption that the support 𝐾 ⊂ R𝑆 of covariates w is

a compact set. Indeed, any continuously differentiable function 𝑔(·) defined on a

compact set 𝐾 (including any polynomial function) is in a Lipschitz class with 𝐿 =

max
𝑥∈𝐾
|𝑔′(𝑥)|. Since any continuous function on 𝐾 can be approximated with arbitrary

precision by some polynomial according to the Weierstrass theorem, the upper bounds

(4.6) hold for any continuous function 𝑔(·) on the set 𝐾.

4.5.3 Reasoned Basis for Inference

The results from Figures 4-3a and 4-3b, which demonstrate the variety of unique

allocations that can result under the CA-RO approach, indicate that CA-RO provides

a sufficient degree of randomization to be used as a reasoned basis for inference.

While the probability distribution of these allocations does not appear to be uniform

(see Figure 4-3b), the fact that diverse allocations arise motivates us to conduct

randomization-inspired tests for statistical significance such that the power of the

CA-RO method can be estimated under various scenarios in Section 4.4.
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4.6 Conclusions

In this chapter, we introduced a covariate-adaptive optimization algorithm for the

problem of online allocation of subjects in randomized controlled trials. Our method

leverages robust mixed-integer quadratic optimization to improve upon state-of-the-

art covariate-adaptive randomization methods. We demonstrated many desirable

properties of the new CA-RO approach, including computational tractability, smaller

between-group covariate imbalance as compared with randomization-based methods,

and a low potential for common experimental biases. In all tested scenarios, the CA-

RO method performed competitively with CA-RAND approaches, and sometimes

significantly outperformed these methods, as measured by statistical power. We pre-

sented a setting with a nonlinear covariate-response model for which the CA-RO

method achieved a desired level of statistical power at a sample size 25-50% smaller

than the best CA-RAND method. Thus, the proposed CA-RO algorithm has signif-

icant potential to reduce both the cost and duration of clinical trials. The CA-RO

algorithm can be used to make assignments to any arbitrary number of treatment

groups and for any number of observed covariates. Finally, we constructed an exten-

sion of the CA-RO method for the setting in which it is possible to aggregate decision-

making. We believe that the proposed CA-RO algorithm is an efficient alternative

to covariate-adaptive randomization that can significantly strengthen experimental

power in clinical trials and many other disciplines exploiting controlled experiments.
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Figure 4-1: Statistical power (with 95% confidence intervals) under CA-RO(1) vs.
CA-RAND methods for 𝑁 ∈ {40, 80, 120} under various response models, using both
adjusted and unadjusted treatment effect estimators.
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Figure 4-3: Analysis of distribution of unique allocations under CA-RO(1).
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Table 4.1: Average between-group absolute discrepancy in moments under allocation
algorithms with 𝑚 = 2 and 𝑆 = 1.

Moment
N Algorithm 1 2 3 4 5 log(|𝑤|) 1/𝑤
20 RAND 0.358 0.498 1.321 2.955 8.108 0.387 13.521

PS 0.260 0.509 1.120 2.872 7.389 0.524 13.150
DA 0.167 0.616 0.931 3.172 6.953 0.719 13.492
AZ 0.286 0.553 1.228 3.070 7.881 0.558 13.143
KK 0.221 0.416 1.046 2.706 7.186 0.305 13.307

CA-RO(1) 0.250 0.269 1.179 2.196 7.759 0.335 13.439
CA-RO(3) 0.251 0.226 1.228 2.033 8.022 0.340 13.639
CA-RO(5) 0.254 0.186 1.224 1.954 7.969 0.343 13.621

OPT 0.024 0.010 0.960 1.517 7.348 0.354 13.702
60 RAND 0.205 0.292 0.793 1.869 5.396 0.224 10.020

PS 0.125 0.250 0.625 1.640 4.746 0.257 9.850
DA 0.092 0.350 0.560 1.935 4.700 0.408 9.990
AZ 0.125 0.278 0.663 1.788 4.981 0.257 9.763
KK 0.172 0.274 0.708 1.788 5.144 0.214 9.853

CA-RO(1) 0.099 0.139 0.629 1.378 4.992 0.214 9.979
CA-RO(3) 0.095 0.090 0.645 1.176 5.044 0.210 9.999
CA-RO(5) 0.096 0.067 0.653 1.128 5.112 0.206 10.028

OPT 0.001 3.33× 10−4 0.531 1.046 4.668 0.272 10.255
100 RAND 0.161 0.225 0.604 1.470 4.257 0.177 10.507

PS 0.083 0.178 0.438 1.242 3.619 0.182 10.251
DA 0.072 0.274 0.436 1.538 3.816 0.324 10.080
AZ 0.088 0.190 0.482 1.320 3.839 0.181 9.933
KK 0.133 0.218 0.544 1.449 4.107 0.171 10.195

CA-RO(1) 0.066 0.116 0.479 1.132 4.034 0.168 10.223
CA-RO(3) 0.063 0.073 0.488 0.984 4.091 0.165 10.368
CA-RO(5) 0.064 0.051 0.485 0.901 4.041 0.163 10.551

OPT 0.001 1.14× 10−4 0.402 0.806 3.692 0.218 10.240

Table 4.2: Statistical power under CA-RO(𝑟) for NL scenario with 𝑁 = 40.

Aggregation level, 𝑟 1 3 5 N
Power, 𝜆 29.1% 29.8% 31.9% 36.4%
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Table 4.3: Minimum number of subjects per group 𝑁*
A(𝛿0) needed for power over 80%.

Treatment effect, 𝛿0
Algorithm, A 0.75 1 1.25 1.5 1.75

RAND 268 142 88 62 48
PS 122 80 54 38 30
DA 268 148 94 60 42
AZ 158 104 68 50 36
KK 228 128 82 58 38

CA-RO(1) 58 42 32 26 22
CA-RO(3) 52 36 28 22 18
CA-RO(5) 48 32 26 22 18

OPT 26 22 18 16 14

Table 4.4: Type I error under CA-RO(1).

Sample size, 𝑁
Scenario 40 80 120

Nonlinear (NL) 7.1% 4.6% 4.5%
Linear (LIN) 7.0% 6.0% 4.5%

No relationship (NR) 6.5% 5.3% 5.6%

Table 4.5: Empirical upper bound on 𝜉*
(︀
CA-RO(1),B

)︀
.

Algorithm B RAND PS DA AZ KK
𝜉*
(︀
CA-RO(1),B

)︀
0.255 0.187 0.200 0.185 0.215
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Chapter 5

Conclusions and Future Research

Directions

In this chapter, we summarize the main contributions of the thesis as well as discuss

possible directions for future research.

5.1 Summary of the Thesis

The primary topic of this thesis is a class of online optimization problems that are

characterized by incrementally revealed input data. In the online setting, the algo-

rithm must produce sequential unchangeable decisions under uncertainty based on

the past and current fragments of problem data, while the future fragments remain

undetermined. We proposed a framework that leverages mixed integer and robust op-

timization to design and analyze new efficient online algorithms for many important

decision-making domains, such as scheduling, balancing, and dynamic resource alloca-

tion. We empirically demonstrated a large number of merits of RO-based algorithms:

tractability, better quality of recommendations, robustness and universality.

In Chapter 2, we combined ideas behind the Work Function Algorithm and RO,

and constructed a new algorithm for the 𝐾-server problem that simultaneously incor-

porates historical data about the system behavior and available forecasts about the

future. The new approach is (a) computationally tractable, (b) outperforms other
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online methods regardless of the amount of available information about the future,

and (c) is robust with respect to potential errors in the assumptions about the future.

In Chapter 3, we considered centralized and distributed versions of the fleet defense

problem. We demonstrated that highly nonlinear mixed integer FDP formulation (a)

can be efficiently solved with lazy constraints techniques within a matter of seconds,

(b) can be extended to the multiperiod setting, and (c) admits an extension with

auxiliary communication variables between ships for the decentralized counterpart of

the problem.

In Chapter 4, we presented RO-based optimization algorithm for sequential allo-

cation of subjects in online clinical trials. The new method (a) improves a between-

group covariate balance in comparison with existing assignment mechanisms, (b)

yields statistical power at least as high as, and sometimes significantly higher than,

randomization-based algorithms, and (c) has a low potential for selection, investigator

and accidental bias.

5.2 Future Research Directions

We believe that Mathematical Optimization is a powerful and universal tool for mod-

eling and solving not only deterministic formulations, but also online multiperiod

problems with intrinsic uncertainty of input data. In this thesis, we considered three

examples of online problems that can be solved much more efficiently, if RO-based

algorithms are employed. We do not doubt, that there are many more important

applications that can benefit significantly from implementation of the generic schema

described in Section 1.2. For instance, the 𝐾-server problem is a special case of a

more generic Metrical Task System framework [Borodin and El-Yaniv, 2005]. The

problem of sequential allocation of subjects in clinical trials can be considered from

the perspective of online Internet applications, such as A/B-testing. The fleet defense

problem is only one particular example of multi-agent communication and coopera-

tion decision-making domain.

Finally, each of the three problems presented in the thesis has a large number of
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remaining important open questions and possible practical extensions. We conclude

with the brief outline of some promising future research directions for each of the

applications.

Open questions. The 𝐾-server problem.

1. What is the competitive ratio of HARO algorithm? How does it compare with

the competitive ratio of the WFA?

2. How to modify the MIO formulation of the 𝐾-server problem for the case of

nonzero travel and service times?

3. Is there a tractable way to model the 𝐾-server problem for an arbitrary distance

metric, rather than metrics induced by the first and the infinity norm? How to

efficiently model the scenario with predefined distances between locations?

Open questions. The fleet defense problem.

1. Given that we found out that nonlinear inequalities of type

𝑥1𝑥2 . . . 𝑥𝑛 ≥ 𝛾

can be efficiently modeled by the lazy constraints techniques, are there any

extensions (for instance, for formulations with posynomials) for which the same

technique can be applied?

2. How to design an optimization-based cooperation protocol for the scenario when

the ships possess both hard-kill and soft-kill weapons?

3. Does the MIO formulation of the FDP have a robust counterpart with uncertain

targeting probabilities Q and weapon effectiveness P?

Open questions. Sequential allocation in clinical trials.

1. Is it possible to derive a more specific description of a class of response functions

𝑣 = 𝑣(w), for which CA-RO algorithm outperforms other methods in terms of

statistical power?
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2. Is it possible to find theoretical or probabilistic upper bounds on 𝜃*(A) and

𝜉*(A,B) presented in Section 4.5 if the probability distribution of covariates 𝑤

is given?

3. Can the MIO formulation for the CA-RO algorithm be adjusted to different

variants of the online bin packing problem?
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Appendix A

Supplementary Material to

Sequential Clinical Trials

A.1 Tractability of the CA-RO Algorithm

Lemma 1. Consider robust optimization problem (4.3) with ellipsoidal uncertainty

set 𝑈𝜀 as defined in (4.4). To find the optimal objective value of this discrete op-

timization problem and the optimal current assignment at time 𝑡, it is sufficient to

inspect the following easily specified set 𝒳 consisting of not more than 𝑚 points:

𝒳 :=
𝑚⋃︁
𝑝=1

{︀
𝑥𝑡𝑝 = 1;

𝑥𝑡𝑞 = 0, ∀𝑞 = 1, . . . ,𝑚, 𝑞 ̸= 𝑝;

𝑥𝑖𝑢 = 0, ∀𝑖 = 𝑡 + 1, . . . , 𝑁, 𝑢 = 1, . . . ,𝑚;

𝑡−1∑︁
𝑖=1

𝑥̂𝑖𝑝 + 𝑥𝑡𝑝 ≤ 𝑘
}︀
.

Proof. In order to model the constraints for each 𝑝, 𝑞, 𝑠 from optimization problem

(4.3) that should hold for all possible realizations of uncertain vector w̃ ∈ 𝑈𝑤, we will
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find a closed-form solution to the following auxiliary optimization problems:

max
w̃∈𝑈𝑤

(𝜇𝑠
𝑝 − 𝜇𝑠

𝑞) and max
w̃∈𝑈𝑤

(𝜎𝑠
𝑝 − 𝜎𝑠

𝑞).

Step 1. Optimization of the linear term.

Let us define a parameter Γ̃ := Γ2(𝑁 − 𝑡)𝑆, where Γ is the robustness parameter

from (4.4). Then, for any fixed values of 𝑝, 𝑞, 𝑠, and Γ̃, we consider the optimization

problem

max
w̃∈𝑈𝑤

(𝜇𝑠
𝑝 − 𝜇𝑠

𝑞). (A.1)

We have

𝑘(𝜇𝑠
𝑝 − 𝜇𝑠

𝑞) =
𝑡−1∑︁
𝑖=1

𝑤𝑠
𝑖 (𝑥̂𝑖𝑝 − 𝑥̂𝑖𝑞) + 𝑤𝑠

𝑡 (𝑥𝑡𝑝 − 𝑥𝑡𝑞) +
𝑁∑︁

𝑖=𝑡+1

𝑤̃𝑠
𝑖 (𝑥𝑖𝑝 − 𝑥𝑖𝑞),

where only the last term of the right-hand side depends on uncertain w̃. Therefore,

we need to solve the following optimization problem for fixed values of components

of x:

max
w̃∈𝑈𝑤

𝑁∑︁
𝑖=𝑡+1

𝑤̃𝑠
𝑖 (𝑥𝑖𝑝 − 𝑥𝑖𝑞) = max

𝜀∈𝑈𝜀

𝑁∑︁
𝑖=𝑡+1

(𝑤̄𝑠
𝑡 + v⊤

(𝑠)𝜀𝑖)(𝑥𝑖𝑝 − 𝑥𝑖𝑞)

= 𝑤̄𝑠
𝑡

𝑁∑︁
𝑖=𝑡+1

(𝑥𝑖𝑝 − 𝑥𝑖𝑞) + max
𝜀∈𝑈𝜀

𝑁∑︁
𝑖=𝑡+1

(v⊤
(𝑠)𝜀𝑖)(𝑥𝑖𝑝 − 𝑥𝑖𝑞).

where v(𝑠) denotes the s-th row of the matrix (Σ𝑡)
1
2 . The optimization problem

max
𝜀∈𝑈𝜀

𝑁∑︁
𝑖=𝑡+1

(v⊤
(𝑠)𝜀𝑖)(𝑥𝑖𝑝 − 𝑥𝑖𝑞)

can be rewritten in the following form:

max
𝜀

(a𝑝𝑞𝑠)⊤𝜀 (A.2)

s.t. 𝜀⊤𝜀 ≤ Γ̃,
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where vector a𝑝𝑞𝑠 of dimension (𝑁 − 𝑡)× 𝑆 is defined by (a𝑝𝑞𝑠)𝑖𝑠′ = (𝑥𝑖𝑝 − 𝑥𝑖𝑞)(Σ
1
2
𝑡 )𝑠𝑠′

for 𝑖 = 𝑡 + 1, . . . , 𝑁, 𝑠′ = 1, . . . , 𝑆.

Simple application of the Karush-Kuhn-Tucker conditions yields that the optimal

value of the optimization problem (A.2) is equal to

√︀
Γ̃ · ‖a𝑝𝑞𝑠‖2 =

√︀
Γ̃

⎯⎸⎸⎷ 𝑆∑︁
𝑠′=1

𝑁∑︁
𝑖=𝑡+1

(𝑥𝑖𝑝 − 𝑥𝑖𝑞)2((Σ
1
2
𝑡 )𝑠𝑠′)2 =

√︀
Γ̃‖v(𝑠)‖2

⎯⎸⎸⎷ 𝑁∑︁
𝑖=𝑡+1

(𝑥𝑖𝑝 − 𝑥𝑖𝑞)2.

The last factor can be simplified and expressed in terms of the current time-step

decision variables as follows:

𝑁∑︁
𝑖=𝑡+1

(𝑥𝑖𝑝−𝑥𝑖𝑞)
2 =

𝑁∑︁
𝑖=𝑡+1

(𝑥2
𝑖𝑝−2𝑥𝑖𝑝𝑥𝑖𝑞+𝑥2

𝑖𝑞) =
𝑁∑︁

𝑖=𝑡+1

(𝑥𝑖𝑝+𝑥𝑖𝑞) = 2𝑘−
𝑡−1∑︁
𝑖=1

(𝑥̂𝑖𝑝+𝑥̂𝑖𝑞)−(𝑥𝑡𝑝+𝑥𝑡𝑞),

where the second equality is due to the fact that 𝑥𝑖𝑝 and 𝑥𝑖𝑞 are binary variables with

𝑥𝑖𝑝𝑥𝑖𝑞 = 0. Thus, the analysis of optimization problem (A.1) allows us to write a

closed-form counterpart of the linear terms in (4.3) that depends only on the current

time-step decision variables 𝑥𝑡𝑝 for 𝑝 = 1, . . . ,𝑚, such that:

𝑀 𝑠
𝑝𝑞 ≥ 𝜇𝑠

𝑝 − 𝜇𝑠
𝑞, ∀w̃ ∈ 𝑈𝑤 ⇐⇒

𝑘𝑀 𝑠
𝑝𝑞 ≥

𝑡−1∑︁
𝑖=1

(𝑤𝑠
𝑖 − 𝑤̄𝑠

𝑡 )(𝑥̂𝑖𝑝 − 𝑥̂𝑖𝑞) + (𝑤𝑠
𝑡 − 𝑤̄𝑠

𝑡 )(𝑥𝑡𝑝 − 𝑥𝑡𝑞)+

+
√︀

Γ̃‖v(𝑠)‖2

⎯⎸⎸⎷2𝑘 −
𝑡−1∑︁
𝑖=1

(𝑥̂𝑖𝑝 + 𝑥̂𝑖𝑞)− (𝑥𝑡𝑝 + 𝑥𝑡𝑞).

Step 2. Optimization of the variance term.

Similarly to Step 1, we fix values of 𝑝, 𝑞, 𝑠 and Γ̃ and consider the optimization problem

max
w̃∈𝑈𝑤

(𝜎𝑠
𝑝 − 𝜎𝑠

𝑞). (A.3)

As before, only the term representing the future time periods depends on the uncertain

parameters 𝜀. Therefore, the primary goal of this step is to find a closed-form solution
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to the auxiliary optimization problem

max
𝜀∈𝑈𝜀

𝑁∑︁
𝑖=𝑡+1

(v⊤
(𝑠)𝜀𝑖)

2(𝑥𝑖𝑝 − 𝑥𝑖𝑞) = max
‖𝜀‖22≤Γ̃

𝜀⊤𝐴𝜀 = Γ̃ · 𝜆max(𝐴). (A.4)

In (A.4), 𝜆max(𝐴) denotes the maximum eigenvalue of the square block matrix 𝐴:

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎣
(𝑥𝑡+1,𝑝 − 𝑥𝑡+1,𝑞)𝐵 0 0 . . . 0

0 (𝑥𝑡+2,𝑝 − 𝑥𝑡+2,𝑞)𝐵 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . (𝑥𝑁𝑝 − 𝑥𝑁𝑞)𝐵

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where matrix 𝐵 = v(𝑠)(v(𝑠))
⊤.

The maximum eigenvalue 𝜆max(𝐴) depends not only on the values of x, but also

on the dimension 𝑆 of the covariate space.

∙ Case 1. 𝑆 ≥ 2. In this case, the eigenvalues of matrix 𝐵 are 0 and ‖v(𝑠)‖22, and

the maximum eigenvalue of matrix 𝐴 can be determined as a function of x as

follows:

𝜆max(𝐴) =

⎧⎪⎨⎪⎩0, if 𝑥𝑖𝑝 − 𝑥𝑖𝑞 ≤ 0 for all 𝑖 = 𝑡 + 1, . . . , 𝑁,

‖v(𝑠)‖22, if 𝑥𝑖𝑝 − 𝑥𝑖𝑞 = 1 for at least one 𝑖 = 𝑡 + 1, . . . , 𝑁.

By construction, the condition 𝑥𝑖𝑝 − 𝑥𝑖𝑞 = 1 for at least one 𝑖 = 𝑡 + 1, . . . , 𝑁

holds if and only if group 𝑝 is not full after the current time-step assignment,

i.e.,

𝑘 −
𝑡−1∑︁
𝑖=1

𝑥̂𝑖𝑝 − 𝑥𝑡𝑝 ≥ 1.

Thus, optimization problem (A.4) has the following closed-form solution that

depends only on the current time-step decision variables:

max
𝜀∈𝑈𝜀

𝑁∑︁
𝑖=𝑡+1

(v⊤
(𝑠)𝜀𝑖)

2(𝑥𝑖𝑝 − 𝑥𝑖𝑞) = Γ̃ · ‖v(𝑠)‖22 · I
{︁
𝑘 −

𝑡−1∑︁
𝑖=1

𝑥̂𝑖𝑝 − 𝑥𝑡𝑝 ≥ 1
}︁
.
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Now we can exploit the closed-form solution for optimization problem (A.3)

within (4.3), as follows:

𝑉 𝑠
𝑝𝑞 ≥ 𝜎𝑠

𝑝 − 𝜎𝑠
𝑞 , ∀w̃ ∈ 𝑈𝑤 ⇐⇒

𝑘 𝑉 𝑠
𝑝𝑞 ≥

𝑡−1∑︁
𝑖=1

(𝑤𝑠
𝑖 − 𝑤̄𝑠

𝑡 )
2(𝑥̂𝑖𝑝 − 𝑥̂𝑖𝑞) + (𝑤𝑠

𝑡 − 𝑤̄𝑠
𝑡 )

2(𝑥𝑡𝑝 − 𝑥𝑡𝑞)+ (A.5)

+ Γ̃ · ‖v(𝑠)‖22 · I
{︁
𝑘 −

𝑡−1∑︁
𝑖=1

𝑥̂𝑖𝑝 − 𝑥𝑡𝑝 ≥ 1
}︁
.

∙ Case 2. 𝑆 = 1. In this case, matrix 𝐵 is one-dimensional and its only eigenvalue

is ‖v(𝑠)‖22. Hence,

𝜆max(𝐴) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖v(𝑠)‖22, if 𝑥𝑖𝑝 = 1 for at least one 𝑖 = 𝑡 + 1, . . . , 𝑁,

−‖v(𝑠)‖22, if 𝑥𝑖𝑝 = 0 and 𝑥𝑖𝑞 = 1 for all 𝑖 = 𝑡 + 1, . . . , 𝑁,

0, if 𝑥𝑖𝑝 = 0 for all 𝑖 = 𝑡 + 1, . . . , 𝑁 and

𝑥𝑖𝑞 = 0 for at least one 𝑖 = 𝑡 + 1, . . . , 𝑁.

This is equivalent to the formulation: 𝜆max(𝐴) = ‖v(𝑠)‖22 ·Θ𝑝𝑞(x̂,x), where

Θ𝑝𝑞(x̂,x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if 𝑘 −
𝑡−1∑︀
𝑖=1

𝑥̂𝑖𝑝 − 𝑥𝑡𝑝 ≥ 1,

−1, if 𝑘 −
𝑡−1∑︀
𝑖=1

𝑥̂𝑖𝑝 − 𝑥𝑡𝑝 = 0 and
𝑡−1∑︀
𝑖=1

𝑥̂𝑖𝑞 + 𝑥𝑡𝑞 + (𝑁 − 𝑡) = 𝑘,

0, if 𝑘 −
𝑡−1∑︀
𝑖=1

𝑥̂𝑖𝑝 − 𝑥𝑡𝑝 = 0 and
𝑡−1∑︀
𝑖=1

𝑥̂𝑖𝑞 + 𝑥𝑡𝑞 + (𝑁 − 𝑡) > 𝑘.

(A.6)

Thus, optimization problem (4.3) modeling the CA-RO algorithm with ellipsoidal

uncertainty set has the following closed form for 𝑆 ≥ 2:

min
x,M,V,𝑧

𝑧

s.t. 𝑧 ≥
𝑆∑︁

𝑠=1

𝑀 𝑠
𝑝𝑞 + 𝜌𝑉 𝑠

𝑝𝑞, ∀𝑝 < 𝑞
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∀𝑝 < 𝑞, 𝑠 = 1, . . . , 𝑆 :

𝑘𝑀 𝑠
𝑝𝑞 ≥

𝑡−1∑︁
𝑖=1

(𝑤𝑠
𝑖 − 𝑤̄𝑠

𝑡 )(𝑥̂𝑖𝑝 − 𝑥̂𝑖𝑞) + (𝑤𝑠
𝑡 − 𝑤̄𝑠

𝑡 )(𝑥𝑡𝑝 − 𝑥𝑡𝑞)+

+
√︀

Γ̃‖v(𝑠)‖2

⎯⎸⎸⎷2𝑘 −
𝑡−1∑︁
𝑖=1

(𝑥̂𝑖𝑝 + 𝑥̂𝑖𝑞)− (𝑥𝑡𝑝 + 𝑥𝑡𝑞)

𝑘𝑀 𝑠
𝑝𝑞 ≥

𝑡−1∑︁
𝑖=1

(𝑤𝑠
𝑖 − 𝑤̄𝑠

𝑡 )(𝑥̂𝑖𝑞 − 𝑥̂𝑖𝑝) + (𝑤𝑠
𝑡 − 𝑤̄𝑠

𝑡 )(𝑥𝑡𝑞 − 𝑥𝑡𝑝)+ (A.7)

+
√︀

Γ̃‖v(𝑠)‖2

⎯⎸⎸⎷2𝑘 −
𝑡−1∑︁
𝑖=1

(𝑥̂𝑖𝑝 + 𝑥̂𝑖𝑞)− (𝑥𝑡𝑝 + 𝑥𝑡𝑞)

𝑘 𝑉 𝑠
𝑝𝑞 ≥

𝑡−1∑︁
𝑖=1

(𝑤𝑠
𝑖 − 𝑤̄𝑠

𝑡 )
2(𝑥̂𝑖𝑝 − 𝑥̂𝑖𝑞) + (𝑤𝑠

𝑡 − 𝑤̄𝑠
𝑡 )

2(𝑥𝑡𝑝 − 𝑥𝑡𝑞)+

+ Γ̃ · ‖v(𝑠)‖22 · I
{︁
𝑘 −

𝑡−1∑︁
𝑖=1

𝑥̂𝑖𝑝 − 𝑥𝑡𝑝 ≥ 1
}︁

𝑘 𝑉 𝑠
𝑝𝑞 ≥

𝑡−1∑︁
𝑖=1

(𝑤𝑠
𝑖 − 𝑤̄𝑠

𝑡 )
2(𝑥̂𝑖𝑞 − 𝑥̂𝑖𝑝) + (𝑤𝑠

𝑡 − 𝑤̄𝑠
𝑡 )

2(𝑥𝑡𝑞 − 𝑥𝑡𝑝)+

+ Γ̃ · ‖v(𝑠)‖22 · I
{︁
𝑘 −

𝑡−1∑︁
𝑖=1

𝑥̂𝑖𝑞 − 𝑥𝑡𝑞 ≥ 1
}︁

𝑡−1∑︁
𝑖=1

𝑥̂𝑖𝑝 + 𝑥𝑡𝑝 ≤ 𝑘, ∀𝑝 = 1, . . . ,𝑚

𝑚∑︁
𝑝=1

𝑥𝑡𝑝 = 1

𝑥𝑖𝑝 ∈ {0, 1}, ∀𝑖 = 𝑡, . . . , 𝑁, 𝑝 = 1, . . . ,𝑚.

The second-to-last constraint guarantees that no group will be assigned more than 𝑘

subjects and is therefore a sufficient replacement for the second-to-last constraint of

formulation (4.3).

A similar formulation for the case 𝑆 = 1 is given by

min
x,M,V,𝑧

𝑧

s.t. 𝑧 ≥
𝑆∑︁

𝑠=1

𝑀 𝑠
𝑝𝑞 + 𝜌𝑉 𝑠

𝑝𝑞, ∀𝑝 < 𝑞
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∀𝑝 < 𝑞, 𝑠 = 1, . . . , 𝑆 :

𝑘𝑀 𝑠
𝑝𝑞 ≥

𝑡−1∑︁
𝑖=1

(𝑤𝑠
𝑖 − 𝑤̄𝑠

𝑡 )(𝑥̂𝑖𝑝 − 𝑥̂𝑖𝑞) + (𝑤𝑠
𝑡 − 𝑤̄𝑠

𝑡 )(𝑥𝑡𝑝 − 𝑥𝑡𝑞)+

+
√︀

Γ̃‖v(𝑠)‖2

⎯⎸⎸⎷2𝑘 −
𝑡−1∑︁
𝑖=1

(𝑥̂𝑖𝑝 + 𝑥̂𝑖𝑞)− (𝑥𝑡𝑝 + 𝑥𝑡𝑞)

𝑘𝑀 𝑠
𝑝𝑞 ≥

𝑡−1∑︁
𝑖=1

(𝑤𝑠
𝑖 − 𝑤̄𝑠

𝑡 )(𝑥̂𝑖𝑞 − 𝑥̂𝑖𝑝) + (𝑤𝑠
𝑖 − 𝑤̄𝑠

𝑡 )(𝑥𝑖𝑞 − 𝑥𝑖𝑝)+ (A.8)

+
√︀

Γ̃‖v(𝑠)‖2

⎯⎸⎸⎷2𝑘 −
𝑡−1∑︁
𝑖=1

(𝑥̂𝑖𝑝 + 𝑥̂𝑖𝑞)− (𝑥𝑡𝑝 + 𝑥𝑡𝑞)

𝑘 𝑉 𝑠
𝑝𝑞 ≥

𝑡−1∑︁
𝑖=1

(𝑤𝑠
𝑖 − 𝑤̄𝑠

𝑡 )
2(𝑥̂𝑖𝑝 − 𝑥̂𝑖𝑞) + (𝑤𝑠

𝑡 − 𝑤̄𝑠
𝑡 )

2(𝑥𝑡𝑝 − 𝑥𝑡𝑞)+

+ Γ̃ · ‖v(𝑠)‖22 ·Θ𝑝𝑞(x̂,x)

𝑘 𝑉 𝑠
𝑝𝑞 ≥

𝑡−1∑︁
𝑖=1

(𝑤𝑠
𝑖 − 𝑤̄𝑠

𝑡 )
2(𝑥̂𝑖𝑞 − 𝑥̂𝑖𝑝) + (𝑤𝑠

𝑡 − 𝑤̄𝑠
𝑡 )

2(𝑥𝑡𝑞 − 𝑥𝑡𝑝)+

+ Γ̃ · ‖v(𝑠)‖22 ·Θ𝑞𝑝(x̂,x)

𝑡−1∑︁
𝑖=1

𝑥̂𝑖𝑝 + 𝑥𝑡𝑝 ≤ 𝑘, ∀𝑝 = 1, . . . ,𝑚

𝑚∑︁
𝑝=1

𝑥𝑡𝑝 = 1

𝑥𝑖𝑝 ∈ {0, 1}, ∀𝑖 = 𝑡, . . . , 𝑁, 𝑝 = 1, . . . ,𝑚,

where Θ𝑝𝑞(x̂,x) and Θ𝑞𝑝(x̂,x) are as defined in (A.6).

Formulations (A.7) and (A.8) depend only on current time-step decisions 𝑥𝑡𝑝, for

𝑝 = 1, . . . ,𝑚. Given that these variables are binary and the subject with index 𝑡 must

be assigned to exactly one group, it is sufficient to inspect the set 𝒳 , with cardinality

at most 𝑚, to solve (4.3) for the optimal current assignment. �
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A.2 Type I Error Rates
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Figure A-1: Type I error (with 95% confidence intervals) with CA-RO(1) vs. CA-
RAND methods for 𝑁 ∈ {40, 80, 120} under various response models, using the ad-
justed treatment effect estimator. Dashed line indicates 0.05 significance level.

A.3 Proof of Proposition 4.1

Proof. In order to verify inequality (4.6a) for 𝑚 = 2, we note that optimization

problem (4.7) uniquely determines a pairwise matching of sets I1(A) and I2(A) with
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minimum average distance between pairs. We denote the resulting pairs as {(𝑖𝑙, 𝑗𝑙) :

𝑙 = 1, . . . , 𝑘}, where 𝑘 is the number of indices in each set. By the definition of 𝑧𝑓A,

we derive

𝑧𝑓A =
1

𝑘

⃒⃒⃒ ∑︁
𝑖∈I1(A)

𝑔(𝑤𝑖)−
∑︁

𝑖∈I2(A)

𝑔(𝑤𝑖)
⃒⃒⃒
≤ 1

𝑘

𝑘∑︁
𝑙=1

|𝑔(𝑤𝑖𝑙)−𝑔(𝑤𝑗𝑙)| ≤
𝐿

𝑘

𝑘∑︁
𝑙=1

|𝑤𝑖𝑙−𝑤𝑗𝑙 | = 𝐿·𝜃*(A).

(A.9)

Similar reasoning is applicable for the second inequality (4.6b). First, it is easy to see

that the cardinality of both sets 𝑆1
1 and 𝑆1

2 is the same:

𝛾 := |𝑆1
1 | = |𝑆1

2 |.

By symmetry, the cardinalities of the complementary sets are also identical:

|𝑆2
1 | = |𝑆2

2 | = 𝑘 − 𝛾.

The next step is to express the between-group discrepancies in the means generated

by algorithms A and B as follows:

𝑧𝑓A =
1

𝑘

⃒⃒⃒∑︁
𝑖∈𝑆2

1

𝑔(𝑤𝑖) +
∑︁
𝑖∈𝑆1

1

𝑔(𝑤𝑖)−
∑︁
𝑖∈𝑆1

2

𝑔(𝑤𝑖)−
∑︁
𝑖∈𝑆2

2

𝑔(𝑤𝑖)
⃒⃒⃒
= |𝑎 + 𝑏|.

𝑧𝑓B =
1

𝑘

⃒⃒⃒∑︁
𝑖∈𝑆2

1

𝑔(𝑤𝑖)−
∑︁
𝑖∈𝑆1

1

𝑔(𝑤𝑖) +
∑︁
𝑖∈𝑆1

2

𝑔(𝑤𝑖)−
∑︁
𝑖∈𝑆2

2

𝑔(𝑤𝑖)
⃒⃒⃒
= |𝑎− 𝑏|,

where

𝑎 :=
1

𝑘

(︁∑︁
𝑖∈𝑆2

1

𝑔(𝑤𝑖)−
∑︁
𝑖∈𝑆2

2

𝑔(𝑤𝑖)
)︁

and 𝑏 :=
1

𝑘

(︁∑︁
𝑖∈𝑆1

1

𝑔(𝑤𝑖)−
∑︁
𝑖∈𝑆1

2

𝑔(𝑤𝑖)
)︁
.

Hence, analogously to argument (A.9), one may obtain upper bounds:

|𝑎| ≤ 𝐿 · 𝜉2(A,B) and |𝑏| ≤ 𝐿 · 𝜉1(A,B). (A.10)
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A simple corollary from the triangle inequality is that, for any 𝑎 and 𝑏,

⃒⃒
|𝑎 + 𝑏| − |𝑎− 𝑏|

⃒⃒
≤ 2 min

(︀
|𝑎|, |𝑏|

)︀
. (A.11)

This corollary, taken together with (A.10), implies that

|𝑧𝑓A − 𝑧𝑓B| ≤ 2𝐿 ·min
{︀
𝜉1(A,B), 𝜉2(A,B)

}︀
≤ 2𝐿 · 𝜉*(A,B).

This proposition has a straighforward extension to the cases of 𝑚 > 2 groups and mul-

tidimensional covariates. The proofs have a similar structure to the case considered

here, and thus are omitted. �
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