
Adaptive Optimization Problems under Uncertainty with
Limited Feedback

by

Arthur Flajolet

M.S., Ecole Polytechnique (2013)

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Sloan School of Management

May 15, 2017

Certified by .
Patrick Jaillet

Dugald C. Jackson Professor of Electrical Engineering and Computer
Science

Thesis Supervisor

Accepted by. .
Dimitris Bertsimas

Boeing Professor of Operations Research
Co-director, Operations Research Center

2

Adaptive Optimization Problems under Uncertainty with Limited

Feedback

by

Arthur Flajolet

Submitted to the Sloan School of Management
on May 15, 2017, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract

This thesis is concerned with the design and analysis of new algorithms for sequential
optimization problems with limited feedback on the outcomes of alternatives when the en-
vironment is not perfectly known in advance and may react to past decisions. Depending
on the setting, we take either a worst-case approach, which protects against a fully adver-
sarial environment, or a hindsight approach, which adapts to the level of adversariality by
measuring performance in terms of a quantity known as regret.

First, we study stochastic shortest path problems with a deadline imposed at the desti-
nation when the objective is to minimize a risk function of the lateness. To capture distri-
butional ambiguity, we assume that the arc travel times are only known through confidence
intervals on some statistics and we design efficient algorithms minimizing the worst-case
risk function.

Second, we study the minimax achievable regret in the online convex optimization
framework when the loss function is piecewise linear. We show that the curvature of the
decision maker’s decision set has a major impact on the growth rate of the minimax regret
with respect to the time horizon. Specifically, the rate is always square root when the set is
a polyhedron while it can be logarithmic when the set is strongly curved.

Third, we study the Bandits with Knapsacks framework, a recent extension to the
standard Multi-Armed Bandit framework capturing resource consumption. We extend the
methodology developed for the original problem and design algorithms with regret bounds
that are logarithmic in the initial endowments of resources in several important cases that
cover many practical applications such as bid optimization in online advertising auctions.

Fourth, we study more specifically the problem of repeated bidding in online adver-
tising auctions when some side information (e.g. browser cookies) is available ahead of
submitting a bid. Optimizing the bids is modeled as a contextual Bandits with Knapsacks
problem with a continuum of arms. We design efficient algorithms with regret bounds that
scale as square root of the initial budget.

Thesis Supervisor: Patrick Jaillet

3

Title: Dugald C. Jackson Professor of Electrical Engineering and Computer Science

4

Acknowledgments

First and foremost, I would like to thank my advisor Patrick Jaillet for his continued and

unconditional support and guidance. Patrick is not only a brilliant mind but also a patient

and caring professor who is always open to new ideas. I am very grateful for everything he

has done for me and in particular for providing me with countless opportunities during my

stay at MIT such as attending conferences, interning at a major demand-side platform, and

collaborating with brilliant researchers at MIT and elsewhere. It has been a great honor and

pleasure to work with him for the past four years.

I would also like to thank my doctoral committee members Vivek Farias and Alexander

(Sasha) Rakhlin not only for their valuable feedback on my work but also for giving me the

opportunity to TA for them. Vivek and Sasha are exceptional teachers and assisting them

in their work has taught me alot. I have also been very fortunate to collaborate with Sasha

on open problems in the field of online learning. Sasha is a phenomenal researcher as well

as a wonderful person and I have learned a great deal about online learning working with

him. I would also like to thank Laura Rose and Andrew Carvalho for all their help over the

years.

My PhD would not have been the same without all the great people I met here, start-

ing with my roommates (past and present): Andrew L., Mathieu D., Zach O., Virgile G.,

Maxime C., and Florent B.. I am grateful for all the good times we have had together.

I would also like to make a special mention of the worthy members of the sushi squad:

Charles T., Anna P., Sebastien M., Joey H., Max Burq, Max Biggs, Stefano T., Zach S.,

Colin P., and Elisabeth P.. May the team live on forever. I would also like to thank all the

friends I met at MIT and especially: Ludovica R., Cecile C., Sebastien B., Ali A., Anne

C., Audren C., Elise D., Rim H., Ilias Z., Alex R., Alex S., Alex B., Rachid N., Alexis T.,

Pierre B., Maher D., Velibor M., Nishanth M., Mariapaola T., Zeb H., Dan S., Will M.,

Antoine D., Jean P., Jonathan A., Arthur D., Konstantina M., Nikita K., Chong Yang G.,

Jehangir A., Swati G., Rajan U., Clark P., and Eli G..

I would also like to thank S. Hunter in a separate paragraph because he has been such a

great friend.

5

Finally, I would like to acknowledge my family, particularly my mother and my father,

who have always been there for me. I would not be here if it was not for them.

This research was supported by the National Research Foundation Grant No. 015824-

00078 and the Office of Naval Research Grant N00014-15-1-2083.

6

Contents

1 Introduction 15

1.1 Motivation and General Setting . 15

1.2 Mathematical Framework . 17

1.2.1 Worst-Case Approach . 19

1.2.2 Hindsight Approach . 19

1.3 Overview of Thesis . 22

2 Robust Adaptive Routing under Uncertainty 25

2.1 Introduction . 25

2.1.1 Motivation . 25

2.1.2 Related Work and Contributions 26

2.2 Problem Formulation . 30

2.2.1 Nominal Problem . 30

2.2.2 Distributionally Robust Problem 31

2.3 Theoretical and Computational Analysis of the Nominal Problem 33

2.3.1 Characterization of Optimal Policies 33

2.3.2 Solution Methodology . 37

2.4 Theoretical and Computational Analysis of the Robust Problem 41

2.4.1 Characterization of Optimal Policies 41

2.4.2 Tightness of the Robust Problem 43

2.4.3 Solution Methodology . 45

2.5 Numerical Experiments . 59

2.5.1 Framework . 59

7

2.5.2 Results . 62

2.6 Extensions . 64

2.6.1 Relaxing Assumption 2.1: Markovian Costs 64

2.6.2 Relaxing Assumption 2.2: 𝜏 -dependent Arc Cost Probability Dis-

tributions . 66

3 No-Regret Learnability for Piecewise Linear Losses 69

3.1 Introduction . 69

3.1.1 Applications . 72

3.1.2 Related Work . 76

3.2 Lower Bounds . 77

3.3 Upper Bounds . 82

3.4 Concluding Remark . 87

4 Logarithmic Regret Bounds for Bandits with Knapsacks 89

4.1 Introduction . 89

4.1.1 Motivation . 89

4.1.2 Problem Statement and Contributions 91

4.1.3 Literature Review . 94

4.2 Applications . 95

4.2.1 Online Advertising . 96

4.2.2 Revenue Management . 97

4.2.3 Dynamic Procurement . 100

4.2.4 Wireless Sensor Networks . 100

4.3 Algorithmic Ideas . 101

4.3.1 Preliminaries . 101

4.3.2 Solution Methodology . 103

4.4 A Single Limited Resource . 107

4.5 Arbitrarily Many Limited Resources whose Consumptions are Deterministic 113

4.6 A Time Horizon and Another Limited Resource 120

4.7 Arbitrarily Many Limited Resources . 130

8

4.8 Concluding Remark . 135

5 Real-Time Bidding with Side Information 137

5.1 Introduction . 137

5.1.1 Problem Statement and Contributions 138

5.1.2 Literature Review . 140

5.2 Unlimited Budget . 144

5.3 Limited Budget . 147

5.3.1 Preliminary Work . 147

5.3.2 General Case . 152

5.4 Concluding Remark . 153

6 Concluding Remarks 155

6.1 Summary . 155

6.2 Future Research Directions . 157

A Appendix for Chapter 2 167

B Appendix for Chapter 3 203

C Appendix For Chapter 4 221

D Appendix For Chapter 5 291

9

10

List of Figures

2-1 Existence of loops in adaptive stochastic shortest path problems 34

2-2 Existence of infinite cycling from Example 2.1 35

2-3 Graph of 𝑢Δ𝑡
𝑗 (·) . 57

2-4 Local map of the Singapore road network 59

2-5 Average computation time as a function of the time budget for 𝜆 = 0.001 . 62

2-6 Performance for 𝜆 = 0.001, average number of samples per link: ∼ 5.5 . . 62

2-7 Performance for 𝜆 = 0.002, average number of samples per link: ∼ 9.4 . . 63

2-8 Performance for 𝜆 = 0.005, average number of samples per link: ∼ 25.1 . . 63

11

12

List of Tables

2.1 Literature review of stochastic shortest path problems 28

2.2 Routing methods considered . 61

3.1 Growth rate of 𝑅𝑇 in several settings of interest 72

13

14

Chapter 1

Introduction

1.1 Motivation and General Setting

In many practical applications, the decision making process is fundamentally sequential

and takes place in an uncertain, possibly adversarial, environment that is too complex to be

fully comprehended. As a result, planning can no longer be regarded as a one-shot proce-

dure, where the entire plan would be laid out ahead of time, but rather as a trial-and-error

process, where the decision maker can assess the quality of past actions, adapt to new cir-

cumstances, and potentially learn about the surrounding environment. Arguably, we face

many such problems in our daily life. Routing vehicles in transportation networks is a good

example since traffic conditions are constantly evolving according to dynamics that are dif-

ficult to predict. As drivers, we have little control over this exogenous parameter but we are

nevertheless free to modify our itinerary at any point in time based on the latest available

traffic information. In this particular application, the environment is not cooperative but

also not necessarily adversarial. There are, however, other settings, such as dynamic pric-

ing in the airline industry, where the environment is clearly pursuing a conflicting goal. In

this last setting, the ticket agent dynamically adjusts prices as a function of the remaining

inventory, the selling horizon, and the perceived willingness to pay while potential cus-

tomers act strategically in order to drive the prices down.

At an abstract level, we consider the following class of sequential optimization prob-

lems. At each stage, the decision maker first selects an action out of a set of options, whose

15

availability depend on the decision maker’s current state, based on the information acquired

in the past. Next, the environment, defined as everything outside of the decision maker’s

control (e.g. traffic conditions in the vehicle routing routing application mentioned above),

transitions into a new state, possibly in reaction to this choice. Finally, the decision maker

transitions into a new state, obtains a scalar reward, and receives some feedback on the

outcomes of alternatives as a function of not only the action that was implemented but also

the new state of the environment. We then move onto the next stage and this process is

repeated until the decision maker reaches a terminal state. His or her goal is to maximize

some prescribed objective function of the sum of the rewards earned along the way. The

specificity of the sequential optimization problems studied in this thesis lies in two key

features:

1. the environment is uncertain. The decision maker knows which states the environ-

ment might occupy but he or she has little a priori knowledge on its internal mechan-

ics: its initial state, its transition rules from one state to another, and its objectives;

2. the feedback received at each stage is very limited. As a result, the decision maker

can never perform a thorough counterfactual analysis, which limits his or her ability

to learn from past mistakes.

In the above description, uncertainty is not used as a placeholder for stochasticity. Stochas-

ticity can be a source of uncertainty but it need not be the only one or the most important

one. For instance, even when the environment is governed by a stochastic process, the

underlying distributions might be a priori unknown as in Chapter 2. Going further, stochas-

ticity may not even be involved in the modeling. This is the case, for example, when the

problem is to optimize an unknown deterministic function 𝑓(·), lying in a known set of

general functions, by making repeated value queries.

As the environment is uncertain, the optimization problem faced by the decision maker

is ill-defined since merely computing the objective function requires knowing the sequence

of states occupied by the environment. In Section 1.2, we detail two possible approaches:

a worst-case approach, that protects the decision maker against a fully adversarial envi-

ronment, and a hindsight approach, that adapts to the level of adversariality at the price of

16

deriving a suboptimal objective function if the environment happens to be fully adversarial.

In the next four chapters, depending on the setting, we study one of these approaches with

an emphasis on computational tractability and performance analysis. A precise overview

of contributions is given in Section 1.3.

The framework considered in this thesis is, in many respects, strongly reminiscent of

Reinforcement Learning (RL) but the focus is different. In RL, the environment is often

governed by a stochastic process that the decision maker can learn from through repeated

interaction. Since there is limited feedback on the outcome of alternatives, this naturally

gives rise to an exploration-exploitation trade-off. In this thesis, the focus is on optimization

as opposed to learning and we substitute the concept of uncertainty for that of stochasticity.

As a consequence, there might be nothing to learn from for the decision maker in general,

as in Chapters 2 and 3, but he or she might need to learn something about the environment

in order to perform well, as in Chapters 4 and 5. Note that this is merely a choice of focus

and this does not imply by any means that there are no connections to learning. Learn-

ing and optimization are intrinsically tied topics whose frontiers are becoming increasingly

blurred. However, taking a pure optimization standpoint, abstracting away learning con-

siderations, has proved particularly successful in the RL literature. A good example of

this trend is given by the growing popularity of the online convex optimization framework,

studied in Chapter 3 and originally developed by the machine learning community, which

has led to significant advances in RL. As a recent illustration, the authors of [80] show

that establishing martingale tail bounds is essentially equivalent to solving online convex

optimization problems. Given that concentration inequalities are intrinsic to any kind of

learning, this constitutes a clear step towards bringing together optimization and learning

theory. Connections between optimization and learning theory will also appear throughout

this thesis.

1.2 Mathematical Framework

In this section, we sketch the common mathematical framework underlying the problems

studied in this thesis. For the purpose of describing it at a high level in a mathematically

17

precise way, we need to introduce notations that may differ from the ones used in later

chapters.

Stages are discrete and indexed by 𝑡 ∈ N. At the beginning of stage 𝑡, the environment

(resp. the decision maker) is in state 𝑒𝑡 ∈ 𝐸 (resp. 𝑠𝑡 ∈ 𝑆). The set of actions available to

the decision maker in state 𝑠 ∈ 𝑆 is denoted by 𝐴(𝑠). At stage 𝑡, the decision maker takes

an action 𝑎𝑡 ∈ 𝐴(𝑠𝑡), from which he or she derives a scalar reward 𝑟𝑡 and receives some

feedback on the outcomes of alternatives in the form of a multidimensional vector 𝑜𝑡. The

decision made at stage 𝑡 can be based upon all the information acquired in the past, namely

((𝑠𝜏 , 𝑎𝜏 , 𝑟𝜏 , 𝑜𝜏))𝜏≤𝑡−1 along with 𝑠𝑡, which we symbolically denote by ℱ𝑡. To select these

actions, the decision maker uses an algorithm 𝒜 in A, a subset of all non-anticipating al-

gorithms that, at any stage 𝑡, map ℱ𝑡 to a (possibly randomized) action in 𝐴(𝑠𝑡). Similarly,

the environment uses a decision rule 𝒟 in D, a subset of all non-anticipating decision rules

that, at any stage 𝑡, map the information available to it, namely ((𝑠𝜏 , 𝑎𝜏 , 𝑟𝜏 , 𝑜𝜏 , 𝑒𝜏))𝜏≤𝑡−1

along with 𝑠𝑡 and 𝑎𝑡, to a (possibly randomized) state 𝑒𝑡+1 ∈ 𝐸. In addition, 𝒟 determines

the initial state of the environment ahead of stage 1. The reward and feedback provided to

the decision maker at the end of stage 𝑡 are determined by prescribed (possibly stochastic)

rules outside of the environment’s control. The sequential process ends at stage 𝜏 * when

the decision maker reaches a terminal stage. In many settings, there is a deterministic time

horizon 𝑇 , in which case 𝜏 * = 𝑇 . Given a prescribed scalar function 𝜑(·), the goal for

the decision maker is to maximize the objective function 𝜑(∑︀𝜏*

𝑡=1 𝑟𝑡), which we denote by

obj(𝒜, 𝒟) to underline the fact that it is determined by a deep interplay between 𝒜 and 𝒟.

The exact expression of 𝜑(·) may be complex and involve expectations. In fact, even when

the environment is deterministic and perfectly known in advance, maximizing the objective

function can be a difficult computational problem.

Since 𝒟 is a priori unknown, maximizing obj(𝒜, 𝒟) over 𝒜 in A is an ill-defined op-

timization problem. To remove any ambiguity, a natural approach is to infer 𝒟 based

on the initial knowledge and to take it as an input. However, this approach is not ro-

bust in the sense that there are no guarantees on the performance of the optimal solution

to max𝒜∈A obj(𝒜, 𝒟) if 𝒟 happens to deviate from what was inferred, even if only so

slightly. This is particularly problematic if the decision maker expects the environment to

18

be governed by a stochastic process while it is, in fact, adversarial. A variety of robust ap-

proaches have been developed in the literature, each with its own optimization formulation

that comes with provable guarantees on the performance of the solution derived. In this

thesis, we focus on two approaches that do not require additional modeling assumptions

about the environment: the worst-case approach and the hindsight approach. This effec-

tively rules out the Bayesian optimization approach which requires some prior knowledge

on 𝒟 in the form of a distribution on D, in which case the performance guarantees are mea-

sured in terms of this prior. Ideally, the decision maker should pick an approach based on

whether it is critical to be prepared for the worst-case scenario for the particular application

at hand. However, in many cases, computational tractability and ease of analysis end up

being the main criteria.

1.2.1 Worst-Case Approach

In this approach, the decision maker protects himself or herself against the worst-case sce-

nario of facing a fully adversarial environment and solves:

max
𝒜∈A

min
𝒟∈D

obj(𝒜, 𝒟). (1.1)

Denote by 𝒜* an optimal solution to (1.1). By construction, the objective function derived

from 𝒜* is always at least no smaller than the optimal value of (1.1), irrespective of which

decision rule 𝒟 in D is used by the environment. The main drawback of this approach is

that, depending on 𝒟, the objective function may be much larger than the optimal value

of (1.1) but no better guarantees can be derived. Note that, depending on the modeling, a

worst-case analysis is not necessarily over-conservative since D may be a small set.

1.2.2 Hindsight Approach

In this approach, the goal is to adapt to the level of adversariality of the environment by

comparing, uniformly over all 𝒟 ∈ D, the objective function derived by the decision maker

with the largest one he or she could have obtained in hindsight, i.e. if 𝒟 was initially

19

known. Several comparison metrics have been proposed in the literature.

Regret metric. When the comparison is done by means of a subtraction, the metric of

interest is called regret, often mathematically defined as:

ℛ(𝒜) = max
𝒟∈D

{max
𝒜∈Ã

obj(𝒜, 𝒟) − obj(𝒜, 𝒟)}, (1.2)

for 𝒜 ∈ A and where Ã is a subclass of non-anticipating algorithms that may be different

from A. The computational problem faced by the decision maker is to find an efficient

algorithm 𝒜 that, at least approximately, minimizes ℛ(𝒜). If min𝒜∈A ℛ(𝒜) is small, the

decision maker performs almost as well as if he or she had initially been provided with 𝒟,

as shown by the inequality:

obj(𝒜, 𝒟) ≥ max
𝒜∈Ã

obj(𝒜, 𝒟) − ℛ(𝒜) (1.3)

that holds for every 𝒜 ∈ A irrespective of which decision rule 𝒟 in D is used by the envi-

ronment.

There are many alternative definitions of regret that vary slightly from (1.2). In many

frameworks, such as in online convex optimization, the benchmark max𝒜∈Ã obj(𝒜, 𝒟) dif-

fers along two lines. First, 𝒜 is not facing the same decision rule 𝒟 as 𝒜: the environment

is assumed to follow a state path identical to the one that would have been followed if the

decision maker had implemented 𝒜, as opposed to reacting to the actions dictated by 𝒜

(which would lead to a different path). Second, Ã is a subclass of all-knowing algorithms

that are initially provided with the state path followed by the environment. Thus, in stark

contrast with frameworks that use (1.2) as a definition for regret, such as stochastic multi-

armed bandit problems, the benchmark is not necessarily physically-realizable in online

convex optimization. This is a critical difference that is motivated by technical consider-

ations: the framework is completely model-free, i.e. D is the set of all non-anticipating

decision rules, and, as a result, it is usually impossible to get non-trivial bounds on (1.2).

This change in definition makes it possible to establish non-trivial regret bounds while still

encompassing many settings of interest, such as the the standard i.i.d. statistical learning

20

framework, see the discussion below. For the purpose of simplifying the presentation, we

keep the notations unchanged but they could easily be adapted to include these frameworks.

A new idea that has received considerable attention in the recent years is to derive regret

bounds that also adapt to the level of adversariality of the environment, see, for example,

[79] and [47]. In this line of work, the goal is to find an algorithm 𝒜 ∈ A as well as a

function 𝑓(·) such that:

max
𝒟∈D

{max
𝒜∈Ã

obj(𝒜, 𝒟) − obj(𝒜, 𝒟) − 𝑓(𝑒1, · · · , 𝑒𝜏*)} ≤ 0

and such that 𝑓(𝑒1, · · · , 𝑒𝜏*) is small when the environment is not fully adversarial (e.g.

slow-varying). This approach is particularly attractive when A is very large and it is im-

possible to establish non-trivial bounds on min𝒜∈A ℛ(𝐴).

Researchers also now distinguish various notions of regret based on the exact definition

of Ã, some of which turn out to be closely related, see, for example, [26]. For instance, in

the online convex optimization framework, researchers distinguish the concept of dynamic

regret, when Ã is the set of all unconstrained all-knowing algorithms, from that of (static)

external regret, when Ã is restricted to all-knowing algorithms that are constrained to select

the same action across stages. This last notion is motivated by the standard statistical learn-

ing setting: if the environment happens to be governed by an i.d.d. stochastic process then

bounds on the external regret directly translate into oracle inequalities. Since the minimal

external regret can often be shown to be identical, up to constant factors, to the optimal

statistical learning rate and since many efficient algorithms have been designed to achieve

near-optimal regret, we get optimal statistical learning rates “for free”, i.e. without ever

assuming that the environment is governed by a stochastic process.

Competitive ratio metric. When 𝜑(·) is a positive function, the comparison can done

by means of a ratio, in which case the metric of interest is called competitive ratio, often

mathematically defined as:

𝒞(𝒜) = min
𝒟∈D

obj(𝒜, 𝒟)
max𝒜∈Ã obj(𝒜, 𝒟)

, (1.4)

21

where Ã is a subclass of non-anticipating algorithms that may be different from A. Sim-

ilarly as for the regret metric, the computational problem faced by the decision maker is

then to find an efficient algorithm 𝒜 that, at least approximately, minimizes 𝒞(𝒜). The

resulting performance guarantee is:

obj(𝒜, 𝒟) ≥ 𝒞(𝒜) · max
𝒜∈Ã

obj(𝒜, 𝒟) (1.5)

and holds for every 𝒜 ∈ A irrespective of which decision rule 𝒟 in D is used by the

environment.

Just like for the regret metric, a number of variants have been proposed in the literature

where the exact definition of the competitive ratio may vary slightly from (1.4) and Ã is

typically a subset of all-knowing algorithms. Since the competitive ratio metric will not be

the metric of choice in this thesis, we refer to the literature for a more thorough introduction

to competitive analysis, see in particular [28] and [59].

Comparison of metrics. Regret and competitive ratio metrics are known to be incom-

parable and, in general, incompatible, see [10]. For this reason, the choice is often based

on technical considerations, such as whether the metric lends itself well to analysis, which

heavily depends on the framework. Competitive analysis is usually well suited for prob-

lems where, at each stage, the decision maker receives some information on the state of the

environment before selecting an action while regret metrics tend to facilitate the analysis

in Bayesian settings by linearity of expectation.

1.3 Overview of Thesis

In Chapter 2, we study a vehicle routing problem and take a worst-case approach for which

we design efficient algorithms. Chapters 3, 4, and 5 are all dedicated to the hindsight

approach. In Chapter 3, we establish a thorough characterization of the minimax achievable

regret in online convex optimization when the loss function is piecewise linear. In Chapters

4 and 5, we design efficient algorithms with provable near-optimal regret for Bandits with

Knapsacks problems, an extension of Multi-Armed Bandit problems capturing resource

22

consumption, with a particular emphasis on applications in the online advertising industry.

Each chapter is summarized in more detail in the remainder of this section.

Robust Adaptive Routing under Uncertainty. We consider the problem of finding an

optimal history-dependent routing strategy on a directed graph weighted by stochastic arc

costs when the objective is to minimize the risk of spending more than a prescribed budget.

To help mitigate the impact of the lack of information on the arc cost probability distribu-

tions, we introduce a worst-case robust counterpart where the distributions are only known

through confidence intervals on some statistics such as the mean, the mean absolute devia-

tion, and any quantile. Leveraging recent results in distributionally robust optimization, we

develop a general-purpose algorithm to compute an approximate optimal strategy. To il-

lustrate the benefits of the worst-case robust approach, we run numerical experiments with

field data from the Singapore road network.

No-Regret Learnability for Piecewise Linear Losses. In the convex optimization ap-

proach to online regret minimization, many methods have been developed to guarantee a

𝑂(
√

𝑇) bound on regret for linear loss functions. These results carry over to general convex

loss functions by a standard reduction to linear ones. This seems to suggest that linear loss

functions are the hardest ones to learn against. We investigate this question in a systematic

fashion looking at the interplay between the set of possible moves for both the decision

maker and the adversarial environment. This allows us to highlight sharp distinctive be-

haviors about the learnability of piecewise linear loss functions. On the one hand, when

the decision set of the decision maker is a polyhedron, we establish Ω(
√

𝑇) lower bounds

on regret for a large class of piecewise linear loss functions with important applications

in online linear optimization, repeated Stackelberg games, and online prediction with side

information. On the other hand, we exhibit 𝑜(
√

𝑇) learning rates, achieved by the Follow-

The-Leader algorithm, in online linear optimization when the decision maker’s decision

set is curved and when 0 does not lie in the convex hull of the environment’s decision set.

Hence, the curvature of the decision maker’s decision set is a determining factor for the

optimal rate.

23

Logarithmic Regret Bounds for Bandits with Knapsacks. Optimal regret bounds for

Multi-Armed Bandit problems are now well documented. They can be classified into

two categories based on the growth rate with respect to the time horizon 𝑇 : (i) small,

distribution-dependent, bounds of order of magnitude ln(𝑇) and (ii) robust, distribution-

free, bounds of order of magnitude
√

𝑇 . The Bandits with Knapsacks model, an exten-

sion to the framework allowing to model resource consumption, lacks this clear-cut dis-

tinction. While several algorithms have been shown to achieve asymptotically optimal

distribution-free bounds on regret, there has been little progress toward the development

of small distribution-dependent regret bounds. We partially bridge the gap by designing a

general-purpose algorithm with distribution-dependent regret bounds that are logarithmic

in the initial endowments of resources in several important cases that cover many practi-

cal applications, including dynamic pricing with limited supply, bid optimization in online

advertisement auctions, and dynamic procurement.

Real-Time Bidding with Side Information. We consider the problem of repeated bid-

ding in online advertising auctions when some side information (e.g. browser cookies) is

available ahead of submitting a bid in the form of a 𝑑-dimensional vector. The goal for

the advertiser is to maximize the total utility (e.g. the total number of clicks) derived from

displaying ads given that a limited budget 𝐵 is allocated for a given time horizon 𝑇 . Op-

timizing the bids is modeled as a linear contextual Multi-Armed Bandit (MAB) problem

with a knapsack constraint and a continuum of arms. We develop UCB-type algorithms that

combine two streams of literature: the confidence-set approach to linear contextual MABs

and the probabilistic bisection search method for stochastic root-finding. Under mild as-

sumptions on the underlying unknown distribution, we establish distribution-independent

regret bounds of order 𝑂̃(𝑑 ·
√

𝑇) when either 𝐵 = ∞ or when 𝐵 scales linearly with 𝑇 .

24

Chapter 2

Robust Adaptive Routing under

Uncertainty

2.1 Introduction

2.1.1 Motivation

Stochastic Shortest Path (SSP) problems have emerged as natural extensions to the classi-

cal shortest path problem when arc costs are uncertain and modeled as outcomes of random

variables. In particular, we consider in this chapter the class of adaptive SSPs, which can

be formulated as Markov Decision Processes (MDPs), where we optimize over all history-

dependent strategies. As standard with MDPs, optimal policies are characterized by dy-

namic programming equations involving expected values (e.g. [22]). Yet, computing the

expected value of a function of a random variable generally requires a full description of

its probability distribution, and this can be hard to obtain accurately due to errors and spar-

sity of measurements. In practice, only finite samples are available and an optimal strategy

based on approximated arc cost probability distributions may be suboptimal with respect

to the real arc cost probability distributions.

In recent years, Distributionally Robust Optimization (DRO) has emerged as a new

framework for decision-making under uncertainty when the underlying distributions are

only known through some statistics or from collections of samples. DRO was put forth in

25

an effort to capture both risk (uncertainty on the outcomes) and ambiguity (uncertainty on

the probabilities of the outcomes) when optimizing over a set of alternatives. The com-

putational complexity of this approach can vary greatly, depending on the nature of the

ambiguity sets and on the structure of the optimization problem, see [100] and [38] for

convex problems, and [31] for chance-constraint problems. Even in the absence of deci-

sion variables, the theory proves useful to derive either numerical or closed form bounds

on expected values using optimization tools, see, for example, [77], [23], and [94].

In the case of limited knowledge of the arc cost probability distributions, we propose

to bring DRO to bear on adaptive SSP problems to help mitigate the impact of the lack of

information. Our work fits into the literature on Distributionally Robust MDPs (DRMDPs)

where the transition probabilities are only known to lie in prescribed ambiguity sets (e.g.

[69], [104], and [99]). While the methods developed in the aforementioned literature carry

over, adaptive SSPs exhibit a particular structure that allows for a large variety of ambi-

guity sets and enables the development of faster solution procedures. Specifically, optimal

strategies for DRMDPs are characterized by a Bellman recursion on the worst-case ex-

pected reward-to-go. While standard approaches focus on computing this quantity for each

state independently from one another, closely related problems (e.g. estimating an expected

value E[𝑓(𝑡 − 𝑋)] where the random variable 𝑋 is fixed but 𝑡 varies across states) carry

across states for adaptive SSPs. As a result, making the most of previous computations

becomes crucial for computational tractability. This entails keeping track of the extreme

points of a dynamically changing set efficiently, revealing an interesting connection be-

tween DRMDPs and Dynamic Convex Hull problems.

2.1.2 Related Work and Contributions

Over the years, many SSP problems have been formulated. They differ along three main

features:

∙ The specific objective function to optimize: in the presence of uncertainty, minimiz-

ing the expected costs is a natural approach, see [22], but it is oblivious to risk. [62]

proposed earlier to rely on utility functions of statistical moments involving an inher-

26

ent trade-off, and considered multi-objective criteria. However, Bellman’s principle

of optimality no longer holds in this case, giving rise to computational hardness. A

different approach consists of (1) introducing a budget, set by the user, correspond-

ing to the maximum cost he is willing to pay to reach his terminal node and (2)

minimizing either the probability of budget overrun (see [41], [68], and also [105]

for probabilistic goal MDPs), more general functions of the budget overrun as in

[67], satisficing measures to guarantee good performances with respect to multiple

objectives as in [52], or the expected costs while also constraining the probability of

budget overrun as in [103].

∙ The set of strategies over which we are free to optimize: incorporating uncertainty

may cause history-dependent strategies to significantly outperform a priori paths de-

pending on the performance index. This is the case when the objective is to maximize

the probability of completion within budget for which two types of formulations have

been considered: (i) an a priori formulation which consists of finding a path before

taking any actions, see [68] and [66]; and (ii) an adaptive formulation which allows

to update the path to go based on the remaining budget, see [65] and [85].

∙ The knowledge on the random arc costs taken as an input: it can range from the full

knowledge of the probability distributions to having access to only a few samples

drawn from them. In practical settings, the problem of estimating some statistics

seems more reasonable than retrieving the full probability distribution. For instance,

[52] consider lower-order statistics (minimum, average, and maximum costs) and

use closed form bounds derived in the DRO theory. These considerations were ex-

tensively investigated in the context of DRMDPs, see [51] and [99] for theoretical

developments. The ambiguity sets are parametric in [99], where the parameter lies

in the intersection of ellipsoids, are based on likelihood measures in [69], and are

defined by linear inequalities in [98].

We give an overview of prior formulations in Table 2.1.

27

Table 2.1: Literature review of stochastic shortest path problems.

Author(s) Objective function Strategy Uncertainty description Approach

[62] utility function a priori moments
dominated

paths

[68]
probability of

budget overrun
a priori normal distributions

convex

optimization

[65]

[85]

probability of

budget overrun
adaptive distributions

dynamic

programming

[69] expected cost adaptive
maximum-likelihood

ambiguity sets

dynamic

programming

[52]

[4]

requirements

violation
a priori

distributions or

moments

iterative

procedure

[74]
monotone

risk measure
a priori distributions

labeling

algorithm

Our work

risk function

of the budget

overrun

adaptive

distributions or

confidence intervals

on statistics

dynamic

programming

28

Contributions. The main contributions of this chapter can be summarized as follows:

1. We extend the class of adaptive SSP problems to general risk functions of the budget

overrun and to the presence of distributional ambiguity.

2. We characterize optimal strategies and identify conditions on the risk function under

which infinite cycling is provably suboptimal.

3. For any risk function satisfying these conditions, we provide efficient solution proce-

dures (invoking fast Fourier transforms and dynamic convex hull algorithms as sub-

routines) to compute 𝜖-approximate optimal strategies when the arc cost distributions

are either exactly known or only known through confidence intervals on piecewise

affine statistics (e.g. the mean, the mean absolute deviation, any quantile...) for any

𝜖 > 0.

Special cases where (i) the objective is to minimize the probability of budget overrun and

(ii) the arc costs are independent discrete random variables can serve as a basis for com-

parison with prior work on DRMDPs. For this subclass of problems, our formulation can

be interpreted as a DRMDP with finite horizon 𝑁 , finitely many states 𝑛 (resp. actions 𝑚),

and a rectangular ambiguity set. Our methodology can be used to compute an 𝜖-optimal

strategy with complexity 𝑂(𝑚 · 𝑛 · log(𝑁
𝜖
) · log(𝑛)).

The remainder of the chapter is organized as follows. In Section 2.2, we introduce the

adaptive SSP problem and its distributionally robust counterpart. Section 2.3 (resp. Section

2.4) is devoted to the theoretical and computational analysis of the nominal (resp. robust)

problem. In Section 2.5, we consider a vehicle routing application and present results of

numerical experiments run with field data from the Singapore road network. In Section 2.6,

we relax some of the assumptions made in Section 2.2 and extend the results presented in

Sections 2.3 and 2.4.

Notations. For a function 𝑔(·) and a random variable 𝑋 distributed according to 𝑝, we

denote the expected value of 𝑔(𝑋) by E𝑋∼𝑝[𝑔(𝑋)]. For a set 𝑆 ⊂ R𝑛, 𝑆 is the closure of 𝑆

for the standard topology, conv(𝑆) is the convex hull of 𝑆, and |𝑆| is the cardinality of 𝑆.

29

For a set 𝑆 ⊂ R2, 𝑆 denotes the upper convex hull of 𝑆, i.e. 𝑆 = {(𝑥, 𝑦) ∈ R2 : ∃(𝑎, 𝑏) ∈

conv(𝑆) such that 𝑥 = 𝑎 and 𝑦 ≥ 𝑏}.

2.2 Problem Formulation

2.2.1 Nominal Problem

Let 𝒢 = (𝒱 , 𝒜) be a finite directed graph where each arc (𝑖, 𝑗) ∈ 𝒜 is assigned a collection

of non-negative random costs (𝑐𝜏
𝑖𝑗)𝜏≥0. We consider a user traveling through 𝒢 leaving from

𝑠 and wishing to reach 𝑑 within a prescribed budget 𝑇 . Having already spent a budget 𝜏

and being at node 𝑖, choosing to cross arc (𝑖, 𝑗) would incur an additional cost 𝑐𝜏
𝑖𝑗 , whose

value becomes known after the arc is crossed. In vehicle routing applications, 𝑐𝜏
𝑖𝑗 typically

models the travel time along arc (𝑖, 𝑗) at time 𝜏 and 𝑇 is the deadline imposed at the

destination. The objective is to find a strategy to reach 𝑑 maximizing a risk function of the

budget overrun, denoted by 𝑓(·). Mathematically, this corresponds to solving:

sup
𝜋∈Π

E[𝑓(𝑇 − 𝑋𝜋)], (2.1)

where Π is the set of all history-dependent randomized strategies and 𝑋𝜋 is the random

cost associated with strategy 𝜋 when leaving from node 𝑠 with budget 𝑇 . Examples of

natural risk functions include 𝑓(𝑡) = 𝑡 · 1𝑡≤0, 𝑓(𝑡) = 1𝑡≥0, and 𝑓(𝑡) = −|𝑡| which translate

into, respectively, minimizing the expected budget overrun, maximizing the probability

of completion within budget, and penalizing the expected deviation from the target budget.

We will restrict our attention to risk functions satisfying natural properties meant to prevent

infinite cycling in Theorem 2.1 of Section 2.3.1, e.g. maximizing the expected budget

overrun is not allowed. Without any additional assumption on the random costs, (2.1) is

computationally intractable. To simplify the problem, a common approach in the literature

is to assume independence of the arc costs, see for example [40].

Assumption 2.1. (𝑐𝜏
𝑖𝑗)(𝑖,𝑗)∈𝒜,𝜏≥0 are independent random variables.

In practice, the costs of neighboring arcs can be highly correlated for some applications

30

and Assumption 2.1 may then appear unreasonable. Most of the results derived in this

chapter can be extended when the experienced costs are modeled as a Markov chain of

finite order. To simplify the presentation, Assumption 2.1 is used throughout the chapter

and this extension is discussed in Section 2.6.1. For the same reason, the arc costs are also

assumed to be identically distributed across 𝜏 .

Assumption 2.2. For all arcs (𝑖, 𝑗) ∈ 𝒜, the distribution of 𝑐𝜏
𝑖𝑗 does not depend on 𝜏 .

The extension to 𝜏 -dependent arc cost distributions is detailed in Section 2.6.2. For clarity

of the exposition, we omit the superscript 𝜏 when it is unnecessary and simply denote

the costs by (𝑐𝑖𝑗)(𝑖,𝑗)∈𝒜, even though the cost of an arc corresponds to an independent

realization of its corresponding random variable each time it is crossed. Motivated by

computational and theoretical considerations that will become apparent in Section 2.3.2.b,

we further assume that the arc cost distributions have compact supports throughout the

chapter. This assumption is crucial for the analysis carried out in this chapter but is also

perfectly reasonable in many practical settings, such as in transportation networks.

Assumption 2.3. For all arcs (𝑖, 𝑗) ∈ 𝒜, the distribution of 𝑐𝑖𝑗 , denoted by 𝑝ij, has compact

support included in [𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗] with 𝛿inf
𝑖𝑗 > 0 and 𝛿sup

𝑖𝑗 < ∞. Thus 𝛿inf = min
(𝑖,𝑗)∈𝒜

𝛿inf
𝑖𝑗 > 0 and

𝛿sup = max
(𝑖,𝑗)∈𝒜

𝛿sup
𝑖𝑗 < ∞.

2.2.2 Distributionally Robust Problem

A major limitation of the approach described above is that it requires a full description of

the uncertainty, i.e. having access to the arc cost probability distributions. Yet, in practice,

we often only have access to a limited number of realizations of the random variables 𝑐𝑖𝑗 .

It is then tempting to estimate empirical arc cost distributions and to take them as input

to problem (2.1). However, estimating accurately a distribution usually requires a large

sample size, and our experimental evidence suggests that, as a result, the corresponding

solutions may perform poorly when only a few samples are available, as we will see in

Section 2.5. To address this limitation, we adopt a distributionally robust approach where,

for each arc (𝑖, 𝑗) ∈ 𝒜, 𝑝𝑖𝑗 is only assumed to lie in an ambiguity set 𝒫𝑖𝑗 . We make the

following assumption on these ambiguity sets throughout the chapter.

31

Assumption 2.4. For all arcs (𝑖, 𝑗) ∈ 𝒜, 𝒫𝑖𝑗 is not empty, closed for the weak topology,

and a subset of 𝒫([𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗]), the set of probability measures on [𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗].

Assumption 2.4 is a natural extension of Assumption 2.3, and is essential for computational

tractability, see Section 2.4. The robust counterpart of (2.1) for an ambiguity-averse user is

then given by:

sup
𝜋∈Π

inf
∀(𝑖,𝑗)∈𝒜, 𝑝𝑖𝑗∈𝒫𝑖𝑗

Ep[𝑓(𝑇 − 𝑋𝜋)], (2.2)

where the notation p refers to the fact that the costs (𝑐𝑖𝑗)(𝑖,𝑗)∈𝒜 are independent and dis-

tributed according to (𝑝𝑖𝑗)(𝑖,𝑗)∈𝒜. As a byproduct of the results obtained for the nominal

problem in Section 2.3.1, (2.2) can be equivalently viewed as a distributionally robust MDP

in the extended space state (𝑖, 𝜏) ∈ 𝒱 ×R+ where 𝑖 is the current location and 𝜏 is the total

cost spent so far and where the transition probabilities from any state (𝑖, 𝜏) to any state

(𝑗, 𝜏 ′), for 𝑗 ∈ 𝒱(𝑖) and 𝜏 ′ ≥ 𝜏 , are only known to jointly lie in a global ambiguity set. As

shown in [99], the tractability of a distributionally robust MDP hinges on the decompos-

ability of the global ambiguity set as a Cartesian product over the space state of individual

ambiguity sets, a property coined as rectangularity. While the global ambiguity set of (2.2)

is rectangular with respect to our original state space 𝒱 , it is not with respect to the extended

space space 𝒱 × R+. Thus, we are led to enlarge our ambiguity set to make it rectangular

and consider a conservative approximation of (2.2). This boils down to allowing the arc

cost distributions to vary in their respective ambiguity sets as a function of 𝜏 . This approach

leads to the following formulation:

sup
𝜋∈Π

inf
∀𝜏,∀(𝑖,𝑗)∈𝒜, 𝑝𝜏

𝑖𝑗∈𝒫𝑖𝑗

Ep𝜏 [𝑓(𝑇 − 𝑋𝜋)], (2.3)

where the notation p𝜏 refers to the fact that, for any arc (𝑖, 𝑗) ∈ 𝒜, the costs (𝑐𝜏
𝑖𝑗)𝜏≥0

are independent and distributed according to (𝑝𝜏
𝑖𝑗)𝜏≥0. Note that when Assumption 2.2 is

relaxed, we have a different ambiguity set 𝒫𝜏
𝑖𝑗 for each pair ((𝑖, 𝑗), 𝜏) ∈ 𝒜 × R+ and (2.3)

is precisely the robust counterpart of (2.1) as opposed to a conservative approximation,

see Section 2.6.2. Also observe that (2.3) reduces to (2.1) when the ambiguity sets are

singletons, i.e. 𝒫𝑖𝑗 = {𝑝𝑖𝑗}. In the sequel, we focus on (2.3), which we refer to as the robust

problem. However, we will also investigate the performance of an optimal solution to (2.3)

32

with respect to the optimization problem (2.2) from a theoretical (resp. practical) standpoint

in Section 2.4.2 (resp. Section 2.5). Finally note that we consider general ambiguity sets

satisfying Assumption 2.4 when we study the theoretical properties of (2.3). However, for

tractability purposes, the solution procedure that we develop in Section 2.4.3.c only applies

to ambiguity sets defined by confidence intervals on piecewise affine statistics, such as

the mean, the absolute mean deviation, or any quantile. We refer to Section 2.4.3.b for a

discussion on the modeling power of these ambiguity sets. Similarly as for the nominal

problem, we will also restrict our attention to risk functions satisfying natural properties

meant to prevent infinite cycling in Theorem 2.2 of Section 2.4.1.

2.3 Theoretical and Computational Analysis of the Nomi-

nal Problem

2.3.1 Characterization of Optimal Policies

Perhaps the most important property of (2.1) is that Bellman’s Principle of Optimality can

be shown to hold irrespective of the choice of the risk function. Specifically, for any history

of the previously experienced costs and previously visited nodes, an optimal strategy to

(2.1) must also be an optimal strategy to the subproblem of minimizing the risk function

given this history. Otherwise, we could modify this strategy for this particular history and

take it to be an optimal strategy for this subproblem. This operation could only increase the

objective function of the optimization problem (2.1), which would contradict the optimality

of the strategy.

Another, less obvious, interesting feature of (2.1) is that, even for perfectly natural risk

functions 𝑓(·), making decisions according to an optimal strategy may lead to cycle back

to a previously visited location. This may happen, for instance, when the objective is to

maximize the probability of completion within budget, see [85], and their example can

be adapted when the objective is to minimize the expected budget overrun, see Figure 2-

1. While counter-intuitive at first, the existence of loops is a direct consequence of the

stochasticity of the costs when the decision maker is concerned about the risk of going

33

s

d

a

Figure 2-1: Existence of loops. If the initial budget is 𝑇 = 8 and the risk function is
𝑓(𝑡) = 𝑡 · 1𝑡≤0, the optimal strategy to travel from 𝑠 to 𝑑 is to go to 𝑎 first. This is because
going to 𝑑 directly incurs an expected delay of 0.1, while going to 𝑎 first and then planning
to go to 𝑑 incurs an expected delay of 0.01. If we end up getting a cost 𝑐𝑠𝑎 = 5 on the way
to 𝑎, then, performing a similar analysis, the optimal strategy is to go back to 𝑠.

over budget, as illustrated in Figure 2-1. On the other hand, the existence of infinitely

many loops is particularly troublesome from a modeling perspective as it would imply that

a user traveling through 𝒱 following the optimal strategy may get at a location 𝑖 ̸= 𝑑

having already spent an arbitrarily large budget with positive probability. Furthermore,

infinite cycling is also problematic from a computational standpoint because describing an

optimal strategy would require unlimited storage capacity. We argue that infinite cycling

arises only when the risk function is poorly chosen. This is obvious when 𝑓(𝑡) = −𝑡 · 1𝑡≤0,

which corresponds to maximizing the expected budget overrun, but we stress that it is not

merely a matter of monotonicity. Infinite cycling may occur even if 𝑓(·) is increasing as

we highlight in Example 2.1.

Example 2.1. Consider the simple directed graph of Figure 2-2a and the risk function 𝑓(·)

illustrated in Figure 2-2b. 𝑓(·) is defined piecewise, alternating between concavity and

convexity on intervals of size 𝑇 * and the same pattern is repeated every 2𝑇 *. This means

that, for this particular objective, the attitude towards risk keeps fluctuating as the budget

decreases, from being risk-averse when 𝑓(·) is locally concave to being risk-seeking when

𝑓(·) is locally convex. Now take 𝛿inf << 1, 𝜖 << 1 and 𝑇 * > 3 and consider finding a

strategy to get to 𝑑 starting from 𝑠 with initial budget 𝑇 which we choose to take at a point

where 𝑓(·) switches from being concave to being convex, see Figure 2-2b. Going straight

to 𝑑 incurs an expected objective value of 𝑓(𝑇 − 2) < 1
2𝑓(𝑇 − 1) + 1

2𝑓(𝑇 − 3) and we

34

s

d

a

(a) Graph, 𝑠 and 𝑑 are respectively the
source and the destination.

(b) risk function. 𝑇 is the initial budget,
2𝑇 * is the period of 𝑓 ′(·).

Figure 2-2: Existence of infinite cycling from Example 2.1.

can make this gap arbitrarily large by properly defining 𝑓(·). Therefore, by taking 𝜖 and

𝛿inf small enough, going to 𝑎 first is optimal. With probability 𝜖 > 0, we arrive at 𝑎 with

a remaining budget of 𝑇 − 𝑇 *. Afterwards, the situation is reversed as we are willing to

take as little risk as possible and the corresponding optimal solution is to go back to 𝑠.

With probability 𝜖, we arrive at 𝑠 with a budget of 𝑇 − 2𝑇 * and we are back in the initial

situation, showing the existence of infinite cycling.

In light of Example 2.1, we identify a set of sufficient conditions on 𝑓(·) ruling out the

possibility of infinite cycling.

Theorem 2.1. Case 1: If there exists 𝑇1 such that either:

(a) 𝑓(·) is increasing, concave, and 𝐶2 on (−∞, 𝑇1) and such that 𝑓 ′′

𝑓 ′ →−∞ 0,

(b) 𝑓(·) is 𝐶1 on (−∞, 𝑇1) and lim−∞ 𝑓 ′ exists, is positive, and is finite,

then there exists 𝑇𝑓 such that, for any 𝑇 ≥ 0 and as soon as the total cost spent so far is

larger than 𝑇 − 𝑇𝑓 , any optimal policy to (2.1) follows the shortest-path tree rooted at 𝑑

with respect to the mean arc costs, which we denote by 𝒯 .

Case 2: If there exists 𝑇𝑓 such that the support of 𝑓(·) is included in [𝑇𝑓 , ∞), then following

𝒯 is optimal as soon as the total cost spent so far is larger than 𝑇 − 𝑇𝑓 .

For a node 𝑖, 𝒯 (𝑖) refers to the set of immediate successors of 𝑖 in 𝒯 . The proof is deferred

to the Appendix.

35

Observe that, in addition to not being concave, the choice of 𝑓(·) in Example 2.1 does

not satisfy property (b) as 𝑓 ′(·) is 2𝑇 *-periodic. An immediate consequence of Theorem

2.1 is that an optimal strategy to (2.1) does not include any loop as soon as the total cost

spent so far is larger than 𝑇 − 𝑇𝑓 . Since each arc has a positive minimum cost, this rules

out infinite cycling. The parameter 𝑇𝑓 can be computed through direct reasoning on the

risk function 𝑓(·) or by inspecting the proof of Theorem 2.1. Remark that any polynomial

of even degree with a negative leading coefficient satisfies condition (a) of Theorem 2.1.

Examples of valid objectives include maximization of the probability of completion within

budget 𝑓(𝑡) = 1𝑡≥0 with 𝑇𝑓 = 0, minimization of the budget overrun 𝑓(𝑡) = 𝑡 · 1𝑡≤0 with

𝑇𝑓 = 0, and minimization of the squared budget overrun 𝑓(𝑡) = −𝑡2 · 1𝑡≤0 with

𝑇𝑓 = −
|𝒱| · 𝛿sup · max

𝑖∈𝒱
𝑀𝑖

2 · min
𝑖 ̸=𝑑

min
𝑗∈𝒱(𝑖),𝑗 /∈𝒯 (𝑖)

{E[𝑐𝑖𝑗] + 𝑀𝑗 − 𝑀𝑖}
,

where 𝑀𝑖 is the minimum expected cost to go from 𝑖 to 𝑑 and with the convention that

the minimum of an empty set is equal to ∞. When 𝑓(·) is increasing but does not satisfy

condition (a) or (b), the optimal strategy may follow a different shortest-path tree. For

instance, if 𝑓(𝑡) = − exp(−𝑡), the optimal policy is to follow the shortest path to 𝑑 with

respect to (log(E[exp(𝑐𝑖𝑗)]))(𝑖,𝑗)∈𝒜. Conversely, if 𝑓(𝑡) = exp(𝑡), the optimal policy is

to follow the shortest path to 𝑑 with respect to (− log(E[exp(−𝑐𝑖𝑗)]))(𝑖,𝑗)∈𝒜. For these

reasons, proving that an optimal strategy to (2.1) does not include infinitely many loops

when 𝑓(·) does not satisfy the assumptions of Theorem 2.1 requires objective-specific (and

possibly graph-specific) arguments. To illustrate this last point, observe that the conclusion

of Theorem 2.1 always holds for a graph consisting of a single simple path regardless of the

definition of 𝑓(·), even if this function is decreasing. Hence, the assumptions of Theorem

2.1 are not necessary in general to prevent infinite cycling but restricting our attention to

this class of risk functions enables us to study the problem in a generic fashion and to

develop a general-purpose algorithm in Section 2.3.2.

Another remarkable property of (2.1) is that it can be equivalently formulated as a MDP

in the extended space state (𝑖, 𝑡) ∈ 𝒱 × (−∞, 𝑇] where 𝑖 is the current location and 𝑡 is the

remaining budget. As a result, standard techniques for MDPs can be applied to show that

36

there exists an optimal Markov policy 𝜋*
𝑓 which is a mapping from the current location and

the remaining budget to the next node to visit. Furthermore, the optimal Markov policies

are characterized by the dynamic programming equation:

𝑢𝑑(𝑡) = 𝑓(𝑡) 𝑡 ≤ 𝑇

𝑢𝑖(𝑡) = max
𝑗∈𝒱(𝑖)

∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · 𝑢𝑗(𝑡 − 𝜔)d𝜔 𝑖 ̸= 𝑑, 𝑡 ≤ 𝑇

𝜋*
𝑓 (𝑖, 𝑡) ∈ argmax

𝑗∈𝒱(𝑖)

∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · 𝑢𝑗(𝑡 − 𝜔)d𝜔 𝑖 ̸= 𝑑, 𝑡 ≤ 𝑇,

(2.4)

where 𝒱(𝑖) = {𝑗 ∈ 𝒱 | (𝑖, 𝑗) ∈ 𝒜} refers to the set of immediate successors of 𝑖 in 𝒢

and 𝑢𝑖(𝑡) is the expected objective-to-go when leaving 𝑖 ∈ 𝒱 with remaining budget 𝑡. The

interpretation of (2.4) is simple. At each node 𝑖 ∈ 𝒱 , and for each potential remaining

budget 𝑡, the decision maker should pick the outgoing edge (𝑖, 𝑗) that yields the maximum

expected objective-to-go if acting optimally thereafter.

Proposition 2.1. Under the same assumptions as in Theorem 2.1, any Markov policy solu-

tion to (2.4) is an optimal strategy for (2.1).

The proof is deferred to the Appendix.

2.3.2 Solution Methodology

In order to solve (2.1), we use Proposition 2.1 and compute a Markov policy solution to the

dynamic program (2.4). We face two main challenges when we carry out this task. First,

(2.4) is a continuous dynamic program. To solve this program numerically, we approximate

the functions (𝑢𝑖(·))𝑖∈𝒱 by piecewise constant functions, as detailed in Section 2.3.2.a.

Second, as illustrated in Figure 2-1 of Section 2.3.1, an optimal Markov strategy solution

to (2.4) may contain loops. Hence, in the presence of a cycle in 𝒢, say 𝑖 → 𝑗 → 𝑖, observe

that computing 𝑢𝑖(𝑡) requires to know the value of 𝑢𝑗(𝑡) which in turns depends on 𝑢𝑖(𝑡).

As a result, it is a-priori unclear how to solve (2.4) without resorting to value or policy

iteration. We explain how to sidestep this difficulty and construct efficient label-setting

algorithms in Section 2.3.2.b. In particular, using these algorithms, we can compute:

37

∙ an optimal solution to (2.1) in 𝑂(|𝒜| · 𝑇 −𝑇𝑓

Δ𝑡
· log2(𝛿sup

Δ𝑡
) + |𝒱|2 · 𝛿sup

Δ𝑡
· log(|𝒱| · 𝛿sup

Δ𝑡
))

computation time when the arc costs only take on values that are multiple of Δ𝑡 > 0

and for any risk function 𝑓(·) satisfying Theorem 2.1. This simplifies to 𝑂(|𝒜| · 𝑇
Δ𝑡

·

log2(𝛿sup

Δ𝑡
)) when the objective is to maximize the probability of completion within

budget.

∙ an 𝜖-approximate solution to (2.1) in

𝑂(
(|𝒱| + 𝑇 −𝑇𝑓

𝛿inf)2

𝜖
· |𝒜| · (𝑇 − 𝑇𝑓) · log2(

(|𝒱| + 𝑇 −𝑇𝑓

𝛿inf) · 𝛿sup

𝜖
))

+ 𝑂(
(|𝒱| + 𝑇 −𝑇𝑓

𝛿inf)2

𝜖
· |𝒱|2 · 𝛿sup · log(

(|𝒱| + 𝑇 −𝑇𝑓

𝛿inf) · |𝒱| · 𝛿sup

𝜖
))

computation time when the risk function is Lipschitz on compact sets.

As we explain in Section 2.3.2.b, computing the convolution products arising in (2.4) effi-

ciently (e.g. through fast Fourier transforms) is crucial to get this near-linear dependence

on 1
Δ𝑡

(or equivalently 1
𝜖
). A brute-force approach consisting in applying the pointwise

definition of convolution products incurs a quadratic dependence.

2.3.2.a Discretization Scheme

For each node 𝑖 ∈ 𝒱 , we approximate 𝑢𝑖(·) by a piecewise constant function 𝑢Δ𝑡
𝑖 (·) of

uniform stepsize Δ𝑡. Under the conditions of Theorem 2.1, we only need to approximate

𝑢𝑖(·) for a remaining budget larger than 𝑘min
𝑖 · Δ𝑡, for 𝑘min

𝑖 =
⌊︁

𝑇𝑓 −(|𝒱|−level(𝑖,𝒯)+1)·𝛿sup

Δ𝑡

⌋︁
,

where level(𝑖, 𝒯) is defined as the level of node 𝑖 in the rooted tree 𝒯 , i.e. the number of

parent nodes of 𝑖 in 𝒯 plus one. This is because, following the shortest path tree 𝒯 once

the remaining budget drops below 𝑇𝑓 , we can never get to state 𝑖 with remaining budget

less than 𝑘min
𝑖 · Δ𝑡. We use the approximation:

𝑢Δ𝑡
𝑖 (𝑡) = 𝑢Δ𝑡

𝑖 (
⌊︂

𝑡

Δ𝑡

⌋︂
· Δ𝑡) 𝑖 ∈ 𝒱 , 𝑡 ∈ [𝑘min

𝑖 · Δ𝑡, 𝑇]

𝜋Δ𝑡(𝑖, 𝑡) = 𝜋Δ𝑡(𝑖,
⌊︂

𝑡

Δ𝑡

⌋︂
· Δ𝑡) 𝑖 ̸= 𝑑, 𝑡 ∈ [𝑘min

𝑖 · Δ𝑡, 𝑇],
(2.5)

38

and the values at the mesh points are determined by the set of equalities:

𝑢Δ𝑡
𝑑 (𝑘 · Δ𝑡) = 𝑓(𝑘 · Δ𝑡) 𝑘 = 𝑘min

𝑑 , ...,
⌊︂

𝑇

Δ𝑡

⌋︂
𝑢Δ𝑡

𝑖 (𝑘 · Δ𝑡) = max
𝑗∈𝒱(𝑖)

∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · 𝑢Δ𝑡

𝑗 (𝑘 · Δ𝑡 − 𝜔)d𝜔 𝑖 ̸= 𝑑, 𝑘 =
⌊︂

𝑇𝑓

Δ𝑡

⌋︂
, ...,

⌊︂
𝑇

Δ𝑡

⌋︂
𝜋Δ𝑡(𝑖, 𝑘 · Δ𝑡) ∈ argmax

𝑗∈𝒱(𝑖)

∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · 𝑢Δ𝑡

𝑗 (𝑘 · Δ𝑡 − 𝜔)d𝜔 𝑖 ̸= 𝑑, 𝑘 =
⌊︂

𝑇𝑓

Δ𝑡

⌋︂
, ...,

⌊︂
𝑇

Δ𝑡

⌋︂

𝑢Δ𝑡
𝑖 (𝑘 · Δ𝑡) = max

𝑗∈𝒯 (𝑖)

∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · 𝑢Δ𝑡

𝑗 (𝑘 · Δ𝑡 − 𝜔)d𝜔 𝑖 ̸= 𝑑, 𝑘 = 𝑘min
𝑖 , ...,

⌊︂
𝑇𝑓

Δ𝑡

⌋︂
− 1

𝜋Δ𝑡(𝑖, 𝑘 · Δ𝑡) ∈ argmax
𝑗∈𝒯 (𝑖)

∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · 𝑢Δ𝑡

𝑗 (𝑘 · Δ𝑡 − 𝜔)d𝜔 𝑖 ̸= 𝑑, 𝑘 = 𝑘min
𝑖 , ...,

⌊︂
𝑇𝑓

Δ𝑡

⌋︂
− 1.

(2.6)

Notice that for 𝑡 ≤ 𝑇𝑓 , we rely on Theorem 2.1 and only consider, for each node 𝑖 ̸= 𝑑,

the immediate neighbors of 𝑖 in 𝒯 . This is of critical importance to be able to solve (2.6)

with a label-setting algorithm, see Section 2.3.2.b. The next result provides insight into the

quality of the policy 𝜋Δ𝑡 as an approximate solution to (2.1).

Proposition 2.2. Consider a solution to the global discretization scheme (2.5) and (2.6),

(𝜋Δ𝑡, (𝑢Δ𝑡
𝑖 (·))𝑖∈𝒱). We have:

1. If 𝑓(·) is non-decreasing, the functions (𝑢Δ𝑡
𝑖 (·))𝑖∈𝒱 converge pointwise almost every-

where to (𝑢𝑖(·))𝑖∈𝒱 as Δ𝑡 → 0,

2. If 𝑓(·) is continuous, the functions (𝑢Δ𝑡
𝑖 (·))𝑖∈𝒱 converge uniformly to (𝑢𝑖(·))𝑖∈𝒱 and

𝜋Δ𝑡 is a 𝑜(1)-approximate optimal solution to (2.1) as Δ𝑡 → 0,

3. If 𝑓(·) is Lipschitz on compact sets (e.g. if 𝑓(·) is 𝐶1), the functions (𝑢Δ𝑡
𝑖 (·))𝑖∈𝒱 con-

verge uniformly to (𝑢𝑖(·))𝑖∈𝒱 at speed Δ𝑡 and 𝜋Δ𝑡 is a 𝑂(Δ𝑡)-approximate optimal

solution to (2.1) as Δ𝑡 → 0,

4. If 𝑓(𝑡) = 1𝑡≥0 and the distributions (𝑝𝑖𝑗)(𝑖,𝑗)∈𝒜 are continuous, the functions (𝑢Δ𝑡
𝑖 (·))𝑖∈𝒱

converge uniformly to (𝑢𝑖(·))𝑖∈𝒱 and 𝜋Δ𝑡 is a 𝑜(1)-approximate optimal solution to

(2.1) as Δ𝑡 → 0.

The proof is deferred to the Appendix.

If the distributions (𝑝𝑖𝑗)(𝑖,𝑗)∈𝒜 are discrete and 𝑓(·) is piecewise constant, an exact opti-

mal solution to (2.1) can be computed by appropriately choosing a different discretization

39

length for each node. In this chapter, we focus on discretization schemes with a uniform

stepsize Δ𝑡 for mathematical convenience. We stress that choosing adaptively the dis-

cretization length can improve the quality of the approximation for the same number of

computations, see [50].

2.3.2.b Solution Procedures

The key observation enabling the development of label-setting algorithms to solve (2.4) is

made in [85]. They note that, when the risk function is the probability of completion within

budget, 𝑢𝑖(𝑡) can be computed for 𝑖 ∈ 𝒱 and 𝑡 ≤ 𝑇 as soon as the values taken by 𝑢𝑗(·) on

(−∞, 𝑡−𝛿inf] are available for all neighboring nodes 𝑗 ∈ 𝒱(𝑖) since 𝑝𝑖𝑗(𝜔) = 0 for 𝜔 ≤ 𝛿inf

under Assumption 2.3. They propose a label-setting algorithm which consists in computing

the functions (𝑢𝑖(·))𝑖∈𝒱 block by block, by interval increments of size 𝛿inf . After the fol-

lowing straightforward initialization step: 𝑢𝑖(𝑡) = 0 for 𝑡 ≤ 0 and 𝑖 ∈ 𝒱 , they first compute

(𝑢𝑖(·)[0,𝛿inf])𝑖∈𝒱 , then (𝑢𝑖(·)[0,2·𝛿inf])𝑖∈𝒱 and so on to eventually derive (𝑢𝑖(·)[0,𝑇])𝑖∈𝒱 . While

this incremental procedure can still be applied for general risk functions, the initialization

step gets tricky if 𝑓(·) does not have a one-sided compact support of the type [𝑎, ∞). Theo-

rem 2.1 is crucial in this respect because the shortest-path tree 𝒯 induces an ordering of the

nodes to initialize the collection of functions (𝑢𝑖(·))𝑖∈𝒱 for remaining budgets smaller than

𝑇𝑓 . The functions can subsequently be computed for larger budgets using the incremental

procedure outlined above. To be specific, we solve (2.6) in three steps. First, we compute

𝑇𝑓 (defined in Theorem 2.1). Inspecting the proof of Theorem 2.1, observe that 𝑇𝑓 only

depends on few parameters, namely the risk function 𝑓(·), the expected arc costs, and the

maximum arc costs. Next, we compute the values 𝑢Δ𝑡
𝑖 (𝑘 ·Δ𝑡) for 𝑘 ∈ {𝑘min

𝑖 , · · · ,
⌊︁

𝑇𝑓

Δ𝑡

⌋︁
−1}

starting at node 𝑖 = 𝑑 and traversing the tree 𝒯 in a breadth-first fashion using fast Fourier

transforms with complexity 𝑂(|𝒱|2 · 𝛿sup

Δ𝑡
· log(|𝒱| · 𝛿sup

Δ𝑡
)). Note that this step can be made

to run significantly faster for specific risk functions, e.g. for the probability of completion

within budget where 𝑢Δ𝑡
𝑖 (𝑘 · Δ𝑡) = 0 for 𝑘 <

⌊︁
𝑇𝑓

Δ𝑡

⌋︁
and any 𝑖 ∈ 𝒱 . Finally, we compute the

values 𝑢Δ𝑡
𝑖 (𝑘 · Δ𝑡) for 𝑘 ∈ {

⌊︁
𝑇𝑓

Δ𝑡

⌋︁
+ 𝑚 ·

⌊︁
𝛿inf

Δ𝑡

⌋︁
, · · · ,

⌊︁
𝑇𝑓

Δ𝑡

⌋︁
+ (𝑚 + 1) ·

⌊︁
𝛿inf

Δ𝑡

⌋︁
} for all nodes

𝑖 ∈ 𝒱 by induction on 𝑚.

40

Complexity analysis. The description of the last step of the label-setting approach leaves

out one detail that has a dramatic impact on the runtime complexity. We need to specify

how to compute the convolution products arising in (2.6) for 𝑘 ≥
⌊︁

𝑇𝑓

Δ𝑡

⌋︁
, keeping in mind

that, for any node 𝑖 ∈ 𝒱 , the values 𝑢Δ𝑡
𝑖 (𝑘 ·Δ𝑡) for 𝑘 ∈ {

⌊︁
𝑇𝑓

Δ𝑡

⌋︁
, · · · ,

⌊︁
𝑇
Δ𝑡

⌋︁
} become available

online by chunks of length
⌊︁

𝛿inf

Δ𝑡

⌋︁
as the label-setting algorithm progresses. A naive imple-

mentation consisting in applying the pointwise definition of convolution products has a

runtime complexity 𝑂(|𝒜| · (𝑇 −𝑇𝑓)·(𝛿sup−𝛿inf)
(Δ𝑡)2). Using fast Fourier transforms for each chunk

brings down the complexity to 𝑂(|𝒜| · (𝑇 −𝑇𝑓)
Δ𝑡

· 𝛿sup

𝛿inf · log(𝛿sup

Δ𝑡
)). Applying another online

scheme developed in [37] and [84], based on the idea of zero-delay convolution, leads to

a worst-case complexity 𝑂(|𝒜| · (𝑇 −𝑇𝑓)
Δ𝑡

· log2(𝛿sup

Δ𝑡
)). Numerical evidence suggest that this

last implementation significantly speeds up the computations, see [84].

2.4 Theoretical and Computational Analysis of the Ro-

bust Problem

2.4.1 Characterization of Optimal Policies

The properties satisfied by optimal solutions to the nominal problem naturally extend to

their robust counterparts, which we recall are defined as optimal solutions to (2.3). In

fact, all the results derived in this section are strict generalizations of those obtained in

Section 2.3.1 for singleton ambiguity sets. We point out that the rectangularity of the global

ambiguity set is essential for the results to carry over to the robust setting as it guarantees

that Bellman’s Principle of Optimality continue to hold, which is an absolute prerequisite

for computational tractability.

Similarly as what we have seen for the nominal problem, infinite cycling might occur

in the robust setting, depending on the risk function at hand. This difficulty can be shown

not to arise under the same conditions on 𝑓(·) as for the nominal problem.

Theorem 2.2. Case 1: If there exists 𝑇1 such that either:

(a) 𝑓(·) is increasing, concave, and 𝐶2 on (−∞, 𝑇1) and such that 𝑓 ′′

𝑓 ′ →−∞ 0,

41

(b) 𝑓(·) is 𝐶1 on (−∞, 𝑇1) and lim−∞ 𝑓 ′ exists, is positive, and is finite,

then there exists 𝑇 𝑟
𝑓 such that, for any 𝑇 ≥ 0 and as soon as the total cost spent so far is

larger than 𝑇 −𝑇 𝑟
𝑓 , any optimal policy solution to (2.3) follows the shortest-path tree rooted

at 𝑑 with respect to the worst-case mean arc costs, which we denote by 𝒯 𝑟 (the worst-case

mean arc costs are given by (max𝑝𝑖𝑗∈𝒫𝑖𝑗
E𝑋∼𝑝𝑖𝑗

[𝑋])(𝑖,𝑗)∈𝒜).

Case 2: If there exists 𝑇𝑓 such that the support of 𝑓(·) is included in [𝑇𝑓 , ∞), then following

𝒯 𝑟 is optimal as soon as the total cost spent so far is larger than 𝑇 − 𝑇 𝑟
𝑓 .

For a node 𝑖, 𝒯 𝑟(𝑖) refers to the set of immediate successors of node 𝑖 in 𝒯 𝑟. The proof is

deferred to the Appendix.

Interestingly, 𝑇 𝑟
𝑓 is determined by the exact same procedure as 𝑇𝑓 provided the expected

arc costs are substituted with the worst-case expected costs. For instance, when 𝑓(𝑡) =

−𝑡2 · 1𝑡≤0, we may take:

𝑇 𝑟
𝑓 = −

|𝒱| · 𝛿sup · max
𝑖∈𝒱

𝑀𝑖

2 · min
𝑖 ̸=𝑑

min
𝑗∈𝒱(𝑖),𝑗 /∈𝒯 𝑟(𝑖)

{max𝑝𝑖𝑗∈𝒫𝑖𝑗
E𝑋∼𝑝𝑖𝑗

[𝑋] + 𝑀𝑗 − 𝑀𝑖}
,

where 𝑀𝑖 is the worst-case minimum expected cost to go from 𝑖 to 𝑑.

Last but not least, problem (2.3) can be formulated as a distributionally robust MDP in

the extended space state (𝑖, 𝑡) ∈ 𝒱 × (−∞, 𝑇]. As a result, one can show that there exists

an optimal Markov policy 𝜋*
𝑓,𝒫 characterized by the dynamic programming equation:

𝑢𝑑(𝑡) = 𝑓(𝑡) 𝑡 ≤ 𝑇

𝑢𝑖(𝑡) = max
𝑗∈𝒱(𝑖)

inf
𝑝𝑖𝑗∈𝒫𝑖𝑗

∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · 𝑢𝑗(𝑡 − 𝜔)d𝜔 𝑖 ̸= 𝑑, 𝑡 ≤ 𝑇

𝜋*
𝑓,𝒫(𝑖, 𝑡) ∈ argmax

𝑗∈𝒱(𝑖)
inf

𝑝𝑖𝑗∈𝒫𝑖𝑗

∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · 𝑢𝑗(𝑡 − 𝜔)d𝜔 𝑖 ̸= 𝑑, 𝑡 ≤ 𝑇,

(2.7)

where 𝑢𝑖(𝑡) is the worst-case expected objective-to-go when leaving 𝑖 ∈ 𝒱 with remaining

budget 𝑡. Observe that (2.7) only differs from (2.4) through the presence of the infimum

over 𝒫𝑖𝑗 .

Proposition 2.3. Any Markov policy solution to (2.7) is an optimal strategy for (2.3).

The proof is deferred to the Appendix.

42

2.4.2 Tightness of the Robust Problem

The optimization problem (2.3) is a conservative approximation of (2.2) in the sense that,

for any strategy 𝜋 ∈ Π, we have:

inf
∀(𝑖,𝑗)∈𝒜, 𝑝𝑖𝑗∈𝒫𝑖𝑗

Ep[𝑓(𝑇 − 𝑋𝜋)] ≥ inf
∀𝜏,∀(𝑖,𝑗)∈𝒜, 𝑝𝜏

𝑖𝑗∈𝒫𝑖𝑗

Ep𝜏 [𝑓(𝑇 − 𝑋𝜋)].

We say that (2.2) and (2.3) are equivalent if they share the same optimal value and if there

exists a common optimal strategy. For general risk functions, ambiguity sets, and graphs,

(2.2) and (2.3) are not equivalent. In this section, we highlight several situations of inter-

est for which (2.2) and (2.3) happen to be equivalent and we bound the gap between the

optimal values of (2.2) and (2.3) for a subclass of risk functions. In this chapter, we solve

(2.3) instead of (2.2) for computational tractability, irrespective of whether or not (2.2) and

(2.3) are equivalent. Hence, the results presented in this section are included mainly for

illustrative purposes, i.e. we do not impose further restrictions on the risk function or the

ambiguity sets here.

Equivalence of (2.2) and (2.3). As a simple first example, observe that when 𝑓(·) is

non-decreasing and 𝒫𝑖𝑗 = 𝒫([𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗]), both (2.2) and (2.3) reduce to a standard robust

approach where the goal is to find a path minimizing the sum of the worst-case arc costs.

The following result identifies conditions of broader applicability when the decision maker

is risk-seeking.

Lemma 2.1. Suppose that 𝑓(·) is convex and satisfies property (b) in Case 1 of Theorem

2.2 and that, for any arc (𝑖, 𝑗) ∈ 𝒱 , either:

(a) the Dirac distribution supported at max𝑝𝑖𝑗∈𝒫𝑖𝑗
E𝑋∼𝑝𝑖𝑗

[𝑋] belongs to 𝒫𝑖𝑗 ,

(b) there exist 𝜇𝑖𝑗 ≥ 0, 𝛼𝑖𝑗 ≥ 0, and 𝛽𝑖𝑗 ∈ [0, 1] such that:

𝒫𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

E𝑋∼𝑝[𝑋] = 𝜇𝑖𝑗

𝑝 ∈ 𝒫([𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗]) : E𝑋∼𝑝[|𝑋 − 𝜇𝑖𝑗|] = 𝛼𝑖𝑗

P[𝑋 ≥ 𝜇𝑖𝑗] = 𝛽𝑖𝑗

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.8)

43

Then, (2.2) and (2.3) are equivalent.

The proof is deferred to the Appendix.

To illustrate Lemma 2.1, observe that the assumptions are satisfied for 𝑓(𝑡) = exp(𝑎 ·

𝑡) + 𝑏 · 𝑡, with 𝑎 and 𝑏 taken as positive values, and when the ambiguity sets are defined

either through (2.8) or through confidence intervals on the expected costs, i.e.:

𝒫𝑖𝑗 = {𝑝 ∈ 𝒫([𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗]) : E𝑋∼𝑝[𝑋] ∈ [𝛼𝑖𝑗, 𝛽𝑖𝑗]}, (2.9)

with 𝛼𝑖𝑗 ≤ 𝛽𝑖𝑗 . Further note that adding upper bounds on the mean deviation or on higher-

order moments in the definition of the ambiguity sets (2.9) does not alter the conclusion

of Lemma 2.1. We move on to another situation of interest where (2.2) and (2.3) can be

shown to be equivalent.

Lemma 2.2. Take 𝐾 ∈ N. Suppose that:

∙ 𝒢 is a single-path graph,

∙ 𝑓(·) is 𝐶𝐾+1 and 𝑓 (𝐾+1)(𝑡) > 0 ∀𝑡 or 𝑓 (𝐾+1)(𝑡) < 0 ∀𝑡,

∙ For any arc (𝑖, 𝑗) ∈ 𝒜:

𝒫𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

E𝑋∼𝑝(𝑋) = 𝑚1
ij

𝑝 ∈ 𝒫([𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗]) : ...

E𝑋∼𝑝(𝑋𝐾) = 𝑚𝐾
ij

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
where 𝑚1

ij, · · · , 𝑚𝐾
ij are non-negative.

Then (2.2) and (2.3) are equivalent.

The proof is deferred to the Appendix.

When 𝒢 is a single-path graph, the optimal value of (2.2) corresponds to the worst-

case risk function when following this path, given that the arc cost distributions are only

known to lie in the ambiguity sets. While it is a priori unclear how to compute this quantity,

44

Proposition 2.4 of Section 2.4.3.a establishes that the optimal value of (2.3) can be deter-

mined with arbitrary precision provided the inner optimization problems appearing in the

discretization scheme of Section 2.4.3.a can be computed numerically. Hence, even in this

seemingly simplistic situation, the equivalence between (2.2) and (2.3) is an important fact

to know as it has significant computational implications. Lemma 2.2 shows that, when the

risk function is (𝐾 + 1)th order convex or concave and when the arc cost distributions are

only known through the first 𝐾-order moments, (2.2) and (2.3) are in fact equivalent. For

this particular class of ambiguity sets, the inner optimization problems of the discretization

scheme of Section 2.4.3.a can be solved using semidefinite programming, see [23].

Bounding the gap between the optimal values of (2.2) and (2.3). It turns out that, for a

particular subclass of risk functions, we can bound the gap between the optimal values of

(2.2) and (2.3) uniformly over all graphs and ambiguity sets.

Lemma 2.3. Denote the optimal value of (2.2) (resp. (2.3)) by 𝑣* (resp. 𝑣).

If there exists 𝛾, 𝑎 > 0 and 𝛽, 𝑏 such that one of the following conditions holds:

∙ 𝛾 · 𝑡 + 𝛽 ≥ 𝑓(𝑡) ≥ 𝑎 · 𝑡 + 𝑏 ∀𝑡 ≤ 𝑇 ,

∙ 𝛾 · exp(𝑡) + 𝛽 ≥ 𝑓(𝑡) ≥ 𝑎 · exp(𝑡) + 𝑏 ∀𝑡 ≤ 𝑇 ,

∙ −𝛾 · exp(−𝑡) + 𝛽 ≥ 𝑓(𝑡) ≥ −𝑎 · exp(−𝑡) + 𝑏 ∀𝑡 ≤ 𝑇 ,

then 𝑣* ≥ 𝑣 ≥ 𝑎
𝛾

· (𝑣* − 𝛽) + 𝑏.

The proof is deferred to the Appendix.

2.4.3 Solution Methodology

We proceed as in Section 2.3.2 and compute an approximate Markov policy solution to

(2.7). The computational challenges faced when solving the nominal problem carry over to

the robust counterpart, but with additional difficulties to overcome. Specifically, the con-

tinuity of the problem leads us to build a discrete approximation in Section 2.4.3.a similar

to the one developed for the nominal approach. We also extend the label-setting algorithm

45

of Section 2.3.2.b to tackle the potential existence of cycles at the beginning of Section

2.4.3.c. However, the presence of an inner optimization problem in (2.7) is a distinctive

feature of the robust problem which poses a new computational challenge. As a result,

and in contrast with the situation for the nominal problem where this optimization problem

reduces to a convolution product, it is not a priori obvious how to solve the discretization

scheme numerically, let alone efficiently. As can be expected, the exact form taken by the

ambiguity sets has a major impact on the computational complexity of the inner optimiza-

tion problem. In an effort to mitigate the computational burden, we restrict our attention to

a subclass of ambiguity sets defined by confidence intervals on piecewise affine statistics

in Section 2.4.3.b. While this simplification might seem restrictive, we show that this sub-

class displays significant modeling power. We develop two general-purpose algorithms in

Section 2.4.3.c for this particular subclass of ambiguity sets. Using these algorithms, we

can compute:

∙ an 𝜖-approximate solution to (2.3) in

𝑂(
|𝒜| · (𝑇 − 𝑇 𝑟

𝑓) + |𝒱|2 · 𝛿sup

Δ𝑡
· log(𝛿sup − 𝛿inf

Δ𝑡
) · log(

|𝒱| + 𝑇 −𝑇 𝑟
𝑓

𝛿inf

𝜖
))

computation time when the arc costs only take on values that are multiple of Δ𝑡 > 0

and for any continuous risk function 𝑓(·) satisfying the conditions of Theorem 2.2.

This also applies when the objective is to maximize the probability of completion

within budget and even simplifies to 𝑂(|𝒜| · 𝑇
Δ𝑡

· log(𝛿sup−𝛿inf

Δ𝑡
) · log(𝑇

𝜖·𝛿inf)). Note

that, in contrast to the nominal problem, we are only able to compute approximate

solutions because finding a solution to (2.7) entails solving to optimality optimization

programs as opposed to computing convolutions.

∙ an 𝜖-approximate solution to (2.3) in

𝑂(
(|𝒱| + 𝑇 −𝑇 𝑟

𝑓

𝛿inf)2 · (|𝒜| · (𝑇 − 𝑇 𝑟
𝑓) + |𝒱|2 · 𝛿sup)

𝜖
· log2(

(|𝒱| + 𝑇 −𝑇 𝑟
𝑓

𝛿inf) · 𝛿sup

𝜖
))

computation time when the risk function is Lipschitz on compact sets.

46

Our methodology can be outlined as follows. We remark that the inner optimization prob-

lems arising in (2.7) are conic linear problems whose duals reduce to linear programs with

𝑂(1) variables and 𝑂(1
Δ𝑡

) (or equivalently 𝑂(1
𝜖
)) constraints for the subclass of ambiguity

sets defined in Section 2.4.3.b. The computational attractiveness of our approach hinges

on the observation that there is a significant overlap between the constraints of these lin-

ear programs. This translates into an efficient separation oracle, based on a data structure

maintaining the convex hull of a dynamic set of points efficiently, running in amortized time

𝑂(log(1
Δ𝑡

)) (or equivalently 𝑂(log(1
𝜖
))). As a basis for comparison, a brute-force approach

consisting in solving these linear programs independently from one another has runtime

complexity polynomial in 1
Δ𝑡

(or equivalently 1
𝜖
). Additionally, constantly recomputing the

convex hulls from scratch in a naive fashion would lead to a global running time quadratic

in 1
Δ𝑡

(or equivalently 1
𝜖
). The mechanism behind our separation oracle can be regarded as

a counterpart of the online fast Fourier scheme for the nominal approach.

2.4.3.a Discretization Scheme

For 𝑖 ∈ 𝒱 , we approximate 𝑢𝑖(·) by a piecewise affine continuous function 𝑢Δ𝑡
𝑖 (·) of uni-

form stepsize Δ𝑡. This is in contrast with Section 2.3.2.a where we use a piecewise constant

approximation. This change is motivated by computational considerations: the continuity

of 𝑢Δ𝑡
𝑖 (·) guarantees strong duality for the inner optimization problem appearing in (2.7).

Just like for the nominal problem, we only need to approximate 𝑢𝑖(·) for a remaining bud-

get larger than 𝑘𝑟,min
𝑖 · Δ𝑡, for 𝑘𝑟,min

𝑖 =
⌊︂

𝑇 𝑟
𝑓 −(|𝒱|−level(𝑖,𝒯 𝑟)+1)·𝛿sup

Δ𝑡

⌋︂
, where level(𝑖, 𝒯 𝑟) is the

level of node 𝑖 in 𝒯 𝑟. Specifically, we use the approximation:

𝑢Δ𝑡
𝑖 (𝑡) = (1 − 𝑡

Δ𝑡
+
⌊︂

𝑡

Δ𝑡

⌋︂
) · 𝑢Δ𝑡

𝑖 (
⌊︂

𝑡

Δ𝑡

⌋︂
· Δ𝑡) + (𝑡

Δ𝑡
−
⌊︂

𝑡

Δ𝑡

⌋︂
) · 𝑢Δ𝑡

𝑖 (
⌈︂

𝑡

Δ𝑡

⌉︂
· Δ𝑡)

for 𝑖 ∈ 𝒱 , 𝑡 ∈ [𝑘𝑟,min
𝑖 · Δ𝑡, 𝑇]

𝜋Δ𝑡(𝑖, 𝑡) = 𝜋Δ𝑡(𝑖,
⌊︂

𝑡

Δ𝑡

⌋︂
· Δ𝑡)

for 𝑖 ̸= 𝑑, 𝑡 ∈ [𝑘𝑟,min
𝑖 · Δ𝑡, 𝑇],

(2.10)

47

and the values at the mesh points are determined by the set of equalities:

𝑢Δ𝑡
𝑑 (𝑘 · Δ𝑡) = 𝑓(𝑘 · Δ𝑡) for 𝑘 = 𝑘𝑟,min

𝑑 , · · · ,
⌊︂

𝑇

Δ𝑡

⌋︂
𝑢Δ𝑡

𝑖 (𝑘 · Δ𝑡) = max
𝑗∈𝒱(𝑖)

inf
𝑝𝑖𝑗∈𝒫𝑖𝑗

∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · 𝑢Δ𝑡

𝑗 (𝑘 · Δ𝑡 − 𝜔)d𝜔

for 𝑖 ̸= 𝑑, 𝑘 =
⌊︃

𝑇 𝑟
𝑓

Δ𝑡

⌋︃
, · · · ,

⌊︂
𝑇

Δ𝑡

⌋︂
𝜋Δ𝑡(𝑖, 𝑘 · Δ𝑡) ∈ argmax

𝑗∈𝒱(𝑖)
inf

𝑝𝑖𝑗∈𝒫𝑖𝑗

∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · 𝑢Δ𝑡

𝑗 (𝑘 · Δ𝑡 − 𝜔)d𝜔

for 𝑖 ̸= 𝑑, 𝑘 =
⌊︃

𝑇 𝑟
𝑓

Δ𝑡

⌋︃
, · · · ,

⌊︂
𝑇

Δ𝑡

⌋︂
𝑢Δ𝑡

𝑖 (𝑘 · Δ𝑡) = max
𝑗∈𝒯 𝑟(𝑖)

inf
𝑝𝑖𝑗∈𝒫𝑖𝑗

∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · 𝑢Δ𝑡

𝑗 (𝑘 · Δ𝑡 − 𝜔)d𝜔

for 𝑖 ̸= 𝑑, 𝑘 = 𝑘𝑟,min
𝑖 , · · · ,

⌊︃
𝑇 𝑟

𝑓

Δ𝑡

⌋︃
− 1

𝜋Δ𝑡(𝑖, 𝑘 · Δ𝑡) ∈ argmax
𝑗∈𝒯 𝑟(𝑖)

inf
𝑝𝑖𝑗∈𝒫𝑖𝑗

∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · 𝑢Δ𝑡

𝑗 (𝑘 · Δ𝑡 − 𝜔)d𝜔

for 𝑖 ̸= 𝑑, 𝑘 = 𝑘𝑟,min
𝑖 , · · · ,

⌊︃
𝑇 𝑟

𝑓

Δ𝑡

⌋︃
− 1.

(2.11)

As we did for the nominal problem, we can quantify the quality of 𝜋Δ𝑡 as an approximate

solution to (2.3) as a function of the regularity of the risk function.

Proposition 2.4. Consider a solution to the global discretization scheme (2.10) and (2.11),

(𝜋Δ𝑡, (𝑢Δ𝑡
𝑖 (·))𝑖∈𝒱). We have:

1. If 𝑓(·) is non-decreasing, the functions (𝑢Δ𝑡
𝑖 (·))𝑖∈𝒱 converge pointwise almost every-

where to (𝑢𝑖(·))𝑖∈𝒱 as Δ𝑡 → 0.

2. If 𝑓(·) is continuous, the functions (𝑢Δ𝑡
𝑖 (·))𝑖∈𝒱 converge uniformly to (𝑢𝑖(·))𝑖∈𝒱 and

𝜋Δ𝑡 is a 𝑜(1)-approximate optimal solution to (2.3) as Δ𝑡 → 0.

3. If 𝑓(·) is Lipschitz on compact sets (e.g. if 𝑓(·) is 𝐶1), the functions (𝑢Δ𝑡
𝑖 (·))𝑖∈𝒱 con-

verge uniformly to (𝑢𝑖(·))𝑖∈𝒱 at speed Δ𝑡 and 𝜋Δ𝑡 is a 𝑂(Δ𝑡)-approximate optimal

solution to (2.3) as Δ𝑡 → 0.

The proof is deferred to the Appendix.

48

2.4.3.b Ambiguity Sets

For computational tractability, we restrict our attention to the following subclass of ambi-

guity sets.

Definition 2.1. For any arc (𝑖, 𝑗) ∈ 𝒜, we have:

𝒫𝑖𝑗 = {𝑝 ∈ 𝒫([𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗]) : E𝑋∼𝑝[𝑔𝑖𝑗
𝑞 (𝑋)] ∈ [𝛼𝑖𝑗

𝑞 , 𝛽𝑖𝑗
𝑞], 𝑞 = 1, · · · , 𝑄𝑖𝑗},

where:

∙ 𝑄𝑖𝑗 ∈ N denotes the number of statistics used,

∙ −∞ ≤ 𝛼𝑖𝑗
𝑞 ≤ 𝛽𝑖𝑗

𝑞 ≤ ∞ for 𝑞 = 1, · · · , 𝑄𝑖𝑗 ,

∙ the functions (𝑔𝑖𝑗
𝑞 (·))𝑞=1,··· ,𝑄𝑖𝑗

are piecewise affine with a finite number of pieces on

[𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗] and such that 𝑔𝑖𝑗
𝑞 (·) is upper (resp. lower) semi-continuous if 𝛼𝑖𝑗

𝑞 > −∞

(resp. 𝛽𝑖𝑗
𝑞 < ∞), for any 𝑞 = 1, · · · , 𝑄𝑖𝑗 .

The second restriction imposed on the functions (𝑔𝑖𝑗
𝑞 (·))𝑞=1,··· ,𝑄𝑖𝑗

is meant to guarantee that

𝒫𝑖𝑗 is closed for the weak topology, which is required by Assumption 2.4. Note that Def-

inition 2.1 allows to model one-sided constraints by either taking 𝛼𝑖𝑗
𝑞 = −∞ or 𝛽𝑖𝑗

𝑞 = ∞.

For instance, the constraints E𝑋∼𝑝[1𝑋∈𝑆] ≤ 𝛽 and E𝑋∼𝑝[1𝑋∈𝑆′] ≥ 𝛽, for 𝑆 (resp. 𝑆 ′) an

open (resp. a closed) set, are perfectly valid. In terms of modeling power, Definition 2.1

allows to have constraints on standard statistics, such as the mean value and the mean ab-

solute deviation, but also to capture distributional asymmetry, through constraints on any

quantile or of the type E𝑋∼𝑝[𝑋 · 1𝑋>𝜃] ≤ 𝛽, and to incorporate higher-order information,

e.g. the variance or the skewness, since continuous functions can be approximated arbitrar-

ily well by piecewise affine functions on a compact set. Finally, note that Definition 2.1

allows to model situations where 𝑐𝑖𝑗 only takes values in a prescribed finite set 𝑆 through

the constraint E𝑋∼𝑝[1𝑋∈𝑆] ≥ 1.

Data-driven ambiguity sets. Ambiguity sets of the form introduced in Definition 2.1

can be built using a combination of prior knowledge and historical data. To illustrate,

49

suppose that, for any arc (𝑖, 𝑗) ∈ 𝒜, we have observed 𝑛𝑖𝑗 samples (𝑋 𝑖𝑗
𝑝)𝑝=1,··· ,𝑛𝑖𝑗

drawn

from the corresponding arc cost distribution. Setting aside computational aspects, there is

an inherent trade-off at play when designing ambiguity sets with this empirical data: using

more statistics and/or narrowing the confidence intervals ([𝛼𝑖𝑗
𝑞 , 𝛽𝑖𝑗

𝑞])𝑞=1,··· ,𝑄𝑖𝑗
will shrink the

ambiguity sets 𝒫𝑖𝑗 with two implications. On one hand, the quality of the guarantee on the

risk function provided by the robust approach will improve (i.e. the optimal value of (2.3)

will increase). On the other hand, the probability that this guarantee holds will deteriorate.

Assuming we want to set this probability value to 1 − 𝜖 and that we are set on which

statistics to use (𝑔𝑖𝑗
𝑞 (·))𝑞=1,··· ,𝑄𝑖𝑗

, the trade-off is simple to resolve as far as the confidence

intervals are concerned. Using Hoeffding’s and Boole’s inequalities, the confidence interval

for statistic 𝑞 of arc (𝑖, 𝑗) should be centered at the empirical mean:

𝛼𝑖𝑗
𝑞 = 1

𝑛𝑖𝑗

𝑛𝑖𝑗∑︁
𝑝=1

𝑔𝑞(𝑋 𝑖𝑗
𝑝) − 𝜖𝑖𝑗

𝑞 , 𝛽𝑖𝑗
𝑞 = 1

𝑛𝑖𝑗

𝑛𝑖𝑗∑︁
𝑝=1

𝑔𝑞(𝑋 𝑖𝑗
𝑝) + 𝜖𝑖𝑗

𝑞 ,

with half width 𝜖𝑖𝑗
𝑞 determined by:

𝜖𝑖𝑗
𝑞 /(max

[𝛿inf
𝑖𝑗 ,𝛿sup

𝑖𝑗]
𝑔𝑖𝑗

𝑞 − min
[𝛿inf

𝑖𝑗 ,𝛿sup
𝑖𝑗]

𝑔𝑖𝑗
𝑞) =

⎯⎸⎸⎷log(2
𝜖

·
∑︁

(𝑖,𝑗)∈𝒜
𝑄𝑖𝑗)/2𝑛𝑖𝑗 (2.12)

so that the probability that the true arc cost distribution p lies in the rectangular ambiguity

set
∏︀

(𝑖,𝑗)∈𝒜
𝒫𝑖𝑗 is at least 1 − 𝜖. Choosing how many and which statistics to use is a more

complex endeavor as the impact on the size of
∏︀

(𝑖,𝑗)∈𝒜
𝒫𝑖𝑗 is a priori unclear: using more

statistics adds constraints in the definition of 𝒫𝑖𝑗 which tends to shrink it but at the same

time we have to increase all the widths (𝜖𝑖𝑗
𝑞)𝑞=1,··· ,𝑄𝑖𝑗

to keep the probability that the guar-

antee holds at the same level 1 − 𝜖 (see the dependence on
∑︀

(𝑖,𝑗)∈𝒜
𝑄𝑖𝑗 in (2.12)). Numerical

evidence presented in Section 2.5 suggests that low-order statistics, such as the mean, tend

to be more informative when only few samples are available. Conversely, as sample sizes

get very large, incorporating higher-order information, for example in the form of piece-

wise statistics that approximate the variance such as the mean deviation, seems to improve

the quality of the strategy derived. In the limit where the statistics can be computed exactly,

we should use as many statistics as possible. This observation is supported by the following

50

lemma.

Lemma 2.4. For any arc (𝑖, 𝑗) ∈ 𝒜, consider (𝒫𝑘
𝑖𝑗)𝑘∈N, a sequence of nested ambiguity

sets satisfying Assumption 2.4. If 𝑓(·) is continuous, then the optimal value of the robust

problem (2.3) when the uncertainty sets are taken as (𝒫𝑘
𝑖𝑗)(𝑖,𝑗)∈𝒜 monotonically converges

to the optimal value of (2.3) when the uncertainty sets are taken as (∩𝑘∈N𝒫𝑘
𝑖𝑗)(𝑖,𝑗)∈𝒜 as

𝑘 → ∞.

In particular, if ∩𝑘∈N𝒫𝑘
𝑖𝑗 is a singleton for all arcs (𝑖, 𝑗) ∈ 𝒜, then the optimal value of the

robust problem converges to the value of the nominal problem (2.1).

The proof is deferred to the Appendix.

2.4.3.c Solution Procedures

We develop two general-purpose methods to compute a solution to the discretization scheme

(2.11) for the class of ambiguity sets identified in Section 2.4.3.b. The first method, based

on the ellipsoid algorithm, computes an 𝜖−approximate solution to (2.11) with worst-case

complexity:

𝑂(
|𝒜| · (𝑇 − 𝑇 𝑟

𝑓) + |𝒱|2 · 𝛿sup

Δ𝑡
· log(𝛿sup − 𝛿inf

Δ𝑡
) · log(

|𝒱| + 𝑇 −𝑇 𝑟
𝑓

𝛿inf

𝜖
)),

provided 𝑓(·) is continuous and where the hidden factors are linear in the number of pieces

of each statistic and polynomial in the number of statistics. We remind the reader that the

complexity of solving the discretization scheme (2.6) for the nominal problem is 𝑂(|𝒜| ·
𝑇 −𝑇𝑓

Δ𝑡
·log2(𝛿sup

Δ𝑡
)+|𝒱|2 · 𝛿sup

Δ𝑡
·log(|𝒱|· 𝛿sup

Δ𝑡
)) when using zero-delay convolution. While these

bounds are not directly comparable because some of the parameters required to specify a

robust instance are not relevant for a nominal instance and vice versa, we point out that they

share many similarities, including the almost linear dependence on 1
Δ𝑡

. The second method,

based on delayed column generation and warm starting techniques, is more practical but has

worst-case complexity exponential in 1
Δ𝑡

. We stress that none of these approaches can be

used to solve the nominal problem as the latter is not a particular case of the robust problem

for the restricted class of ambiguity sets defined in Section 2.4.3.b. Indeed, characterizing

a single distribution generally requires infinitely many moment constraints.

51

Label-setting approach. To cope with the potential existence of cycles, we remark that

the label-setting approach developed for the nominal approach trivially extends to the ro-

bust setting. Similarly as for the nominal problem, we proceed in three steps to solve (2.11).

First, we compute 𝑇 𝑟
𝑓 . Next, we compute the values 𝑢Δ𝑡

𝑖 (𝑘 ·Δ𝑡) for 𝑘 ∈ {𝑘𝑟,min
𝑖 , · · · ,

⌊︂
𝑇 𝑟

𝑓

Δ𝑡

⌋︂
−

1} starting at node 𝑖 = 𝑑 and traversing the tree 𝒯 𝑟 in a breadth-first fashion. Finally, we

compute the values 𝑢Δ𝑡
𝑖 (𝑘 · Δ𝑡) for 𝑘 ∈ {

⌊︂
𝑇 𝑟

𝑓

Δ𝑡

⌋︂
+ 𝑚 ·

⌊︁
𝛿inf

Δ𝑡

⌋︁
, · · · ,

⌊︂
𝑇 𝑟

𝑓

Δ𝑡

⌋︂
+ (𝑚 + 1) ·

⌊︁
𝛿inf

Δ𝑡

⌋︁
}

for all nodes 𝑖 ∈ 𝒱 by induction on 𝑚. Of course, an efficient procedure solving the inner

optimization problem of (2.11) is a prerequisite for carrying out the last two steps. This

will be our focus in the remainder of this section.

Solving the Inner Optimization Problem. Consider any arc (𝑖, 𝑗) ∈ 𝒜. We need to

solve, at each step 𝑘 ∈ {𝑘𝑟,min
𝑖 , · · · ,

⌊︁
𝑇
Δ𝑡

⌋︁
}, the optimization problem:

inf
𝑝∈𝒫([𝛿inf

𝑖𝑗 ,𝛿sup
𝑖𝑗])

E𝑋∼𝑝[𝑢Δ𝑡
𝑗 (𝑘 · Δ𝑡 − 𝑋)]

subject to E𝑋∼𝑝[𝑔𝑖𝑗
𝑞 (𝑋)] ∈ [𝛼𝑖𝑗

𝑞 , 𝛽𝑖𝑗
𝑞] 𝑞 = 1, · · · , 𝑄𝑖𝑗.

(2.13)

Since the set of non-negative measures on [𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗] is a cone, (2.13) can be cast as a conic

linear problem. As a result, standard conic duality theory applies and the optimal value of

(2.13) can be equivalently computed by solving a dual optimization problem which turns

out to be easier to study. For a thorough exposition of the duality theory of general conic

linear problems, see [87]. To simplify the presentation, we assume that (𝛼𝑖𝑗
𝑞)𝑞=1,··· ,𝑄𝑖𝑗

and

(𝛽𝑖𝑗
𝑞)𝑞=1,··· ,𝑄𝑖𝑗

are all finite quantities (which implies that the functions (𝑔𝑖𝑗
𝑞 (·))𝑞=1,··· ,𝑄𝑖𝑗

are

continuous by Definition 2.1) but this is by no means a limitation of our approach.

Lemma 2.5. The optimization problem (2.13) has the same optimal value as the semi-

infinite linear program:

sup
𝑧∈R

𝑦1,··· ,𝑦𝑄𝑖𝑗
∈R+

𝑥1,··· ,𝑥𝑄𝑖𝑗
∈R+

𝑧 +
𝑄𝑖𝑗∑︁
𝑞=1

(𝛼𝑖𝑗
𝑞 · 𝑥𝑞 − 𝛽𝑖𝑗

𝑞 · 𝑦𝑞)

subject to 𝑧 +
𝑄𝑖𝑗∑︁
𝑞=1

(𝑥𝑞 − 𝑦𝑞) · 𝑔𝑖𝑗
𝑞 (𝜔) ≤ 𝑢Δ𝑡

𝑗 (𝑘 · Δ𝑡 − 𝜔) ∀𝜔 ∈ [𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗]

(2.14)

52

The proof is deferred to the Appendix.

Because the functions (𝑔𝑖𝑗
𝑞 (·))𝑞=1,··· ,𝑄𝑖𝑗

are all piecewise affine, we can partition the

interval [𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗] into 𝑅𝑖𝑗 non-overlapping intervals (𝐼𝑟)𝑟=1,··· ,𝑅𝑖𝑗
such that the functions

(𝑔𝑖𝑗
𝑞 (·))𝑞=1,··· ,𝑄𝑖𝑗

are all affine on 𝐼𝑟 for any 𝑟 ∈ {1, · · · , 𝑅𝑖𝑗}, i.e.:

𝑔𝑖𝑗
𝑞 (𝜔) = 𝑎𝑖𝑗

𝑞,𝑟 · 𝜔 + 𝑏𝑖𝑗
𝑞,𝑟 if 𝜔 ∈ 𝐼𝑟

for any 𝑞 ∈ {1, · · · , 𝑄𝑖𝑗} and 𝜔 ∈ [𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗]. This decomposition enables us to show that

the feasible region of (2.14) can be described with finitely many inequalities.

Lemma 2.6. The semi-infinite linear program (2.14) can be reformulated as the following

finite linear program:

sup
𝑧∈R

𝑦1,··· ,𝑦𝑄𝑖𝑗
∈R

𝑥1,··· ,𝑥𝑄𝑖𝑗
∈R

𝑧 +
𝑄𝑖𝑗∑︁
𝑞=1

(𝛼𝑖𝑗
𝑞 · 𝑥𝑞 − 𝛽𝑖𝑗

𝑞 · 𝑦𝑞)

subject to 𝑧 +
𝑄𝑖𝑗∑︁
𝑞=1

(𝑥𝑞 − 𝑦𝑞) · (𝑎𝑖𝑗
𝑞,𝑟 · 𝑙 · Δ𝑡 + 𝑏𝑖𝑗

𝑞,𝑟) ≤ 𝑢Δ𝑡
𝑗 ((𝑘 − 𝑙) · Δ𝑡)

for 𝑙 =
⌈︃

inf(𝐼𝑟)
Δ𝑡

⌉︃
, · · · ,

⌊︃
sup(𝐼𝑟)

Δ𝑡

⌋︃
and 𝑟 = 1, · · · , 𝑅𝑖𝑗

𝑧 +
𝑄𝑖𝑗∑︁
𝑞=1

(𝑥𝑞 − 𝑦𝑞) · (𝑎𝑖𝑗
𝑞,𝑟 · sup(𝐼𝑟) + 𝑏𝑖𝑗

𝑞,𝑟) ≤ 𝑢Δ𝑡
𝑗 (𝑘 · Δ𝑡 − sup(𝐼𝑟))

for 𝑟 = 1, · · · , 𝑅𝑖𝑗

𝑧 +
𝑄𝑖𝑗∑︁
𝑞=1

(𝑥𝑞 − 𝑦𝑞) · (𝑎𝑖𝑗
𝑞,𝑟 · inf(𝐼𝑟) + 𝑏𝑖𝑗

𝑞,𝑟) ≤ 𝑢Δ𝑡
𝑗 (𝑘 · Δ𝑡 − inf(𝐼𝑟))

for 𝑟 = 1, · · · , 𝑅𝑖𝑗

𝑦𝑞, 𝑥𝑞 ≥ 0 𝑞 = 1, · · · , 𝑄𝑖𝑗.

(2.15)

Proof. Take 𝑧, 𝑦1, · · · , 𝑦𝑄𝑖𝑗
, 𝑥1, · · · , 𝑥𝑄𝑖𝑗

∈ R and 𝑟 ∈ {1, · · · , 𝑅𝑖𝑗}. Since the function

𝜔 → 𝑧 + ∑︀𝑄𝑖𝑗

𝑞=1(𝑥𝑞 − 𝑦𝑞) · 𝑔𝑖𝑗
𝑞 (𝜔) is affine on 𝐼𝑟, this function lies below the continuous

piecewise affine function 𝑢Δ𝑡
𝑗 (𝑘 · Δ𝑡 − ·) on 𝐼𝑟 if and only if it lies below 𝑢Δ𝑡

𝑗 (𝑘 · Δ𝑡 −

·) at every breakpoint of 𝑢Δ𝑡
𝑗 (𝑘 · Δ𝑡 − ·) on 𝐼𝑟 and at the boundary points of 𝐼𝑟. Since

the collection of intervals (𝐼𝑟)𝑟=1,··· ,𝑅𝑖𝑗
forms a partition of [𝛿inf

𝑖𝑗 , 𝛿sup
𝑖𝑗], this establishes the

53

claim.

While (2.15) is a finite linear program and can thus be solved with an interior point al-

gorithm, the large number of constraints calls for an efficient separation oracle, which we

develop next, and the use of the ellipsoid algorithm. The key is to refine the idea of Lemma

2.6. Specifically, for any 𝑟 ∈ {1, · · · , 𝑅𝑖𝑗} and 𝑙 ∈ {
⌈︁

inf(𝐼𝑟)
Δ𝑡

⌉︁
, · · · ,

⌊︁
sup(𝐼𝑟)

Δ𝑡

⌋︁
}, the constraint

𝑧 +
𝑄𝑖𝑗∑︁
𝑞=1

(𝑥𝑞 − 𝑦𝑞) · (𝑎𝑖𝑗
𝑞,𝑟 · 𝑙 · Δ𝑡 + 𝑏𝑖𝑗

𝑞,𝑟) ≤ 𝑢Δ𝑡
𝑗 ((𝑘 − 𝑙) · Δ𝑡)

does not limit the feasible region if (𝑙 · Δ𝑡, 𝑢Δ𝑡
𝑗 ((𝑘 − 𝑙) · Δ𝑡)) is not an extreme point of the

upper convex hull of {(𝑚 · Δ𝑡, 𝑢Δ𝑡
𝑗 ((𝑘 − 𝑚) · Δ𝑡)), 𝑚 =

⌊︁
inf(𝐼𝑟)

Δ𝑡

⌋︁
, · · · ,

⌈︁
sup(𝐼𝑟)

Δ𝑡

⌉︁
}. Denote

by ℒ𝑘,𝑟
𝑖𝑗 the subset of integers 𝑙 such that (𝑙 · Δ𝑡, 𝑢Δ𝑡

𝑗 ((𝑘 − 𝑙) · Δ𝑡)) is such an extreme point.

Observe that the function

𝑙 → 𝑢Δ𝑡
𝑗 ((𝑘 − 𝑙) · Δ𝑡) − [𝑧 +

𝑄𝑖𝑗∑︁
𝑞=1

(𝑥𝑞 − 𝑦𝑞) · (𝑎𝑖𝑗
𝑞,𝑟 · 𝑙 · Δ𝑡 + 𝑏𝑖𝑗

𝑞,𝑟)]

is convex on ℒ𝑘,𝑟
𝑖𝑗 , therefore a minimizer of this function can be found by binary search. As

a result, being able to perform binary search on ℒ𝑘,𝑟
𝑖𝑗 efficiently would enable us to separate

efficiently the subset of constraints:

𝑧 +
𝑄𝑖𝑗∑︁
𝑞=1

(𝑥𝑞 − 𝑦𝑞) · (𝑎𝑖𝑗
𝑞,𝑟 · 𝑙 · Δ𝑡 + 𝑏𝑖𝑗

𝑞,𝑟) ≤ 𝑢Δ𝑡
𝑗 ((𝑘 − 𝑙) · Δ𝑡) 𝑙 =

⌈︃
inf(𝐼𝑟)

Δ𝑡

⌉︃
, · · · ,

⌊︃
sup(𝐼𝑟)

Δ𝑡

⌋︃
.

We defer the presentation of a data structure designed for this purpose to Section 2.4.3.d

and make the following assumption to conclude the computational study.

Assumption 2.5. For any two integers 𝐿, 𝐿′ such that
⌈︂

𝛿inf
𝑖𝑗

Δ𝑡

⌉︂
≤ 𝐿 < 𝐿′ ≤

⌊︂
𝛿sup

𝑖𝑗

Δ𝑡

⌋︂
, there

exists a data structure that can maintain, dynamically as 𝑘 increases from 𝑘 = 𝑘𝑟,min
𝑖 to

𝑘 =
⌊︁

𝑇
Δ𝑡

⌋︁
, a description of the upper convex hull of {(𝑙 · Δ𝑡, 𝑢Δ𝑡

𝑗 ((𝑘 − 𝑙) · Δ𝑡)), 𝑙 =

𝐿, · · · , 𝐿′} allowing to perform binary search on the first coordinate of the extreme points

with a global complexity 𝑂((𝑇
Δ𝑡

− 𝑘𝑟,min
𝑖) · log(𝛿sup−𝛿inf

Δ𝑡
)).

Equipped with a data structure satisfying Assumption 2.5, the separation oracle has runtime

54

complexity 𝑂(log(𝛿sup−𝛿inf

Δ𝑡
)) given that there are at most

⌊︂
𝛿sup

𝑖𝑗

Δ𝑡

⌋︂
−
⌈︂

𝛿inf
𝑖𝑗

Δ𝑡

⌉︂
extreme points at

any step 𝑘. Using the ellipsoid algorithm, we can compute the optimal value of (2.13)

with precision 𝜖 in 𝑂(log(𝛿sup−𝛿inf

Δ𝑡
) · log(1

𝜖
)) running time, where the hidden factors are

polynomial in 𝑄𝑖𝑗 and linear in 𝑅𝑖𝑗 . We point out that relying on a data structure satisfying

Assumption 2.5 is critical to achieve this complexity: recomputing the upper convex hull

from scratch at every time step 𝑘 would increase the complexity to 𝑂(𝛿sup−𝛿inf

Δ𝑡
· log(1

𝜖
))

(achieved using, for instance, Andrew’s monotone chain convex hull algorithm).

Practical general purpose method. Due to the limited practicability of the ellip-

soid algorithm, we have developed another method based on delayed column generation

to solve the inner optimization problem. To simplify the presentation, we assume that

(inf(𝐼𝑟))𝑟=1,··· ,𝑅𝑖𝑗
and (sup(𝐼𝑟))𝑟=1,··· ,𝑅𝑖𝑗

are all multiples of Δ𝑡. Since (2.15) is a linear

program with a non-empty feasible set, we can equivalently compute its value by solving

the dual optimization problem given by:

inf
𝑝0,··· ,𝑝𝐿∈R+

∑︁
𝑙=0,··· ,𝐿

𝑝𝑙 · 𝑢Δ𝑡
𝑗 ((𝑘 − 𝑙) · Δ𝑡 − 𝛿inf

𝑖𝑗)

subject to
∑︁

𝑙=0,··· ,𝐿

𝑝𝑙 · 𝑔𝑖𝑗
𝑞 (𝑙 · Δ𝑡 + 𝛿inf

𝑖𝑗) ∈ [𝛼𝑖𝑗
𝑞 , 𝛽𝑖𝑗

𝑞] 𝑞 = 1, · · · , 𝑄𝑖𝑗

∑︁
𝑙=0,··· ,𝐿

𝑝𝑙 = 1

(2.16)

where 𝐿 = 𝛿sup
𝑖𝑗 −𝛿inf

𝑖𝑗

Δ𝑡
. Observe that the feasible set of the linear program (2.16) does not

change across steps 𝑘 = 𝑘𝑟,min
𝑖 , · · · ,

⌊︁
𝑇
Δ𝑡

⌋︁
. Hence, we can warm start the primal simplex

algorithm with the optimal solution found at the previous step. Furthermore, the separation

oracle developed for the dual optimization problem can also be used as a subroutine for

delayed column generation.

Faster procedure when the mean is the only statistics. If the ambiguity sets are

only defined through a confidence interval on the mean value, i.e.:

𝒫𝑖𝑗 = {𝑝 ∈ 𝒫([𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗]) : E𝑋∼𝑝[𝑋] ∈ [𝛼𝑖𝑗, 𝛽𝑖𝑗]},

55

then (2.15) can be solved to optimality in 𝑂(log(𝛿sup
𝑖𝑗 −𝛿inf

𝑖𝑗

Δ𝑡
)) computation time without re-

sorting to the ellipsoid algorithm. First observe that (2.15) simplifies to:

sup
𝑧∈R,𝑦,𝑥∈R+

𝑧 + 𝛼𝑖𝑗 · 𝑥 − 𝛽𝑖𝑗 · 𝑦

subject to 𝑧 + (𝑥 − 𝑦) · 𝑙 · Δ𝑡 ≤ 𝑢Δ𝑡
𝑗 ((𝑘 − 𝑙) · Δ𝑡), 𝑙 =

⌈︃
𝛿inf

𝑖𝑗

Δ𝑡

⌉︃
, · · · ,

⌊︃
𝛿sup

𝑖𝑗

Δ𝑡

⌋︃

𝑧 + (𝑥 − 𝑦) · 𝛿sup
𝑖𝑗 ≤ 𝑢Δ𝑡

𝑗 (𝑘 · Δ𝑡 − 𝛿sup
𝑖𝑗)

𝑧 + (𝑥 − 𝑦) · 𝛿inf
𝑖𝑗 ≤ 𝑢Δ𝑡

𝑗 (𝑘 · Δ𝑡 − 𝛿inf
𝑖𝑗)

(2.17)

As it turns out, we can identify an optimal feasible basis to (2.17) by direct reasoning.

Lemma 2.7. An optimal solution to (2.17) can be found by performing three binary searches

on the first coordinate of the extreme points of the upper convex hull of

{(𝑙 · Δ𝑡, 𝑢Δ𝑡
𝑗 ((𝑘 − 𝑙) · Δ𝑡)), 𝑙 =

⌊︃
𝛿inf

𝑖𝑗

Δ𝑡

⌋︃
, · · · ,

⌈︃
𝛿sup

𝑖𝑗

Δ𝑡

⌉︃
}

∪ {(𝛿sup
𝑖𝑗 , 𝑢Δ𝑡

𝑗 (𝑘 · Δ𝑡 − 𝛿sup
𝑖𝑗)), (𝛿inf

𝑖𝑗 , 𝑢Δ𝑡
𝑗 (𝑘 · Δ𝑡 − 𝛿inf

𝑖𝑗))}.

The proof is deferred to the Appendix.

Hence, (2.17) can be solved to optimality in 𝑂(log(𝛿sup
𝑖𝑗 −𝛿inf

𝑖𝑗

Δ𝑡
)) running time provided

that the extreme points are stored in a data structure satisfying Assumption 2.5.

Faster procedure when the statistics are piecewise constant. When the statistics

are piecewise constant, we have:

𝑎𝑖𝑗
𝑞,𝑟 = 0 𝑞 = 1, · · · , 𝑄𝑖𝑗, 𝑟 = 1, · · · , 𝑅𝑖𝑗.

Hence, for any 𝑟 ∈ {1, · · · , 𝑅𝑖𝑗}, the set of constraints

𝑧 +
𝑄𝑖𝑗∑︁
𝑞=1

(𝑥𝑞 − 𝑦𝑞) · (𝑎𝑖𝑗
𝑞,𝑟 · 𝑙 · Δ𝑡 + 𝑏𝑖𝑗

𝑞,𝑟) ≤ 𝑢Δ𝑡
𝑗 ((𝑘 − 𝑙) · Δ𝑡) 𝑙 =

⌈︃
inf(𝐼𝑟)

Δ𝑡

⌉︃
, · · · ,

⌊︃
sup(𝐼𝑟)

Δ𝑡

⌋︃

56

(a) 𝒞𝑘 is the hatched area. (b) 𝒞𝑘+1 is the hatched area.

Figure 2-3: The graph of 𝑢Δ𝑡
𝑗 (·) is plotted in black. The dot points represent the breakpoints

of 𝑢Δ𝑡
𝑗 (·).

is equivalent to the single constraint:

𝑧 +
𝑄𝑖𝑗∑︁
𝑞=1

(𝑥𝑞 − 𝑦𝑞) · 𝑏𝑖𝑗
𝑞,𝑟 ≤ min

𝑙=⌈ inf(𝐼𝑟)
Δ𝑡 ⌉,··· ,⌊ sup(𝐼𝑟)

Δ𝑡 ⌋
𝑢Δ𝑡

𝑗 ((𝑘 − 𝑙) · Δ𝑡),

whose right-hand side can be computed by binary search on ℒ𝑘,𝑟
𝑖𝑗 . As a result, the linear

program (2.15) has 2 · 𝑄𝑖𝑗 + 1 variables and 2 · 𝑄𝑖𝑗 + 3 · 𝑅𝑖𝑗 constraints and can be solved

to precision 𝜖 with an interior-point algorithm in 𝑂(log(1
𝜖
)) computation time. Typically,

piecewise constant statistics can be used to bound the probability that a given event occurs,

see Section 2.4.3.b.

2.4.3.d Dynamic Convex Hull Algorithm

Fix an arc (𝑖, 𝑗) ∈ 𝒜 and two integers 𝐿 < 𝐿′ in {
⌈︂

𝛿inf
𝑖𝑗

Δ𝑡

⌉︂
, · · · ,

⌊︂
𝛿sup

𝑖𝑗

Δ𝑡

⌋︂
}. We are interested in

the extreme points of the upper convex hull of {(𝑙 · Δ𝑡, 𝑢Δ𝑡
𝑗 ((𝑘 − 𝑙) · Δ𝑡)), 𝑙 = 𝐿, · · · , 𝐿′}

for 𝑘 ∈ {𝑘𝑟,min
𝑖 , · · · ,

⌊︁
𝑇
Δ𝑡

⌋︁
}. To simplify the notations, it is convenient to reverse the x-axis

and shift the x-coordinate by 𝑘 ·Δ𝑡 which leads us to equivalently look at the extreme points

of the upper convex hull of:

𝒞𝑘 = {(𝑙 · Δ𝑡, 𝑢Δ𝑡
𝑗 (𝑙 · Δ𝑡)), 𝑙 = 𝑘 − 𝐿′, · · · , 𝑘 − 𝐿},

57

for 𝑘 ∈ {𝑘𝑟,min
𝑖 , · · · ,

⌊︁
𝑇
Δ𝑡

⌋︁
}. There is a one-to-one mapping between the extreme points

of these two sets which consists in applying the reverse transformation. For any 𝑘, 𝒞𝑘 de-

notes the upper convex hull of 𝒞𝑘. Note that 𝒞𝑘 is a convex set and has a finitely many

extreme points, all of which are in 𝒞𝑘. Since the values (𝑢Δ𝑡
𝑗 (𝑙 · Δ𝑡))𝑙=𝑘𝑟,min

𝑗 ,··· ,⌊ 𝑇
Δ𝑡⌋ become

sequentially available in ascending order of 𝑙 by chunks of size
⌊︁

𝛿inf

Δ𝑡

⌋︁
as the label-setting

algorithm progresses, a search for the extreme points of 𝒞𝑘+1 begins upon identification of

the extreme points of 𝒞𝑘. Observe that 𝒞𝑘 updates to 𝒞𝑘+1 by removing the leftmost point

((𝑘 − 𝐿′) · Δ𝑡, 𝑢Δ𝑡
𝑗 ((𝑘 − 𝐿′) · Δ𝑡)) and appending ((𝑘 + 1 − 𝐿) · Δ𝑡, 𝑢Δ𝑡

𝑗 ((𝑘 + 1 − 𝐿) · Δ𝑡))

to the right, see Figure 2-3 for an illustration. In this process, deleting a point is arguably

the most challenging operation because it might turn a formerly non-extreme point into

one, see Figure 2-3b where this happens to be the case for the third leftmost point. In con-

trast, inserting a new point can only turn a formerly extreme point into a non-extreme one.

Hence, deletions require us to do some bookkeeping other than simply keeping track of the

extreme points of 𝒞𝑘 as 𝑘 increases.

Maintaining the extreme points of a dynamically changing set is a well-studied class of

problems in computational geometry known as Dynamic Convex Hull problems. Specific

instances from this class differ along the operations to be performed on the set (e.g. inser-

tions, deletions), the queries to be answered on the extreme points, and the dimensionality

of the input data. The authors of [30] design a data structure maintaining a description of

the upper convex hull of a finite set of 𝑁 points in R2. This data structure satisfies As-

sumption 2.5 as it allows to insert points, to delete points, and to perform binary search on

the first coordinate of the extreme points, all in amortized time 𝑂(log(𝑁)) and with 𝑂(𝑁)

space usage. For the purpose of being self-contained, we design our own data structure in

the Appendix to tackle the particular dynamic convex hull problem at hand. Our approach

is based on Andrew’s monotone chain convex hull algorithm, see [9], and only uses two

arrays and a stack. The data structure developed in [30] is more complex than ours but can

handle arbitrary dynamic convex hull problems.

58

s

d

Figure 2-4: Local map. 𝑠 and 𝑑 locate the departure and arrival nodes. Three paths are
highlighted. The left one (blue) is 5.3-km long and takes 9 minutes to travel. The middle
one (red) is 6.4-km long and takes 8 minutes to travel. The rightmost one (green) is 6.1-km
long and takes 10 minutes to travel.

2.5 Numerical Experiments

One of the most common applications of SSPs deals with the problem of routing vehicles

in transportation networks. Providing driving itineraries is a challenging task as suppliers

have to cope simultaneously with limited knowledge about random fluctuations in traffic

congestion (e.g. caused by traffic incidents, variability of travel demand) and users’ desire

to arrive on time. In this section, we compare, using a real-world application with field data

from the Singapore road network, the performance of the nominal and robust approaches

to vehicle routing when traffic measurements are scarce and uncertain. To benchmark

the performance of the robust approach, we propose a realistic framework where both the

nominal and robust approaches can be efficiently computed and for which it is up to the

user to pick one.

2.5.1 Framework

We work on a network composed of the main roads of Singapore with 20,221 arcs and

11,018 nodes for a total length of 1131 kilometers of roads. The data consists of a 15-

day recording of GPS probe vehicle speed samples coming from a combined fleet of over

15,000 taxis. Features of each recording include current location, speed and status (free,

waiting for a customer, occupied). We denote by 𝑠 and 𝑑 the departure and arrival nodes.

Because there is usually only one reasonable route to get from 𝑠 to 𝑑 for most pairs (𝑠, 𝑑)

59

in our network, the benefits of using one vehicle routing approach over another would not

be apparent if we were to pick (𝑠, 𝑑) uniformly at random over 𝒱2. Instead, we choose to

hand-pick a pair (𝑠, 𝑑) with at least two reasonable routes to get from 𝑠 to 𝑑 with similar

travel times so that the best driving itinerary depends on the actual traffic conditions. We

choose 𝑠 = “Woodlands avenue 2” and 𝑑 = “Mandai link”, see Figure 2-4, but the results

would be similar for other pairs satisfying this property.

Method of performance evaluation. Consider the following real-world situation. A user

has to find an itinerary to get from 𝑠 to 𝑑 within a given budget 𝑇 (the deadline) and with

an objective to maximize the probability of on-time arrival, but when only a few vehicle

speed samples are available in order to assess arc travel time uncertainty.

To model this real-world situation, we assume that the full set of samples of vehi-

cle speed measurement available in our dataset in fact represents the real traffic condi-

tions, characterized by the corresponding travel-time distributions 𝑝real
𝑖𝑗 ’s, which are ob-

tained from the full set of samples. Mimicking the fact that the 𝑝real
𝑖𝑗 ’s are actually not fully

available, we then consider the case where only a fraction of the full set of samples, say

𝜆 ∈ [0, 1], is available. Based on this limited data, the challenge is to select an itinerary

with a probability of on-time arrival with respect to the real traffic conditions 𝑝real
𝑖𝑗 ’s as high

as possible. We propose to use the methods listed in Table 2.2 to choose such an itinerary.

For each of these methods, the process goes as follows:

1. Estimate the arc-based travel-time parameters required to run the method using the

fraction of data available.

2. Run the corresponding algorithm to find an itinerary, depending on the chosen method.

3. Compute the probability of on-time arrival of this itinerary for the real traffic condi-

tions (𝜆 = 1).

The result obtained depends on both 𝜆 and the available samples as there are many ways

to pick a fraction 𝜆 out of the entire dataset. Hence, for each 𝜆 in a set Λ, we randomly

pick 𝜆 · 𝑁𝑖𝑗 samples for each arc (𝑖, 𝑗), where 𝑁𝑖𝑗 is the number of samples collected in

60

the entire dataset for that particular arc. For each 𝜆 ∈ Λ, and for each method, we store the

calculated probability of on-time arrival. We repeat this procedure 100 times.

Table 2.2: Methods considered. 𝐼m
𝑖𝑗 and 𝐼md

𝑖𝑗 are confidence intervals.

Method Travel-time parameters to estimate from samples
RobustM 𝛿inf

𝑖𝑗 , 𝛿sup
𝑖𝑗 , 𝐼m

𝑖𝑗

RobustMD 𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗 , 𝐼m
𝑖𝑗 , 𝐼md

𝑖𝑗 , 𝑚𝑖𝑗 = max(𝐼m
𝑖𝑗)+min(𝐼m

𝑖𝑗)
2

Empirical empirical distributions 𝑝𝑖𝑗

LET empirical mean 𝑚𝑖𝑗

Method Approach

RobustM
(2.3) with

𝒫𝑖𝑗 = {𝑝 ∈ 𝒫([𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗]) : E𝑋∼𝑝[𝑋] ∈ 𝐼m
𝑖𝑗}

RobustMD
(2.3) with

𝒫𝑖𝑗 = {𝑝 ∈ 𝒫([𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗]) : E𝑋∼𝑝[𝑋] ∈ 𝐼m
𝑖𝑗

E𝑋∼𝑝[|𝑋 − 𝑚𝑖𝑗|] ∈ 𝐼md
𝑖𝑗

}

Empirical (2.1) with 𝑝𝑖𝑗

LET
deterministic shortest path with

the arc costs 𝑐𝑖𝑗 taken as 𝑚𝑖𝑗

A few remarks are in order. We choose Λ = {0.001, 0.002, 0.005}, this corresponds to

an average number of samples per arc of [5.5, 9.4, 25.1] respectively (we take at least one

sample per arc). The average arc length is 163 meters, hence we set Δ𝑡 = 0.02 second

to get a good accuracy. This parameter has a significant impact on the running time and

it could also be optimized. We include the Least Expected Time (LET) method as it is

a reasonably robust approach, although not tailored to the risk function considered, and

because it is very fast to solve. The confidence intervals used by the robust approaches are

percentile bootstrap 95 % confidence intervals derived from resampling the available data

with replacement. When solving the discretization schemes (2.6) and (2.11), ties in the

argument of the maximum are broken in favor of the (estimated) least expected travel time

to the destination. To solve the robust problems, we use the column generation scheme and

the special-purpose procedure described in Section 2.4.3.c while we use the scheme based

on fast Fourier transforms described in Section 2.3.2.b for the nominal approach.

61

2.5.2 Results

200 300 400 500 600 700 800
Budget at the origin (seconds)

0

5

10

15

20

Co
m
pu

ta
tio

n
tim

e
(s
ec

on
ds

)

Empirical
RobustM
RobustMD

Figure 2-5: Average computation time as a function of the time budget for 𝜆 = 0.001.

0.40 0.42 0.44 0.46 0.48 0.50
Budget at the origin (reduced)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Pr
ob
ab
ili
ty
 o
f o

n-
tim

e
ar
riv

al

Optimal
Empirical
LET
RobustM
RobustMD

(a) Average probability of on-time arrival.

0.40 0.42 0.44 0.46 0.48 0.50
Budget at the origin (reduced)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
Pr
ob
ab
ili
ty
 o
f o

n-
tim

e
ar
riv

al

Optimal
Empirical
LET
RobustM
RobustMD

(b) 5% worst-case probability of on-time ar-
rival.

Figure 2-6: 𝜆 = 0.001, average number of samples per link: ∼ 5.5.

The results are plotted in Figure 2-6, 2-7, and 2-8. Each of these figures corresponds to one

of the fraction 𝜆 ∈ Λ so as to see the impact of an increasing knowledge. The time budget

is “normalized”: 0 (resp. 1) corresponds to the minimum (resp. maximum) amount of time

it takes to reach 𝑑 from 𝑠. For each 𝜆, for each method in Table 2.2, for each time budget 𝑇 ,

and for each of the 100 simulations, we compute the actual probability of on-time arrival

of the corresponding strategy. The average (resp. 5 % worst-case) probability of on-time

arrival over the simulations is plotted on the figures labeled “a” (resp. “b”). The 5 % worst-

case measure, which corresponds to the average over the 5 simulations out 100 that yield

the lowest probability of arriving on-time, is particularly relevant as commuters opting for

62

0.40 0.42 0.44 0.46 0.48 0.50
Budget at the origin (reduced)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Pr
ob
ab
ili
ty
 o
f o

n-
tim

e
ar
riv

al

Optimal
Empirical
LET
RobustM
RobustMD

(a) Average probability of on-time arrival.

0.40 0.42 0.44 0.46 0.48 0.50
Budget at the origin (reduced)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Pr
ob
ab
ili
ty
 o
f o

n-
tim

e
ar
riv

al

Optimal
Empirical
LET
RobustM
RobustMD

(b) 5% worst-case probability of on-time ar-
rival.

Figure 2-7: 𝜆 = 0.002, average number of samples per link: ∼ 9.4.

0.40 0.42 0.44 0.46 0.48 0.50
Budget at the origin (reduced)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Pr
ob
ab
ili
ty
 o
f o

n-
tim

e
ar
riv

al

Optimal
Empirical
LET
RobustM
RobustMD

(a) Average probability of on-time arrival.

0.40 0.42 0.44 0.46 0.48 0.50
Budget at the origin (reduced)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
Pr
ob
ab
ili
ty
 o
f o

n-
tim

e
ar
riv

al

Optimal
Empirical
LET
RobustM
RobustMD

(b) 5% worst-case probability of on-time ar-
rival.

Figure 2-8: 𝜆 = 0.005, average number of samples per link: ∼ 25.1.

this risk function would expect the approach to have good results even under bad scenarios.

We also plot the average runtime for each of the method as a function of the time budget in

Figure 2-5.

Conclusions. As can be observed on the figures, Empirical is not competitive when only

a few samples are available. To be specific, RobustM slightly outperforms the other meth-

ods when there are very few measurements, see Figure 2-6, while RobustMD is a clear

winner when more samples are available, in terms of both average and worst-case perfor-

mances, see Figures 2-7 and 2-8. Observe that, as expected, the performance of Empirical

improves as more samples get available and Empirical eventually outperforms RobustM,

63

see Figure 2-8. Our interpretation of these results is that relying on quantities, either mo-

ments or distributions, that cannot be accurately estimated may be misleading even for

robust strategies. On the other hand, failure to capture the increasing knowledge on the ac-

tual travel-time probability distributions (e.g. by estimating more moments) as the amount

of available data increases may lead to poor performances.

2.6 Extensions

In this section, we sketch how to extend the results derived in Sections 2.3 and 2.4 when

either Assumption 2.1 or Assumption 2.2 is relaxed. Most of the results also extend when

both assumptions are relaxed at the same time but we choose to discuss one assumption at

a time to highlight their respective implications.

2.6.1 Relaxing Assumption 2.1: Markovian Costs

We consider here the case where the experienced costs of crossing arcs define a Markov

chain of finite order 𝑚. To simplify the presentation, we provide in details the extensions

of our previous results to the case 𝑚 = 1. Adapting these extensions to a general 𝑚

amounts to augmenting the state space of the underlying MDP by the costs of the last 𝑚

visited arcs. We emphasize that while Markov chains can model the reality of the decision

making process more accurately, this comes at a price: this requires an estimation of 𝑚-

dimensional probability distributions, and the computational time needed to find an optimal

strategy grows exponentially with 𝑚.

Extension for the nominal problem. A variant of Theorem 2.1 can be shown to hold

if the arc cost distributions are discrete. Under this assumption and as soon as the total

cost spent so far is larger than 𝑇 − 𝑇𝑓 , the optimal strategy coincides with the strategy

of minimizing the expected costs, which may no longer be a shortest path but can still be

shown to be a solution without cycles. Under the same assumption, Proposition 2.1 remains

64

valid under the following higher-dimensional dynamic program:

𝑢𝑑(𝑡, 𝑧, 𝜃) = 𝑓(𝑡) for 𝑡 ≤ 𝑇, 𝑧 ∈ 𝒜(𝑑), 𝜃 ∈ Θ𝑧𝑑

𝑢𝑖(𝑡, 𝑧, 𝜃) = max
𝑗∈𝒱(𝑖)

∫︁ ∞

0
𝑝𝑖𝑗(𝜔|𝑧, 𝜃) · 𝑢𝑗(𝑡 − 𝜔, 𝑖, 𝜔)d𝜔

for 𝑖 ̸= 𝑑, 𝑡 ≤ 𝑇, 𝑧 ∈ 𝒜(𝑖), 𝜃 ∈ Θ𝑧𝑖

𝜋*
𝑓 (𝑖, 𝑡, 𝑧, 𝜃) ∈ argmax

𝑗∈𝒱(𝑖)

∫︁ ∞

0
𝑝𝑖𝑗(𝜔|𝑧, 𝜃) · 𝑢𝑗(𝑡 − 𝜔, 𝑖, 𝜔)d𝜔

for 𝑖 ̸= 𝑑, 𝑡 ≤ 𝑇, 𝑧 ∈ 𝒜(𝑖), 𝜃 ∈ Θ𝑧𝑖,

(2.18)

where 𝒜(𝑖) denotes the set of immediate antecedents of 𝑖 in 𝒢, Θ𝑧𝑖 is the finite set of

possible values taken by 𝑐𝑧𝑖 for 𝑧 ∈ 𝒜(𝑖), and 𝑝𝑖𝑗(· | 𝑧, 𝜃) is the conditional distribution of

𝑐𝑖𝑗 given that the last visited node is 𝑧 and that 𝑐𝑧𝑖 = 𝜃. The discretization scheme of Section

2.3.2.a can be adapted for this new dynamic equation and the approximation guarantees

carry over. To solve this new discretization scheme, the label-setting approach from Section

2.3.2.b can be adapted by observing that the functions (𝑢𝑖(·, 𝑧, 𝜃))𝑖∈𝒱,𝑧∈𝒜(𝑖),𝜃∈Θ𝑧𝑖
can be

computed block by block by interval increments of size 𝛿inf . However, the schemes based

on fast Fourier transforms and the idea of zero-delay convolution do not apply anymore,

and we need to use the pointwise definition of convolution products with computational

complexity:

𝑂(max
(𝑖,𝑗)∈𝒜

|Θ𝑖𝑗| · |𝒜| · (𝑇 − 𝑇𝑓) + |𝒱|2 · 𝛿sup

Δ𝑡
).

Extension for the robust problem. For any (𝑖, 𝑗) ∈ 𝒜, 𝑧 ∈ 𝒜(𝑖), and 𝜃 ∈ Θ𝑧𝑖,

𝑝𝑖𝑗(· | 𝑧, 𝜃) is only known to lie in the ambiguity set 𝒫𝑖𝑗,𝑧,𝜃. If 𝒫𝑖𝑗,𝑧,𝜃 is only comprised

of discrete distributions with finite support Θ𝑖𝑗 , a variant of Theorem 2.2 can be shown to

hold. Specifically, as soon as the total cost spent so far is larger than 𝑇 − 𝑇 𝑟
𝑓 , the optimal

strategy coincides with the strategy of minimizing the worst-case expected costs, which can

also be shown not to cycle. Under this assumption, Proposition 2.3 remains valid under the

65

following higher-dimensional dynamic program:

𝑢𝑑(𝑡, 𝑧, 𝜃) = 𝑓(𝑡)

for 𝑡 ≤ 𝑇, 𝑧 ∈ 𝒜(𝑑), 𝜃 ∈ Θ𝑧𝑑

𝑢𝑖(𝑡, 𝑧, 𝜃) = max
𝑗∈𝒱(𝑖)

inf
𝑝𝑖𝑗∈𝒫𝑖𝑗,𝑧,𝜃

∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · 𝑢𝑗(𝑡 − 𝜔, 𝑖, 𝜔)d𝜔

for 𝑖 ̸= 𝑑, 𝑡 ≤ 𝑇, 𝑧 ∈ 𝒜(𝑖), 𝜃 ∈ Θ𝑧𝑖

𝜋*
𝑓,𝒫(𝑖, 𝑡, 𝑧, 𝜃) ∈ argmax

𝑗∈𝒱(𝑖)
inf

𝑝𝑖𝑗∈𝒫𝑖𝑗,𝑧,𝜃

∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · 𝑢𝑗(𝑡 − 𝜔, 𝑖, 𝜔)d𝜔

for 𝑖 ̸= 𝑑, 𝑡 ≤ 𝑇, 𝑧 ∈ 𝒜(𝑖), 𝜃 ∈ Θ𝑧𝑖.

(2.19)

The discretization scheme of Section 2.4.3.a can be adapted for this new set of equations

and the approximation guarantees of Proposition 2.4 carry over. Moreover, the label-setting

approach can also be adapted along the same lines as for the nominal problem. The ideas

underlying the algorithmic developments of Section 2.4.3.c remain valid but we now have

to recompute the convex hulls from scratch at each time step using Andrew’s monotone

chain convex hull algorithm, as opposed to using a dynamic convex hull algorithm, which

leads to the computational complexity:

𝑂(max
(𝑖,𝑗)∈𝒜

|Θ𝑖𝑗| · log(max
(𝑖,𝑗)∈𝒜

|Θ𝑖𝑗|) ·
|𝒜| · (𝑇 − 𝑇 𝑟

𝑓) + |𝒱|2 · 𝛿sup

Δ𝑡
· log(

|𝒱| + 𝑇 −𝑇 𝑟
𝑓

𝛿inf

𝜖
)),

when we want to compute an 𝜖-approximate strategy solution to the discretization scheme

(2.11).

2.6.2 Relaxing Assumption 2.2: 𝜏 -dependent Arc Cost Probability Dis-

tributions

Extension for the nominal problem. For any 𝜏 ≥ 0 and (𝑖, 𝑗) ∈ 𝒜, we denote by 𝑝𝜏
𝑖𝑗

the distribution of 𝑐𝜏
𝑖𝑗 and by 𝑚𝜏

𝑖𝑗 the mean of 𝑝𝜏
𝑖𝑗 . Theorem 2.1 remains valid if, for any

(𝑖, 𝑗) ∈ 𝒜, 𝑚𝜏
𝑖𝑗 converges as 𝜏 → ∞, in which case the shortest-path tree mentioned in

the statement is defined with respect to the limits of the mean arc costs. For instance,

this assumption is satisfied when the distributions are time-varying during a peak period

66

and stationary anytime thereafter, see [64]. Under this assumption, Proposition 2.1 also

remains valid but for the slightly modified dynamic program:

𝑢𝑑(𝑡) = 𝑓(𝑡) 𝑡 ≤ 𝑇

𝑢𝑖(𝑡) = max
𝑗∈𝒱(𝑖)

∫︁ ∞

0
𝑝𝑇 −𝑡

𝑖𝑗 (𝜔) · 𝑢𝑗(𝑡 − 𝜔)d𝜔 𝑖 ̸= 𝑑, 𝑡 ≤ 𝑇

𝜋*
𝑓 (𝑖, 𝑡) ∈ argmax

𝑗∈𝒱(𝑖)

∫︁ ∞

0
𝑝𝑇 −𝑡

𝑖𝑗 (𝜔) · 𝑢𝑗(𝑡 − 𝜔)d𝜔 𝑖 ̸= 𝑑, 𝑡 ≤ 𝑇.

(2.20)

The discretization scheme of Section 2.3.2.a can be trivially adapted for this new dynamic

equation, although we may loose the approximation guarantees provided by Proposition

2.2. For them to carry over, we need additional assumptions. To be specific, one of the

following properties must be satisfied:

∙ the arc cost distributions vary smoothly, in the sense that, for any arc (𝑖, 𝑗) ∈ 𝒜,

there exists 𝐾 such that the Kolmogorov distance between 𝑝𝜏1
𝑖𝑗 and 𝑝𝜏2

𝑖𝑗 is smaller than

𝐾 · |𝜏1 − 𝜏2| for any 𝜏1, 𝜏2 ≥ 0,

∙ the arc cost distributions are discrete and the discretization length Δ𝑡 is chosen ap-

propriately,

∙ the arc cost distributions change finitely many times and the discretization length Δ𝑡

is chosen appropriately.

To solve the discretization scheme, the label-setting approach described in Section 2.3.2.b

remains relevant but we now have to apply the pointwise definition of convolution prod-

ucts, as opposed to using fast Fourier transforms and zero-delay convolutions, with com-

putational complexity quadratic in 1
Δ𝑡

:

𝑂(|𝒜| · (𝑇 − 𝑇𝑓) + |𝒱|2 · 𝛿sup

Δ𝑡
· 𝛿sup − 𝛿inf

Δ𝑡
).

Extension for the robust problem. For any 𝜏 ≥ 0 and (𝑖, 𝑗) ∈ 𝒜, 𝑝𝜏
𝑖𝑗 is only known to

lie in the ambiguity set 𝒫𝜏
𝑖𝑗 . First observe that (2.3) turns into:

sup
𝜋∈Π

inf
∀𝜏,∀(𝑖,𝑗)∈𝒜, 𝑝𝜏

𝑖𝑗∈𝒫𝜏
𝑖𝑗

Ep𝜏 [𝑓(𝑇 − 𝑋𝜋)],

67

which is exactly the robust counterpart of (2.1), as opposed to a conservative approxima-

tion when the arc cost distributions are stationary. Theorem 2.2 remains valid if, for any

(𝑖, 𝑗) ∈ 𝒜, max𝑝𝑖𝑗∈𝒫𝜏
𝑖𝑗
E𝑋∼𝑝𝑖𝑗

[𝑋] converges as 𝜏 → ∞, in which case the shortest-path tree

mentioned in the statement is defined with respect to the limits. Again, this assumption is,

for instance, satisfied when the ambiguity sets are time-varying during a peak period and

stationary anytime thereafter. Under this assumption, Proposition 2.3 also remains valid

but for the slightly modified dynamic program:

𝑢𝑑(𝑡) = 𝑓(𝑡) 𝑡 ≤ 𝑇

𝑢𝑖(𝑡) = max
𝑗∈𝒱(𝑖)

inf
𝑝𝑖𝑗∈𝒫𝑇 −𝑡

𝑖𝑗

∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · 𝑢𝑗(𝑡 − 𝜔)d𝜔 𝑖 ̸= 𝑑, 𝑡 ≤ 𝑇

𝜋*
𝑓,𝒫(𝑖, 𝑡) ∈ argmax

𝑗∈𝒱(𝑖)
inf

𝑝𝑖𝑗∈𝒫𝑇 −𝑡
𝑖𝑗

∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · 𝑢𝑗(𝑡 − 𝜔)d𝜔 𝑖 ̸= 𝑑, 𝑡 ≤ 𝑇.

(2.21)

Similarly as for the nominal problem, the discretization scheme can be trivially adapted but

we may loose the approximation guarantees provided by Proposition 2.4. For them to carry

over, one of the following properties has to be satisfied:

∙ the ambiguity sets vary smoothly, in the sense that, for any arc (𝑖, 𝑗) ∈ 𝒜, there

exists 𝐾 such that the Kolmogorov distance between 𝒫𝜏1
𝑖𝑗 and 𝒫𝜏2

𝑖𝑗 is smaller than

𝐾 · |𝜏1 − 𝜏2| for any 𝜏1, 𝜏2 ≥ 0,

∙ the ambiguity sets are only comprised of discrete distributions and the discretization

length Δ𝑡 is chosen appropriately,

∙ the ambiguity sets change finitely many times and the discretization length Δ𝑡 is

chosen appropriately.

In contrast to the nominal problem, all the algorithms developed in Section 2.4.3.c can still

be used to solve the discretization sheme with the same computational complexity as long

as the ambiguity sets are defined by confidence intervals on piecewise affine statistics, as

precisely defined in Section 2.4.3.b.

68

Chapter 3

No-Regret Learnability for Piecewise

Linear Losses

3.1 Introduction

Online convex optimization has emerged as a popular approach to online learning, bringing

together convex optimization methods to tackle problems where repeated decisions need

to be made in an unknown, possibly adversarial, environment. A full-information online

convex optimization problem is a repeated zero-sum game between a learner (the player)

and the environment (the opponent). There are 𝑇 time periods. At each round 𝑡, the player

has to choose a point 𝑓𝑡 in a convex set ℱ . Subsequent to the choice of 𝑓𝑡, the environment

reveals a point 𝑧𝑡 ∈ 𝒵 and the loss incurred to the player is ℓ(𝑧𝑡, 𝑓𝑡), for a loss function

ℓ that is convex in its second argument. Both players are aware of all the parameters of

the game, namely ℓ, 𝒵 , and ℱ , prior to starting the game. Additionally, at the end of each

period, the opponent’s move is revealed to the player. The performance of the player is

measured in terms of a quantity coined regret, defined as the gap between the accumulated

losses incurred by the player and the best performance he could have achieved in hindsight

with a non-adaptive strategy:

𝑟𝑇 ((𝑧𝑡)𝑡=1,··· ,𝑇 ,(𝑓𝑡)𝑡=1,··· ,𝑇) =
𝑇∑︁

𝑡=1
ℓ(𝑧𝑡, 𝑓𝑡) − inf

𝑓∈ℱ

𝑇∑︁
𝑡=1

ℓ(𝑧𝑡, 𝑓).

69

In this field, one of the primary focus is to design algorithms, i.e. strategies to select

(𝑓𝑡)𝑡=1,··· ,𝑇 so as to keep the regret as small as possible even when facing an adversarial

opponent. Particular emphasis is placed on how the regret scales with 𝑇 because this de-

pendence relates to a notion of learning rate. If 𝑟𝑇 = 𝑜(𝑇), the player is, in some sense,

learning the game in the long-run since the gap between experienced and best achievable

average cumulative payoffs vanishes as 𝑇 → ∞. Furthermore, the smaller the growth rate

of 𝑟𝑇 , the faster the learning. A natural question to ask is what is the best learning rate that

can be achieved for a given game (ℓ, 𝒵, ℱ). Mathematically, this is equivalent to charac-

terizing the growth rate of the smallest regret that can be achieved by a player against a

completely adversarial opponent, expressed as:

𝑅𝑇 (ℓ, 𝒵, ℱ) = inf
𝑓1∈ℱ

sup
𝑧1∈𝒵

· · · inf
𝑓𝑇 ∈ℱ

sup
𝑧𝑇 ∈𝒵

[
𝑇∑︁

𝑡=1
ℓ(𝑧𝑡, 𝑓𝑡) − inf

𝑓∈ℱ

𝑇∑︁
𝑡=1

ℓ(𝑧𝑡, 𝑓)],

which we refer to as the value of the game (ℓ, 𝒵, ℱ). Aside from pure learning consid-

erations, the growth rate of 𝑅𝑇 (ℓ, 𝒵, ℱ) has important consequences in a variety of fields

where no-regret algorithms are used to compute complex quantities, e.g. Nash equilibria

in Game Theory [70] or solutions to optimization problems in convex optimization [42],

in which case this growth rate translates into the number of iterations required to compute

the quantity with a given precision. We investigate this question in a systematic fashion by

looking at the interplay between ℱ and 𝒵 for the following class of piecewise linear loss

functions:

ℓ(𝑧, 𝑓) = max
𝑥∈𝒳 (𝑧)

(𝐶(𝑧)𝑓 + 𝑐(𝑧))T𝑥, (3.1)

where, for any 𝑧 ∈ 𝒵 , 𝐶(𝑧) is a matrix, 𝑐(𝑧) is a vector, and 𝒳 (𝑧) ⊂ R𝑑 is either a finite set

or a polyhedron {𝑥 ∈ R𝑑 | 𝐴(𝑧)𝑥 ≤ 𝑏(𝑧)} with 𝐴(𝑧) a matrix and 𝑏(𝑧) a vector. This type

of loss functions arises in a number of important contexts such as online linear optimization,

repeated zero-sum Stackelberg games, online prediction with side information, and online

two-stage optimization, as illustrated in Section 3.1.1. Throughout the chapter, we make

the following standard assumption so as to have the game well-defined.

Assumption 3.1. 𝒵 is a non-empty compact subset of R𝑑𝑧 and ℱ is a non-empty, convex,

70

and compact subset of R𝑑𝑓 . For any choice of 𝑧 ∈ 𝒵 , the set 𝒳 (𝑧) is not empty. The loss

function ℓ is bounded on 𝒵 × ℱ . Moreover, either 𝒵 has finite cardinality or ℓ(·, 𝑓) is

continuous for any 𝑓 ∈ ℱ .

Contributions A number of no-regret algorithms developed in the literature can be used

as black boxes for the setting considered in this chapter in order to get 𝑂(
√

𝑇) bounds on

regret, e.g. Exponential Weights [95], Online Gradient Descent [106], and more generally

Online Mirror Descent [48], to cite a few. To get better learning rates, other approaches

have been proposed but they usually rely on either the curvature of ℓ, for instance if ℓ is

strongly convex in its second argument [46], which is not the case here, or more information

about the sequence (𝑧𝑡)𝑡=1,··· ,𝑇 , see for example [79], but which is not available in the

fully adversarial setting. Aside from particular instances, e.g. [33] and [3], it is in general

unknown how the interplay between ℓ, 𝒵 , and ℱ determines the growth rate of 𝑅𝑇 (ℓ, 𝒵, ℱ).

The main insight from this chapter is that the curvature of the decision maker’s set of moves

ℱ is a determining factor for the growth rate of 𝑅𝑇 (ℓ, 𝒵, ℱ): if ℱ is a polyhedron then the

decision maker is doomed to a rate of Θ(
√

𝑇), otherwise, if it is curved, the rate can be

exponentially smaller. Specifically, we show that:

1. When ℱ is a polyhedron, either 𝑅𝑇 (ℓ, 𝒵, ℱ) = 0 or 𝑅𝑇 (ℓ, 𝒵, ℱ) = Ω(
√

𝑇). To the

best of our knowledge, this result constitutes the first systematic Ω(
√

𝑇) lower bound

on regret obtained for a large class of piecewise linear loss functions. This lower

bound applies to online combinatorial optimization, also to many experts settings

and repeated zero-sum Stackelberg games where the player resorts to a randomized

strategy, as well as to many online prediction problems with side information and

online two-stage optimization problems.

2. When (i) ℓ is linear, (ii) ℱ = {𝑓 ∈ R𝑑𝑓 | 𝐹 (𝑓) ≤ 0}, for 𝐹 either a strongly

convex function or 𝐹 (𝑓) = ‖𝑓‖ℱ − 𝐶 where 𝐶 ≥ 0 and ‖ ‖ℱ is a 𝑞−uniformly

convex norm with 𝑞 ∈ [2, 3), and (iii) 0 does not lie in the convex hull of 𝒵 , we

have 𝑅𝑇 (ℓ, 𝒵, ℱ) = 𝑜(
√

𝑇), achieved by the Follow-The-Leader algorithm [56].

This result applies to repeated zero-sum games where the player picks a cost vector

71

Table 3.1: Growth rate of 𝑅𝑇 in several settings of interest.

ℓ(𝑧, 𝑓) ℱ conditions on 𝒵 𝑅𝑇

(3.1) any polyhedron 0 or Θ(
√

𝑇)
𝑧T𝑓 any convex set 0 ∈ int(conv(𝒵)) 0 or Θ(

√
𝑇)

𝑧T𝑓 𝐵𝑝(0, 1) for 𝑝 ∈ (1, 3) 0 /∈ conv(𝒵)

⎧⎨⎩
𝑂(log(𝑇)) if 𝑝 ∈ (1, 2)
0 or Θ(log(𝑇)) if 𝑝 = 2
𝑂(𝑇

𝑝−2
𝑝−1) if 𝑝 ∈ (2, 3)

.

(e.g. arc costs) of bounded Euclidean norm and the opponent chooses an element

in a combinatorial set (e.g. a path). This also applies to non-linear loss functions

when 0 does not lie in the convex hull of the set of subgradients of ℓ with respect

to the second-coordinate by a standard reduction to linear loss functions, see [106].

Note that assumption (iii) is required to get 𝑜(
√

𝑇) rates as 𝑅𝑇 (ℓ, 𝒵, ℱ) = Ω(
√

𝑇)

for linear losses when 0 lies in the interior of the convex hull of 𝒵 , see Section

3.2. Also note that, as a byproduct of our results, one can combine the Follow-

The-Leader algorithm with Online Gradient Descent using the strategy developed in

[86] to get 𝑜(
√

𝑇) regret if 0 /∈ conv(𝒵) and the near-optimal rate 𝑂(
√︁

𝑇 log(𝑇)) if

0 ∈ conv(𝒵) when (i) and (ii) hold but it is unknown whether 0 /∈ conv(𝒵).

The most interesting cases are summarized in Table 3.1.

Notations For a set 𝑆 ⊂ R𝑑, conv(𝑆) (resp. int(𝑆)) refers to the convex hull (resp

interior) of this set. When 𝑆 is compact, we define 𝒫(𝑆) as the set of probability measures

on 𝑆. For 𝑥 ∈ R𝑑, ‖𝑥‖ refers to the 𝐿2-norm of 𝑥 while 𝐵𝑝(𝑥, 𝜖) denotes the closed

𝐿𝑝 ball centered at 𝑥 with width 𝜖. For a collection of random variables (𝑍1, · · · , 𝑍𝑡),

𝜎(𝑍1, · · · , 𝑍𝑡) refers to the sigma-field generated by 𝑍1, · · · , 𝑍𝑡. For a random variable 𝑍

and a probability distribution 𝑝, we write 𝑍 ∼ 𝑝 if 𝑍 is distributed according to 𝑝.

3.1.1 Applications

We list examples of situations where losses of the type (3.1) arise.

72

Online Linear Optimization In this setting, the loss function is given by ℓ(𝑧, 𝑓) = 𝑧T𝑓 .

In particular, this includes:

∙ online combinatorial optimization where the opponent picks a cost in [0, 1]𝑑𝑧 and ℱ

is defined as the convex hull of a finite set of elements (e.g. paths, spanning trees,

and matchings),

∙ experts settings where the player picks a distribution over the experts’ advice (in

which case ℱ is also a polyhedron) and the opponent reveals a cost for each of the

experts.

In online linear optimization, lower bounds on regret are often derived by introducing a

randomized zero-mean i.i.d. opponent, see [3]. However, this is possible only if 0 is in the

interior of the convex hull of 𝒵 , which is typically not the case in online combinatorial op-

timization. A general feature of online linear optimization that will turn out to be important

in the analysis is that there is no loss of generality in assuming that 𝒵 is a convex set in the

following sense.

Lemma 3.1. When ℓ(𝑧, 𝑓) = 𝑧T𝑓 , the games (ℓ, 𝒵, ℱ) and (ℓ, conv(𝒵), ℱ) are equivalent,

i.e.:

𝑅𝑇 (ℓ, 𝒵, ℱ) = 𝑅𝑇 (ℓ, conv(𝒵), ℱ).

Repeated Zero-Sum Stackelberg Games A repeated zero-sum Stackelberg game is a

repeated zero-sum game with the particularity that one of the players, referred to as the

leader, has to commit first to a randomized strategy 𝑓 without knowing which of the 𝑁

other players, indexed by 𝑧, he is going to face at the next round. The interaction between

the leader and player 𝑧 ∈ {1, · · · , 𝑁} is captured by a payoff matrix 𝑀(𝑧). Once the leader

is set on a strategy, the identity of the other player is revealed and the latter “best-responds”

to the leader’s strategy, leading to the following expression for the loss function:

ℓ(𝑧, 𝑓) = max
𝑖=1,··· ,𝐼𝑧

𝑒T
𝑖 𝑀(𝑧)𝑓,

where 𝐼𝑧 is the number of possible moves for player 𝑧. We illustrate the modeling power

of this framework with a network security problem that has applications in urban network

73

security [53] and fare evasion prevention in transit networks [54]. Consider a directed

graph 𝐺 = (𝑉, 𝐸). The leader has a limited number of patrols that can be assigned to arcs

in order to intercept the attackers. A configuration 𝛾 ∈ Γ corresponds to a valid assignment

of patrols to arcs and is represented by a vector (𝑌 𝛾
𝑖𝑗)(𝑖,𝑗)∈𝐸 with 𝑌 𝛾

𝑖𝑗 = 1 if a patrol is

assigned to arc (𝑖, 𝑗) and 𝑌 𝛾
𝑖𝑗 = 0 otherwise. The leader chooses a mixed strategy 𝑓 over

the set of feasible allocations. Attacker 𝑧 ∈ {(𝑖1, 𝑗1), · · · , (𝑖𝑁 , 𝑗𝑁)} wants to go from 𝑧1 to

𝑧2 while minimizing the probability of being intercepted. This interaction is captured by

the loss function:

ℓ(𝑧, 𝑓) = max
𝑥∈𝒳 (𝑧)

∑︁
𝛾∈Γ

−𝑓𝛾𝑥𝛾,

with 𝒳 (𝑧) = {(max(𝑖,𝑗)∈𝐸 𝑋𝜋
𝑖𝑗𝑌

𝛾
𝑖𝑗)𝛾∈Γ | 𝜋 ∈ Π(𝑧)}, where Π(𝑧) is the set of directed paths

joining 𝑧1 to 𝑧2 in 𝐺 and 𝑋𝜋
𝑖𝑗 = 1 if (𝑖, 𝑗) ∈ 𝜋 and 𝑋𝜋

𝑖𝑗 = 0 otherwise. The presentation

of repeated Stackelberg games given here follows the model introduced in [18] for general,

i.e. not necessarily zero-sum, Stackelberg security games. In this more general setting, the

loss function may not be convex and a possible approach, see [18], is to add another layer

of randomization which casts the problem back into the realm of online linear optimization.

Online Prediction with Side Information This setting has a slightly different flavor as

the opponent first provides some side information 𝑥, then the player gets to pick 𝑓 ∈ ℱ

and, finally, the opponent reveals the correct prediction 𝑦. Nonetheless, the lower bounds

established here also apply to this setting through a reduction to the setting without side

information, as detailed at the end of Section 3.2. In the standard linear binary prediction

problem, where ℱ is a 𝐿2 ball, 𝑦 ∈ {−1, 1}, and 𝑥 lies in a 𝐿2 ball, loss functions of the

form (3.1) are commonly used, e.g. the absolute loss ℓ((𝑥, 𝑦), 𝑓) = |𝑦 −𝑥T𝑓 | and the hinge

loss ℓ((𝑥, 𝑦), 𝑓) = max(0, 1 − 𝑦𝑥T𝑓). This is also true for linear multiclass prediction

problems with the multiclass hinge loss:

ℓ((𝑥, 𝑦), 𝑓) = max
𝑗=1,··· ,𝑁

(1{𝑗 ̸= 𝑦} + 𝑓 T
𝑗 𝑥 − 𝑓 T

𝑦 𝑥),

where 𝑁 denotes the number of classes, 𝑦 ∈ {1, · · · , 𝑁}, and 𝑓 is the vector obtained by

concatenation of the vectors 𝑓1, · · · , 𝑓𝑁 . In the online approach to collaborative filtering,

74

a typical loss function is ℓ((𝑖, 𝑗, 𝑦), 𝑀) = |𝑀(𝑖, 𝑗) − 𝑦| where 𝑀 is a (user, item) matrix

with bounded trace norm, (𝑖, 𝑗) is a (user, item) pair, and 𝑦 is the rating of item 𝑗 by user 𝑖.

Online Two-Stage Optimization This setting captures situations where the decision

making process can be broken down into two consecutive stages. In the first stage, the

player makes a decision represented by 𝑓 ∈ ℱ . Subsequently, the opponent discloses some

information 𝑧 ∈ 𝒵 , e.g. a demand vector, and then the player chooses another decision vec-

tor 𝑥 in the second stage, taking into account this newly available information to optimize

the objective function. The loss function takes on the following form:

ℓ(𝑧, 𝑓) = 𝑐T
1𝑓 + min

𝑥∈R𝑑

𝐴𝑓+𝐵𝑥≤𝑧

𝑐T
2𝑥,

where 𝑐1 and 𝑐2 are cost vectors and 𝐴 and 𝐵 are matrices. Using strong duality, this loss

function can be expressed in the canonical form (3.1). This framework finds applications in

the operation of power grids, where 𝑧 represents the demand in electricity or the availability

of various energy sources. Since 𝑧 is unknown when it is time to set up conventional

generators, the decision maker has to adjust the production or buy additional capacity from

a spot market to meed the demand, see for example [57].

Congestion Control We consider a variant of the congestion network game described

in [27]. A decision maker has to decide how to ship a given set commodities through a

network 𝐺 = (𝑉, 𝐸). This decision can be equivalently represented by a flow vector 𝑓 .

Because the amount of commodities is assumed to be substantial, implementing 𝑓 will

cause congestion which will impact the other users of the network, represented by a flow

vector 𝑧. The problem faced by the decision maker is to cause as little delay as possible to

the other users with the additional difficulty that the traffic pattern 𝑧 is not known ahead of

time. Each arc 𝑒 ∈ 𝐸 has an associated latency function that is convex in the flow on this

arc:

𝑐𝑒(𝑓 + 𝑧) = max
𝑘=1,··· ,𝐾

(𝑐𝑘
𝑒 · (𝑓𝑒 + 𝑧𝑒) + 𝑠𝑘

𝑒).

75

As a result, the total delay incurred to the other users can be expressed as:

ℓ(𝑧, 𝑓) =
∑︁
𝑒∈𝐸

𝑧𝑒 max
𝑘=1,··· ,𝐾

(𝑐𝑘
𝑒 · (𝑓𝑒 + 𝑧𝑒) + 𝑠𝑘

𝑒).

3.1.2 Related Work

Asymptotically matching lower and upper bounds on 𝑅𝑇 (ℓ, 𝒵, ℱ) can be found in the

literature for a variety of loss functions although the discussion tends to be restrictive as

far as the decision sets ℱ and 𝒵 are concerned. The value of the game is shown to be

Θ(log 𝑇) for three standard examples of curved loss functions. The first example, studied

in [3], is the quadratic loss where ℓ(𝑧, 𝑓) = 𝑧T𝑓 +𝜎‖𝑓‖2
2 for 𝜎 > 0, with 𝒵 and ℱ bounded

𝐿2 balls. The second, studied in [96], is the online linear regression setting where the

opponent plays 𝑧 = (𝑥, 𝑦) ∈ 𝒵 = 𝐵∞(0, 1) × [−𝐶𝑦, 𝐶𝑦] for 𝐶𝑦 > 0 (𝐵∞(0, 1) denotes

the unit 𝐿∞ ball), the loss is ℓ((𝑥, 𝑦), 𝑓) = (𝑦 − 𝑥T𝑓)2, and ℱ is an 𝐿2 ball. The last one,

from [71], is the log-loss ℓ(𝑧, 𝑓) = − log(𝑧T𝑓) with 𝒵 any compact set in R𝑑
+ and ℱ the

simplex of dimension 𝑑. For non-curved losses, evidence suggests that the value of the

game increases exponentially from Θ(log(𝑇)) to Θ(
√

𝑇). Indeed, Ω(
√

𝑇) lower bounds

are proved for several instances involving the absolute loss ℓ(𝑧, 𝑓) = |𝑧 − 𝑓 | in [32],

typically with 𝒵 = {0, 1} and ℱ = [0, 1]. For purely linear loss functions, the authors

in [3] establish a Ω(
√

𝑇) lower bound on 𝑅𝑇 (ℓ, 𝒵, ℱ) when 𝒵 is an 𝐿2 ball centered at 0

and ℱ is either an 𝐿2 ball or a bounded rectangle. This result was later generalized in [2]

and shown to hold for ℱ any unit ball and 𝒵 its dual ball. The authors in [33] investigate

the experts setting, i.e. 𝒵 = [0, 1]𝑑 and ℱ is the simplex of dimension 𝑑, and proves the

same Ω(
√

𝑇) lower bound (which also holds if 𝒵 is the simplex of dimension 𝑑, see [2]).

Lower bounds on regret of order Ω(
√

𝑇) are established in [82] when ℓ is the absolute

loss for a prediction with side information setting more general than the one considered

in this chapter where the player picks a function 𝑓(·), the opponent picks a pair (𝑥, 𝑦),

and the loss is ℓ((𝑥, 𝑦), 𝑓(·)) = |𝑓(𝑥) − 𝑦|. The list of results listed above is far from

being exhaustive but provides a good picture of the current state of the art. For each loss

function, the intrinsic limitations of online algorithms are well understood, usually with the

construction of a particular example of ℱ and 𝒵 for which a lower bound on 𝑅𝑇 (ℓ, 𝒵, ℱ)

76

asymptotically matches the best guarantee achieved by one of these algorithms. We aim at

studying the value of the game in a more systematic fashion, using tools rooted in duality

theory and sensitivity analysis. All the proofs are deferred to the Appendix.

3.2 Lower Bounds

Unless otherwise stated, we assume throughout this section that ℓ can be written in the

form (3.1). We build on a powerful result rooted in von Neumann’s minimax theorem that

enables the derivation of tight lower and upper bounds on 𝑅𝑇 (ℓ, 𝒵, ℱ) by recasting the

value of the game in a backward order.

Theorem 3.1. From [2]

𝑅𝑇 (ℓ, 𝒵, ℱ) = sup
𝑝

E
[︂ 𝑇∑︁

𝑡=1
inf

𝑓𝑡∈ℱ
E[ℓ(𝑍𝑡, 𝑓𝑡)|𝑍1, · · · , 𝑍𝑡−1] − inf

𝑓∈ℱ

𝑇∑︁
𝑡=1

ℓ(𝑍𝑡, 𝑓)
]︂
,

where the supremum is taken over the distribution 𝑝 of the random variables (𝑍1, · · · , 𝑍𝑇)

in 𝒵𝑇 .

Any choice for 𝑝 yields a lower bound on 𝑅𝑇 (ℓ, 𝒵, ℱ). The following result identifies a

canonical choice for 𝑝 that leads to Ω(
√

𝑇) lower bounds on regret.

Lemma 3.2. Adapted from [2]

If we can find a distribution 𝑝 on 𝒵 and two points 𝑓1 and 𝑓2 in argmin𝑓∈ℱ E[ℓ(𝑍, 𝑓)] such

that ℓ(𝑍, 𝑓1) ̸= ℓ(𝑍, 𝑓2) with positive probability for 𝑍 ∼ 𝑝, then 𝑅𝑇 (ℓ, 𝒵, ℱ) = Ω(
√

𝑇).

A distribution 𝑝 satisfying the requirements of Lemma 3.2 can be viewed as an equalizing

strategy for the opponent. This concept, formalized in [81], roughly refers to randomized

strategies played by the opponent that cause the player’s decisions to be completely irrel-

evant from a regret standpoint. These strategies are intrinsically hard to play against and

often lead to tight lower bounds. To gain some intuition about this result, suppose that the

opponent generates an independent copy of 𝑍 at each round 𝑡, which we denote by 𝑍𝑡.

In the adversarial setting considered in this chapter, the player is aware of the opponent’s

strategy but does not get to see the realization of 𝑍𝑡 before committing to a decision. For

77

this reason, at any round, 𝑓1 and 𝑓2 are optimal moves that are completely equivalent from

the player’s perspective. However, in hindsight, i.e. once all the realizations of the 𝑍𝑡’s

have been revealed, 𝑓1 and 𝑓2 are typically not equivalent because ℓ(𝑍𝑡, 𝑓1) ̸= ℓ(𝑍𝑡, 𝑓2)

with positive probability and one of these two moves will turn out to be

max(0,
𝑇∑︁

𝑡=1
ℓ(𝑍𝑡, 𝑓1) − ℓ(𝑍𝑡, 𝑓2))

suboptimal which, in expectation, is of order Ω(
√

𝑇) by the central limit theorem. Given

the conditions imposed on 𝑝, it is convenient to work with the following equivalence rela-

tion.

Definition 3.1. We define the equivalence relation ∼ℓ on ℱ by 𝑓𝑎 ∼ℓ 𝑓𝑏 for 𝑓𝑎, 𝑓𝑏 ∈ ℱ if

and only if ℓ(𝑧, 𝑓𝑎) = ℓ(𝑧, 𝑓𝑏) for all 𝑧 ∈ 𝒵 .

In Theorem 3.2, we show that we can systematically, with the only exception of trivial

games defined below, construct a distribution 𝑝 satisfying the requirements of Lemma 3.2

whenever ℱ is a polyhedron.

Definition 3.2. The game (ℓ, 𝒵, ℱ) is said to be trivial if and only if

∃𝑓 * ∈ ℱ such that ∀𝑧 ∈ 𝒵, ℓ(𝑧, 𝑓 *) ≤ min
𝑓∈ℱ

ℓ(𝑧, 𝑓).

A simple example of a trivial game is (ℓ(𝑧, 𝑓) = 𝑧𝑓, [0, 1], [0, 1]), where ℓ(𝑧, 𝑓) ≥ 0

∀𝑓 ∈ [0, 1] and ∀𝑧 ∈ [0, 1], with ℓ(𝑧, 𝑓) = 0 if 𝑓 = 0 irrespective of 𝑧. If the game is

trivial, the player will always play 𝑓 * irrespective of the time horizon and of the opponent’s

strategy observed so far to obtain zero regret. As it turns out, this uniquely identifies trivial

games as we establish in Lemma 3.3.

Lemma 3.3. For any 𝑇 ∈ N, 𝑅𝑇 (ℓ, 𝒵, ℱ) ≥ 0. Moreover, in any of the following cases:

1. 𝒵 has finite cardinality,

2. ℓ(·, 𝑓) is continuous for any choice of 𝑓 ∈ ℱ ,

𝑅𝑇 (ℓ, 𝒵, ℱ) = 0 if and only if the game is trivial.

78

The following result shows that, in most cases of interest, we can drastically restrict the

power of the opponent while still preserving the nature of the game. This enables us to

focus on the case where 𝒵 is finite.

Lemma 3.4. Suppose that ℓ(·, 𝑓) is continuous for any choice of 𝑓 ∈ ℱ . If the game

(ℓ, 𝒵, ℱ) is not trivial, there exists a finite subset 𝒵 ⊆ 𝒵 such that the game (ℓ, 𝒵, ℱ) is

not trivial.

We are now ready to derive the Ω(
√

𝑇) lower bound on regret. The key idea behind the

proof is that finding an equalizing strategy amounts to performing a sensitivity analysis for

a well-chosen linear program.

Theorem 3.2. Suppose that ℱ is a polyhedron. In any of the following cases:

1. 𝒵 has finite cardinality,

2. ℓ(·, 𝑓) is continuous for any choice of 𝑓 ∈ ℱ ,

either the game is trivial or 𝑅𝑇 (ℓ, 𝒵, ℱ) = Ω(
√

𝑇).

Proof. We sketch the proof, see the Appendix for more details. Without loss of gener-

ality, we may assume that the game is not trivial, that 𝒵 is finite by Lemma 3.4, and

that 𝒳 (𝑧) is finite for any 𝑧 ∈ 𝒵 since otherwise, if 𝒳 (𝑧) is a polyhedron, the maxi-

mum in (3.1) must be attained at one of the finitely many extreme points of 𝒳 (𝑧). Write

𝒵 = {𝑧𝑛 | 1 ≤ 𝑛 ≤ 𝑁}. Without loss of generality, we can construct two probability dis-

tributions (𝑝0(𝑛))1≤𝑛≤𝑁 and (𝑝1(𝑛))1≤𝑛≤𝑁 such that: (i) there is a single equivalence class

𝑓 * (resp 𝑓 **) in argmin𝑓∈ℱ E𝑝0 [ℓ(𝑍, 𝑓)] (resp. argmin𝑓∈ℱ E𝑝1 [ℓ(𝑍, 𝑓)]), otherwise we are

done by Lemma 3.2, and (ii) 𝑓 * and 𝑓 ** do not belong to the same equivalence class (using

the fact that the game is not trivial). We move on to show that there must exist 𝛼 ∈ (0, 1)

such that there are at least two equivalence classes in 𝜑(𝛼) = argmin𝑓∈ℱ E𝑝𝛼 [ℓ(𝑍, 𝑓)],

where the distribution 𝑝𝛼 is defined as 𝑝𝛼 = (1 − 𝛼)𝑝0 + 𝛼𝑝1. This will conclude the

proof by Lemma 3.2. For any 𝑓 ∈ ℱ , define 𝐼(𝑓) = {𝛼 ∈ [0, 1] | 𝑓 ∈ 𝜑(𝛼)}.

Since 𝛼 → E𝑝𝛼 [ℓ(𝑍, 𝑓)] is linear in 𝛼, 𝐼(𝑓) is a closed interval. Moreover, note that

79

min𝑓∈ℱ E𝑝𝛼 [ℓ(𝑍, 𝑓)] is equal to the optimal value of the optimization problem:

min
𝑞1,··· ,𝑞𝑁 ,𝑓

𝑞T((1 − 𝛼)𝑝0 + 𝛼𝑝1)

subject to 𝑞 = (𝑞1, · · · , 𝑞𝑁)

𝑞𝑛 ≥ (𝐶(𝑧𝑛)𝑓 + 𝑐(𝑧𝑛))T𝑥, ∀𝑥 ∈ 𝒳 (𝑧𝑛), ∀𝑛

𝑓 ∈ ℱ , 𝑞1, · · · , 𝑞𝑁 ∈ R.

Since ℱ is a polyhedron and 𝒳 (𝑧𝑛) is finite for any 𝑛, this optimization problem is a

linear program. Denoting by {𝑓1, · · · , 𝑓𝐿} the projections onto the 𝑓 coordinate of the

extreme points of the feasible set, there exists, for any 𝛼 ∈ [0, 1], 𝑙 ∈ {1, · · · , 𝐿} such that

𝑓𝑙 ∈ 𝜑(𝛼). Hence, we can write [0, 1] = ∪𝐿
𝑙=1𝐼(𝑓𝑙). We can further simplify this description

by assuming that the 𝑓𝑙’s belong to different equivalence classes (because 𝐼(𝑓) = 𝐼(𝑓 ′) if

𝑓 ∼ℓ 𝑓 ′). Now observe that if 𝐼(𝑓𝑙) ∩ 𝐼(𝑓𝑗) ̸= ∅ for some 𝑙 ̸= 𝑗 ≤ 𝐿, then there are

two equivalent classes in 𝜑(𝛼) for any 𝛼 ∈ 𝐼(𝑓𝑙) ∩ 𝐼(𝑓𝑗) and we are done by Lemma 3.2.

Suppose by contradiction that we cannot find such a pair of indices. Because the only way

to partition [0, 1] into 𝐿 < ∞ non-overlapping closed intervals is to have 𝐿 = 1, we get

[0, 1] = 𝐼(𝑓1). This implies that 𝑓 * ∼ℓ 𝑓 **, a contradiction.

An immediate consequence of Theorem 3.2 for linear games is the following:

Theorem 3.3. Suppose that ℱ is a polyhedron and that ℓ(𝑧, 𝑓) = 𝑧T𝑓 . Then, either the

game is trivial or 𝑅𝑇 (ℓ, 𝒵, ℱ) = Ω(
√

𝑇).

The proofs rely on Lemma 3.2 which is based on Theorem 3.1 and may, as a result, seem

rather obscure. We stress that these lower bounds are derived by means of an equalizing

strategy. We present this more intuitive view in the Appendix by exhibiting an equalizing

strategy in the online linear optimization setting when int(conv(𝒵)) ̸= ∅.

Note that Theorems 3.2 and 3.3 imply Ω(
√

𝑇) regret for a number of repeated Stackelberg

games and online linear optimization problems as discussed in Section 3.1.1. Furthermore,

we stress that Theorem 3.2 can also be used when ℱ is not a polyhedron but this typically

requires a preliminary step which boils down to restricting the opponent’s decision set. For

instance, the following well-known result is almost a direct consequence of Theorem 3.3.

80

Lemma 3.5. Suppose that ℓ(𝑧, 𝑓) = 𝑧T𝑓 , that 0 ∈ int(conv(𝒵)), and that ℱ contains at

least two elements. Then 𝑅𝑇 (ℓ, 𝒵, ℱ) = Ω(
√

𝑇).

Note that Lemma 3.5 is consistent with Theorem 3.3 as the game (ℓ(𝑧, 𝑓) = 𝑧T𝑓, 𝒵, ℱ)

is non-trivial if 0 ∈ int(conv(𝒵)) as soon as ℱ contains at least two elements. Indeed

ℓ(𝜖 𝑓2−𝑓1
‖𝑓2−𝑓1‖ , 𝑓2) > ℓ(𝜖 𝑓2−𝑓1

‖𝑓2−𝑓1‖ , 𝑓1) and ℓ(𝜖 𝑓1−𝑓2
‖𝑓2−𝑓1‖ , 𝑓1) > ℓ(𝜖 𝑓1−𝑓2

‖𝑓2−𝑓1‖ , 𝑓2), for a small enough

𝜖 > 0 and any pair 𝑓1 ̸= 𝑓2 ∈ ℱ . When 0 ∈ int(conv(𝒵)), the opponent has some

freedom to play, at each time period, a random vector with expected value zero, making

every strategy available to the player equally bad. In other words, any i.i.d. zero-mean

distribution is an equalizing strategy for the opponent in this case.

A preliminary step is also required to derive Ω(
√

𝑇) lower bounds on regret for prediction

problems with side information where ℱ is typically not a polyhedron. We sketch this

simple argument for the canonical classification problem with the hinge loss, i.e. the game

defined by the loss function:

ℓ((𝑥, 𝑦), 𝑓) = max(0, 1 − 𝑦𝑥T𝑓)

along with the decision sets 𝒵 = 𝐵2(0, 1) × {−1, 1} and ℱ = 𝐵2(0, 1), but the method

readily extends to any of the prediction problems described in Section 3.1.1. The idea is

to restrict the opponent’s decision set by taking a fixed vector 𝑥 of norm 1 and to impose

that, at any round 𝑡, the opponent’s move is (𝑥, 𝑦𝑡) for 𝑦𝑡 ∈ {−1, 1}. Since ℓ((𝑥, 𝑦), 𝑓) only

depends on 𝑓 through the scalar product between 𝑓 and 𝑥, the player’s decision set can

be equivalently described by this value, which lies in [−1, 1]. Formally, we define a new

loss function ℓ̃(𝑦, 𝑓) = max(0, 1 − 𝑦𝑓) with 𝒵 = {−1, 1} and ℱ̃ = [−1, 1] and we have

𝑅𝑇 (ℓ, 𝒵, ℱ) ≥ 𝑅𝑇 (ℓ̃, 𝒵, ℱ̃). Observe now that the game (ℓ̃, 𝒵, ℱ̃) is not trivial, that 𝒵 is

discrete, and that:

ℓ̃(𝑦, 𝑓) = max
𝛼∈{0,1}

(𝛼, −𝑦𝛼)T(1, 𝑓).

We conclude with Theorem 3.2 that 𝑅𝑇 (ℓ̃, 𝒵, ℱ̃) = Ω(
√

𝑇) which implies that:

𝑅𝑇 (ℓ, 𝒵, ℱ) = Ω(
√

𝑇).

81

Remark about Lemma 3.2 We point out that, in general, it is not possible to weaken the

assumptions of Lemma 3.2 (which, in fact, applies to a much more general class of loss

functions than the one given by (3.1)). In particular, finding 𝑧 ∈ 𝒵 such that there are two

equivalence classes 𝑓1 and 𝑓2 in argmin𝑓∈ℱ ℓ(𝑧, 𝑓) does not guarantee that 𝑅𝑇 (ℓ, 𝒵, ℱ) =

Ω(
√

𝑇) as we illustrate with a counterexample. This is because the result of Lemma 3.2 is

intrinsically tied to the central limit theorem. Consider the following (non-trivial) online

linear regression game:

(ℓ(𝑧, 𝑓) = (𝑧T𝑓)2, 𝒵 = 𝐵2(𝑧*, 1), ℱ = [𝑓1, 𝑓2]),

where 𝑓1 = (1, 0, · · · , 0), 𝑓2 = (0, 1, 0, · · ·), and 𝑧* = (1, 1, 0, · · · , 0). Observe that

∀𝑧 ∈ 𝒵, ∀𝑓 ∈ ℱ , 𝑧T𝑓 ≥ 0. Hence argmin𝑓∈ℱ ℓ(𝑧, 𝑓) = argmin𝑓∈ℱ 𝑓 T𝑧. Furthermore,

argmin𝑓∈ℱ 𝑓 T𝑧* = [𝑓1, 𝑓2] but 𝑓1 and 𝑓2 are clearly not in the same equivalence class. Yet,

even though ℓ is not strongly convex in 𝑓 , there exists an algorithm achieving 𝑂(log(𝑇))

regret, see [96].

3.3 Upper Bounds

Looking at Theorem 3.2, Theorem 3.3, and Lemma 3.5, it is tempting to conclude that the

existence of pieces where ℓ is linear in its second argument dooms us to Ω(
√

𝑇) regret

bounds. We now argue that the growth rate of 𝑅𝑇 (ℓ, 𝒵, ℱ) is determined by a more in-

volved interplay between ℓ, 𝒵 , and ℱ so that this assertion requires further examination. In

fact, we show that 𝑂(log(𝑇)) regret bounds are even possible in online linear optimization.

The fundamental reason is that the curvature of ℱ can make up for the lack of thereof of

ℓ. Curvature is key to enforce stability of the player’s strategy with respect to perturbations

in the opponent’s moves. Sometimes, when the predictions are stable, e.g. when ℓ is the

square loss ℓ(𝑧, 𝑓) = ‖𝑧 − 𝑓‖2, a very simple algorithm, known as Follow-The-Leader,

yields 𝑂(log(𝑇)) regret.

Definition 3.3. From [56]

82

The Follow-The-Leader (FTL) strategy consists in playing:

𝑓𝑡 ∈ argmin
𝑓∈ℱ

1
𝑡 − 1

𝑡−1∑︁
𝜏=1

ℓ(𝑧𝜏 , 𝑓).

It is well known that FTL fails to yield sublinear regret for online linear optimization in

general. However, when ℱ is strongly curved and 0 /∈ conv(𝒵), the FTL strategy becomes

stable, leading to 𝑂(log(𝑇)) regret as we next show using sensitivity analysis.

Theorem 3.4. Suppose that (i) ℓ is linear, (ii) ℱ = {𝑓 ∈ R𝑑𝑓 | 𝐹 (𝑓) ≤ 0} for 𝐹 a strongly

convex and continuously differentiable function, and (iii) 0 /∈ conv(𝒵). Then, FTL yields

𝑂(log(𝑇)) regret.

Proof. Without loss of generality, 𝐹 is 𝛽-strongly convex and ‖∇𝐹 (𝑓)‖ ≤ 𝐾, ∀𝑓 ∈ ℱ . A

common inequality on the regret incurred for the FTL strategy is:

𝑟𝑇 ((𝑧𝑡)𝑡=1,··· ,𝑇 , (𝑓𝑡)𝑡=1,··· ,𝑇) ≤
𝑇∑︁

𝑡=1
ℓ(𝑧𝑡, 𝑓𝑡) − ℓ(𝑧𝑡, 𝑓𝑡+1).

We use sensitivity analysis to control this last quantity. Specifically, we show that the

mapping 𝜑 : 𝑧 → argmin𝑓 | 𝐹 (𝑓)≤0 𝑧T𝑓 is well-defined (i.e. the minimum is attained at a

unique point) and Lipschitz on 𝒵 . Using this property, we get:

𝑟𝑇 ((𝑧𝑡)𝑡=1,··· ,𝑇 , (𝑓𝑡)𝑡=1,··· ,𝑇)

≤
𝑇∑︁

𝑡=1
‖𝑧𝑡‖ ‖𝑓𝑡 − 𝑓𝑡+1‖

= 𝑂(
𝑇∑︁

𝑡=1

⃦⃦⃦⃦
⃦ 1

𝑡 − 1

𝑡−1∑︁
𝜏=1

𝑧𝜏 − 1
𝑡

𝑡∑︁
𝜏=1

𝑧𝜏

⃦⃦⃦⃦
⃦)

= 𝑂(
𝑇∑︁

𝑡=1

1
𝑡(𝑡 − 1)

⃦⃦⃦⃦
⃦

𝑡−1∑︁
𝜏=1

𝑧𝜏

⃦⃦⃦⃦
⃦+ 1

𝑡
‖𝑧𝑡‖)

= 𝑂(
𝑇∑︁

𝑡=1

1
𝑡
) = 𝑂(log(𝑇)),

since 𝒵 is compact. We move on to show that 𝜑 is well-defined and Lipschitz. Since 0 /∈

conv(𝒵) and conv(𝒵) is closed and convex, there exists 𝐶 > 0 such that ‖𝑧‖ ≥ 𝐶, ∀𝑧 ∈

𝒵 . Take (𝑧1, 𝑧2) ∈ 𝒵2 and (𝑓(𝑧1), 𝑓(𝑧2)) ∈ argmin𝑓 | 𝐹 (𝑓)≤0 𝑧T
1𝑓 × argmin𝑓 | 𝐹 (𝑓)≤0 𝑧T

2𝑓 .

83

Without loss of generality, we have 𝐹 (𝑓(𝑧1)) = 𝐹 (𝑓(𝑧2)) = 0 since the objective is

linear. Hence, the constraint qualifications are automatically satisfied at 𝑓(𝑧1) and 𝑓(𝑧2)

as ∇𝐹 cannot vanish on {𝑓 | 𝐹 (𝑓) = 0} since 𝐹 cannot attain its minimum on this

set (ℱ is assumed to contain at least two points). Hence, there exist 𝜆1, 𝜆2 ≥ 0 such that

𝑧1+𝜆1∇𝐹 (𝑓(𝑧1)) = 0 and 𝑧2+𝜆2∇𝐹 (𝑓(𝑧2)) = 0. As 𝑧1, 𝑧2 ̸= 0, we must have 𝜆1, 𝜆2 ̸= 0.

We obtain ∇𝐹 (𝑓(𝑧1)) = − 1
𝜆1

𝑧1 and ∇𝐹 (𝑓(𝑧2)) = − 1
𝜆2

𝑧2. Since 𝐹 is 𝛽-strongly convex,

we get:

(1
𝜆2

𝑧2 − 1
𝜆1

𝑧1)T(𝑓(𝑧1) − 𝑓(𝑧2)) ≥ 𝛽 ‖𝑓(𝑧1) − 𝑓(𝑧2)‖2 .

We can break down the last expression in two pieces:

1
𝜆2

𝑧T
2(𝑓(𝑧1) − 𝑓(𝑧2)) + 1

𝜆1
𝑧T

1(𝑓(𝑧2) − 𝑓(𝑧1))

≥ 𝛽 ‖𝑓(𝑧1) − 𝑓(𝑧2)‖2 .

Observe that 𝑧T
2(𝑓(𝑧1) − 𝑓(𝑧2)) ≥ 0 by definition of 𝑓(𝑧2) and 𝑧T

1(𝑓(𝑧2) − 𝑓(𝑧1)) ≥ 0 by

definition of 𝑓(𝑧1). Note that 1
𝜆1

= 1
|𝜆1| = ‖∇𝐹 (𝑓(𝑧1))‖

‖𝑧1‖ ≤ 𝐾
𝐶

and the same inequality holds

for 𝜆2. Bringing everything together, we get:

𝐾

𝐶
(𝑧2 − 𝑧1)T(𝑓(𝑧1) − 𝑓(𝑧2)) ≥ 𝛽‖𝑓(𝑧1) − 𝑓(𝑧2)‖2.

Using the Cauchy-Schwarz inequality and simplifying on both sides by ‖𝑓(𝑧2) − 𝑓(𝑧1)‖

yields:
𝐾

𝛽𝐶
‖𝑧2 − 𝑧1‖ ≥ ‖𝑓(𝑧1) − 𝑓(𝑧2)‖.

As an example of application of Theorem 3.4, consider a repeated network game where the

player picks the arc costs in a 𝐿2 ball, the opponent picks a path, and the loss incurred to the

opponent is the sum of the arc costs along the path. In this setting, FTL yields 𝑂(log(𝑇))

regret even though the game is not trivial. Theorem 3.4 also has some implications for

non-linear convex loss functions when ℱ is curved and 0 is not in the convex hull of the

set of subgradients of ℓ with respect to the player’s moves (i.e. 0 /∈ conv({𝐶(𝑧)T𝑥 | 𝑥 ∈

84

𝒳 (𝑧), 𝑧 ∈ 𝒵}) for the class of loss functions (3.1)). Indeed suppose that, at any time period

𝑡, the player follows the FTL strategy as if the loss function were linear and the past moves

of the opponents were 𝑦1, · · · , 𝑦𝑡−1, i.e.:

𝑓𝑡 ∈ argmin
𝑓∈ℱ

1
𝑡 − 1

𝑡−1∑︁
𝜏=1

𝑦T
𝜏 𝑓,

where, for any 𝜏 = 1, · · · , 𝑡−1, 𝑦𝜏 is a subgradient of ℓ(𝑧𝑡, ·) at 𝑓𝑡. Then, for any sequence

of moves (𝑧1, · · · , 𝑧𝑇), we have:

𝑟𝑇 ((𝑧𝑡)𝑡=1,··· ,𝑇 , (𝑓𝑡)𝑡=1,··· ,𝑇) ≤
𝑇∑︁

𝑡=1
𝑦T

𝑡 𝑓𝑡 − inf
𝑓∈ℱ

𝑇∑︁
𝑡=1

𝑦T
𝑡 𝑓

= 𝑂(log(𝑇)).

It is a priori unclear whether log(𝑇) is the optimal growth rate for games satisfying the

assumptions of Theorem 3.4. Quite surprisingly, i.i.d. opponents appear to be particularly

weak for this kind of games, incurring at most a 𝑂(1) lower bound on regret as shown in

the following lemma. This is in stark contrast with the situations of Section 3.2 where the

(tight) Ω(
√

𝑇) lower bounds are always derived through i.i.d. opponents.

Lemma 3.6. Consider the game (ℓ(𝑧, 𝑓) = 𝑧T𝑓, 𝒵, ℱ) with 0 /∈ conv(𝒵) and ℱ =

𝐵2(0, 1). Any lower bound derived from Theorem 3.1 with i.i.d. random variables 𝑍1, · · · ,

𝑍𝑇 ∼ 𝑝 is 𝑂(1) for any choice of 𝑝 ∈ 𝒫(𝒵).

The authors in [2] remark that restricting the study to i.i.d. sequences is in general not

enough to get tight bounds for non-linear losses such as ℓ(𝑧, 𝑓) = ‖𝑧 − 𝑓‖2. It turns out

that this is also true for the game studied in Lemma 3.6 as the value of the game is in fact

Θ(log(𝑇)) when the game is not trivial (e.g. when int(conv(𝒵)) ̸= ∅).

Theorem 3.5. When ℓ(𝑧, 𝑓) = 𝑧T𝑓 , 0 /∈ conv(𝒵), and ℱ = 𝐵2(0, 1), either the game is

trivial or 𝑅𝑇 (ℓ, 𝒵, ℱ) = Θ(log(𝑇)).

So far, we have studied two scenarios that are diametrically opposed in terms of the cur-

vature of the decision sets with polyhedra on one side in Section 3.2, with Θ(
√

𝑇) regret,

85

and Euclidean balls, with Θ(log(𝑇)) regret if 0 /∈ conv(𝒵), on the other side of the spec-

trum. Bridging this gap leads to the rise of intermediate learning rates that can be quantified

through the modulus of convexity of ℱ . Precisely, consider any norm ‖ ‖ℱ . The modulus

of convexity of its unit ball is defined as:

𝛿ℱ : 𝜖 → inf
‖𝑓‖ℱ ,‖𝑓‖ℱ

≤1

‖𝑓−𝑓‖ℱ
≥𝜖

1 −
⃦⃦⃦⃦
⃦𝑓 + 𝑓

2

⃦⃦⃦⃦
⃦

ℱ
.

The norm ‖ ‖ℱ is said to be uniformly convex if 𝛿ℱ(𝜖) > 0 for all 𝜖 ∈ [0, 2]. As shown in

[76], if ‖ ‖ℱ is uniformly convex, there must exist 𝑞 ≥ 2 and 𝑐 > 0 such that 𝛿ℱ(𝜖) ≥ 𝑐𝜖𝑞

for all 𝜖 ∈ [0, 2], in which case we say that ‖ ‖ℱ is 𝑞−uniformly convex. This parameter

quantifies how curved ‖ ‖ℱ balls are and determines the growth rate of the value of the

game when ℱ is a ‖ ‖ℱ ball and 0 /∈ conv(𝒵).

Theorem 3.6. Consider the game (ℓ(𝑧, 𝑓) = 𝑧T𝑓, 𝒵, ℱ) with 0 /∈ conv(𝒵) and ℱ =

{𝑓 | ‖𝑓‖ℱ ≤ 𝐶}, where ‖ ‖ℱ is a 𝑞-uniformly convex norm and 𝐶 ≥ 0. Then, FTL yields

regret 𝑂(log(𝑇)) if 𝑞 = 2 and regret 𝑂(𝑇
𝑞−2
𝑞−1) if 𝑞 ∈ (2, 3].

In particular, Theorem 3.6 applies to 𝐿𝑝 balls since the 𝐿𝑝-norm is 𝑝-uniformly convex

for 𝑝 ∈ [2, 3) and 2-uniformly convex if 𝑝 ∈ (1, 2]. As a side note, remark that none of

Lemma 3.5, Theorem 3.4, Theorem 3.5, or Theorem 3.6 cover the case where 0 lies on the

boundary of conv(𝒵) and ℓ is linear. We stress that, in general, zero-mean i.i.d. opponents

fail to yield Ω(
√

𝑇) lower bounds on regret in this setting, as we illustrate with an example.

Hence, the growth rate of 𝑅𝑇 (ℓ, 𝒵, ℱ) remains unknown in this setting.

Lemma 3.7. Define 𝒵 = conv(𝑧1, 𝑧2, 𝑧3, 𝑧4) with 𝑧1 = (−1, 1, 0, 0), 𝑧2 = (1, −1, 0, 0),

𝑧3 = (0, 0, 0, 1), and 𝑧4 = (0, 0, 1, 0). Also define ℱ = [𝑓 *, 𝑓 **] with 𝑓 * = (0, 0, 0, 0) and

𝑓 ** = (1, 1, −1, 1). The game (ℓ(𝑧, 𝑓) = 𝑧T𝑓, 𝒵, ℱ) is not trivial and any lower bound

derived from Theorem 3.1 with zero-mean random variables is 0.

86

3.4 Concluding Remark

An interesting direction for future research is to develop a complete characterization of

the growth rate of 𝑅𝑇 (ℓ, 𝒵, ℱ) for general loss functions. As shown in this chapter, the

curvature of ℱ is key to get 𝑜(
√

𝑇) rates in online linear optimization but it is not enough

by itself, as one must also restrict the power of the opponent through the constraint 0 /∈

conv(𝒵). It is unclear how to minimally restrict the power of the opponent to get 𝑜(
√

𝑇)

rates for general non-curved loss functions.

87

88

Chapter 4

Logarithmic Regret Bounds for Bandits

with Knapsacks

4.1 Introduction

4.1.1 Motivation

Multi-Armed Bandit (MAB) is a benchmark model for repeated decision making in stochas-

tic environments with very limited feedback on the outcomes of alternatives. In these cir-

cumstances, a decision maker must strive to find an overall optimal sequence of decisions

while making as few suboptimal ones as possible when exploring the decision space in

order to generate as much revenue as possible, a trade-off coined exploration-exploitation.

The original problem, first formulated in its predominant version in [83], has spurred a new

line of research that aims at introducing additional constraints that reflect more accurately

the reality of the decision making process. Bandits with Knapsacks (BwK), a model for-

mulated in its most general form in [16], fits into this framework and is characterized by

the consumption of a limited supply of resources (e.g. time, money, and natural resources)

that comes with every decision. This extension is motivated by a number of applications in

electronic markets such as dynamic pricing with limited supply, see [25] and [14], online

advertising, see [88], online bid optimization for sponsored search auctions, see [92], and

crowdsourcing, see [15]. A unifying paradigm of online learning is to evaluate algorithms

89

based on their regret performance. In the BwK theory, this performance criterion is ex-

pressed as the gap between the total payoff of an optimal oracle algorithm aware of how

the rewards and the amounts of resource consumption are generated and the total payoff of

the algorithm. Many approaches have been proposed to tackle the original MAB problem,

where time is the only limited resource with a prescribed time horizon 𝑇 , and the optimal

regret bounds are now well documented. They can be classified into two categories with

qualitatively different asymptotic growth rates. Many algorithms, such as UCB1, see [12],

Thompson sampling, see [8], and 𝜖-greedy, see [12], achieve distribution-dependent, i.e.

with constant factors that depend on the underlying unobserved distributions, asymptotic

bounds on regret of order Θ(ln(𝑇)), which is shown to be optimal in [60]. While these re-

sults prove very satisfying in many settings, the downside is that the bounds can get arbitrar-

ily large if a malicious opponent was to select the underlying distributions in an adversarial

fashion. In contrast, algorithms such as Exp3, designed in [13], achieve distribution-free

bounds that can be computed in an online fashion, at the price of a less attractive growth

rate Θ(
√

𝑇). The BwK theory lacks this clear-cut distinction. While provably optimal

distribution-free bounds have recently been established, see [6] and [16], there has been

little progress toward the development of asymptotically optimal distribution-dependent

regret bounds. To bridge the gap, we introduce a template algorithm with proven regret

bounds which are asymptotically logarithmic in the initial supply of each resource, in four

important cases that cover a wide range of applications:

∙ Case 1, where there is a single limited resource other than time, which is not limited,

and the amount of resource consumed as a result of making a decision is stochastic.

Applications in online advertising, see [89], fit in this framework;

∙ Case 2, where there are arbitrarily many resources and the amounts of resources

consumed as a result of making a decision are deterministic. Applications to network

revenue management of perishable goods, see [25], shelf optimization of perishable

goods, see [44], and wireless sensor networks, see [91], fit in this framework;

∙ Case 3, where there are two limited resources, one of which is assumed to be time

while the consumption of the other is stochastic, under a nondegeneracy condition.

90

Typical applications include online bid optimization in sponsored search auctions,

see [92], dynamic pricing with limited supply, see [14], and dynamic procurement,

see [15];

∙ Case 4, where there are arbitrarily many resources, under a stronger nondegeneracy

condition than for Case 3. Typical applications include dynamic ad allocation, see

[88], dynamic pricing of multiple products, see [16], and network revenue manage-

ment, see [25].

In terms of applicability and significance of the results, Case 3 is the most important

case. Case 4 is the most general one but the analysis is more involved and requires stronger

assumptions which makes it less attractive from a practical standpoint. The analysis is

easier for Cases 1 and 2 but their modeling power is more limited.

In fast-paced environments, such as in ad auctions, the stochastic assumptions at the

core of the BwK model are only valid for a short period of time but there are typically

a large number of actions to be performed per second (e.g. submit a bid for a new ad

auction). In these situations, the initial endowments of resources are thus typically large

and logarithmic regret bounds can be significantly more attractive than distribution-free

ones.

4.1.2 Problem Statement and Contributions

At each time period 𝑡 ∈ N, a decision needs to be made among a predefined finite set

of actions, represented by arms and labeled 𝑘 = 1, · · · , 𝐾. We denote by 𝑎𝑡 the arm

pulled at time 𝑡. Pulling arm 𝑘 at time 𝑡 yields a random reward 𝑟𝑘,𝑡 ∈ [0, 1] (after scal-

ing) and incurs the consumption of 𝐶 ∈ N different resource types by random amounts

𝑐𝑘,𝑡(1), · · · , 𝑐𝑘,𝑡(𝐶) ∈ [0, 1]𝐶 (after scaling). Note that time itself may or may not be a

limited resource. At any time 𝑡 and for any arm 𝑘, the vector (𝑟𝑘,𝑡, 𝑐𝑘,𝑡(1), · · · , 𝑐𝑘,𝑡(𝐶))

is jointly drawn from a fixed probability distribution 𝜈𝑘 independently from the past. The

rewards and the amounts of resource consumption can be arbitrarily correlated across arms.

We denote by (ℱ𝑡)𝑡∈N the natural filtration generated by the rewards and the amounts of re-

source consumption revealed to the decision maker, i.e. ((𝑟𝑎𝑡,𝑡, 𝑐𝑎𝑡,𝑡(1), · · · , 𝑐𝑎𝑡,𝑡(𝐶)))𝑡∈N.

91

The consumption of any resource 𝑖 ∈ {1, · · · , 𝐶} is constrained by an initial budget

𝐵(𝑖) ∈ R+. As a result, the decision maker can keep pulling arms only so long as he

does not run out of any of the 𝐶 resources and the game ends at time period 𝜏 *, defined as:

𝜏 * = min{𝑡 ∈ N | ∃𝑖 ∈ {1, · · · , 𝐶},
𝑡∑︁

𝜏=1
𝑐𝑎𝜏 ,𝜏 (𝑖) > 𝐵(𝑖)}. (4.1)

Note that 𝜏 * is a stopping time with respect to (ℱ𝑡)𝑡≥1. When it comes to choosing which

arm to pull next, the difficulty for the decision maker lies in the fact that none of the un-

derlying distributions, i.e. (𝜈𝑘)𝑘=1,··· ,𝐾 , are initially known. Furthermore, the only feed-

back provided to the decision maker upon pulling arm 𝑎𝑡 (but prior to selecting 𝑎𝑡+1) is

(𝑟𝑎𝑡,𝑡, 𝑐𝑎𝑡,𝑡(1), · · · , 𝑐𝑎𝑡,𝑡(𝐶)), i.e. the decision maker does not observe the rewards that

would have been obtained and the amounts of resources that would have been consumed

as a result of pulling a different arm. The goal is to design a non-anticipating algorithm

that, at any time 𝑡, selects 𝑎𝑡 based on the information acquired in the past so as to keep the

pseudo regret defined as:

𝑅𝐵(1),··· ,𝐵(𝐶) = EROPT(𝐵(1), · · · , 𝐵(𝐶)) − E[
𝜏*−1∑︁
𝑡=1

𝑟𝑎𝑡,𝑡], (4.2)

as small as possible, where EROPT(𝐵(1), · · · , 𝐵(𝐶)) is the maximum expected sum of

rewards that can be obtained by a non-anticipating oracle algorithm that has knowledge

of the underlying distributions. Here, an algorithm is said to be non-anticipating if the

decision to pull a given arm does not depend on the future observations. We develop

algorithms and establish distribution-dependent regret bounds, that hold for any choice of

the unobserved underlying distributions (𝜈𝑘)𝑘=1,··· ,𝐾 , as well as distribution-independent

regret bounds. This entails studying the asymptotic behavior of 𝑅𝐵(1),··· ,𝐵(𝐶) when all the

budgets (𝐵(𝑖))𝑖=1,··· ,𝐶 go to infinity. In order to simplify the analysis, it is convenient to

assume that the ratios (𝐵(𝑖)/𝐵(𝐶))𝑖=1,··· ,𝐶 are constants independent of any other relevant

quantities and to denote 𝐵(𝐶) by 𝐵.

Assumption 4.1. For any resource 𝑖 ∈ {1, · · · , 𝐶}, we have 𝐵(𝑖) = 𝑏(𝑖) ·𝐵 for some fixed

constant 𝑏(𝑖) ∈ (0, 1]. Hence 𝑏 = min
𝑖=1,··· ,𝐶

𝑏(𝑖) is a positive quantity.

92

When time is a limited resource, we use the notation 𝑇 in place of 𝐵. Assumption 4.1

is widely used in the dynamic pricing literature where the inventory scales linearly with

the time horizon, see [25] and [55]. Assumption 4.1 will only prove useful when deriving

distribution-dependent regret bounds and it can largely be relaxed, see Section C.1 of the

Appendix.

As the mean turns out to be an important statistics, we denote the mean reward and amounts

of resource consumption by 𝜇𝑟
𝑘, 𝜇𝑐

𝑘(1), · · · , 𝜇𝑐
𝑘(𝐶) and their respective empirical estimates

by 𝑟𝑘,𝑡, 𝑐𝑘,𝑡(1), · · · , 𝑐𝑘,𝑡(𝐶). These estimates depend on the number of times each arm has

been pulled by the decision maker up to, but not including, time 𝑡, which we write 𝑛𝑘,𝑡. We

end with a general assumption, which we use throughout the chapter, meant to have the

game end in finite time.

Assumption 4.2. For any arm 𝑘 ∈ {1, · · · , 𝐾}, we have max
𝑖=1,··· ,𝐶

𝜇𝑐
𝑘(𝑖) > 0.

Note that Assumption 4.2 is automatically satisfied if time is a limited resource.

Contributions. We design an algorithm that runs in time polynomial in 𝐾 for which

we establish 𝑂(𝐾𝐶 · ln(𝐵)/Δ) (resp.
√︁

𝐾𝐶 · 𝐵 · ln(𝐵)) distribution-dependent (resp.

distribution-free) regret bounds, where Δ is a parameter that generalizes the optimality

gap for the standard MAB problem. We establish these regret bounds in four cases of

increasing difficulty making additional technical assumptions that become stronger as we

make progress towards tackling the general case. We choose to present these intermediate

cases since: (i) we get improved constant factors under weaker assumptions and (ii) they

subsume many practical applications. Note that our distribution-dependent regret bounds

scale as a polynomial function of 𝐾 of degree 𝐶, which may be unacceptable when the

number of resources is large. We provide evidence that suggests that a linear dependence

on 𝐾 can be achieved by tweaking the algorithm, at least in some particular cases of in-

terest. Finally, we point out that the constant factors hidden in the 𝑂 notations are not

scale-free, in the sense that jointly scaling down the amounts of resources consumed at

each round along with their respective initial endowments worsens the bounds. As a conse-

quence, initially scaling down the amounts of resource consumption in order to guarantee

93

that they lie in [0, 1] should be done with caution: the scaling factors should be as small as

possible.

4.1.3 Literature Review

The Bandits with Knapsacks framework was first introduced in its full generality in [16],

but special cases had been studied before, see for example [89], [39], and [14]. Since

the standard MAB problem fits in the BwK framework, with time being the only scarce

resource, the results listed in the introduction tend to suggest that regret bounds with log-

arithmic growth with respect to the budgets may be possible for BwK problems but very

few such results are documented. When there are arbitrarily many resources and a time

horizon, the authors of [16] and [6] obtain 𝑂̃(
√

𝐾 · 𝑇) distribution-free bounds on regret

that hold on average as well as with high probability, where the 𝑂̃ notation hides logarith-

mic factors. These results were later extended to the contextual version of the problem

in [17] and [7]. The authors of [55] extend Thompson sampling to tackle the general

BwK problem and obtain distribution-dependent bounds on regret of order 𝑂̃(
√

𝑇) (with

an unspecified dependence on 𝐾) when time is a limited resource, under a nondegeneracy

condition. The authors of [93] develop algorithms for BwK problems with a continuum

of arms and a single limited resource constrained by a budget 𝐵 and obtain 𝑜(𝐵) regret

bounds. The authors of [36] consider a closely related framework that allows to model

any history-dependent constraint on the number of times any arm can be pulled and obtain

𝑂(𝐾 · ln(𝑇)) regret bounds when time is a limited resource. However, the benchmark

oracle algorithm used in [36] to define the regret is significantly weaker than the one con-

sidered here as it only has knowledge of the distributions of the rewards, as opposed to the

joint distributions of the rewards and the amounts of resource consumption. The authors of

[14] establish a Ω(
√

𝑇) distribution-dependent lower bound on regret for a dynamic pricing

problem which can be cast as a BwK problem with a time horizon, a resource whose con-

sumption is stochastic, and a continuum of arms. This lower bound does not apply here as

we are considering finitely many arms and it is well known that the minimax regret can be

exponentially smaller when we move from finitely many arms to uncountably many arms

94

for the standard MAB problem, see [58]. The authors of [90] tackle BwK problems with

a single limited resource whose consumption is deterministic and constrained by a global

budget 𝐵 and obtain 𝑂(𝐾 · ln(𝐵)) regret bounds. This result was later extended to the case

of a stochastic resource in [102]. The authors of [101] study a contextual version of the

BwK problem when there are two limited resources, one of which is assumed to be time

while the consumption of the other is deterministic, and obtain 𝑂(𝐾 · ln(𝑇)) regret bounds

under a nondegeneracy condition. Logarithmic regret bounds are also derived in [88] for a

dynamic ad allocation problem that can be cast as a BwK problem.

Organization. The remainder of the chapter is organized as follows. We present appli-

cations of the BwK model in Section 4.2. We expose the algorithmic ideas underlying our

approach in Section 4.3 and apply theses ideas to Cases (1), (2), (3), and (4) in Sections 4.4,

4.5, 4.6, and 4.7 respectively. We choose to discuss each case separately in a self-contained

fashion so that readers can delve into the setting they are most interested in. This comes

at the price of some overlap in the analysis. We relax some of the assumptions made in

the course of proving the regret bounds and discuss extensions in Section C.1 of the Ap-

pendix. To provide as much intuition as possible, the ideas and key technical steps are all

included in the main body, sometimes through proof sketches, while the technical details

are deferred to the Appendix.

Notations. For a set 𝑆, |𝑆| denotes the cardinality of 𝑆 while 1𝑆 is the indicator function

of 𝑆. For a vector 𝑥 ∈ R𝑛 and 𝑆 a subset of {1, · · · , 𝑛}, 𝑥𝑆 refers to the subvector (𝑥𝑖)𝑖∈𝑆 .

For a square matrix 𝐴, det(𝐴) is the determinant of 𝐴 while adj(𝐴) denotes its adjugate.

For 𝑥 ∈ R, 𝑥+ is the positive part of 𝑥. We use standard asymptotic notations such as 𝑂(·),

𝑜(·), Ω(·), and Θ(·).

4.2 Applications

A number of applications of the BwK framework are documented in the literature. For the

purpose of being self-contained, we review a few popular ones that satisfy our technical

95

assumptions.

4.2.1 Online Advertising

Bid optimization in repeated second-price auctions. Consider a bidder participating

in sealed second-price auctions who is willing to spend a budget 𝐵. This budget may

be allocated only for a period of time (for the next 𝑇 auctions) or until it is completely

exhausted. Rounds, indexed by 𝑡 ∈ N, correspond to auctions the bidder participates in. If

the bid submitted by the bidder for auction 𝑡 is larger than the highest bid submitted by the

competitors, denoted by 𝑚𝑡, the bidder wins the auction, derives a private utility 𝑣𝑡 ∈ [0, 1]

(whose monetary value is typically difficult to assess), and is charged 𝑚𝑡. Otherwise, 𝑚𝑡 is

not revealed to the bidder and 𝑣𝑡 cannot be assessed. We consider a stochastic setting where

the environment and the competitors are not fully adversarial: ((𝑣𝑡, 𝑚𝑡))𝑡∈N is assumed to

be an i.i.d. stochastic process. The goal for the bidder is to design a strategy to maximize

the expected total utility derived given that the bidder has selected a grid of bids to choose

from (𝑏1, · · · , 𝑏𝐾) (e.g. 𝑏1 = $0.10, · · · , 𝑏𝐾 = $1). This is a BwK problem with two

resources: time and money. Pulling arm 𝑘 at round 𝑡 corresponds to bidding 𝑏𝑘 in auction 𝑡,

costs 𝑐𝑘,𝑡 = 𝑚𝑡 · 1𝑏𝑘≥𝑚𝑡 , and yields a reward 𝑟𝑘,𝑡 = 𝑣𝑡 · 1𝑏𝑘≥𝑚𝑡 . The authors of [97] design

bidding strategies for a variant of this problem where the bidder is not limited by a budget

and 𝑟𝑘,𝑡 = (𝑣𝑡 − 𝑚𝑡) · 1𝑏𝑘≥𝑚𝑡 .

This model was first formalized in [92] in the context of sponsored search auctions. In

sponsored search auctions, advertisers can bid on keywords to have ads (typically in the

form of a link followed by a text description) displayed alongside the search results of a

web search engine. When a user types a search query, a set of relevant ads are selected and

an auction is run in order to determine which ones will be displayed. The winning ads are

allocated to ad slots based on the outcome of the auction and, in the prevailing cost-per-

click pricing scheme, their owners get charged only if the user clicks on their ads. Because

the auction is often a variant of a sealed second-price auction (e.g. a generalized second-

price auction), very limited feedback is provided to the advertiser if the auction is lost. In

addition, both the demand and the supply cannot be predicted ahead of time and are thus

96

commonly modeled as random variables, see [43]. For these reasons, bidding repeatedly

on a keyword can be formulated as a BwK problem. In particular, when the search engine

has a single ad slot per query, this problem can be modeled as above: 𝐵 is the budget

the advertiser is willing to spend on a predetermined keyword and rounds correspond to

ad auctions the advertiser has been selected to participate in. If the advertiser wins the

auction, his or her ad gets displayed and he or she derives a utility 𝑣𝑡 = 1𝐴𝑡 , where 𝐴𝑡 is

the event that the ad gets clicked on. The goal is to maximize the expected total number of

clicks given the budget constraint. The advertiser may also be interested in optimizing the

ad to be displayed, which will affect the probability of a click. In this case, the modeling is

similar but arms correspond to pairs of bid values and ads.

Dynamic ad allocation. This problem was first modeled in the BwK framework in [88].

A publisher, i.e. the owner of a collection of websites where ads can be displayed, has

previously agreed with 𝐾 advertisers, indexed by 𝑘 ∈ {1, · · · , 𝐾}, on a predetermined

cost-per-click 𝑝𝑘. Additionally, advertiser 𝑘 is not willing to spend more than a prescribed

budget, 𝐵𝑘, for a predetermined period of time (which corresponds to the next 𝑇 visits

or rounds). Denote by 𝐴𝑘
𝑡 the event that the ad provided by advertiser 𝑘 gets clicked on

at round 𝑡. We consider a stochastic setting where the visitors are not fully adversarial:

(1𝐴𝑘
𝑡
)𝑡∈N is assumed to be an i.d.d. stochastic process for any advertiser 𝑘. The goal for

the publisher is to maximize the total expected revenues by choosing which ad to display

at every round, i.e. every time somebody visits one of the websites. This situation can

be modeled as a BwK problem with 𝐾 + 1 resources: time and money for each of the 𝐾

advertisers. Pulling arm 𝑘 ∈ {1, · · · , 𝐾} at round 𝑡 corresponds to displaying the ad owned

by advertiser 𝑘, incurs the costs 𝑐𝑘,𝑡(𝑖) = 𝑝𝑘 · 1𝐴𝑘
𝑡

· 1𝑖=𝑘 to advertiser 𝑖 ∈ {1, · · · , 𝐾}, and

yields a revenue 𝑟𝑘,𝑡 = 𝑝𝑘 · 1𝐴𝑘
𝑡
.

4.2.2 Revenue Management

Dynamic pricing with limited supply. This BwK model was first proposed in [14]. An

agent has 𝐵 identical items to sell to 𝑇 potential customers that arrive sequentially. Cus-

tomer 𝑡 ∈ {1, · · · , 𝑇} is offered a take-it-or-leave-it price 𝑝𝑡 and purchases the item only

97

if 𝑝𝑡 is no larger than his or her own valuation 𝑣𝑡, which is never disclosed. Customers are

assumed to be non-strategic in the sense that their valuations are assumed to be drawn i.i.d.

from a distribution unknown to the agent. The goal for the agent is to maximize the total

expected revenues by offering prices among a predetermined list (𝑝1, · · · , 𝑝𝐾). This is a

BwK problem with two resources: time and item inventory. Pulling arm 𝑘 ∈ {1, · · · , 𝐾}

at round 𝑡 corresponds to offering the price 𝑝𝑘, depletes the inventory of 𝑐𝑘,𝑡 = 1𝑝𝑘≤𝑣𝑡 unit,

and generates a revenue 𝑟𝑘,𝑡 = 𝑝𝑘 · 1𝑝𝑘≤𝑣𝑡 . The authors of [16] propose an extension where

multiple units of 𝑀 different products may be offered to a customer, which then buys as

many as needed of each kind in order to maximize his or her own utility function. In this

case, the modeling is similar but arms correspond to vectors of dimension 2𝑀 specifying

the number of items offered along with the price tag for each product and there are 𝑀 + 1

resources: time and item inventory for each of the 𝑀 products.

Network revenue management.

Non-perishable goods. This is an extension of the dynamic pricing problem devel-

oped in [25] which is particularly suited for applications in the online retailer industry, e.g.

the online fashion sample sales industry, see [55]. Each product 𝑚 = 1, · · · , 𝑀 is pro-

duced from a finite amount of 𝐶 different kinds of raw materials (which may be products

themselves). Producing one unit of product 𝑚 ∈ {1, · · · , 𝑀} consumes a deterministic

amount of resource 𝑖 ∈ {1, · · · , 𝐶} denoted by 𝑐𝑚(𝑖). Customer 𝑡 ∈ {1, · · · , 𝑇} is offered

a product 𝑚𝑡 ∈ {1, · · · , 𝑀} along with a take-it-or-leave-it price 𝑝𝑚𝑡
𝑡 and purchases it if his

or her valuation 𝑣𝑚𝑡
𝑡 is larger than 𝑝𝑚𝑡

𝑡 . Products are manufactured online as customers or-

der them. We assume that ((𝑣1
𝑡 , · · · , 𝑣𝑀

𝑡))𝑡∈N is an i.i.d. process with distribution unknown

to the agent. This is a BwK problem with 𝐶 + 1 resources: time and the initial endowment

of each resource. Given a prescribed list of arms ((𝑚𝑘, 𝑝𝑘))𝑘=1,··· ,𝐾 , pulling arm 𝑘 at round

𝑡 corresponds to offering product 𝑚𝑘 at a price 𝑝𝑘, incurs the consumption of resource 𝑖 by

an amount 𝑐𝑘,𝑡(𝑖) = 𝑐𝑚𝑘
(𝑖) · 1𝑝𝑘≤𝑣

𝑚𝑘
𝑡

, and generates a revenue 𝑟𝑘,𝑡 = 𝑝𝑘 · 1𝑝𝑘≤𝑣
𝑚𝑘
𝑡

.

Perishable goods. This is a variant of the last model developed for perishable goods,

with applications in the food retail industry and the newspaper industry. At each time period

98

𝑡 ∈ {1, · · · , 𝑇}, a retailer chooses how many units 𝜆𝑚
𝑡 ∈ N of product 𝑚 ∈ {1, · · · , 𝑀}

to manufacture along with a price offer for it 𝑝𝑚
𝑡 . At time 𝑡, the demand for product 𝑚

sold at the price 𝑝 is a random quantity denoted by 𝑑𝑚
𝑡 (𝑝). We assume that customers are

non-strategic: for any vector of prices (𝑝1, · · · , 𝑝𝑚), ((𝑑1
𝑡 (𝑝1), · · · 𝑑𝑀

𝑡 (𝑝𝑀)))𝑡∈N is an i.i.d.

stochastic process with distribution unknown to the agent. Products perish at the end of

each round irrespective of whether they have been purchased. Given a predetermined list

of arms ((𝜆1
𝑘, 𝑝1

𝑘, · · · , 𝜆𝑀
𝑘 , 𝑝𝑀

𝑘))𝑘=1,··· ,𝐾 , pulling arm 𝑘 at round 𝑡 corresponds to offering

𝜆𝑚
𝑘 units of product 𝑚 at the price 𝑝𝑚

𝑘 for any 𝑚 ∈ {1, · · · , 𝑀}, incurs the consumption of

resource 𝑖 by a deterministic amount 𝑐𝑘,𝑡(𝑖) = ∑︀𝑀
𝑚=1 𝜆𝑚

𝑘 · 𝑐𝑚(𝑖) (where 𝑐𝑚(𝑖) is defined in

the previous paragraph), and generates a revenue 𝑟𝑘,𝑡 = ∑︀𝑀
𝑚=1 𝑝𝑚

𝑘 · min(𝑑𝑚
𝑡 (𝑝𝑚

𝑘), 𝜆𝑚
𝑘).

Shelf optimization for perishable goods. This is a variant of the model introduced in

[44]. Consider a retailer who has an unlimited supply of 𝑀 different types of products.

At each time period 𝑡, the retailer has to decide how many units, 𝜆𝑚
𝑡 , of each product,

𝑚 ∈ {1, · · · , 𝑀}, to allocate to a promotion space given that at most 𝑁 items fit in the

limited promotion space. Moreover, the retailer also has to decide on a price tag 𝑝𝑚
𝑡 for

each product 𝑚. All units of product 𝑚 ∈ {1, · · · , 𝑀} perish by time period 𝑇𝑚 and the

retailer is planning the allocation for the next 𝑇 time periods. At round 𝑡, the demand

for product 𝑚 is a random quantity denoted by 𝑑𝑚
𝑡 (𝑝). Customers are non-strategic: for

any vector of prices (𝑝1, · · · , 𝑝𝑚), ((𝑑1
𝑡 (𝑝1), · · · 𝑑𝑀

𝑡 (𝑝𝑀)))𝑡∈N is an i.i.d. stochastic process

with distribution unknown to the agent. This is a BwK problem with 𝑀 + 1 resources:

time horizon and time after which each product perishes. Given a predetermined list of

arms ((𝜆1
𝑘, 𝑝1

𝑘, · · · , 𝜆𝑀
𝑘 , 𝑝𝑀

𝑘))𝑘=1,··· ,𝐾 satisfying
∑︀𝑀

𝑚=1 𝜆𝑚
𝑘 ≤ 𝐾 for any 𝑘 ∈ {1, · · · , 𝐾},

pulling arm 𝑘 at round 𝑡 corresponds to allocating 𝜆𝑚
𝑘 units of product 𝑚 to the promotion

space for every 𝑚 ∈ {1, · · · , 𝑀} with the respective price tags (𝑝1
𝑘, · · · , 𝑝𝑀

𝑘), incurs the

consumption of resource 𝑖 by a deterministic amount 𝑐𝑘,𝑡(𝑖) = 1, and generates a revenue

𝑟𝑘,𝑡 = ∑︀𝑀
𝑚=1 𝑝𝑚

𝑘 · min(𝑑𝑚
𝑡 (𝑝𝑚

𝑘), 𝜆𝑚
𝑘).

99

4.2.3 Dynamic Procurement

This problem was first studied in [15]. Consider a buyer with a budget 𝐵 facing 𝑇 agents

arriving sequentially, each interested in selling one good. Agent 𝑡 ∈ {1, · · · , 𝑇} is offered

a take-it-or-leave-it price, 𝑝𝑡, and makes a sell only if the value he or she attributes to the

item, 𝑣𝑡, is no larger than 𝑝𝑡. We consider a stochastic setting where the sellers are not fully

adversarial: (𝑣𝑡)𝑡∈N is an i.i.d. stochastic process with distribution unknown to the buyer.

The goal for the buyer is to maximize the total expected number of goods purchased by

offering prices among a predetermined list (𝑝1, · · · , 𝑝𝐾). This is a BwK problem with two

resources: time and money. Pulling arm 𝑘 at round 𝑡 corresponds to offering the price 𝑝𝑘,

incurs a cost 𝑐𝑘,𝑡 = 𝑝𝑘 · 1𝑝𝑘≥𝑣𝑡 , and yields a reward 𝑟𝑘,𝑡 = 1𝑝𝑘≥𝑣𝑡 . It is also possible to

model situations where the agents are selling multiple types of products and/or multiple

units, in which case arms correspond to vectors specifying the number of units of each

product required along with their respective prices, see [16].

Applications of this model to crowdsourcing platforms are described in [15] and [16].

In this setting, agents correspond to workers that are willing to carry out microtasks which

are submitted by buyers (called “requesters”) using a posted-price mechanism. Requesters

are typically submitting large batches of jobs and can thus adjust the posted prices as they

learn about the pool of workers.

4.2.4 Wireless Sensor Networks

This is a variant of the model introduced in [91]. Consider an agent collecting informa-

tion using a network of wireless sensors powered by batteries. Activating sensor 𝑘 ∈

{1, · · · , 𝐾} consumes some amount of energy, 𝑐𝑘, which is depleted from the sensor’s

initial battery level, 𝐵𝑘, and triggers a measurement providing a random amount of infor-

mation (measured in bits), 𝑟𝑘,𝑡, which is transmitted back to the agent. Sensors cannot

harvest energy and the goal for the agent is to maximize the total expected amount of infor-

mation collected over 𝑇 actions. This is a BwK problem with 𝐾 + 1 resources: time and

the energy stored in the battery of each sensor. Pulling arm 𝑘 ∈ {1, · · · , 𝐾} corresponds to

activating sensor 𝑘, incurs the consumption of resource 𝑖 ∈ {1, · · · , 𝐾} by a deterministic

100

amount 𝑐𝑘,𝑡 = 𝑐𝑘 · 1𝑘=𝑖, and yields a random reward 𝑟𝑘,𝑡.

4.3 Algorithmic Ideas

4.3.1 Preliminaries

To handle the exploration-exploitation trade-off, an approach that has proved to be particu-

larly successful hinges on the optimism in the face of uncertainty paradigm. The idea is to

consider all plausible scenarios consistent with the information collected so far and to select

the decision that yields the most revenue among all the scenarios identified. Concentration

inequalities are intrinsic to the paradigm as they enable the development of systematic

closed form confidence intervals on the quantities of interest, which together define a set of

plausible scenarios. We make repeated use of the following result.

Lemma 4.1. Hoeffding’s inequality

Consider 𝑋1, · · · , 𝑋𝑛 𝑛 random variables with support in [0, 1].

If for every 𝑡 ≤ 𝑛 E[𝑋𝑡 | 𝑋1, · · · , 𝑋𝑡−1] ≤ 𝜇, then P[𝑋1+· · ·+𝑋𝑛 ≥ 𝑛𝜇+𝑎] ≤ exp(−2𝑎2

𝑛
)

for all 𝑎 ≥ 0.

If for every 𝑡 ≤ 𝑛 E[𝑋𝑡 | 𝑋1, · · · , 𝑋𝑡−1] ≥ 𝜇, then P[𝑋1+· · ·+𝑋𝑛 ≤ 𝑛𝜇−𝑎] ≤ exp(−2𝑎2

𝑛
)

for all 𝑎 ≥ 0.

The authors of [12] follow the optimism in the face of uncertainty paradigm to develop

the Upper Confidence Bound algorithm (UCB1). UCB1 is based on the following ob-

servations: (i) the optimal strategy always consists in pulling the arm with the highest

mean reward when time is the only limited resource, (ii) informally, Lemma 4.1 shows that

𝜇𝑟
𝑘 ∈ [𝑟𝑘,𝑡−𝜖𝑘,𝑡, 𝑟𝑘,𝑡+𝜖𝑘,𝑡] at time 𝑡 with probability at least 1−2/𝑡3 for 𝜖𝑘,𝑡 =

√︁
2 ln(𝑡)/𝑛𝑘,𝑡,

irrespective of the number of times arm 𝑘 has been pulled. Based on these observations,

UCB1 always selects the arm with highest UCB index, i.e. 𝑎𝑡 ∈ argmax𝑘=1,··· ,𝐾 𝐼𝑘,𝑡,

where the UCB index of arm 𝑘 at time 𝑡 is defined as 𝐼𝑘,𝑡 = 𝑟𝑘,𝑡 + 𝜖𝑘,𝑡. The first term

can be interpreted as an exploitation term, the ultimate goal being to maximize revenue,

while the second term is an exploration term, the smaller 𝑛𝑘,𝑡, the bigger it is. This fruitful

101

paradigm go well beyond this special case and many extensions of UCB1 have been de-

signed to tackle variants of the MAB problem, see for example [88]. The authors of [6]

embrace the same ideas to tackle BwK problems. The situation is more complex in this

all-encompassing framework as the optimal oracle algorithm involves pulling several arms.

In fact, finding the optimal pulling strategy given the knowledge of the underlying distribu-

tions is already a challenge in its own, see [73] for a study of the computational complexity

of similar problems. This raises the question of how to evaluate EROPT(𝐵(1), · · · , 𝐵(𝐶))

in (4.2). To overcome this issue, the authors of [16] upper bound the expected payoff of any

non-anticipating algorithm by the value of a linear program, which is easier to compute.

Lemma 4.2. Adapted from [16]

The total expected payoff of any non-anticipating algorithm is no greater than 𝐵 times the

optimal value of the linear program:

sup
(𝜉𝑘)𝑘=1,··· ,𝐾∈R𝐾

+

𝐾∑︁
𝑘=1

𝜇𝑟
𝑘 · 𝜉𝑘

subject to
𝐾∑︁

𝑘=1
𝜇𝑐

𝑘(𝑖) · 𝜉𝑘 ≤ 𝑏(𝑖), 𝑖 = 1, · · · , 𝐶

(4.3)

plus the constant term max
𝑘=1,··· ,𝐾
𝑖=1,··· ,𝐶|

with 𝜇𝑐
𝑘(𝑖)>0

𝜇𝑟
𝑘

𝜇𝑐
𝑘

(𝑖) .

The optimization problem (4.3) can be interpreted as follows. For any arm 𝑘, 𝐵 · 𝜉𝑘 corre-

sponds to the expected number of times arm 𝑘 is pulled by the optimal algorithm. Hence,

assuming we introduce a dummy arm 0 which is equivalent to skipping the current round,

𝜉𝑘 can be interpreted as the probability of pulling arm 𝑘 at any round when there is a

time horizon 𝑇 . Observe that the constraints restrict the feasible set of expected number

of pulls by imposing that the amounts of resources consumed are no greater than their

respective budgets in expectations, as opposed to almost surely which would be a more

stringent constraint. This explains why the optimal value of (4.3) is larger than the maxi-

mum achievable payoff. In this chapter, we use standard linear programming notions such

as the concept of a basis and a basic feasible solution. We refer to [24] for an introduction

to linear programming. A pseudo-basis 𝑥 is described by two subsets 𝒦𝑥 ⊂ {1, · · · , 𝐾}

102

and 𝒞𝑥 ⊂ {1, · · · , 𝐶} such that |𝒦𝑥| = |𝒞𝑥|. A pseudo-basis 𝑥 is a basis for (4.3) if the

matrix 𝐴𝑥 = (𝜇𝑐
𝑘(𝑖))(𝑖,𝑘)∈𝒞𝑥×𝒦𝑥 is invertible. Furthermore, 𝑥 is said to be a feasible basis

for (4.3) if the corresponding basic solution, denoted by (𝜉𝑥
𝑘)𝑘=1,··· ,𝐾 and determined by

𝜉𝑥
𝑘 = 0 for 𝑘 ̸∈ 𝒦𝑥 and 𝐴𝑥𝜉𝑥

𝒦𝑥
= 𝑏𝒞𝑥 (where 𝑏𝒞𝑥 is the subvector (𝑏(𝑖))𝑖∈𝒞𝑥), is feasible for

(4.3). When 𝑥 is a feasible basis for (4.3), we denote by obj𝑥 = ∑︀𝐾
𝑘=1 𝜇𝑟

𝑘 · 𝜉𝑥
𝑘 its objective

function. From Lemma 4.2, we derive:

𝑅𝐵(1),··· ,𝐵(𝐶) ≤ 𝐵 · obj𝑥* − E[
𝜏*∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] + 𝑂(1), (4.4)

where 𝑥* is an optimal feasible basis for (4.3). For mathematical convenience, we consider

that the game carries on even if one of the resources is already exhausted so that 𝑎𝑡 is well

defined for any 𝑡 ∈ N. Of course, the rewards obtained for 𝑡 ≥ 𝜏 * are not taken into account

in the decision maker’s payoff when establishing regret bounds.

4.3.2 Solution Methodology

Lemma 4.2 also provides insight into designing algorithms. The idea is to incorporate

confidence intervals on the mean rewards and the mean amounts of resource consumption

into the offline optimization problem (4.3) and to base the decision upon the resulting

optimal solution. There are several ways to carry out this task, each leading to a different

algorithm. When there is a time horizon 𝑇 , [6] use high-probability lower (resp. upper)

bounds on the mean amounts of resource consumption (resp. rewards) in place of the

unknown mean values in (4.3) and pull an arm at random according to the resulting optimal

distribution. Specifically, at any round 𝑡, the authors suggest to compute an optimal solution

(𝜉*
𝑘,𝑡)𝑘=1,··· ,𝐾 to the linear program:

sup
(𝜉𝑘)𝑘=1,··· ,𝐾∈R𝐾

+

𝐾∑︁
𝑘=1

(𝑟𝑘,𝑡 + 𝜖𝑘,𝑡) · 𝜉𝑘

subject to
𝐾∑︁

𝑘=1
(𝑐𝑘,𝑡(𝑖) − 𝜖𝑘,𝑡) · 𝜉𝑘 ≤ (1 − 𝛾) · 𝑏(𝑖), 𝑖 = 1, · · · , 𝐶 − 1

𝐾∑︁
𝑘=1

𝜉𝑘 ≤ 1

(4.5)

103

for a well-chosen 𝛾 ∈ (0, 1), and then to pull arm 𝑘 with probability 𝜉*
𝑘,𝑡 or skip the round

with probability 1−∑︀𝐾
𝑘=1 𝜉*

𝑘,𝑡. If we relate this approach to UCB1, the intuition is clear: the

idea is to be optimistic about both the rewards and the amounts of resource consumption.

We argue that this approach cannot yield logarithmic regret bounds. First, because 𝛾 has

to be of order 1/
√

𝑇 . Second, because, even if we were given an optimal solution to (4.3),

(𝜉𝑥*
𝑘)𝑘=1,··· ,𝐾 , before starting the game, consistently choosing which arm to pull at random

according to this distribution at every round would incur regret Ω(
√

𝑇), as we next show.

Lemma 4.3. For all the cases treated in this chapter, pulling arm 𝑘 with probability 𝜉𝑥*
𝑘

at any round 𝑡 yields a regret of order Ω(
√

𝑇) unless pulling any arm in the set {𝑘 ∈

{1, · · · , 𝐾} | 𝜉𝑥*
𝑘 > 0} incurs the same deterministic amount of resource consumption for

all resources in 𝒞𝑥* and for all rounds 𝑡 ∈ N.

Proof. Define 𝒦* = {𝑘 ∈ {1, · · · , 𝐾} | 𝜉𝑥*
𝑘 > 0}. For any 𝑖 ∈ {1, · · · , 𝐶 − 1}, we have:

𝑇 · obj𝑥* − E[
𝜏*∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] ≥ E[(

𝑇∑︁
𝑡=𝜏*

𝑐𝑎𝑡,𝑡(𝑖) +
𝜏*−1∑︁
𝑡=1

𝑐𝑎𝑡,𝑡(𝑖) − 𝐵(𝑖))+] · obj𝑥* + 𝑂(1)

= E[(
𝑇∑︁

𝑡=1
{𝑐𝑎𝑡,𝑡(𝑖) − 𝑏(𝑖)})+] · obj𝑥* + 𝑂(1),

since E[∑︀𝜏*

𝑡=1 𝑟𝑎𝑡,𝑡] = E[𝜏 *] · obj𝑥* , 𝑐𝑎𝑡,𝑡(𝑖) ≤ 1 for all 𝑡 and
∑︀𝜏*−1

𝑡=1 𝑐𝑎𝑡,𝑡(𝑖) ≤ 𝐵(𝑖). Since,

for 𝑖 ∈ 𝒞𝑥* , (𝑐𝑎𝑡,𝑡(𝑖))𝑡∈N is an i.i.d. bounded stochastic process with mean 𝑏(𝑖), we get:

E[(
𝑇∑︁

𝑡=1
{𝑐𝑎𝑡,𝑡(𝑖) − 𝑏(𝑖)})+] = Ω(

√
𝑇), (4.6)

provided that 𝑐𝑎𝑡,𝑡(𝑖) has positive variance, which is true if there exists at least one arm

𝑘 ∈ 𝒦* such that 𝑐𝑘,𝑡(𝑖) has positive variance or if there exist two arms 𝑘, 𝑙 ∈ 𝒦* such

that 𝑐𝑘,𝑡(𝑖) and 𝑐𝑙,𝑡(𝑖) are not almost surely equal to the same deterministic value. Strictly

speaking, this is not enough to conclude that 𝑅𝐵(1),··· ,𝐵(𝐶−1),𝑇 = Ω(
√

𝑇) as 𝑇 ·obj𝑥* is only

an upper bound on the maximum expected payoff. However, in Sections 4.4, 4.5, 4.6, and

4.7, we show that there exists an algorithm that satisfies 𝑇 ·obj𝑥*−E[∑︀𝜏*

𝑡=1 𝑟𝑎𝑡,𝑡] = 𝑂(ln(𝑇))

for all the cases considered in this thesis. Together with (4.6) and Lemma 4.2, this shows

that the regret incurred when pulling arm 𝑘 with probability 𝜉𝑥*
𝑘 at any round is Ω(

√
𝑇).

104

The fundamental shortcoming of this approach is that it systematically leads us to plan

to consume the same average amount of resource 𝑖 per round 𝑏(𝑖), for any resource 𝑖 =

1, · · · , 𝐶 − 1, irrespective of whether we have significantly over- or under-consumed in the

past. Based on this observation, a natural idea is to solve the linear program:

sup
(𝜉𝑘)𝑘=1,··· ,𝐾∈R𝐾

+

𝐾∑︁
𝑘=1

(𝑟𝑘,𝑡 + 𝜖𝑘,𝑡) · 𝜉𝑘

subject to
𝐾∑︁

𝑘=1
(𝑐𝑘,𝑡(𝑖) − 𝜖𝑘,𝑡) · 𝜉𝑘 ≤ (1 − 𝛾) · 𝑏𝑡(𝑖), 𝑖 = 1, · · · , 𝐶 − 1

𝐾∑︁
𝑘=1

𝜉𝑘 ≤ 1

(4.7)

instead of (4.5), where 𝑏𝑡(𝑖) denotes the ratio of the remaining amount of resource 𝑖 at

time 𝑡 to the remaining time horizon, i.e. 𝑇 − 𝑡 + 1. Bounding the regret incurred by

this adaptive algorithm is, however, difficult from a theoretical standpoint. To address this

issue, we propose the following family of algorithms, whose behaviors are similar to the

adaptive algorithm but lend themselves to an easier analysis.

105

Algorithm: UCB-Simplex
Take 𝜆 ≥ 1 and (𝜂𝑖)𝑖=1,··· ,𝐶 ≥ 0 (these quantities will need to be carefully chosen).

The algorithm is preceded by an initialization phase which consists in pulling each

arm a given number of times, to be specified. For each subsequent time period 𝑡,

proceed as follows.

Step-Simplex: Find an optimal basis 𝑥𝑡 to the linear program:

sup
(𝜉𝑘)𝑘=1,··· ,𝐾

𝐾∑︁
𝑘=1

(𝑟𝑘,𝑡 + 𝜆 · 𝜖𝑘,𝑡) · 𝜉𝑘

subject to
𝐾∑︁

𝑘=1
(𝑐𝑘,𝑡(𝑖) − 𝜂𝑖 · 𝜖𝑘,𝑡) · 𝜉𝑘 ≤ 𝑏(𝑖), 𝑖 = 1, · · · , 𝐶

𝜉𝑘 ≥ 0, 𝑘 = 1, · · · , 𝐾

(4.8)

Adapting the notations, 𝑥𝑡 is described by two subsets 𝒦𝑥𝑡 ⊂ {1, · · · , 𝐾} and 𝒞𝑥𝑡 ⊂

{1, · · · , 𝐶} such that |𝒦𝑥𝑡 | = |𝒞𝑥𝑡|, the matrix 𝐴𝑥𝑡,𝑡 = (𝑐𝑘,𝑡(𝑖) − 𝜂𝑖 · 𝜖𝑘,𝑡)(𝑖,𝑘)∈𝒞𝑥𝑡 ×𝒦𝑥𝑡
,

and the corresponding basic feasible solution (𝜉𝑥𝑡
𝑘,𝑡)𝑘=1,··· ,𝐾 determined by 𝜉𝑥𝑡

𝑘,𝑡 = 0

for 𝑘 ̸∈ 𝒦𝑥𝑡 and 𝐴𝑥𝑡,𝑡𝜉
𝑥𝑡
𝒦𝑥,𝑡 = 𝑏𝒦𝑥𝑡

.

Step-Load-Balance: Identify the arms involved in the optimal basis, i.e. 𝒦𝑥𝑡 . There

are at most min(𝐾, 𝐶) such arms. Use a load balancing algorithm 𝒜𝑥𝑡 , to be

specified, to determine which of these arms to pull.

For all the cases considered in this chapter, (4.8) is always bounded and Step-Simplex is

well defined. The Simplex algorithm is an obvious choice to carry out Step-Simplex, es-

pecially when 𝜂𝑖 = 0 for any resource 𝑖 ∈ {1, · · · , 𝐶}, because, in this case, we only

have to update one column of the constraint matrix per round which makes warm-starting

properties attractive. However, note that this can also be done in time polynomial in 𝐾 and

𝐶, see [45]. If we compare (4.8) with (4.5), the idea remains to be overly optimistic but,

as we will see, more about the rewards than the amounts of resource consumption through

the exploration factor 𝜆 which will typically be larger than 𝜂𝑖, thus transferring most of the

burden of exploration from the constraints to the objective function. The details of Step-

Load-Balance are purposefully left out and will be specified for each of the cases treated in

this chapter. When there is a time horizon 𝑇 , the general idea is to determine, at any time

106

period 𝑡 and for each resource 𝑖 = 1, · · · , 𝐶, whether we have over- or under-consumed in

the past and to perturb the probability distribution (𝜉𝑥𝑡
𝑘,𝑡)𝑘=1,··· ,𝐾 accordingly to get back on

track.

The algorithm we propose is intrinsically tied to the existence of basic feasible optimal

solutions to (4.3) and (4.8). We denote by ℬ (resp. ℬ𝑡) the subset of bases of (4.3) (resp.

(4.8)) that are feasible for (4.3) (resp. (4.8)). Step-Simplex can be interpreted as an exten-

sion of the index-based decision rule of UCB1. Indeed, Step-Simplex assigns an index 𝐼𝑥,𝑡

to each basis 𝑥 ∈ ℬ𝑡 and outputs 𝑥𝑡 ∈ argmax𝑥∈ℬ𝑡
𝐼𝑥,𝑡, where 𝐼𝑥,𝑡 = obj𝑥,𝑡 + 𝐸𝑥,𝑡 with a

clear separation (at least when 𝜂𝑖 = 0 for any resource 𝑖) between the exploitation term,

obj𝑥,𝑡 = ∑︀𝐾
𝑘=1 𝜉𝑥

𝑘,𝑡 · 𝑟𝑘,𝑡, and the exploration term, 𝐸𝑥,𝑡 = 𝜆 ·∑︀𝐾
𝑘=1 𝜉𝑥

𝑘,𝑡 · 𝜖𝑘,𝑡. Observe that,

for 𝑥 ∈ ℬ𝑡 that is also feasible for (4.3), (𝜉𝑥
𝑘,𝑡)𝑘=1,··· ,𝐾 and obj𝑥,𝑡 are plug-in estimates of

(𝜉𝑥
𝑘)𝑘=1,··· ,𝐾 and obj𝑥 when 𝜂𝑖 = 0 for any resource 𝑖. Also note that when 𝜆 = 1 and 𝜂𝑖 = 0

for any resource 𝑖 and when time is the only limited resource, UCB-Simplex is identical

to UCB1 as Step-Load-Balance is unambiguous in this special case, each basis involving a

single arm. For any 𝑥 ∈ ℬ, we define Δ𝑥 = obj𝑥* − obj𝑥 ≥ 0 as the optimality gap. A

feasible basis 𝑥 is said to be suboptimal if Δ𝑥 > 0. At any time 𝑡, 𝑛𝑥,𝑡 denotes the num-

ber of times basis 𝑥 has been selected at Step-Simplex up to time 𝑡 while 𝑛𝑥
𝑘,𝑡 denotes the

number of times arm 𝑘 has been pulled up to time 𝑡 when selecting 𝑥 at Step-Simplex. For

all the cases treated in this chapter, we will show that, under a nondegeneracy assumption,

Step-Simplex guarantees that a suboptimal basis cannot be selected more than 𝑂(ln(𝐵))

times on average, a result reminiscent of the regret analysis of UCB1 carried out in [12].

However, in stark contrast with the situation of a single limited resource, this is merely a

prerequisite to establish a 𝑂(ln(𝐵)) bound on regret. Indeed, a low regret algorithm must

also balance the load between the arms as closely as possible to optimality. Hence, the

choice of the load balancing algorithms 𝒜𝑥 is crucial to obtain logarithmic regret bounds.

4.4 A Single Limited Resource

In this section, we tackle the case of a single resource whose consumption is limited by a

global budget 𝐵, i.e. 𝐶 = 1 and 𝑏(1) = 1. To simplify the notations, we omit the indices

107

identifying the resources as there is only one, i.e. we write 𝜇𝑐
𝑘, 𝑐𝑘,𝑡, 𝑐𝑘,𝑡, and 𝜂 as opposed

to 𝜇𝑐
𝑘(1), 𝑐𝑘,𝑡(1), 𝑐𝑘,𝑡(1), and 𝜂1. We also use the shorthand 𝜖 = min𝑘=1,··· ,𝐾 𝜇𝑐

𝑘. Recall that,

under Assumption 4.2, 𝜖 is positive and a priori unknown to the decision maker. In order

to derive logarithmic bounds, we will also need to assume that the decision maker knows

an upper bound on the optimal value of (4.3).

Assumption 4.3. The decision maker knows 𝜅 ≥ max
𝑘=1,··· ,𝐾

𝜇𝑟
𝑘

𝜇𝑐
𝑘

ahead of round 1.

Assumption 4.3 is natural in repeated second-price auctions, as detailed in the last para-

graph of this section. Moreover, note that if 𝜖 happens to be known ahead of round 1 we

can take 𝜅 = 1/𝜖.

Specification of the algorithm. We implement UCB-Simplex with 𝜆 = 1+𝜅 and 𝜂 = 0.

The initialization step consists in pulling each arm until the amount of resource consumed

as a result of pulling that arm is non-zero. The purpose of this step is to have 𝑐𝑘,𝑡 > 0

for all periods to come and for all arms. Step-Load-Balance is unambiguous here as basic

feasible solutions involve a single arm. Hence, we identify a basis 𝑥 such that 𝒦𝑥 = {𝑘}

and 𝒞𝑥 = {1} with the corresponding arm and write 𝑥 = 𝑘 to simplify the notations. In

particular, 𝑘* ∈ {1, · · · , 𝐾} identifies an optimal arm in the sense defined in Section 4.3.

For any arm 𝑘, the exploration and exploitation terms defined in Section 4.3 specialize to:

obj𝑘,𝑡 = 𝑟𝑘,𝑡

𝑐𝑘,𝑡

and 𝐸𝑘,𝑡 = (1 + 𝜅) · 𝜖𝑘,𝑡

𝑐𝑘,𝑡

,

while obj𝑘 = 𝜇𝑟
𝑘/𝜇𝑐

𝑘, so that:

𝑘* ∈ argmax
𝑘=1,··· ,𝐾

𝜇𝑟
𝑘

𝜇𝑐
𝑘

, 𝑎𝑡 ∈ argmax
𝑘=1,··· ,𝐾

𝑟𝑘,𝑡 + (1 + 𝜅) · 𝜖𝑘,𝑡

𝑐𝑘,𝑡

, and Δ𝑘 = 𝜇𝑟
𝑘*

𝜇𝑐
𝑘*

− 𝜇𝑟
𝑘

𝜇𝑐
𝑘

.

We point out that, for the particular setting considered in this section, UCB-Simplex is

almost identical to the fractional KUBE algorithm proposed in [90] to tackle the case of

a single resource whose consumption is deterministic. It only differs by the presence of

the scaling factor 1 + 𝜅 to favor exploration over exploitation, which becomes unneces-

sary when the amounts of resource consumed are deterministic, see Section C.1 of the

108

Appendix.

Regret analysis. We omit the initialization step in the theoretical analysis because the

amount of resource consumed is 𝑂(1) and the reward obtained is non-negative and not

taken into account in the decision maker’s total payoff. Moreover, the initialization step

ends in finite time almost surely as a result of Assumption 4.2. First observe that (4.4)

specializes to:

𝑅𝐵 ≤ 𝐵 · 𝜇𝑟
𝑘*

𝜇𝑐
𝑘*

− E[
𝜏*∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] + 𝑂(1). (4.9)

To bound the right-hand side, we start by estimating the expected time horizon.

Lemma 4.4. For any non-anticipating algorithm, we have: E[𝜏 *] ≤ 𝐵+1
𝜖

.

Sketch of proof. By definition of 𝜏 *, we have
∑︀𝜏*−1

𝑡=1 𝑐𝑎𝑡,𝑡 ≤ 𝐵. Taking expectations on both

sides yields 𝐵 ≥ E[∑︀𝜏*

𝑡=1 𝜇𝑐
𝑎𝑡

] − 1 ≥ E[𝜏 *] · 𝜖 − 1 by Assumption 4.2. Rearranging this last

inequality yields the claim.

The next result is crucial. Used in combination with Lemma 4.4, it shows that any subopti-

mal arm is pulled at most 𝑂(ln(𝐵)) times in expectations, a well-known result for UCB1,

see [12]. The proof is along the same lines as for UCB1, namely we assume that arm 𝑘

has already been pulled more than Θ(ln(𝜏 *)/(Δ𝑘)2) times and conclude that arm 𝑘 cannot

be pulled more than a few more times, with the additional difficulty of having to deal with

the random stopping time and the fact that the amount of resource consumed at each step

is stochastic.

Lemma 4.5. For any suboptimal arm 𝑘, we have:

E[𝑛𝑘,𝜏*] ≤ 26(𝜆

𝜇𝑐
𝑘

)2 · E[ln(𝜏 *)]
(Δ𝑘)2 + 4𝜋2

3𝜖2 .

Sketch of proof. We use the shorthand notation 𝛽𝑘 = 25(𝜆/𝜇𝑐
𝑘)2 · (1/Δ𝑘)2. First observe

that if we want to bound E[𝑛𝑘,𝜏*], we may assume, without loss of generality, that arm 𝑘

has been pulled at least 𝛽𝑘 · ln(𝑡) times at any time 𝑡 up to an additive term of 2𝛽𝑘 ·E[ln(𝜏 *)]

in the final inequality. We then just have to bound by a constant the probability that 𝑘 is

109

selected at any time 𝑡 given that 𝑛𝑘,𝑡 ≥ 𝛽𝑘 · ln(𝑡). If 𝑘 is selected at time 𝑡, it must be that 𝑘

is optimal for (4.8), which, in particular, implies that obj𝑘,𝑡 + 𝐸𝑘,𝑡 ≥ obj𝑘*,𝑡 + 𝐸𝑘*,𝑡. This

can only happen if either: (i) obj𝑘,𝑡 ≥ obj𝑘 + 𝐸𝑘,𝑡, i.e. the objective value of 𝑘 is overly

optimistic, (ii) obj𝑘*,𝑡 ≤ obj𝑘* − 𝐸𝑘*,𝑡, i.e. the objective value of 𝑘* is overly pessimistic,

or (iii) obj𝑘* < obj𝑘 + 2𝐸𝑘,𝑡, i.e. the optimality gap of arm 𝑘 is small compared to its

exploration factor. The probability of events (i) and (ii) can be bounded by ∼ 1/𝑡2 in the

same fashion, irrespective of how many times these arms have been pulled in the past. For

example for event (i), this is because if 𝑟𝑘,𝑡/𝑐𝑘,𝑡 = obj𝑘,𝑡 ≥ obj𝑘+𝐸𝑘,𝑡 = 𝜇𝑟
𝑘/𝜇𝑐

𝑘+𝐸𝑘,𝑡, then

either (a) 𝑟𝑘,𝑡 ≥ 𝜇𝑟
𝑘 + 𝜖𝑘,𝑡 or (b) 𝑐𝑘,𝑡 ≤ 𝜇𝑐

𝑘 − 𝜖𝑘,𝑡 and both of these events have probability

at most ∼ 1/𝑡2 by Lemma 4.1. Indeed, if (a) and (b) do not hold, we have:

𝑟𝑘,𝑡

𝑐𝑘,𝑡

− 𝜇𝑟
𝑘

𝜇𝑐
𝑘

= (𝑟𝑘,𝑡 − 𝜇𝑟
𝑘)𝜇𝑐

𝑘 + (𝜇𝑐
𝑘 − 𝑐𝑘,𝑡)𝜇𝑟

𝑘

𝑐𝑘,𝑡 · 𝜇𝑐
𝑘

<
𝜖𝑘,𝑡

𝑐𝑘,𝑡

+ 𝜖𝑘,𝑡

𝑐𝑘,𝑡

· 𝜇𝑟
𝑘

𝜇𝑐
𝑘

≤ (1 + 𝜅) · 𝜖𝑘,𝑡

𝑐𝑘,𝑡

= 𝐸𝑘,𝑡.

As for event (iii), observe that if obj𝑘* < obj𝑘 + 2𝐸𝑘,𝑡 and 𝑛𝑘,𝑡 ≥ 𝛽𝑘 · ln(𝑡) then we have

𝑐𝑘,𝑡 ≤ 𝜇𝑐
𝑘/2, which happens with probability at most ∼ 1/𝑡2 by Lemma 4.1 given that arm

𝑘 has already been pulled at least ∼ ln(𝑡)/(𝜇𝑘
𝑐)2 times.

Building on the last two results, we derive a distribution-dependent regret bound which

improves upon the one derived in [102]: the decision maker is only assumed to know 𝜅,

as opposed to a lower bound on 𝜖, ahead of round 1. This is more natural in bidding

applications as detailed in the last paragraph of this section. This bound generalizes the

one obtained by [12] when time is the only scarce resource.

Theorem 4.1. We have:

𝑅𝐵 ≤ 26𝜆2 · (
∑︁

𝑘∈{1,··· ,𝐾} | Δ𝑘>0

1
𝜇𝑐

𝑘 · Δ𝑘

) · ln(𝐵 + 1
𝜖

) + 𝑂(1).

110

Sketch of proof. We build upon (4.9):

𝑅𝐵 ≤ 𝐵 · 𝜇𝑟
𝑘*

𝜇𝑐
𝑘*

− E[
𝜏*∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] + 𝑂(1)

= 𝐵 · 𝜇𝑟
𝑘*

𝜇𝑐
𝑘*

−
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · E[𝑛𝑘,𝜏*] + 𝑂(1)

= 𝜇𝑟
𝑘*

𝜇𝑐
𝑘*

· (𝐵 −
∑︁

𝑘 | Δ𝑘=0
𝜇𝑐

𝑘 · E[𝑛𝑘,𝜏*]) −
∑︁

𝑘 | Δ𝑘>0
𝜇𝑟

𝑘 · E[𝑛𝑘,𝜏*] + 𝑂(1).

By definition of 𝜏 *, the resource is exhausted at time 𝜏 *, i.e. 𝐵 ≤ ∑︀𝜏*

𝑡=1 𝑐𝑎𝑡,𝑡. Taking

expectations on both sides yields 𝐵 ≤ ∑︀𝐾
𝑘=1 𝜇𝑐

𝑘 · E[𝑛𝑘,𝜏*]. Plugging this last inequality

back into the regret bound, we get:

𝑅𝐵 ≤
∑︁

𝑘 | Δ𝑘>0
𝜇𝑐

𝑘 · Δ𝑘 · E[𝑛𝑘,𝜏*] + 𝑂(1).

Using the upper bound of Lemma 4.4, the concavity of the logarithmic function, and

Lemma 4.5, we derive:

𝑅𝐵 ≤ 26𝜆2 · (
∑︁

𝑘 | Δ𝑘>0

1
𝜇𝑐

𝑘 · Δ𝑘

) · ln(𝐵 + 1
𝜖

) + 4𝜋2

3𝜖2 · (
∑︁

𝑘 | Δ𝑘>0
𝜇𝑐

𝑘 · Δ𝑘) + 𝑂(1)

which yields the claim since Δ𝑘 ≤ 𝜇𝑟
𝑘*/𝜇𝑐

𝑘* ≤ 𝜅 and 𝜇𝑐
𝑘 ≤ 1 for any arm 𝑘.

Observe that the set of optimal arms, namely argmax𝑘=1,··· ,𝐾 𝜇𝑟
𝑘/𝜇𝑐

𝑘, does not depend on

𝐵 and that Δ𝑘 is a constant independent of 𝐵 for any suboptimal arm. We conclude that

𝑅𝐵 = 𝑂(𝐾 · ln(𝐵)/Δ) with Δ = min𝑘∈{1,··· ,𝐾} | Δ𝑘>0 Δ𝑘. Interestingly, the algorithm we

propose does not rely on 𝐵 to achieve this regret bound, much like what happens for UCB1

with the time horizon, see [12]. This result is optimal up to constant factors as the standard

MAB problem is a special case of the framework considered in this section, see [60] for a

proof of a lower bound in this context. It is possible to improve the constant factors when

the consumption of the resource is deterministic as we can take 𝜆 = 1 in this scenario

and the resulting regret bound is scale-free, see Section C.1 of the Appendix. Building on

Theorem 4.1, we can also derive a near-optimal distribution-free regret bound in the same

111

fashion as for UCB1.

Theorem 4.2. We have:

𝑅𝐵 ≤ 8𝜆 ·
√︃

𝐾 · 𝐵 + 1
𝜖

· ln(𝐵 + 1
𝜖

) + 𝑂(1).

Proof. To get the distribution-free bound, we start from the penultimate inequality derived

in the proof sketch of Theorem 4.1 and apply Lemma 4.5 only if Δ𝑘 is big enough, noting

that:
𝐾∑︁

𝑘=1
E[𝑛𝑘,𝜏*] = E[𝜏 *] ≤ (𝐵 + 1)/𝜖.

Specifically, we have:

𝑅𝐵 ≤ sup
(𝑛1,··· ,𝑛𝐾)≥0∑︀𝐾

𝑘=1 𝑛𝑘≤ 𝐵+1
𝜖

{
∑︁

𝑘 | Δ𝑘>0
min(𝜇𝑐

𝑘 · Δ𝑘 · 𝑛𝑘, 26𝜆2 ·
ln(𝐵+1

𝜖
)

𝜇𝑐
𝑘 · Δ𝑘

+ 4𝜋2

3𝜖2 · 𝜇𝑐
𝑘 · Δ𝑘) } + 𝑂(1)

≤ sup
(𝑛1,··· ,𝑛𝐾)≥0∑︀𝐾

𝑘=1 𝑛𝑘≤ 𝐵+1
𝜖

{
∑︁

𝑘 | Δ𝑘>0
min(𝜇𝑐

𝑘 · Δ𝑘 · 𝑛𝑘, 26𝜆2 ·
ln(𝐵+1

𝜖
)

𝜇𝑐
𝑘 · Δ𝑘

) } + 𝐾 · 4𝜋2𝜅

3𝜖2 + 𝑂(1)

≤ sup
(𝑛1,··· ,𝑛𝐾)≥0∑︀𝐾

𝑘=1 𝑛𝑘≤ 𝐵+1
𝜖

{
∑︁

𝑘 | Δ𝑘>0

√︃
26𝜆2 · 𝑛𝑘 · ln(𝐵 + 1

𝜖
) } + 𝑂(1)

≤ 8𝜆 ·
√︃

𝐾 · 𝐵 + 1
𝜖

· ln(𝐵 + 1
𝜖

) + 𝑂(1),

where the second inequality is obtained with Δ𝑘 ≤ 𝜇𝑟
𝑘*/𝜇𝑐

𝑘* ≤ 𝜅 and 𝜇𝑐
𝑘 ≤ 1, the third

inequality is derived by maximizing on (𝜇𝑐
𝑘 · Δ𝑘) ≥ 0 for all arms 𝑘, and the last inequality

is obtained with the Cauchy−Schwarz inequality.

We conclude that 𝑅𝐵 = 𝑂(
√︁

𝐾 · 𝐵 · ln(𝐵)), where the hidden constant factors are inde-

pendent of the underlying distributions (𝜈𝑘)𝑘=1,··· ,𝐾 .

Applications. Assumption 4.3 is natural for bidding in repeated second-price auctions

when the auctioneer sets a reserve price 𝑅 (this is common practice in sponsored search

112

auctions). Indeed, then we have:

E[𝑐𝑘,𝑡] = E[𝑚𝑡 · 1𝑏𝑘≥𝑚𝑡]

≥ 𝑅 · E[1𝑏𝑘≥𝑚𝑡]

≥ 𝑅 · E[𝑣𝑡 · 1𝑏𝑘≥𝑚𝑡] = 𝑅 · E[𝑟𝑘,𝑡],

for any arm 𝑘 ∈ {1, · · · , 𝐾} and Assumption 4.3 is satisfied with 𝜅 = 1/𝑅.

4.5 Arbitrarily Many Limited Resources whose Consump-

tions are Deterministic

In this section, we study the case of multiple limited resources when the amounts of re-

sources consumed as a result of pulling an arm are deterministic and globally constrained

by prescribed budgets (𝐵(𝑖))𝑖=1,··· ,𝐶 , where 𝐶 is the number of resources. Note that time

need not be a constraint. Because the amounts of resources consumed are deterministic,

we can substitute the notation 𝜇𝑐
𝑘(𝑖) with 𝑐𝑘(𝑖) for any arm 𝑘 ∈ {1, · · · , 𝐾} and any re-

source 𝑖 ∈ {1, · · · , 𝐶}. We point out that the stopping time need not be deterministic as

the decision to select an arm at any round is based on the past realizations of the rewards.

We define 𝜌 ≤ min(𝐶, 𝐾) as the rank of the matrix (𝑐𝑘(𝑖))1≤𝑘≤𝐾,1≤𝑖≤𝐶 .

Specification of the algorithm. We implement UCB-Simplex with an initialization step

which consists in pulling each arm 𝜌 times. The motivation behind this step is mainly

technical and is simply meant to have:

𝑛𝑘,𝑡 ≥ 𝜌 +
∑︁

𝑥∈ℬ | 𝑘∈𝒦𝑥

𝑛𝑥
𝑘,𝑡 ∀𝑡 ∈ N, ∀𝑘 ∈ {1, · · · , 𝐾}. (4.10)

Compared to Section 4.4, we choose to take 𝜆 = 1 and 𝜂𝑖 = 0 for any 𝑖 ∈ {1, · · · , 𝐶}. As

a result and since the amounts of resource consumption are deterministic, the exploration

(resp. exploitation) terms defined in Section 4.3 specialize to obj𝑥,𝑡 = ∑︀𝐾
𝑘=1 𝜉𝑥

𝑘 · 𝑟𝑘,𝑡 (resp.

𝐸𝑥,𝑡 = ∑︀𝐾
𝑘=1 𝜉𝑥

𝑘 ·𝜖𝑘,𝑡). Compared to the case of a single resource, we are required to specify

113

the load balancing algorithms involved in Step-Load-Balance of UCB-Simplex as a feasible

basis selected at Step-Simplex may involve several arms. Although Step-Simplex will also

need to be specified in Sections 4.6 and 4.7, designing good load balancing algorithms is

arguably easier here as the optimal load balance is known for each basis from the start.

Nonetheless, one challenge remains: we can never identify the (possibly many) optimal

bases of (4.3) with absolute certainty. As a result, any basis selected at Step-Simplex should

be treated as potentially optimal when balancing the load between the arms involved in this

basis, but this inevitably causes some interference issues as an arm may be involved in

several bases, and worst, possibly several optimal bases. Therefore, one point that will

appear to be of particular importance in the analysis is the use of load balancing algorithms

that are decoupled from one another, in the sense that they do not rely on what happened

when selecting other bases. More specifically, we use the following class of load balancing

algorithms.

Algorithm: Load balancing algorithm 𝒜𝑥 for a feasible basis 𝑥 ∈ ℬ
If basis 𝑥 is selected at time 𝑡, pull any arm 𝑘 ∈ 𝒦𝑥 such that 𝑛𝑥

𝑘,𝑡 ≤ 𝑛𝑥,𝑡 · 𝜉𝑥
𝑘∑︀𝐾

𝑙=1 𝜉𝑥
𝑙

.

The load balancing algorithms 𝒜𝑥 thus defined are decoupled because, for each basis, the

number of times an arm has been pulled when selecting any other basis is not taken into

account. The following lemma shows that 𝒜𝑥 is always well defined and guarantees that

the ratios (𝑛𝑥
𝑘,𝑡/𝑛𝑥

𝑙,𝑡)𝑘,𝑙∈𝒦𝑥 remain close to the optimal ones (𝜉𝑥
𝑘 /𝜉𝑥

𝑙)𝑘,𝑙∈𝒦𝑥 at all times.

Lemma 4.6. For any basis 𝑥 ∈ ℬ, 𝒜𝑥 is well defined and moreover, at any time 𝑡 and for

any arm 𝑘 ∈ 𝒦𝑥, we have:

𝑛𝑥,𝑡 · 𝜉𝑥
𝑘∑︀𝐾

𝑙=1 𝜉𝑥
𝑙

− 𝜌 ≤ 𝑛𝑥
𝑘,𝑡 ≤ 𝑛𝑥,𝑡 · 𝜉𝑥

𝑘∑︀𝐾
𝑙=1 𝜉𝑥

𝑙

+ 1,

while 𝑛𝑥
𝑘,𝑡 = 0 for any arm 𝑘 /∈ 𝒦𝑥.

Proof. We need to show that there always exists an arm 𝑘 ∈ 𝒦𝑥 such that 𝑛𝑥
𝑘,𝑡 ≤ 𝑛𝑥,𝑡 ·

𝜉𝑥
𝑘 /
∑︀𝐾

𝑙=1 𝜉𝑥
𝑙 . Suppose there is none, we have:

𝑛𝑥,𝑡− =
∑︁

𝑘∈𝒦𝑥

𝑛𝑥
𝑘,𝑡 >

∑︁
𝑘∈𝒦𝑥

𝑛𝑥,𝑡 · 𝜉𝑥
𝑘∑︀𝐾

𝑙=1 𝜉𝑥
𝑙

= 𝑛𝑥,𝑡,

114

a contradiction. Moreover, we have, at any time 𝑡 and for any arm 𝑘 ∈ 𝒦𝑥, 𝑛𝑥
𝑘,𝑡 ≤ 𝑛𝑥,𝑡 ·

𝜉𝑥
𝑘 /
∑︀𝐾

𝑙=1 𝜉𝑥
𝑙 + 1. Indeed, suppose otherwise and define 𝑡* ≤ 𝑡 as the last time arm 𝑘 was

pulled, we have:

𝑛𝑥
𝑘,𝑡* = 𝑛𝑥

𝑘,𝑡 − 1 > 𝑛𝑥,𝑡 · 𝜉𝑥
𝑘∑︀𝐾

𝑙=1 𝜉𝑥
𝑙

≥ 𝑛𝑥,𝑡* · 𝜉𝑥
𝑘∑︀𝐾

𝑙=1 𝜉𝑥
𝑙

,

which shows, by definition, that arm 𝑘 could not have been pulled at time 𝑡*. We also derive

as a byproduct that, at any time 𝑡 and for any arm 𝑘 ∈ 𝒦𝑥, 𝑛𝑥,𝑡 · 𝜉𝑥
𝑘 /
∑︀𝐾

𝑙=1 𝜉𝑥
𝑙 − 𝜌 ≤ 𝑛𝑥

𝑘,𝑡

since 𝑛𝑥,𝑡 = ∑︀
𝑘∈𝒦𝑥

𝑛𝑥
𝑘,𝑡 and since a basis involves at most 𝜌 arms.

Observe that the load balancing algorithms 𝒜𝑥 run in time 𝑂(1) but may require a memory

storage capacity exponential in 𝐶 and polynomial in 𝐾, although always bounded by 𝑂(𝐵)

(because we do not need to keep track of 𝑛𝑥
𝑘,𝑡 if 𝑥 has never been selected). In practice,

only a few bases will be selected at Step-Simplex, so that a hash table is an appropriate

data structure to store the sequences (𝑛𝑥
𝑘,𝑡)𝑘∈𝒦𝑥 . In Section C.1 of the Appendix, we in-

troduce another class of load balancing algorithms that is both time and memory efficient

while still guaranteeing logarithmic regret bounds (under an additional assumption) but no

distribution-free regret bounds.

Regret Analysis. We use the shorthand notation:

𝜖 = min
𝑘=1,··· ,𝐾
𝑖=1,··· ,𝐶

with 𝑐𝑘(𝑖)>0

𝑐𝑘(𝑖).

Note that 𝜖 < ∞ under Assumption 4.2. We discard the initialization step in the theoretical

study because the amounts of resources consumed are bounded by a constant and the total

reward obtained is non-negative and not taken into account in the decision maker’s total

payoff. We again start by estimating the expected time horizon.

Lemma 4.7. For any non-anticipating algorithm, we have: E[𝜏 *] ≤
∑︀𝐶

𝑖=1 𝑏(𝑖)·𝐵
𝜖

+ 1.

Proof. By definition of 𝜏 *, we have
∑︀𝜏*−1

𝑡=1 𝑐𝑎𝑡,𝑡(𝑖) ≤ 𝐵(𝑖) for any resource 𝑖 ∈ {1, · · · , 𝐶}.

Summing up these inequalities and using Assumption 4.2 and the fact that (𝑐𝑘,𝑡(𝑖))𝑡=1,··· ,𝑇

115

are deterministic, we get (𝜏 * − 1) · 𝜖 ≤ ∑︀𝐶
𝑖=1 𝐵(𝑖). Taking expectations on both sides and

using Assumption 4.1 yields the result.

We follow by bounding the number of times any suboptimal basis can be selected at Step-

Simplex in the same spirit as in Section 4.4.

Lemma 4.8. For any suboptimal basis 𝑥 ∈ ℬ, we have:

E[𝑛𝑥,𝜏*] ≤ 16𝜌 · (
𝐾∑︁

𝑘=1
𝜉𝑥

𝑘)2 · E[ln(𝜏 *)]
(Δ𝑥)2 + 𝜌 · 𝜋2

3 .

Sketch of proof. We use the shorthand notation 𝛽𝑥 = 8𝜌 · (∑︀𝐾
𝑘=1 𝜉𝑥

𝑘 /Δ𝑥)2. The proof is

along the same lines as for Lemma 4.5. First note that we may assume, without loss of

generality, that 𝑥 has been selected at least 𝛽𝑥 · ln(𝑡) times at any time 𝑡 up to an additive

term of 2𝛽𝑥 · E[ln(𝜏 *)] in the final inequality. We then just have to bound by a constant the

probability that 𝑥 is selected at any time 𝑡 given that 𝑛𝑥,𝑡 ≥ 𝛽𝑥 · ln(𝑡). If 𝑥 is selected at time

𝑡, 𝑥 is an optimal basis to (4.8). Since the amounts of resources consumed are deterministic,

𝑥* is feasible to (4.8) at time 𝑡, which implies that obj𝑥,𝑡 + 𝐸𝑥,𝑡 ≥ obj𝑥*,𝑡 + 𝐸𝑥*,𝑡. This

can only happen if either: (i) obj𝑥,𝑡 ≥ obj𝑥 + 𝐸𝑥,𝑡, (ii) obj𝑥*,𝑡 ≤ obj𝑥* − 𝐸𝑥*,𝑡, or (iii)

obj𝑥* < obj𝑥 + 2𝐸𝑥,𝑡. First note that (iii) is impossible because, assuming this is the case,

we would have:

Δ𝑥

2 <
∑︁

𝑘∈𝒦𝑥

𝜉𝑥
𝑘 ·

⎯⎸⎸⎷2 ln(𝑡)
𝑛𝑘,𝑡

≤
∑︁

𝑘∈𝒦𝑥

𝜉𝑥
𝑘 ·

⎯⎸⎸⎷ 2 ln(𝑡)
𝜌 + 𝑛𝑥

𝑘,𝑡

≤
√︃∑︁

𝑘∈𝒦𝑥

𝜉𝑥
𝑘 ·

∑︁
𝑘∈𝒦𝑥

√︁
𝜉𝑥

𝑘 ·

⎯⎸⎸⎷2 ln(𝑡)
𝑛𝑥,𝑡

≤ √
𝜌 ·

∑︁
𝑘∈𝒦𝑥

𝜉𝑥
𝑘 ·
√︃

2
𝛽𝑥

= Δ𝑥

2 ,

where we use (4.10), Lemma 4.6 for each 𝑘 ∈ 𝒦𝑥, the Cauchy−Schwarz inequality, and

the fact that a basis involves at most 𝜌 arms. Along the same lines as for Lemma 4.5, the

probability of events (i) and (ii) can be bounded by ∼ 𝜌/𝑡2 in the same fashion, irrespective

116

of how many times 𝑥 and 𝑥* have been selected in the past. For example for event (i), this

is because if obj𝑥,𝑡 ≥ obj𝑥 + 𝐸𝑥,𝑡, then there must exist 𝑘 ∈ 𝒦𝑥 such that 𝑟𝑘,𝑡 ≥ 𝜇𝑟
𝑘 + 𝜖𝑘,𝑡,

but any of these events have individual probability at most ∼ 1/𝑡2 by Lemma 4.1. Indeed

otherwise, if 𝑟𝑘,𝑡 < 𝜇𝑟
𝑘 + 𝜖𝑘,𝑡 for all 𝑘 ∈ 𝒦𝑥, we would reach a contradiction:

obj𝑥,𝑡 − obj𝑥 =
∑︁

𝑘∈𝒦𝑥

(𝑟𝑘,𝑡 − 𝜇𝑟
𝑘) · 𝜉𝑥

𝑘 <
∑︁

𝑘∈𝒦𝑥

𝜖𝑘,𝑡 · 𝜉𝑥
𝑘 = 𝐸𝑥,𝑡.

Lemma 4.8 used in combination with Lemma 4.7 shows that a suboptimal basis is selected

at most 𝑂(ln(𝐵)) times. To establish the regret bound, we need to lower bound the expected

payoff derived when selecting any of the optimal bases. This is more involved than in

Section 4.4 because the load balancing step comes into play at this stage.

Theorem 4.3. We have:

𝑅𝐵(1),··· ,𝐵(𝐶) ≤ 16𝜌 ·∑︀𝐶
𝑖=1 𝑏(𝑖)
𝜖

· (
∑︁

𝑥∈ℬ | Δ𝑥>0

1
Δ𝑥

) · ln(
∑︀𝐶

𝑖=1 𝑏(𝑖) · 𝐵

𝜖
+ 1) + 𝑂(1).

Sketch of proof. The proof proceeds along the same lines as for Theorem 4.1. We build

upon (4.4):

𝑅𝐵(1),··· ,𝐵(𝐶) ≤ 𝐵 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 − E[
𝜏*∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] + 𝑂(1)

= 𝐵 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 −
∑︁
𝑥∈ℬ

𝐾∑︁
𝑘=1

𝜇𝑟
𝑘 · E[𝑛𝑥

𝑘,𝜏*] + 𝑂(1).

Using the properties of the load balancing algorithm established in Lemma 4.6, we derive:

𝑅𝐵(1),··· ,𝐵(𝐶) ≤ 𝐵 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 −
∑︁
𝑥∈ℬ

{E[𝑛𝑥,𝜏*]∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

· (
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥
𝑘)} + 𝑂(1)

= (
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘) · (𝐵 −
∑︁

𝑥∈ℬ | Δ𝑥=0

E[𝑛𝑥,𝜏*]∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

)

−
∑︁

𝑥∈ℬ | Δ𝑥>0
{(

𝐾∑︁
𝑘=1

𝜇𝑟
𝑘 · 𝜉𝑥

𝑘) · E[𝑛𝑥,𝜏*]∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

} + 𝑂(1).

117

Now observe that, by definition, at least one resource is exhausted at time 𝜏 *. Hence, there

exists 𝑖 ∈ {1, · · · , 𝐶} such that:

𝐵(𝑖) ≤
∑︁
𝑥∈ℬ

∑︁
𝑘∈𝒦𝑥

𝑐𝑘(𝑖) · 𝑛𝑥
𝑘,𝜏*

≤ 𝑂(1) +
∑︁
𝑥∈ℬ

𝑛𝑥,𝜏*∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

·
∑︁

𝑘∈𝒦𝑥

𝑐𝑘(𝑖) · 𝜉𝑥
𝑘

≤ 𝑂(1) + 𝑏(𝑖) ·
∑︁
𝑥∈ℬ

𝑛𝑥,𝜏*∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

,

where we use Lemma 4.6 again and the fact that any basis 𝑥 ∈ ℬ satisfies all the constraints

of (4.3). We conclude that:

∑︁
𝑥∈ℬ | Δ𝑥=0

𝑛𝑥,𝜏*∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

≥ 𝐵 −
∑︁

𝑥∈ℬ | Δ𝑥>0

𝑛𝑥,𝜏*∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

+ 𝑂(1).

Taking expectations on both sides and plugging the result back into the regret bound yields:

𝑅𝐵(1),··· ,𝐵(𝐶) ≤
∑︁

𝑥∈ℬ | Δ𝑥>0

Δ𝑥∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

· E[𝑛𝑥,𝜏*] + 𝑂(1).

Using Lemma 4.7, Lemma 4.8, and the concavity of the logarithmic function, we obtain:

𝑅𝐵(1),··· ,𝐵(𝐶) ≤ 16𝜌 · (
∑︁

𝑥∈ℬ | Δ𝑥>0

∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

Δ𝑥

) · ln(
∑︀𝐶

𝑖=1 𝑏(𝑖) · 𝐵

𝜖
+ 1)

+ 𝜋2

3 𝜌 · (
∑︁

𝑥∈ℬ | Δ𝑥>0

Δ𝑥∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

) + 𝑂(1)

which yields the claim since Δ𝑥 ≤ ∑︀𝐾
𝑘=1 𝜇𝑟

𝑘 · 𝜉𝑥*
𝑘 ≤ ∑︀𝐶

𝑖=1 𝑏(𝑖)/𝜖,
∑︀𝐾

𝑘=1 𝜉𝑥
𝑘 ≥ 𝑏, and∑︀𝐾

𝑘=1 𝜉𝑥
𝑘 ≤ ∑︀𝐶

𝑖=1 𝑏(𝑖)/𝜖.

We point out that, if time is a limited resource with a time horizon 𝑇 , we can also derive

the (possibly better) regret bound:

𝑅𝐵(1),··· ,𝐵(𝐶) ≤ 16𝜌 · (
∑︁

𝑥∈ℬ | Δ𝑥>0

1
Δ𝑥

) · ln(𝑇) + 𝑂(1).

118

Since the number of feasible bases to (4.3) is at most
(︁

𝐾+𝜌
𝐾

)︁
≤ 2𝐾𝜌, we get the distribution-

dependent regret bound 𝑂(𝜌 · 𝐾𝜌 · ln(𝐵)/Δ) where Δ = min𝑥∈ℬ | Δ𝑥>0 Δ𝑥. In Section C.1

of the Appendix, we introduce an alternative class of load balancing algorithms which

yields a better dependence on 𝐾 and 𝐶 with a regret bound of order 𝑂(𝜌3 · 𝐾 · ln(𝐵)/Δ2)

provided that there is a unique optimal basis to (4.3). Along the sames lines as in Sec-

tion 4.4, the distribution-dependent bound of Theorem 4.3 almost immediately implies a

distribution-free one.

Theorem 4.4. We have:

𝑅𝐵(1),··· ,𝐵(𝐶) ≤ 4
√︃

𝜌 · |ℬ| · (
∑︀𝐶

𝑖=1 𝑏(𝑖) · 𝐵

𝜖
+ 1) · ln(

∑︀𝐶
𝑖=1 𝑏(𝑖) · 𝐵

𝜖
+ 1) + 𝑂(1).

Sketch of proof. The proof is along the same lines as for the case of a single limited re-

source, we start from the penultimate inequality derived in the proof sketch of Theorem

4.3 and apply Lemma 4.8 only if Δ𝑥 is big enough, taking into account the fact that∑︀
𝑥∈ℬ E[𝑛𝑥,𝜏*] ≤ E[𝜏 *] ≤ ∑︀𝐶

𝑖=1 𝑏(𝑖) · 𝐵/𝜖 + 1.

We conclude that 𝑅𝐵(1),··· ,𝐵(𝐶) = 𝑂(
√︁

𝜌 · 𝐾𝜌 · 𝐵 · ln(𝐵)), where the hidden constant fac-

tors are independent of the underlying distributions (𝜈𝑘)𝑘=1,··· ,𝐾 . If time is a limited re-

source, we can also derive the (possibly better) regret bound:

𝑅𝐵(1),··· ,𝐵(𝐶) ≤ 4
√︁

𝜌 · |ℬ| · 𝑇 · ln(𝑇) + 𝑂(1).

In any case, we stress that the dependence on 𝐾 and 𝐶 is not optimal since the authors

of [16] and [6] obtain a 𝑂̃(
√

𝐾 · 𝐵) bound on regret, where the 𝑂̃ notation hides factors

logarithmic in 𝐵. Observe that the regret bounds derived in this section do not vanish

with 𝑏. This can be remedied by strengthening Assumption 4.2, additionally assuming that

𝑐𝑘,𝑡(𝑖) > 0 for any arm 𝑘 ∈ {1, · · · , 𝐾} and resource 𝑖 ∈ {1, · · · , 𝐶}. In this situation, we

can refine the analysis and substitute
∑︀𝐶

𝑖=1 𝑏(𝑖) with 𝑏 in the regret bounds of Propositions

4.3 and 4.4 which become scale-free.

119

Applications. BwK problems where the amounts of resources consumed as a result of

pulling an arm are deterministic find applications in network revenue management of per-

ishable goods, shelf optimization of perishable goods, and wireless sensor networks, as

detailed in Section 4.2.

4.6 A Time Horizon and Another Limited Resource

In this section, we investigate the case of two limited resources, one of which is assumed to

be time, with a time horizon 𝑇 , while the consumption of the other is stochastic and con-

strained by a global budget 𝐵. To simplify the notations, we omit the indices identifying

the resources since the second limited resource is time and we write 𝜇𝑐
𝑘, 𝑐𝑘,𝑡, 𝑐𝑘,𝑡, 𝐵, and

𝑇 as opposed to 𝜇𝑐
𝑘(1), 𝑐𝑘,𝑡(1), 𝑐𝑘,𝑡(1), 𝐵(1), and 𝐵(2). Moreover, we refer to resource

𝑖 = 1 as “the” resource. Observe that, in the particular setting considered in this section,

𝜏 * = min(𝜏(𝐵), 𝑇 + 1) with 𝜏(𝐵) = min{𝑡 ∈ N | ∑︀𝑡
𝜏=1 𝑐𝑎𝜏 ,𝜏 > 𝐵}. Note that the budget

constraint is not limiting if 𝐵 ≥ 𝑇 , in which case the problem reduces to the standard

MAB problem. Hence, without loss of generality under Assumption 4.1, we assume that

the budget scales linearly with time, i.e. 𝐵 = 𝑏 · 𝑇 for a fixed constant 𝑏 ∈ (0, 1), and

we study the asymptotic regime 𝑇 → ∞. Motivated by technical considerations, we make

two additional assumptions for the particular setting considered in this section that are per-

fectly reasonable in many applications, such as in repeated second-price auctions, dynamic

procurement, and dynamic pricing, as detailed in the last paragraph of this section.

Assumption 4.4. There exists 𝜎 > 0 such that 𝜇𝑟
𝑘 ≤ 𝜎 · 𝜇𝑐

𝑘 for any arm 𝑘 ∈ {1, · · · , 𝐾}.

Assumption 4.5. The decision maker knows 𝜅 > 0 such that:

|𝜇𝑟
𝑘 − 𝜇𝑟

𝑙 | ≤ 𝜅 · |𝜇𝑐
𝑘 − 𝜇𝑐

𝑙 | ∀(𝑘, 𝑙) ∈ {1, · · · , 𝐾}2,

ahead of round 1.

Note that 𝜎, as opposed to 𝜅, is not assumed to be known to the decision maker. Assumption

4.4 is relatively weak and is always satisfied in practical applications. In particular, note

that if 𝜇𝑐
𝑘 > 0 for all arms 𝑘 ∈ {1, · · · , 𝐾}, we can take 𝜎 = 1/ min𝑘=1,··· ,𝐾 𝜇𝑐

𝑘.

120

Specification of the algorithm. We implement UCB-Simplex with 𝜆 = 1 + 2𝜅, 𝜂1 = 1,

𝜂2 = 0, and an initialization step which consists in pulling each arm once. Because the

amount of resource consumed at each round is a random variable, a feasible basis for (4.8)

may not be feasible for (4.3) and conversely. In particular, 𝑥* may not be feasible for (4.8),

thus effectively preventing it from being selected at Step-Simplex, and an infeasible basis

for (4.3) may be selected instead. This is in contrast to the situation studied in Section 4.5

and this motivates the choice 𝜂1 > 0 to guarantee that any feasible solution to (4.3) will be

feasible to (4.8) with high probability at any round 𝑡.

Just like in Section 4.5, we need to specify Step-Load-Balance because a basis selected

at Step-Simplex may involve up to two arms. To simplify the presentation, we introduce a

dummy arm 𝑘 = 0 with reward 0 and resource consumption 0 (pulling this arm corresponds

to skipping the round) and 𝐾 dummy arms 𝑘 = 𝐾 + 1, · · · , 2𝐾 with reward identical to

arm 𝐾 − 𝑘 but resource consumption 1 so that any basis involving a single arm can be

mapped to an “artificial” one involving two arms. Note, however, that we do not introduce

new variables 𝜉𝑘 in (4.8) for these arms as they are only used for mathematical convenience

in Step-Load-Balance once a basis has been selected at Step-Simplex. Specifically, if a

basis 𝑥𝑡 involving a single arm determined by 𝒦𝑥𝑡 = {𝑘𝑡} and 𝒞𝑥𝑡 = {1} (resp. 𝒞𝑥𝑡 = {2})

is selected at Step-Simplex, we map it to the basis 𝑥′
𝑡 determined by 𝒦𝑥′

𝑡
= {0, 𝑘𝑡} (resp.

{𝑘𝑡, 𝐾 + 𝑘𝑡}) and 𝒞𝑥′
𝑡

= {1, 2}. We then use a load balancing algorithm specific to this

basis, denoted by 𝒜𝑥𝑡 , to determine which of the two arms in 𝒦𝑥′
𝑡

to pull. Similarly as in

Section 4.5, using load balancing algorithms that are decoupled from one another is crucial

because the decision maker can never identify the optimal bases with absolute certainty.

This implies that each basis should be treated as potentially optimal when balancing the

load between the arms, but this inevitably causes interference issues as an arm may be in-

volved in several bases. Compared to Section 4.5, we face an additional challenge when

designing the load balancing algorithms: the optimal load balances are initially unknown

to the decision maker. It turns out that we can still approximately achieve the unknown

optimal load balances by enforcing that, at any round 𝑡, the total amount of resource con-

sumed remains close to the pacing target 𝑏 · 𝑡 with high probability, as precisely described

below.

121

Algorithm: Load balancing algorithm 𝒜𝑥 for any basis 𝑥

For any time period 𝑡, define 𝑏𝑥,𝑡 as the total amount of resource consumed when

selecting 𝑥 in the past 𝑡 − 1 rounds. Suppose that 𝑥 is selected at time 𝑡. Without loss

of generality, write 𝒦𝑥 = {𝑘, 𝑙} with 𝑐𝑘,𝑡 − 𝜖𝑘,𝑡 ≥ 𝑐𝑙,𝑡 − 𝜖𝑙,𝑡. Pull arm 𝑘 if

𝑏𝑥,𝑡 ≤ 𝑛𝑥,𝑡 · 𝑏 and pull arm 𝑙 otherwise.

Observe that a basis 𝑥 with 𝒦𝑥 = {𝑘, 𝑙} is feasible for (4.3) if either 𝜇𝑐
𝑘 > 𝑏 > 𝜇𝑐

𝑙 or

𝜇𝑐
𝑙 > 𝑏 > 𝜇𝑐

𝑘. Assuming we are in the first situation, the exploration and exploitation terms

defined in Section 4.3 specialize to:

obj𝑥,𝑡 = 𝜉𝑥
𝑙,𝑡 · 𝑟𝑙,𝑡 + 𝜉𝑥

𝑘,𝑡 · 𝑟𝑘,𝑡 and 𝐸𝑥,𝑡 = 𝜆 · (𝜉𝑥
𝑙,𝑡 · 𝜖𝑙,𝑡 + 𝜉𝑥

𝑘,𝑡 · 𝜖𝑘,𝑡)

with:

𝜉𝑥
𝑙,𝑡 = (𝑐𝑘,𝑡 − 𝜖𝑘,𝑡) − 𝑏

(𝑐𝑘,𝑡 − 𝜖𝑘,𝑡) − (𝑐𝑙,𝑡 − 𝜖𝑙,𝑡)
and 𝜉𝑥

𝑘,𝑡 = 𝑏 − (𝑐𝑙,𝑡 − 𝜖𝑙,𝑡)
(𝑐𝑘,𝑡 − 𝜖𝑘,𝑡) − (𝑐𝑙,𝑡 − 𝜖𝑙,𝑡)

,

provided that 𝑐𝑘,𝑡 − 𝜖𝑘,𝑡 > 𝑏 > 𝑐𝑙,𝑡 − 𝜖𝑙,𝑡. Moreover, their offline counterparts are given by:

obj𝑥 = 𝜉𝑥
𝑙 · 𝜇𝑟

𝑙 + 𝜉𝑥
𝑘 · 𝜇𝑟

𝑘, 𝜉𝑥
𝑙 = 𝜇𝑐

𝑘 − 𝑏

𝜇𝑐
𝑘 − 𝜇𝑐

𝑙

, and 𝜉𝑥
𝑘 = 𝑏 − 𝜇𝑐

𝑙

𝜇𝑐
𝑘 − 𝜇𝑐

𝑙

.

Regret Analysis. We start by pointing out that, in degenerate scenarios, using the linear

relaxation (4.3) as an upper bound on EROPT(𝐵, 𝑇) already dooms us to Ω(
√

𝑇) regret

bounds. Precisely, if there exists a unique optimal basis 𝑥* to (4.3) that happens to be

degenerate, i.e. 𝒦𝑥* = {𝑘*} (pre-mapping) with 𝜇𝑐
𝑘* = 𝑏, then, in most cases, 𝑇 · obj𝑥* ≥

EROPT(𝐵, 𝑇) + Ω(
√

𝑇) as shown below.

Lemma 4.9. If there exists 𝑘* ∈ {1, · · · , 𝐾} such that: (i) the i.i.d. process (𝑐𝑘*,𝑡)𝑡∈N has

positive variance, (ii) 𝜇𝑐
𝑘* = 𝑏, and (iii) (𝜉𝑘)𝑘=1,··· ,𝐾 determined by 𝜉𝑘* = 1 and 𝜉𝑘 = 0

for 𝑘 ̸= 𝑘* is the unique optimal solution to (4.3), then there exists a subsequence of

(𝑇 ·obj𝑥* −EROPT(𝐵,𝑇)√
𝑇

)𝑇 ∈N that does not converge to 0.

Sketch of proof. For any time horizon 𝑇 ∈ N and any arm 𝑘 ∈ {1, · · · , 𝐾}, we denote by

𝑛opt
𝑘,𝑇 the expected number of times arm 𝑘 is pulled by the optimal non-anticipating algo-

rithm when the time horizon is 𝑇 and the budget is 𝐵 = 𝑏 · 𝑇 . We expect that consistently

122

pulling arm 𝑘* is near-optimal. Unfortunately, this is also nothing more than an i.i.d. strat-

egy which implies, along the same lines as in Lemma 4.3, that E[𝜏 *] = 𝑇 − Ω(
√

𝑇) so that

the total expected payoff is E[𝜏 *] · 𝜇𝑟
𝑘* = 𝑇 · obj𝑥* − Ω(

√
𝑇). To formalize these ideas, we

study two cases: 𝑇 − 𝑛opt
𝑘*,𝑇 = Ω(

√
𝑇) (Case A) and 𝑇 − 𝑛opt

𝑘*,𝑇 = 𝑜(
√

𝑇) (Case B) and we

show that EROPT(𝐵, 𝑇) = 𝑇 · obj𝑥* − Ω(
√

𝑇) in both cases. In Case A, this is because the

optimal value of (4.3) remains an upper bound on the maximum total expected payoff if we

add the constraint 𝜉𝑘* ≤ 𝑛opt
𝑘*,𝑇 /𝑇 to the linear program (4.3) by definition of 𝑛opt

𝑘*,𝑇 . Since

the constraint 𝜉𝑘* ≤ 1 is binding for (4.3), the optimal value of this new linear program

can be shown to be smaller than obj𝑥* − Ω((𝑇 − 𝑛opt
𝑘*,𝑇)/𝑇) (by strong duality and strict

complementary slackness). In Case B, up to an additive term of order 𝑜(
√

𝑇) in the final

bound, the optimal non-anticipating algorithm is equivalent to consistently pulling arm 𝑘*,

which is an i.i.d. strategy so the study is very similar to that of Lemma 4.3.

Dealing with these degenerate scenarios thus calls for a completely different approach than

the one taken on in the BwK literature and we choose instead to rule them out in such a

way that there can be no degenerate optimal basis to (4.3).

Assumption 4.6. We have |𝜇𝑐
𝑘 − 𝑏| > 0 for any arm 𝑘 ∈ {1, · · · , 𝐾}.

We use the shorthand notation 𝜖 = min𝑘=1,··· ,𝐾 |𝜇𝑐
𝑘 − 𝑏|. Assumption 4.6 is equivalent

to assuming that any basis for (4.3) is non-degenerate. This assumption can be relaxed

to some extent at the price of more technicalities. However, in light of Lemma 4.9, the

minimal assumption is that there is no degenerate optimal basis to (4.3). As a final remark,

we stress that Assumption 4.6 is only necessary to carry out the analysis but Step-Simplex

can be implemented in any case as 𝜖 is not assumed to be known to the decision maker.

We are now ready to establish regret bounds. Without loss of generality, we can assume

that any pseudo-basis for (4.3) involves two arms, one of which may be a dummy arm

introduced in the specification of the algorithm detailed above. As stressed at the beginning

of this section, UCB-Simplex may sometimes select an infeasible basis or even a pseudo-

basis 𝑥 with det(𝐴𝑥) = 0 (i.e. such that 𝜇𝑐
𝑘 = 𝜇𝑐

𝑙 assuming 𝒦𝑥 = {𝑘, 𝑙}). Interestingly the

load balancing algorithm plays a crucial role to guarantee that this does not happen very

often.

123

Lemma 4.10. For any basis 𝑥 /∈ ℬ, we have:

E[𝑛𝑥,𝑇] ≤ 26

𝜖3 · ln(𝑇) + 10𝜋2

3𝜖2 .

The same inequality holds if 𝑥 is a pseudo-basis but not a basis for (4.3).

Proof. We use the shorthand notation 𝛽𝑥 = 25/𝜖3. Without loss of generality, we can

assume that 𝒦𝑥 = {𝑘, 𝑙} with 𝜇𝑐
𝑘, 𝜇𝑐

𝑙 > 𝑏 (the situation is symmetric if the reverse inequality

holds). Along the same lines as in Lemma 4.5, we only have to bound by a constant the

probability that 𝑥 is selected at any round 𝑡 given that 𝑥 has already been selected at least

𝛽𝑥 · ln(𝑡) times. If 𝑥 is selected at round 𝑡 and 𝑛𝑥,𝑡 ≥ 𝛽𝑥 · ln(𝑡), then 𝑏𝑥,𝑡 must be larger than

𝑛𝑥,𝑡 · 𝑏 by at least a margin of ∼ 1/𝜖2 · ln(𝑡) with high probability given that 𝜇𝑐
𝑘, 𝜇𝑐

𝑙 > 𝑏.

Moreover, at least one arm, say 𝑘, has been pulled at least ∼ 1/𝜖3 · ln(𝑡) times and, as a

result, 𝑐𝑘,𝜏 −𝜖𝑘,𝜏 ≥ 𝑏 with high probability for the last 𝑠 ∼ 1/𝜖2 ·ln(𝑡) rounds 𝜏 = 𝜏1, · · · , 𝜏𝑠

where 𝑥 was selected. This implies that arm 𝑙 must have been pulled at least ∼ 1/𝜖2 · ln(𝑡)

times already by definition of the load balancing algorithm but then we have 𝑐𝑙,𝑡 − 𝜖𝑙,𝑡 ≥ 𝑏

with high probability and 𝑥 cannot be feasible for (4.8) at time 𝑡 with high probability.

What remains to be done is to: (i) show that suboptimal bases are selected at most 𝑂(ln(𝑇))

times and (ii) lower bound the expected total payoff derived when selecting any of the op-

timal bases. The major difficulty lies in the fact that the amounts of resource consumed,

the rewards obtained, and the stopping time are correlated in a non-trivial way through the

budget constraint and the decisions made in the past. This makes it difficult to study the ex-

pected total payoff derived when selecting optimal bases independently from the amounts

of resource consumed and the rewards obtained when selecting suboptimal ones. However,

a key point is that, by design, the pulling decision made at Step-Load-Balance is based

solely on the past history associated with the basis selected at Step-Simplex because the

load balancing algorithms are decoupled. For this reason, the analysis proceeds in two

steps irrespective of the number of optimal bases. In a first step, we show that, for any

basis 𝑥 for (4.3), the amount of resource consumed per round when selecting 𝑥 remains

close to the pacing target 𝑏 with high probability. This enables us to show that the ra-

124

tios (E[𝑛𝑥
𝑘,𝑇]/E[𝑛𝑥

𝑙,𝑇])𝑘,𝑙∈𝒦𝑥 are close to the optimal ones (𝜉𝑥
𝑘 /𝜉𝑥

𝑙)𝑘,𝑙∈𝒦𝑥 , as precisely stated

below.

Lemma 4.11. For any basis 𝑥 ∈ ℬ and time period 𝑡, we have:

P[|𝑏𝑥,𝑡 − 𝑛𝑥,𝑡 · 𝑏| ≥ 𝑢 + (4
𝜖
)2 · ln(𝑡)] ≤ 4

𝜖2 · exp(−𝜖2 · 𝑢) + 8
𝜖2 · 𝑡2 ∀𝑢 ≥ 1,

which, in particular, implies that:

E[𝑛𝑥
𝑘,𝑇] ≥ 𝜉𝑥

𝑘 · E[𝑛𝑥,𝑇] − 13/𝜖5 − 16/𝜖3 · ln(𝑇)

E[𝑛𝑥
𝑙,𝑇] ≥ 𝜉𝑥

𝑙 · E[𝑛𝑥,𝑇] − 13/𝜖5 − 16/𝜖3 · ln(𝑇).
(4.11)

Sketch of proof. Without loss of generality, we can assume that 𝒦𝑥 = {𝑘, 𝑙} with 𝜇𝑐
𝑘 >

𝑏 > 𝜇𝑐
𝑙 . Observe that, if the decision maker knew that 𝜇𝑐

𝑘 > 𝑏 > 𝜇𝑐
𝑙 ahead of round

1, he would always pull the “correct” arm in order not to deviate from the pacing target

𝑛𝑥,𝑡 · 𝑏 and |𝑏𝑥,𝑡 − 𝑛𝑥,𝑡 · 𝑏| would remain small with high probability given Assumption

4.6. However, because this information is not available ahead of round 1, the decision

maker is led to pull the incorrect arm when arm 𝑘 and 𝑙 are swapped, in the sense that

𝑐𝑘,𝑡 − 𝜖𝑘,𝑡 ≤ 𝑐𝑙,𝑡 − 𝜖𝑙,𝑡. Fortunately, at any time 𝑡, there could have been at most 1/𝜖2 · ln(𝑡)

swaps with probability at least ∼ 1 − 1/𝑡2 given Assumption 4.6. To derive (4.11), we use:

|E[𝑏𝑥,𝑇 −𝑛𝑥,𝑇 ·𝑏]| ≤
∫︀ 𝑇

0 P[|𝑏𝑥,𝑇 −𝑛𝑥,𝑇 ·𝑏| ≥ 𝑢]d𝑢 and E[𝑏𝑥,𝑇] = 𝜇𝑘
𝑐 ·E[𝑛𝑥

𝑘,𝑇]+𝜇𝑙
𝑐·E[𝑛𝑥

𝑙,𝑇].

The next step is to show, just like in Section 4.5, that any suboptimal feasible basis is

selected at most 𝑂(ln(𝑇)) times on average. Interestingly, the choice of the load balancing

algorithm plays a minor role in the proof. Any load balancing algorithm that pulls each

arm involved in a basis at least a constant fraction of the time this basis is selected does

enforce this property.

Lemma 4.12. For any suboptimal basis 𝑥 ∈ ℬ, we have:

E[𝑛𝑥,𝑇] ≤ 29 𝜆2

𝜖3 · ln(𝑇)
(Δ𝑥)2 + 10𝜋2

𝜖2 .

Sketch of proof. We use the shorthand notation 𝛽𝑥 = 28/𝜖3 · (𝜆/Δ𝑥)2. Without loss of

125

generality, we can assume that 𝒦𝑥* = {𝑘*, 𝑙*} with 𝜇𝑐
𝑘* > 𝑏 > 𝜇𝑐

𝑙* and 𝒦𝑥 = {𝑘, 𝑙} with

𝜇𝑐
𝑘 > 𝑏 > 𝜇𝑐

𝑙 . Along the same lines as in Lemma 4.5, we only have to bound by a constant

the probability that 𝑥 is selected at any round 𝑡 given that 𝑥 has already been selected

at least 𝛽𝑥 · ln(𝑡) times. If 𝑥 is selected at time 𝑡, 𝑥 is optimal for (4.8). Observe that

(𝜉𝑥*
𝑘)𝑘=1,··· ,𝐾 is a feasible solution to (4.8) when 𝑐𝑘*,𝑡 − 𝜖𝑘*,𝑡 ≤ 𝜇𝑐

𝑘* and 𝑐𝑙*,𝑡 − 𝜖𝑙*,𝑡 ≤ 𝜇𝑐
𝑙* ,

which happens with probability at least ∼ 1−1/𝑡2. As a result, obj𝑥,𝑡 +𝐸𝑥,𝑡 ≥ obj𝑥* when

additionally 𝑟𝑘*,𝑡 + 𝜖𝑘*,𝑡 ≥ 𝜇𝑟
𝑘* and 𝑟𝑙*,𝑡 + 𝜖𝑙*,𝑡 ≥ 𝜇𝑟

𝑙* , which also happens with probability

at least ∼ 1 − 1/𝑡2. If obj𝑥,𝑡 + 𝐸𝑥,𝑡 ≥ obj𝑥* then we have either (i) obj𝑥,𝑡 ≥ obj𝑥 + 𝐸𝑥,𝑡

or (ii) obj𝑥* < obj𝑥 + 2𝐸𝑥,𝑡. Observe that (ii) can only happen with probability at most

∼ 1/𝑡2 given that 𝑛𝑥,𝑡 ≥ 𝛽𝑥 · ln(𝑡) because (ii) implies that either 𝑛𝑙,𝑡 ≤ 8(𝜆/Δ𝑥)2 · ln(𝑡) or

𝑛𝑘,𝑡 ≤ 8(𝜆/Δ𝑥)2 · ln(𝑡) but the load balancing algorithm guarantees that each arm is pulled

a fraction of the time 𝑥 is selected (using Lemma 4.11). As for (i), if obj𝑥,𝑡 ≥ obj𝑥 + 𝐸𝑥,𝑡,

then, using Assumption 4.4, either 𝑟𝑘,𝑡 ≥ 𝜇𝑟
𝑘 +𝜖𝑘,𝑡, 𝑐𝑘,𝑡 /∈ [𝜇𝑐

𝑘 −𝜖𝑘,𝑡, 𝜇𝑐
𝑘 +𝜖𝑘,𝑡], 𝑟𝑙,𝑡 ≥ 𝜇𝑟

𝑙 +𝜖𝑙,𝑡,

or 𝑐𝑙,𝑡 /∈ [𝜇𝑐
𝑙 −𝜖𝑙,𝑡, 𝜇𝑐

𝑙 +𝜖𝑙,𝑡] but all of these events have individual probability at most ∼ 1/𝑡2

by Lemma 4.1.

In a last step, we show, using Lemma 4.11, that, at the cost of an additive logarithmic term

in the regret bound, we may assume that the game lasts exactly 𝑇 rounds. This enables

us to combine Lemmas 4.10, 4.11, and 4.12 to establish a distribution-dependent regret

bound.

Theorem 4.5. We have:

𝑅𝐵,𝑇 ≤ 29 𝜆2

𝜖3 · (
∑︁

𝑥∈ℬ | Δ𝑥>0

1
Δ𝑥

) · ln(𝑇) + 𝑂(𝐾2 · 𝜎

𝜖3 · ln(𝑇)),

where the 𝑂 notation hides universal constant factors.

Sketch of proof. We build upon (4.4):

𝑅𝐵,𝑇 ≤ 𝑇 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 − E[
𝜏*∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] + 𝑂(1)

≤ 𝑇 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 − E[
𝑇∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] + 𝜎 · E[(

𝑇∑︁
𝑡=1

𝑐𝑎𝑡,𝑡 − 𝐵)+] + 𝑂(1),

126

where we use Assumption 4.4 for the second inequality. Moreover:

E[(
𝑇∑︁

𝑡=1
𝑐𝑎𝑡,𝑡 − 𝐵)+] ≤

∑︁
𝑥∈ℬ

E[|𝑏𝑥,𝑇 − 𝑛𝑥,𝑇 · 𝑏|] +
∑︁
𝑥/∈ℬ

E[𝑛𝑥,𝑇]

+
∑︁

𝑥 pseudo-basis for (4.3)
with det(𝐴𝑥)=0

E[𝑛𝑥,𝑇] = 𝑂(𝐾2

𝜖3 ln(𝑇)),

using Lemmas 4.10 and 4.11. Plugging this last inequality back into the regret bound

yields:

𝑅𝐵,𝑇 ≤ 𝑇 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 − E[
𝑇∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] + 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇))

≤ 𝑇 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 −
∑︁
𝑥∈ℬ

𝐾∑︁
𝑘=1

𝜇𝑟
𝑘 · E[𝑛𝑥

𝑘,𝑇] + 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇))

≤ 𝑇 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 −
∑︁
𝑥∈ℬ

(
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥
𝑘) · E[𝑛𝑥,𝑇] + 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇))

=
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 · (𝑇 −
∑︁

𝑥∈ℬ | Δ𝑥=0
E[𝑛𝑥,𝑇]) −

∑︁
𝑥∈ℬ | Δ𝑥>0

(
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥
𝑘) · E[𝑛𝑥,𝑇]

+ 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇))

=
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 · (
∑︁

𝑥∈ℬ | Δ𝑥>0
E[𝑛𝑥,𝑇] +

∑︁
𝑥/∈ℬ

E[𝑛𝑥,𝑇] +
∑︁

𝑥 pseudo-basis for (4.3)
with det(𝐴𝑥)=0

E[𝑛𝑥,𝑇])

−
∑︁

𝑥∈ℬ | Δ𝑥>0
(

𝐾∑︁
𝑘=1

𝜇𝑟
𝑘 · 𝜉𝑥

𝑘) · E[𝑛𝑥,𝑇] + 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇))

≤
∑︁

𝑥∈ℬ | Δ𝑥>0
Δ𝑥 · E[𝑛𝑥,𝑇] + 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇))

≤ 29 𝜆2

𝜖3 · (
∑︁

𝑥∈ℬ | Δ𝑥>0

1
Δ𝑥

) · ln(𝑇) + 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇)),

where we use Lemma 4.11 for the third inequality, Lemma 4.10 along with:

𝐾∑︁
𝑘=1

𝜇𝑟
𝑘 · 𝜉𝑥*

𝑘 ≤
𝐾∑︁

𝑘=1
𝜉𝑥*

𝑘 ≤ 1

for the fourth inequality, and Lemma 4.12 for the last inequality.

127

Since there are at most 2𝐾2 feasible bases, we get the regret bound 𝑂(𝐾2 · (1/Δ + 𝜎/𝜖3) ·

ln(𝑇)), where Δ = min𝑥∈ℬ | Δ𝑥>0 Δ𝑥. Along the sames lines as in Sections 4.4 and 4.5,

pushing the analysis further almost immediately yields a distribution-free regret bound.

Theorem 4.6. We have:

𝑅𝐵,𝑇 ≤ 25 𝜆

𝜖3/2 ·
√︁

|ℬ| · 𝑇 · ln(𝑇) + 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇)),

where the 𝑂 notation hides universal constant factors.

Sketch of proof. The proof is along the same lines as for Theorems 4.2 and 4.4, we start

from the penultimate inequality derived in the proof sketch of Theorem 4.5 and apply

Lemma 4.12 only if Δ𝑥 is big enough, taking into account that
∑︀

𝑥∈ℬ E[𝑛𝑥,𝑇] ≤ 𝑇 .

We conclude that 𝑅𝐵,𝑇 = 𝑂(
√︁

𝐾2 · 𝑇 · ln(𝑇)), where the hidden factors are independent

of the underlying distributions (𝜈𝑘)𝑘=1,··· ,𝐾 . Just like in Section 4.5, we stress that the

dependence on 𝐾 is not optimal since the authors of [16] and [6] obtain a 𝑂̃(
√

𝐾 · 𝑇)

bound on regret, where the 𝑂̃ notation hides factors logarithmic in 𝑇 . Observe that the

regret bounds derived in Theorems 4.5 and 4.6 do not vanish with 𝑏, which is not the

expected behavior. This is a shortcoming of the analysis that can easily be remedied when

min𝑘=1,··· ,𝐾 𝜇𝑐
𝑘 > 0 provided that instead of pulling the dummy arm 0 we always pull the

other arm involved in the basis (i.e. we never skip rounds). Note that not skipping rounds

can only improve the regret bounds derived in Theorems 4.5 and 4.6: arm 0 was introduced

only in order to harmonize the notations for mathematical convenience.

Theorem 4.7. Relax Assumption 4.6 and redefine 𝜖 = min𝑘=1,··· ,𝐾 𝜇𝑐
𝑘. Suppose that 𝑏 ≤

𝜖/2 and that we never skip rounds, then we have:

𝑅𝐵,𝑇 ≤ 212 𝜆2

𝜖3 · (
∑︁

𝑥∈ℬ | Δ𝑥>0

1
Δ𝑥

) · ln(𝐵 + 1
𝜖

) + 𝑂(𝐾2 · 𝜅

𝜖3 · ln(𝐵 + 1
𝜖

))

and

𝑅𝐵,𝑇 ≤ 26 𝜆

𝜖3/2 ·
√︃

𝐾 · 𝐵 + 1
𝜖

· ln(𝐵 + 1
𝜖

) + 𝑂(𝐾2 · 𝜅

𝜖3 · ln(𝐵 + 1
𝜖

)),

where the 𝑂 notations hide universal constant factors.

128

Applications. Similarly, as in the case of a single resource, Assumptions 4.4 and 4.5 are

natural when bidding in repeated second-price auctions if the auctioneer sets a reserve price

𝑅 (which is common practice in sponsored search auctions). Indeed, we have:

|E[𝑐𝑘,𝑡] − E[𝑐𝑙,𝑡]| = E[𝑚𝑡 · 1𝑏𝑘≥𝑚𝑡>𝑏𝑙
]

≥ 𝑅 · E[1𝑏𝑘≥𝑚𝑡>𝑏𝑙
]

≥ 𝑅 · E[𝑣𝑡 · 1𝑏𝑘≥𝑚𝑡>𝑏𝑙
] = 𝑅 · |E[𝑟𝑘,𝑡] − E[𝑟𝑙,𝑡]|,

for any pair of arms (𝑘, 𝑙) ∈ {1, · · · , 𝐾} with 𝑏𝑘 ≥ 𝑏𝑙. Hence, Assumption 4.4 (resp. 4.5)

is satisfied with 𝜎 = 1/𝑅 (resp. 𝜅 = 1/𝑅).

In dynamic procurement, Assumptions 4.4 and 4.5 are satisfied provided that the agents

are not willing to sell their goods for less than a known price 𝑃 . Indeed, in this case, pulling

any arm 𝑘 associated with a price 𝑝𝑘 ≤ 𝑃 is always suboptimal and we have:

|E[𝑐𝑘,𝑡] − E[𝑐𝑙,𝑡]| = 𝑝𝑘 · P[𝑝𝑘 ≥ 𝑣𝑡] − 𝑝𝑙 · P[𝑝𝑙 ≥ 𝑣𝑡]

≥ 𝑝𝑘 · P[𝑝𝑘 ≥ 𝑣𝑡 > 𝑝𝑙]

≥ 𝑃 · P[𝑝𝑘 ≥ 𝑣𝑡 > 𝑝𝑙] = 𝑃 · |E[𝑟𝑘,𝑡] − E[𝑟𝑙,𝑡]|,

for any pair of arms (𝑘, 𝑙) ∈ {1, · · · , 𝐾} with 𝑝𝑘 ≥ 𝑝𝑙 ≥ 𝑃 . Hence, Assumption 4.4 (resp.

4.5) is satisfied with 𝜎 = 1/𝑃 (resp. 𝜅 = 1/𝑃).

In dynamic pricing, Assumptions 4.4 and 4.5 are satisfied if the distribution of valua-

tions has a positive probability density function 𝑓(·). Indeed, in this case, we have:

|E[𝑟𝑘,𝑡] − E[𝑟𝑙,𝑡]| = |𝑝𝑙 · P[𝑝𝑙 ≤ 𝑣𝑡] − 𝑝𝑘 · P[𝑝𝑘 ≤ 𝑣𝑡]|

= |𝑝𝑙 · P[𝑝𝑙 ≤ 𝑣𝑡 < 𝑝𝑘] + (𝑝𝑙 − 𝑝𝑘) · P[𝑝𝑘 ≤ 𝑣𝑡]|

≤ max
𝑟=1,··· ,𝐾

𝑝𝑟 · P[𝑝𝑙 ≤ 𝑣𝑡 < 𝑝𝑘] + |𝑝𝑘 − 𝑝𝑙|

≤ (max
𝑟=1,··· ,𝐾

𝑝𝑟 + 1
inf 𝑓(·)) · P[𝑝𝑙 ≤ 𝑣𝑡 < 𝑝𝑘]

= (max
𝑟=1,··· ,𝐾

𝑝𝑟 + 1
inf 𝑓(·)) · |E[𝑟𝑘,𝑡] − E[𝑟𝑙,𝑡]|,

129

for any pair of arms (𝑘, 𝑙) ∈ {1, · · · , 𝐾} with 𝑘 ≥ 𝑙. Hence, Assumption 4.4 (resp. 4.5) is

satisfied with 𝜎 = max𝑘=1,··· ,𝐾 𝑝𝑘 + 1/ inf 𝑓(·) (resp. 𝜅 = max𝑘=1,··· ,𝐾 𝑝𝑘 + 1/ inf 𝑓(·)).

4.7 Arbitrarily Many Limited Resources

In this section, we tackle the general case of arbitrarily many limited resources. Addition-

ally, we assume that one of them is time, with index 𝑖 = 𝐶, but this assumption is almost

without loss of generality, as detailed at the end of this section. To simplify the presen-

tation, we consider the regime 𝐾 ≥ 𝐶, which is the most common in applications. This

implies that |𝒦𝑥| = |𝒞𝑥| ≤ 𝐶 for any pseudo-basis 𝑥. We also use the shorthand notation

𝐴𝑡 = (𝑐𝑘,𝑡(𝑖))(𝑖,𝑘)∈{1,··· ,𝐶}×{1,··· ,𝐾} at any round 𝑡. For similar reasons as in Section 4.6, we

are led to make two additional assumptions which are discussed in the last paragraph of

this section.

Assumption 4.7. There exists 𝜎 > 0 such that 𝑟𝑘,𝑡 ≤ 𝜎 · min
𝑖=1,··· ,𝐶

𝑐𝑘,𝑡(𝑖) for any arm 𝑘 ∈

{1, · · · , 𝐾} and for any round 𝑡 ∈ N.

Note that Assumption 4.7 is stronger than Assumption 4.4 given that the amounts of re-

sources consumed at each round have to dominate the rewards almost surely, as opposed to

on average. Assumption 4.7 is not necessarily satisfied in all applications but it simplifies

the analysis and can be relaxed at the price of an additive term of order 𝑂(ln2(𝑇)) in the

final regret bounds, see the last paragraph of this section.

Assumption 4.8. There exists 𝜖 > 0, known to the decision maker ahead of round 1, such

that every basis 𝑥 for (4.3) is 𝜖-non-degenerate for (4.3) and satisfy | det(𝐴𝑥)| ≥ 𝜖.

Without loss of generality, we assume that 𝜖 ≤ 1. Observe that Assumption 4.8 generalizes

Assumption 4.6 but is more restrictive because 𝜖 is assumed to be known to the decision

maker initially. Just like in Section 4.6, this assumption can be relaxed to a large extent.

For instance, if 𝜖 is initially unknown, taking 𝜖 as a vanishing function of 𝑇 yields the same

asymptotic regret bounds. However, note that Lemma 4.9 carries over to this more general

setting and, as a result, the minimal assumption we need to get logarithmic rates is that any

optimal basis for (4.3) is non-degenerate.

130

Specification of the algorithm. We implement UCB-Simplex with 𝜆 = 1+2(𝐶 +1)!2/𝜖,

𝜂𝑖 = 0 for any 𝑖 ∈ {1, · · · , 𝐶}, and an initialization step which consists in pulling each arm

28(C + 2)!4/𝜖6 · ln(𝑇) times in order to get i.i.d. samples. Hence, Step-Simplex is run for

the first time after round tini = 𝐾 · 28(C + 2)!4/𝜖6 · ln(𝑇). Compared to Section 4.6, the

initialization step plays as a substitute for the choice 𝜂𝑖 > 0 which was meant to incentivize

exploration. This significantly simplifies the analysis but the downside is that 𝜖 has to be

known initially. Similarly, as in Section 4.6, we introduce a dummy arm which corresponds

to skipping the round (i.e. pulling this arm yields a reward 0 and does not consume any

resource) so that any basis can be mapped to one for which the time constraint is always

binding, i.e. w.l.o.g. we assume that 𝐶 ∈ 𝒞𝑥 for any pseudo-basis 𝑥. Following the ideas

developed in Section 4.6, we design load balancing algorithms for any basis 𝑥 that pull

arms in order to guarantee that, at any round 𝑡, the total amount of resource 𝑖 consumed

remains close to the target 𝑡·𝑏(𝑖) with high probability for any resource 𝑖 ∈ 𝒞𝑥. This is more

involved that in Section 4.6 since we need to enforce this property for many resources. This

can be done by perturbing the probability distribution solution to (4.8) taking into account

whether we have over- or under-consumed in the past for each binding resource 𝑖 ∈ 𝒞𝑥𝑡 .

Algorithm: Load balancing algorithm 𝒜𝑥 for any basis 𝑥

For any time period 𝑡 > tini and 𝑖 ∈ 𝒞𝑥 − {𝐶}, define 𝑏𝑥,𝑡(𝑖) as the total amount of

resource 𝑖 consumed when selecting basis 𝑥 in the past 𝑡 − 1 rounds. Suppose that

basis 𝑥 is selected at time 𝑡 and define the vector 𝑒𝑥
𝑡 by 𝑒𝑥

𝐶,𝑡 = 0 and 𝑒𝑥
𝑖,𝑡 = −1 (resp.

𝑒𝑥
𝑖,𝑡 = 1) if 𝑏𝑥,𝑡(𝑖) ≥ 𝑛𝑥,𝑡 · 𝑏(𝑖) (resp. 𝑏𝑥,𝑡(𝑖) < 𝑛𝑥,𝑡 · 𝑏(𝑖)) for any 𝑖 ∈ 𝒞𝑥 − {𝐶}. Since

𝑥 is selected at round 𝑡, 𝐴𝑥,𝑡 is invertible and we can define, for any 𝛿 ≥ 0,

𝑝𝑥
𝑘,𝑡(𝛿) = (𝐴−1

𝑥,𝑡(𝑏𝒞𝑥 + 𝛿 · 𝑒𝑥
𝑡))𝑘 for 𝑘 ∈ 𝒦𝑥 and 𝑝𝑥

𝑘,𝑡(𝛿) = 0 otherwise, which together

define the probability distribution 𝑝𝑥
𝑡 (𝛿) = (𝑝𝑥

𝑘,𝑡(𝛿))𝑘∈{1,··· ,𝐾}. Define

𝛿*
𝑥,𝑡 = max

𝛿≥0
(𝐴𝑡𝑝𝑥

𝑡 (𝛿))𝑖≤𝑏(𝑖),𝑖/∈𝒞𝑥

𝑝𝑥
𝑡 (𝛿)≥0

𝛿

and 𝑝𝑥
𝑡 = 𝑝𝑥

𝑡 (𝛿*
𝑥,𝑡). Note that 𝛿*

𝑥,𝑡 is well defined as 𝑥 must be feasible for (4.8) if it is

selected at Step-Simplex. Pull an arm at random according to the distribution 𝑝𝑥
𝑡 .

131

Observe that the load balancing algorithms generalize the ones designed in Section 4.6 (up

to the change 𝜂𝑖 = 0). Indeed, when there is a single limited resource other than time,

the probability distribution 𝑝𝑥
𝑡 is a Dirac supported at the arm with smallest (resp. largest)

empirical cost when 𝑏𝑥,𝑡 ≥ 𝑛𝑥,𝑡 · 𝑏 (resp. 𝑏𝑥,𝑡 < 𝑛𝑥,𝑡 · 𝑏). Similarly, as in Section 4.5,

the load balancing algorithms 𝒜𝑥 may require a memory storage capacity exponential in

𝐶 and polynomial in 𝐾, but, in practice, we expect that only a few bases will be selected

at Step-Simplex, so that a hash table is an appropriate data structure to store the sequences

(𝑏𝑥,𝑡(𝑖))𝑖∈𝒞𝑥 . Note, however, that the load balancing algorithms are computationally effi-

cient because 𝑝𝑥
𝑡 can be computed in 𝑂(𝐶2) running time if 𝐴−1

𝑥,𝑡 is available once we have

computed an optimal basic feasible solution to (4.8), which is the case if we use the revised

simplex algorithm.

Regret analysis. The regret analysis follows the same recipe as in Section 4.6 but the

proofs are more technical and are thus deferred to Section C.6 of the Appendix. First, we

show that the initialization step guarantees that infeasible bases or pseudo-bases 𝑥 with

det(𝐴𝑥) = 0 cannot be selected more than 𝑂(ln(𝑇)) times on average at Step-Simplex.

Lemma 4.13. For any basis 𝑥 /∈ ℬ, we have:

E[𝑛𝑥,𝑇] ≤ 29 (C + 3)!4
𝜖6 .

The same inequality holds if 𝑥 is a pseudo-basis but not a basis for (4.3).

The next step is to show that the load balancing algorithms guarantee that, for any basis 𝑥,

the amount of resource 𝑖 ∈ 𝒞𝑥 (resp. 𝑖 /∈ 𝒞𝑥) consumed per round when selecting 𝑥 remains

close to (resp. below) the pacing target 𝑏(𝑖) with high probability. This enables us to show

that the ratios (E[𝑛𝑥
𝑘,𝑇]/E[𝑛𝑥

𝑙,𝑇])𝑘,𝑙∈𝒦𝑥 are close to the optimal ones (𝜉𝑥
𝑘 /𝜉𝑥

𝑙)𝑘,𝑙∈𝒦𝑥 .

Lemma 4.14. For any feasible basis 𝑥 and time period 𝑡, we have:

P[|𝑏𝑥,𝑡(𝑖) − 𝑛𝑥,𝑡 · 𝑏(𝑖)| ≥ 𝑢] ≤ 25 (𝐶 + 1)!2
𝜖4 · exp(−𝑢 · (𝜖2

4 · (C + 1)!)
2) + 29 (C + 3)!4

𝜖6 · 1
𝑇

,

(4.12)

132

for all 𝑢 ≥ 1 and for any resource 𝑖 ∈ 𝒞𝑥 while

P[𝑏𝑥,𝑡(𝑖) − 𝑛𝑥,𝑡 · 𝑏(𝑖) ≥ 28 (𝐶 + 3)!3
𝜖6 · ln(𝑇)] ≤ 210 (𝐶 + 4)!4

𝜖6 · 𝑇
, (4.13)

for any resource 𝑖 /∈ 𝒞𝑥. In particular, this implies that:

E[𝑛𝑥
𝑘,𝑇] ≥ 𝜉𝑥

𝑘 · E[𝑛𝑥,𝑇] − 210 (𝐶 + 3)!4
𝜖9 , (4.14)

for any arm 𝑘 ∈ 𝒦𝑥.

Next, we show that a suboptimal basis cannot be selected more than 𝑂(ln(𝑇)) times on

average at Step-Simplex. Just like in Section 4.6, the exact definition of the load balancing

algorithms has little impact on the result: we only need to know that, for any feasible

basis 𝑥, each arm 𝑘 ∈ 𝒦𝑥 is pulled at least a fraction of the time 𝑥 is selected with high

probability.

Lemma 4.15. For any suboptimal basis 𝑥 ∈ ℬ, we have:

E[𝑛𝑥,𝑇] ≤ 210 (𝐶 + 3)!3 · 𝜆2

𝜖6 · ln(𝑇)
(Δ𝑥)2 + 211 (𝐶 + 4)!4

𝜖6 .

We are now ready to derive both distribution-dependent and distribution-independent regret

bounds.

Theorem 4.8. We have:

𝑅𝐵(1),··· ,𝐵(𝐶−1),𝑇 ≤ 210 (𝐶 + 3)!3 · 𝜆2

𝜖6 ·(
∑︁

𝑥∈ℬ | Δ𝑥>0

1
Δ𝑥

)·ln(𝑇)+𝑂(𝜎 · |ℬ| · (𝐶 + 3)!4
𝜖6 ·ln(𝑇)),

where the 𝑂 notation hides universal constant factors.

Theorem 4.9. We have:

𝑅𝐵(1),··· ,𝐵(𝐶−1),𝑇 ≤ 25 (𝐶 + 3)!2 · 𝜆

𝜖3 ·
√︁

|ℬ| · 𝑇 · ln(𝑇) + 𝑂(𝜎 · |ℬ| · (𝐶 + 3)!4
𝜖6 · ln(𝑇)),

133

where the 𝑂 notation hides universal constant factors.

Since the number of feasible bases is at most 2𝐾𝐶 , we get the distribution-dependent regret

bound

𝑅𝐵(1),··· ,𝐵(𝐶−1),𝑇 = 𝑂(𝐾𝐶 · (𝐶 + 3)!4/𝜖6 · (𝜆2/Δ + 𝜎) · ln(𝑇)),

where Δ = min𝑥∈ℬ | Δ𝑥>0 Δ𝑥, and the distribution-independent bound

𝑅𝐵(1),··· ,𝐵(𝐶−1),𝑇 = 𝑂((𝐶 + 3)!2 · 𝜆/𝜖3 ·
√︁

𝐾𝐶 · 𝑇 · ln(𝑇)).

We stress that the dependence on 𝐾 and 𝐶 is not optimal since the authors of [6] obtain a

𝑂̃(
√

𝐾 · 𝑇) distribution-independent bound on regret, where the 𝑂̃ notation hides factors

logarithmic in 𝑇 . Just like in Section 4.6, we can also derive regret bounds that vanish with

𝑏 under the assumption that pulling any arm incurs some positive amount of resource con-

sumption in expectations for all resources, but this requires a minor tweak of the algorithm.

Theorem 4.10. Suppose that:

𝜖 ≤ min
𝑖=1,··· ,𝐶−1
𝑘=1,··· ,𝐾

𝜇𝑐
𝑘(𝑖)

and that 𝑏 ≤ 𝜖. If the decision maker artificially constrains himself or herself to a time

horizon 𝑇 = 𝑏 ·𝑇/𝜖 ≤ 𝑇 , then the regret bounds derived in Theorems 4.8 and 4.9 hold with

𝑇 substituted with 𝑇 .

Similarly, if the decision maker is not constrained by a time horizon, artificially constrain-

ing himself or herself to a time horizon 𝑇 = min𝑖=1,··· ,𝐶 𝐵(𝑖)/𝜖 yields the regret bounds

derived in Theorems 4.8 and 4.9 with 𝑇 substituted with 𝑇 .

Applications. In dynamic pricing and online advertising applications, Assumption 4.7

is usually not satisfied as pulling an arm typically incurs the consumption of only a few

resources. We can relax this assumption but this comes at the price of an additive term of

order 𝑂(ln2(𝑇)) in the final regret bounds.

Theorem 4.11. If Assumption 4.7 is not satisfied, the regret bounds derived in Theorems

4.8 and 4.9 hold with 𝜎 = 0 up to an additive term of order 𝑂((𝐶+4)!4·|ℬ|2
𝑏·𝜖6 · ln2(𝑇)).

134

As for Assumption 4.8, the existence of degenerate optimal bases to (4.3) is determined by a

complex interplay between the mean rewards and the mean amounts of resource consump-

tion. However, we stress that the set of parameters (𝜇𝑟
𝑘)𝑘=1,··· ,𝐾 and (𝜇𝑐

𝑘(𝑖))𝑘=1,··· ,𝐾,𝑖=1,··· ,𝐶

that satisfy these conditions has Lebesgue measure 0, hence such an event is unlikely to

occur in practice. Additionally, while 𝜖 is typically not known in applications, taking 𝜖 as a

vanishing function of 𝑇 yields the same asymptotic regret bounds.

4.8 Concluding Remark

In this chapter, we develop an algorithm with a 𝑂(𝐾𝐶 · ln(𝐵)/Δ) distribution-dependent

bound on regret, where Δ is a parameter that generalizes the optimality gap for the standard

MAB problem. It is however unclear whether the dependence on 𝐾 is optimal. Extensions

discussed in Section C.1 of the Appendix suggest that it may be possible to achieve a

linear dependence on 𝐾 but this calls for the development of more efficient load balancing

algorithms.

135

136

Chapter 5

Real-Time Bidding with Side

Information

5.1 Introduction

On the internet, advertisers and publishers now interact through real-time marketplaces

called ad exchanges. Through them, any publisher can sell the opportunity to display an

ad when somebody is visiting a webpage he or she owns. Conversely, any advertiser in-

terested in such an opportunity can pay to have his or her ad displayed. In order to match

publishers with advertisers and to determine prices, ad exchanges commonly use a variant

of second-price auctions which typically runs as follows. Each participant is initially pro-

vided with some information about the person that will be targeted by the ad (e.g. browser

cookies, IP address, and operating system) along with some information about the webpage

(e.g. theme) and the ad slot (e.g. width and visibility). Based on this limited knowledge,

advertisers must submit a bid in a timely fashion if they deem the opportunity worthwhile.

Subsequently, the highest bidder gets his or her ad displayed and is charged the second-

highest bid. Moreover, the winner can usually track the customer’s interaction with the

ad (e.g. clicks). Because the auction is sealed, very limited feedback is provided to the

advertiser if the auction is lost. In particular, the advertiser does not receive any customer

feedback in this scenario. In addition, the demand for ad slots, the supply of ad slots, and

the websurfers’ profiles cannot be predicted ahead of time and are thus commonly modeled

137

as random variables, see [43]. These last two features contribute to making the problem of

bid optimization in ad auctions particularly challenging for advertisers.

5.1.1 Problem Statement and Contributions

We consider an advertiser interested in purchasing ad impressions through an ad exchange.

As standard practice in the online advertising industry, we suppose that the advertiser has

allocated a limited budget 𝐵 for a limited period of time, which corresponds to the next 𝑇 ad

auctions. Rounds, indexed by 𝑡 ∈ N, correspond to ad auctions the advertiser participates

in. At the beginning of round 𝑡 ∈ N, some contextual information about the ad slot and the

person that will be targeted is revealed to the advertiser in the form of a multidimensional

vector 𝑥𝑡 ∈ 𝒳 , where 𝒳 is a subset of R𝑑. Without loss of generality, the coordinates of

𝑥𝑡 are assumed to be normalized in such a way that ‖𝑥‖∞ ≤ 1 for all 𝑥 ∈ 𝒳 . Given 𝑥𝑡,

the advertiser must submit a bid 𝑏𝑡 in a timely fashion. If 𝑏𝑡 is larger than the highest bid

submitted by the competitors, denoted by 𝑝𝑡 and also referred to as the market price, the

advertiser wins the auction, is charged 𝑝𝑡, and gets his or her ad displayed, from which

he or she derives a utility 𝑣𝑡. Monetary amounts and utility values are assumed to be

normalized in such a way that 𝑏𝑡, 𝑝𝑡, 𝑣𝑡 ∈ [0, 1]. In this modeling, one of the competitors is

the publisher himself who submits a reserve price so that 𝑝𝑡 > 0. No one wins the auction

if no bid is larger than the reserve price. For the purpose of modeling, we suppose that

ties are broken in favor of the advertiser but this choice is arbitrary and by no means a

limitation of the approach. Hence, the advertiser collects a reward 𝑟𝑡 = 𝑣𝑡 · 1𝑏𝑡≥𝑝𝑡 and is

charged 𝑐𝑡 = 𝑝𝑡 · 1𝑏𝑡≥𝑝𝑡 at the end of round 𝑡. Since the monetary value of getting an ad

displayed is typically difficult to assess, 𝑣𝑡 and 𝑐𝑡 may be expressed in different units and

thus cannot be compared directly in general, which makes the problem two-dimensional.

This is the case, for example, when the goal of the advertiser is to maximize the number of

clicks, in which case 𝑣𝑡 = 1 if the ad was clicked on and 𝑣𝑡 = 0 otherwise. We consider

a stochastic setting where the environment and the competitors are not fully adversarial.

Specifically, we assume that, at any round 𝑡 ∈ N, the vector (𝑥𝑡, 𝑣𝑡, 𝑝𝑡) is jointly drawn

from a fixed probability distribution 𝜈 independently from the past. This is motivated by

138

two observations. First, ad auctions are sealed: the identity of the competitors are never

revealed and they value ad slots differently based on undisclosed rules that are specific

to them. Second, websurfers connect to websites with no a priori knowledge of which

advertisers will participate in the resulting ad auctions. Moreover, while the assumption

that the distribution of (𝑥𝑡, 𝑣𝑡, 𝑝𝑡) is stationary may only be valid for a short period of time,

advertisers tend to participate in a large number of ad auctions per second so that 𝑇 and 𝐵

are typically large values, which motivates an asymptotic study. We generically denote by

(𝑋, 𝑉, 𝑃) a vector of random variables distributed according to 𝜈. We make a structural

assumption about 𝜈, which we use throughout the paper.

Assumption 5.1. The random variables 𝑉 and 𝑃 are conditionally independent given 𝑋 .

Moreover, there exists 𝜃* ∈ R𝑑 such that E[𝑉 | 𝑋] = 𝑋T𝜃* and ‖𝜃*‖∞ ≤ 1.

The first part of Assumption 5.1 is motivated by the fact that websurfers are oblivious to the

ad auctions that take place behind the scenes to determine which ad they will be presented

with. The second part of Assumption 5.1 is standard in the literature on linear contextual

MABs, see [1] and [34], and is arguably the simplest model capturing a dependence be-

tween 𝑥𝑡 and 𝑣𝑡. When the advertiser’s objective is to maximize the number of clicks, this

assumption translates into a linear Click-Through Rate (CTR) model.

We denote by (ℱ𝑡)𝑡∈N (resp. (ℱ̃𝑡)𝑡∈N) the natural filtration generated by ((𝑥𝑡, 𝑣𝑡, 𝑝𝑡))𝑡∈N

(resp. ((𝑥𝑡+1, 𝑣𝑡, 𝑝𝑡))𝑡∈N). Since the advertiser can keep bidding only so long as he or she

does not run out of money or time, he or she can no longer participate in ad auctions at

round 𝜏 *, mathematically defined by:

𝜏 * = min(𝑇 + 1, min{𝑡 ∈ N |
𝑡∑︁

𝜏=1
𝑐𝜏 > 𝐵}). (5.1)

Note that 𝜏 * is a stopping time with respect to (ℱ𝑡)𝑡∈N. The difficulty for the advertiser

when it comes to determining how much to bid at each round lies in the fact that the

underlying distribution 𝜈 is initially unknown. This task is further complicated by the fact

that the feedback provided to the advertiser upon bidding 𝑏𝑡 is partially censored: 𝑝𝑡 and

𝑣𝑡 are only revealed if the advertiser wins the auction, i.e. if 𝑏𝑡 ≥ 𝑝𝑡. In particular when

𝑏𝑡 < 𝑝𝑡, the advertiser can never evaluate how much reward would have been obtained and

139

what price would have been charged if he or she had submitted a higher bid. The goal for

the advertiser is to design a non-anticipating algorithm that, at any round 𝑡, selects 𝑏𝑡 based

on the information acquired in the past so as to keep the pseudo-regret defined as:

𝑅𝐵,𝑇 = EROPT(𝐵, 𝑇) − E[
𝜏*−1∑︁
𝑡=1

𝑟𝑡] (5.2)

as small as possible, where EROPT(𝐵, 𝑇) is the maximum expected sum of rewards that

can be obtained by a non-anticipating oracle algorithm that has knowledge of the under-

lying distribution. Here, an algorithm is said to be non-anticipating if the bid selection

process does not depend on the future observations. We develop algorithms with bounds

on the pseudo-regret that do not depend on the underlying distribution 𝜈, which are referred

to as distribution-independent regret bounds. This entails studying the asymptotic behavior

of 𝑅𝐵,𝑇 when 𝐵 and 𝑇 go to infinity. For mathematical convenience, we consider that the

advertiser keeps bidding even if he or she has run out of time or money so that all quantities

(including 𝑏𝑡) are well-defined for any 𝑡 ∈ N. Of course, the rewards obtained for 𝑡 ≥ 𝜏 *

are not taken into account in the advertiser’s total reward when establishing regret bounds.

Contributions. We develop UCB-type algorithms that combine the ellipsoidal confi-

dence set approach to linear contextual MAB problems with a special-purpose stochastic

binary search procedure. When the budget is unlimited or when it scales linearly with time,

we show that, under additional technical assumptions on the underlying distribution 𝜈, our

algorithms incur a regret 𝑅𝐵,𝑇 = 𝑂̃(𝑑 ·
√

𝑇), where the 𝑂̃ notation hides logarithmic fac-

tors in 𝑑 and 𝑇 . A key feature of our approach is that overbidding is not only essential

to incentivize exploration in order to estimate 𝜃*, but also crucial to find the optimal bid-

ding strategy given 𝜃* because bidding higher always provide more feedback in real-time

bidding.

5.1.2 Literature Review

To handle the exploration-exploitation trade-off inherent to MAB problems, an approach

that has proved to be particularly successful hinges on the optimism in the face of uncer-

140

tainty paradigm. The idea is to consider all plausible scenarios consistent with the infor-

mation collected so far and to select the decision that yields the largest reward among all

identified scenarios. The authors of [12] use this idea to solve the standard MAB problem

where decisions are represented by 𝐾 ∈ N arms and pulling arm 𝑘 ∈ {1, · · · , 𝐾} at round

𝑡 ∈ {1, · · · , 𝑇} yields a random reward drawn from an unknown distribution specific to

this arm independently from the past. Specifically, the authors of [12] develop the Upper

Confidence Bound algorithm (UCB1), which consists in systematically selecting the arm

with the current largest upper confidence bound on its mean reward, and establish near-

optimal regret bounds. This approach has since been successfully extended to a number

of more general settings. Of most notable interest to us are: (i) linear contextual MAB

problems, where, for each arm 𝑘 and at each round 𝑡, some context 𝑥𝑘
𝑡 is provided to the

decision maker ahead of pulling any arm and the expected reward of arm 𝑘 is 𝜃T
*𝑥𝑘

𝑡 for

some unknown 𝜃* ∈ R𝑑, (ii) the Bandits with Knapsacks (BwK) framework, an extension

to the standard MAB problem allowing to model resource consumption, and (iii) the linear

contextual BwK framework, a combination of the two aforementioned extensions.

UCB-type algorithms for linear contextual MAB problems were first developed in [11]

and later extended and improved upon in [1] and [34]. In this line of work, the key idea is

to build, at any round 𝑡, an ellipsoidal confidence set 𝒞𝑡 on the unknown parameter 𝜃* and

to pull the arm 𝑘 that maximizes max𝜃∈𝒞𝑡 𝜃T𝑥𝑘
𝑡 . Using this idea, the authors of [34] derive

𝑂̃(
√

𝑑 · 𝑇) upper bounds on regret that hold with high probability, where the 𝑂̃ notations

hides logarithmic factors in 𝑑 and 𝑇 . While this result is not directly applicable in our

setting, partly because the knapsack constraint is not taken into account, we rely on this

technique to estimate 𝜃*.

The real-time bidding problem considered in this work can be formulated as a BwK

problem with contextual information and a continuum of arms. This framework, first in-

troduced in its full generality in [16] and later extended to incorporate contextual infor-

mation in [17], [7], and [5], captures resource consumption by assuming that pulling any

arm incurs the consumption of possibly many different limited resource types by random

amounts. The authors of [5] consider a particular case where the expected rewards and the

expected amounts of resource consumption are linear in the context and derive, in partic-

141

ular, 𝑂̃(
√

𝑑 · 𝑇) bounds on regret when the initial endowments of resources scale linearly

with the time horizon 𝑇 . These results do not carry over to our setting because the expected

costs, and in fact also the expected rewards, are not linear in the context. The authors of

[7] and [17] develop algorithms to tackle more general settings where the expected rewards

and amounts of resource consumption are not necessarily linear in the context when there

is a finite number of arms 𝐾. They derive regret bounds that scale as 𝑂̃(
√︁

𝐾 · 𝑇 · ln(Π)),

where Π is the size of the set of benchmark policies. To some extent, at least when 𝜃* is

known, it is possible to apply these results but this requires to discretize [0, 1] with an 𝜖(𝑇)

-additive mesh for a well-chosen function 𝜖(·). However, the regret bounds thus derived

would scale as ∼
√

𝑇 2/3, see the analysis in [16], which would be suboptimal.

On the modeling side, the most closely related prior works studying repeated auctions

under the lens of online learning are [97], [92], [19], and [35]. The authors of [97] develop

algorithms to solve the problem considered in this work when no contextual information

is available and when there is no budget constraint, in which case the rewards are defined

as 𝑟𝑡 = (𝑣𝑡 − 𝑝𝑡) · 1𝑏𝑡≥𝑝𝑡 , but in a more general adversarial setting where few assumptions

are made concerning the sequence ((𝑣𝑡, 𝑝𝑡))𝑡∈N. They obtain 𝑂̃(
√

𝑇) regret bounds with an

improved rate 𝑂(ln(𝑇)) in some favorable settings of interest. The authors of [92] study a

particular case of the problem considered in this work when no contextual information is

available and when the goal is to maximize the number of impressions. They derive 𝑂̃(
√

𝑇)

regret bounds using a dynamic programming approach. The authors of [19] study repeated

multi-commodity auctions without contextual information when the goal is to maximize

revenues subject to a budget constraint that has to be enforced for each individual period,

as opposed to globally in the setting considered in this work. They develop an algorithm

based on a dynamic program and derive 𝑂(
√︁

𝑇 · ln(𝑇)) regret bounds. Finally, the authors

of [35] take the point of view of the publisher whose goal is to price ad impressions, as

opposed to purchasing them, in order to maximize revenues with no knapsack constraint.

They derive 𝑂(ln(𝑑2 · ln(𝑇/𝑑))) bounds on regret with high probability.

On the technical side, our work builds upon and contributes to the stream of literature

on probabilistic bisection search algorithms. This class of algorithms was originally devel-

oped for solving stochastic root finding problems, see [75] for an overview, but has also

142

recently appeared in the MAB literature, see [35] and [61]. The authors of [35] propose

a binary search approach based on the ellipsoid method for linear programming to obtain

𝑂(ln(𝑑2·ln(𝑇/𝑑))) regret bounds in the MAB setting described above. However, the binary

search problem that arises in [35] differs from ours along two key features that makes their

approach inapplicable here: the feedback provided to the decision maker is deterministic

and the contextual information available at each round is adversarially chosen, as opposed

to being stochastically generated in our work. Our approach is largely inspired by the work

of the authors of [61] who develop a stochastic binary search algorithm to solve a dynamic

pricing problem with limited supply but no contextual information, which can be modeled

as a BwK problem with a continuum of arms. The technical challenge in [61] differs from

ours in one key aspect: the feedback provided to the decision maker is completely censored

in dynamic pricing problems, since the customers’ valuations are never revealed, while it is

only partially censored in real-time bidding, since the market price is revealed if the auction

is won. Making the most of this additional feature enables us to develop a stochastic binary

search procedure that can be compounded with the ellipsoidal confidence set approach to

linear contextual bandits in order to incorporate contextual information.

Organization. The remainder of the paper is organized as follows. In order to increase

the level of difficulty progressively, we start by studying the situation of an advertiser with

unlimited budget, i.e. 𝐵 = ∞, in Section 5.2. Given that second-price auctions induce

truthful bidding when the bidder has no budget constraint, this setting is easier since the

optimal bidding strategy is to bid 𝑏𝑡 = 𝑥T
𝑡 𝜃* at any round 𝑡 ∈ N. This drives us to focus

on the problem of estimating 𝜃*, which we do by means of ellipsoidal confidence sets.

Next, in Section 5.3, we study the setting where 𝐵 is finite and scales linearly with the

time horizon 𝑇 . We show that a near-optimal strategy is to bid 𝑏𝑡 = 𝑥T
𝑡 𝜃*/𝜆* at any round

𝑡 ∈ N, where 𝜆* ≥ 0 is a scalar factor whose purpose is to spread the budget as evenly as

possible, i.e. E[𝑃 · 1𝑋T𝜃*≥𝜆*·𝑃] = 𝐵/𝑇 . Given this characterization, we first assume that

𝜃* is known a priori to focus instead on the problem of computing an approximate solution

𝜆 ≥ 0 to E[𝑃 · 1𝑋T𝜃*≥𝜆·𝑃] = 𝐵/𝑇 in Section 5.3.1. We develop a stochastic binary search

algorithm for this purpose which is shown to incur 𝑂̃(
√

𝑇) regret under mild assumptions

143

on the underlying distribution 𝜈. In Section 5.3.2, we bring the stochastic binary search

algorithm together with the estimation method based on ellipsoidal confidence sets to tackle

the general problem and derive 𝑂̃(𝑑 ·
√

𝑇) regret bounds. All the proofs are deferred to the

Appendix.

Notations. For a vector 𝑥 ∈ R𝑑, ‖𝑥‖∞ (resp. ‖𝑥‖2) refers to the 𝐿∞-norm (resp. 𝐿2-

norm) of 𝑥. For a positive definite matrix 𝑀 ∈ R𝑑×𝑑 and a vector 𝑥 ∈ R𝑑, we define the

norm ‖𝑥‖𝑀 as ‖𝑥‖𝑀 =
√

𝑥T𝑀𝑥. When 𝑀 is the identity matrix, which we denote by

𝐼𝑑, ‖𝑥‖𝑀 = ‖𝑥‖2. For 𝑥, 𝑦 ∈ R𝑑, it is well known that the following Cauchy-Schwarz

inequality holds: |𝑥T𝑦| ≤ ‖𝑥‖𝑀 · ‖𝑦‖𝑀−1 . We use the standard asymptotic notation 𝑂(·)

when 𝑇 , 𝐵, and 𝑑 go to infinity. While 𝑂(·) only hides universal constant factors, we also

use the notation 𝑂̃(·) that hides logarithmic factors in 𝑑, 𝑇 , and 𝐵. For 𝑥 ∈ R, (𝑥)+ refers

to the positive part of 𝑥. For a finite set 𝑆, |𝑆| denotes the cardinality of 𝑆. Additionally, as

a slight abuse of notation, we also use |𝐼| to denote the length of a compact interval 𝐼 ⊂ R.

For a set 𝑆, 𝒫(𝑆) denotes the set of all subsets of 𝑆. Finally, for a real-valued function

𝑓(·), supp 𝑓(·) denotes the support of 𝑓(·).

5.2 Unlimited Budget

In this section, we suppose that the budget is unlimited, i.e. 𝐵 = ∞, which implies that the

rewards have to be redefined in order to directly incorporate the costs. For this purpose, we

assume in this section that 𝑣𝑡 is expressed in monetary value and we redefine the rewards

as 𝑟𝑡 = (𝑣𝑡 − 𝑝𝑡) · 1𝑏𝑡≥𝑝𝑡 . Since the budget constraint is irrelevant when 𝐵 = ∞, we

use the notations 𝑅𝑇 and EROPT(𝑇) in place of 𝑅𝐵,𝑇 and EROPT(𝐵, 𝑇). As standard in

the literature on MAB problems, we start by analyzing the optimal oracle strategy that has

knowledge of the underlying distribution. This will not only guide the design of algorithms

when 𝜈 is unknown but this will also facilitate the regret analysis. The algorithm devel-

oped in this section as well as the regret analysis are extensions of the work of [97] to the

contextual setting.

144

Benchmark analysis. It is well known that second-price auctions induce truthful bidding

in the sense that any participant whose only objective is to maximize the immediate payoff

should always bid what he or she thinks the good being auctioned is worth. The following

result should thus come at no surprise in the context of real-time bidding given Assumption

5.1 and the fact that each participant is provided with the contextual information 𝑥𝑡 before

the 𝑡-th auction takes place.

Lemma 5.1. The optimal non-anticipating strategy is to bid 𝑏𝑡 = 𝑥T
𝑡 𝜃* at any time period

𝑡 ∈ N and we have:

EROPT(𝑇) =
𝑇∑︁

𝑡=1
E[(𝑥T

𝑡 𝜃* − 𝑝𝑡)+]. (5.3)

Lemma 5.1 shows that the problem faced by the advertiser essentially boils down to es-

timating 𝜃*. Since the bidder only gets to observe 𝑣𝑡 if the auction is won, this gives

advertisers a clear incentive to overbid early on so that they can progressively refine their

estimates downward as they collect more data points.

Specification of the algorithm. Following the approach developed in [11] for linear con-

textual MAB problems, we define, at any round 𝑡, the regularized least square estimate of

𝜃* given all the feedback acquired in the past 𝜃𝑡 = 𝑀−1
𝑡

∑︀𝑡−1
𝜏=1 1𝑏𝜏 ≥𝑝𝜏 · 𝑣𝜏 · 𝑥𝜏 , where

𝑀𝑡 = 𝐼𝑑 +∑︀𝑡−1
𝜏=1 1𝑏𝜏 ≥𝑝𝜏 · 𝑥𝜏 𝑥T

𝜏 , as well as the corresponding ellipsoidal confidence set:

𝒞𝑡 = {𝜃 ∈ R𝑑 |
⃦⃦⃦
𝜃 − 𝜃𝑡

⃦⃦⃦
𝑀𝑡

≤ 𝛿𝑇 }, (5.4)

where 𝛿𝑇 = 2
√︁

𝑑 · ln((1 + 𝑑 · 𝑇) · 𝑇). For the reasons mentioned above, we take the opti-

mism in the face of uncertainty approach and bid:

𝑏𝑡 = max(0, min(1, max
𝜃∈𝒞𝑡

𝜃T𝑥𝑡)) (5.5)

at any round 𝑡. Since 𝒞𝑡 was designed with the objective of guaranteeing that 𝜃* ∈ 𝒞𝑡 with

high probability at any round 𝑡, irrespective of the number of auctions won in the past, 𝑏𝑡

is larger than the optimal bid 𝑥T
𝑡 𝜃* in general, i.e. we tend to overbid. Note that 𝑏𝑡 can be

computed in closed form since max𝜃∈𝒞𝑡 𝜃T𝑥𝑡 = 𝜃T
𝑡 𝑥𝑡 + 𝛿𝑇 ·

√︁
𝑥T

𝑡 𝑀−1
𝑡 𝑥𝑡.

145

Regret analysis. Concentration inequalities are intrinsic to any kind of learning and are

thus key to derive regret bounds in online learning. We start with the following lemma,

which is a consequence of the results derived in [1] for linear contextual MABs, that shows

that 𝜃* lies in all the ellipsoidal confidence sets with high probability.

Lemma 5.2. We have:

P[𝜃* /∈ ∩𝑇
𝑡=1𝒞𝑡] ≤ 1

𝑇
.

Equipped with Lemma 5.2 along with some standard results for linear contextual bandits,

we are now ready to extend the analysis of [97] to the contextual setting.

Theorem 5.1. Bidding according to (5.5) at any round 𝑡 incurs a regret 𝑅𝑇 = 𝑂̃(𝑑 ·
√

𝑇).

Alternative algorithm with lazy updates. As first pointed out by [1] in the context of

linear bandits, updating the confidence set 𝒞𝑡 at every round is not only inefficient but also

unnecessary from a performance standpoint. Instead, we can perform batch updates, only

updating 𝒞𝑡 using all the feedback collected in the past at rounds 𝑡 for which det(𝑀𝑡)

has increased by a factor at least (1 + 𝐴) compared to the last time there was an update,

for some constant 𝐴 > 0 of our choosing. This leads to an interesting trade-off between

computational efficiency and deterioration of the regret bound captured in our next result.

For mathematical convenience, we keep the same notations as when we were updating the

confidence sets at every round. The only difference lies in the fact that the bid submitted at

time 𝑡 is now defined as:

𝑏𝑡 = max(0, min(1, max
𝜃∈𝒞𝜏𝑡

𝜃T𝑥𝑡)), (5.6)

where 𝜏𝑡 is the last round before round 𝑡 where the last batch update happened.

Theorem 5.2. Bidding according to (5.6) at any round 𝑡 incurs a regret 𝑅𝑇 = 𝑂̃(𝑑 ·
√

𝐴 · 𝑇).

The fact that we can afford lazy updates will turn out to be important to tackle the general

case in Section 5.3.2 since we will only be able to update the confidence sets at most

𝑂(ln(𝑇)) times.

146

5.3 Limited Budget

In this section, we consider the setting where 𝐵 is finite and scales linearly with the time

horizon 𝑇 . We will need the following assumptions for the remainder of the paper.

Assumption 5.2. (a) The ratio 𝐵/𝑇 is a constant independent of any other relevant quan-

tities, denoted by 𝛽 > 0.

(b) There exists a reserve price 𝑟 > 0, known to the advertiser, such that 𝑝𝑡 ≥ 𝑟 for all

𝑡 ∈ N.

(c) We have E[1/(𝑋T𝜃*)3] < ∞.

(d) The random variable 𝑃 has a continuous conditional probability density function given

the occurrence of the value 𝑥 of 𝑋 , denoted by 𝑓𝑥(·), that is upper bounded by 𝐿̄ < ∞.

(e) There exists 𝐾 ≥ 0 such that 𝑤 ∈ R+ → 𝑤 · 𝑓𝑋(𝑤) is 𝐾-Lipschitz on supp 𝑓𝑋(·)

almost surely.

Condition (b) is very natural in real-time bidding where 𝑟 corresponds to the minimum

reserve price across ad auctions. Conditions (c), (d), and (e) are motivated by technical

considerations that will appear clear in the analysis. Note that 𝐿̄ and 𝐾 are not assumed to

be known to the advertiser.

In order to increase the level of difficulty progressively and to prepare for the integration

of the ellipsoidal confidence sets, we first look at an artificial setting in Section 5.3.1 where

we assume that there exists a known set 𝒞 ⊂ R𝑑 such that E[𝑉 |𝑋] = min(1, max𝜃∈𝒞 𝑋T𝜃)

(as opposed to E[𝑉 |𝑋] = 𝑋T𝜃*) and such that 𝜃* ∈ 𝒞. This is to sidestep the estimation

problem in a first step in order to focus on determining an optimal bidding strategy given

𝜃*. Next, in Section 5.3.2, we bring together the methods developed in Section 5.2 and

Section 5.3.1 to tackle the general setting.

5.3.1 Preliminary Work

In this section, we make the following modeling assumption in lieu of E[𝑉 |𝑋] = 𝑋T𝜃*.

147

Assumption 5.3. There exists 𝒞 ⊂ R𝑑 such that E[𝑉 |𝑋] = min(1, max𝜃∈𝒞 𝑋T𝜃) and

𝜃* ∈ 𝒞.

Furthermore, we assume that 𝒞 is known to the advertiser initially. Of course, we recover

the original setting introduced in Section 5.1 when 𝒞 = {𝜃*} (since 𝑉 ∈ [0, 1] implies

E[𝑉 |𝑋] ∈ [0, 1]) and 𝜃* is known but the level of generality considered here will prove

useful to tackle the general case in Section 5.3.2 when we define 𝒞 as an ellipsoidal con-

fidence set on 𝜃*. As in Section 5.2, we start by identifying a near-optimal oracle bidding

strategy that has knowledge of the underlying distribution. This will not only guide the

design of algorithms when 𝜈 is unknown but this will also facilitate the regret analysis. We

use the shorthand 𝑔(𝑋) = min(1, max𝜃∈𝒞 𝑋T𝜃) throughout this section.

Benchmark analysis. To bound the performance of any non-anticipating strategy, we

will be interested in the mappings:

𝜑 : 𝜆, 𝒞 ∈ [0, 2/𝑟] × 𝒫(R𝑑) → E[𝑃 · 1𝑔(𝑋)≥𝜆·𝑃], (5.7)

and:

𝑅 : 𝜆, 𝒞 ∈ [0, 2/𝑟] × 𝒫(R𝑑) → E[𝑔(𝑋) · 1𝑔(𝑋)≥𝜆·𝑃]. (5.8)

Note that 𝜑(·, 𝒞) is non-increasing and that, without loss of generality, we can restrict 𝜆

to be no larger than 2/𝑟 because 𝜑(𝜆, 𝒞) = 𝜑(2/𝑟, 𝒞) = 0 for 𝜆 ≥ 2/𝑟 since 𝑃 ≥ 𝑟.

Exploiting the structure of the MAB problem at hand, we can bound the sum of rewards

obtained by any non-anticipating strategy by the value of a knapsack problem where the

weights and the values of the items are drawn in an i.i.d. fashion from a fixed distribution.

Since characterizing the expected optimal value of a knapsack problem is a well studied

problem, see [63], we can derive a simple upper bound on EROPT(𝐵, 𝑇) through this

reduction, as we next show.

Lemma 5.3. We have:

EROPT(𝐵, 𝑇) ≤ 𝑇 · 𝑅(𝜆*, 𝒞) + 𝑂(1),

148

where 𝜆* ≥ 0 satisfies 𝜑(𝜆*, 𝒞) = 𝛽 or 𝜆* = 0 if no such solution exists (i.e. if E[𝑃] < 𝛽)

in which case 𝜑(𝜆*, 𝒞) ≤ 𝛽.

Lemma 5.3 suggests that, given 𝒞, a good strategy is to bid:

𝑏𝑡 = min(1, min(1, max
𝜃∈𝒞

𝑥T
𝑡 𝜃)/𝜆*),

at any round 𝑡. The following result shows that we can actually afford to settle for an

approximate solution 𝜆 ≥ 0 to 𝜑(𝜆, 𝒞) = 𝛽.

Lemma 5.4. For any 𝜆1, 𝜆2 ≥ 0, we have: |𝑅(𝜆1, 𝒞) − 𝑅(𝜆2, 𝒞)| ≤ 1/𝑟 · |𝜑(𝜆1, 𝒞) −

𝜑(𝜆2, 𝒞)|.

Lemma 5.3 combined with Lemma 5.4 suggests that the problem of computing a near-

optimal bidding strategy essentially reduces to a stochastic root-finding problem for the

function |𝜑(·, 𝒞) − 𝛽|. As it turns out, the fact that the feedback is only partially censored

makes a stochastic bisection search possible with minimal assumptions on 𝜑(·, 𝒞). Specif-

ically, we only need that 𝜑(·, 𝒞) be Lipschitz, while the technique developed in [61] for a

dynamic pricing problem requires 𝜑(·, 𝒞) to be bi-Lipschitz. This is a significant improve-

ment because this last condition is not necessarily satisfied uniformly for all confidence

sets 𝒞, which will be important when we use a varying ellipsoidal confidence set instead of

𝒞 = {𝜃*} in Section 5.3.2. Note, however, that Assumption 5.2 guarantees that 𝜑(·, 𝒞) is

always Lipschitz, as we next show.

Lemma 5.5. 𝜑(·, 𝒞) is 𝐿̄ · E[1/𝑋T𝜃*]-Lipschitz.

Specification of the algorithm. At any round 𝑡 ∈ N, we bid:

𝑏𝑡 = min(1, min(1, max
𝜃∈𝒞

𝑥T
𝑡 𝜃)/𝜆𝑡), (5.9)

where 𝜆𝑡 ≥ 0 is the current proxy for 𝜆*. We perform a binary search on 𝜆* by repeatedly

using the same value of 𝜆𝑡 for consecutive rounds forming phases, indexed by 𝑘 ∈ N, and

by keeping track of an interval, denoted by 𝐼𝑘 = [𝜆𝑘, 𝜆̄𝑘]. We start with phase 𝑘 = 0 and

149

we initially set 𝜆0 = 0 and 𝜆̄0 = 2/𝑟. The length of the interval is shrunk by half at the

end of every phase so that |𝐼𝑘| = (2/𝑟)/2𝑘 for any 𝑘. Phase 𝑘 lasts for 𝑁𝑘 = 3 · 4𝑘 · ln2(𝑇)

rounds during which we set the value of 𝜆𝑡 to 𝜆𝑘. Since 𝜆𝑘 will be no larger than 𝜆*

with high probability, this means that we tend to overbid. Note that there are at most

𝑘𝑇 = inf{𝑛 ∈ N | ∑︀𝑛
𝑘=0 𝑁𝑘 ≥ 𝑇} phases overall. The key observation enabling a bisection

search approach is that, since the feedback is only partially censored, we can build, at the

end of any phase 𝑘, an empirical estimate of 𝜑(𝜆, 𝒞), which we denote by 𝜑𝑘(𝜆, 𝒞), for any

𝜆 ≥ 𝜆𝑘 using all of the 𝑁𝑘 samples obtained during phase 𝑘. The decision rule used to

update 𝐼𝑘 at the end of phase of 𝑘 is specified next.

Algorithm: Interval updating procedure at the end of phase 𝑘

Data: 𝜆̄𝑘, 𝜆𝑘, Δ𝑘 = 3
√︁

2 ln(2𝑇)/𝑁𝑘, and 𝜑𝑘(𝜆, 𝒞) for any 𝜆 ≥ 𝜆𝑘

Result: 𝜆̄𝑘+1 and 𝜆𝑘+1

𝛾𝑘 = 𝜆̄𝑘, 𝛾
𝑘

= 𝜆𝑘;

while 𝜑𝑘(𝛾𝑘, 𝒞) > 𝛽 + Δ𝑘 do

𝛾𝑘 = 𝛾𝑘 + |𝐼𝑘|;

𝛾
𝑘

= 𝛾
𝑘

+ |𝐼𝑘|;

end

if 𝜑𝑘(1/2𝛾𝑘 + 1/2𝛾
𝑘
, 𝒞) ≤ 𝛽 + Δ𝑘 then

𝜆̄𝑘+1 = 1/2𝛾𝑘 + 1/2𝛾
𝑘
;

𝜆𝑘+1 = 𝛾
𝑘
;

else

𝜆̄𝑘+1 = 𝛾𝑘;

𝜆𝑘+1 = 1/2𝛾𝑘 + 1/2𝛾
𝑘
;

end

The splitting decision is trivial when |𝜑𝑘(1/2𝛾𝑘 + 1/2𝛾
𝑘
, 𝒞) − 𝛽| > Δ𝑘 because we get

a clear signal that dominates the stochastic noise to either increase or decrease the current

proxy for 𝜆*. The tricky situation is when |𝜑𝑘(1/2𝛾𝑘 + 1/2𝛾
𝑘
, 𝒞) − 𝛽| ≤ Δ𝑘, in which

case the level of noise is too high to draw any conclusion. In this situation, we always

favor a smaller value for 𝜆𝑘 even if that means shifting the interval upwards later on if

we realize that we have made a mistake (which is the purpose of the while loop). This is

150

because we can always recover from underestimating 𝜆* since the feedback is only partially

censored. Finally, note that the while loop of Algorithm 5 always ends after a finite number

of iterations since 𝜑𝑘(2/𝑟, 𝒞) = 0 ≤ 𝛽 + Δ𝑘.

Regret analysis. Just like in Section 5.2, using concentration inequalities is essential to

establish regret bounds but this time we need uniform concentration inequalities. We use

the Rademacher complexity approach to concentration inequalities to control the deviations

of 𝜑𝑘(·, 𝒞) uniformly.

Lemma 5.6. For any 𝑘 ∈ {0, · · · , 𝑘𝑇 }, we have:

P[sup
𝜆∈[𝜆𝑘,2/𝑟]

|𝜑𝑘(𝜆, 𝒞) − 𝜑(𝜆, 𝒞)| ≤ Δ𝑘] ≥ 1 − 1/𝑇.

Next, we bound the number of phases as a function of the time horizon.

Lemma 5.7. For 𝑇 ≥ 3, we have:

𝑘𝑇 ≤ ln(𝑇 + 1) and 4𝑘𝑇 ≤ 𝑇

ln2(𝑇)
+ 1.

Using Lemma 5.6, we next show that the stochastic bisection search procedure correctly

identifies 𝜆 ≥ 0 such that |𝜑(𝜆, 𝒞) − 𝜑(𝜆*, 𝒞)| is small with high probability, which is all

we really need to lower bound the rewards accumulated in all rounds given Lemma 5.4

Proposition 5.1. We have:

P[∩𝑘𝑇
𝑘=0{|𝜑𝑘(𝜆𝑘, 𝒞)−𝜑(𝜆*, 𝒞)| ≤ 4𝐶·|𝐼𝑘|, |𝜑(𝜆𝑘, 𝒞)−𝜑(𝜆*, 𝒞)| ≤ 3𝐶·|𝐼𝑘|}] ≥ 1−2 ln2(𝑇)

𝑇

where 𝐶 = 𝐿̄ · E[1/𝑋T𝜃*] and provided that 𝑇 ≥ exp(8𝑟2/𝐶2).

In a last step, we show, using the above result and at the cost of an additive logarithmic

term in the regret bound, that we may assume that the advertiser participates in exactly

𝑇 auctions. This enables us to combine Lemma 5.4, Lemma 5.7, and Proposition 5.1 to

establish a distribution-independent regret bound.

151

Theorem 5.3. Bidding according to (5.9) at any round 𝑡 yields a regret:

𝑅𝐵,𝑇 = 𝑂̃(𝐿̄ · E[1/𝑋T𝜃*]
𝑟2 ·

√
𝑇 · ln(𝑇)).

Observe that Theorem 5.3 applies in particular when 𝜃* is known to the advertiser initially,

in which case we can take 𝒞 = {𝜃*}. Furthermore, note that the regret bound derived is

independent of 𝑑.

5.3.2 General Case

In this section, we combine the methods developed in Sections 5.2 and 5.3.1 to tackle the

general case.

Specification of the algorithm. At any round 𝑡 ∈ N, we bid:

𝑏𝑡 = min(1, min(1, max
𝜃∈𝒞𝜏𝑡

𝑥T
𝑡 𝜃)/𝜆𝑡), (5.10)

where 𝜏𝑡 is defined in the last paragraph of Section 5.2 and 𝜆𝑡 ≥ 0 is specified below.

We use the bisection search method developed in Section 5.3.1 as a subroutine in a master

algorithm that also runs in phases. Master phases are indexed by 𝑞 = 0, · · · , 𝑄 and a new

master phase starts whenever det(𝑀𝑡) has increased by a factor at least (1 + 𝐴) compared

to the last time there was an update, for some 𝐴 > 0 of our choosing. By construction, the

ellipsoidal confidence set used during the 𝑞-th master phase is fixed so that we can denote

it by 𝒞𝑞. During the 𝑞-th master phase, we run the bisection search method described in

Section 5.3.1 from scratch for the choice 𝒞 = 𝒞𝑞 in order to identify a solution 𝜆𝑞,* ≥ 0 to

𝜑(𝜆𝑞,*, 𝒞𝑞) = 𝛽 (or 𝜆𝑞,* = 0 if no solution exists). Thus, 𝜆𝑡 is a proxy for 𝜆𝑞,* during the

𝑞-th master phase. This bisection search lasts for 𝑘𝑞 phases and stops as soon as we move

on to a new master phase. Hence, there are at most 𝑘𝑞 ≤ 𝑘𝑇 = inf{𝑛 ∈ N | ∑︀𝑛
𝑘=0 𝑁𝑘 ≥ 𝑇}

phases during the 𝑞-th master phase. We denote by 𝜆𝑞,𝑘 the lower end of the interval used

at the 𝑘-th phase of the bisection search run during the 𝑞-th master phase.

152

Regret analysis. While 𝑄 is, in general, a random variable, we can always guarantee that

there are at most 𝑂(𝑑 · ln(𝑇 · 𝑑)) master phases overall.

Lemma 5.8. We have 𝑄 ≤ 𝑄̄ = 𝑑 · ln(𝑇 · 𝑑)/ ln(1 + 𝐴) almost surely.

Lemma 5.8 is important because it implies that the bisection searches run long enough to

be able to identify sufficiently good approximate values for 𝜆𝑞,*. Note that our approach is

“doubly” optimistic since both 𝜆𝑞,𝑘 ≤ 𝜆𝑞,* and 𝜃* ∈ 𝒞𝑞 hold with high probability at any

point in time. At a high level, the regret analysis goes as follows. First, just like in Section

5.3.1, we show, using Proposition 5.1 and at the cost of an additive logarithmic term in the

final regret bound, that we may assume that the advertiser participates in exactly 𝑇 auctions.

Second, we show, using the analysis of Theorem 5.2, that we may assume that the expected

per-round reward obtained during phase 𝑞 is E[min(1, max𝜃∈𝒞𝑞 𝑥T
𝑡 𝜃)] (as opposed to 𝑥T

𝑡 𝜃*)

at any round 𝑡, up to an additive term of order 𝑂̃(𝑑 ·
√

𝑇) in the final regret bound. Third,

we note that Theorem 5.3 essentially shows that the expected per-round reward obtained

during phase 𝑞 is 𝑅(𝜆𝑞,*, 𝒞𝑞), up to an additive term of order 𝑂̃(
√

𝑇) in the final regret

bound. Finally, what remains to be done is to compare 𝑅(𝜆𝑞,*, 𝒞𝑞) with 𝑅(𝜆*, {𝜃*}), which

we do using Lemmas 5.2 and 5.3.

Theorem 5.4. Bidding according to (5.10) at any round 𝑡 yields a regret:

𝑅𝐵,𝑇 = 𝑂̃(𝑑 · 𝐿̄ · E[1/𝑋T𝜃*]
𝑟2 · (1

ln(1 + 𝐴) +
√

1 + 𝐴) ·
√

𝑇).

5.4 Concluding Remark

An interesting direction for future research is to develop a complete characterization of the

achievable regret bounds, in particular through the derivation of lower bounds on regret.

When there is no budget limit and no contextual information, the authors of [97] provide a

very thorough characterization with rates ranging from Θ(ln(𝑇)), when a margin condition

on the underlying distribution is satisfied, to Θ(
√

𝑇) when this condition is not satisfied.

153

154

Chapter 6

Concluding Remarks

We conclude this thesis with a summary of contributions, with an emphasis on technical

contributions, and a discussion of future research directions.

6.1 Summary

In Chapter 1, we introduce the class of adaptive optimization problems considered in this

thesis and we describe two possible approaches to deal with the fact that the environment is

uncertain: a worst-case approach, which protects against a fully adversarial environment,

and a hindsight approach, which adapts to the level of adversariality by measuring perfor-

mance in terms of a quantity known as regret, defined as the gap between the objective

function derived and the best objective function that could have been obtained in hindsight.

In Chapter 2, we take the worst-case approach and study adaptive stochastic shortest

path problems with a deadline imposed at the destination under distributional ambiguity.

We develop an efficient algorithm based on a trick to avoid recomputing the value function

from scratch at each state when solving the underlying dynamic program. Our algorithm

provably solves the problem to near-optimality with a runtime complexity that is compa-

rable, up to logarithmic factors in the parameters, to the runtime complexity of the opti-

mal algorithm solving the nominal version of the problem (i.e. when the distributions are

known).

In Chapter 3, we establish, using tools rooted in duality theory and sensitivity analy-

155

sis, that the minimax achievable regret in the online convex optimization framework when

the loss function is piecewise linear always scales as square root of the time horizon when

the decision maker’s decision set is strongly curved. In stark contrast, we show, using

sensitivity analysis, that the Follow-The-Leader algorithm incurs a regret that scales as a

logarithmic function of the time horizon when the decision maker’s decision set is curved,

the loss function is linear, and 0 does not lie in the convex hull of the environment’s deci-

sion set.

In Chapter 4, we study the Bandits with Knapsacks framework and we develop UCB-

type algorithms with distribution-dependent bounds on regret that scale as a logarithmic

function of the initial endowments of each resource, thus generalizing the result of [12] for

the standard Multi-Armed Bandit problem. The key idea, borrowed from the literature, to

design algorithms is to upper bound the performance of the optimal algorithm that knows

the underlying distributions by a simple linear program whose decision variables are the

anytime probabilities of pulling each arm. This linear program only involves a few un-

known quantities (namely the mean rewards and costs). Following the optimism in the face

of uncertainty, we plug optimistic empirical estimates for these quantities into the linear

program and pull an arm at random according to a slightly perturbed version of the optimal

distribution.

In Chapter 5, we model the problem of repeated bidding in online advertisement auc-

tions as a contextual Bandits with Knapsack problem with a continuum of arm. We develop

UCB-type algorithms that combine the ellipsoid confidence set-based approach to linear

contextual Multi-Armed Bandit problems with a special-purpose stochastic binary search

procedure. We establish distribution-independent bounds on regret that scale as square root

of the initial budget. Similarly as in Chapter 4, the key to design algorithms is to upper

bound the performance of the optimal algorithm that knows the underlying distributions by

a simple optimization problem which only involves a few unknown quantities. Following

the optimism in the face of uncertainty, we plug optimistic empirical estimates for these

quantities into the optimization problem and use the optimal solution derived as a basis for

the next bid submission.

156

6.2 Future Research Directions

This thesis focuses on optimization problems where decisions can be made and imple-

mented globally. In fast-paced environments, such as in real-time bidding, this is often not

physically possible given: (i) the volume of decisions and (ii) the fact that decisions have to

be made in a timely fashion (advertisers have about 100 milliseconds to submit a bid once

an ad auction is posted). As a consequence, computations have to be distributed across ma-

chines and decisions have to be made locally and concurrently. This raises several questions

for the decision maker. First, how should the global optimization problem be broken down?

For instance, each machine could have its own local optimization problem to solve which

would be defined online by a master machine collecting the feedback from all machines.

Since communications between machines are subject to delays and failures, this implies

that the feedback on the outcomes of alternatives is no longer immediately available, which

is an assumption underlying the work presented in this thesis. Second, in settings where

there is an inherent exploration-exploitation trade-off, how should the exploration compo-

nent be handled? Anecdotal evidence, see, for example, [49], suggests that even minimal

collaboration between machines can increase the performance tremendously compared to

the situation where each machine is managing the trade-off locally. Developing provably

near-optimal algorithms in the distributed setting remains an active area of research under

the general areas of collaborative distributed learning and distributed optimization.

157

158

Bibliography

[1] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear
stochastic bandits. In Adv. Neural Inform. Processing Systems, pages 2312–2320,
2011.

[2] J. Abernethy, A. Agarwal, P. L. Bartlett, and A. Rakhlin. A stochastic view of opti-
mal regret through minimax duality. In Proc. 22nd Annual Conf. Learning Theory,
2009.

[3] J. Abernethy, P. L. Bartlett, A. Rakhlin, and A. Tewari. Optimal strategies and min-
imax lower bounds for online convex games. In Proc. 21st Annual Conf. Learning
Theory, pages 415–424, 2008.

[4] Y. Adulyasak and P. Jaillet. Models and algorithms for stochastic and robust vehicle
routing with deadlines. Transportation Sci., 50(2):608–626, 2015.

[5] S. Agrawal and N. Devanur. Linear contextual bandits with knapsacks. In Adv.
Neural Inform. Processing Systems, pages 3450–3458, 2016.

[6] S. Agrawal and N. R. Devanur. Bandits with concave rewards and convex knapsacks.
In Proc. 15th ACM Conf. Economics and Comput., pages 989–1006, 2014.

[7] S. Agrawal, N. R. Devanur, and L. Li. An efficient algorithm for contextual bandits
with knapsacks, and an extension to concave objectives. In Proc. 29th Annual Conf.
Learning Theory, pages 4–18, 2016.

[8] S. Agrawal and N. Goyal. Analysis of thompson sampling for the multi-armed bandit
problem. In Proc. 25th Annual Conf. Learning Theory, volume 23, 2012.

[9] A. Andrew. Another efficient algorithm for convex hulls in two dimensions. Inform.
Processing Lett., 9(5):216–219, 1979.

[10] L. Andrew, S. Barman, K. Ligett, M. Lin, A. Meyerson, A. Roytman, and A. Wier-
man. A tale of two metrics: Simultaneous bounds on competitiveness and regret.
In Proc. 2013 ACM SIGMETRICS Int. Conf. Measurement Modeling Computer Sys-
tems, pages 329–330, 2013.

[11] P. Auer. Using confidence bounds for exploitation-exploration trade-offs. J. Machine
Learning Res., 3(Nov):397–422, 2002.

159

[12] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2-3):235–256, 2002.

[13] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multi-
armed bandit problem. SIAM J. Comput., 32(1):48–77, 2002.

[14] M. Babaioff, S. Dughmi, R. Kleinberg, and A. Slivkins. Dynamic pricing with
limited supply. In Proc. 13th ACM Conf. Electronic Commerce, pages 74–91, 2012.

[15] A. Badanidiyuru, R. Kleinberg, and Y. Singer. Learning on a budget: posted price
mechanisms for online procurement. In Proc. 13th ACM Conf. Electronic Com-
merce, pages 128–145, 2012.

[16] A. Badanidiyuru, R. Kleinberg, and A. Slivkins. Bandits with knapsacks. In Proc.
54th IEEE Annual Symp. Foundations of Comput. Sci., pages 207–216, 2013.

[17] A. Badanidiyuru, J. Langford, and A. Slivkins. Resourceful contextual bandits. In
Proc. 27th Annual Conf. Learning Theory, volume 35, pages 1109–1134, 2014.

[18] M. Balcan, A. Blum, N. Haghtalab, and A. D. Procaccia. Commitment without
regrets: Online learning in stackelberg security games. In Proc. 16th ACM Conf.
Economics and Comput., pages 61–78, 2015.

[19] S. Baltaoglu, L. Tong, and Q. Zhao. Online learning of optimal bidding strategy in
repeated multi-commodity auctions. Working Paper, 2017.

[20] P. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. J. Machine Learning Res., 3(Nov):463–482, 2002.

[21] A. Ben-Tal and E. Hochman. More bounds on the expectation of a convex function
of a random variable. J. Applied Probability, pages 803–812, 1972.

[22] D. P. Bertsekas and J. Tsitsiklis. An analysis of stochastic shortest path problems.
Math. Oper. Res., 16(3):580–595, 1991.

[23] D. Bertsimas and I. Popescu. Optimal inequalities in probability theory: A convex
optimization approach. SIAM J. Optim., 15(3):780–804, 2005.

[24] D. Bertsimas and J. N. Tsitsiklis. Introduction to linear optimization, volume 6.
Athena Scientific, 1997.

[25] O. Besbes and A. Zeevi. Blind network revenue management. Oper. Res.,
60(6):1537–1550, 2012.

[26] A. Blum and Y. Mansour. From external to internal regret. J. Machine Learning
Res., 8:1307–1324, 2007.

[27] V. Bonifaci, T. Harks, and G. Schäfer. Stackelberg routing in arbitrary networks.
Math. Oper. Res., 35(2):330–346, 2010.

160

[28] A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cam-
bridge University Press, 2005.

[29] S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification: A survey of
some recent advances. ESAIM: Probability and Statist., 9:323–375, 2005.

[30] G. S. Brodal and R. Jacob. Dynamic planar convex hull. In Proc. 43rd IEEE Annual
Symp. Foundations Comput. Sci., pages 617–626, 2002.

[31] C. Calafiore and L. El Ghaoui. On distributionally robust chance-constrained linear
programs. J. Optim. Theory and Applications, 130(1):1–22, 2006.

[32] N. Cesa-Bianchi and G. Lugosi. On prediction of individual sequences. Annals
Statist., 27(6):1865–1895, 1999.

[33] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge Uni-
versity Press, 2006.

[34] W. Chu, L. Li, L. Reyzin, and R. Schapire. Contextual bandits with linear payoff
functions. In J. Machine Learning Res. - Proc., volume 15, pages 208–214, 2011.

[35] M. Cohen, I. Lobel, and R. Paes Leme. Feature-based dynamic pricing. In Proc.
17th ACM Conf. Economics and Comput., pages 817–817, 2016.

[36] R. Combes, C. Jian, and R. Srikant. Bandits with budgets: Regret lower bounds
and optimal algorithms. In Proc. 2015 ACM SIGMETRICS Int. Conf. Measurement
Modeling Computer Systems, pages 245–257, 2015.

[37] B. Dean. Speeding up stochastic dynamic programming with zero-delay convolu-
tion. Algorithmic Oper. Res., 5(2):96–104, 2010.

[38] E. Delage and Y. Ye. Distributionally robust optimization under moment uncertainty
with application to data-driven problems. Oper. Res., 58(3):595–612, 2010.

[39] W. Ding, T. Qin, X. Zhang, and T. Liu. Multi armed bandit with budget constraint
and variable costs. In Proc. 27th AAAI Conf. Artificial Intelligence, pages 232–238,
2013.

[40] Y. Fan, R. Kalaba, and I. Moore. Arriving on time. J. Optim. Theory and Applica-
tions, 127(3):497–513, 2005.

[41] H. Frank. Shortest paths in probabilistic graphs. Oper. Res., 17(4):583–599, 1969.

[42] Y. Freund and R. E. Schapire. Adaptive game playing using multiplicative weights.
Games and Economic Behavior, 29(1):79–103, 1999.

[43] A. Ghosh, B. I. P. Rubinstein, S. Vassilvitskii, and M. Zinkevich. Adaptive bidding
for display advertising. In Proc. 18th Int. Conf. World Wide Web, pages 251–260,
2009.

161

[44] D. Graczová and P. Jacko. Generalized restless bandits and the knapsack problem
for perishable inventories. Oper. Res., 62(3):696–711, 2014.

[45] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial
optimization, volume 2. Springer, 2012.

[46] E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2-3):169–192, 2007.

[47] E. Hazan and S. Kale. Extracting certainty from uncertainty: Regret bounded by
variation in costs. Machine learning, 80(2):165–188, 2010.

[48] M. Herbster and M. K. Warmuth. Tracking the best expert. Machine Learning,
32(2):151–178, 1998.

[49] E. Hillel, Z. Karnin, T. Koren, R. Lempel, and O. Somekh. Distributed exploration
in multi-armed bandits. In Adv. Neural Inform. Processing Systems, pages 854–862,
2013.

[50] D. Hoy and E. Nikolova. Approximately optimal risk-averse routing policies via
adaptive discretization. In Proc. 29th Int. Conf. Artificial Intelligence, pages 3533–
3539, 2015.

[51] G. Iyengar. Robust dynamic programming. Math. Oper. Res., 30(2):257–280, 2005.

[52] P. Jaillet, J. Qi, and M. Sim. Routing optimization under uncertainty. Oper. Res.,
64(1):186–200, 2016.

[53] M. Jain, V. Conitzer, and M. Tambe. Security scheduling for real-world networks. In
Proc. 2013 Int. Conf. Autonomous Agents and MultiAgent Systems, pages 215–222,
2013.

[54] A. X. Jiang, Z. Yin, M. P. Johnson, M. Tambe, C. Kiekintveld, K. Leyton-Brown,
and T. Sandholm. Towards optimal patrol strategies for fare inspection in transit
systems. In AAAI Spring Symposium: Game Theory Security, Sustainability, and
Health, 2012.

[55] K. Johnson, D. Simchi-Levi, and H. Wang. Online network revenue management
using thompson sampling. Working Paper, 2015.

[56] A. Kalai and S. Vempala. Efficient algorithms for online decision problems. J.
Comput. System Sci., 71(3):291–307, 2005.

[57] S. Kim, G. B. Giannakis, and K. Y. Lee. Online optimal power flow with renewables.
In 48th Asilomar Conf. Signals, Systems and Comput., pages 355–360. IEEE, 2014.

[58] R. Kleinberg and T. Leighton. The value of knowing a demand curve: Bounds on re-
gret for online posted-price auctions. In Proc. 44th IEEE Annual Symp. Foundations
of Comput. Sci., pages 594–605, 2003.

162

[59] S. Krumke. Competitive analysis and beyond. PhD thesis, Habilitationsschrift, Tech-
nische Universität Berlin, 2002.

[60] T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Adv.
Applied Math., 6(1):4–22, 1985.

[61] Y. Lei, S. Jasin, and A. Sinha. Near-optimal bisection search for nonparametric
dynamic pricing with inventory constraint. Working Paper, 2015.

[62] R. P. Loui. Optimal paths in graphs with stochastic or multidimensional weights.
Comm. ACM, 26(9):670–676, 1983.

[63] G. Lueker. Average-case analysis of off-line and on-line knapsack problems. Journal
of Algorithms, 29(2):277–305, 1998.

[64] E. Miller-Hooks and H. Mahmassani. Least expected time paths in stochastic, time-
varying transportation networks. Transportation Sci., 34(2):198–215, 2000.

[65] Y. Nie and Y. Fan. Arriving-on-time problem: discrete algorithm that ensures con-
vergence. Transportation Res. Record, 1964:193–200, 2006.

[66] Y. Nie and X. Wu. Shortest path problem considering on-time arrival probability.
Transportation Res. B, 43(6):597–613, 2009.

[67] E. Nikolova, M. Brand, and D. R. Karger. Optimal route planning under uncertainty.
In Proc. Int. Conf. Automated Planning Scheduling, pages 131–140, 2006.

[68] E. Nikolova, J. A. Kelner, M. Brand, and M. Mitzenmacher. Stochastic shortest paths
via quasi-convex maximization. In Proc. 14th Annual Eur. Sympos. Algorithms,
pages 552–563, 2006.

[69] A. Nilim and L. El Ghaoui. Robust control of markov decision processes with un-
certain transition matrices. Oper. Res., 53(5):780–798, 2005.

[70] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic game theory,
volume 1. Cambridge University Press, 2007.

[71] E. Ordentlich and T. M. Cover. The cost of achieving the best portfolio in hindsight.
Math. Oper. Res., 23(4):960–982, 1998.

[72] M. H. Overmars and J. Van Leeuwen. Maintenance of configurations in the plane.
J. Comput. and System Sci., 23(2):166–204, 1981.

[73] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of optimal queuing network
control. Math. Oper. Res., 24(2):293–305, 1999.

[74] A. Parmentier and F. Meunier. Stochastic shortest paths and risk measures. arXiv
preprint arXiv:1408.0272, 2014.

163

[75] R. Pasupathy and S. Kim. The stochastic root-finding problem: Overview, solutions,
and open questions. ACM Trans. Modeling and Comput. Simulation, 21(3):19, 2011.

[76] Gilles Pisier. Martingales with values in uniformly convex spaces. Israel J. Math.,
20(3-4):326–350, 1975.

[77] A. Prékopa. The discrete moment problem and linear programming. Discrete Ap-
plied Math., 27(3):235–254, 1990.

[78] M. Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 2014.

[79] A. Rakhlin and K. Sridharan. Optimization, learning, and games with predictable
sequences. In Adv. Neural Inform. Processing Systems, pages 3066–3074, 2013.

[80] A. Rakhlin and K. Sridharan. On equivalence of martingale tail bounds and deter-
ministic regret inequalities. arXiv preprint arXiv:1510.03925, 2015.

[81] A. Rakhlin, K. Sridharan, and A. Tewari. Online learning: Beyond regret. In Proc.
24th Annual Conf. Learning Theory, pages 559–594, 2011.

[82] A. Rakhlin, K. Sridharan, and A. Tewari. Online learning via sequential complexi-
ties. J. Machine Learning Res., 16(1):155–186, 2015.

[83] H. Robbins. Some aspects of the sequential design of experiments. Bulleting Amer-
ican Math. Society, 58(5):527–535, 1952.

[84] S. Samaranayake, S. Blandin, and A. Bayen. Speedup techniques for the stochastic
on-time arrival problem. In 12th Workshop Algorithmic Approaches Transportation
Model. Optim. Systems, volume 25, pages 83–96, 2012.

[85] S. Samaranayake, S. Blandin, and A. Bayen. A tractable class of algorithms for
reliable routing in stochastic networks. Transportation Res. C, 20(1):199–217, 2012.

[86] A. Sani, G. Neu, and A. Lazaric. Exploiting easy data in online optimization. In
Adv. Neural Inform. Processing Systems, pages 810–818, 2014.

[87] A. Shapiro. On duality theory of conic linear problems. In Semi-Infinite Program-
ming, volume 57, pages 135–165. Kluwer Academic Publishers, 2001.

[88] A. Slivkins. Dynamic ad allocation: Bandits with budgets. arXiv preprint
arXiv:1306.0155, 2013.

[89] L. Tran-Thanh, A. Chapman, A. Rogers, and N. R. Jennings. 𝜖-first policies for
budget-limited multi-armed bandits. In Proc. 24th AAAI Conf. Artificial Intelligence,
pages 1211–1216, 2010.

[90] L. Tran-Thanh, A. Chapman, A. Rogers, and N. R. Jennings. Knapsack based op-
timal policies for budget-limited multi-armed bandits. In Proc. 26th AAAI Conf.
Artificial Intelligence, pages 1134–1140, 2012.

164

[91] L. Tran-Thanh, A. Rogers, and N. R. Jennings. Long-term information collection
with energy harvesting wireless sensors: a multi-armed bandit based approach. Au-
tonomous Agents and Multi-Agent Systems, 25(2):352–394, 2012.

[92] L. Tran-Thanh, C. Stavrogiannis, V. Naroditskiy, V. Robu, N. R. Jennings, and
P. Key. Efficient regret bounds for online bid optimisation in budget-limited spon-
sored search auctions. In Proc. 30th Conf. Uncertainty in Artificial Intelligence,
pages 809–818, 2014.

[93] F. Trovo, S. Paladino, M. Restelli, and N. Gatti. Budgeted multi–armed bandit in
continuous action space. Working Paper, 2016.

[94] L. Vandenberghe, S. Boyd, and K. Comanor. Generalized Chebyschev bounds via
semidefinite programming. SIAM Rev., 49(1):52–64, 2007.

[95] V. Vovk. Aggregating strategies. In Proc. 3rd Workshop Comput. Learning Theory,
pages 371–383, 1990.

[96] V. Vovk. Competitive on-line linear regression. In Adv. Neural Inform. Processing
Systems, pages 364–370, 1998.

[97] J. Weed, V. Perchet, and P. Rigollet. Online learning in repeated auctions. In Proc.
29th Annual Conf. Learning Theory, volume 49, pages 1562–1583, 2016.

[98] C. C. White III and H. K. Eldeib. Markov decision processes with imprecise transi-
tion probabilities. Oper. Res., 42(4):739–749, 1994.

[99] W. Wiesemann, D. Kuhn, and B. Rustem. Robust markov decision processes. Math.
Oper. Res., 38(1):153–183, 2013.

[100] W. Wiesemann, D. Kuhn, and M. Sim. Distributionally robust convex optimization.
Oper. Res., 62(6):1358–1376, 2014.

[101] H. Wu, S. Srikant, X. Liu, and C. Jiang. Algorithms with logarithmic or sublinear
regret for constrained contextual bandits. In Adv. Neural Inform. Processing Systems,
pages 433–441, 2015.

[102] Y. Xia, W. Ding, X. Zhang, N. Yu, and T. Qin. Budgeted bandit problems with
continuous random costs. In Proc. 7th Asian Conf. Machine Learning, pages 317–
332, 2015.

[103] H. Xu, C. Caramanis, and S. Mannor. Optimization under probabilistic envelope
constraints. Oper. Res., 60(3):682–699, 2012.

[104] H. Xu and S. Mannor. Distributionally robust markov decision processes. In Adv.
Neural Inform. Processing Systems, pages 2505–2513, 2010.

[105] H. Xu and S. Mannor. Probabilistic goal Markov decision processes. In Proc. 22th
Int. Joint Conf. Artificial Intelligence, pages 2046–2052, 2011.

165

[106] M. Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In Proc. 20th Int. Conf. Machine Learning, pages 928–936, 2003.

166

Appendix A

Appendix for Chapter 2

A.1 Tailored Dynamic Convex Hull Algorithm

The fact that deletions and insertions always occur on the same side of the set allows us

to deal with deletions in an indirect way, by building and merging upper convex hulls of

partial input data. The only downside is that this requires an efficient merging procedure.

In this respect, we state without proof a result derived from [72].

Lemma A.1. Consider a set 𝑆 of 𝑁 points in R2 partitioned into two sets of points 𝑆1 and

𝑆2 such that, for any two points (𝑥1, 𝑦1) ∈ 𝑆1 and (𝑥2, 𝑦2) ∈ 𝑆2 we have 𝑥1 < 𝑥2. Suppose

that the extreme points of 𝑆1 (resp. 𝑆2) are stored in an array 𝐴1 (resp. 𝐴2) of size 𝑁 in

ascending order of their first coordinates. We can find two indices 𝑙1 and 𝑙2 in 𝑂(log(𝑁))

time such that the set comprised of the points contained in 𝐴1 with index smaller than 𝑙1

and the points contained in 𝐴2 with index larger than 𝑙2 is precisely the set of extreme

points of 𝑆.

Algorithm. We use two arrays 𝐴left and 𝐴right along with a stack 𝒮. The arrays 𝐴left and

𝐴right are of size 𝐿′ − 𝐿 + 1, indexed from 0 to 𝐿′ − 𝐿, and store points in R2 in ascending

order of their first coordinates. The stack 𝒮 stores stacks of points in R2. We keep track of

two indices 𝑙left and 𝑙right such that, at any step 𝑘 = 𝑘𝑟,min
𝑖 + 𝑝 · (𝐿′ − 𝐿 + 2) + 𝑟 for some

𝑝 ∈ N and 0 ≤ 𝑟 ≤ 𝐿′ − 𝐿 + 1, the following invariant holds:

167

∙ {𝐴left[𝑙], 𝑙 = 𝑙left + 1, · · · , 𝐿′ − 𝐿} is the set of extreme points of the upper convex

hull of {(𝑙 · Δ𝑡, 𝑢Δ𝑡
𝑗 (𝑙 · Δ𝑡)), 𝑙 = 𝑘 − 𝐿′, · · · , 𝑘 − 𝐿 − 𝑟},

∙ {𝐴right[𝑙], 𝑙 = 0, · · · , 𝑙right − 1} is the set of extreme points of the upper convex hull

of {(𝑙 · Δ𝑡, 𝑢Δ𝑡
𝑗 (𝑙 · Δ𝑡)), 𝑙 = 𝑘 − 𝐿 − 𝑟 + 1, · · · , 𝑘 − 𝐿}.

Using the procedure of Lemma A.1 and this invariant, we can find a pair of indices (𝑙1, 𝑙2) in

𝑂(log(𝐿′−𝐿)) time such that {𝐴left[𝑙], 𝑙 = 𝑙left +1, · · · , 𝑙1}∪{𝐴right[𝑙], 𝑙 = 𝑙2, · · · , 𝑙right −1}

is the set of extreme points of 𝒞𝑘. Hence, all we have left to do is to provide a procedure to

maintain 𝐴left, 𝐴right, 𝑙left and 𝑙right, which we do next.

𝐴left, 𝐴right, and 𝒮 are initially empty. The algorithm proceeds in two phases and loops

back to the first one every 𝐿′ − 𝐿 + 2 steps. For convenience, we define “cross” as the

function taking as an input three points 𝑎, 𝑏, 𝑐 in R2 and returning the cross product of the

vector 𝑎𝑏 and 𝑎𝑐.

Phase 1: Suppose that the current step is 𝑘. Hence, the values 𝑢Δ𝑡
𝑗 (𝑘 −𝐿′), · · · , 𝑢Δ𝑡

𝑗 (𝑘 −𝐿)

are available. This phase is based on Andrew’s monotone chain convex hull algorithm to

find the extreme points of 𝒞𝑘 with the difference that we store the points removed along

the process in stacks for future use. Specifically, set 𝑙left = 𝐿′ − 𝐿 and 𝑙right = 0 and for 𝑙

decreasing from 𝑘 − 𝐿 to 𝑘 − 𝐿′, do the following:

(a) Initialize a new stack 𝒮 ′,

(b) While 𝑙left ≤ 𝐿′ −𝐿−2 and cross(𝐴left[𝑙left +2], 𝐴left[𝑙left +1], (𝑙 ·Δ𝑡, 𝑢Δ𝑡
𝑗 (𝑙 ·Δ𝑡))) ≥ 0:

∙ Push 𝐴left[𝑙left + 1] to 𝒮 ′,

∙ Increment 𝑙left,

(c) Push 𝒮 ′ to 𝒮,

(d) Set 𝐴left[𝑙left] = (𝑙 · Δ𝑡, 𝑢Δ𝑡
𝑗 (𝑙 · Δ𝑡)) and decrement 𝑙left. At this point, {𝐴left[𝑙], 𝑙 =

𝑙left + 1, · · · , 𝐿′ − 𝐿} is the set of extreme points of the upper convex hull of {(𝑚 ·

Δ𝑡, 𝑢Δ𝑡
𝑗 (𝑚 · Δ𝑡)), 𝑚 = 𝑙, · · · , 𝑘 − 𝐿}.

Phase 2: At step 𝑘+𝑙, for 𝑙 increasing from 1 to 𝐿′−𝐿, observe that the value 𝑢Δ𝑡
𝑗 (𝑘+𝑙−𝐿)

becomes available. To maintain 𝐴left and 𝑙left, we remove the leftmost point (𝑥, 𝑦) and

168

reinsert the points, stored in the topmost stack of 𝒮 , that were previously removed from

𝐴left when appending (𝑥, 𝑦) to 𝐴left in the course of running Andrew’s monotone chain

convex hull algorithm. Specifically:

(a) Increment 𝑙left,

(b) Pop the topmost stack 𝒮 ′ out of 𝒮,

(c) While 𝒮 ′ is not empty:

∙ Pop the topmost point (𝑥, 𝑦) of 𝒮 ′,

∙ Set 𝐴left[𝑙left] = (𝑥, 𝑦),

∙ Decrement 𝑙left.

To maintain 𝐴right and 𝑙right, we run an iteration of Andrew’s monotone chain convex hull

algorithm. Specifically:

(a) While 𝑙right ≥ 2 and cross(𝐴right[𝑙right − 2], 𝐴right[𝑙right − 1], ((𝑘 + 𝑙 − 𝐿) · Δ𝑡, 𝑢Δ𝑡
𝑗 ((𝑘 +

𝑙 − 𝐿) · Δ𝑡))) ≤ 0:

∙ Decrement 𝑙right,

(b) Set 𝐴right[𝑙right] = ((𝑘 + 𝑙 − 𝐿) · Δ𝑡, 𝑢Δ𝑡
𝑗 ((𝑘 + 𝑙 − 𝐿) · Δ𝑡)) and increment 𝑙right.

Complexity Analysis. Observe that any point added to 𝐴left can only be removed once,

and the same holds for 𝐴right. This means that Phase 1 and Phase 2 take 𝑂(𝐿′ − 𝐿) com-

putation time. These two phases are repeated
⌈︂⌊ 𝑇

Δ𝑡⌋−𝑘𝑟,min
𝑖

𝐿′−𝐿+2

⌉︂
times leading to an overall

complexity of 𝑂(
⌊︁

𝑇
Δ𝑡

⌋︁
−𝑘𝑟,min

𝑖). Since the merging procedure outlined in Lemma A.1 takes

𝑂(log(𝐿′ − 𝐿)) computation time at each step, the global complexity is 𝑂((
⌊︁

𝑇
Δ𝑡

⌋︁
− 𝑘𝑟,min

𝑖) ·

log(𝐿′ − 𝐿)).

169

A.2 Omitted Proofs

A.2.1 Proof of Theorem 2.1

Proof. Proof of Theorem 2.1. We denote by ℋ the set of all possible histories of the

previously experienced costs and previously visited nodes. Let us start with the last part

of the theorem. If the support of 𝑓(·) is included in [𝑇𝑓 , ∞), any strategy is optimal when

having already spent a budget of 𝑇 − 𝑇𝑓 with an optimal objective function of 0.

Let us now focus on the first part of the theorem. Consider an optimal strategy 𝜋*
𝑓

solution to (2.1). For a given history ℎ ∈ ℋ, we define 𝑡ℎ as the remaining budget, i.e. 𝑇

minus the total cost spent so far, and 𝑖ℎ as the current location. The policy 𝜋*
𝑓 maps ℎ ∈ ℋ

to a probability distribution over 𝒱(𝑖ℎ). Observe that randomizing does not help because

the costs are independent across time and arcs so that, without loss of generality, we can

assume that 𝜋*
𝑓 actually maps ℎ to the node in 𝒱(𝑖ℎ) minimizing the objective function given

ℎ. For ℎ ∈ ℋ, we denote by 𝑋ℎ
𝜋*

𝑓
the random cost-to-go incurred by following strategy 𝜋*

𝑓 ,

i.e. not including the total cost spent up to this point of the history 𝑇 − 𝑡ℎ. We define

(𝑚𝑖𝑗)(𝑖,𝑗)∈𝒜 as the expected arc costs and 𝑀𝑖 as the minimum expected cost incurred to

reach 𝑑 from 𝑖 ∈ 𝒱 . We also define 𝜋𝑠 as a policy associated with an arbitrary shortest path

from 𝑖 to 𝑑 with respect to the expected costs. Specifically, 𝜋𝑠 maps the current location 𝑖ℎ

to a node in 𝒯 (𝑖ℎ), irrespective of the history of the process. Similarly as for 𝜋*
𝑓 , we denote

by 𝑋ℎ
𝜋𝑠

the random cost-to-go incurred by following strategy 𝜋𝑠 for ℎ ∈ ℋ. We first show

that there exists 𝑇𝑓 such that, for both cases (a) and (b):

E[𝑋ℎ
𝜋*

𝑓
] − 𝑀𝑖ℎ

< min
𝑖 ̸=𝑑

min
𝑗∈𝒱(𝑖),𝑗 /∈𝒯 (𝑖)

{𝑚𝑖𝑗 + 𝑀𝑗 − 𝑀𝑖} ∀ℎ ∈ ℋ such that 𝑡ℎ ≤ 𝑇𝑓 , (A.1)

with the convention that the minimum of an empty set is equal to infinity. Note that the

right-hand side is always positive. Let 𝛼 = |𝒱| · 𝛿sup.

(a) For ℎ ∈ ℋ such that 𝑡ℎ < 𝑇1, we have, using a Taylor’s series expansion:

𝑓(𝑡ℎ − 𝑋ℎ
𝜋*

𝑓
) = 𝑓(𝑡ℎ − 𝛼) + 𝑓 ′(𝑡ℎ − 𝛼) · (𝛼 − 𝑋ℎ

𝜋*
𝑓
) + 1

2 · 𝑓 ′′(𝜉ℎ) · (𝛼 − 𝑋ℎ
𝜋*

𝑓
)2,

170

where 𝜉ℎ ∈ [min(𝑡ℎ − 𝛼, 𝑡ℎ − 𝑋ℎ
𝜋*

𝑓
), max(𝑡ℎ − 𝛼, 𝑡ℎ − 𝑋ℎ

𝜋*
𝑓
)], and:

𝑓(𝑡ℎ − 𝑋ℎ
𝜋𝑠

) = 𝑓(𝑡ℎ − 𝛼) + 𝑓 ′(𝑡ℎ − 𝛼) · (𝛼 − 𝑋ℎ
𝜋𝑠

) + 1
2 · 𝑓 ′′(𝜁ℎ) · (𝛼 − 𝑋ℎ

𝜋𝑠
)2,

where 𝜁ℎ ∈ [min(𝑡ℎ − 𝛼, 𝑡ℎ − 𝑋ℎ
𝜋𝑠

), max(𝑡ℎ − 𝛼, 𝑡ℎ − 𝑋ℎ
𝜋𝑠

)]. Using Bellman’s Principle of

Optimality for 𝜋*
𝑓 , we have:

E[𝑓(𝑡ℎ−𝑋ℎ
𝜋*

𝑓
)] = E[𝑓(𝑇 −((𝑇 −𝑡ℎ)+𝑋ℎ

𝜋*
𝑓
)] ≥ E[𝑓(𝑇 −((𝑇 −𝑡ℎ)+𝑋ℎ

𝜋𝑠
)] ≥ E[𝑓(𝑡ℎ−𝑋ℎ

𝜋𝑠
)].

Expanding and rearranging yields:

−𝑓 ′(𝑡ℎ −𝛼) · (E[𝑋ℎ
𝜋*

𝑓
]−E[𝑋ℎ

𝜋𝑠
]) ≥ 1

2 · (E[−𝑓 ′′(𝜉ℎ) · (𝛼 −𝑋ℎ
𝜋*

𝑓
)2]+E[𝑓 ′′(𝜁ℎ) · (𝛼 −𝑋ℎ

𝜋𝑠
)2]).

Since the costs are independent across time and arcs:

E[𝑋ℎ
𝜋𝑠

] = 𝑀𝑖ℎ
.

Concavity of 𝑓(·) implies that 𝑓 ′′(𝜉ℎ) · (𝛼 − 𝑋ℎ
𝜋*

𝑓
)2 ≤ 0 almost surely. Since 𝑓(·)(−∞,𝑇1)

is increasing, we obtain E[𝑋ℎ
𝜋*

𝑓
] − 𝑀𝑖ℎ

≤ E[−𝑓 ′′(𝜁ℎ)·(𝛼−𝑋ℎ
𝜋𝑠

)2]
2·𝑓 ′(𝑡ℎ−𝛼) . As 𝑋ℎ

𝜋𝑠
is the cost of a path,

Assumption 2.3 implies 0 ≤ 𝑋ℎ
𝜋𝑠

≤ 𝛼. We get that 𝜁ℎ ∈ [𝑡ℎ − 𝛼, 𝑡ℎ] and:

E[𝑋ℎ
𝜋*

𝑓
] − 𝑀𝑖ℎ

≤ −𝛼2 ·
inf

[𝑡ℎ−𝛼,𝑡ℎ]
𝑓 ′′

2 · 𝑓 ′(𝑡ℎ − 𝛼) .

As 𝑓 ′′(·) is continuous, there exists 𝛼𝑡ℎ
∈ [0, 𝛼] such that inf

[𝑡ℎ−𝛼,𝑡ℎ]
𝑓 ′′ = 𝑓 ′′(𝑡ℎ − 𝛼𝑡ℎ

). Since

𝑓 ′(·) is non-increasing on (−∞, 𝑇1), we derive:

E[𝑋ℎ
𝜋*

𝑓
] − 𝑀𝑖ℎ

≤ −𝛼2 · 𝑓 ′′(𝑡ℎ − 𝛼𝑡ℎ
)

2 · 𝑓 ′(𝑡ℎ − 𝛼𝑡ℎ
) .

By assumption 𝑓 ′′

𝑓 ′ (·) vanishes at −∞ therefore we can pick 𝑇𝑓 small enough to get the

desired inequality.

171

(b) As 𝑓 ′ →−∞ 𝑎 > 0, we can find 𝑇𝑓 < 𝑇1 small enough such that:

|𝑓 ′(𝑡) − 𝑎| < 𝜖 ∀𝑡 ≤ 𝑇𝑓 ,

with 𝜖 = 𝑎 · 𝛽
2𝛼+𝛽

and where 𝛽 is the right-hand side of the desired inequality. Consider

ℎ ∈ ℋ such that 𝑡ℎ ≤ 𝑇𝑓 . Using Bellman’s Principle of Optimality for 𝜋*
𝑓 , we have:

E[𝑓(𝑡ℎ−𝑋ℎ
𝜋*

𝑓
)] = E[𝑓(𝑇 −((𝑇 −𝑡ℎ)+𝑋ℎ

𝜋*
𝑓
)] ≥ E[𝑓(𝑇 −((𝑇 −𝑡ℎ)+𝑋ℎ

𝜋𝑠
)] ≥ E[𝑓(𝑡ℎ−𝑋ℎ

𝜋𝑠
)].

Since 𝑓 is 𝐶1 on (−∞, 𝑇𝑓), this yields:

0 ≤ E[𝑓(𝑡ℎ − 𝑋ℎ
𝜋*

𝑓
) − 𝑓(𝑡ℎ − 𝑋ℎ

𝜋𝑠
)]

≤ E[𝑓(𝑡ℎ − 𝑋ℎ
𝜋*

𝑓
) − 𝑓(𝑡ℎ) + 𝑓(𝑡ℎ) − 𝑓(𝑡ℎ − 𝑋ℎ

𝜋𝑠
)]

≤ E[−
∫︁ 𝑡ℎ

𝑡ℎ−𝑋ℎ
𝜋*

𝑓

𝑓 ′ +
∫︁ 𝑡ℎ

𝑡ℎ−𝑋ℎ
𝜋𝑠

𝑓 ′]

≤ E[−(𝑎 − 𝜖) · 𝑋ℎ
𝜋*

𝑓
+ (𝑎 + 𝜖) · 𝑋ℎ

𝜋𝑠
].

Since the costs are independent across time and arcs:

E[𝑋ℎ
𝜋𝑠

] = 𝑀𝑖ℎ
.

Rearranging the last inequality, we derive:

E[𝑋ℎ
𝜋*

𝑓
] − 𝑀𝑖ℎ

≤ 2𝜖

𝑎 − 𝜖
· 𝑀𝑖ℎ

≤ 2𝜖

𝑎 − 𝜖
· 𝛼

< 𝛽,

where we use the fact that 𝑀𝑖ℎ
≤ 𝛼 and the definition of 𝜖.

Starting from (A.1), consider ℎ ∈ ℋ such that 𝑡ℎ ≤ 𝑇𝑓 and suppose by contradiction

that 𝜋*
𝑓 (ℎ) = 𝑗ℎ /∈ 𝒯 (𝑖ℎ). Even though the overall policy can be fairly complicated (history-

dependent), the first action is deterministic and incurs an expected cost of 𝑚𝑖ℎ𝑗ℎ
because the

172

costs are independent across time and arcs. Moreover, when the objective is to minimize the

average cost, the optimal strategy among all history-dependent rules is to follow the shortest

path with respect to the mean arc costs (once again because the costs are independent across

time and arcs). As a result:

E[𝑋ℎ
𝜋*

𝑓
] ≥ 𝑚𝑖ℎ𝑗ℎ

+ 𝑀𝑗ℎ
,

which implies:

E[𝑋ℎ
𝜋*

𝑓
] − 𝑀𝑖ℎ

≥ 𝑚𝑖ℎ𝑗ℎ
+ 𝑀𝑗ℎ

− 𝑀𝑖ℎ
,

a contradiction.

A.2.2 Proof of Proposition 2.1

Proof. Proof of Proposition 2.1. Using Theorem 2.1, the optimization problem (2.1) can be

equivalently formulated as a discrete-time finite-horizon MDP in the extended space state

(𝑖, 𝑡) ∈ 𝒱 × [𝑇 − 𝛿sup ·
⌈︁

𝑇 −𝑇𝑓

𝛿inf

⌉︁
, 𝑇] where 𝑖 is the current location and 𝑡 is the, possibly

negative, remaining budget. Specifically:

∙ The time horizon is
⌈︁

𝑇 −𝑇𝑓

𝛿inf

⌉︁
.

∙ The initial state is (𝑠, 𝑇).

∙ The set of available actions at state (𝑖, 𝑡), for 𝑖 ̸= 𝑑, is taken as 𝒱(𝑖). Picking 𝑗 ∈ 𝒱(𝑖)

corresponds to crossing link (𝑖, 𝑗) and results in a transition to state (𝑗, 𝑡 − 𝜔) with

probability 𝑝𝑖𝑗(𝜔)d𝜔.

∙ The only available action at a state (𝑑, 𝑡) is to remain in this state.

∙ The transition rewards are all equal to 0.

∙ The final reward at the epoch
⌈︁

𝑇 −𝑇𝑓

𝛿inf

⌉︁
for any state (𝑖, 𝑡) is equal to 𝑓𝑖(𝑡), which is the

optimal expected objective-to-go when following the shortest path tree 𝒯 starting at

node 𝑖 with remaining budget 𝑡. Specifically, the collection of functions (𝑓𝑖(·))𝑖∈𝒱 is

173

a solution to the following program:

𝑓𝑑(𝑡) = 𝑓(𝑡), 𝑡 ≤ 𝑇𝑓 ,

𝑓𝑖(𝑡) = max
𝑗∈𝒯 (𝑖)

∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · 𝑓𝑗(𝑡 − 𝜔)d𝜔 𝑖 ̸= 𝑑, 𝑡 ≤ 𝑇𝑓 .

Observe that Theorem 2.1 is crucial to be able to define the final rewards. Proposition 4.4.3

of [78] shows that any Markov policy solution to (2.4) is an optimal solution to (2.1).

A.2.3 Proof of Proposition 2.2

Proof. Proof of Proposition 2.2. For any node 𝑖 ∈ 𝒱 , and 𝑡 ≤ 𝑇 , we denote by 𝑢𝜋Δ𝑡

𝑖 (𝑡) the

expected risk function when following policy 𝜋Δ𝑡 starting at 𝑖 with remaining budget 𝑡. We

deal with each case separately.

Case 1. We use the following useful facts:

∙ The functions (𝑢𝑖(·))𝑖∈𝒱 are non-decreasing,

∙ The functions (𝑢Δ𝑡
𝑖 (·))𝑖∈𝒱 are non-decreasing,

∙ The functions (𝑢Δ𝑡
𝑖 (·))𝑖∈𝒱 lower bound the functions (𝑢𝑖(·))𝑖∈𝒱 .

The main difficulty in proving convergence lies in the fact that the approximation 𝑢Δ𝑡
𝑖 (𝑡)

may not necessarily improve as Δ𝑡 decreases. However, this is the case for regular mesh

size sequences such as (Δ𝑡𝑝 = 1
2𝑝)𝑝∈N. Hence, we first demonstrate convergence in that

particular case in Lemma A.2 and rely on this last result to prove pointwise convergence in

general in Lemma A.3.

Lemma A.2. For the regular mesh (Δ𝑡𝑝 = 1
2𝑝)𝑝∈N, the sequence (𝑢Δ𝑡𝑝

𝑖 (𝑡))𝑝∈N converges to

𝑢𝑖(𝑡) for almost every point 𝑡 in [𝑘min
𝑖 · Δ𝑡, 𝑇].

Proof. First observe that, for any 𝑡, the sequence (𝑢Δ𝑡𝑝

𝑖 (𝑡))𝑝∈N is non-decreasing since (i)

the discretization mesh used at step 𝑝 + 1 is strictly contained in the discretization mesh

174

used at step 𝑝 and (ii) the functions (𝑢𝑖(·))𝑖∈𝒱 are non-decreasing. This shows that the

functions (𝑢Δ𝑡𝑝

𝑖 (·))𝑖∈𝒱 converge pointwise to some limits (𝑓𝑖(·))𝑖∈𝒱 . Using the preliminary

remarks, we get:

𝑓𝑖(𝑡) ≤ 𝑢𝑖(𝑡) ∀𝑡 ∈ [𝑘min
𝑖 · Δ𝑡, 𝑇], ∀𝑖 ∈ 𝒱 .

Next, we establish that for any 𝑖 ∈ 𝒱 , 𝑡 ∈ [𝑘min
𝑖 · Δ𝑡, 𝑇] and 𝜖 > 0, 𝑓𝑖(𝑡) ≥ 𝑢𝑖(𝑡 − 𝜖).

This will enable us to squeeze 𝑓𝑖(𝑡) to finally derive 𝑓𝑖(𝑡) = 𝑢𝑖(𝑡). We start with node 𝑑.

Observe that, by construction of the approximation, 𝑢Δ𝑡
𝑑 (·) converges pointwise to 𝑓(·) at

every point of continuity of 𝑓(·). Furthermore, since 𝑓𝑑(·) and 𝑢𝑑(·) are non-decreasing,

we have 𝑓𝑑(𝑡) ≥ 𝑢𝑑(𝑡 − 𝜖) for all 𝑡 ∈ [𝑘min
𝑑 · Δ𝑡, 𝑇] and for all 𝜖 > 0. Consider 𝜖 > 0 and

a large enough 𝑝 such that 𝜖 > 1
2𝑝 which implies Δ𝑡𝑝 · ⌊ 𝑡

Δ𝑡𝑝
⌋ ≥ 𝑡 − 𝜖. We first show by

induction on the level of the nodes in 𝒯 that:

𝑓𝑖(𝑡) ≥ 𝑢𝑖(𝑡 − level(𝑖, 𝒯) · 𝜖) ∀𝑡 ∈ [𝑘min
𝑖 · Δ𝑡,

⌊︂
𝑇𝑓

Δ𝑡

⌋︂
· Δ𝑡), ∀𝑖 ∈ 𝒱 .

The base case follows from the discussion above. Assume that the induction property holds

for all nodes of level less than 𝑙 and consider a node 𝑖 ∈ 𝒱 of level 𝑙 + 1. We have, for

𝑡 ∈ [𝑘min
𝑖 · Δ𝑡,

⌊︁
𝑇𝑓

Δ𝑡

⌋︁
· Δ𝑡):

𝑢
Δ𝑡𝑝

𝑖 (𝑡) = 𝑢
Δ𝑡𝑝

𝑖 (
⌊︃

𝑡

Δ𝑡𝑝

⌋︃
· Δ𝑡𝑝)

≥ max
𝑗∈𝒯 (𝑖)

E[𝑢Δ𝑡𝑝

𝑗 (
⌊︃

𝑡

Δ𝑡𝑝

⌋︃
· Δ𝑡𝑝 − 𝑐𝑖𝑗)]

≥ max
𝑗∈𝒯 (𝑖)

E[𝑢Δ𝑡𝑝

𝑗 (𝑡 − 𝜖 − 𝑐𝑖𝑗)].

To take the limit 𝑝 → ∞ in the previous inequality, note that, for any 𝑗 ∈ 𝒯 (𝑖):

𝑢
Δ𝑡𝑝

𝑗 (𝑡 − 𝜖 − 𝑐𝑖𝑗) ≥ 𝑢Δ𝑡1
𝑗 (𝑡 − 𝜖 − 𝛿sup),

while (𝑢Δ𝑡𝑝

𝑗 (𝑡−𝜖−𝑐𝑖𝑗))𝑝∈N is non-decreasing and converges almost surely to 𝑓𝑗(𝑡−𝜖−𝑐𝑖𝑗)

175

as 𝑝 → ∞. Therefore, we can apply the monotone convergence theorem and derive:

𝑓𝑖(𝑡) ≥ E[𝑓𝑗(𝑡 − 𝜖 − 𝑐𝑖𝑗)].

As the last inequality holds for any 𝑗 ∈ 𝒯 (𝑖), we finally obtain:

𝑓𝑖(𝑡) ≥ max
𝑗∈𝒯 (𝑖)

E[𝑓𝑗(𝑡 − 𝜖 − 𝑐𝑖𝑗)] ∀𝑡 ∈ [𝑘min
𝑖 · Δ𝑡,

⌊︂
𝑇𝑓

Δ𝑡

⌋︂
· Δ𝑡).

Using the induction property along with Theorem 2.1, we get:

𝑓𝑖(𝑡) ≥ max
𝑗∈𝒯 (𝑖)

E[𝑢𝑗(𝑡 − level(𝑖, 𝒯) · 𝜖 − 𝑐𝑖𝑗)]

≥ 𝑢𝑖(𝑡 − level(𝑖, 𝒯) · 𝜖),

for all 𝑡 ∈ [𝑘min
𝑖 · Δ𝑡,

⌊︁
𝑇𝑓

Δ𝑡

⌋︁
· Δ𝑡), which concludes the induction. We can now prove by

induction on 𝑚, along the same lines as above, that:

𝑓𝑖(𝑡) ≥ 𝑢𝑖(𝑡 − (|𝒱| + 𝑚) · 𝜖) ∀𝑡 ∈ [𝑘min
𝑖 · Δ𝑡,

⌊︂
𝑇𝑓

Δ𝑡

⌋︂
· Δ𝑡 + 𝑚 · 𝛿inf), ∀𝑖 ∈ 𝒱 ,

for all 𝑚 ∈ N. This last result can be reformulated as:

𝑓𝑖(𝑡) ≥ 𝑢𝑖(𝑡 − 𝜖) ∀𝜖 > 0, ∀𝑡 ∈ [𝑘min
𝑖 · Δ𝑡, 𝑇], ∀𝑖 ∈ 𝒱 .

Combining this lower bound with the upper bound previously derived, we get:

𝑢𝑖(𝑡) ≥ 𝑓𝑖(𝑡) ≥ 𝑢𝑖(𝑡−) ∀𝑡 ∈ [𝑘min
𝑖 · Δ𝑡, 𝑇], ∀𝑖 ∈ 𝒱 ,

where 𝑢𝑖(𝑡−) refers to the left one-sided limit of 𝑢𝑖(·) at 𝑡. Since, 𝑢𝑖(·) is non-decreasing,

it has countably many discontinuity points and the last inequality shows that 𝑓𝑖(·) = 𝑢𝑖(·)

almost everywhere on [𝑘min
𝑖 · Δ𝑡, 𝑇].

Lemma A.3. For any sequence (Δ𝑡𝑝)𝑝∈N converging to 0, the sequence (𝑢Δ𝑡𝑝

𝑖 (𝑡))𝑝∈N con-

176

verges to 𝑢𝑖(𝑡) for almost every point 𝑡 in [𝑘min
𝑖 · Δ𝑡, 𝑇].

Proof. In contrast to the particular case handled by Lemma A.2, our approximation of 𝑢𝑖(𝑡)

may not improve as 𝑝 increases. For that reason, there is no straightforward comparison

between (𝑢Δ𝑡𝑝

𝑖 (𝑡))𝑝 and 𝑢𝑖(𝑡). However, for a given 𝑖 ∈ 𝒱 , 𝑡 ∈ [𝑘min · Δ𝑡, 𝑇], 𝜖 > 0

and a large enough 𝑝, (𝑢Δ𝑡𝑝

𝑖 (𝑡))𝑝 can be shown to be lower bounded by a subsequence of

(𝑢
1

2𝑝

𝑖 (𝑡 − 𝜖))𝑝. This is how we proceed to establish convergence.

Consider 𝑖 ∈ 𝒱 , 𝑡 ∈ [𝑘min · Δ𝑡, 𝑇], 𝜖 > 0 and 𝑝 ∈ N. Define 𝜎(𝑝) ∈ N as the unique

integer satisfying 1
2𝜎(𝑝)−1 < Δ𝑡𝑝 ≤ 1

2𝜎(𝑝) . Since lim𝑝→∞ Δ𝑡𝑝 = 0, we necessarily have

lim𝑝→∞ 𝜎(𝑝) = ∞. Remark that 𝑢
1

2𝜎(𝑝)
𝑖 (·) has steps of size 1

2𝜎(𝑝) ≥ Δ𝑡𝑝, i.e. 𝑢
Δ𝑡𝑝

𝑖 (·) is

expected to be a tighter approximation of 𝑢𝑖(·) than 𝑢
1

2𝜎(𝑝)
𝑖 (·) is. However, the time steps

do not overlap (multiples of either Δ𝑡𝑝 or 1
2𝑝) making the two sequences impossible to

compare. Nevertheless, the time steps differ by no more than Δ𝑡𝑝. Thus, if 𝑝 is large enough

so that Δ𝑡𝑝 < 𝜖, for each update needed to calculate 𝑢
1

2𝜎(𝑝)
𝑖 (𝑡 − 𝜖), there is a corresponding

update for a larger budget to compute 𝑢
Δ𝑡𝑝

𝑖 (𝑡). As a consequence, the sequence (𝑢
1

2𝜎(𝑝)
𝑖 (𝑡 −

𝜖))𝑝 constitutes a lower bound on the sequence of interest (𝑢Δ𝑡𝑝

𝑖 (𝑡))𝑝. Using the preliminary

remarks, we are able to squeeze (𝑢Δ𝑡𝑝

𝑖 (𝑡))𝑝:

𝑢
1

2𝜎(𝑝)
𝑖 (𝑡 − 𝜖) ≤ 𝑢

Δ𝑡𝑝

𝑖 (𝑡) ≤ 𝑢𝑖(𝑡),

for all 𝑖 ∈ 𝒱 , 𝑡 ∈ [𝑘min · Δ𝑡, 𝑇], 𝜖 > 0 and for 𝑝 large enough. This can be proved first by

induction on the level of the nodes in 𝒯 and then by interval increments of size 𝛿inf along

the same lines as what is done in Lemma A.2. Yet, Lemma A.2 shows that:

lim
𝑝→∞

𝑢
1

2𝜎(𝑝)
𝑖 (𝑡 − 𝜖) = 𝑢𝑖(𝑡 − 𝜖),

provided 𝑡 − 𝜖 is a point of continuity for 𝑢𝑖(·). As 𝑢𝑖(·) has countably many discontinuity

points (it is non-decreasing), the last inequality shows, by taking 𝑝 large enough and 𝜖 small

enough, that 𝑢
Δ𝑡𝑝

𝑖 (𝑡) →𝑝→∞ 𝑢𝑖(𝑡) for 𝑡 a point of continuity of 𝑢𝑖(·).

177

Case 2. The first step consists in proving that the functions (𝑢𝑖(·))𝑖∈𝒱 are continuous on

(−∞, 𝑇]. By induction on 𝑙, we start by proving that 𝑢𝑖(·) is continuous on (−∞, 𝑇𝑓) for

all nodes 𝑖 of level 𝑙 in 𝒯 . The base case follows from the continuity of 𝑓(·). Assuming

the property holds for some 𝑙 ≥ 1, we consider a node 𝑖 of level 𝑙 + 1 in 𝒯 , 𝑡 < 𝑇𝑓 and a

sequence 𝑡𝑛 →𝑛→∞ 𝑡. Using Theorem 2.1, we have:

|𝑢𝑖(𝑡) − 𝑢𝑖(𝑡𝑛)| ≤ max
𝑗∈𝒯 (𝑖)

E[|𝑢𝑗(𝑡 − 𝑐𝑖𝑗) − 𝑢𝑗(𝑡𝑛 − 𝑐𝑖𝑗)|].

For any 𝑗 ∈ 𝒯 (𝑖), we can use the uniform continuity of 𝑢𝑗(·) on [𝑡 − 2 · 𝛿sup, 𝑡] to prove

that this last term converges to 0 as 𝑛 → ∞. We conclude that all the functions (𝑢𝑖(·))𝑖∈𝒱

are continuous on (−∞, 𝑇𝑓). By induction on 𝑚, we can then show that the functions

(𝑢𝑖(·))𝑖∈𝒱 are continuous on (−∞, 𝑇𝑓 +𝑚·𝛿inf), to finally conclude that they are continuous

on (−∞, 𝑇]. We are now able to prove uniform convergence. Since [𝑇𝑓 − |𝒱| · 𝛿sup, 𝑇] is a

compact set, the functions (𝑢𝑖(·))𝑖∈𝒱 are also uniformly continuous on this set. Take 𝜖 > 0,

there exists 𝛼 > 0 such that:

∀𝑖 ∈ 𝒱 , |𝑢𝑖(𝜔) − 𝑢𝑖(𝜔′)| ≤ 𝜖, ∀(𝜔, 𝜔′) ∈ [𝑇𝑓 − |𝒱| · 𝛿sup, 𝑇]2 with |𝜔 − 𝜔′| ≤ 𝛼.

Building on this, we can show, by induction on the level of the nodes in 𝒯 , that:

sup
𝜔∈[𝑘min

𝑖 ·Δ𝑡,

⌊︁
𝑇𝑓
Δ𝑡

⌋︁
·Δ𝑡)

|𝑢𝑖(𝜔) − 𝑢Δ𝑡
𝑖 (𝜔)| ≤ level(𝑖, 𝒯) · 𝜖, ∀𝑖 ∈ 𝒱 .

178

This follows from the sequence of inequalities:

sup
𝜔∈[𝑘min

𝑖 ·Δ𝑡,

⌊︁
𝑇𝑓
Δ𝑡

⌋︁
·Δ𝑡)

|𝑢Δ𝑡
𝑖 (𝜔) − 𝑢𝑖(𝜔)|

≤ sup
𝑘∈{𝑘min

𝑖 ,··· ,

⌊︁
𝑇𝑓
Δ𝑡

⌋︁
−1}

|𝑢Δ𝑡
𝑖 (𝑘 · Δ𝑡) − 𝑢𝑖(𝑘 · Δ𝑡)|

+ sup
𝜔∈[𝑘min

𝑖 ·Δ𝑡,

⌊︁
𝑇𝑓
Δ𝑡

⌋︁
·Δ𝑡]

|𝑢𝑖(𝜔) − 𝑢𝑖(
⌊︂

𝜔

Δ𝑡

⌋︂
· Δ𝑡)|

≤ sup
𝑘∈{𝑘min

𝑖 ,··· ,

⌊︁
𝑇𝑓
Δ𝑡

⌋︁
−1}

max
𝑗∈𝒯 (𝑖)

E[|𝑢Δ𝑡
𝑗 (𝑘 · Δ𝑡 − 𝑐𝑖𝑗) − 𝑢𝑗(𝑘 · Δ𝑡 − 𝑐𝑖𝑗)|] + 𝜖

≤ (level(𝑖, 𝒯) − 1) · 𝜖 + 𝜖 = level(𝑖, 𝒯) · 𝜖.

We conclude that:

sup
𝜔∈[𝑘min

𝑖 ·Δ𝑡,

⌊︁
𝑇𝑓
Δ𝑡

⌋︁
·Δ𝑡)

|𝑢𝑖(𝜔) − 𝑢Δ𝑡
𝑖 (𝜔)| ≤ |𝒱| · 𝜖, ∀𝑖 ∈ 𝒱 .

Along the same lines, we can show by induction on 𝑚 that:

sup
𝜔∈[𝑘min

𝑖 ·Δ𝑡,

⌊︁
𝑇𝑓
Δ𝑡

⌋︁
·Δ𝑡+𝑚·𝛿inf)

|𝑢Δ𝑡
𝑖 (𝜔) − 𝑢𝑖(𝜔)| ≤ (|𝒱| + 𝑚) · 𝜖, ∀𝑖 ∈ 𝒱 .

This implies:

sup
𝜔∈[𝑘min

𝑖 ·Δ𝑡,𝑇]
|𝑢Δ𝑡

𝑖 (𝜔) − 𝑢𝑖(𝜔)| ≤ (|𝒱| +
⌈︂

𝑇 − 𝑇𝑓

𝛿inf

⌉︂
+ 1) · 𝜖, ∀𝑖 ∈ 𝒱 ,

assuming Δ𝑡 ≤ 𝛿inf . In particular, this shows uniform convergence. To conclude the proof

of Case 2, we show that 𝜋Δ𝑡 is a 𝑜(1)-approximate optimal solution to (2.1) as Δ𝑡 → 0.

Using the last set of inequalities derived in combination with the uniform continuity of the

functions (𝑢𝑖(·))𝑖∈𝒱 , we can show that:

∀𝑖 ∈ 𝒱 , |𝑢Δ𝑡
𝑖 (𝜔) − 𝑢Δ𝑡

𝑖 (𝜔′)| ≤ (2 · |𝒱| + 2 ·
⌈︂

𝑇 − 𝑇𝑓

𝛿inf

⌉︂
+ 3) · 𝜖, (A.2)

179

∀(𝜔, 𝜔′) ∈ [𝑘min
𝑖 · Δ𝑡, 𝑇]2 with |𝜔 − 𝜔′| ≤ 𝛼, and:

∀𝑖 ∈ 𝒱 , |𝑢Δ𝑡
𝑖 (𝜔) − 𝑢𝑖(𝜔′)| ≤ (|𝒱| +

⌈︂
𝑇 − 𝑇𝑓

𝛿inf

⌉︂
+ 2) · 𝜖, (A.3)

∀(𝜔, 𝜔′) ∈ [𝑘min
𝑖 · Δ𝑡, 𝑇]2 with |𝜔 − 𝜔′| ≤ 𝛼. We can now prove, by induction on the level

of the nodes in 𝒯 , that:

𝑢𝜋Δ𝑡

𝑖 (𝑡) ≥ 𝑢𝑖(𝑡)−3·level(𝑖, 𝒯)·(|𝒱|+
⌈︂

𝑇 − 𝑇𝑓

𝛿inf

⌉︂
+2)·𝜖, ∀𝑡 ∈ [𝑘min

𝑖 ·Δ𝑡,
⌊︂

𝑇𝑓

Δ𝑡

⌋︂
·Δ𝑡), ∀𝑖 ∈ 𝒱 .

This follows from the sequence of inequalities:

𝑢𝜋Δ𝑡

𝑖 (𝑡) =
∫︁ ∞

0
𝑝𝑖𝜋Δ𝑡(𝑖,𝑡)(𝜔) · 𝑢𝜋Δ𝑡

𝜋Δ𝑡(𝑖,𝑡)(𝑡 − 𝑤)d𝜔

≥
∫︁ ∞

0
𝑝𝑖𝜋Δ𝑡(𝑖,𝑡)(𝜔) · 𝑢𝜋Δ𝑡(𝑖,𝑡)(𝑡 − 𝑤)d𝜔

− 3 · (level(𝑖, 𝒯) − 1) · (|𝒱| +
⌈︂

𝑇 − 𝑇𝑓

𝛿inf

⌉︂
+ 2) · 𝜖

≥
∫︁ ∞

0
𝑝𝑖𝜋Δ𝑡(𝑖,𝑡)(𝜔) · 𝑢Δ𝑡

𝜋Δ𝑡(𝑖,𝑡)(𝑡 − 𝑤)d𝜔 − 𝜖

− 3 · (level(𝑖, 𝒯) − 1) · (|𝒱| +
⌈︂

𝑇 − 𝑇𝑓

𝛿inf

⌉︂
+ 2) · 𝜖

≥
∫︁ ∞

0
𝑝𝑖𝜋Δ𝑡(𝑖,𝑡)(𝜔) · 𝑢Δ𝑡

𝜋Δ𝑡(𝑖,⌊ 𝑡
Δ𝑡⌋·Δ𝑡)(

⌊︂
𝑡

Δ𝑡

⌋︂
· Δ𝑡 − 𝑤)d𝜔 − 𝜖

− (2 · |𝒱| + 2 ·
⌈︂

𝑇 − 𝑇𝑓

𝛿inf

⌉︂
+ 3) · 𝜖

− 3 · (level(𝑖, 𝒯) − 1) · (|𝒱| +
⌈︂

𝑇 − 𝑇𝑓

𝛿inf

⌉︂
+ 2) · 𝜖

≥ 𝑢Δ𝑡
𝑖 (
⌊︂

𝑡

Δ𝑡

⌋︂
· Δ𝑡) − 3 · level(𝑖, 𝒯) · (|𝒱| +

⌈︂
𝑇 − 𝑇𝑓

𝛿inf

⌉︂
+ 2) · 𝜖,

where we use the induction property for the first inequality, the uniform convergence for

the second, (A.2) for the third, the definition of 𝜋Δ𝑡(𝑖, 𝑡) for the fourth and finally (A.3).

We conclude that:

𝑢𝜋Δ𝑡

𝑖 (𝑡) ≥ 𝑢𝑖(𝑡) − 3 · |𝒱| · (|𝒱| +
⌈︂

𝑇 − 𝑇𝑓

𝛿inf

⌉︂
+ 2) · 𝜖, ∀𝑡 ∈ [𝑘min

𝑖 · Δ𝑡,
⌊︂

𝑇𝑓

Δ𝑡

⌋︂
· Δ𝑡), ∀𝑖 ∈ 𝒱 .

180

We can then prove by induction on 𝑚, in the same fashion as above, that, for all 𝑚:

𝑢𝜋Δ𝑡

𝑖 (𝑡) ≥ 𝑢𝑖(𝑡) − 3 · (𝑚 + |𝒱|) · (|𝒱| +
⌈︂

𝑇 − 𝑇𝑓

𝛿inf

⌉︂
+ 2) · 𝜖,

∀𝑡 ∈ [𝑘min
𝑖 · Δ𝑡,

⌊︁
𝑇𝑓

Δ𝑡

⌋︁
· Δ𝑡 + 𝑚 · 𝛿inf) and ∀𝑖 ∈ 𝒱 . We conclude that

𝑢𝜋Δ𝑡

𝑠 (𝑇) ≥ 𝑢𝑠(𝑇) − 3 · (|𝒱| +
⌈︂

𝑇 − 𝑇𝑓

𝛿inf

⌉︂
+ 2)2 · 𝜖,

which establishes the claim.

Case 3. The first step consists in showing that the functions (𝑢𝑖(·))𝑖∈𝒱 are Lipschitz on

[𝑇𝑓 − |𝒱| · 𝛿sup, 𝑇]. Take 𝐾 to be a Lipschitz constant for 𝑓(·) on [𝑇𝑓 − (
⌈︁

𝑇 −𝑇𝑓

𝛿inf

⌉︁
+ 2 · |𝒱| −

1) · 𝛿sup, 𝑇]. We first show by induction on 𝑙 that 𝑢𝑖(·) is 𝐾-Lipschitz on [𝑇𝑓 − (
⌈︁

𝑇 −𝑇𝑓

𝛿inf

⌉︁
+

2 · |𝒱|− 𝑙) ·𝛿sup, 𝑇𝑓] for all nodes 𝑖 of level 𝑙 in 𝒯 . The base case follows from the definition

of 𝐾. Assuming the property holds for some 𝑙 ≥ 1, we consider a node 𝑖 of level 𝑙 + 1 in

𝒯 . Using Theorem 2.1, we have, for (𝑡, 𝑡′) ∈ [𝑇𝑓 − (
⌈︁

𝑇 −𝑇𝑓

𝛿inf

⌉︁
+ 2 · |𝒱| − 𝑙 − 1) · 𝛿sup, 𝑇𝑓]2:

|𝑢𝑖(𝑡) − 𝑢𝑖(𝑡′)| ≤ max
𝑗∈𝒯 (𝑖)

E[|𝑢𝑗(𝑡 − 𝜔) − 𝑢𝑗(𝑡′ − 𝜔)|]

≤ 𝐾 · |𝑡 − 𝑡′|,

where we use the induction property for 𝑙 (recall that 𝑝𝑖𝑗(𝜔) = 0 for 𝜔 ≥ 𝛿sup). We

conclude that the functions (𝑢𝑖(·))𝑖∈𝒱 are all 𝐾−Lipschitz on [𝑇𝑓 −(
⌈︁

𝑇 −𝑇𝑓

𝛿inf

⌉︁
+|𝒱|)·𝛿sup, 𝑇𝑓].

We now prove, by induction on 𝑚, that the functions (𝑢𝑖(·))𝑖∈𝒱 are all 𝐾-Lipschitz on

[𝑇𝑓 − (
⌈︁

𝑇 −𝑇𝑓

𝛿inf

⌉︁
− 𝑚 + |𝒱|) · 𝛿sup, 𝑇𝑓 + 𝑚 · 𝛿inf]. The base case follows from the previous

induction. Assuming the property holds for some 𝑚, we have for 𝑖 ∈ 𝒱 and for (𝑡, 𝑡′) ∈

[𝑇𝑓 − (
⌈︁

𝑇 −𝑇𝑓

𝛿inf

⌉︁
− 𝑚 − 1 + |𝒱|) · 𝛿sup, 𝑇𝑓 + (𝑚 + 1) · 𝛿inf]2:

|𝑢𝑖(𝑡) − 𝑢𝑖(𝑡′)| ≤ max
𝑗∈𝒱(𝑖)

E[|𝑢𝑗(𝑡 − 𝜔) − 𝑢𝑗(𝑡′ − 𝜔)|]

≤ 𝐾 · |𝑡 − 𝑡′|,

181

where we use the fact that 𝑝𝑖𝑗(𝜔) = 0 for 𝜔 ≤ 𝛿inf or 𝜔 ≥ 𝛿sup and the induction property.

We conclude that the function (𝑢𝑖(·))𝑖∈𝒱 are all 𝐾-Lipschitz on [𝑇𝑓 − |𝒱| · 𝛿sup, 𝑇]. Using

this last fact, we can prove, by induction on the level of the nodes in 𝒯 , in a similar fashion

as done for Case 2, that:

sup
𝜔∈[𝑘min

𝑖 ·Δ𝑡,

⌊︁
𝑇𝑓
Δ𝑡

⌋︁
·Δ𝑡)

|𝑢Δ𝑡
𝑖 (𝜔) − 𝑢𝑖(𝜔)| ≤ level(𝑖, 𝒯) · 𝐾 · Δ𝑡, ∀𝑖 ∈ 𝒱 .

By induction on 𝑚, we can then show that:

sup
𝜔∈[𝑘min

𝑖 ·Δ𝑡,

⌊︁
𝑇𝑓
Δ𝑡

⌋︁
·Δ𝑡+𝑚·𝛿inf)

|𝑢Δ𝑡
𝑖 (𝜔) − 𝑢𝑖(𝜔)| ≤ (|𝒱| + 𝑚) · 𝐾 · Δ𝑡, ∀𝑖 ∈ 𝒱 , ∀𝑚 ∈ N.

This implies:

sup
𝜔∈[𝑘min

𝑖 ·Δ𝑡,𝑇]
|𝑢Δ𝑡

𝑖 (𝜔) − 𝑢𝑖(𝜔)| ≤ (|𝒱| +
⌈︂

𝑇 − 𝑇𝑓

𝛿inf

⌉︂
+ 1) · 𝐾 · Δ𝑡, ∀𝑖 ∈ 𝒱 ,

assuming Δ𝑡 ≤ 𝛿inf . This shows uniform convergence at speed Δ𝑡. To conclude the proof

of Case 3, we show that 𝜋Δ𝑡 is a 𝑂(Δ𝑡)-approximate optimal solution to (2.1) as Δ𝑡 → 0.

We can show, using the last inequality derived along with the same sequence of inequalities

as in Case 2, by induction on the level of the nodes in 𝒯 that:

𝑢𝜋Δ𝑡

𝑖 (𝑡) ≥ 𝑢𝑖(𝑡) − 6 · level(𝑖, 𝒯) · (|𝒱| +
⌈︂

𝑇 − 𝑇𝑓

𝛿inf

⌉︂
+ 1) · 𝐾 · Δ𝑡,

∀𝑡 ∈ [𝑘min
𝑖 · Δ𝑡,

⌊︁
𝑇𝑓

Δ𝑡

⌋︁
· Δ𝑡) and ∀𝑖 ∈ 𝒱 . We can then prove by induction on 𝑚, in the same

fashion as in Case 2, that, for all 𝑚 ∈ N:

𝑢𝜋Δ𝑡

𝑖 (𝑡) ≥ 𝑢𝑖(𝑡) − 6 · (𝑚 + |𝒱|) · (|𝒱| +
⌈︂

𝑇 − 𝑇𝑓

𝛿inf

⌉︂
+ 1) · 𝐾 · Δ𝑡,

∀𝑡 ∈ [𝑘min
𝑖 · Δ𝑡,

⌊︁
𝑇𝑓

Δ𝑡

⌋︁
· Δ𝑡 + 𝑚 · 𝛿inf) and ∀𝑖 ∈ 𝒱 . We conclude that:

𝑢𝜋Δ𝑡

𝑠 (𝑇) ≥ 𝑢𝑠(𝑇) − 6 · (|𝒱| +
⌈︂

𝑇 − 𝑇𝑓

𝛿inf

⌉︂
+ 1)2 · 𝐾 · Δ𝑡,

182

which establishes the claim.

Case 4. In this situation, we can show by induction on 𝑚 that the functions (𝑢𝑖(·))𝑖∈𝒱

are continuous on [0, 𝑚 · 𝛿inf] and conclude that the functions (𝑢𝑖(·))𝑖∈𝒱 are continuous on

[0, 𝑇]. Since [0, 𝑇] is a compact set, these functions are also uniformly continuous on [0, 𝑇].

Moreover, 𝑢Δ𝑡
𝑖 (𝑡) = 𝑢𝑖(𝑡) = 0 for all 𝑡 ≤ 0 and 𝑖 ∈ 𝒱 . Using these two observations, we

can apply the same techniques as in Case 2 to obtain the same results.

A.2.4 Proof of Theorem 2.2

Proof. Proof of Theorem 2.2. We denote by ℋ the set of all possible histories of the

previously experienced costs and previously visited nodes. As in Theorem 2.1, the last part

of the theorem is trivial because any strategy is optimal when having already spent a budget

of 𝑇 − 𝑇 𝑟
𝑓 .

The proof for the first part is an extension of Theorem 2.1 and follows the same steps.

We denote by (𝑚𝑖𝑗)(𝑖,𝑗)∈𝒜 the worst-case expected costs, i.e.:

𝑚𝑖𝑗 = sup
𝑝𝑖𝑗∈𝒫𝑖𝑗

E𝑋∼𝑝𝑖𝑗
[𝑋] ∀(𝑖, 𝑗) ∈ 𝒜.

Observe that these quantities are well-defined as 𝒫𝑖𝑗 is not empty and E𝑋∼𝑝𝑖𝑗
[𝑋] ≤ 𝛿sup

for any 𝑝𝑖𝑗 ∈ 𝒫𝑖𝑗 . Furthermore, there exists 𝑝*
𝑖𝑗 ∈ 𝒫𝑖𝑗 such that 𝑚𝑖𝑗 = E𝑋∼𝑝*

𝑖𝑗
[𝑋] as 𝒫𝑖𝑗

is compact for the weak topology. For any node 𝑖 ̸= 𝑑, we define 𝑀𝑖 as the length of

a shortest path from 𝑖 to 𝑑 in 𝒢 when the arc costs are taken as (𝑚𝑖𝑗)(𝑖,𝑗)∈𝒜. Just like in

Theorem 2.1, we consider an optimal strategy 𝜋*
𝑓,𝒫 solution to (2.3). For a given history

ℎ ∈ ℋ, we define 𝑡ℎ as the remaining budget, i.e. 𝑇 minus the total cost spent so far, and

𝑖ℎ as the current location. The policy 𝜋*
𝑓,𝒫 maps ℎ ∈ ℋ to a probability distribution over

𝒱(𝑖ℎ). Observe that randomizing does not help because (i) the costs are independent across

time and arcs and (ii) the ambiguity set is rectangular. Hence, without loss of generality,

we may assume that 𝜋*
𝑓,𝒫 actually maps ℎ to the node in 𝒱(𝑖ℎ) minimizing the worst-case

objective function given ℎ. For ℎ ∈ ℋ, we denote by 𝑋ℎ
𝜋*

𝑓,𝒫
the random cost-to-go incurred

183

by following strategy 𝜋*
𝑓,𝒫 , i.e. not including the total cost spent up to this point of the

history 𝑇 − 𝑡ℎ. We define 𝜋𝑠 as a policy associated with an arbitrary shortest path from

𝑖 to 𝑑 with respect to (𝑚𝑖𝑗)(𝑖,𝑗)∈𝒜. Specifically, 𝜋𝑠 maps the current location 𝑖ℎ to a node

in 𝒯 𝑟(𝑖ℎ), irrespective of the history of the process. Similarly as for 𝜋*
𝑓,𝒫 , we denote by

𝑋ℎ
𝜋𝑠

the random cost-to-go incurred by following strategy 𝜋𝑠 for ℎ ∈ ℋ. Using Bellman’s

Principle of Optimality for 𝜋*
𝑓,𝒫 , we have:

Ep* [𝑓(𝑡ℎ − 𝑋ℎ
𝜋*

𝑓,𝒫
)] ≥ inf

∀𝜏≥𝑇 −𝑡ℎ,∀(𝑖,𝑗)∈𝒜, 𝑝𝜏
𝑖𝑗∈𝒫𝑖𝑗

Ep𝜏 [𝑓(𝑡 − 𝑋ℎ
𝜋*

𝑓,𝒫
)]

≥ sup
𝜋∈Π

inf
∀𝜏≥𝑇 −𝑡ℎ,∀(𝑖,𝑗)∈𝒜, 𝑝𝜏

𝑖𝑗∈𝒫𝑖𝑗

Ep𝜏 [𝑓(𝑡 − 𝑋ℎ
𝜋)]

≥ inf
∀𝜏≥𝑇 −𝑡ℎ,∀(𝑖,𝑗)∈𝒜, 𝑝𝜏

𝑖𝑗∈𝒫𝑖𝑗

Ep𝜏 [𝑓(𝑡 − 𝑋ℎ
𝜋𝑠

)]

≥ Eq𝜏 [𝑓(𝑡 − 𝑋ℎ
𝜋𝑠

)],

where (𝑞𝜏
𝑖𝑗)(𝑖,𝑗)∈𝒜,𝜏≥𝑇 −𝑡ℎ

is given by the worst-case scenario in the ambiguity sets, i.e.:

(𝑞𝜏
𝑖𝑗)(𝑖,𝑗)∈𝒜,𝜏≥𝑇 −𝑡ℎ

∈ argmin
∀𝜏≥𝑇 −𝑡ℎ,∀(𝑖,𝑗)∈𝒜, 𝑝𝜏

𝑖𝑗∈𝒫𝑖𝑗

Ep𝜏 [𝑓(𝑡 − 𝑋ℎ
𝜋𝑠

)],

which can be shown to exist because the ambiguity sets are compact. Using the last inequal-

ity derived, we can prove, using the exact same sequence of inequalities as in Theorem 2.1,

that there exists 𝑇 𝑟
𝑓 such that, for both cases (a) and (b):

Ep* [𝑋ℎ
𝜋*

𝑓,𝒫
]−Eq𝜏 [𝑋ℎ

𝜋𝑠
] < min

𝑖 ̸=𝑑
min

𝑗∈𝒱(𝑖),𝑗 /∈𝒯 𝑟(𝑖)
{𝑚𝑖𝑗 +𝑀𝑗 −𝑀𝑖} ∀ℎ ∈ ℋ such that 𝑡ℎ ≤ 𝑇 𝑟

𝑓 ,

(A.4)

with the convention that the minimum of an empty set is equal to infinity. Starting from

(A.4), consider ℎ ∈ ℋ such that 𝑡ℎ ≤ 𝑇 𝑟
𝑓 and suppose by contradiction that 𝜋*

𝑓,𝒫(ℎ) =

𝑗ℎ /∈ 𝒯 𝑟(𝑖ℎ). As mentioned in Theorem 2.1, even though 𝜋*
𝑓,𝒫 can be fairly complicated,

the first action is deterministic and incurs an expected cost of 𝑚𝑖ℎ𝑗ℎ
because the costs are

independent across time and arcs. Moreover, when the objective is to minimize the average

cost, the optimal strategy among all history-dependent rules is to follow the shortest path

with respect to the mean arc costs (once again because the costs are independent across

184

time and arcs). As a result:

Ep* [𝑋ℎ
𝜋*

𝑓,𝒫
] ≥ 𝑚𝑖ℎ𝑗ℎ

+ 𝑀𝑗ℎ
.

Additionally, by definition of (𝑝*
𝑖𝑗)(𝑖,𝑗)∈𝒜:

Eq𝜏 [𝑋ℎ
𝜋𝑠

] ≤ Ep* [𝑋ℎ
𝜋𝑠

]

≤ 𝑀𝑖ℎ
.

This implies:

Ep* [𝑋ℎ
𝜋*

𝑓,𝒫
] − Eq𝜏 [𝑋ℎ

𝜋𝑠
] ≥ 𝑚𝑖ℎ𝑗ℎ

+ 𝑀𝑗ℎ
− 𝑀𝑖ℎ

,

a contradiction. We conclude that:

𝜋*
𝑓,𝒫(ℎ) ∈ 𝒯 𝑟(𝑖ℎ) ∀ℎ ∈ ℋ such that 𝑡ℎ ≤ 𝑇 𝑟

𝑓 .

A.2.5 Proof of Proposition 2.3.

Proof. Proof of Proposition 2.3. The proof uses a reduction to distributionally robust finite-

horizon MDPs in a similar fashion as in Proposition 2.1. Using Theorem 2.2, the optimiza-

tion problem (2.3) can be equivalently formulated as a discrete-time finite-horizon distribu-

tionally robust MDP in the extended space state (𝑖, 𝑡) ∈ 𝒱 × [𝑇 − 𝛿sup ·
⌈︂

𝑇 −𝑇 𝑟
𝑓

𝛿inf

⌉︂
, 𝑇] where

𝑖 is the current location and 𝑡 is the, possibly negative, remaining budget. Specifically:

∙ The time horizon is
⌈︂

𝑇 −𝑇 𝑟
𝑓

𝛿inf

⌉︂
.

∙ The initial state is (𝑠, 𝑇).

∙ The set of available actions at state (𝑖, 𝑡), for 𝑖 ̸= 𝑑, is taken as 𝒱(𝑖). Picking 𝑗 ∈ 𝒱(𝑖)

corresponds to crossing link (𝑖, 𝑗) and results in a transition to state (𝑗, 𝑡 − 𝜔) with

probability 𝑝𝑖𝑗(𝜔)d𝜔.

185

∙ The probability of transitions are only known to lie in the rectangular ambiguity set:

∏︁
(𝑖,𝑗)∈𝒜

𝑡∈[𝑇 −𝛿sup·
⌈︂

𝑇 −𝑇 𝑟
𝑓

𝛿inf

⌉︂
,𝑇]

𝒫𝑖𝑗.

∙ The only available action at a state (𝑑, 𝑡) is to remain in this state.

∙ The transition rewards are all equal to 0.

∙ The final reward at the epoch
⌈︂

𝑇 −𝑇 𝑟
𝑓

𝛿inf

⌉︂
for any state (𝑖, 𝑡) is equal to 𝑓𝑖(𝑡), which is the

optimal worst-case expected objective-to-go when following the shortest path tree 𝒯 𝑟

starting at node 𝑖 with remaining budget 𝑡. Specifically, the collection of functions

(𝑓𝑖(·))𝑖∈𝒱 is a solution to the following program:

𝑓𝑑(𝑡) = 𝑓(𝑡), 𝑡 ≤ 𝑇 𝑟
𝑓

𝑓𝑖(𝑡) = max
𝑗∈𝒯 𝑟(𝑖)

inf
𝑝𝑖𝑗∈𝒫𝑖𝑗

∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · 𝑓𝑗(𝑡 − 𝜔)d𝜔 𝑖 ̸= 𝑑, 𝑡 ≤ 𝑇 𝑟

𝑓 .

As a consequence, we can conclude the proof with Theorem 2.2 of [51] (or equivalently

Theorem 1 of [69]).

A.2.6 Proof of Proposition 2.4

The proofs are along the same lines as for Proposition 2.2.

Proof. Proof of Proposition 2.4. We deal with each case separately.

Case 1. We make use the following facts:

∙ The functions (𝑢Δ𝑡
𝑖 (·))𝑖∈𝒱 are non-decreasing,

∙ The functions (𝑢𝑖(·))𝑖∈𝒱 are non-decreasing,

∙ The functions (𝑢Δ𝑡
𝑖 (·))𝑖∈𝒱 lower bound the functions (𝑢𝑖(·))𝑖∈𝒱 .

186

We follow the same recipe as in Proposition 2.2. We start by proving convergence for the

discretizattion sequence (Δ𝑡𝑝 = 1
2𝑝)𝑝∈N. Then, we conclude the general study with the

exact same argument as in Lemma A.3.

Lemma A.4. For the regular mesh (Δ𝑡𝑝 = 1
2𝑝)𝑝∈N, the sequence (𝑢Δ𝑡𝑝

𝑖 (𝑡))𝑝∈N converges to

𝑢𝑖(𝑡) for almost every point 𝑡 in [𝑘𝑟,min
𝑖 · Δ𝑡, 𝑇].

Proof. Just like in Lemma A.2 we can prove that the sequence (𝑢Δ𝑡𝑝

𝑖 (𝑡))𝑝∈N is non-decreasing

for any 𝑡 and 𝑖 ∈ 𝒱 . Hence, the functions (𝑢Δ𝑡𝑝

𝑖 (·))𝑖∈𝒱 converge pointwise to some limits

(𝑓𝑖(·))𝑖∈𝒱 . Using the preliminary remarks, we get:

𝑓𝑖(𝑡) ≤ 𝑢𝑖(𝑡) ∀𝑡 ∈ [𝑘𝑟,min
𝑖 · Δ𝑡, 𝑇], ∀𝑖 ∈ 𝒱 .

Next, we establish that for any 𝑡 ∈ [𝑘𝑟,min
𝑖 · Δ𝑡, 𝑇] and for any 𝜖 > 0, 𝑓𝑖(𝑡) ≥ 𝑢𝑖(𝑡 − 𝜖).

This will enable us to squeeze 𝑓𝑖(𝑡) to finally derive 𝑓𝑖(𝑡) = 𝑢𝑖(𝑡). We start with node 𝑑.

Observe that, by construction of the approximation, 𝑢Δ𝑡
𝑑 (·) converges pointwise to 𝑓(·) at

every point of continuity of 𝑓(·). Furthermore, since 𝑓𝑑(·) and 𝑢𝑑(·) are non-decreasing,

we have 𝑓𝑑(𝑡) ≥ 𝑢𝑑(𝑡 − 𝜖) for all 𝑡 ∈ [𝑘𝑟,min
𝑑 · Δ𝑡, 𝑇] and for all 𝜖 > 0. Consider 𝜖 > 0 and

a large enough 𝑝 such that 𝜖 > 1
2𝑝 which implies Δ𝑡𝑝 · ⌊ 𝑡

Δ𝑡𝑝
⌋ ≥ 𝑡 − 𝜖. We first show by

induction on the level of the nodes in 𝒯 𝑟 that:

𝑓𝑖(𝑡) ≥ 𝑢𝑖(𝑡 − level(𝑖, 𝒯 𝑟) · 𝜖) ∀𝑡 ∈ [𝑘𝑟,min
𝑖 · Δ𝑡,

⌊︃
𝑇 𝑟

𝑓

Δ𝑡

⌋︃
· Δ𝑡], ∀𝑖 ∈ 𝒱 .

The base case follows from the discussion above. Assume that the induction property holds

for all nodes of level less than 𝑙 and consider a node 𝑖 ∈ 𝒱 of level 𝑙 + 1. We have, for

𝑡 ∈ [𝑘𝑟,min
𝑖 · Δ𝑡,

⌊︂
𝑇 𝑟

𝑓

Δ𝑡

⌋︂
· Δ𝑡]:

𝑢
Δ𝑡𝑝

𝑖 (𝑡) ≥ 𝑢
Δ𝑡𝑝

𝑖 (
⌊︃

𝑡

Δ𝑡𝑝

⌋︃
· Δ𝑡𝑝)

≥ max
𝑗∈𝒯 𝑟(𝑖)

inf
𝑝𝑖𝑗∈𝒫𝑖𝑗

E𝑋∼𝑝𝑖𝑗
[𝑢Δ𝑡𝑝

𝑗 (
⌊︃

𝑡

Δ𝑡𝑝

⌋︃
· Δ𝑡𝑝 − 𝑋)]

≥ max
𝑗∈𝒯 𝑟(𝑖)

inf
𝑝𝑖𝑗∈𝒫𝑖𝑗

E𝑋∼𝑝𝑖𝑗
[𝑢Δ𝑡𝑝

𝑗 (𝑡 − 𝜖 − 𝑋)].

187

Take 𝑗 ∈ 𝒯 𝑟(𝑖). Since 𝑢
Δ𝑡𝑝

𝑗 (·) is continuous and 𝒫𝑖𝑗 is compact, the infimum in the previous

inequality is attained for some 𝑝𝑝
𝑖𝑗 ∈ 𝒫𝑖𝑗 which gives:

𝑢
Δ𝑡𝑝

𝑖 (𝑡) ≥ E𝑋∼𝑝𝑝
𝑖𝑗

[𝑢Δ𝑡𝑝

𝑗 (𝑡 − 𝜖 − 𝑋)].

As the sequence (𝑢Δ𝑡𝑝

𝑗 (𝑡 − 𝜖 − 𝜔))𝑝 is non-decreasing for any 𝜔, we have, for any 𝑚 ≤ 𝑝:

𝑢
Δ𝑡𝑝

𝑖 (𝑡) ≥ E𝑋∼𝑝𝑝
𝑖𝑗

[𝑢Δ𝑡𝑚
𝑗 (𝑡 − 𝜖 − 𝑋)].

Because 𝒫𝑖𝑗 is a compact set for the weak topology, there exists a subsequence of (𝑝𝑝
𝑖𝑗)𝑝

converging weakly in 𝒫𝑖𝑗 to some probability measure 𝑝𝑖𝑗 . Without loss of generality, we

continue to refer to this subsequence as (𝑝𝑝
𝑖𝑗)𝑝. We can now take the limit 𝑝 → ∞ in the

previous inequality which yields:

𝑓𝑖(𝑡) ≥ E𝑋∼𝑝𝑖𝑗
[𝑢Δ𝑡𝑚

𝑗 (𝑡 − 𝜖 − 𝑋)],

since 𝑢Δ𝑡𝑚
𝑗 (·) is continuous. To take the limit 𝑚 → ∞, note that:

𝑢Δ𝑡𝑚
𝑗 (𝑡 − 𝜖 − 𝑋) ≥ 𝑢Δ𝑡1

𝑗 (𝑡 − 𝜖 − 𝛿sup),

while (𝑢Δ𝑡𝑚
𝑗 (𝑡−𝜖−𝑋))𝑚∈N is non-decreasing and converges almost surely to 𝑓𝑗(𝑡−𝜖−𝑋)

as 𝑚 → ∞. Therefore, we can apply the monotone convergence theorem and derive:

𝑓𝑖(𝑡) ≥ E𝑋∼𝑝𝑖𝑗
[𝑓𝑗(𝑡 − 𝜖 − 𝑋)],

which further implies

𝑓𝑖(𝑡) ≥ inf
𝑝𝑖𝑗∈𝒫𝑖𝑗

E𝑋∼𝑝𝑖𝑗
[𝑓𝑗(𝑡 − 𝜖 − 𝑋)].

As the last inequality holds for any 𝑗 ∈ 𝒯 𝑟(𝑖), we finally obtain:

𝑓𝑖(𝑡) ≥ max
𝑗∈𝒯 𝑟(𝑖)

inf
𝑝𝑖𝑗∈𝒫𝑖𝑗

E𝑋∼𝑝𝑖𝑗
[𝑓𝑗(𝑡 − 𝜖 − 𝑋)] ∀𝑡 ∈ [𝑘𝑟,min

𝑖 · Δ𝑡,

⌊︃
𝑇 𝑟

𝑓

Δ𝑡

⌋︃
· Δ𝑡], ∀𝑖 ∈ 𝒱 .

188

Using the induction property along with Theorem 2.2, we get:

𝑓𝑖(𝑡) ≥ max
𝑗∈𝒯 𝑟(𝑖)

inf
𝑝𝑖𝑗∈𝒫𝑖𝑗

E𝑋∼𝑝𝑖𝑗
[𝑢𝑗(𝑡 − level(𝑖, 𝒯 𝑟) · 𝜖 − 𝑋)]

≥ 𝑢𝑖(𝑡 − level(𝑖, 𝒯 𝑟) · 𝜖),

for all 𝑡 ∈ [𝑘𝑟,min
𝑖 · Δ𝑡,

⌊︂
𝑇 𝑟

𝑓

Δ𝑡

⌋︂
· Δ𝑡], which concludes the induction. We can now prove by

induction on 𝑚, along the same lines as above, that:

𝑓𝑖(𝑡) ≥ 𝑢𝑖(𝑡 − (|𝒱| + 𝑚) · 𝜖) ∀𝑡 ∈ [𝑘𝑟,min
𝑖 · Δ𝑡,

⌊︃
𝑇 𝑟

𝑓

Δ𝑡

⌋︃
· Δ𝑡 + 𝑚 · 𝛿inf], ∀𝑖 ∈ 𝒱 ,

for all 𝑚 ∈ N. This last result can be reformulated as:

𝑓𝑖(𝑡) ≥ 𝑢𝑖(𝑡 − 𝜖) ∀𝜖 > 0, ∀𝑡 ∈ [𝑘𝑟,min
𝑖 · Δ𝑡, 𝑇], ∀𝑖 ∈ 𝒱 .

Combining this lower bound with the upper bound previously derived, we get:

𝑢𝑖(𝑡) ≥ 𝑓𝑖(𝑡) ≥ 𝑢𝑖(𝑡−) ∀𝑡 ∈ [𝑘𝑟,min
𝑖 · Δ𝑡, 𝑇], ∀𝑖 ∈ 𝒱 ,

where 𝑢𝑖(𝑡−) refers to the left one-sided limit of 𝑢𝑖(·) at 𝑡. Since, 𝑢𝑖(·) is non-decreasing,

it has countably many discontinuity points and the last inequality shows that 𝑓𝑖(·) = 𝑢𝑖(·)

almost everywhere on [𝑘𝑟,min
𝑖 · Δ𝑡, 𝑇].

Case 2. The first step consists in proving that the functions (𝑢𝑖(·))𝑖∈𝒱 are continuous on

(−∞, 𝑇]. By induction on 𝑙, we start by proving that 𝑢𝑖(·) is continuous on (−∞, 𝑇 𝑟
𝑓] for

all nodes 𝑖 of level 𝑙 in 𝒯 𝑟. The base case follows from the continuity of 𝑓(·). Assuming

the property holds for some 𝑙 ≥ 1, we consider a node 𝑖 of level 𝑙 + 1 in 𝒯 𝑟, 𝑡 ≤ 𝑇 𝑟
𝑓 and a

sequence 𝑡𝑛 →𝑛→∞ 𝑡. Using Theorem 2.2, we have:

|𝑢𝑖(𝑡) − 𝑢𝑖(𝑡𝑛)| ≤ max
𝑗∈𝒯 𝑟(𝑖)

sup
𝑝𝑖𝑗∈𝒫𝑖𝑗

∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · |𝑢𝑗(𝑡 − 𝜔) − 𝑢𝑗(𝑡𝑛 − 𝜔)|d𝜔.

189

For any 𝑗 ∈ 𝒯 𝑟(𝑖), we can use the uniform continuity of 𝑢𝑗(·) on [𝑡 − 2 · 𝛿sup, 𝑡] to prove

that this last term converges to 0 as 𝑛 → ∞. We conclude that all the functions (𝑢𝑖(·))𝑖∈𝒱

are continuous on (−∞, 𝑇 𝑟
𝑓]. By induction on 𝑚, we can then show that the functions

(𝑢𝑖(·))𝑖∈𝒱 are continuous on (−∞, 𝑇 𝑟
𝑓 +𝑚·𝛿inf], to finally conclude that they are continuous

on (−∞, 𝑇]. We are now able to prove uniform convergence. Since [𝑇 𝑟
𝑓 − |𝒱| · 𝛿sup, 𝑇] is a

compact set, the functions (𝑢𝑖(·))𝑖∈𝒱 are also uniformly continuous on this set. Take 𝜖 > 0,

there exists 𝛼 > 0 such that:

∀𝑖 ∈ 𝒱 , |𝑢𝑖(𝜔) − 𝑢𝑖(𝜔′)| ≤ 𝜖, ∀(𝜔, 𝜔′) ∈ [𝑇 𝑟
𝑓 − |𝒱| · 𝛿sup, 𝑇]2 with |𝜔 − 𝜔′| ≤ 𝛼.

Building on this, we can show, by induction on the level of the nodes in 𝒯 𝑟, that:

sup
𝜔∈[𝑘𝑟,min

𝑖 ·Δ𝑡,

⌊︂
𝑇 𝑟

𝑓
Δ𝑡

⌋︂
·Δ𝑡]

|𝑢𝑖(𝜔) − 𝑢Δ𝑡
𝑖 (𝜔)| ≤ 2 · level(𝑖, 𝒯 𝑟) · 𝜖, ∀𝑖 ∈ 𝒱 .

This follows from the sequence of inequalities:

sup
𝜔∈[𝑘𝑟,min

𝑖 ·Δ𝑡,

⌊︂
𝑇 𝑟

𝑓
Δ𝑡

⌋︂
·Δ𝑡]

|𝑢Δ𝑡
𝑖 (𝜔) − 𝑢𝑖(𝜔)| ≤ sup

𝑘∈{𝑘𝑟,min
𝑖 ,··· ,

⌊︂
𝑇 𝑟

𝑓
Δ𝑡

⌋︂
}

|𝑢Δ𝑡
𝑖 (𝑘 · Δ𝑡) − 𝑢𝑖(𝑘 · Δ𝑡)|

+ sup
𝜔∈[𝑘𝑟,min

𝑖 ·Δ𝑡,

⌊︂
𝑇 𝑟

𝑓
Δ𝑡

⌋︂
·Δ𝑡]

|𝑢𝑖(𝜔) − 𝑢𝑖(
⌊︂

𝜔

Δ𝑡

⌋︂
· Δ𝑡)|

+ sup
𝜔∈[𝑘𝑟,min

𝑖 ·Δ𝑡,

⌊︂
𝑇 𝑟

𝑓
Δ𝑡

⌋︂
·Δ𝑡]

|𝑢𝑖(𝜔) − 𝑢𝑖(
⌈︂

𝜔

Δ𝑡

⌉︂
· Δ𝑡)|

≤ sup
𝑘∈{𝑘𝑟,min

𝑖 ,··· ,

⌊︂
𝑇 𝑟

𝑓
Δ𝑡

⌋︂
}

max
𝑗∈𝒯 (𝑖)

sup
𝑝𝑖𝑗∈𝒫𝑖𝑗

{
∫︁ ∞

0
𝑝𝑖𝑗(𝜔) · |𝑢Δ𝑡

𝑗 (𝑘 · Δ𝑡 − 𝜔) − 𝑢𝑗(𝑘 · Δ𝑡 − 𝜔)|d𝜔}

+ 2 · 𝜖

≤ 2 · (level(𝑖, 𝒯 𝑟) − 1) · 𝜖 + 2 · 𝜖

= 2 · level(𝑖, 𝒯 𝑟) · 𝜖.

190

We conclude that:

sup
𝜔∈[𝑘𝑟,min

𝑖 ·Δ𝑡,

⌊︂
𝑇 𝑟

𝑓
Δ𝑡

⌋︂
·Δ𝑡]

|𝑢Δ𝑡
𝑖 (𝜔) − 𝑢𝑖(𝜔)| ≤ 2 · |𝒱| · 𝜖, ∀𝑖 ∈ 𝒱 .

Along the same lines, we can show by induction on 𝑚 that:

sup
𝜔∈[𝑘𝑟,min

𝑖 ·Δ𝑡,

⌊︂
𝑇 𝑟

𝑓
Δ𝑡

⌋︂
·Δ𝑡+𝑚·𝛿inf]

|𝑢Δ𝑡
𝑖 (𝜔) − 𝑢𝑖(𝜔)| ≤ 2 · (|𝒱| + 𝑚) · 𝜖, ∀𝑖 ∈ 𝒱 .

This implies:

sup
𝜔∈[𝑘𝑟,min

𝑖 ·Δ𝑡,𝑇]
|𝑢Δ𝑡

𝑖 (𝜔) − 𝑢𝑖(𝜔)| ≤ 2 · (|𝒱| +
⌈︃

𝑇 − 𝑇 𝑟
𝑓

𝛿inf

⌉︃
) · 𝜖, ∀𝑖 ∈ 𝒱 ,

assuming Δ𝑡 ≤ 𝛿inf . In particular, this shows uniform convergence. To conclude the proof

of Case 2, we show that 𝜋Δ𝑡 is a 𝑜(1)-approximate optimal solution to (2.3) as Δ𝑡 → 0. We

denote by 𝑢𝜋Δ𝑡

𝑖 (𝑡) the worst-case expected risk function when following policy 𝜋Δ𝑡 starting

at 𝑖 with remaining budget 𝑡. We can show, by induction on the level of the nodes in 𝒯 𝑟,

that :

𝑢𝜋Δ𝑡

𝑖 (𝑡) ≥ 𝑢𝑖(𝑡) − 12 · level(𝑖, 𝒯 𝑟) · (|𝒱| +
⌈︃

𝑇 − 𝑇 𝑟
𝑓

𝛿inf

⌉︃
) · 𝜖, ∀𝑡 ∈ [𝑘𝑟,min

𝑖 · Δ𝑡, 𝑇 𝑟
𝑓], ∀𝑖 ∈ 𝒱 .

To do so, we can use the same sequence of inequalities as in Case 2 of Proposition 2.2,

except that we also take the infimum over 𝑝𝑖𝜋Δ𝑡(𝑖,𝑡) ∈ 𝒫𝑖𝜋Δ𝑡(𝑖,𝑡). We derive:

𝑢𝜋Δ𝑡

𝑖 (𝑡) ≥ 𝑢𝑖(𝑡) − 12 · |𝒱| · (|𝒱| +
⌈︃

𝑇 − 𝑇 𝑟
𝑓

𝛿inf

⌉︃
) · 𝜖, ∀𝑡 ∈ [𝑘𝑟,min

𝑖 · Δ𝑡, 𝑇 𝑟
𝑓], ∀𝑖 ∈ 𝒱 .

Along the same lines, we can show by induction on 𝑚 that:

𝑢𝜋Δ𝑡

𝑖 (𝑡) ≥ 𝑢𝑖(𝑡)−12·(|𝒱|+𝑚)·(|𝒱|+
⌈︃

𝑇 − 𝑇 𝑟
𝑓

𝛿inf

⌉︃
)·𝜖, ∀𝑡 ∈ [𝑘𝑟,min

𝑖 ·Δ𝑡, 𝑇 𝑟
𝑓 +𝑚·𝛿inf], ∀𝑖 ∈ 𝒱 .

We conclude that 𝑢𝜋Δ𝑡

𝑠 (𝑇) ≥ 𝑢𝑠(𝑇) − 12 · (|𝒱| +
⌈︂

𝑇 −𝑇 𝑟
𝑓

𝛿inf

⌉︂
)2 · 𝜖, which establishes the claim.

191

Case 3. This case is essentially identical to Case 2 substituting uniform continuity for

Lipschitz continuity and the proof mirrors the proof of Case 3 of Proposition 2.2.

A.2.7 Proof of Lemma 2.1

Proof. Proof of Lemma 2.1. For a real value 𝑥, 𝛿𝑥 refers to the Dirac distribution at 𝑥. We

denote by (𝑚𝑖𝑗)(𝑖,𝑗)∈𝒜 the worst-case expected costs, i.e.:

𝑚𝑖𝑗 = sup
𝑝𝑖𝑗∈𝒫𝑖𝑗

E𝑋∼𝑝𝑖𝑗
[𝑋] ∀(𝑖, 𝑗) ∈ 𝒜.

We first make the crucial observation (which we use repeatedly in what follows) that, for

any arc (𝑖, 𝑗) ∈ 𝒜, there exists a distribution 𝑝*
𝑖𝑗 ∈ 𝒫𝑖𝑗 such that:

inf
𝑝𝑖𝑗∈𝒫𝑖𝑗

E𝑋∼𝑝𝑖𝑗
[𝑔(𝑋)] = E𝑋∼𝑝*

𝑖𝑗
[𝑔(𝑋)],

for any convex function 𝑔(·). Indeed this follows from Jensen’s inequality in case (a) since

𝛿𝑚𝑖𝑗
∈ 𝒫𝑖𝑗 by assumption and this is proved in [21] for case (b). We now move on to prove

the result. Observe that 𝑓(·) is increasing since 𝑓(·) is convex and 𝑓 ′ →−∞ 𝑎 > 0. We

use Proposition 2.3 and consider a solution (𝜋*
𝑓,𝒫 , (𝑢𝑖(·))𝑖∈𝒱) to the dynamic programming

equation (2.7). We first prove by induction on the level of the nodes in 𝒯 𝑟 that:

𝑢𝑖(𝑡) = max
𝑗∈𝒯 𝑟(𝑖)

E𝑋∼𝑝*
𝑖𝑗

[𝑢𝑗(𝑡 − 𝑋)], 𝑡 ≤ 𝑇 𝑟
𝑓 ,

and that 𝑢𝑖(·) is convex on (−∞, 𝑇 𝑟
𝑓], for all nodes 𝑖 ∈ 𝒱 . The base case is trivial. Assume

that the property holds for all nodes of level less than 𝑙 and consider a node 𝑖 ∈ 𝒱 of level

𝑙 + 1. Since 𝑢𝑗(·) is convex on (−∞, 𝑇 𝑟
𝑓] for 𝑗 ∈ 𝒯 𝑟(𝑖) by assumption, we have:

𝑢𝑖(𝑡) = max
𝑗∈𝒯 𝑟(𝑖)

inf
𝑝𝑖𝑗∈𝒫𝑖𝑗

E𝑋∼𝑝𝑖𝑗
[𝑢𝑗(𝑡 − 𝑋)]

= max
𝑗∈𝒯 𝑟(𝑖)

E𝑋∼𝑝*
𝑖𝑗

[𝑢𝑗(𝑡 − 𝑋)],

192

for 𝑡 ≤ 𝑇 𝑟
𝑓 using Theorem 2.2 and the preliminary remark, which concludes the induction

given that E𝑋∼𝑝[𝑔(· − 𝑋)] is convex for any convex function 𝑔(·) and for any distribution

𝑝. We move on to prove by induction on 𝑚 that:

𝑢𝑖(𝑡) = max
𝑗∈𝒱(𝑖)

E𝑋∼𝑝*
𝑖𝑗

[𝑢𝑗(𝑡 − 𝑋)], 𝑡 ≤ 𝑇 𝑟
𝑓 + 𝑚 · 𝛿inf

and that 𝑢𝑖(·) is convex on (−∞, 𝑇 𝑟
𝑓 + 𝑚 · 𝛿inf] for all nodes 𝑖 ∈ 𝒱 . The base case follows

from the previous induction. Assume that the inductive property holds for some 𝑚 ∈ N.

Consider 𝑖 ̸= 𝑑. We have, for 𝑡 ∈ (−∞, 𝑇 𝑟
𝑓 + (𝑚 + 1) · 𝛿inf]:

𝑢𝑖(𝑡) = max
𝑗∈𝒱(𝑖)

inf
𝑝𝑖𝑗∈𝒫𝑖𝑗

E𝑋∼𝑝𝑖𝑗
[𝑢𝑗(𝑡 − 𝑋)]

= max
𝑗∈𝒱(𝑖)

E𝑋∼𝑝*
𝑖𝑗

[𝑢𝑗(𝑡 − 𝑋)],

using Theorem 2.2, the preliminary remark, and the inductive property. This once again

concludes the induction. Hence:

𝑢𝑖(𝑡) = max
𝑗∈𝒱(𝑖)

E𝑋∼𝑝*
𝑖𝑗

[𝑢𝑗(𝑡 − 𝑋)] ∀𝑡 ≤ 𝑇, ∀𝑖 ∈ 𝒱 .

Using Theorem 2.2 and plugging this last expression back into (2.7), this shows that:

sup
𝜋∈Π

inf
∀𝜏,∀(𝑖,𝑗)∈𝒜, 𝑝𝜏

𝑖𝑗∈𝒫𝑖𝑗

Ep𝜏 [𝑓(𝑇 − 𝑋𝜋)] ≥ sup
𝜋∈Π

Ep* [𝑓(𝑇 − 𝑋𝜋)]

≥ sup
𝜋∈Π

inf
∀(𝑖,𝑗)∈𝒜, 𝑝𝑖𝑗∈𝒫𝑖𝑗

Ep[𝑓(𝑇 − 𝑋𝜋)],

where the notation p* refers to the fact the costs (𝑐𝑖𝑗)(𝑖,𝑗)∈𝒜 are independent and distributed

according to (𝑝*
𝑖𝑗)(𝑖,𝑗)∈𝒜. Since (2.3) is a conservative approximation of (2.2), we get:

sup
𝜋∈Π

inf
∀(𝑖,𝑗)∈𝒜, 𝑝𝑖𝑗∈𝒫𝑖𝑗

Ep[𝑓(𝑇 − 𝑋𝜋)] = sup
𝜋∈Π

inf
∀𝜏,∀(𝑖,𝑗)∈𝒜, 𝑝𝜏

𝑖𝑗∈𝒫𝑖𝑗

Ep𝜏 [𝑓(𝑇 − 𝑋𝜋)],

and an optimal strategy for both problems is given by the optimal strategy to the nomi-

nal problem (2.1) when the costs (𝑐𝑖𝑗)(𝑖,𝑗)∈𝒜 are independent and distributed according to

(𝑝*
𝑖𝑗)(𝑖,𝑗)∈𝒜.

193

A.2.8 Proof of Lemma 2.2

Proof. Proof of Lemma 2.2. Without loss of generality, we assume that 𝑓 (𝐾+1) > 0. The

proof is almost identical in the converse situation. We use Proposition 2.3 and consider a

solution (𝜋*
𝑓,𝒫 , (𝑢𝑖(·))𝑖∈𝒱) to the dynamic programming equation (2.7). We first prove by

induction on the level of the nodes 𝑖 in 𝒢 that 𝑢
(𝐾+1)
𝑖 > 0 and that, for 𝑗 the immediate

successor of 𝑖 in 𝒢, there exists 𝑝𝑖𝑗 ∈ 𝒫𝑖𝑗 such that:

𝑢𝑖(𝑡) = E𝑋∼𝑝𝑖𝑗
[𝑢𝑗(𝑡 − 𝑋)] ∀𝑡 ≤ 𝑇 if 𝑖 ̸= 𝑑. (A.5)

Assume that the property holds for all nodes of level less than 𝑙 and consider a node 𝑖 ∈ 𝒱

of level 𝑙 + 1. Let 𝑗 be the immediate successor of 𝑖 in 𝒢. As 𝒫𝑖𝑗 is not empty, Lemma

3.1 from [87] shows that 𝒫𝑖𝑗 contains a discrete distribution whose support is a subset of

{𝛿0, · · · , 𝛿𝐾+2} with 𝛿0 = 𝛿inf
𝑖𝑗 < 𝛿1 < · · · < 𝛿𝐾+2 = 𝛿sup

𝑖𝑗 . For any 𝑛 ∈ N, we define the

ambiguity set:

𝒫𝑛
𝑖𝑗 = {𝑝 ∈ 𝒫𝑖𝑗|

supp(𝑝) ⊂ {𝛿0, 𝛿0 + 𝛿1 − 𝛿0

𝑛
, 𝛿0 + 2 · 𝛿1 − 𝛿0

𝑛
, ..., 𝛿1, 𝛿1 + 𝛿2 − 𝛿1

𝑛
, .., 𝛿𝐾+1}},

which can be interpreted as a discretization of 𝒫𝑖𝑗 . Observe that, by design, 𝒫𝑛
𝑖𝑗 is not

empty. Additionally, we define the sequence of functions (𝑓𝑛
𝑖 (·))𝑛∈N by:

𝑓𝑛
𝑖 (𝑡) = inf

𝑝∈𝒫𝑛
𝑖𝑗

E𝑋∼𝑝[𝑢𝑗(𝑡 − 𝑋)] ∀𝑡 ≤ 𝑇. (A.6)

Since 𝑢
(𝐾+1)
𝑗 > 0, the authors of [77] show that there exists 𝑝𝑛

𝑖𝑗 ∈ 𝒫𝑛
𝑖𝑗 such that:

𝑓𝑛
𝑖 (𝑡) = E𝑋∼𝑝𝑛

𝑖𝑗
[𝑢𝑗(𝑡 − 𝑋)] ∀𝑡 ≤ 𝑇.

194

Because 𝒫𝑖𝑗 is compact with respect to the weak topology and since 𝒫𝑛
𝑖𝑗 ⊂ 𝒫𝑖𝑗 , we can

take a subsequence of (𝑝𝑛
𝑖𝑗)𝑛∈N such that 𝑝𝑛

𝑖𝑗 → 𝑝𝑖𝑗 ∈ 𝒫𝑖𝑗 as 𝑛 → ∞ for the weak topology.

Without loss of generality, we continue to denote this sequence (𝑝𝑛
𝑖𝑗)𝑛∈N. Since 𝑢𝑗(·) is

continuous, we derive that the sequence of functions (𝑓𝑛
𝑖 (·))𝑛∈N converges simply to a

function 𝑓𝑖(·) which satisfies:

𝑓𝑖(𝑡) = E𝑋∼𝑝𝑖𝑗
[𝑢𝑗(𝑡 − 𝑋)] ∀𝑡 ≤ 𝑇. (A.7)

We now move on to show that 𝑓𝑖(𝑡) = 𝑢𝑖(𝑡) for all 𝑡 ≤ 𝑇 . This will conclude the induction

because we can take the (𝐾 + 1)th derivative in (A.7) since 𝑝𝑖𝑗 has compact support. Take

𝑡 ≤ 𝑇 and 𝜖 > 0. The function 𝑢𝑗(·) is continuous on [𝑡 − 𝛿sup, 𝑡 − 𝛿inf] hence, by uniform

continuity, there exists 𝛼 > 0 such that:

|𝑢𝑗(𝑡 − 𝜔) − 𝑢𝑗(𝑡 − 𝜔′)| ≤ 𝜖

as soon as |𝜔 − 𝜔′| ≤ 𝛼 and (𝜔, 𝜔′) ∈ [𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗]2. Consider 𝑛 >
𝛿sup

𝑖𝑗 −𝛿inf
𝑖𝑗

𝛼
. Using conic

duality, Corollary 3.1 of [87] shows that 𝑢𝑖(𝑡) is the optimal value of the infinite linear

program:

sup
(𝑎1,··· ,𝑎𝐾 ,𝑏)∈R𝐾+1

𝐾∑︁
𝑘=1

𝑎𝑘 · 𝑚𝑘
𝑖𝑗 + 𝑏

subject to
𝐾∑︁

𝑘=1
𝑎𝑘 · 𝜔𝑘 + 𝑏 ≤ 𝑢𝑗(𝑡 − 𝜔) ∀𝜔 ∈ [𝛿inf

𝑖𝑗 , 𝛿sup
𝑖𝑗].

(A.8)

Using strong linear programming duality, we also have that 𝑓𝑛
𝑖 (𝑡) is the optimal value of

the finite linear program:

sup
(𝑎1,··· ,𝑎𝐾 ,𝑏)∈R𝐾+1

𝐾∑︁
𝑘=1

𝑎𝑘 · 𝑚𝑘
𝑖𝑗 + 𝑏

subject to
𝐾∑︁

𝑘=1
𝑎𝑘 · 𝜔𝑘 + 𝑏 ≤ 𝑢𝑗(𝑡 − 𝜔)

∀𝜔 ∈ {𝛿0, 𝛿0 + 𝛿1 − 𝛿0

𝑛
, 𝛿0 + 2 · 𝛿1 − 𝛿0

𝑛
, · · · , 𝛿𝐾+1}.

(A.9)

195

Take (𝑎𝑛
1 , · · · , 𝑎𝑛

𝐾 , 𝑏𝑛) an optimal basic feasible solution to (A.9). By a standard linear

programming argument:

max(max
𝑘=1,··· ,𝐾

|𝑎𝑛
𝑘 |, |𝑏𝑛|) ≤ 𝑈,

where 𝑈 = ((𝐾 + 1) · max(1, 𝑢𝑗(𝑡 − 𝛿inf), (𝛿sup
𝑖𝑗)𝐾))(𝐾+1) does not depend on 𝑛. Let us

use the shorthand:

𝑉 = 𝑈 · (𝛿sup
𝑖𝑗 − 𝛿inf

𝑖𝑗) ·
𝐾∑︁

𝑘=1
𝑘 · (𝛿sup

𝑖𝑗)(𝑘−1),

and define 𝑏 = 𝑏𝑛 − 𝑉
𝑛

− 𝜖. We show that (𝑎𝑛
1 , · · · , 𝑎𝑛

𝐾 , 𝑏) is feasible for (A.8). For any

𝑤 ∈ [𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗], take 𝑤′ ∈ {𝛿0, 𝛿0 + 𝛿1−𝛿0
𝑛

, 𝛿0 + 2 · 𝛿1−𝛿0
𝑛

, · · · , 𝛿𝐾+1} such that |𝑤 − 𝑤′| ≤
𝛿sup

𝑖𝑗 −𝛿inf
𝑖𝑗

𝑛
. We have:

𝐾∑︁
𝑘=1

𝑎𝑛
𝑘 · 𝜔𝑘 + 𝑏 =

𝐾∑︁
𝑘=1

𝑎𝑛
𝑘 · (𝜔′)𝑘 + 𝑏𝑛 +

𝐾∑︁
𝑘=1

𝑎𝑛
𝑘 · (𝜔𝑘 − (𝜔′)𝑘) − 𝑉

𝑛
− 𝜖

≤ 𝑢𝑗(𝑡 − 𝜔′) +
𝐾∑︁

𝑘=1
|𝑎𝑛

𝑘 | · |𝜔𝑘 − (𝜔′)𝑘| − 𝑉

𝑛
− 𝜖

≤ 𝑢𝑗(𝑡 − 𝜔) +
𝐾∑︁

𝑘=1
𝑈 · 𝑘 · (𝛿sup

𝑖𝑗)(𝑘−1) · |𝜔 − 𝜔′| − 𝑉

𝑛

≤ 𝑢𝑗(𝑡 − 𝜔),

where we use the fact that (𝑎𝑛
1 , · · · , 𝑎𝑛

𝐾 , 𝑏𝑛) is feasible for (A.9) in the first inequality, the

uniform continuity of 𝑢𝑗(·) in the second and the definition of 𝑉 in the last one. We derive:

𝑓𝑖(𝑡) − 𝑉

𝑛
− 𝜖 ≤ 𝑢𝑖(𝑡) ≤ 𝑓𝑖(𝑡).

Taking 𝑛 → ∞ and 𝜖 → 0, we obtain 𝑓𝑖(𝑡) = 𝑢𝑖(𝑡). This concludes the induction.

As a consequence of (A.5), the infimum in (2.7) is always attained for 𝑝𝑖𝑗 , irrespective

of the remaining budget 𝑡, so we can conclude that (2.2) and (2.3) are equivalent.

A.2.9 Proof of Lemma 2.3

This result is a direct consequence of the following observations:

196

∙ when the risk function is 𝑓(𝑡) = 𝑡, following the shortest path with respect to

(max𝑝∈𝒫𝑖𝑗
E𝑋∼𝑝[𝑋])(𝑖,𝑗)∈𝒜 is an optimal strategy for (2.3),

∙ when the risk function is 𝑓(𝑡) = exp(𝑡), following the shortest path with respect to

(max𝑝∈𝒫𝑖𝑗
− log(E𝑋∼𝑝[exp(−𝑋)]))(𝑖,𝑗)∈𝒜 is an optimal strategy for (2.3),

∙ when the risk function is 𝑓(𝑡) = − exp(−𝑡), following the shortest path with respect

to (max𝑝∈𝒫𝑖𝑗
log(E𝑋∼𝑝[exp(𝑋)]))(𝑖,𝑗)∈𝒜 is an optimal strategy for (2.3).

As a consequence, for any of these risk functions, (2.2) and (2.3) are equivalent. Define

𝑔(·) as any of these risk functions. Assuming that 𝛾 ·𝑔(𝑡)+𝛽 ≥ 𝑓(𝑡) ≥ 𝑎 ·𝑔(𝑡)+𝑏, ∀𝑡 ≤ 𝑇 ,

we get:

sup
𝜋∈Π

inf
∀(𝑖,𝑗)∈𝒜, 𝑝𝑖𝑗∈𝒫𝑖𝑗

Ep[𝑓(𝑇 − 𝑋𝜋)] ≤ sup
𝜋∈Π

inf
∀(𝑖,𝑗)∈𝒜, 𝑝𝑖𝑗∈𝒫𝑖𝑗

Ep[𝛾 · 𝑔(𝑇 − 𝑋𝜋) + 𝛽]

≤ 𝛽 + 𝛾 · sup
𝜋∈Π

inf
∀(𝑖,𝑗)∈𝒜, 𝑝𝑖𝑗∈𝒫𝑖𝑗

Ep[𝑔(𝑇 − 𝑋𝜋)]

≤ 𝛽 + 𝛾 · sup
𝜋∈Π

inf
∀𝜏,∀(𝑖,𝑗)∈𝒜, 𝑝𝜏

𝑖𝑗∈𝒫𝑖𝑗

Ep𝜏 [𝑔(𝑇 − 𝑋𝜋)]

≤ 𝛽 − 𝛾

𝑎
· 𝑏

+ 𝛾

𝑎
· sup

𝜋∈Π
inf

∀𝜏,∀(𝑖,𝑗)∈𝒜, 𝑝𝜏
𝑖𝑗∈𝒫𝑖𝑗

Ep𝜏 [𝑎 · 𝑔(𝑇 − 𝑋𝜋) + 𝑏]

≤ 𝛽 − 𝛾

𝑎
· 𝑏

+ 𝛾

𝑎
· sup

𝜋∈Π
inf

∀𝜏,∀(𝑖,𝑗)∈𝒜, 𝑝𝜏
𝑖𝑗∈𝒫𝑖𝑗

Ep𝜏 [𝑓(𝑇 − 𝑋𝜋)].

This last inequality along with:

sup
𝜋∈Π

inf
∀(𝑖,𝑗)∈𝒜, 𝑝𝑖𝑗∈𝒫𝑖𝑗

Ep[𝑓(𝑇 − 𝑋𝜋)] ≥ sup
𝜋∈Π

inf
∀𝜏,∀(𝑖,𝑗)∈𝒜, 𝑝𝜏

𝑖𝑗∈𝒫𝑖𝑗

Ep𝜏 [𝑓(𝑇 − 𝑋𝜋)]

yields the claim with some basic algebra.

A.2.10 Proof of Lemma 2.4

Proof. Proof of Lemma 2.4. For any 𝑘 ∈ N, we define (𝜋𝑘, (𝑢𝑘
𝑖 (·))𝑖∈𝒱) as a solution to

the dynamic program (2.7) when the ambiguity sets are taken as (𝒫𝑘
𝑖𝑗)(𝑖,𝑗)∈𝒜. Similarly, we

197

define (𝜋∞, (𝑢∞
𝑖 (·))𝑖∈𝒱) as a solution to the dynamic program (2.7) when the ambiguity

sets are taken as (∩𝑘∈N𝒫𝑘
𝑖𝑗)(𝑖,𝑗)∈𝒜. Along the sames lines as what is done in the proof of

Proposition 2.4, we can show that the functions (𝑢𝑘
𝑖 (·))𝑘∈N and 𝑢∞

𝑖 (·) are continuous for

any 𝑖 ∈ 𝒱 . Because the ambiguity sets are nested, observe that the sequence (𝑢𝑘
𝑖 (𝑡))𝑘∈N

is non-decreasing for any 𝑡 ≤ 𝑇 , hence it converges to a limit 𝑓𝑖(𝑡) ≤ 𝑢∞
𝑖 (𝑡). Moreover,

𝑓𝑑(𝑡) = 𝑓(𝑡) for all 𝑡 ≤ 𝑇 . Take 𝑖 ̸= 𝑑 and 𝑡 ≤ 𝑇 . We have, for any 𝑘 ∈ N and 𝑚 ≤ 𝑘:

𝑓𝑖(𝑡) ≥ 𝑢𝑘
𝑖 (𝑡)

≥ max
𝑗∈𝒱(𝑖)

inf
𝑝∈𝒫𝑘

𝑖𝑗

∫︁ ∞

0
𝑝(𝜔) · 𝑢𝑘

𝑗 (𝑡 − 𝜔)d𝜔

≥ max
𝑗∈𝒱(𝑖)

∫︁ ∞

0
𝑝𝑘

𝑖𝑗(𝜔) · 𝑢𝑘
𝑗 (𝑡 − 𝜔)d𝜔

≥ max
𝑗∈𝒱(𝑖)

∫︁ ∞

0
𝑝𝑘

𝑖𝑗(𝜔) · 𝑢𝑚
𝑗 (𝑡 − 𝜔)d𝜔,

where 𝑝𝑘
𝑖𝑗 ∈ 𝒫𝑘

𝑖𝑗 achieves the minimum for any 𝑗 ∈ 𝒱(𝑖), which can be shown to exist since

𝒫𝑘
𝑖𝑗 is compact and 𝑢𝑘

𝑗 (·) is continuous. Because 𝒫𝑘
𝑖𝑗 is compact for the weak topology, we

can take a subsequence of (𝑝𝑘
𝑖𝑗)𝑘∈N that converges to a distribution 𝑝∞

𝑖𝑗 in ∩𝑘∈N𝒫𝑘
𝑖𝑗 . Without

loss of generality we continue to refer to this sequence as (𝑝𝑘
𝑖𝑗)𝑘∈N. Taking the limit 𝑘 → ∞

in the last inequality derived yields:

𝑓𝑖(𝑡) ≥ max
𝑗∈𝒱(𝑖)

∫︁ ∞

0
𝑝∞

𝑖𝑗 (𝜔) · 𝑢𝑚
𝑗 (𝑡 − 𝜔)d𝜔.

Observing that 𝑢𝑚
𝑗 (𝑡 − 𝜔) ≥ 𝑢1

𝑗(𝑡 − 𝜔), we can use the monotone convergence theorem for

𝑚 → ∞ and conclude that:

𝑓𝑖(𝑡) ≥ max
𝑗∈𝒱(𝑖)

∫︁ ∞

0
𝑝∞

𝑖𝑗 (𝜔) · 𝑓𝑗(𝑡 − 𝜔)d𝜔

≥ max
𝑗∈𝒱(𝑖)

inf
𝑝∈∩𝑘∈N𝒫𝑘

𝑖𝑗

∫︁ ∞

0
𝑝(𝜔) · 𝑓𝑗(𝑡 − 𝜔)d𝜔.

We use Theorem 2.2 for the ambiguity sets (∩𝑘∈N𝒫𝑘
𝑖𝑗)(𝑖,𝑗)∈𝒜 and denote by 𝑇 𝑟

𝑓 (resp. 𝒯 𝑟)

the time budget (resp. the tree) put forth in the statement of the theorem. Using the last

sequence of inequalities derived, we can prove, by induction on the levels of the nodes in

198

𝒯 𝑟 that:

𝑓𝑖(𝑡) ≥ 𝑢∞
𝑖 (𝑡) ∀𝑡 ∈ [𝑇 𝑟

𝑓 − (|𝒱| − level(𝑖, 𝒯 𝑟) + 1) · 𝛿sup, 𝑇 𝑟
𝑓], ∀𝑖 ∈ 𝒱 ,

and then by induction on 𝑚 ∈ N that:

𝑓𝑖(𝑡) ≥ 𝑢∞
𝑖 (𝑡) ∀𝑡 ∈ [𝑇 𝑟

𝑓 − (|𝒱| − level(𝑖, 𝒯 𝑟) + 1) · 𝛿sup, 𝑇 𝑟
𝑓 + 𝑚 · 𝛿inf], ∀𝑖 ∈ 𝒱 .

We finally obtain 𝑓𝑠(𝑇) ≥ 𝑢∞
𝑠 (𝑇) which concludes the proof.

A.2.11 Proof of Lemma 2.5

Proof. Proof of Lemma 2.5. Since the optimization problem (2.13) is a conic linear prob-

lem over the set of measures on [𝛿inf
𝑖𝑗 , 𝛿sup

𝑖𝑗], we can take its Lagrangian dual, in the same

sense as defined in [87] using the notion of a polar cone, and use Proposition 3.1 in [87]

(established through a conjugate duality approach) to prove strong duality. The assump-

tions of this proposition are satisfied here since: (i) the value of (2.13) is finite as 𝒫𝑖𝑗 is

compact and not empty; and (ii) the functions (𝑔𝑖𝑗
𝑞 (·))𝑞=1,··· ,𝑄𝑖𝑗

and 𝑢Δ𝑡
𝑗 (·) are continuous,

which implies that the set:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(𝑦1, · · · , 𝑦𝑄𝑖𝑗

, 𝑥1, · · · , 𝑥𝑄𝑖𝑗
, 𝜅) ∈ R2·𝑄𝑖𝑗+1 |

∃𝑝 ∈ 𝒫𝑖𝑗 such that :

𝑥𝑞 ≤ E𝑋∼𝑝[𝑔𝑖𝑗
𝑞 (𝑋)], 𝑞 = 1, · · · , 𝑄𝑖𝑗

𝑦𝑞 ≥ E𝑋∼𝑝[𝑔𝑖𝑗
𝑞 (𝑋)], 𝑞 = 1, · · · , 𝑄𝑖𝑗

𝜅 = E𝑋∼𝑝[𝑢Δ𝑡
𝑗 (𝑘 · Δ𝑡 − 𝑋)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
is closed for the standard topology of R2·𝑄𝑖𝑗+1.

199

A.2.12 Proof of Lemma 2.7

Proof. Proof of Lemma 2.7. First observe that, along the same lines as in the general case,

the constraint

𝑧 + (𝑥 − 𝑦) · 𝑙 · Δ𝑡 ≤ 𝑢Δ𝑡
𝑗 ((𝑘 − 𝑙) · Δ𝑡)

does not limit the feasible region if (𝑙 · Δ𝑡, 𝑢Δ𝑡
𝑗 ((𝑘 − 𝑙) · Δ𝑡)) is not an extreme point

of the upper convex hull of {(𝑙 · Δ𝑡, 𝑢Δ𝑡
𝑗 (𝑙 · Δ𝑡)), 𝑙 = 𝑘 −

⌈︂
𝛿sup

𝑖𝑗

Δ𝑡

⌉︂
, · · · , 𝑘 −

⌊︂
𝛿inf

𝑖𝑗

Δ𝑡

⌋︂
} ∪

{(𝛿sup
𝑖𝑗 , 𝑢Δ𝑡

𝑗 (𝑘 ·Δ𝑡−𝛿sup
𝑖𝑗)), (𝛿inf

𝑖𝑗 , 𝑢Δ𝑡
𝑗 (𝑘 ·Δ𝑡−𝛿inf

𝑖𝑗))}. Hence, we can discard the constraints

that do no satisfy this property from (2.17). We denote by 𝑆 the sorted projection of the set

of extreme points onto the first coordinate. Observe that the feasible region is pointed as

the polyhedron described by the inequality constraints does not contain any line, therefore

there exists a basic optimal feasible solution for which at least three inequality constraints

are binding. By definition of 𝑆, only two of the constraints

𝑧 + (𝑥 − 𝑦) · 𝜔 ≤ 𝑢Δ𝑡
𝑗 (𝜔) 𝜔 ∈ 𝑆

can be binding which further implies that at least one of the constraints 𝑥 ≥ 0 and 𝑦 ≥ 0

must be binding. There are three types of feasible bases depending on whether these last

two constraints are binding or if only one of them is. We show that, for each type, we can

identify an optimal basis among the bases of the same type by binary search on the first

coordinate of the extreme points. This will conclude the proof as it takes constant time

to compare the objective function achieved by each of the three potentially optimal bases.

Since, by definition of 𝑆, 𝑢Δ𝑡
𝑗 (·) is convex on 𝑆, we can partition 𝑆 into 𝑆1 and 𝑆2 such that

𝑢Δ𝑡
𝑗 (·) is non-increasing on 𝑆1 and non-decreasing on 𝑆2 with max(𝑆1) = min(𝑆2).

If 𝑥 ≥ 0 and 𝑦 ≥ 0 are binding then 𝑧 is the only non-zero variable and the objective

is to maximize 𝑧. Hence, the optimal basis of this type is given by 𝑥 = 0, 𝑦 = 0 and

𝑧 = min
𝜔∈𝑆

𝑢Δ𝑡
𝑗 (𝜔) which can be computed by binary search since 𝑢Δ𝑡

𝑗 (·) is convex on 𝑆.

If only 𝑥 ≥ 0 is binding, then the line 𝜔 → 𝑧 − 𝑦 · 𝜔 must be joining two consecutive

points in 𝑆1. Since the objective function is precisely the value taken by the line 𝜔 →

𝑧 − 𝑦 · 𝜔 at 𝛽𝑖𝑗 , the optimal straight line joins two consecutive points in 𝑆1, 𝜔1 and 𝜔2, that

200

satisfy 𝜔1 ≤ 𝛽𝑖𝑗 ≤ 𝜔2 assuming max(𝑆1) ≥ 𝛽𝑖𝑗 . If max(𝑆1) < 𝛽𝑖𝑗 , the feasible bases

of this type are dominated by the optimal basis of the first type. Computing 𝜔1 and 𝜔2 or

showing that they do not exist can be done with a single binary search on 𝑆.

The discussion is analogous if only 𝑦 ≥ 0 is binding instead. The line 𝜔 → 𝑧 + 𝑥 · 𝜔

must be joining two consecutive points in 𝑆2. Since the objective function is precisely the

value taken by this line at 𝛼𝑖𝑗 , the optimal straight line joins two consecutive points in 𝑆2,

𝜔1 and 𝜔2, that satisfy 𝜔1 ≤ 𝛼𝑖𝑗 ≤ 𝜔2 assuming 𝛼𝑖𝑗 ≥ min(𝑆2). If min(𝑆2) > 𝛼𝑖𝑗 , the

feasible bases of this type are dominated by the optimal basis of the first type. Computing

𝜔1 and 𝜔2 or showing that they do not exist can be done with a single binary search on 𝑆.

201

202

Appendix B

Appendix for Chapter 3

B.1 Proof of Theorem 3.1

The assumptions of Theorem 1 in [2] are satisfied for the game (ℓ, 𝒵, ℱ) using Assumption

3.1 and the fact that any loss function ℓ of the form (3.1) is such that ℓ(𝑧, ·) is continuous

for any 𝑧 ∈ 𝒵 .

B.2 Proof of Lemma 3.1

The proof follows from the repeated use of the von Neumann’s minimax theorem developed

in [2] (see Theorem 3.1). To simplify the presentation, we prove the result when 𝑇 = 2 but

the general proof proceeds along the same lines. Using Theorem 1 in [2], we have:

𝑅2(ℓ, 𝒵, ℱ) = inf
𝑓1∈ℱ

sup
𝑧1∈𝒵

inf
𝑓2∈ℱ

sup
𝑧2∈𝒵

[
2∑︁

𝑡=1
ℓ(𝑧𝑡, 𝑓𝑡) − inf

𝑓∈ℱ

2∑︁
𝑡=1

ℓ(𝑧𝑡, 𝑓)].

Consider 𝑓1, 𝑓2 ∈ ℱ and 𝑧1 ∈ 𝒵 and define the function 𝑀(𝑧2) = ∑︀2
𝑡=1 ℓ(𝑧𝑡, 𝑓𝑡) −

inf𝑓∈ℱ
∑︀2

𝑡=1 ℓ(𝑧𝑡, 𝑓). Observe that 𝑀 is convex. Indeed, 𝑧2 → ℓ(𝑧1, 𝑓1) + ℓ(𝑧2, 𝑓2) is affine

and 𝑧2 → inf𝑓∈ℱ
∑︀2

𝑡=1 ℓ(𝑧𝑡, 𝑓) is concave as the infimum of affine functions. Therefore,

we have:

sup
𝑧2∈𝒵

𝑀(𝑧2) = sup
𝑧2∈conv(𝒵)

𝑀(𝑧2).

203

We obtain:

𝑅2(ℓ, 𝒵, ℱ) = inf
𝑓1∈ℱ

sup
𝑧1∈𝒵

inf
𝑓2∈ℱ

sup
𝑧2∈conv(𝒵)

[
2∑︁

𝑡=1
ℓ(𝑧𝑡, 𝑓𝑡) − inf

𝑓∈ℱ

2∑︁
𝑡=1

ℓ(𝑧𝑡, 𝑓)].

By randomizing the choice of 𝑧2, we can use the von Neumann’s minimax theorem to

derive:

𝑅2(ℓ, 𝒵, ℱ) = inf
𝑓1∈ℱ

sup
𝑧1∈𝒵

{ ℓ(𝑧1, 𝑓1) + sup
𝑝2∈𝒫(conv(𝒵))

{ inf
𝑓2∈ℱ

E𝑧∼𝑝2ℓ(𝑧, 𝑓2)

− E𝑧2∼𝑝2 inf
𝑓∈ℱ

2∑︁
𝑡=1

ℓ(𝑧𝑡, 𝑓) } }.

For a fixed 𝑓1 ∈ ℱ , define:

𝐴(𝑧1) = ℓ(𝑧1, 𝑓1) + sup
𝑝2∈𝒫(conv(𝒵))

{ inf
𝑓2∈ℱ

E𝑧∼𝑝2ℓ(𝑧, 𝑓2) − E𝑧2∼𝑝2 inf
𝑓∈ℱ

2∑︁
𝑡=1

ℓ(𝑧𝑡, 𝑓) },

for any 𝑧1 ∈ 𝒵 . Observe that, for a fixed 𝑝2 ∈ 𝒫(conv(𝒵)), the function:

𝑧1 → inf
𝑓2∈ℱ

E𝑧∼𝑝2ℓ(𝑧, 𝑓2) − E𝑧2∼𝑝2 inf
𝑓∈ℱ

2∑︁
𝑡=1

ℓ(𝑧𝑡, 𝑓)

is convex as the difference between a constant and the expected value of the infimum of

affine functions. Since the supremum of convex functions is convex, 𝐴 is convex and

sup𝑧1∈𝒵 𝐴(𝑧1) = sup𝑧1∈conv(𝒵) 𝐴(𝑧1). We derive:

𝑅2(ℓ, 𝒵, ℱ) = inf
𝑓1∈ℱ

sup
𝑧1∈conv(𝒵)

[ℓ(𝑧1, 𝑓1) + sup
𝑝2∈𝒫(conv(𝒵))

{ inf
𝑓2∈ℱ

E𝑧∼𝑝2ℓ(𝑧, 𝑓2)

− E𝑧2∼𝑝2 inf
𝑓∈ℱ

2∑︁
𝑡=1

ℓ(𝑧𝑡, 𝑓)}].

To conclude, we unwind the first step, i.e. we use the minimax theorem in reverse order.

This yields:

𝑅2(ℓ, 𝒵, ℱ) = inf
𝑓1∈ℱ

sup
𝑧1∈conv(𝒵)

inf
𝑓2∈ℱ

sup
𝑧2∈conv(𝒵)

[
2∑︁

𝑡=1
ℓ(𝑧𝑡, 𝑓𝑡) − inf

𝑓∈ℱ

2∑︁
𝑡=1

ℓ(𝑧𝑡, 𝑓)],

204

i.e. 𝑅2(ℓ, 𝒵, ℱ) = 𝑅2(ℓ, conv(𝒵), ℱ). Moreover, 𝒵 is a compact set which implies that

conv(𝒵) is also a compact set by a standard topological argument. As a result, the game

(ℓ, conv(𝒵), ℱ) also satisfies Assumption 3.1.

B.3 Proof of Lemma 3.2

We follow the analysis carried out in the proof of Theorem 19 in [2]. Using Theorem 3.1

with 𝑝 taken as the distribution defined by i.i.d. copies of 𝑍, we get the lower bound:

𝑅𝑇 ≥ 𝑇 inf
𝑓∈ℱ

E[ℓ(𝑍𝑡, 𝑓)] − E[inf
𝑓∈ℱ

𝑇∑︁
𝑡=1

ℓ(𝑍𝑡, 𝑓)]

≥ 𝑇 sup
𝑓∈{𝑓1,𝑓2}

E[ℓ(𝑍𝑡, 𝑓)] − E[inf
𝑓∈{𝑓1,𝑓2}

𝑇∑︁
𝑡=1

ℓ(𝑍𝑡, 𝑓)]

≥ E[max{
𝑇∑︁

𝑡=1
E[ℓ(𝑍𝑡, 𝑓1)] − ℓ(𝑍𝑡, 𝑓1),

𝑇∑︁
𝑡=1

E[ℓ(𝑍𝑡, 𝑓2)] − ℓ(𝑍𝑡, 𝑓2)}]

≥ E[max{0,
𝑇∑︁

𝑡=1
ℓ(𝑍𝑡, 𝑓1) − ℓ(𝑍𝑡, 𝑓2)}],

where we use the fact that inf𝑓∈ℱ E[ℓ(𝑍𝑡, 𝑓)] = E[ℓ(𝑍𝑡, 𝑓1)] = E[ℓ(𝑍𝑡, 𝑓2)]. Since ℓ(𝑍, 𝑓2)

̸= ℓ(𝑍, 𝑓1) with positive probability, the random variables (ℓ(𝑍𝑡, 𝑓1) − ℓ(𝑍𝑡, 𝑓2))𝑡=1,··· ,𝑇

are i.i.d. with zero mean and positive variance and we can conclude with the central limit

theorem since ℓ is bounded.

B.4 Proof of Lemma 3.3

The fact that 𝑅𝑇 ≥ 0 follows from Theorem 3.1 by taking the 𝑍𝑡’s to be deterministic

and all equal to any 𝑧 ∈ 𝒵 . Clearly, if the game is trivial then 𝑅𝑇 = 0 because this

value is attained for 𝑓1, · · · , 𝑓𝑇 = 𝑓 * irrespective of the decisions made by the opponent.

Conversely, suppose that 𝑅𝑇 = 0. Take 𝑝 to be the product of 𝑇 uniform distributions on

𝒵 . Then, using again Theorem 3.1, we have:

0 ≥ E[
𝑇∑︁

𝑡=1
inf

𝑓𝑡∈ℱ
E[ℓ(𝑍𝑡, 𝑓𝑡)] − inf

𝑓∈ℱ

𝑇∑︁
𝑡=1

ℓ(𝑍𝑡, 𝑓)],

205

as 𝑍1, · · · , 𝑍𝑇 are independent random variables. Since they are also identically dis-

tributed, we obtain:

0 ≥ 𝑇 · inf
𝑓∈ℱ

E[ℓ(𝑍, 𝑓)] − E[inf
𝑓∈ℱ

𝑇∑︁
𝑡=1

ℓ(𝑍𝑡, 𝑓)].

Yet E[inf
𝑓∈ℱ

∑︀𝑇
𝑡=1 ℓ(𝑍𝑡, 𝑓)] ≤ inf

𝑓∈ℱ
E[∑︀𝑇

𝑡=1 ℓ(𝑍𝑡, 𝑓)] = 𝑇 · inf
𝑓∈ℱ

E[ℓ(𝑍, 𝑓)] and we derive:

𝑇 · inf
𝑓∈ℱ

E[ℓ(𝑍, 𝑓)] − E[inf
𝑓∈ℱ

𝑇∑︁
𝑡=1

ℓ(𝑍𝑡, 𝑓)] = 0.

Since ℓ is bounded, 𝒵 is compact, and ℓ(𝑧, ·) is continuous for any 𝑧 ∈ 𝒵 , 𝑓 → E[ℓ(𝑍, 𝑓)]

is continuous by dominated convergence so, since ℱ is compact, we can take

𝑓 * ∈ argmin
𝑓∈ℱ

E[ℓ(𝑍, 𝑓)].

We obtain:

E[
𝑇∑︁

𝑡=1
ℓ(𝑍𝑡, 𝑓 *) − inf

𝑓∈ℱ

𝑇∑︁
𝑡=1

ℓ(𝑍𝑡, 𝑓)] = 0.

As
∑︀𝑇

𝑡=1 ℓ(𝑍𝑡, 𝑓 *) − inf
𝑓∈ℱ

∑︀𝑇
𝑡=1 ℓ(𝑍𝑡, 𝑓) ≥ 0, we derive that:

(𝑧1, · · · , 𝑧𝑇) →
𝑇∑︁

𝑡=1
ℓ(𝑧𝑡, 𝑓 *) − inf

𝑓∈ℱ

𝑇∑︁
𝑡=1

ℓ(𝑧𝑡, 𝑓) = 0

holds almost everywhere on 𝒵𝑇 . If 𝒵 is discrete, this implies equality on 𝒵𝑇 , which in

particular implies that ℓ(𝑧, 𝑓 *) = inf
𝑓∈ℱ

ℓ(𝑧, 𝑓) for all 𝑧 ∈ 𝒵 and we are done. If, on the other

hand, ℓ(·, 𝑓) is continuous for all 𝑓 ∈ ℱ , we have:

𝑇∑︁
𝑡=1

ℓ(𝑧𝑡, 𝑓 *) ≤
𝑇∑︁

𝑡=1
ℓ(𝑧𝑡, 𝑓), ∀𝑓 ∈ ℱ , ∀(𝑧1, · · · , 𝑧𝑇) ∈ 𝒵,

for 𝒵 a subset of 𝒵 with Lebesgue measure equal to that of 𝒵 . Since a non-empty open

set cannot have Lebesgue measure 0, 𝒵 is dense in 𝒵 and by taking limits in the above

206

inequality for each 𝑓 ∈ ℱ separately, we conclude that:

𝑇∑︁
𝑡=1

ℓ(𝑧𝑡, 𝑓 *) ≤
𝑇∑︁

𝑡=1
ℓ(𝑧𝑡, 𝑓), ∀𝑓 ∈ ℱ , ∀(𝑧1, · · · , 𝑧𝑇) ∈ 𝒵,

which in particular implies that ℓ(𝑧, 𝑓 *) = inf
𝑓∈ℱ

ℓ(𝑧, 𝑓) for all 𝑧 ∈ 𝒵 and the game is trivial.

B.5 Proof of Lemma 3.4

Suppose by contradiction that we cannot find such a finite subset. Since 𝒵 is compact, it is

also separable thus it contains a countable dense subset {𝑧𝑛 | 𝑛 ∈ N}. By assumption, the

game (ℓ, {𝑧𝑘 | 𝑘 ≤ 𝑛}, ℱ) must be trivial for any 𝑛, i.e. there exists 𝑓𝑛 ∈ ℱ such that:

ℓ(𝑧𝑘, 𝑓𝑛) ≤ min
𝑓∈ℱ

ℓ(𝑧, 𝑓), ∀𝑘 ≤ 𝑛.

Since ℱ is compact, we can find a subsequence of (𝑓𝑛)𝑛∈N such that 𝑓𝑛 → 𝑓 * ∈ ℱ .

Without loss of generality, we continue to refer to this sequence as (𝑓𝑛)𝑛∈N. Taking the

limit 𝑛 → ∞ in the above inequality for any fixed 𝑘 ∈ N yields:

ℓ(𝑧𝑘, 𝑓 *) ≤ ℓ(𝑧𝑘, 𝑓), ∀𝑓 ∈ ℱ , ∀𝑘 ∈ N.

Consider a fixed 𝑓 ∈ ℱ . Since {𝑧𝑛 | 𝑛 ∈ N} is dense in 𝒵 and since ℓ(·, 𝑓 *) and ℓ(·, 𝑓) are

continuous, we get:

ℓ(𝑧, 𝑓 *) ≤ ℓ(𝑧, 𝑓), ∀𝑓 ∈ ℱ , ∀𝑧 ∈ 𝒵,

which shows that (ℓ, 𝒵, ℱ) is trivial, a contradiction.

B.6 Proof of Theorem 3.2

Without loss of generality we can assume that the game is not trivial and that 𝒳 (𝑧) is

finite for any 𝑧 ∈ 𝒵 since otherwise, if 𝒳 (𝑧) is a polyhedron, the maximum in (3.1) must

be attained at an extreme point of 𝒳 (𝑧) (ℓ is bounded by Assumption 3.1) and there are

finitely many such points for any 𝑧. Moreover, we can also assume that 𝒵 is discrete by

207

Lemma 3.4 since, borrowing the notations of Lemma 3.4, we have:

𝑅𝑇 (ℓ, 𝒵, ℱ) ≥ 𝑅𝑇 (ℓ, 𝒵, ℱ).

Write 𝒵 = {𝑧𝑛 | 1 ≤ 𝑛 ≤ 𝑁} and denote by 𝑝0 the uniform distribution on 𝒵 , i.e.

𝑝0(𝑛) = 1
𝑁

, for any 𝑛 ≤ 𝑁 . We may assume that there is a single equivalence class in

argmin𝑓∈ℱ E𝑝0 [ℓ(𝑍, 𝑓)], otherwise we are done by Lemma 3.2. Take

𝑓 * ∈ argmin
𝑓∈ℱ

E𝑝0 [ℓ(𝑍, 𝑓)].

Since the game (ℓ, 𝒵, ℱ) is not trivial, there exists 𝑧𝑘 in 𝒵 and 𝑓 ** in ℱ such that

ℓ(𝑧𝑘, 𝑓 **) < ℓ(𝑧𝑘, 𝑓 *).

Therefore, we can find 𝜖 > 0 small enough such that (𝑁 − 1)𝜖 < 1 and:

(1 − (𝑁 − 1)𝜖)ℓ(𝑧𝑘, 𝑓 **) +
∑︁
𝑛̸=𝑘

𝜖ℓ(𝑧𝑛, 𝑓 **) < (1 − (𝑁 − 1)𝜖)ℓ(𝑧𝑘, 𝑓 *) +
∑︁
𝑛̸=𝑘

𝜖ℓ(𝑧𝑛, 𝑓 *).

Define 𝑝1 as the corresponding distribution, i.e. 𝑝1(𝑛) = 𝜖 for 𝑛 ̸= 𝑘 and 𝑝1(𝑘) =

1−(𝑁 −1)𝜖. By construction, the equivalence class of 𝑓 * is not in argmin𝑓∈ℱ E𝑝1 [ℓ(𝑍, 𝑓)].

Once again, without loss of generality, we may assume that there is a single equiva-

lence class in argmin𝑓∈ℱ E𝑝1 [ℓ(𝑍, 𝑓)], otherwise we are done by Lemma 3.2. Moreover,

we can now redefine 𝑓 ** as a representative of the only equivalence class contained in

argmin𝑓∈ℱ E𝑝1 [ℓ(𝑍, 𝑓)]. We now move on to show that there must exist 𝛼 ∈ (0, 1) such

that there are at least two equivalence classes in 𝜑(𝛼) = argmin𝑓∈ℱ E𝑝𝛼 [ℓ(𝑍, 𝑓)], where the

distribution 𝑝𝛼 is defined as 𝑝𝛼 = (1−𝛼)𝑝0 +𝛼𝑝1. This will conclude the proof by Lemma

3.2. For any 𝑓 ∈ ℱ , define 𝐼(𝑓) = {𝛼 ∈ [0, 1] | 𝑓 ∈ 𝜑(𝛼)}. Since 𝛼 → E𝑝𝛼 [ℓ(𝑍, 𝑓)] is

linear in 𝛼, 𝐼(𝑓) is a closed interval. Moreover, note that min𝑓∈ℱ E𝑝𝛼 [ℓ(𝑍, 𝑓)] is equal to

208

the optimal value of the optimization problem:

min
𝑞1,··· ,𝑞𝑁 ,𝑓

𝑞T · ((1 − 𝛼)𝑝0 + 𝛼𝑝1)

subject to 𝑞 = (𝑞1, · · · , 𝑞𝑁)

𝑞𝑛 ≥ (𝐶(𝑧𝑛)𝑓 + 𝑐(𝑧𝑛))T𝑥 ∀𝑥 ∈ 𝒳 (𝑧𝑛), ∀𝑛 = 1, · · · , 𝑁

𝑓 ∈ ℱ , 𝑞1, · · · , 𝑞𝑁 ∈ R.

(B.1)

This is because: (i) for any optimal solution to (B.1) (𝑞1, · · · , 𝑞𝑁 , 𝑓),

(max
𝑥∈𝒳 (𝑧1)

(𝐶(𝑧1)𝑓 + 𝑐(𝑧1))T𝑥, · · · , max
𝑥∈𝒳 (𝑧𝑁)

(𝐶(𝑧𝑁)𝑓 + 𝑐(𝑧𝑁))T𝑥, 𝑓)

is also an optimal solution with objective function E𝑝𝛼 [ℓ(𝑍, 𝑓)], and (ii) any 𝑓 ∈ ℱ can

be mapped to a feasible solution of (B.1) with objective function E𝑝𝛼 [ℓ(𝑍, 𝑓)] through the

mapping 𝑓 → (max𝑥∈𝒳 (𝑧1)(𝐶(𝑧1)𝑓 + 𝑐(𝑧1))T𝑥, · · · , max𝑥∈𝒳 (𝑧𝑁)(𝐶(𝑧𝑁)𝑓 + 𝑐(𝑧𝑁))T𝑥, 𝑓).

Since ℱ is a polyhedron and 𝒳 (𝑧𝑛) is finite for any 𝑛, this optimization problem is a linear

program. Denoting by {𝑓1, · · · , 𝑓𝐿} the projections onto the 𝑓 coordinate of the extreme

points of the feasible set of (B.1), there exists, for any 𝛼 ∈ [0, 1], 𝑙 ∈ {1, · · · , 𝐿} such that

𝑓𝑙 ∈ 𝜑(𝛼). Hence, we can write [0, 1] = ∪𝐿
𝑙=1𝐼(𝑓𝑙). We can further simplify this description

by assuming that the 𝑓𝑙’s belong to different equivalence classes (because 𝐼(𝑓) = 𝐼(𝑓 ′) if

𝑓 ∼ℓ 𝑓 ′). Now observe that if 𝐼(𝑓𝑙) ∩ 𝐼(𝑓𝑗) ̸= ∅ for some 𝑙 ̸= 𝑗 ≤ 𝐿, then there are

two equivalent classes in 𝜑(𝛼) for any 𝛼 ∈ 𝐼(𝑓𝑙) ∩ 𝐼(𝑓𝑗) and we are done by Lemma 3.2.

Suppose by contradiction that we cannot find such a pair of indices. Because the only way

to partition [0, 1] into 𝐿 < ∞ non-overlapping closed intervals is to have 𝐿 = 1, we get

[0, 1] = 𝐼(𝑓1). This implies that 𝑓 * ∼ℓ 𝑓1 by optimality of 𝑓 * for 𝛼 = 0 and 𝑓 ** ∼ℓ 𝑓1 by

optimality of 𝑓 ** for 𝛼 = 1. We conclude that 𝑓 * ∼ℓ 𝑓 **, a contradiction.

B.7 Alternative Proof of Theorem 3.2

Using Lemma 3.1, we can assume without loss of generality that 𝒵 is convex. When ℓ

is linear, the procedure developed in the proof of Theorem 3.2 boils down to finding a

209

point 𝑧 ∈ int(𝒵) such that | argmin𝑓∈ℱ 𝑧T𝑓 | > 1 and, with further examination, we can

also guarantee that there exists 𝜖 > 0, 𝑒 ∈ R𝑛 and 𝑓1, 𝑓2 ∈ argmin𝑓∈ℱ 𝑧T𝑓 such that

𝑓1 ∈ argmin𝑓∈ℱ(𝑧 − 𝑥𝑒)T𝑓 while 𝑓2 /∈ argmin𝑓∈ℱ(𝑧 − 𝑥𝑒)T𝑓 for all 𝑥 ∈ (0, 𝜖] and

symmetrically for 𝑥 ∈ [−𝜖, 0). Consider a randomized opponent 𝑍𝑡 = 𝑧 + (𝜖𝑡𝜖)𝑒 for

(𝜖𝑡)𝑡=1,··· ,𝑇 i.i.d. Rademacher random variables. Then for any player’s strategy:

E[𝑟𝑇 ((𝑍𝑡)𝑡=1,··· ,𝑇 , (𝑓𝑡)𝑡=1,··· ,𝑇)] =
𝑇∑︁

𝑡=1
E[𝑍𝑡]T𝑓𝑡 − E[inf

𝑓∈ℱ
𝑓 T

𝑇∑︁
𝑡=1

𝑍𝑡].

This yields:

E[𝑟𝑇 ((𝑍𝑡)𝑡=1,··· ,𝑇 , (𝑓𝑡)𝑡=1,··· ,𝑇)] =
𝑇∑︁

𝑡=1
𝑧T𝑓𝑡 − E[inf

𝑓∈ℱ
𝑓 T

𝑇∑︁
𝑡=1

𝑍𝑡].

We can lower bound the last quantity by:

E[𝑟𝑇 ((𝑍𝑡)𝑡=1,··· ,𝑇 , (𝑓𝑡)𝑡=1,··· ,𝑇)] ≥ 𝑇 (𝑧T𝑓1) − 𝑇E[inf
𝑓∈ℱ

𝑓 T(𝑧 + (𝜖 ·
∑︀𝑇

𝑡=1 𝜖𝑡

𝑇
)𝑒)],

as 𝑓1 ∈ argmin𝑓∈ℱ 𝑧T𝑓 , but we could have equivalently picked 𝑓2 as 𝑓 T
1 𝑧 = 𝑓 T

2 𝑧. Further-

more, as |
∑︀𝑇

𝑡=1 𝜖𝑡

𝑇
| ≤ 1, 𝑓1 is optimal in the inner optimization problem when

∑︀𝑇
𝑡=1 𝜖𝑡 ≤ 0

while 𝑓2 is optimal when
∑︀𝑇

𝑡=1 𝜖𝑡 ≥ 0. Hence:

E[𝑟𝑇 ((𝑍𝑡)𝑡=1,··· ,𝑇 , (𝑓𝑡)𝑡=1,··· ,𝑇)] ≥ 𝑇 (𝑧T𝑓1) − 𝑇E[𝑓 T
1 (𝑧 + (𝜖 ·

∑︀𝑇
𝑡=1 𝜖𝑡

𝑇
)𝑒) · 1∑︀𝑇

𝑡=1 𝜖𝑡≤0+

𝑓 T
2 (𝑧 + (𝜖 ·

∑︀𝑇
𝑡=1 𝜖𝑡

𝑇
)𝑒) · 1∑︀𝑇

𝑡=1 𝜖𝑡≥0].

Observe that the term 𝑇 (𝑧T𝑓1) cancels out and we get:

E[𝑟𝑇 ((𝑍𝑡)𝑡=1,··· ,𝑇 , (𝑓𝑡)𝑡=1,··· ,𝑇)] ≥ E[|∑︀𝑡=1 𝜖𝑡|]
𝑇

· 𝜖 · (𝑓 T
1 𝑒 − 𝑓 T

2 𝑒).

By Khintchine’s inequality E[|∑︀𝑇
𝑡=1 𝜖𝑡|] ≥ 1√

2

√
𝑇 . Moreover 𝑓 T

1 𝑒 − 𝑓 T
2 𝑒 > 0 because

𝑓2 ∈ argmin𝑓∈ℱ(𝑧 + 𝜖𝑒)T𝑓 while 𝑓1 does not and 𝑓 T
1 𝑧 = 𝑓 T

2 𝑧. We finally derive

E[𝑟𝑇 ((𝑍𝑡)𝑡=1,··· ,𝑇 , (𝑓𝑡)𝑡=1,··· ,𝑇)] ≥ (𝑓 T
1 𝑒 − 𝑓 T

2 𝑒)√
2

√
𝑇 .

210

This enables us to conclude 𝑅𝑇 = Ω(
√

𝑇) as this shows that for any player’s strategy, there

exists a sequence 𝑧1, · · · , 𝑧𝑇 such that

𝑟𝑇 ((𝑧𝑡)𝑡=1,··· ,𝑇 , (𝑓𝑡)𝑡=1,··· ,𝑇) ≥ E[𝑟𝑇 ((𝑍𝑡)𝑡=1,··· ,𝑇 , (𝑓𝑡)𝑡=1,··· ,𝑇)].

B.8 Proof of Theorem 3.3

Straightforward from Theorem 3.2 since ℓ is jointly continuous.

B.9 Proof of Lemma 3.5

Using Lemma 3.1, we can assume that 𝒵 is convex. Consider 𝑓1 ̸= 𝑓2 ∈ ℱ and define 𝑒 =
𝑓1−𝑓2

‖𝑓1−𝑓2‖ . Since 0 ∈ int(𝒵), there exists 𝜖 > 0 such that 𝜖𝑒 and −𝜖𝑒 are in 𝒵 . We restrict the

opponent’s decision set by imposing that, at any round 𝑡, the opponent’s move be 𝑦𝑡𝜖𝑒 for

𝑦𝑡 ∈ 𝒵 = {−1, 1}. Since ℓ(𝑦𝑡𝜖𝑒, 𝑓) only depends on 𝑓 through the scalar product between

𝑓 and 𝑒, the player’s decision set can equivalently be described by ℱ̃ = {𝑓 T𝑒 | 𝑓 ∈ ℱ}

which is a closed interval (since ℱ is convex and compact) and thus a polyhedron. Defining

a new loss function as ℓ̃(𝑦, 𝑓) = 𝑦𝜖𝑓 , we have:

𝑅𝑇 (ℓ, 𝒵, ℱ) ≥ 𝑅𝑇 (ℓ̃, 𝒵, ℱ̃).

Observe that the game (ℓ̃, 𝒵, ℱ̃) is linear and not trivial, otherwise there would exist 𝑓 *

such that 𝑒T𝑓 * ≤ 𝑒T𝑓2 and −𝑒T𝑓 * ≤ −𝑒T𝑓1 which would imply ‖𝑒‖ = 0. With Theorem

3.3, we conclude 𝑅𝑇 (ℓ̃, 𝒵, ℱ̃) = Ω(
√

𝑇) and thus 𝑅𝑇 (ℓ, 𝒵, ℱ) = Ω(
√

𝑇).

B.10 Proof of Lemma 3.6

Using Lemma 3.1, we can assume that 𝒵 is convex. Since 𝒵 is compact and convex

and since 0 /∈ 𝒵 , we can strictly separate 0 from 𝒵 and find 𝑧* ̸= 0 such that 𝒵 ⊆

𝐵2(𝑧*, 𝛼 ‖𝑧*‖) with 𝛼 < 1. By rescaling 𝒵 , we can assume that 𝛼 ‖𝑧*‖ = 1 and ‖𝑧*‖ > 1.

In the sequel, 𝜎𝑡−1 serves as a shorthand for 𝜎(𝑍1, · · · , 𝑍𝑡−1). We prove more generally

211

that, for any choice of random variables (𝑍1, · · · , 𝑍𝑇) such that E[𝑍𝑡|𝜎𝑡−1] is constant

almost surely, the lower bound on regret derived from Theorem 3.1 is 𝑂(1). Write 𝑍𝑡 =

𝑧* + 𝑊𝑡 and E[𝑊𝑡|𝜎𝑡−1] = 𝑐𝑡 with ‖𝑊𝑡‖ ≤ 1 and ‖𝑐𝑡‖ ≤ 1. Define 𝑤* = 𝑇 · 𝑧* +∑︀𝑇
𝑡=1 𝑐𝑡.

Observe that ‖𝑤*‖ ≥ 𝑇 · ‖𝑧*‖ − ‖∑︀𝑇
𝑡=1 𝑐𝑡‖ ≥ 𝑇 · (‖𝑧*‖ − 1) > 0. Write 𝑊𝑡 = 𝑋𝑡

𝑤*

‖𝑤*‖ +

𝑊̃𝑡 + 𝑐𝑡 with 𝑊̃ T
𝑡 𝑤* = 0. Projecting down the equality E[𝑊𝑡 − 𝑐𝑡|𝜎𝑡−1] = 0 onto 𝑤*, we

get E[𝑋𝑡|𝜎𝑡−1] = 0 and E[𝑊̃𝑡|𝜎𝑡−1] = 0. The bound that results from an application of

Theorem 3.1 is:

𝑅𝑇 ≥ E[‖𝑤* +
𝑇∑︁

𝑡=1
𝑊𝑡 − 𝑐𝑡‖] −

𝑇∑︁
𝑡=1

‖𝑧* + 𝑐𝑡‖].

We now focus on finding an upper bound on the right-hand side. Expanding the first term

yields:

‖𝑤* +
𝑇∑︁

𝑡=1
𝑊𝑡 − 𝑐𝑡‖ =

⎯⎸⎸⎷(1 +
𝑇∑︁

𝑡=1

𝑋𝑡

‖𝑤*‖
)2 · ‖𝑤*‖2 + ‖

𝑇∑︁
𝑡=1

𝑊̃𝑡‖2.

By concavity of the squared root function:

E[‖𝑤* +
𝑇∑︁

𝑡=1
𝑊𝑡 − 𝑐𝑡‖] ≤

⎯⎸⎸⎷‖𝑤*‖2 · E[(1 +
𝑇∑︁

𝑡=1

𝑋𝑡

‖𝑤*‖
)2] + E[‖

𝑇∑︁
𝑡=1

𝑊̃𝑡‖2].

We expand the two inner terms:

E[(1 +
𝑇∑︁

𝑡=1

𝑋𝑡

‖𝑤*‖
)2] = 1 + 2

𝑇∑︁
𝑡=1

E[𝑋𝑡]
‖𝑤*‖

+ 1
‖𝑤*‖2 · E[(

𝑇∑︁
𝑡=1

𝑋𝑡)2].

Looking at each term individually, we have E[𝑋𝑡] = E[E[𝑋𝑡|𝜎𝑡−1] = 0 and:

E[(
𝑇∑︁

𝑡=1
𝑋𝑡)2] = E[(

𝑇 −1∑︁
𝑡=1

𝑋𝑡)2] + 2E[𝑋𝑇 · (
𝑇 −1∑︁
𝑡=1

𝑋𝑡)] + E[𝑋2
𝑇],

yet E[𝑋𝑇 · (∑︀𝑇 −1
𝑡=1 𝑋𝑡)] = E[E[𝑋𝑇 |𝜎𝑇 −1] · (∑︀𝑇 −1

𝑡=1 𝑋𝑡)] = 0. Hence, E[(1 +∑︀𝑇
𝑡=1

𝑋𝑡

‖𝑤*‖)2] =

1 + E[
∑︀𝑇

𝑡=1 𝑋2
𝑡]

‖𝑤*‖2 . Similarly E[‖∑︀𝑇
𝑡=1 𝑊̃𝑡‖2] = ∑︀𝑇

𝑡=1 E[‖𝑊̃𝑡‖2]. We obtain:

E[‖𝑤* +
𝑇∑︁

𝑡=1
𝑊𝑡 − 𝑐𝑡‖] ≤

⎯⎸⎸⎷‖𝑤*‖2 +
𝑇∑︁

𝑡=1
E[𝑋2

𝑡 + ‖𝑊̃𝑡‖2].

212

Remark that ‖𝑊𝑡 − 𝑐𝑡‖ ≤ ‖𝑊𝑡‖ + ‖𝑐𝑡‖ ≤ 2. Hence, 𝑋2
𝑡 + ‖𝑊̃𝑡‖2 ≤ 2. We obtain:

E[‖𝑤* +
𝑇∑︁

𝑡=1
𝑊𝑡 − 𝑐𝑡‖] ≤

√︁
‖𝑤*‖2 + 2𝑇 .

We have
√︁

‖𝑤*‖2 + 2𝑇 = ‖𝑤*‖ ·
√︁

1 + 2𝑇
‖𝑤*‖2 ≤ ‖𝑤*‖ + 𝑇

‖𝑤*‖ for 𝑇 big enough as ‖𝑤*‖ ≥

𝑇 · (‖𝑧*‖ − 1). Yet ‖𝑤*‖ = ‖∑︀𝑇
𝑡=1 𝑧* + 𝑐𝑡‖ ≤ ∑︀𝑇

𝑡=1 ‖𝑧* + 𝑐𝑡‖. Hence, the lower bound

derived is:

E[‖𝑤* +
𝑇∑︁

𝑡=1
𝑊𝑡 − 𝑐𝑡‖] −

𝑇∑︁
𝑡=1

‖𝑧* + 𝑐𝑡‖ ≤ 𝑇

‖𝑤*‖
≤ 1

‖𝑧*‖ − 1 = 𝑂(1).

B.11 Proof of Theorem 3.5

Without loss of generality, we may assume that 𝒵 is a convex set by Lemma 3.1. Remark

that the game (ℓ, 𝒵, ℱ) is trivial if and only if 𝒵 is a segment [𝑧1, 𝑧2] such that 𝑧1 and

𝑧2 are collinear. Suppose that the game is not trivial. To simplify the presentation, we

further suppose that 𝒵 is not a segment, but the proof can easily be extended to deal with

this case. Consider three non-collinear points in 𝒵 . The projection of 𝒵 onto the two-

dimensional space spanned by these three points has non-empty interior. Hence, we can

find 𝑧* ̸= 0, 𝛼 ∈ (0, 1
32], and 𝑒 a unit vector orthogonal to 𝑧* such that 𝒵 = {𝑧 |𝑧 =

𝑧* + (𝑤𝛼 ‖𝑧*‖)𝑒, |𝑤| ≤ 1} ⊆ 𝒵 , which implies that 𝑅𝑇 (ℓ, 𝒵, ℱ) ≥ 𝑅𝑇 (ℓ, 𝒵, ℱ), and we

can focus on developing a Ω(log(𝑇)) lower bound on regret for the game (ℓ, 𝒵, ℱ). Using

the minimax reformulation of Theorem 3.1, we have:

𝑅𝑇 (ℓ, 𝒵, ℱ)

= sup
𝑝

E
[︃

−
𝑇∑︁

𝑡=1
‖𝑧* + (𝛼 ‖𝑧*‖E[𝑊𝑡|𝑊1, · · · , 𝑊𝑡−1])𝑒‖ +

⃦⃦⃦⃦
⃦𝑇𝑧* + (𝛼 ‖𝑧*‖

𝑇∑︁
𝑡=1

𝑊𝑡)𝑒
⃦⃦⃦⃦
⃦
]︃

= sup
𝑝

E[−
𝑇∑︁

𝑡=1

√︁
‖𝑧*‖2 + (𝛼 ‖𝑧*‖E[𝑊𝑡|𝑊1, · · · , 𝑊𝑡−1])2

+

⎯⎸⎸⎷𝑇 2 ‖𝑧*‖2 + (𝛼 ‖𝑧*‖
𝑇∑︁

𝑡=1
𝑊𝑡)2]

213

where the supremum is taken over the distribution 𝑝 of the random variables (𝑊1, · · · , 𝑊𝑇)

in [−1, 1]𝑇 . Rearranging this expression yields:

𝑅𝑇 (ℓ,𝒵, ℱ)

= ‖𝑧*‖ sup
𝑝

E

⎡⎣ 𝑇

√︃
1 + (𝛼

∑︀𝑇
𝑡=1 𝑊𝑡

𝑇
)2 −

𝑇∑︁
𝑡=1

√︁
1 + (𝛼E[𝑊𝑡|𝑊1, · · · , 𝑊𝑡−1])2

⎤⎦
= ‖𝑧*‖ sup

𝑝
{E[𝑇 (1 +

∞∑︁
𝑛=1

(︃ 1
2
𝑛

)︃
𝛼2𝑛(

∑︀𝑇
𝑡=1 𝑊𝑡

𝑇
)2𝑛)

−
𝑇∑︁

𝑡=1
(1 +

∞∑︁
𝑛=1

(︃ 1
2
𝑛

)︃
𝛼2𝑛E[𝑊𝑡|𝑊1, · · · , 𝑊𝑡−1]2𝑛)]}

= ‖𝑧*‖ sup
𝑝

{𝛼2

2 E
[︃

(∑︀𝑇
𝑡=1 𝑊𝑡)2

𝑇
−

𝑇∑︁
𝑡=1

E[𝑊𝑡|𝑊1, · · · , 𝑊𝑡−1]2
]︃

+
∞∑︁

𝑛=2

(︃ 1
2
𝑛

)︃
𝛼2𝑛E

[︃
(∑︀𝑇

𝑡=1 𝑊𝑡)2𝑛

𝑇 2𝑛−1 −
𝑇∑︁

𝑡=1
E[𝑊𝑡|𝑊1, · · · , 𝑊𝑡−1]2𝑛

]︃
},

where the second equality results from a series expansion, which is valid since

(𝛼E[𝑊𝑡|𝑊1, · · · , 𝑊𝑡−1])2, (𝛼
∑︀𝑇

𝑡=1 𝑊𝑡

𝑇
)2 ≤ 𝛼2 < 1,

and the third inequality is derived from Fubini, observing that:

∞∑︁
𝑛=1

|
(︃ 1

2
𝑛

)︃
|𝛼2𝑛E[(

∑︀𝑇
𝑡=1 𝑊𝑡

𝑇
)2𝑛] ≤

∞∑︁
𝑛=1

𝛼2𝑛 = 1
1 − 𝛼2 < ∞

and similarly:

∞∑︁
𝑛=1

|
(︃ 1

2
𝑛

)︃
|𝛼2𝑛E[E[𝑊𝑡|𝑊1, · · · , 𝑊𝑡−1]2𝑛] ≤

∞∑︁
𝑛=1

𝛼2𝑛 = 1
1 − 𝛼2 < ∞.

Interestingly, the first-order term of this series expansion, i.e.

E
[︃

(∑︀𝑇
𝑡=1 𝑊𝑡)2

𝑇
−

𝑇∑︁
𝑡=1

E[𝑊𝑡|𝑊1, · · · , 𝑊𝑡−1]2
]︃

,

214

is precisely the expression of the minimax regret for the game:

(ℓ(𝑧, 𝑓) = (𝑧 − 𝑓)2, [−1, 1], [−1, 1])

which is known to have optimal regret Θ(log(𝑇)), see Section 7.3 of [2]. This motivates the

introduction of the probability distribution 𝑝 used in [2] to establish the Ω(log(𝑇)) lower

bound. Specifically, we use the conditional distributions:

𝑝𝑡(𝑊𝑡 = 𝑤|𝑊1, · · · , 𝑊𝑡−1) =

⎧⎪⎨⎪⎩
1+𝑐𝑡𝑊1:𝑡−1

2 if 𝑤 = 1
1−𝑐𝑡𝑊1:𝑡−1

2 if 𝑤 = −1
𝑡 = 2, · · · , 𝑇

where 𝑊1:𝑡−1 = ∑︀𝑡−1
𝜏=1 𝑊𝜏 and the sequence (𝑐𝑡)𝑡=1,··· ,𝑇 is recursively defined as:

𝑐𝑇 = 1
𝑇

𝑐𝑡−1 = 𝑐𝑡 + 𝑐2
𝑡 𝑡 = 𝑇, · · · , 2.

Together with 𝑊1 taken as a Rademacher random variable, these conditional distributions

define a joint distribution 𝑝 as it can be shown that 𝑐𝑡 ∈ [0, 1
𝑡
]. The authors in [2] show that:

E
[︃

(∑︀𝑇
𝑡=1 𝑊𝑡)2

𝑇
−

𝑇∑︁
𝑡=1

E[𝑊𝑡|𝑊1, · · · , 𝑊𝑡−1]2
]︃

= log(𝑇) + 𝑂(log log(𝑇)). (B.2)

Hence, it remains to control the terms of order 𝑛 ≥ 2 in the series expansion. First observe

that, by definition:

E[𝑊 2𝑛
1:𝑇] = E[E[𝑊 2𝑛

1:𝑇 |𝑊1, · · · , 𝑊𝑇 −1]]

= E[1 + 𝑐𝑡𝑊1:𝑇 −1

2 (𝑊1:𝑇 −1 + 1)2𝑛 + 1 − 𝑐𝑡𝑊1:𝑇 −1

2 (𝑊1:𝑇 −1 + 1)2𝑛]

= 1 +
𝑛∑︁

𝑘=1
(
(︃

2𝑛

2𝑘

)︃
+
(︃

2𝑛

2𝑘 − 1

)︃
𝑐𝑇)E[(𝑊1:𝑇 −1)2𝑘],

215

which implies that:

|𝑐2𝑛−1
𝑇 E[𝑊 2𝑛

1:𝑇] − (𝑐2𝑛−1
𝑇 + 2𝑛𝑐2𝑛

𝑇)E[𝑊 2𝑛
1:𝑇 −1]| ≤

(︃
2𝑛

2(𝑛 − 1)

)︃
𝑐𝑇 + 2

𝑛∑︁
𝑘=0

(︃
2𝑛

2𝑘

)︃
𝑐2

𝑇

≤ 2𝑛2𝑐𝑇 + 24𝑛𝑐2
𝑇 ,

(B.3)

since 𝑐𝑇 |𝑊1:𝑇 −1| ≤ 1. Additionally, we have, using the recursive definition of the sequence

(𝑐𝑡)𝑡=1,··· ,𝑇 :

𝑐2𝑛−1
𝑇 −1 = (𝑐𝑇 + 𝑐2

𝑇)2𝑛−1

=
2𝑛−1∑︁
𝑘=0

(︃
2𝑛 − 1

𝑘

)︃
𝑐2𝑛−1+𝑘

𝑇 ,

which implies:

|𝑐2𝑛−1
𝑇 −1 − (𝑐2𝑛−1

𝑇 + (2𝑛 − 1)𝑐2𝑛
𝑇)| ≤ 2𝑛2𝑐2𝑛+1

𝑇 + 4𝑛𝑐2𝑛+2
𝑇 . (B.4)

Using E[𝑊𝑇 |𝑊1, · · · , 𝑊𝑇 −1] = 𝑐𝑇 𝑊1:𝑇 −1, we get:

|E[𝑐2𝑛−1
𝑇 𝑊 2𝑛

1:𝑇 −
𝑇∑︁

𝑡=1
E[𝑊𝑡|𝑊1, · · · , 𝑊𝑡−1]2𝑛]|

≤ |E[(𝑐2𝑛−1
𝑇 + 2(𝑛 − 1)𝑐2𝑛

𝑇)𝑊 2𝑛
1:𝑇 −1] −

𝑇 −1∑︁
𝑡=1

E[𝑊𝑡|𝑊1, · · · , 𝑊𝑡−1]2𝑛]|

+ 2𝑛2𝑐𝑇 + 24𝑛𝑐2
𝑇

≤ |E[𝑐2𝑛−1
𝑇 −1 𝑊 2𝑛

1:𝑇 −1 −
𝑇 −1∑︁
𝑡=1

E[𝑊𝑡|𝑊1, · · · , 𝑊𝑡−1]2𝑛]|

+ (2𝑛2𝑐2𝑛+1
𝑇 + 4𝑛𝑐2𝑛+2

𝑇)E[𝑊 2𝑛
1:𝑇 −1] + 2𝑛2𝑐𝑇 + 24𝑛𝑐2

𝑇

≤ 4𝑛2𝑐𝑇 + 34𝑛𝑐2
𝑇

≤ 4𝑛2 1
𝑇

+ 34𝑛 1
𝑇 2 ,

where the first (resp. second) inequality is obtained by applying (B.3) (resp. (B.4)) and the

fifth inequality is derived using 𝑐𝑇 ∈ [0, 1
𝑇

] and |𝑊1:𝑇 −1| ≤ 𝑇 − 1. By induction on 𝑡, we

216

get:

|E
[︃
𝑐2𝑛−1

𝑇 𝑊 2𝑛
1:𝑇 −

𝑇∑︁
𝑡=1

E[𝑊𝑡|𝑊1, · · · , 𝑊𝑡−1]2𝑛

]︃
| ≤ 4𝑛2

𝑇∑︁
𝑡=1

1
𝑡

+ 34𝑛
𝑇∑︁

𝑡=1

1
𝑡2

≤ 4𝑛2 log(𝑇) + 4𝑛 𝜋2

2 .

Bringing everything together, we derive:

|
∞∑︁

𝑛=2

(︃ 1
2
𝑛

)︃
𝛼2𝑛E

[︃
(∑︀𝑇

𝑡=1 𝑊𝑡)2𝑛

𝑇 2𝑛−1 −
𝑇∑︁

𝑡=1
E[𝑊𝑡|𝑊1, · · · , 𝑊𝑡−1]2𝑛

]︃
|

≤ 4(
∞∑︁

𝑛=2

(︃ 1
2
𝑛

)︃
𝛼2𝑛𝑛2) log(𝑇)

+ (
∞∑︁

𝑛=2

(︃ 1
2
𝑛

)︃
(2𝛼)2𝑛)𝜋2

2

≤ 8𝛼4(
∞∑︁

𝑛=2
𝑛(𝑛 − 1)(𝛼2)𝑛−2) log(𝑇)

+ (
∞∑︁

𝑛=0
(2𝛼)2𝑛)𝜋2

2

≤ 8 𝛼4

(1 − 𝛼2)3 log(𝑇) + 𝜋2

2(1 − 2𝛼)

≤ 8 𝛼4

(1 − 𝛼2)3 log(𝑇) + 𝜋2,

since 𝛼 ≤ 1
4 . Using (B.2), we conclude that:

𝑅𝑇 (ℓ, 𝒵, ℱ) ≥ ‖𝑧*‖ 𝛼2

2 (1 − 16 𝛼2

(1 − 𝛼2)3) log(𝑇) + 𝑂(log log(𝑇)),

which implies that 𝑅𝑇 (ℓ, 𝒵, ℱ) = Ω(log(𝑇)) as 𝛼2(1 − 16 𝛼2

(1−𝛼2)3) > 0 for 𝛼 ∈ (0, 1
32].

B.12 Proof of Theorem 3.6

The proof is along the same lines as for Theorem 3.4. We start with the same inequality:

𝑟𝑇 ((𝑧𝑡)𝑡=1,··· ,𝑇 , (𝑓𝑡)𝑡=1,··· ,𝑇) ≤
𝑇∑︁

𝑡=1
𝑧T

𝑡 (𝑓𝑡 − 𝑓𝑡+1),

217

and use sensitivity analysis to control this last quantity. Specifically, we show that the

mapping 𝜑 : 𝑧 → argmin𝑓∈ℱ 𝑧T𝑓 is well defined and 1
𝑞−1 -Hölder continuous on 𝒵 , i.e.

there exists 𝑐 > 0 such that:

‖𝜑(𝑧1) − 𝜑(𝑧2)‖2 ≤ 𝑐 ‖𝑧1 − 𝑧2‖
1

𝑞−1
2 ∀(𝑧1, 𝑧2) ∈ 𝒵2.

Using this property, we get:

𝑟𝑇 ((𝑧𝑡)𝑡=1,··· ,𝑇 , (𝑓𝑡)𝑡=1,··· ,𝑇) ≤
𝑇∑︁

𝑡=1
‖𝑧𝑡‖2 ‖𝑓𝑡 − 𝑓𝑡+1‖2

= 𝑂(
𝑇∑︁

𝑡=1

⃦⃦⃦⃦
⃦ 1

𝑡 − 1

𝑡−1∑︁
𝜏=1

𝑧𝜏 − 1
𝑡

𝑡∑︁
𝜏=1

𝑧𝜏

⃦⃦⃦⃦
⃦

1
𝑞−1

2
)

= 𝑂(
𝑇∑︁

𝑡=1

⃦⃦⃦⃦
⃦ 1

𝑡(𝑡 − 1)

𝑡−1∑︁
𝜏=1

𝑧𝜏 − 1
𝑡
𝑧𝑡

⃦⃦⃦⃦
⃦

1
𝑞−1

2
)

= 𝑂(
𝑇∑︁

𝑡=1
(1
𝑡(𝑡 − 1)

⃦⃦⃦⃦
⃦

𝑡−1∑︁
𝜏=1

𝑧𝜏

⃦⃦⃦⃦
⃦

2
+ 1

𝑡
‖𝑧𝑡‖2)

1
𝑞−1)

= 𝑂(
𝑇∑︁

𝑡=1

1
𝑡

1
𝑞−1

),

from which we derive that

𝑟𝑇 ((𝑧𝑡)𝑡=1,··· ,𝑇 , (𝑓𝑡)𝑡=1,··· ,𝑇) = 𝑂(log(𝑇))

if 𝑞 = 2 and

𝑟𝑇 ((𝑧𝑡)𝑡=1,··· ,𝑇 , (𝑓𝑡)𝑡=1,··· ,𝑇) = 𝑂(𝑇
𝑞−2
𝑞−1)

if 𝑞 ∈ (2, 3]. We move on to show that 𝜑 is 1
𝑞−1 -Hölder continuous. Just like in Theorem

3.4, we can find 𝐴 > 0 such that ‖𝑧‖2 ≥ 𝐴 for all 𝑧 ∈ 𝒵 . Take (𝑧1, 𝑧2) ∈ 𝒵2 and

(𝑓1, 𝑓2) ∈ argmin𝑓∈ℱ 𝑧T
1𝑓 ×argmin𝑓∈ℱ 𝑧T

2𝑓 . Since we are optimizing a linear function, we

may assume, without loss of generality, that 𝐶 = 1 and 𝑓1 and 𝑓2 lie on the boundary of ℱ ,

i.e. ‖𝑓1‖ℱ = ‖𝑓2‖ℱ = 1. By definition, we have:

⃦⃦⃦⃦
⃦𝑓1 + 𝑓2

2

⃦⃦⃦⃦
⃦

ℱ
≤ 1 − 𝛿ℱ(‖𝑓1 − 𝑓2‖ℱ).

218

As a consequence, we have:

𝑓1 + 𝑓2

2 − 𝛿ℱ(‖𝑓1 − 𝑓2‖ℱ) 𝑧2

‖𝑧2‖ℱ
∈ ℱ .

We get:

𝑧T
2(𝑓1 + 𝑓2

2 − 𝛿ℱ(‖𝑓1 − 𝑓2‖ℱ) 𝑧2

‖𝑧2‖ℱ
) ≥ inf

𝑓∈ℱ
𝑧T

2𝑓 = 𝑧T
2𝑓2.

Rearranging this last inequality yields:

𝑧T
2
𝑓1 − 𝑓2

2 ≥ ‖𝑧2‖2
2

‖𝑧2‖ℱ
𝛿ℱ(‖𝑓1 − 𝑓2‖ℱ),

which implies that:

𝑧T
2
𝑓1 − 𝑓2

2 ≥ 𝐾 ‖𝑓1 − 𝑓2‖𝑞
2 ,

for some 𝐾 > 0 independent of 𝑧1 and 𝑧2 since 𝒵 is compact, ‖𝑧2‖2 ≥ 𝐴 > 0, ‖ ‖ℱ is

𝑞-uniformly convex, and by the equivalence of norms in finite dimensions. By optimality

of 𝑓1, we also have 𝑧T
1

𝑓2−𝑓1
2 ≥ 0. Summing up the last two inequalities, we get:

(𝑧2 − 𝑧1)T 𝑓1 − 𝑓2

2 ≥ 𝐾 ‖𝑓1 − 𝑓2‖𝑞
2 ,

and (by Cauchy-Schwartz):

‖𝑧2 − 𝑧1‖2 ≥ 2𝐾 ‖𝑓1 − 𝑓2‖𝑞−1
2 ,

which concludes the proof.

B.13 Proof of Lemma 3.7

Observe that the game (ℓ(𝑧, 𝑓) = 𝑧T𝑓, 𝒵, ℱ) is not trivial because argmin𝑓∈ℱ 𝑓 T𝑧3 = {𝑓 *}

while argmin𝑓∈ℱ 𝑓 T𝑧4 = {𝑓 **}. For any zero-mean i.i.d. opponent 𝑍1, · · · , 𝑍𝑇 , we must

have 𝑍𝑡 ∈ [𝑧1, 𝑧2]. Since 𝑓 * ∈ argmin𝑓∈ℱ 𝑓 T𝑧 for 𝑧 ∈ [𝑧1, 𝑧2], we get, irrespective of the

219

player’s strategy:

E[𝑟𝑇 ((𝑍𝑡)𝑡=1,··· ,𝑇 , (𝑓𝑡)𝑡=1,··· ,𝑇)] = −E[inf
𝑓∈ℱ

𝑓 T
𝑇∑︁

𝑡=1
𝑍𝑡]

= −E[(𝑓 *)T
𝑇∑︁

𝑡=1
𝑍𝑡] = 0.

220

Appendix C

Appendix For Chapter 4

C.1 Extensions

C.1.1 Improving the Multiplicative Factors in the Regret Bounds

C.1.1.a A Single Limited Resource whose Consumption is Deterministic

If the amounts of resource consumed are deterministic, we can substitute the notation 𝜇𝑐
𝑘

for 𝑐𝑘. Moreover, we can take 𝜆 = 1 and, going through the analysis of Lemma 4.5, we

can slightly refine the regret bound. Specifically, we have E[𝑛𝑘,𝜏*] ≤ 16
(𝑐𝑘)2 · E[ln(𝜏*)]

(Δ𝑘)2 + 𝜋2

3 ,

for any arm 𝑘 such that Δ𝑘 > 0. Moreover, 𝜏 * ≤ 𝐵/𝜖 + 1 in this setting since:

𝐵 ≥
𝜏*−1∑︁
𝑡=1

𝑐𝑎𝑡,𝑡 ≥ (𝜏 * − 1) · 𝜖,

by definition of 𝜏 *. As a result, the regret bound derived in Theorem 4.1 turns into:

𝑅𝐵 ≤ 16(
∑︁

𝑘 | Δ𝑘>0

1
𝑐𝑘 · Δ𝑘

) · ln(𝐵

𝜖
+ 1) + 𝑂(1),

which is identical (up to universal constant factors) to the bound obtained in [90]. Note that

this bound is scale-free.

221

C.1.1.b Arbitrarily Many Limited Resources whose Consumptions are Determinis-

tic

We propose another load balancing algorithm that couples bases together. This is key to get

a better dependence on 𝐾 because, otherwise, we have to study each basis independently

from the other ones.

Algorithm: Load balancing algorithm 𝒜𝑥 for a feasible basis 𝑥 ∈ ℬ.

If 𝑥 is selected at time 𝑡, pull any arm 𝑎𝑡 ∈ argmax
𝑘∈𝒦𝑥

𝜉𝑥
𝑘

𝑛𝑘,𝑡
.

Observe that this load balancing algorithm is computationally efficient with a 𝑂(𝐾) run-

time (once we have computed an optimal basic feasible solution to (4.8)) and requires

𝑂(𝐾) memory space. The shortcoming of this approach is that, if there are multiple op-

timal bases to (4.3), the optimal load balance for each optimal basis will not be preserved

since we take into account the number of times we have pulled each arm when selecting

any basis (for which we strive to enforce different ratios). Hence, the following assumption

will be required for the analysis.

Assumption C.1. There is a unique optimal basis to (4.3).

Regret Analysis. All the proofs are deferred to Section C.7. We start by bounding, for

each arm 𝑘, the number of times this arm can be pulled when selecting any of the subop-

timal bases. This is in stark contrast with the analysis carried out in Section 4.5 where we

bound the number of times each suboptimal basis has been selected.

Lemma C.1. For any arm 𝑘 ∈ {1, · · · , 𝐾}, we have:

E[
∑︁

𝑥∈ℬ | 𝑘∈𝒦𝑥, 𝑥 ̸=𝑥*

𝑛𝑥
𝑘,𝜏*] ≤ 16𝜌 · (∑︀𝐶

𝑖=1 𝑏(𝑖))2

𝜖2 · E[ln(𝜏 *)]
(Δ𝑘)2 + 𝐾 · 𝜋2

3 ,

where Δ𝑘 = min𝑥∈ℬ | 𝑘∈𝒦𝑥, 𝑥 ̸=𝑥* Δ𝑥.

In contrast to Section 4.5, we can only guarantee that the ratios (𝑛𝑥
𝑘,𝑡/𝑛𝑥

𝑙,𝑡)𝑘,𝑙∈𝒦𝑥 remain

close to the optimal ones (𝜉𝑥
𝑘 /𝜉𝑥

𝑙)𝑘,𝑙∈𝒦𝑥 at all times for the optimal basis 𝑥 = 𝑥*. This

222

will not allow us to derive distribution-free regret bounds for this particular class of load

balancing algorithms.

Lemma C.2. At any time 𝑡 and for any arm 𝑘 ∈ 𝒦𝑥* , we have:

𝑛𝑘,𝑡 ≥ 𝑛𝑥*,𝑡 · 𝜉𝑥*
𝑘∑︀𝐾

𝑙=1 𝜉𝑥*
𝑙

− 𝜌 · (
∑︁

𝑥∈ℬ,𝑥 ̸=𝑥*
𝑛𝑥,𝑡 + 1) (C.1)

and

𝑛𝑘,𝑡 ≤ 𝑛𝑥*,𝑡 · 𝜉𝑥*
𝑘∑︀𝐾

𝑙=1 𝜉𝑥*
𝑙

+
∑︁

𝑥∈ℬ,𝑥 ̸=𝑥*
𝑛𝑥,𝑡 + 1. (C.2)

Bringing everything together, we are now ready to establish regret bounds.

Theorem C.1. We have:

𝑅𝐵(1),··· ,𝐵(𝐶) ≤ 32𝜌3 · (∑︀𝐶
𝑖=1 𝑏(𝑖))3

𝜖3 · 𝑏
· (

𝐾∑︁
𝑘=1

1
(Δ𝑘)2) · ln(

∑︀𝐶
𝑖=1 𝑏(𝑖) · 𝐵

𝜖
+ 1) + 𝑂(1),

where the 𝑂 notation hides universal constant factors.

We derive a distribution-dependent regret bound of order 𝑂(𝜌3 · 𝐾 · ln(𝐵)
Δ2) where Δ =

min𝑥∈ℬ | Δ𝑥>0 Δ𝑥 but no non-trivial distribution-free regret bound.

C.1.1.c Arbitrarily Many Limited Resources

A straightforward extension of the load balancing algorithm developed in the case of deter-

ministic resource consumption in Section C.1.1.b guarantees that the total number of times

any suboptimal basis is pulled is of order 𝑂(𝐾 · ln(𝑇)). However, in contrast to Section

C.1.1.b, this is not enough to get logarithmic regret bounds as 𝜉𝑥
𝑘,𝑡 fluctuates around the

optimal load balance 𝜉𝑥
𝑘,𝑡 with a magnitude of order at least ∼ 1/

√
𝑡, and, as a result, the

ratios (E[𝑛𝑥
𝑘,𝑇]/E[𝑛𝑥

𝑙,𝑇])𝑘,𝑙∈𝒦𝑥 might be very different from the optimal ones (𝜉𝑥
𝑘 /𝜉𝑥

𝑙)𝑘,𝑙∈𝒦𝑥 .

Algorithm: Load balancing algorithm 𝒜𝑥 for a feasible basis 𝑥 ∈ ℬ.

If 𝑥 is selected at time 𝑡, pull any arm 𝑎𝑡 ∈ argmax
𝑘∈𝒦𝑥

𝜉𝑥
𝑘,𝑡

𝑛𝑘,𝑡
.

223

Lemma C.3. For any arm 𝑘 ∈ {1, · · · , 𝐾}, we have:

E[
∑︁

𝑥∈ℬ | 𝑘∈𝒦𝑥, Δ𝑥>0
𝑛𝑥

𝑘,𝑇] ≤ 16𝐶 · 𝜆2 · ln(𝑇)
(Δ𝑘)2 + 212 𝐾 · (𝐶 + 3)!2

𝜖6 ,

where Δ𝑘 = min𝑥∈ℬ | 𝑘∈𝒦𝑥, Δ𝑥>0 Δ𝑥.

C.1.2 Relaxing Assumption 4.1

The regret bounds obtained in Sections 4.5, 4.6, and 4.7 can be extended when the ratios

converge as opposed to being fixed, as precisely stated below, but this requires slightly

more work.

Assumption C.2. For any resource 𝑖 ∈ {1, · · · , 𝐶}, the ratio 𝐵(𝑖)/𝐵(𝐶) converges to a

finite value 𝑏(𝑖) ∈ (0, 1]. Moreover, 𝑏 = min
𝑖=1,··· ,𝐶

𝑏(𝑖) is a positive quantity.

To state the results, we need to redefine some notations and to work with the linear program:

sup
(𝜉𝑘)𝑘=1,··· ,𝐾∈R𝐾

+

𝐾∑︁
𝑘=1

𝜇𝑟
𝑘 · 𝜉𝑘

subject to
𝐾∑︁

𝑘=1
𝜇𝑐

𝑘(𝑖) · 𝜉𝑘 ≤ 𝐵(𝑖)
𝐵(𝐶) , 𝑖 = 1, · · · , 𝐶

(C.3)

We redefine ℬ as the set of bases that are feasible to (C.3) and, for 𝑥 ∈ ℬ, Δ𝑥 is redefined as

the optimality gap of 𝑥 with respect to (C.3). We also redefine 𝒪 = {𝑥 ∈ ℬ | Δ𝑥 = 0} as

the set of optimal bases to (C.3). Moreover, we define ℬ∞ (resp. 𝒪∞) as the set of feasible

(resp. optimal) bases to (4.3) and, for 𝑥 ∈ ℬ∞, Δ∞
𝑥 is the optimality gap of 𝑥 with respect

to (4.3). Our algorithm remains the same provided that we substitute 𝑏(𝑖) with 𝐵(𝑖)/𝐵(𝐶)

for any resource 𝑖 ∈ {1, · · · , 𝐶}. Specifically, Step-Simplex consists in solving:

sup
(𝜉𝑘)𝑘=1,··· ,𝐾∈R𝐾

+

𝐾∑︁
𝑘=1

(𝑟𝑘,𝑡 + 𝜆 · 𝜖𝑘,𝑡) · 𝜉𝑘

subject to
𝐾∑︁

𝑘=1
(𝑐𝑘,𝑡(𝑖) − 𝜂𝑖 · 𝜖𝑘,𝑡) · 𝜉𝑘 ≤ 𝐵(𝑖)

𝐵(𝐶) , 𝑖 = 1, · · · , 𝐶

(C.4)

224

and Step-Load-Balance is identical up to the substitution of 𝑏(𝑖) with 𝐵(𝑖)/𝐵(𝐶).

Regret Analysis. As it turns out, the logarithmic regret bounds established in Theorems

4.3, 4.5, and 4.8 do not always extend when Assumption 4.1 is relaxed even though these

bounds appear to be very similar to the one derived in Theorem 4.1 when there is a single

limited resource. The fundamental difference is that the set of optimal bases may not

converge while it is always invariant in the case of a single limited resource. Typically, the

ratios (𝐵(𝑖)/𝐵(𝐶))𝑖=1,··· ,𝐶 may oscillate around (𝑏(𝑖))𝑖=1,··· ,𝐶 in such a way that there exist

two optimal bases for (4.3) while there is a unique optimal basis for this same optimization

problem whenever the right-hand side of the inequality constraints is slightly perturbed

around this limit. This alternately causes one of these two bases to be slightly suboptimal,

a situation difficult to identify and to cope with for the decision maker. Nevertheless, this

difficulty does not arise in several situations of interest which generalize Assumption 4.1,

as precisely stated below. The proofs are deferred to Section C.7.

Arbitrarily many limited resources whose consumptions are deterministic.

Theorem C.2. Suppose that Assumption C.2 holds. If there exists a unique optimal basis to

(4.3) or if 𝐵(𝑖)/𝐵(𝐶) − 𝑏(𝑖) = 𝑂(ln(𝐵(𝐶))/𝐵(𝐶)) for all resources 𝑖 ∈ {1, · · · , 𝐶 − 1}

then, we have:

𝑅𝐵(1),··· ,𝐵(𝐶) =𝑂(𝜌 ·∑︀𝐶
𝑖=1 𝑏(𝑖)

𝜖 · 𝑏
· (

∑︁
𝑥∈ℬ∞ | Δ∞

𝑥 >0

1
Δ∞

𝑥

) · ln(
∑︀𝐶

𝑖=1 𝑏(𝑖) · 𝐵(𝐶)
𝜖

+ 1))

+ 𝑂(|𝒪∞| · ln(𝐵(𝐶))
𝜖 · 𝑏

),

where the 𝑂 notation hides universal constant factors.

A time horizon and another limited resource.

Theorem C.3. Suppose that Assumptions 4.4, 4.5, and 4.6 hold and that the ratio 𝐵/𝑇

converges to 𝑏 ∈ (0, 1]. If there exists a unique optimal basis to (4.3) or if 𝐵/𝑇 − 𝑏 =

225

𝑂(ln(𝑇)/𝑇), then, we have:

𝑅𝐵,𝑇 = 𝑂(𝜆2

𝜖3 · (
∑︁

𝑥∈ℬ∞ | Δ∞
𝑥 >0

1
Δ∞

𝑥

) · ln(𝑇) + 𝐾2 · 𝜎

𝜖3 · ln(𝑇)),

where the 𝑂 notation hides universal constant factors.

Arbitrarily many limited resources with a time horizon.

Theorem C.4. Suppose that Assumptions 4.7, 4.8, and C.2 hold. If there exists a unique

optimal basis to (4.3) or if 𝐵(𝑖)/𝑇 − 𝑏(𝑖) = 𝑂(ln(𝑇)/𝑇) for all resources 𝑖 ∈ {1, · · · , 𝐶 −

1}, then, we have:

𝑅𝐵(1),··· ,𝐵(𝐶−1),𝑇 = 𝑂((𝐶 + 3)!3 · 𝜆2

𝜖6 · (
∑︁

𝑥∈ℬ∞ | Δ∞
𝑥 >0

1
Δ∞

𝑥

) · ln(𝑇))

+ 𝜎 · |ℬ∞| · (𝐶 + 3)!4
𝜖6 · ln(𝑇)),

where the 𝑂 notation hides universal constant factors.

C.2 Proofs for Section 4.3

C.2.1 Proof of Lemma 4.2

The proof can be found in [16]. For the sake of completeness, we reproduce it here. The

optimization problem (4.3) is a linear program whose dual reads:

inf
(𝜁𝑖)𝑖=1,··· ,𝐶

𝐶∑︁
𝑖=1

𝑏(𝑖) · 𝜁𝑖

subject to
𝐶∑︁

𝑖=1
𝜇𝑐

𝑘(𝑖) · 𝜁𝑖 ≥ 𝜇𝑟
𝑘, 𝑘 = 1, · · · , 𝐾

𝜁𝑖 ≥ 0, 𝑖 = 1, · · · , 𝐶.

(C.5)

226

Observe that (4.3) is feasible therefore (4.3) and (C.5) have the same optimal value. Note

that (4.3) is bounded under Assumption 4.2 as 𝜉𝑘 ∈ [0, 𝑏(𝑖)/𝜇𝑐
𝑘(𝑖)] for any feasible point

and any resource 𝑖 ∈ {1, · · · , 𝐶} such that 𝜇𝑐
𝑘(𝑖) > 0. Hence, (C.5) has an optimal basic

feasible solution (𝜁*
1 , · · · , 𝜁*

𝐶). Consider any non-anticipating algorithm. Let 𝑍𝑡 be the

sum of the total payoff accumulated in rounds 1 to 𝑡 plus the “cost” of the remaining

resources, i.e. 𝑍𝑡 = ∑︀𝑡
𝜏=1 𝑟𝑎𝜏 ,𝜏 + ∑︀𝐶

𝑖=1 𝜁*
𝑖 · (𝐵(𝑖) − ∑︀𝑡

𝜏=1 𝑐𝑎𝜏 ,𝜏 (𝑖)). Observe that (𝑍𝑡)𝑡 is

a supermartingale with respect to the filtration (ℱ𝑡)𝑡 as E[𝑍𝑡 | ℱ𝑡−1] = E[𝜇𝑟
𝑎𝑡

− ∑︀𝐶
𝑖=1 𝜁*

𝑖 ·

𝜇𝑐
𝑎𝑡

(𝑖) | ℱ𝑡−1] + 𝑍𝑡−1 ≤ 𝑍𝑡−1 since (𝜁*
1 , · · · , 𝜁*

𝐶) is feasible for (C.5). Moreover, note that

(𝑍𝑡)𝑡 has bounded increments since |𝑍𝑡−𝑍𝑡−1| = |𝑟𝑎𝑡,𝑡−
∑︀𝐶

𝑖=1 𝜁*
𝑖 ·𝑐𝑎𝑡,𝑡(𝑖)| ≤ 1+∑︀𝐶

𝑖=1 𝜁*
𝑖 <

∞. We also have E[𝜏 *] < ∞ as:

E[𝜏 *] =
∞∑︁

𝑡=1
P[𝜏 * ≥ 𝑡]

≤
∞∑︁

𝑡=1
P[

𝑡−1∑︁
𝜏=1

𝑐𝑎𝜏 ,𝜏 (𝑖) ≤ 𝐵(𝑖), 𝑖 = 1, · · · , 𝐶]

≤ 1 +
∞∑︁

𝑡=1
P[

𝑡∑︁
𝜏=1

𝐶∑︁
𝑖=1

𝑐𝑎𝜏 ,𝜏 (𝑖) ≤ 𝑡 · 𝜖 − (𝑡 · 𝜖 −
𝐶∑︁

𝑖=1
𝐵(𝑖))]

≤ (
∑︀𝐶

𝑖=1 𝐵(𝑖)
𝜖

+ 2) +
∞∑︁

𝑡≥
∑︀𝐶

𝑖=1 𝐵(𝑖)
𝜖

exp(−2(𝑡 · 𝜖 −∑︀𝐶
𝑖=1 𝐵(𝑖))2

𝑡
)

< ∞,

where the third inequality results from an application of Lemma 4.1 and

𝜖 = min
𝑘=1,··· ,𝐾
𝑖=1,··· ,𝐶

with 𝜇𝑐
𝑘(𝑖)>0

𝜇𝑐
𝑘(𝑖).

By Doob’s optional stopping theorem, E[𝑍𝜏*] ≤ E[𝑍0] = ∑︀𝐶
𝑖=1 𝜁*

𝑖 · 𝐵(𝑖). Observe that:

E[𝑍𝜏*] = E[𝑟𝑎𝜏* ,𝜏* −
𝐶∑︁

𝑖=1
𝜁*

𝑖 · 𝑐𝑎𝜏* ,𝜏*(𝑖) + 𝑍𝜏*−1]

≥ E[−
𝐶∑︁

𝑖=1
𝜁*

𝑖 +
𝜏*−1∑︁
𝑡=1

𝑟𝑎𝑡,𝑡].

227

Using Assumption 4.2 and since (𝜁*
𝑖)𝑖=1,··· ,𝐶 is a basic feasible solution, for every 𝑖 ∈

{1, · · · , 𝐶} such that 𝜁*
𝑖 > 0 there must exist 𝑘 ∈ {1, · · · , 𝐾} such that 𝜁*

𝑖 ≤ 𝜇𝑟
𝑘/𝜇𝑐

𝑘(𝑖)

with 𝜇𝑐
𝑘(𝑖) > 0. We get:

E[𝑍𝜏*] ≥ E[
𝜏*−1∑︁
𝑡=1

𝑟𝑎𝑡,𝑡] − max
𝑘=1,··· ,𝐾
𝑖=1,··· ,𝐶

with 𝜇𝑐
𝑘(𝑖)>0

𝜇𝑟
𝑘

𝜇𝑐
𝑘(𝑖)

and finally:

E[
𝜏*−1∑︁
𝑡=1

𝑟𝑎𝑡,𝑡] ≤
𝐶∑︁

𝑖=1
𝜁*

𝑖 · 𝐵(𝑖) + max
𝑘=1,··· ,𝐾
𝑖=1,··· ,𝐶

with 𝜇𝑐
𝑘(𝑖)>0

𝜇𝑟
𝑘

𝜇𝑐
𝑘(𝑖)

= 𝐵 ·
𝐶∑︁

𝑖=1
𝜁*

𝑖 · 𝑏(𝑖) + max
𝑘=1,··· ,𝐾
𝑖=1,··· ,𝐶

with 𝜇𝑐
𝑘(𝑖)>0

𝜇𝑟
𝑘

𝜇𝑐
𝑘(𝑖) .

By strong duality,
∑︀𝐶

𝑖=1 𝜁*
𝑖 · 𝑏(𝑖) is also the optimal value of (4.3).

C.3 Proofs for Section 4.4

C.3.1 Proof of Lemma 4.4

By definition of 𝜏 *, we have
∑︀𝜏*−1

𝑡=1 𝑐𝑎𝑡,𝑡 ≤ 𝐵. Taking expectations on both sides yields:

𝐵 ≥ E[
𝜏*−1∑︁
𝑡=1

𝑐𝑎𝑡,𝑡]

=
∞∑︁

𝑡=1
E[𝐼𝜏*≥𝑡 · 𝑐𝑎𝑡,𝑡] − 1

=
∞∑︁

𝑡=1
E[𝐼𝜏*≥𝑡 · E[𝑐𝑎𝑡,𝑡 | ℱ𝑡−1]] − 1

=
∞∑︁

𝑡=1
E[𝐼𝜏*≥𝑡 · 𝜇𝑐

𝑎𝑡
] − 1

≥
∞∑︁

𝑡=1
E[𝐼𝜏*≥𝑡 · 𝜖] − 1 = E[𝜏 *] · 𝜖 − 1,

228

where we use the fact that 𝑐𝑘,𝑡 ≤ 1 for all arms 𝑘 to derive the second inequality, the

fact that 𝜏 * is a stopping time for the second equality, the fact that 𝑎𝑡 is deterministically

determined by the past, i.e. 𝑎𝑡 ∈ ℱ𝑡−1, for the third equality and Assumption 4.2 for the

third inequality. We conclude that E[𝜏 *] ≤ 𝐵+1
𝜖

.

C.3.2 Proof of Lemma 4.5

We break down the analysis in a series of facts. Consider any arm 𝑘 such that Δ𝑘 > 0. We

use the shorthand notation 𝛽𝑘 = 25(𝜆
𝜇𝑐

𝑘
)2 · (1

Δ𝑘
)2.

Fact C.1.

E[𝑛𝑘,𝜏*] ≤ 2𝛽𝑘 · E[ln(𝜏 *)] + E[
𝜏*∑︁

𝑡=1
𝐼𝑎𝑡=𝑘 · 𝐼𝑛𝑘,𝑡≥𝛽𝑘 ln(𝑡)]. (C.6)

Proof. Define the random variable 𝑇𝑘 = 𝛽𝑘 · ln(𝜏 *). We have:

E[𝑛𝑘,𝜏*] = E[𝑛𝑘,𝜏* · 𝐼𝑛𝑘,𝜏* <𝑇𝑘
] + E[𝑛𝑘,𝜏* · 𝐼𝑛𝑘,𝜏* ≥𝑇𝑘

]

≤ 𝛽𝑘 · E[ln(𝜏 *)] + E[𝑛𝑘,𝜏* · 𝐼𝑛𝑘,𝜏* ≥𝑇𝑘
].

Define 𝑇 *
𝑘 as the first time 𝑡 such that 𝑛𝑘,𝑡 ≥ 𝑇𝑘 and 𝑇 *

𝑘 = ∞ if no such 𝑡 exists. We have:

E[𝑛𝑘,𝜏* · 𝐼𝑛𝑘,𝜏* ≥𝑇𝑘
] = E[

𝜏*∑︁
𝑡=1

𝐼𝑎𝑡=𝑘 · 𝐼𝑛𝑘,𝜏* ≥𝑇𝑘
]

= E[
𝑇 *

𝑘 −1∑︁
𝑡=1

𝐼𝑎𝑡=𝑘 · 𝐼𝑛𝑘,𝜏* ≥𝑇𝑘
] + E[

𝜏*∑︁
𝑡=𝑇 *

𝑘

𝐼𝑎𝑡=𝑘 · 𝐼𝑛𝑘,𝜏* ≥𝑇𝑘
]

≤ E[𝑛𝑘,𝑇 *
𝑘

−1 · 𝐼𝑛𝑘,𝜏* ≥𝑇𝑘
] + E[

𝜏*∑︁
𝑡=𝑇 *

𝑘

𝐼𝑎𝑡=𝑘 · 𝐼𝑛𝑘,𝑡≥𝑇𝑘
]

≤ 𝛽𝑘 · E[ln(𝜏 *)] + E[
𝜏*∑︁

𝑡=1
𝐼𝑎𝑡=𝑘 · 𝐼𝑛𝑘,𝑡≥𝛽𝑘 ln(𝑡)],

since, by definition of 𝑇 *
𝑘 , 𝑛𝑘,𝑇 *

𝑘
−1 ≤ 𝑇𝑘 if 𝑇 *

𝑘 if finite, which is always true if 𝑛𝑘,𝜏* ≥ 𝑇𝑘

(the sequence (𝑛𝑘,𝑡)𝑡 is non-decreasing and 𝜏 * is finite almost surely as a byproduct of

Lemma 4.4). Conversely, 𝑛𝑘,𝑡 ≥ 𝑇𝑘 ≥ 𝛽𝑘 ln(𝑡) for 𝑡 ∈ {𝑇 *
𝑘 , · · · , 𝜏 *}. Wrapping up, we

229

obtain:

E[𝑛𝑘,𝜏*] ≤ 2𝛽𝑘 · E[ln(𝜏 *)] + E[
𝜏*∑︁

𝑡=1
𝐼𝑎𝑡=𝑘 · 𝐼𝑛𝑘,𝑡≥𝛽𝑘 ln(𝑡)].

Fact C.1 enables us to assume that arm 𝑘 has been pulled at least 𝛽𝑘 ln(𝑡) times out of the

last 𝑡 time periods. The remainder of this proof is dedicated to show that the second term

of the right-hand side of (C.6) can be bounded by a constant. Let us first rewrite this term:

E[
𝜏*∑︁

𝑡=1
𝐼𝑎𝑡=𝑘 · 𝐼𝑛𝑘,𝑡≥𝛽𝑘 ln(𝑡)] ≤ E[

𝜏*∑︁
𝑡=1

𝐼obj𝑘,𝑡+𝐸𝑘,𝑡≥obj𝑘*,𝑡+𝐸𝑘*,𝑡
· 𝐼𝑛𝑘,𝑡≥𝛽𝑘 ln(𝑡)]

≤ E[
𝜏*∑︁

𝑡=1
𝐼obj𝑘,𝑡≥obj𝑘+𝐸𝑘,𝑡

] (C.7)

+ E[
𝜏*∑︁

𝑡=1
𝐼obj𝑘*,𝑡≤obj𝑘* −𝐸𝑘*,𝑡

] (C.8)

+ E[
𝜏*∑︁

𝑡=1
𝐼obj𝑘* <obj𝑘+2𝐸𝑘,𝑡

· 𝐼𝑛𝑘,𝑡≥𝛽𝑘 ln(𝑡)]. (C.9)

To derive this last inequality, simply observe that if obj𝑘,𝑡 < obj𝑘 + 𝐸𝑘,𝑡 and obj𝑘*,𝑡 >

obj𝑘* − 𝐸𝑘*,𝑡 while obj𝑘,𝑡 + 𝐸𝑘,𝑡 ≥ obj𝑘*,𝑡 + 𝐸𝑘*,𝑡, it must be that obj𝑘* < obj𝑘 + 2𝐸𝑘,𝑡.

Let us study (C.7), (C.8), and (C.9) separately.

Fact C.2.

E[
𝜏*∑︁

𝑡=1
𝐼obj𝑘* <obj𝑘+2𝐸𝑘,𝑡

· 𝐼𝑛𝑘,𝑡≥𝛽𝑘 ln(𝑡)] ≤ 2𝜋2

3𝜖2 .

Proof. Observe that when both 𝑛𝑘,𝑡 ≥ 𝛽𝑘 ln(𝑡) and obj𝑘* < obj𝑘 + 2𝐸𝑘,𝑡, we have:

Δ𝑘

2 < 𝐸𝑘,𝑡

≤ 𝜆

𝑐𝑘,𝑡

·
√︃

2
𝛽𝑘

≤ 𝜇𝑐
𝑘

2𝑐𝑘,𝑡

· Δ𝑘

2 ,

230

by definition of 𝛽𝑘. This implies that 𝑐𝑘,𝑡 ≤ 𝜇𝑐
𝑘/2. Thus:

E[
𝜏*∑︁

𝑡=1
𝐼obj𝑘* <obj𝑘+2𝐸𝑘,𝑡

· 𝐼𝑛𝑘,𝑡≥𝛽𝑘 ln(𝑡)] ≤ E[
𝜏*∑︁

𝑡=1
𝐼𝑐𝑘,𝑡<𝜇𝑐

𝑘
/2 · 𝐼𝑛𝑘,𝑡≥𝛽𝑘 ln(𝑡)]

We upper bound this last term using the concentration inequalities of Lemma 4.1 observing

that:

E[
∞∑︁

𝑡=1
𝐼𝑐𝑘,𝑡<𝜇𝑐

𝑘
/2 · 𝐼𝑛𝑘,𝑡≥𝛽𝑘 ln(𝑡)] =

∞∑︁
𝑡=1

P[𝑐𝑘,𝑡 <
𝜇𝑐

𝑘

2 ; 𝑛𝑘,𝑡 ≥ 𝛽𝑘 ln(𝑡)]

≤
∞∑︁

𝑡=1

𝑡∑︁
𝑠=𝛽𝑘 ln(𝑡)

P[𝑐𝑘,𝑡 < 𝜇𝑐
𝑘 − 𝜇𝑐

𝑘

2 ; 𝑛𝑘,𝑡 = 𝑠].

Denote by 𝑡1, · · · , 𝑡𝑠 the first 𝑠 random times at which arm 𝑘 is pulled (these random vari-

ables are finite almost surely). We have:

P[𝑐𝑘,𝑡 < 𝜇𝑐
𝑘 − 𝜇𝑐

𝑘

2 ; 𝑛𝑘,𝑡 = 𝑠] ≤ P[
𝑠∑︁

𝑙=1
𝑐𝑘,𝑡𝑙

< 𝑠 · 𝜇𝑐
𝑘 − 𝑠 · 𝜇𝑐

𝑘

2].

Observe that, for any 𝑙 ≤ 𝑠:

E[𝑐𝑘,𝑡𝑙
| 𝑐𝑘,𝑡1 , · · · , 𝑐𝑘,𝑡𝑙−1] = E[

∞∑︁
𝜏=1

𝐼𝑡𝑙=𝜏 · E[𝑐𝑘,𝜏 | ℱ𝜏−1] | 𝑐𝑘,𝑡1 , · · · , 𝑐𝑘,𝑡𝑙−1]

= E[
∞∑︁

𝜏=1
𝐼𝑡𝑙=𝜏 · 𝜇𝑐

𝑘 | 𝑐𝑘,𝑡1 , · · · , 𝑐𝑘,𝑡𝑙−1]

= 𝜇𝑐
𝑘,

since the algorithm is not randomized ({𝑡𝑙 = 𝜏} ∈ ℱ𝜏−1) and using the tower property.

231

Hence, we can apply Lemma 4.1 to get:

∞∑︁
𝑡=1

P[𝑐𝑘,𝑡 <
𝜇𝑐

𝑘

2 ; 𝑛𝑘,𝑡 ≥ 𝛽𝑘 ln(𝑡)] ≤
∞∑︁

𝑡=1

∞∑︁
𝑠=𝛽𝑘 ln(𝑡)

exp(−𝑠 · (𝜇𝑐
𝑘)2

2)

≤
∞∑︁

𝑡=1

exp(− (𝜇𝑐
𝑘)2

2 · 𝛽𝑘 ln(𝑡))
1 − exp(− (𝜇𝑐

𝑘
)2

2)

≤ 1
1 − exp(− (𝜇𝑐

𝑘
)2

2)

∞∑︁
𝑡=1

1
𝑡2

≤ 2𝜋2

3(𝜇𝑐
𝑘)2

≤ 2𝜋2

3𝜖2 ,

where we use the fact that 𝛽𝑘 ≥ 25(1+𝜅
𝜇𝑐

𝑘
)2 · (𝜇𝑐

𝑘*
𝜇𝑟

𝑘*
)2 ≥ 25(1+ 1

𝜅

𝜇𝑐
𝑘

)2 ≥ 4
(𝜇𝑐

𝑘
)2 for the third

inequality (using Assumption 4.3), the fact that exp(−𝑥) ≤ 1 − 𝑥
2 for 𝑥 ∈ [0, 1] for the

fourth inequality, and Assumption 4.2 for the last inequality.

Let us now elaborate on (C.7).

Fact C.3.

E[
𝜏*∑︁

𝑡=1
𝐼obj𝑘,𝑡≥obj𝑘+𝐸𝑘,𝑡

] ≤ 𝜋2

3 .

Proof. Note that if 𝑟𝑘,𝑡/𝑐𝑘,𝑡 = obj𝑘,𝑡 ≥ obj𝑘 + 𝐸𝑘,𝑡 = 𝜇𝑟
𝑘/𝜇𝑐

𝑘 + 𝐸𝑘,𝑡, then either 𝑟𝑘,𝑡 ≥

𝜇𝑟
𝑘 + 𝜖𝑘,𝑡 or 𝑐𝑘,𝑡 ≤ 𝜇𝑐

𝑘 − 𝜖𝑘,𝑡, otherwise we would have:

𝑟𝑘,𝑡

𝑐𝑘,𝑡

− 𝜇𝑟
𝑘

𝜇𝑐
𝑘

= (𝑟𝑘,𝑡 − 𝜇𝑟
𝑘)𝜇𝑐

𝑘 + (𝜇𝑐
𝑘 − 𝑐𝑘,𝑡)𝜇𝑟

𝑘

𝑐𝑘,𝑡 · 𝜇𝑐
𝑘

<
𝜖𝑘,𝑡

𝑐𝑘,𝑡

+ 𝜖𝑘,𝑡

𝑐𝑘,𝑡

· 𝜇𝑟
𝑘

𝜇𝑐
𝑘

≤ (1 + 𝜅) · 𝜖𝑘,𝑡

𝑐𝑘,𝑡

= 𝐸𝑘,𝑡,

a contradiction. Therefore:

232

E[
𝜏*∑︁

𝑡=1
𝐼obj𝑘,𝑡≥obj𝑘+𝐸𝑘,𝑡

] ≤
∞∑︁

𝑡=1
P[𝑟𝑘,𝑡 ≥ 𝜇𝑟

𝑘 + 𝜖𝑘,𝑡] + P[𝑐𝑘,𝑡 ≤ 𝜇𝑐
𝑘 − 𝜖𝑘,𝑡]

≤
∞∑︁

𝑡=1

𝑡∑︁
𝑠=1

P[𝑟𝑘,𝑡 ≥ 𝜇𝑟
𝑘 +

√︃
2 ln(𝑡)

𝑠
; 𝑛𝑘,𝑡 = 𝑠]

+
∞∑︁

𝑡=1

𝑡∑︁
𝑠=1

P[𝑐𝑘,𝑡 ≤ 𝜇𝑐
𝑘 −

√︃
2 ln(𝑡)

𝑠
; 𝑛𝑘,𝑡 = 𝑠]

=
∞∑︁

𝑡=1

𝑡∑︁
𝑠=1

P[
𝑠∑︁

𝑙=1
𝑟𝑘,𝑡𝑙

≥ 𝑠 · 𝜇𝑟
𝑘 +

√︁
𝑠 · 2 ln(𝑡) ; 𝑛𝑘,𝑡 = 𝑠]

+
∞∑︁

𝑡=1

𝑡∑︁
𝑠=1

P[
𝑠∑︁

𝑙=1
𝑐𝑘,𝑡𝑙

≤ 𝑠 · 𝜇𝑐
𝑘 −

√︁
𝑠 · 2 ln(𝑡) ; 𝑛𝑘,𝑡 = 𝑠]

≤
∞∑︁

𝑡=1

𝑡∑︁
𝑠=1

2 exp(−4 ln(𝑡))

= 𝜋2

3 ,

where the random variables (𝑡𝑙)𝑙 are defined similarly as in the proof of Fact C.2 and the

last inequality results from an application of Lemma 4.1.

What remains to be done is to bound (C.8).

Fact C.4.

E[
𝜏*∑︁

𝑡=1
𝐼obj𝑘*,𝑡≤obj𝑘* −𝐸𝑘*,𝑡

] ≤ 𝜋2

3 .

Proof. We proceed along the same lines as in the proof of Fact C.3. As a matter of fact, the

situation is perfectly symmetric because, in the course of proving Fact C.3, we do not rely

on the fact that we have pulled arm 𝑘 more than 𝛽𝑘 ln(𝑡) times at any time 𝑡. If 𝑟𝑘*,𝑡/𝑐𝑘*,𝑡 =

obj𝑘*,𝑡 ≤ obj𝑘* − 𝐸𝑘*,𝑡 = 𝜇𝑟
𝑘*/𝜇𝑐

𝑘* − 𝐸𝑘*,𝑡, then we have either 𝑟𝑘*,𝑡 ≤ 𝜇𝑟
𝑘* − 𝜖𝑘*,𝑡 or

𝑐𝑘*,𝑡 ≥ 𝜇𝑐
𝑘* + 𝜖𝑘*,𝑡, otherwise we would have:

𝑟𝑘*,𝑡

𝑐𝑘*,𝑡

− 𝜇𝑟
𝑘*

𝜇𝑐
𝑘*

= (𝑟𝑘*,𝑡 − 𝜇𝑟
𝑘*)𝜇𝑐

𝑘* + (𝜇𝑐
𝑘* − 𝑐𝑘*,𝑡)𝜇𝑟

𝑘*

𝑐𝑘*,𝑡 · 𝜇𝑐
𝑘*

> −𝜖𝑘*,𝑡

𝑐𝑘*,𝑡

− 𝜖𝑘*,𝑡

𝑐𝑘*,𝑡

· 𝜇𝑟
𝑘*

𝜇𝑐
𝑘*

≥ −(1 + 𝜅) · 𝜖𝑘*,𝑡

𝑐𝑘*,𝑡

= −𝐸𝑘*,𝑡,

233

a contradiction. Therefore:

E[
𝜏*∑︁

𝑡=1
𝐼obj𝑘*,𝑡≤obj𝑘* −𝐸𝑘*,𝑡

] ≤ E[
∞∑︁

𝑡=1
𝐼𝑟𝑘*,𝑡≤𝜇𝑟

𝑘* −𝜖𝑘,𝑡
+ 𝐼𝑐𝑘*,𝑡≥𝜇𝑐

𝑘* +𝜖𝑘,𝑡
]

≤
∞∑︁

𝑡=1

𝑡∑︁
𝑠=1

P[𝑟𝑘*,𝑡 ≤ 𝜇𝑟
𝑘* −

√︃
2 ln(𝑡)

𝑠
; 𝑛𝑘*,𝑡 = 𝑠]

+
∞∑︁

𝑡=1

𝑡∑︁
𝑠=1

P[𝑐𝑘*,𝑡 ≥ 𝜇𝑐
𝑘* +

√︃
2 ln(𝑡)

𝑠
; 𝑛𝑘*,𝑡 = 𝑠]

≤
∞∑︁

𝑡=1

𝑡∑︁
𝑠=1

2
𝑡4

= 𝜋2

3 ,

where the third inequality is obtained using Lemma 4.1 as in Fact C.3.

We conclude:

E[𝑛𝑘,𝜏*] ≤ 2𝛽𝑘 · E[ln(𝜏 *)] + 4𝜋2

3𝜖2 .

C.3.3 Proof of Theorem 4.1

First observe that:

E[
𝜏*∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] =

∞∑︁
𝑡=1

E[𝐼𝜏*≥𝑡 · E[𝑟𝑎𝑡,𝑡 | ℱ𝑡−1]]

=
∞∑︁

𝑡=1
E[𝐼𝜏*≥𝑡 · 𝜇𝑟

𝑎𝑡
]

=
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · E[𝑛𝑘,𝜏*],

since 𝜏 * is a stopping time. Plugging this equality into (4.9) yields:

𝑅𝐵 ≤ 𝐵 · 𝜇𝑟
𝑘*

𝜇𝑐
𝑘*

−
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · E[𝑛𝑘,𝜏*] + 𝑂(1)

= 𝜇𝑟
𝑘*

𝜇𝑐
𝑘*

· (𝐵 −
∑︁

𝑘 | Δ𝑘=0
𝜇𝑐

𝑘 · E[𝑛𝑘,𝜏*]) −
∑︁

𝑘 | Δ𝑘>0
𝜇𝑟

𝑘 · E[𝑛𝑘,𝜏*] + 𝑂(1).

234

Along the same lines as for the rewards, we can show that E[∑︀𝜏*

𝑡=1 𝑐𝑎𝑡,𝑡] = ∑︀𝐾
𝑘=1 𝜇𝑐

𝑘 ·

E[𝑛𝑘,𝜏*]. By definition of 𝜏 *, we have 𝐵 ≤ ∑︀𝜏*

𝑡=1 𝑐𝑎𝑡,𝑡 almost surely. Taking expectations

on both sides yields:

𝐵 ≤
𝐾∑︁

𝑘=1
𝜇𝑐

𝑘 · E[𝑛𝑘,𝜏*]

=
∑︁

𝑘 | Δ𝑘=0
𝜇𝑐

𝑘 · E[𝑛𝑘,𝜏*] +
∑︁

𝑘 | Δ𝑘>0
𝜇𝑐

𝑘 · E[𝑛𝑘,𝜏*].

Plugging this inequality back into the regret bound, we get:

𝑅𝐵 ≤
∑︁

𝑘 | Δ𝑘>0
(𝜇𝑟

𝑘*

𝜇𝑐
𝑘*

· 𝜇𝑐
𝑘 − 𝜇𝑟

𝑘) · E[𝑛𝑘,𝜏*] + 𝑂(1)

=
∑︁

𝑘 | Δ𝑘>0
𝜇𝑐

𝑘 · Δ𝑘 · E[𝑛𝑘,𝜏*] + 𝑂(1). (C.10)

Using the upper bound of Lemma 4.4, the concavity of the logarithmic function, and

Lemma 4.5, we derive:

𝑅𝐵 ≤ 26𝜆2 · (
∑︁

𝑘 | Δ𝑘>0

1
𝜇𝑐

𝑘 · Δ𝑘

) · ln(𝐵 + 1
𝜖

) + 4𝜋2

3𝜖2 · (
∑︁

𝑘 | Δ𝑘>0
𝜇𝑐

𝑘 · Δ𝑘) + 𝑂(1)

≤ 26𝜆2 · (
∑︁

𝑘 | Δ𝑘>0

1
𝜇𝑐

𝑘 · Δ𝑘

) · ln(𝐵 + 1
𝜖

) + 𝐾 · 4𝜋2𝜅

3𝜖2 + 𝑂(1),

since Δ𝑘 ≤ 𝜇𝑟
𝑘*/𝜇𝑐

𝑘* ≤ 𝜅 and 𝜇𝑐
𝑘 ≤ 1 for any arm 𝑘.

C.4 Proofs for Section 4.5

C.4.1 Proof of Lemma 4.8

Consider any suboptimal basis 𝑥 ∈ ℬ. The proof is along the same lines as for Lemma 4.5

and follows the exact same steps. We use the shorthand notation 𝛽𝑥 = 8𝜌 · (
∑︀𝐾

𝑘=1 𝜉𝑥
𝑘

Δ𝑥
)2.

Fact C.5.

E[𝑛𝑥,𝜏*] ≤ 2𝛽𝑥 · E[ln(𝜏 *)] + E[
𝜏*∑︁

𝑡=1
𝐼𝑥𝑡=𝑥 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)]. (C.11)

235

We omit the proof as it is analogous to the proof of Fact C.1. As in Lemma 4.5, we break

down the second term in three terms and bound each of them by a constant:

E[
𝜏*∑︁

𝑡=1
𝐼𝑥𝑡=𝑥 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)] = E[

𝜏*∑︁
𝑡=1

𝐼obj𝑥,𝑡+𝐸𝑥,𝑡≥obj𝑥*,𝑡+𝐸𝑥*,𝑡
· 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)]

≤ E[
𝜏*∑︁

𝑡=1
𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡] (C.12)

+ E[
𝜏*∑︁

𝑡=1
𝐼obj𝑥*,𝑡≤obj𝑥* −𝐸𝑥*,𝑡

] (C.13)

+ E[
𝜏*∑︁

𝑡=1
𝐼obj𝑥* <obj𝑥+2𝐸𝑥,𝑡 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)]. (C.14)

Fact C.6.

E[
𝜏*∑︁

𝑡=1
𝐼obj𝑥* <obj𝑥+2𝐸𝑥,𝑡 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)] = 0.

Proof. If obj𝑥* < obj𝑥 + 2𝐸𝑥,𝑡, we get:

Δ𝑥

2 <
∑︁

𝑘∈𝒦𝑥

𝜉𝑥
𝑘 ·

⎯⎸⎸⎷2 ln(𝑡)
𝑛𝑘,𝑡

≤
∑︁

𝑘∈𝒦𝑥

𝜉𝑥
𝑘 ·

⎯⎸⎸⎷ 2 ln(𝑡)
𝜌 + 𝑛𝑥

𝑘,𝑡

≤
√︃∑︁

𝑘∈𝒦𝑥

𝜉𝑥
𝑘 ·

∑︁
𝑘∈𝒦𝑥

√︁
𝜉𝑥

𝑘 ·

⎯⎸⎸⎷2 ln(𝑡)
𝑛𝑥,𝑡

,

where we use (4.10) and Lemma 4.6 for each 𝑘 ∈ 𝒦𝑥 such that 𝜉𝑥
𝑘 ̸= 0 (otherwise, if

𝜉𝑥
𝑘 = 0, the inequality is trivial). This implies:

𝑛𝑥,𝑡 < 8𝜌 · (
∑︀𝐾

𝑘=1 𝜉𝑥
𝑘

Δ𝑥

)2 · ln(𝑡)

= 𝛽𝑥 · ln(𝑡),

using the Cauchy−Schwarz inequality and the fact that a basis involves at most 𝜌 arms.

236

Fact C.7.

E[
𝜏*∑︁

𝑡=1
𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡] ≤ 𝜌 · 𝜋2

6 .

Proof. If obj𝑥,𝑡 ≥ obj𝑥 +𝐸𝑥,𝑡, there must exist 𝑘 ∈ 𝒦𝑥 such that 𝑟𝑘,𝑡 ≥ 𝜇𝑟
𝑘 +𝜖𝑘,𝑡, otherwise:

obj𝑥,𝑡 − obj𝑥 =
∑︁

𝑘∈𝒦𝑥

(𝑟𝑘,𝑡 − 𝜇𝑟
𝑘) · 𝜉𝑥

𝑘

<
∑︁

𝑘∈𝒦𝑥

𝜖𝑘,𝑡 · 𝜉𝑥
𝑘

= 𝐸𝑥,𝑡,

where the inequality is strict because there must exist 𝑙 ∈ 𝒦𝑥 such that 𝜉𝑥
𝑙 > 0 as a result

of Assumption 4.2 (at least one resource constraint is binding for a feasible basis to (4.3)

aside from the basis 𝑥̃ associated with 𝒦𝑥̃ = ∅). We obtain:

E[
𝜏*∑︁

𝑡=1
𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡] ≤

∑︁
𝑘∈𝒦𝑥

∞∑︁
𝑡=1

P[𝑟𝑘,𝑡 ≥ 𝜇𝑟
𝑘 + 𝜖𝑘,𝑡]

≤ 𝜌 · 𝜋2

6 ,

where the last inequality is derived along the same lines as in the proof of Fact C.3.

Fact C.8.

E[
𝜏*∑︁

𝑡=1
𝐼obj𝑥*,𝑡≤obj𝑥* −𝐸𝑥*,𝑡

] ≤ 𝜌 · 𝜋2

6 .

Proof. Similar to Fact C.7.

237

C.4.2 Proof of Theorem 4.3

The proof proceeds along the same lines as for Theorem 4.1. We build upon (4.4):

𝑅𝐵(1),··· ,𝐵(𝐶) ≤ 𝐵 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 − E[
𝜏*∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] + 𝑂(1)

= 𝐵 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 −
∞∑︁

𝑡=1
E[𝐼𝜏*≥𝑡 ·

𝐾∑︁
𝑘=1

∑︁
𝑥∈ℬ

𝑟𝑘,𝑡 · 𝐼𝑥𝑡=𝑥,𝑎𝑡=𝑘] + 𝑂(1)

= 𝐵 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 −
∞∑︁

𝑡=1
E[𝐼𝜏*≥𝑡 ·

𝐾∑︁
𝑘=1

∑︁
𝑥∈ℬ

𝐼𝑥𝑡=𝑥,𝑎𝑡=𝑘 · E[𝑟𝑘,𝑡 | ℱ𝑡−1]] + 𝑂(1)

= 𝐵 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 −
∑︁
𝑥∈ℬ

𝐾∑︁
𝑘=1

𝜇𝑟
𝑘 · E[𝑛𝑥

𝑘,𝜏*] + 𝑂(1),

where we use the fact that 𝑥𝑡 and 𝑎𝑡 are determined by the events of the first 𝑡 − 1 rounds

and that 𝜏 * is a stopping time. Using Lemma 4.6, we derive:

𝑅𝐵(1),··· ,𝐵(𝐶) ≤ 𝐵 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 −
∑︁
𝑥∈ℬ

∑︁
𝑘∈𝒦𝑥

{𝜇𝑟
𝑘 · 𝜉𝑥

𝑘∑︀𝐾
𝑙=1 𝜉𝑥

𝑙

· E[𝑛𝑥,𝜏*] − 𝜌} + 𝑂(1)

= 𝐵 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 −
∑︁
𝑥∈ℬ

{E[𝑛𝑥,𝜏*]∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

· (
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥
𝑘) − (𝜌)2} + 𝑂(1)

= (
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘) · (𝐵 −
∑︁

𝑥∈ℬ | Δ𝑥=0

E[𝑛𝑥,𝜏*]∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

)

−
∑︁

𝑥∈ℬ | Δ𝑥>0
{(

𝐾∑︁
𝑘=1

𝜇𝑟
𝑘 · 𝜉𝑥

𝑘) · E[𝑛𝑥,𝜏*]∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

} + 𝑂(1).

Now observe that, by definition, at least one resource is exhausted at time 𝜏 *. Hence, there

exists 𝑖 ∈ {1, · · · , 𝐶} such that the following holds almost surely:

𝐵(𝑖) ≤
∑︁
𝑥∈ℬ

∑︁
𝑘∈𝒦𝑥

𝑐𝑘(𝑖) · 𝑛𝑥
𝑘,𝜏*

≤
∑︁
𝑥∈ℬ

∑︁
𝑘∈𝒦𝑥

[𝑐𝑘(𝑖) · (𝜉𝑥
𝑘∑︀𝐾

𝑙=1 𝜉𝑥
𝑙

· 𝑛𝑥,𝜏* + 1)]

= |ℬ| · 𝜌 +
∑︁
𝑥∈ℬ

𝑛𝑥,𝜏*∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

·
∑︁

𝑘∈𝒦𝑥

𝑐𝑘(𝑖) · 𝜉𝑥
𝑘

≤ |ℬ| · 𝜌 + 𝑏(𝑖) ·
∑︁
𝑥∈ℬ

𝑛𝑥,𝜏*∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

,

238

where we use Lemma 4.6 again and the fact that any basis 𝑥 ∈ ℬ satisfies all the constraints

of (4.3). We conclude that the inequality:

∑︁
𝑥∈ℬ | Δ𝑥=0

𝑛𝑥,𝜏*∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

≥ 𝐵 −
∑︁

𝑥∈ℬ | Δ𝑥>0

𝑛𝑥,𝜏*∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

− |ℬ| · 𝜌

𝑏

holds almost surely. Taking expectations on both sides and plugging the result back into

the regret bound yields:

𝑅𝐵(1),··· ,𝐵(𝐶) ≤
∑︁

𝑥∈ℬ | Δ𝑥>0

(∑︀𝐾
𝑘=1 𝜇𝑟

𝑘 · 𝜉𝑥*
𝑘 −∑︀𝐾

𝑘=1 𝜇𝑟
𝑘 · 𝜉𝑥

𝑘)∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

· E[𝑛𝑥,𝜏*] (C.15)

+ (
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘) · |ℬ| · 𝜌

𝑏
+ 𝑂(1)

≤
∑︁

𝑥∈ℬ | Δ𝑥>0

Δ𝑥∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

· E[𝑛𝑥,𝜏*] + 𝑂(1), (C.16)

where we use the fact that:

𝐾∑︁
𝑘=1

𝜇𝑟
𝑘 · 𝜉𝑥*

𝑘 ≤
𝐾∑︁

𝑘=1

∑︀𝐶
𝑖=1 𝑐𝑘(𝑖)

𝜖
· 𝜉𝑥*

𝑘

= 1
𝜖

·
𝐶∑︁

𝑖=1

𝐾∑︁
𝑘=1

𝑐𝑘(𝑖) · 𝜉𝑥*

𝑘

≤
∑︀𝐶

𝑖=1 𝑏(𝑖)
𝜖

,

(C.17)

using Assumption 4.2 and the fact that 𝑥* is a feasible basis to (4.3). Using Lemma 4.7,

Lemma 4.8, and the concavity of the logarithmic function, we obtain:

𝑅𝐵(1),··· ,𝐵(𝐶) ≤ 16𝜌 · (
∑︁

𝑥∈ℬ | Δ𝑥>0

∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

Δ𝑥

) · ln(
∑︀𝐶

𝑖=1 𝑏(𝑖) · 𝐵

𝜖
+ 1)

+ 𝜋2

3 𝜌 · (
∑︁

𝑥∈ℬ | Δ𝑥>0

Δ𝑥∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

) + 𝑂(1)

≤ 16𝜌 ·∑︀𝐶
𝑖=1 𝑏(𝑖)
𝜖

· (
∑︁

𝑥∈ℬ | Δ𝑥>0

1
Δ𝑥

) · ln(
∑︀𝐶

𝑖=1 𝑏(𝑖) · 𝐵

𝜖
+ 1) + 𝑂(1).

To derive this last inequality, we use: (i) Δ𝑥 ≤ ∑︀𝐾
𝑘=1 𝜇𝑟

𝑘 · 𝜉𝑥*
𝑘 ≤ ∑︀𝐶

𝑖=1 𝑏(𝑖)/𝜖 (see (C.17)),

(ii) the fact that, for any basis 𝑥 ∈ ℬ, at least one of the first 𝐶 inequalities is binding in

239

(4.3), which implies that there exists 𝑖 ∈ {1, · · · , 𝐶} such that:

𝐾∑︁
𝑘=1

𝜉𝑥
𝑘 ≥

𝐾∑︁
𝑘=1

𝑐𝑘(𝑖) · 𝜉𝑥
𝑘

= 𝑏(𝑖)

≥ 𝑏,

and (iii) the inequality:

𝐾∑︁
𝑘=1

𝜉𝑥
𝑘 ≤

𝐾∑︁
𝑘=1

∑︀𝐶
𝑖=1 𝑐𝑘(𝑖)

𝜖
· 𝜉𝑥

𝑘

= 1
𝜖

·
𝐶∑︁

𝑖=1

𝐾∑︁
𝑘=1

𝑐𝑘(𝑖) · 𝜉𝑥
𝑘

≤
∑︀𝐶

𝑖=1 𝑏(𝑖)
𝜖

,

for any basis 𝑥 ∈ ℬ.

As a side note, observe a possibly better regret bound is given by:

𝑅𝐵(1),··· ,𝐵(𝐶) ≤ 16𝜌 · (
∑︁

𝑥∈ℬ | Δ𝑥>0

1
Δ𝑥

) · ln(𝑇) + 𝑂(1),

if time is a limited resource since, in this case, 𝜏 * ≤ 𝑇 and the constraint
∑︀𝐾

𝑘=1 𝜉𝑥
𝑘 ≤ 1 is

part of (4.3).

C.4.3 Proof of Theorem 4.4

Along the same lines as for the case of a single limited resource, we start from inequality

(C.16) derived in the proof of Theorem 4.3 and apply Lemma 4.8 only if Δ𝑥 is big enough,

taking into account the fact that:

∑︁
𝑥∈ℬ

E[𝑛𝑥,𝜏*] ≤ E[𝜏 *] ≤
∑︀𝐶

𝑖=1 𝑏(𝑖) · 𝐵

𝜖
+ 1.

240

Specifically, we have:

𝑅𝐵(1),··· ,𝐵(𝐶)

≤ sup
(𝑛𝑥)𝑥∈ℬ≥0∑︀

𝑥∈ℬ 𝑛𝑥≤
∑︀𝐶

𝑖=1 𝑏(𝑖)·𝐵
𝜖

+1

{
∑︁

𝑥∈ℬ | Δ𝑥>0
min(Δ𝑥∑︀𝐾

𝑘=1 𝜉𝑥
𝑘

· 𝑛𝑥,

16𝜌 ·
∑︀𝐾

𝑘=1 𝜉𝑥
𝑘

Δ𝑥

· ln(
∑︀𝐶

𝑖=1 𝑏(𝑖) · 𝐵

𝜖
+ 1) + 𝜋2

3 𝜌 · Δ𝑥∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

) } + 𝑂(1)

≤ sup
(𝑛𝑥)𝑥∈ℬ≥0∑︀

𝑥∈ℬ 𝑛𝑥≤
∑︀𝐶

𝑖=1 𝑏(𝑖)·𝐵
𝜖

+1

{
∑︁

𝑥∈ℬ | Δ𝑥>0
min(Δ𝑥∑︀𝐾

𝑘=1 𝜉𝑥
𝑘

· 𝑛𝑥,

16𝜌 ·
∑︀𝐾

𝑘=1 𝜉𝑥
𝑘

Δ𝑥

· ln(
∑︀𝐶

𝑖=1 𝑏(𝑖) · 𝐵

𝜖
+ 1)) } + 𝜋2

3
|ℬ| · 𝜌

𝜖
+ 𝑂(1)

≤ sup
(𝑛𝑥)𝑥∈ℬ≥0∑︀

𝑥∈ℬ 𝑛𝑥≤
∑︀𝐶

𝑖=1 𝑏(𝑖)·𝐵
𝜖

+1

{
∑︁

𝑥∈ℬ | Δ𝑥>0

√︃
16𝜌 · ln(

∑︀𝐶
𝑖=1 𝑏(𝑖) · 𝐵

𝜖
+ 1) · 𝑛𝑥 } + 𝑂(1)

≤ 4
√︃

𝜌 · ln(
∑︀𝐶

𝑖=1 𝑏(𝑖) · 𝐵

𝜖
+ 1) · sup

(𝑛𝑥)𝑥∈ℬ≥0∑︀
𝑥∈ℬ 𝑛𝑥≤

∑︀𝐶

𝑖=1 𝑏(𝑖)·𝐵
𝜖

+1

{
∑︁

𝑥∈ℬ | Δ𝑥>0

√
𝑛𝑥 } + 𝑂(1)

≤ 4
√︃

𝜌 · |ℬ| · (
∑︀𝐶

𝑖=1 𝑏(𝑖) · 𝐵

𝜖
+ 1) · ln(

∑︀𝐶
𝑖=1 𝑏(𝑖) · 𝐵

𝜖
+ 1) + 𝑂(1),

where we use Δ𝑥 ≤ ∑︀𝐶
𝑖=1 𝑏(𝑖)/𝜖 and

∑︀𝐾
𝑘=1 𝜉𝑥

𝑘 ≥ 𝑏 for the second inequality (see the end of

the proof of Theorem 4.3), we maximize over Δ𝑥/
∑︀𝐾

𝑘=1 𝜉𝑥
𝑘 ≥ 0 for each 𝑥 ∈ ℬ to derive

the third inequality, and we use Cauchy-Schwartz for the last inequality.

C.5 Proofs for Section 4.6

C.5.1 Proof of Lemma 4.9

For any 𝑇 ∈ N and any arm 𝑘 ∈ {1, · · · , 𝐾}, we denote by 𝑛opt
𝑘,𝑇 the expected number of

times that arm 𝑘 is pulled by the optimal non-anticipating algorithm (which is characterized

by a high-dimensional dynamic program) when the time horizon is 𝑇 and the budget is

𝐵 = 𝑏 · 𝑇 . We prove the claim in two steps. First, we show that if 𝑇 − 𝑛opt
𝑘*,𝑇 = Ω(

√
𝑇)

241

(Case A) or 𝑇 − 𝑛opt
𝑘*,𝑇 = 𝑜(

√
𝑇) (Case B) then EROPT(𝐵, 𝑇) = 𝑇 · obj𝑥* − Ω(

√
𝑇).

This is enough to establish the result because if 𝑇 − 𝑛opt
𝑘*,𝑇 ̸= Ω(

√
𝑇) then we can extract a

subsequence of (𝑇 − 𝑛opt
𝑘*,𝑇)/

√
𝑇 that converges to 0 and we can conclude with Case B.

Case A: 𝑇 − 𝑛opt
𝑘*,𝑇 = Ω(

√
𝑇). Consider the linear program:

sup
(𝜉𝑘)𝑘=1,··· ,𝐾∈R𝐾

+

𝐾∑︁
𝑘=1

𝜇𝑟
𝑘 · 𝜉𝑘

subject to
𝐾∑︁

𝑘=1
𝜇𝑐

𝑘 · 𝜉𝑘 ≤ 𝑏

𝐾∑︁
𝑘=1

𝜉𝑘 ≤ 1

𝜉𝑘* ≤ Γ

(C.18)

parametrized by Γ and its dual:

inf
(𝜁1,𝜁2,𝜁3)∈R3

+

𝑏 · 𝜁1 + 𝜁2 + Γ · 𝜁3

subject to 𝜇𝑐
𝑘 · 𝜁1 + 𝜁2 ≥ 𝜇𝑟

𝑘, 𝑘 ̸= 𝑘*

𝜇𝑐
𝑘* · 𝜁1 + 𝜁2 + 𝜁3 ≥ 𝜇𝑟

𝑘*

(C.19)

Since the vector (𝜉𝑘)𝑘=1,··· ,𝐾 determined by 𝜉𝑘* = 1 and 𝜉𝑘 = 0 for 𝑘 ̸= 𝑘* is the only opti-

mal solution to (C.18) when Γ = 1 (by assumption), we can find a strictly complementary

optimal solution to the dual (C.19) 𝜁*
1 , 𝜁*

2 , 𝜁*
3 > 0. Moreover, by definition of 𝑛opt

𝑘*,𝑇 , we can

show, along the same lines as in the proof of Lemma 4.2, that EROPT(𝐵, 𝑇) is no larger

than 𝑇 times the value of (C.18) when Γ = 𝑛opt
𝑘*,𝑇 /𝑇 (up to a constant additive term of order

𝑂(1)). By weak duality, and since (𝜁*
1 , 𝜁*

2 , 𝜁*
3) is feasible for (C.19) for any Γ, this implies:

EROPT(𝐵, 𝑇) ≤ 𝑇 · (𝑏 · 𝜁*
1 + 𝜁*

2 +
𝑛opt

𝑘*,𝑇

𝑇
· 𝜁*

3) + 𝑂(1)

≤ 𝑇 · (𝑏 · 𝜁*
1 + 𝜁*

2 + 𝜁*
3 −

𝑇 − 𝑛opt
𝑘*,𝑇

𝑇
· 𝜁*

3) + 𝑂(1)

≤ 𝑇 · obj𝑥* − Ω(
√

𝑇),

242

where we use the fact that 𝑏 · 𝜁*
1 + 𝜁*

2 + 𝜁*
3 is the optimal value of (C.18) when Γ = 1 by

strong duality (both (C.18) and (C.19) are feasible) and 𝜁*
3 > 0.

Case B: 𝑇 − 𝑛opt
𝑘*,𝑇 = 𝑜(

√
𝑇). First observe that since the vector (𝜉𝑘)𝑘=1,··· ,𝐾 determined

by 𝜉𝑘* = 1 and 𝜉𝑘 = 0 for 𝑘 ̸= 𝑘* is the only optimal solution to (4.3), it must be that

𝜇𝑟
𝑘* > 0 (since 0 is a feasible solution to (4.3) with objective value 0). For any 𝑡 ∈ N,

denote by 𝑎𝑡 the arm pulled by the optimal non-anticipating algorithm at time 𝑡 and define

𝜏 *
𝑇 as the corresponding stopping time when the time horizon is 𝑇 . We have:

EROPT(𝐵, 𝑇) = E[
𝜏*

𝑇 −1∑︁
𝑡=1

𝑟𝑎𝑡,𝑡]

=
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝑛opt
𝑘,𝑇

≤
∑︁

𝑘 ̸=𝑘*
𝑛opt

𝑘,𝑇 + 𝜇𝑟
𝑘* · 𝑛opt

𝑘*,𝑇

≤ (𝑇 − 𝑛opt
𝑘*,𝑇) + 𝜇𝑟

𝑘* · (E[𝜏 *
𝑇] − 1)

= 𝑇 · 𝜇𝑟
𝑘* − 𝜇𝑟

𝑘* · (𝑇 − E[𝜏 *
𝑇] + 1) + 𝑜(

√
𝑇)

= 𝑇 · obj𝑥* − 𝜇𝑟
𝑘* · E[

𝑇∑︁
𝑡=𝜏*

𝑇

1] + 𝑜(
√

𝑇)

≤ 𝑇 · obj𝑥* − 𝜇𝑟
𝑘* · E[(

𝑇∑︁
𝑡=𝜏*

𝑇

𝑐𝑘*,𝑡 +
𝜏*

𝑇 −1∑︁
𝑡=1

𝑐𝑎𝑡,𝑡 − 𝐵)+]

≤ 𝑇 · obj𝑥* − 𝜇𝑟
𝑘* ·

(︂
E[(

𝑇∑︁
𝑡=1

{𝑐𝑘*,𝑡 − 𝑏})+] −
∑︁

𝑘 ̸=𝑘*
𝑛opt

𝑘,𝑇

)︂
+ 𝑜(

√
𝑇)

= 𝑇 · obj𝑥* − 𝜇𝑟
𝑘* · E[(

𝑇∑︁
𝑡=1

{𝑐𝑘*,𝑡 − 𝑏})+] + 𝑜(
√

𝑇).

The first inequality is obtained using the fact that the rewards are bounded by 1. The second

inequality is obtained using the fact that
∑︀𝐾

𝑘=1 𝑛opt
𝑘,𝑇 = E[𝜏 *

𝑇] − 1 ≤ 𝑇 . The third inequality

is obtained along the same lines as in the proof of Lemma 4.3, using
∑︀𝜏*

𝑇 −1
𝑡=1 𝑐𝑎𝑡,𝑡 ≤ 𝐵 by

definition of 𝜏 *
𝑇 . We use the inequality (𝑦 + 𝑧)+ ≥ 𝑦+ − |𝑧| (true for any (𝑦, 𝑧) ∈ R2)

and the fact the amount of resource consumed at any step is no larger than 1 for the fourth

inequality. Since (𝑐𝑘*,𝑡 − 𝑏)𝑡∈N is an i.i.d. zero-mean bounded stochastic process with

243

positive variance, 1√
𝑇

·E[(∑︀𝑇
𝑡=1{𝑐𝑘,𝑡 −𝑏})+] converges to a positive value and we conclude:

EROPT(𝐵, 𝑇) ≤ 𝑇 · obj𝑥* − Ω(
√

𝑇),

since 𝜇𝑟
𝑘* > 0.

C.5.2 Proof of Lemma 4.10

Consider 𝑥 either an infeasible basis to (4.3) or a pseudo-basis for (4.3). Without loss of

generality, we can assume that 𝑥 involves two arms (one of which may be a dummy arm

introduced in the specification of the algorithm given in Section 4.6) and that 𝒦𝑥 = {𝑘, 𝑙}

with 𝜇𝑐
𝑘, 𝜇𝑐

𝑙 > 𝑏 (the situation is symmetric if the reverse inequality holds). Defining 𝛽𝑥 =

32/𝜖3, we have:

E[𝑛𝑥,𝑇] ≤ 2𝛽𝑥 · ln(𝑇) + E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡=𝑥 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)]

≤ 2𝛽𝑥 · ln(𝑇) + E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡=𝑥 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡) · 𝐼𝑏𝑥,𝑡≥𝑛𝑥,𝑡·(𝑏+𝜖/2)]

+
𝑇∑︁

𝑡=1

𝑡∑︁
𝑠=𝛽𝑥 ln(𝑇)

P[𝑏𝑥,𝑡 < 𝑠 · (𝑏 + 𝜖) − 𝑠 · 𝜖/2, 𝑛𝑥,𝑡 = 𝑠]

≤ 2𝛽𝑥 · ln(𝑇) + E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡=𝑥 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡) · 𝐼𝑏𝑥,𝑡≥𝑛𝑥,𝑡·(𝑏+𝜖/2)]

+
𝑇∑︁

𝑡=1

∞∑︁
𝑠=𝛽𝑥 ln(𝑇)

exp(−𝑠
𝜖2

2)

≤ 2𝛽𝑥 · ln(𝑇) + E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡=𝑥 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡) · 𝐼𝑏𝑥,𝑡≥𝑛𝑥,𝑡·𝑏+𝜖𝛽𝑥/4·ln(𝑡)] + 2𝜋2

3𝜖2 .

The first inequality is derived along the same lines as in Fact C.1. The third inequality is

obtained by observing that, as a result of Assumption 4.6, the average amount of resource

consumed any time basis 𝑥 is selected at Step-Simplex is at least 𝑏 + 𝜖 no matter which

of arm 𝑘 or 𝑙 is pulled. Finally, we use the same bounds as in Fact C.2 for the last two

inequalities. Observe that if 𝑥 is selected at time 𝑡, either 𝑐𝑘,𝑡 − 𝜖𝑘,𝑡 ≤ 𝑏 or 𝑐𝑙,𝑡 − 𝜖𝑙,𝑡 ≤ 𝑏,

otherwise 𝑥 would have been infeasible for (4.8). Moreover, if 𝑛𝑥,𝑡 ≥ 𝛽𝑥 ln(𝑇), then we

244

have either 𝑛𝑥
𝑘,𝑡 ≥ 𝛽𝑥/2 ln(𝑇) or 𝑛𝑥

𝑙,𝑡 ≥ 𝛽𝑥/2 ln(𝑇) since there are only two arms in 𝒦𝑥.

By symmetry, we study the first situation and look at:

E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡=𝑥 · 𝐼𝑛𝑥

𝑘,𝑡
≥𝛽𝑥/2·ln(𝑡) · 𝐼𝑏𝑥,𝑡≥𝑛𝑥,𝑡·𝑏+𝜖𝛽𝑥/4·ln(𝑡)]

≤ E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡=𝑥 · 𝐼𝑛𝑥

𝑘,𝑡
≥𝛽𝑥/2·ln(𝑡) · 𝐼𝑏𝑥,𝑡≥𝑛𝑥,𝑡·𝑏+𝜖𝛽𝑥/4·ln(𝑡) · 𝐼𝑐𝑘,𝜏𝑞 −𝜖𝑘,𝜏𝑞 ≥𝑏, 𝑞=𝑞𝑡−𝜖𝛽𝑥/4 ln(𝑡),··· ,𝑞𝑡]

+
𝑇∑︁

𝑡=1

𝑡∑︁
𝜏=1

𝑡∑︁
𝑠=𝛽𝑥/4·ln(𝑡)

P[𝑐𝑘,𝜏 < 𝑏 + 𝜖

2 , 𝑛𝑘,𝜏 = 𝑠]

and

𝑇∑︁
𝑡=1

𝑡∑︁
𝜏=1

𝑡∑︁
𝑠=𝛽𝑥/4·ln(𝑡)

P[𝑐𝑘,𝜏 < 𝑏 + 𝜖

2 , 𝑛𝑘,𝜏 = 𝑠] ≤
𝑇∑︁

𝑡=1

𝑡∑︁
𝜏=1

∞∑︁
𝑠=𝛽𝑥/4·ln(𝑡)

exp(−𝑠 · 𝜖2

2) ≤ 2𝜋2

3𝜖2 ,

where (𝜏𝑞)𝑞∈N denote the random times at which basis 𝑥 is selected and, for a time 𝑡 at

which basis 𝑥 is selected, 𝑞𝑡 denotes the index 𝑞 ∈ N such that 𝜏𝑞 = 𝑡. The first in-

equality is a consequence of 𝑛𝑥
𝑘,𝜏𝑞

= 𝑛𝑥
𝑘,𝑡 − (𝑞𝑡 − 𝑞) ≥ 𝑛𝑥

𝑘,𝑡 − 𝜖𝛽𝑥/4 ln(𝑡) ≥ 𝛽𝑥/4 ln(𝑡)

for 𝑞 = 𝑞𝑡 − 𝜖𝛽𝑥/4 ln(𝑡), · · · , 𝑞𝑡 and 𝑛𝑘,𝜏𝑞 ≥ 𝑛𝑥
𝑘,𝜏𝑞

, which implies 𝜖𝑘,𝜏𝑞 ≤ 𝜖/2. We use

the same bounds as in Fact C.2 for the last two inequalities. Now observe that, for any

𝑞 ∈ {𝑞𝑡 − 𝜖𝛽𝑥/4 ln(𝑡), · · · , 𝑞𝑡}, we have 𝑐𝑙,𝜏𝑞 − 𝜖𝑙,𝜏𝑞 ≤ 𝑏 since 𝑐𝑘,𝜏𝑞 − 𝜖𝑘,𝜏𝑞 ≥ 𝑏 and

since 𝑥 is feasible basis to (4.8) at time 𝜏𝑞 (by definition). This implies that, for any

𝑞 ∈ {𝑞𝑡 − 𝜖𝛽𝑥/4 ln(𝑡), · · · , 𝑞𝑡}, arm 𝑙 was pulled at time 𝜏𝑞 by definition of the load balanc-

ing algorithm since the amount of resource consumed at any round cannot be larger than 1

and 𝑏𝑥,𝜏𝑞 ≥ 𝑏𝑥,𝑡 − (𝑞𝑡 − 𝑞) ≥ 𝑛𝑥,𝑡 · 𝑏 + 𝜖𝛽𝑥/4 · ln(𝑡) − (𝑞𝑡 − 𝑞) ≥ 𝑛𝑥,𝑡 · 𝑏 ≥ 𝑛𝑥,𝜏𝑞𝑏. We get:

E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡=𝑥 · 𝐼𝑛𝑥

𝑘,𝑡
≥𝛽𝑥/2·ln(𝑡) · 𝐼𝑏𝑥,𝑡≥𝑛𝑥,𝑡·𝑏+𝜖𝛽𝑥/4·ln(𝑡)]

≤ E[
𝑇∑︁

𝑡=1
𝐼𝑛𝑥

𝑙,𝑡
≥𝜖𝛽𝑥/4·ln(𝑡) · 𝐼𝑐𝑙,𝑡−𝜖𝑙,𝑡≤𝑏] + 2𝜋2

3𝜖2

≤
𝑇∑︁

𝑡=1
P[𝑐𝑙,𝑡 ≤ 𝑏 + 𝜖

2 , 𝑛𝑥
𝑙,𝑡 ≥ 𝜖𝛽𝑥/4 · ln(𝑡)] + 2𝜋2

3𝜖2

≤
𝑇∑︁

𝑡=1

∞∑︁
𝑠=𝜖𝛽𝑥/4·ln(𝑡)

exp(−𝑠 · 𝜖2

2) + 2𝜋2

3𝜖2 ≤ 4𝜋2

3𝜖2 .

245

Bringing everything together, we derive:

E[𝑛𝑥,𝑇] ≤ 26

𝜖3 · ln(𝑇) + 10𝜋2

3𝜖2 .

C.5.3 Proof of Lemma 4.11

Without loss of generality, we can assume that 𝑥 involves two arms (one of which may be a

dummy arm introduced in the specification of the algorithm given in Section 4.6) and that

𝒦𝑥 = {𝑘, 𝑙} with 𝜇𝑐
𝑘 > 𝑏 > 𝜇𝑐

𝑙 . We say that a “swap” occurred at time 𝜏 if basis 𝑥 was

selected at time 𝜏 and 𝑐𝑘,𝜏 − 𝜖𝑘,𝜏 ≤ 𝑏 ≤ 𝑐𝑙,𝜏 − 𝜖𝑙,𝜏 . We define 𝑛swap
𝑥,𝑡 as the total number

of swaps that have occurred before time 𝑡, i.e. 𝑛swap
𝑥,𝑡 = ∑︀𝑡−1

𝜏=1 𝐼𝑥𝜏 =𝑥 · 𝐼𝑐𝑘,𝜏 −𝜖𝑘,𝜏 ≤𝑏≤𝑐𝑙,𝜏 −𝜖𝑙,𝜏
.

Consider 𝑢 ≥ 1 and define 𝛾𝑥 = (4/𝜖)2. First note that:

P[𝑛swap
𝑥,𝑡 ≥ 𝛾𝑥 ln(𝑡)] ≤

𝑡∑︁
𝑞=𝛾𝑥 ln(𝑡)

P[𝑐𝑘,𝜏𝑞 − 𝜖𝑘,𝜏𝑞 ≤ 𝑏 ≤ 𝑐𝑙,𝜏𝑞 − 𝜖𝑙,𝜏𝑞]

≤
𝑡∑︁

𝑞=𝛾𝑥 ln(𝑡)
P[𝑐𝑘,𝜏𝑞 ≤ 𝑏 + 𝜖

2 , 𝑛𝑘,𝜏𝑞 ≥ 𝛾𝑥

2 ln(𝑡)]

+
𝑡∑︁

𝑞=𝛾𝑥 ln(𝑡)
P[𝑏 − 𝜖

2 ≤ 𝑐𝑙,𝜏𝑞 , 𝑛𝑙,𝜏𝑞 ≥ 𝛾𝑥

2 ln(𝑡)]

≤ 2
𝑡∑︁

𝑞=1

∞∑︁
𝑠=𝛾𝑥/2·ln(𝑡)

exp(−𝑠 · 𝜖2

2)

≤ 8
𝜖2 · 𝑡2 ,

where (𝜏𝑞)𝑞∈N are defined as the times at which basis 𝑥 is selected. The first inequality is

derived observing that if 𝑛swap
𝑥,𝑡 ≥ 𝛾𝑥 ln(𝑡) then it must be that basis 𝑥 was selected for the

𝑞th time, for some 𝑞 ≥ 𝛾𝑥 ln(𝑡), and that we had 𝑐𝑘,𝜏𝑞 − 𝜖𝑘,𝜏𝑞 ≤ 𝑏 ≤ 𝑐𝑙,𝜏𝑞 − 𝜖𝑙,𝜏𝑞 . To obtain

the second inequality, we observe that, at any time 𝜏 , at least one of arm 𝑘 and 𝑙 must have

been pulled 𝑛𝑥,𝜏 /2 times and that 𝜖𝑘,𝜏 ≤ 𝜖/2 when 𝑛𝑘,𝜏 ≥ 𝛾𝑥/2 ln(𝑡) (a similar inequality

holds for arm 𝑙). The last two inequalities are derived in the same fashion as in Lemma

246

4.10. This yields:

P[|𝑏𝑥,𝑡 − 𝑛𝑥,𝑡 · 𝑏| ≥ 𝑢 + 𝛾𝑥 ln(𝑡)]

≤ P[|𝑏𝑥,𝑡 − 𝑛𝑥,𝑡 · 𝑏| ≥ 𝑢 + 𝛾𝑥 ln(𝑡) ; 𝑛swap
𝑥,𝑡 ≤ 𝛾𝑥 ln(𝑡)] + P[𝑛swap

𝑥,𝑡 ≥ 𝛾𝑥 ln(𝑡)]

≤ P[|𝑏𝑥,𝑡 − 𝑛𝑥,𝑡 · 𝑏| ≥ 𝑢 + 𝛾𝑥 ln(𝑡) ; 𝑛swap
𝑥,𝑡 ≤ 𝛾𝑥 ln(𝑡)] + 8

𝜖2 · 𝑡2 .

Note that, by definition of the load balancing algorithm, we are led to pull arm 𝑘 (resp.

arm 𝑙) at time 𝜏𝑞 if the budget spent so far when selecting basis 𝑥, denoted by 𝑏𝑥,𝜏𝑞 , is

below (resp. above) the “target” of 𝑛𝑥,𝜏𝑞 · 𝑏 assuming there is no “swap” at time 𝜏𝑞 (i.e.

𝑐𝑘,𝜏𝑞 − 𝜖𝑘,𝜏𝑞 ≥ 𝑐𝑙,𝜏𝑞 − 𝜖𝑙,𝜏𝑞). Hence, if 𝑏𝑥,𝑡 − 𝑛𝑥,𝑡 · 𝑏 ≥ 𝑢 + 𝛾𝑥 ln(𝑡) and 𝑛swap
𝑥,𝑡 ≤ 𝛾𝑥 ln(𝑡), we

must have been pulling arm 𝑙 for at least 𝑠 ≥ ⌊𝑢⌋ rounds 𝑡1 ≤ · · · ≤ 𝑡𝑠 ≤ 𝑡 − 1 where basis

𝑥 was selected since the last time, denoted by 𝑡0, where basis 𝑥 was selected and the budget

was below the target, i.e. 𝑏𝑥,𝑡0 ≤ 𝑛𝑥,𝑡0 · 𝑏 (because the amounts of resource consumed at

each round are almost surely bounded by 1). Moreover, we have:

𝑡−1∑︁
𝜏=𝑡0+1

𝐼𝑥𝜏 =𝑥·(𝑐𝑘,𝜏 · 𝐼𝑐𝑘,𝜏 −𝜖𝑘,𝜏 ≥𝑐𝑙,𝜏 −𝜖𝑙,𝜏
+ 𝑐𝑙,𝜏 · 𝐼𝑐𝑘,𝜏 −𝜖𝑘,𝜏 <𝑐𝑙,𝜏 −𝜖𝑙,𝜏

)

= 𝑏𝑥,𝑡 − 𝑏𝑥,𝑡0+1

≥ (𝑛𝑥,𝑡 − 𝑛𝑥,𝑡0) · 𝑏 + 𝑢 − 1 + 𝛾𝑥 ln(𝑡)

≥ 𝑠 · 𝑏 + 𝑢 − 1 + 𝛾𝑥 ln(𝑡).

This implies:
𝑠∑︁

𝑞=1
𝑐𝑙,𝑡𝑞 ≥ 𝑠 · 𝑏 + 𝑢 − 1

247

since
∑︀𝑡−1

𝜏=𝑡0+1 𝐼𝑥𝜏 =𝑥 · 𝐼𝑐𝑘,𝜏 −𝜖𝑘,𝜏 <𝑏 · 𝑐𝑘,𝜏 ≤ 𝑛swap
𝑥,𝑡 ≤ 𝛾𝑥 ln(𝑡). Hence, if 𝑢 ≥ 1:

P[𝑏𝑥,𝑡 − 𝑛𝑥,𝑡 · 𝑏 ≥ 𝑢 + 𝛾𝑥 ln(𝑡) ; 𝑛swap
𝑥,𝑡 ≤ 𝛾𝑥 ln(𝑡)]

≤
𝑡∑︁

𝑠=⌊𝑢⌋
P[

𝑠∑︁
𝑞=1

𝑐𝑙,𝑡𝑞 ≥ 𝑠 · 𝑏 + 𝑢 − 1]

=
𝑡∑︁

𝑠=⌊𝑢⌋
P[

𝑠∑︁
𝑞=1

𝑐𝑙,𝑡𝑞 ≥ 𝑠 · 𝜇𝑐
𝑙 + 𝑠 · (𝑏 − 𝜇𝑐

𝑙)]

≤
𝑡∑︁

𝑠=⌊𝑢⌋
P[

𝑠∑︁
𝑞=1

𝑐𝑙,𝑡𝑞 ≥ 𝑠 · 𝜇𝑐
𝑙 + 𝑠 · 𝜖]

≤
𝑡∑︁

𝑠=⌊𝑢⌋
exp(−2𝜖2 · 𝑠)

≤ exp(−2𝜖2 · ⌊𝑢⌋)
1 − exp(−2𝜖2)

≤ 2
𝜖2 · exp(−𝜖2 · 𝑢),

where we use Lemma 4.1 for the third inequality and the fact that exp(−2𝑣) ≤ 1 − 𝑣/2 for

𝑣 ∈ [0, 1] for the last inequality. With a similar argument, we conclude:

P[|𝑏𝑥,𝑡 − 𝑛𝑥,𝑡| · 𝑏 ≥ 𝑢 + 𝛾𝑥 ln(𝑡) ; 𝑛swap
𝑥,𝑡 ≤ 𝛾𝑥 ln(𝑡)] ≤ 4

𝜖2 · exp(−𝜖2 · 𝑢).

This last result enables us to show that:

|E[𝑏𝑥,𝑇] − E[𝑛𝑥,𝑇] · 𝑏|

≤ E[|𝑏𝑥,𝑇 − 𝑛𝑥,𝑇 · 𝑏|]

=
∫︁ 𝑇

0
P[|𝑏𝑥,𝑇 − 𝑛𝑥,𝑇 · 𝑏| ≥ 𝑢]d𝑢

≤
∫︁ 𝑇

0
P[|𝑏𝑥,𝑇 − 𝑛𝑥,𝑇 · 𝑏| ≥ 𝑢 ; 𝑛swap

𝑥,𝑇 ≤ 𝛾𝑥 ln(𝑇)]d𝑢 + 𝑇 · P[𝑛swap
𝑥,𝑇 ≥ 𝛾𝑥 ln(𝑇)]

≤
∫︁ 𝑇

0
P[|𝑏𝑥,𝑇 − 𝑛𝑥,𝑇 · 𝑏| ≥ 𝑢 + 1 + 𝛾𝑥 ln(𝑇) ; 𝑛swap

𝑥,𝑇 ≤ 𝛾𝑥 ln(𝑇)]d𝑢 + 1 + 𝛾𝑥 ln(𝑇) + 8
𝜖2

≤ 4
𝜖2 ·

∫︁ 𝑇

0
exp(−𝜖2 · 𝑢)d𝑢 + 1 + 𝛾𝑥 ln(𝑇) + 8

𝜖2

= 13
𝜖4 + (4

𝜖
)2 ln(𝑇).

248

We get E[𝑛𝑥
𝑘,𝑇] · 𝜇𝑐

𝑘 + E[𝑛𝑥
𝑙,𝑇] · 𝜇𝑐

𝑙 = E[𝑏𝑥,𝑇] ≥ E[𝑛𝑥,𝑇] · 𝑏 − 13
𝜖4 − (4

𝜖
)2 ln(𝑇), which, in

combination with E[𝑛𝑥
𝑘,𝑇] + E[𝑛𝑥

𝑙,𝑇] = E[𝑛𝑥,𝑇], shows that:

E[𝑛𝑥
𝑘,𝑇] ≥ (𝑏 − 𝜇𝑐

𝑙

𝜇𝑐
𝑘 − 𝜇𝑐

𝑙

) · E[𝑛𝑥,𝑇] − 13
𝜖4 · (𝜇𝑐

𝑘 − 𝜇𝑐
𝑙)

− 42

𝜖2 · (𝜇𝑐
𝑘 − 𝜇𝑐

𝑙)
ln(𝑇)

≥ 𝜉𝑥
𝑘 · E[𝑛𝑥,𝑇] − 13

𝜖5 − 16
𝜖3 ln(𝑇).

C.5.4 Proof of Lemma 4.12

Consider any suboptimal basis 𝑥 ∈ ℬ and define 𝛽𝑥 = 28

𝜖3 ·(𝜆
Δ𝑥

)2. Without loss of generality,

we can assume that both 𝑥 and 𝑥* involve two arms (one of which may be a dummy arm in-

troduced in the specification of the algorithm given in Section 4.6) and that 𝒦𝑥* = {𝑘*, 𝑙*}

with 𝜇𝑐
𝑘* > 𝑏 > 𝜇𝑐

𝑙* and 𝒦𝑥 = {𝑘, 𝑙} with 𝜇𝑐
𝑘 > 𝑏 > 𝜇𝑐

𝑙 . The proof is along the same lines

as for Lemmas 4.5 and 4.8. We break down the analysis in a series of facts where we stress

the main differences. We start with an inequality analogous to Fact C.1.

E[𝑛𝑥,𝑇] ≤ 2𝛽𝑥 · ln(𝑇) + E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡=𝑥 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)]

≤ 2𝛽𝑥 · ln(𝑇) + E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡=𝑥 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡) · 𝐼𝑐𝑘*,𝑡−𝜖𝑘*,𝑡≤𝜇𝑐

𝑘* · 𝐼𝑐𝑙*,𝑡−𝜖𝑙*,𝑡≤𝜇𝑐
𝑙*

]

+
𝑇∑︁

𝑡=1
P[𝑐𝑙*,𝑡 > 𝜇𝑐

𝑙* + 𝜖𝑙*,𝑡] + P[𝑐𝑘*,𝑡 > 𝜇𝑐
𝑘* + 𝜖𝑘*,𝑡]

≤ 2𝛽𝑥 · ln(𝑇) + E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡=𝑥 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡) · 𝐼𝑐𝑘*,𝑡−𝜖𝑘*,𝑡≤𝜇𝑐

𝑘* · 𝐼𝑐𝑙*,𝑡−𝜖𝑙*,𝑡≤𝜇𝑐
𝑙*

] + 𝜋2

3

≤ 2𝛽𝑥 · ln(𝑇) + E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡=𝑥 · 𝐼obj𝑥,𝑡+𝐸𝑥,𝑡≥

∑︀
𝑘∈{𝑘*,𝑙*}(𝑟𝑘,𝑡+𝜆𝜖𝑘,𝑡)·𝜉𝑥*

𝑘
· 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)] + 𝜋2

3

≤ 2𝛽𝑥 · ln(𝑇) + E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡=𝑥 · 𝐼obj𝑥,𝑡+𝐸𝑥,𝑡≥obj𝑥* · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)]

+
𝑇∑︁

𝑡=1
P[𝑟𝑙*,𝑡 < 𝜇𝑟

𝑙* − 𝜖𝑙*,𝑡] + P[𝑟𝑘*,𝑡 < 𝜇𝑟
𝑘* − 𝜖𝑘*,𝑡] + 𝜋2

3

≤ 2𝛽𝑥 · ln(𝑇) + E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡=𝑥 · 𝐼obj𝑥,𝑡+𝐸𝑥,𝑡≥obj𝑥* · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)] + 2𝜋2

3 .

The first inequality is derived in the same fashion as in Fact C.1 substituting 𝑘 with 𝑥. The

third and last inequalities are obtained using Lemma 4.1 in the same fashion as in Fact C.3.

249

The fourth inequality is obtained by observing that (i) if 𝑥𝑡 = 𝑥 then 𝑥𝑡 is optimal for (4.8)

and (ii) (𝜉*
𝑘)𝑘=1,··· ,𝐾 is feasible for (4.8) if 𝑐𝑙*,𝑡 − 𝜖𝑙*,𝑡 ≤ 𝜇𝑐

𝑙* and 𝑐𝑘*,𝑡 − 𝜖𝑘*,𝑡 ≤ 𝜇𝑐
𝑘* . The

fifth inequality results from 𝜆 ≥ 1 and obj𝑥* = ∑︀
𝑘∈{𝑘*,𝑙*} 𝜇𝑟

𝑘 · 𝜉𝑥*
𝑘 . The second term in the

last upper bound can be broken down in two terms similarly as in Lemmas 4.5 and 4.8:

E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡=𝑥 · 𝐼obj𝑥,𝑡+𝐸𝑥,𝑡≥obj𝑥* · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)]

≤ E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡∈ℬ𝑡 · 𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)] (C.20)

+ E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡∈ℬ𝑡 · 𝐼obj𝑥* ≤obj𝑥+2𝐸𝑥,𝑡 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)]. (C.21)

We carefully study each term separately.

Fact C.9.

E[
𝑇∑︁

𝑡=1
𝐼𝑥∈ℬ𝑡 · 𝐼obj𝑥* ≤obj𝑥+2𝐸𝑥,𝑡 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)] ≤ 6𝜋2

𝜖2 .

Proof. Using the shorthand notations 𝛼𝑥 = 8(𝜆
Δ𝑥

)2 and 𝛾𝑥 = (4
𝜖
)2, we have:

E[
𝑇∑︁

𝑡=1
𝐼𝑥∈ℬ𝑡 · 𝐼obj𝑥* ≤obj𝑥+2𝐸𝑥,𝑡 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)]

≤ E[
𝑇∑︁

𝑡=1
𝐼Δ𝑥≤2𝜆·max(𝜖𝑘,𝑡,𝜖𝑙,𝑡) · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)]

= E[
𝑇∑︁

𝑡=1
𝐼min(𝑛𝑘,𝑡,𝑛𝑙,𝑡)≤𝛼𝑥 ln(𝑡) · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)]

≤
𝑇∑︁

𝑡=1
P[𝑛𝑙,𝑡 ≤ 𝛼𝑥 ln(𝑡) ; 𝑛𝑥,𝑡 ≥ 𝛽𝑥 ln(𝑡)] +

𝑇∑︁
𝑡=1

P[𝑛𝑘,𝑡 ≤ 𝛼𝑥 ln(𝑡) ; 𝑛𝑥,𝑡 ≥ 𝛽𝑥 ln(𝑡)].

The first inequality is derived using 𝐸𝑥,𝑡 = 𝜆 · (𝜉𝑥
𝑘,𝑡 · 𝜖𝑘,𝑡 + 𝜉𝑥

𝑙,𝑡 · 𝜖𝑙,𝑡) and 𝜉𝑥
𝑘,𝑡 + 𝜉𝑥

𝑙,𝑡 ≤ 1 (this is

imposed as a constraint in (4.8)). Observe now that 𝛼𝑥/𝛽𝑥 is a constant factor independent

of Δ𝑥. Thus, we just have to show that if 𝑥 has been selected at least 𝛽𝑥 ln(𝑡) times, then

both 𝑘 and 𝑙 have been pulled at least a constant fraction of the time with high probability.

This is the only time the load balancing algorithm comes into play in the proof of Lemma

250

4.12. We study the first term and we conclude the study by symmetry. We have:

P[𝑛𝑙,𝑡 ≤ 𝛼𝑥 ln(𝑡) ; 𝑛𝑥,𝑡 ≥ 𝛽𝑥 ln(𝑡)]

≤ P[𝑛𝑙,𝑡 ≤ 𝛼𝑥 ln(𝑡) ; 𝑛𝑥,𝑡 ≥ 𝛽𝑥 ln(𝑡) ;
𝑡∑︁

𝜏=1
𝐼𝑥𝜏 =𝑥 · 𝐼𝑎𝜏 =𝑘 · 𝑐𝑘,𝜏 ≥ (𝑏 + 𝜖/2) · 𝑛𝑥

𝑘,𝑡]

+
𝑡∑︁

𝑠=4/𝜖2 ln(𝑡)
P[

𝑡∑︁
𝜏=1

𝐼𝑥𝜏 =𝑥 · 𝐼𝑎𝜏 =𝑘 · 𝑐𝑘,𝜏 ≤ (𝑏 + 𝜖/2) · 𝑠 ; 𝑛𝑥
𝑘,𝑡 = 𝑠]

≤ P[𝑛𝑙,𝑡 ≤ 𝛼𝑥 ln(𝑡) ; 𝑛𝑥,𝑡 ≥ 𝛽𝑥 ln(𝑡) ; 𝑏𝑥,𝑡 − 𝑛𝑥,𝑡 · 𝑏 ≥ 𝜖/2 · 𝑛𝑥
𝑘,𝑡 − 𝑛𝑥

𝑙,𝑡]

+
𝑡∑︁

𝑠=4/𝜖2 ln(𝑡)
exp(−𝑠 · 𝜖2

2)

≤ P[𝑏𝑥,𝑡 − 𝑛𝑥,𝑡 · 𝑏 ≥ 2𝛾𝑥 ln(𝑡)] + (2
𝜖 · 𝑡

)2

≤ 16
𝜖2 · 𝑡2 .

The first inequality is obtained observing that if 𝑛𝑙,𝑡 ≤ 𝛼𝑥 ln(𝑡) and 𝑛𝑥,𝑡 ≥ 𝛽𝑥 ln(𝑡), we

have:

𝑛𝑥
𝑘,𝑡 = 𝑛𝑥,𝑡 − 𝑛𝑥

𝑙,𝑡 ≥ (28

𝜖3 − 8) · (𝜆

Δ𝑥

)2 · ln(𝑡) ≥ 4
𝜖2 · ln(𝑡)

because 𝜆 ≥ 1 and Δ𝑥 ≤ obj𝑥* = ∑︀𝐾
𝑘=1 𝜇𝑟

𝑘 · 𝜉𝑥*
𝑘 ≤ ∑︀𝐾

𝑘=1 𝜉𝑥*
𝑘 ≤ 1 since 𝑥* is a feasible

basis to (4.3). To derive the second inequality, we use Lemma 4.1 for the second term and

remark that:

𝑏𝑥,𝑡 − 𝑛𝑥,𝑡 · 𝑏 ≥ (
𝑡∑︁

𝜏=1
𝐼𝑥𝜏 =𝑥 · 𝐼𝑎𝜏 =𝑘 · 𝑐𝑘,𝜏 − 𝑛𝑥

𝑘,𝑡 · 𝑏) − 𝑛𝑥
𝑙,𝑡

since 𝑏 ≤ 1. The third inequality is derived using:

𝜖/2 · 𝑛𝑥
𝑘,𝑡 − 𝑛𝑥

𝑙,𝑡 ≥ 𝜖/2 · 𝑛𝑥,𝑡 − 2 · 𝑛𝑥
𝑙,𝑡 ≥ (27

𝜖2 − 16) · ln(𝑡) ≥ 2𝛾𝑥 ln(𝑡)

and the last inequality is obtained with Lemma 4.11.

Fact C.10.

E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡∈ℬ𝑡 · 𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)] ≤ 3𝜋2

𝜖2 .

251

Proof. First observe that:

E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡∈ℬ𝑡 · 𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)]

≤ E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡∈ℬ𝑡 · 𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡 · 𝐼𝑛𝑘,𝑡≥𝛽𝑥/2·ln(𝑡)]

+ E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡∈ℬ𝑡 · 𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡 · 𝐼𝑛𝑙,𝑡≥𝛽𝑥/2·ln(𝑡)]

≤ E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡∈ℬ𝑡 · 𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡 · 𝐼𝑐𝑘,𝑡−𝜖𝑘,𝑡>𝑏]

+ E[
𝑇∑︁

𝑡=1
𝐼𝑥𝑡∈ℬ𝑡 · 𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡 · 𝐼𝑐𝑙,𝑡−𝜖𝑙,𝑡<𝑏]

+
𝑇∑︁

𝑡=1

𝑡∑︁
𝑠=𝛽𝑥/2·ln(𝑡)

P[𝑐𝑘,𝑡 − 𝜖𝑘,𝑡 ≤ 𝑏, 𝑛𝑘,𝑡 = 𝑠] + P[𝑐𝑙,𝑡 − 𝜖𝑙,𝑡 ≥ 𝑏, 𝑛𝑙,𝑡 = 𝑠]

≤ 2 · E[
𝑇∑︁

𝑡=1
𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡 · 𝐼𝑐𝑘,𝑡−𝜖𝑘,𝑡≥𝑏≥𝑐𝑙,𝑡−𝜖𝑙,𝑡

· 𝐼𝑐𝑘,𝑡−𝜖𝑘,𝑡>𝑐𝑙,𝑡−𝜖𝑙,𝑡
]

+
𝑇∑︁

𝑡=1

𝑡∑︁
𝑠=𝛽𝑥/2·ln(𝑡)

P[𝑐𝑘,𝑡 ≤ 𝑏 + 𝜖/2, 𝑛𝑘,𝑡 = 𝑠] + P[𝑐𝑙,𝑡 ≥ 𝑏 + 𝜖/2, 𝑛𝑙,𝑡 = 𝑠]

≤ 2 · E[
𝑇∑︁

𝑡=1
𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡 · 𝐼𝑐𝑘,𝑡−𝜖𝑘,𝑡≥𝑏≥𝑐𝑙,𝑡−𝜖𝑙,𝑡

· 𝐼𝑐𝑘,𝑡−𝜖𝑘,𝑡>𝑐𝑙,𝑡−𝜖𝑙,𝑡
]

+ 2 ·
𝑇∑︁

𝑡=1

𝑡∑︁
𝑠=𝛽𝑥/2·ln(𝑡)

exp(−𝑠
𝜖2

2)

≤ 2 · E[
𝑇∑︁

𝑡=1
𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡 · 𝐼𝑐𝑘,𝑡−𝜖𝑘,𝑡≥𝑏≥𝑐𝑙,𝑡−𝜖𝑙,𝑡

· 𝐼𝑐𝑘,𝑡−𝜖𝑘,𝑡>𝑐𝑙,𝑡−𝜖𝑙,𝑡
] + 4𝜋2

3𝜖2 .

The third inequality is obtained by observing that 𝜖𝑘,𝑡, 𝜖𝑙,𝑡 ≤ 𝜖
2 for 𝑛𝑘,𝑡, 𝑛𝑙,𝑡 ≥ 𝛽𝑥

2 ln(𝑡)

(because 𝜆 ≥ 1 and Δ𝑥 ≤ obj𝑥* = ∑︀𝐾
𝑘=1 𝜇𝑟

𝑘 · 𝜉𝑥*
𝑘 ≤ ∑︀𝐾

𝑘=1 𝜉𝑥*
𝑘 ≤ 1) and that, if 𝑥𝑡 ∈ ℬ𝑡

and (for example) 𝑐𝑙,𝑡 − 𝜖𝑙,𝑡 < 𝑏, it must be that 𝑐𝑘,𝑡 − 𝜖𝑘,𝑡 ≥ 𝑏. The last two inequalities

are obtained in the same fashion as in Lemma 4.10 observing that 𝛽𝑥/2 ≥ 4/𝜖2. At this

point, the key observation is that if obj𝑥,𝑡 ≥ obj𝑥 + 𝐸𝑥,𝑡, 𝑐𝑘,𝑡 − 𝜖𝑘,𝑡 ≥ 𝑏 ≥ 𝑐𝑙,𝑡 − 𝜖𝑙,𝑡, and

𝑐𝑘,𝑡 − 𝜖𝑘,𝑡 > 𝑐𝑙,𝑡 − 𝜖𝑙,𝑡, at least one of the following six events occurs: {𝑟𝑘,𝑡 ≥ 𝜇𝑟
𝑘 + 𝜖𝑘,𝑡},

{𝑟𝑙,𝑡 ≥ 𝜇𝑟
𝑙 +𝜖𝑙,𝑡}, {𝑐𝑘,𝑡 ≤ 𝜇𝑐

𝑘 −𝜖𝑘,𝑡}, {𝑐𝑘,𝑡 ≥ 𝜇𝑐
𝑘 +𝜖𝑘,𝑡}, {𝑐𝑙,𝑡 ≤ 𝜇𝑐

𝑙 −𝜖𝑙,𝑡} or {𝑐𝑙,𝑡 ≥ 𝜇𝑐
𝑙 +𝜖𝑙,𝑡}.

252

Otherwise, using the shorthand notations 𝑐𝑘 = 𝑐𝑘,𝑡 − 𝜖𝑘,𝑡 and 𝑐𝑙 = 𝑐𝑙,𝑡 − 𝜖𝑙,𝑡, we have:

obj𝑥,𝑡 − obj𝑥

= [𝑐𝑘 − 𝑏

𝑐𝑘 − 𝑐𝑙

· 𝑟𝑙,𝑡 + 𝑏 − 𝑐𝑙

𝑐𝑘 − 𝑐𝑙

· 𝑟𝑘,𝑡] − [𝜇𝑐
𝑘 − 𝑏

𝜇𝑐
𝑘 − 𝜇𝑐

𝑙

· 𝜇𝑟
𝑙 + 𝑏 − 𝜇𝑐

𝑙

𝜇𝑐
𝑘 − 𝜇𝑐

𝑙

· 𝜇𝑟
𝑘]

< [𝑐𝑘 − 𝑏

𝑐𝑘 − 𝑐𝑙

· (𝜇𝑟
𝑙 + 𝜖𝑙,𝑡) + 𝑏 − 𝑐𝑙

𝑐𝑘 − 𝑐𝑙

· (𝜇𝑟
𝑘 + 𝜖𝑘,𝑡)] − [𝜇𝑐

𝑘 − 𝑏

𝜇𝑐
𝑘 − 𝜇𝑐

𝑙

· 𝜇𝑟
𝑙 + 𝑏 − 𝜇𝑐

𝑙

𝜇𝑐
𝑘 − 𝜇𝑐

𝑙

· 𝜇𝑟
𝑘]

= 1
𝜆

· 𝐸𝑥,𝑡 + (𝜇𝑟
𝑘 − 𝜇𝑟

𝑙) · [𝑏 − 𝑐𝑙

𝑐𝑘 − 𝑐𝑙

− 𝑏 − 𝜇𝑐
𝑙

𝜇𝑐
𝑘 − 𝜇𝑐

𝑙

]

= 1
𝜆

· 𝐸𝑥,𝑡 + (𝜇𝑟
𝑘 − 𝜇𝑟

𝑙)
(𝑐𝑘 − 𝑐𝑙) · (𝜇𝑐

𝑘 − 𝜇𝑐
𝑙)

· [(𝜇𝑐
𝑘 − 𝑏)(𝜇𝑐

𝑙 − 𝑐𝑙) + (𝑏 − 𝜇𝑐
𝑙)(𝜇𝑐

𝑘 − 𝑐𝑘)]

≤ 1
𝜆

· 𝐸𝑥,𝑡 + 𝜅

𝑐𝑘 − 𝑐𝑙

· |(𝜇𝑐
𝑘 − 𝑏)(𝜇𝑐

𝑙 − 𝑐𝑙) + (𝑏 − 𝜇𝑐
𝑙)(𝜇𝑐

𝑘 − 𝑐𝑘)|

≤ 1
𝜆

· 𝐸𝑥,𝑡 + 2 𝜅

𝑐𝑘 − 𝑐𝑙

· [(𝑐𝑘 − 𝑏) · 𝜖𝑙,𝑡 + (𝑏 − 𝑐𝑙) · 𝜖𝑘,𝑡]

= 1
𝜆

· 𝐸𝑥,𝑡 + 2𝜅

𝜆
· 𝐸𝑥,𝑡

= 𝐸𝑥,𝑡,

a contradiction. The first inequality is strict because either 𝑐𝑘 > 𝑏 or 𝑐𝑙 < 𝑏. The second

inequality is derived using Assumption 4.5. The third inequality is derived from the obser-

vation that the expression (𝜇𝑐
𝑘 −𝑏)(𝜇𝑐

𝑙 −𝑐𝑙)+(𝑏−𝜇𝑐
𝑙)(𝜇𝑐

𝑘 −𝑐𝑘) is a linear function of (𝜇𝑐
𝑘, 𝜇𝑐

𝑙)

(since the cross term 𝜇𝑐
𝑘 ·𝜇𝑐

𝑙 cancels out) so that |(𝜇𝑐
𝑘 −𝑏)(𝜇𝑐

𝑙 −𝑐𝑙)+(𝑏−𝜇𝑐
𝑙)(𝜇𝑐

𝑘 −𝑐𝑘)| is con-

vex in (𝜇𝑐
𝑘, 𝜇𝑐

𝑙) and the maximum of this expression over the polyhedron [𝑐𝑘,𝑡 − 𝜖𝑘,𝑡, 𝑐𝑘,𝑡 +

𝜖𝑘,𝑡] × [𝑐𝑙,𝑡 − 𝜖𝑙,𝑡, 𝑐𝑙,𝑡 + 𝜖𝑙,𝑡] is attained at an extreme point. We obtain:

E[
𝑇∑︁

𝑡=1
𝐼𝑥∈ℬ𝑡𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)]

≤
∞∑︁

𝑡=1
P[𝑟𝑘,𝑡 ≥ 𝜇𝑟

𝑘 + 𝜖𝑘,𝑡] + P[𝑟𝑙,𝑡 ≥ 𝜇𝑟
𝑙 + 𝜖𝑙,𝑡]

+
∞∑︁

𝑡=1
P[𝑐𝑙,𝑡 ≥ 𝜇𝑐

𝑙 + 𝜖𝑙,𝑡] + P[𝑐𝑘,𝑡 ≥ 𝜇𝑐
𝑘 + 𝜖𝑘,𝑡]

+
∞∑︁

𝑡=1
P[𝑐𝑘,𝑡 ≤ 𝜇𝑐

𝑘 − 𝜖𝑘,𝑡] + P[𝑐𝑙,𝑡 ≤ 𝜇𝑐
𝑙 − 𝜖𝑙,𝑡] + 4𝜋2

3𝜖2 ≤ 3𝜋2

𝜖2 ,

using the same argument as in Fact C.3.

253

C.5.5 Proof of Theorem 4.5

We build upon (4.4):

𝑅𝐵,𝑇 ≤ 𝑇 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 − E[
𝜏*∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] + 𝑂(1)

= 𝑇 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 − E[
𝑇∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] + E[

𝑇∑︁
𝑡=𝜏*+1

𝑟𝑎𝑡,𝑡] + 𝑂(1)

≤ 𝑇 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 − E[
𝑇∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] + 𝜎 · E[

𝑇∑︁
𝑡=𝜏*+1

𝑐𝑎𝑡,𝑡] + 𝑂(1)

≤ 𝑇 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 − E[
𝑇∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] + 𝜎 · E[(

𝑇∑︁
𝑡=1

𝑐𝑎𝑡,𝑡 − 𝐵)+] + 𝑂(1).

The second inequality is a consequence of Assumption 4.4:

E[
𝑇∑︁

𝑡=𝜏*+1
𝑐𝑎𝑡,𝑡] = E[

𝑇∑︁
𝑡=1

𝑐𝑎𝑡,𝑡] − E[
𝜏*∑︁

𝑡=1
𝑐𝑎𝑡,𝑡]

= E[
𝑇∑︁

𝑡=1
E[𝑐𝑎𝑡,𝑡 | ℱ𝑡−1]] − E[

∞∑︁
𝑡=1

𝐼𝜏*≥𝑡 · E[𝑐𝑎𝑡,𝑡 | ℱ𝑡−1]]

= E[
𝑇∑︁

𝑡=1
𝜇𝑐

𝑎𝑡
] − E[

∞∑︁
𝑡=1

𝐼𝜏*≥𝑡 · 𝜇𝑐
𝑎𝑡

]

= E[
𝑇∑︁

𝑡=𝜏*+1
𝜇𝑐

𝑎𝑡
]

≥ 1
𝜎

· E[
𝑇∑︁

𝑡=𝜏*+1
𝜇𝑟

𝑎𝑡
] = 1

𝜎
· E[

𝑇∑︁
𝑡=𝜏*+1

𝑟𝑎𝑡,𝑡],

since 𝜏 * is a stopping time. To derive the third inequality, observe that 𝜏 * = 𝑇 + 1 implies:

𝑇∑︁
𝑡=𝜏*+1

𝑐𝑎𝑡,𝑡 = 0 ≤ (
𝑇∑︁

𝑡=1
𝑐𝑎𝑡,𝑡 − 𝐵)+,

while if 𝜏 * < 𝑇 + 1 we have run out of resources before round 𝑇 , i.e.
∑︀𝜏*

𝑡=1 𝑐𝑎𝑡,𝑡 ≥ 𝐵,

which implies:

𝑇∑︁
𝑡=𝜏*+1

𝑐𝑎𝑡,𝑡 ≤
𝑇∑︁

𝑡=𝜏*+1
𝑐𝑎𝑡,𝑡 +

𝜏*∑︁
𝑡=1

𝑐𝑎𝑡,𝑡 − 𝐵 ≤ (
𝑇∑︁

𝑡=1
𝑐𝑎𝑡,𝑡 − 𝐵)+.

254

Now observe that:

E[(
𝑇∑︁

𝑡=1
𝑐𝑎𝑡,𝑡 − 𝐵)+] = E[(

∑︁
𝑥 pseudo-basis for (4.3)

{𝑏𝑥,𝑇 − 𝑛𝑥,𝑇 · 𝑏})+]

≤
∑︁
𝑥∈ℬ

E[|𝑏𝑥,𝑇 − 𝑛𝑥,𝑇 · 𝑏|] +
∑︁
𝑥/∈ℬ

E[𝑛𝑥,𝑇] +
∑︁

𝑥 pseudo-basis for (4.3)
with det(𝐴𝑥)=0

E[𝑛𝑥,𝑇]

= 𝑂(𝐾2

𝜖3 ln(𝑇)),

where we use the fact that 𝑐𝑘,𝑡 ≤ 1 at any time 𝑡 and for all arms 𝑘 for the first inequality

and Lemma 4.10 along with the proof of Lemma 4.11 for the last equality. Plugging this

last inequality back into the regret bound yields:

𝑅𝐵,𝑇 ≤ 𝑇 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 − E[
𝑇∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] + 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇))

≤ 𝑇 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 −
∑︁
𝑥∈ℬ

𝐾∑︁
𝑘=1

𝜇𝑟
𝑘 · E[𝑛𝑥

𝑘,𝑇] + 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇))

≤ 𝑇 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 −
∑︁
𝑥∈ℬ

(
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥
𝑘) · E[𝑛𝑥,𝑇] + 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇))

=
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 · (𝑇 −
∑︁

𝑥∈ℬ | Δ𝑥=0
E[𝑛𝑥,𝑇]) −

∑︁
𝑥∈ℬ | Δ𝑥>0

(
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥
𝑘) · E[𝑛𝑥,𝑇] (C.22)

+ 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇))

=
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 · (
∑︁

𝑥∈ℬ | Δ𝑥>0
E[𝑛𝑥,𝑇] +

∑︁
𝑥/∈ℬ

E[𝑛𝑥,𝑇] +
∑︁

𝑥 pseudo-basis for (4.3)
with det(𝐴𝑥)=0

E[𝑛𝑥,𝑇])

−
∑︁

𝑥∈ℬ | Δ𝑥>0
(

𝐾∑︁
𝑘=1

𝜇𝑟
𝑘 · 𝜉𝑥

𝑘) · E[𝑛𝑥,𝑇] + 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇))

≤
∑︁

𝑥∈ℬ | Δ𝑥>0
Δ𝑥 · E[𝑛𝑥,𝑇] + 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇)) (C.23)

≤ 29 𝜆2

𝜖3 · (
∑︁

𝑥∈ℬ | Δ𝑥>0

1
Δ𝑥

) · ln(𝑇) + 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇)),

where we use Lemma 4.11 for the third inequality, Lemma 4.10 along with
∑︀𝐾

𝑘=1 𝜇𝑟
𝑘 ·𝜉𝑥*

𝑘 ≤∑︀𝐾
𝑘=1 𝜉𝑥*

𝑘 ≤ 1 for the fourth inequality, and Lemma 4.12 for the last inequality.

255

C.5.6 Proof of Theorem 4.6

Along the same lines as for the case of a single limited resource, we start from inequality

(C.23) derived in the proof of Theorem 4.5 and apply Lemma 4.12 only if Δ𝑥 is big enough,

taking into account the fact that
∑︀

𝑥∈ℬ E[𝑛𝑥,𝑇] ≤ 𝑇 . Specifically, we have:

𝑅𝐵,𝑇 ≤ sup
(𝑛𝑥)𝑥∈ℬ≥0∑︀

𝑥∈ℬ 𝑛𝑥≤𝑇

{
∑︁

𝑥∈ℬ | Δ𝑥>0
min(Δ𝑥 · 𝑛𝑥, 29 𝜆2

𝜖3 · ln(𝑇)
Δ𝑥

+ 10𝜋2

3𝜖2 · Δ𝑥) }

+ 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇))

≤ sup
(𝑛𝑥)𝑥∈ℬ≥0∑︀

𝑥∈ℬ 𝑛𝑥≤𝑇

{
∑︁

𝑥∈ℬ | Δ𝑥>0
min(Δ𝑥 · 𝑛𝑥, 29 𝜆2

𝜖3 · ln(𝑇)
Δ𝑥

) } + 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇))

≤ sup
(𝑛𝑥)𝑥∈ℬ≥0∑︀

𝑥∈ℬ 𝑛𝑥≤𝑇

{
∑︁
𝑥∈ℬ

√︃
29 𝜆2

𝜖3 · ln(𝑇) · 𝑛𝑥 } + 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇))

≤ 25 𝜆

𝜖3/2 ·
√︁

ln(𝑇) · sup
(𝑛𝑥)𝑥∈ℬ≥0∑︀

𝑥∈ℬ 𝑛𝑥≤𝑇

{
∑︁
𝑥∈ℬ

√
𝑛𝑥 } + 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇))

≤ 25 𝜆

𝜖3/2 ·
√︁

|ℬ| · 𝑇 · ln(𝑇) + 𝑂(𝐾2 · 𝜎

𝜖3 ln(𝑇)),

where we use the fact that Δ𝑥 ≤ ∑︀𝐾
𝑘=1 𝜇𝑟

𝑘 · 𝜉𝑥*
𝑘 ≤ ∑︀𝐾

𝑘=1 𝜉𝑥*
𝑘 ≤ 1 for the second inequality,

we maximize over each Δ𝑥 ≥ 0 to derive the third inequality, and we use Cauchy-Schwartz

for the last inequality.

C.5.7 Proof of Theorem 4.7

When 𝑏 ≤ 𝜖/2, the analysis almost falls back to the case of a single limited resource.

Indeed, we have 𝜏 * = 𝜏(𝐵) with high probability given that:

P[𝜏(𝐵) > 𝑇 + 𝑡] = P[
𝑇 +𝑡∑︁
𝜏=1

𝑐𝑎𝜏 ,𝜏 ≤ 𝐵]

≤ P[1
𝑇 + 𝑡

·
𝑇 +𝑡∑︁
𝑡=1

𝑐𝑎𝑡,𝑡 ≤ 𝜖 − (𝜖 − 𝑏)]

≤ exp(−(𝑇 + 𝑡) · 𝜖2

2),

256

for any 𝑡 ∈ N using Lemma 4.1. Now observe that, since 𝑏 ≤ 𝜖/2, the feasible bases for

(4.3) are exactly the bases 𝑥 such that 𝒦𝑥 = {𝑘} and 𝒞𝑥 = {1} for some 𝑘 ∈ {1, · · · , 𝐾},

which we denote by (𝑥𝑘)𝑘=1,··· ,𝐾 . This shows that EROPT(𝐵, 𝑇) = 𝐵 ·max𝑘=1,··· ,𝐾 𝜇𝑟
𝑘/𝜇𝑐

𝑘.

Moreover note that Assumption 4.6 is automatically satisfied when 𝑏 ≤ 𝜖/2. Hence, with a

minor modification of the proof of Lemma 4.10, we get:

E[𝑛𝑥,𝜏(𝐵)] ≤ 212

𝜖3 · E[ln(𝜏(𝐵))] + 40𝜋2

3𝜖2 ,

for any pseudo-basis 𝑥 involving two arms or any basis 𝑥 such that 𝒦𝑥 = {𝑘} and 𝒞𝑥 = {2}

for some arm 𝑘 ∈ {1, · · · , 𝐾}. Similarly, a minor modification of Lemma 4.12 yields:

E[𝑛𝑥𝑘,𝜏(𝐵)] ≤ 212 𝜆2

𝜖3 · E[ln(𝜏(𝐵))]
Δ2

𝑥𝑘

+ 40𝜋2

𝜖2 ,

for any 𝑘 ∈ {1, · · · , 𝐾}. What is left is to refine the analysis of Theorem 4.5 as follows:

𝑅𝐵,𝑇 ≤ 𝐵 · max
𝑘=1,··· ,𝐾

𝜇𝑟
𝑘

𝜇𝑐
𝑘

− E[
𝜏*∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] + 𝑂(1)

≤ 𝐵 · max
𝑘=1,··· ,𝐾

𝜇𝑟
𝑘

𝜇𝑐
𝑘

− E[
𝜏(𝐵)∑︁
𝑡=1

𝑟𝑎𝑡,𝑡] + 𝑇 · P[𝜏(𝐵) > 𝑇] + E[(𝜏(𝐵) − 𝑇)+] + 𝑂(1)

≤ 𝐵 · max
𝑘=1,··· ,𝐾

𝜇𝑟
𝑘

𝜇𝑐
𝑘

−
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · E[𝑛𝑥𝑘

𝑘,𝜏(𝐵)] + 𝑂(1)

≤ max
𝑘=1,··· ,𝐾

𝜇𝑟
𝑘

𝜇𝑐
𝑘

· (𝐵 −
∑︁

𝑘 | Δ𝑥𝑘
=0

𝜇𝑐
𝑘 · E[𝑛𝑥𝑘

𝑘,𝜏(𝐵)]) −
∑︁

𝑘 | Δ𝑥𝑘
>0

𝜇𝑟
𝑘 · E[𝑛𝑥𝑘

𝑘,𝜏(𝐵)] + 𝑂(1).

By definition of 𝜏(𝐵), we have 𝐵 ≤ ∑︀𝜏(𝐵)
𝑡=1 𝑐𝑎𝑡,𝑡. Taking expectations on both sides yields:

𝐵 ≤
𝐾∑︁

𝑘=1
𝜇𝑐

𝑘 · E[𝑛𝑘,𝜏(𝐵)]

=
∑︁

𝑘 | Δ𝑥𝑘
=0

𝜇𝑐
𝑘 · E[𝑛𝑥𝑘

𝑘,𝜏(𝐵)] +
∑︁

𝑘 | Δ𝑥𝑘
>0

𝜇𝑐
𝑘 · E[𝑛𝑥𝑘

𝑘,𝜏(𝐵)] +
∑︁
𝑥/∈ℬ

E[𝑛𝑥,𝜏(𝐵)].

257

Plugging this inequality back into the regret bound, we get:

𝑅𝐵,𝑇 =
∑︁

𝑘 | Δ𝑥𝑘
>0

𝜇𝑐
𝑘 · Δ𝑥𝑘

· E[𝑛𝑥𝑘

𝑘,𝜏(𝐵)] + max
𝑘=1,··· ,𝐾

𝜇𝑟
𝑘

𝜇𝑐
𝑘

·
∑︁
𝑥/∈ℬ

E[𝑛𝑥,𝜏(𝐵)] + 𝑂(1)

≤
∑︁

𝑘 | Δ𝑥𝑘
>0

𝜇𝑐
𝑘 · Δ𝑥𝑘

· E[𝑛𝑥𝑘

𝑘,𝜏(𝐵)] + 212𝐾2 · 𝜅

𝜖3 · E[ln(𝜏(𝐵))] + 𝑂(1)

≤ 212 𝜆2

𝜖3 · (
∑︁

𝑘 | Δ𝑥𝑘
>0

1
Δ𝑥𝑘

) · ln(𝐵 + 1
𝜖

) + 212𝐾2 · 𝜅

𝜖3 · ln(𝐵 + 1
𝜖

) + 𝑂(1),

where we use Assumption 4.5 for the second inequality and Lemma 4.4 for the third in-

equality. A distribution-independent regret bound of order 𝑂(
√︁

𝐾 · 𝐵+1
𝜖

· ln(𝐵+1
𝜖

) + 𝐾2·𝜅
𝜖3 ·

ln(𝐵+1
𝜖

)) can be derived from the penultimate inequality along the same lines as in Theo-

rem 4.6.

C.6 Proofs for Section 4.7

C.6.1 Preliminary work for the proofs of Section 4.7

Concentration inequality. We will use the following inequality repeatedly. For a given

round 𝜏 ≥ tini and a basis 𝑥:

P[∃(𝑘, 𝑖) ∈ 𝒦𝑥 × {1, · · · , 𝐶}, |𝑐𝑘,𝜏 (𝑖) − 𝜇𝑐
𝑘(𝑖)| >

𝜖3

16 · (C + 2)!2]

≤
𝑇∑︁

𝑠=tini /𝐾

∑︁
𝑘∈𝒦𝑥

𝑖∈{1,··· ,𝐶}

P[|𝑐𝑘,𝜏 (𝑖) − 𝜇𝑐
𝑘(𝑖)| >

𝜖3

16 · (C + 2)!2 , 𝑛𝑘,𝜏 = 𝑠]

≤ 2 · 𝐶2 ·
∞∑︁

𝑠=tini /𝐾

exp(−𝑠 · 𝜖6

27 · (𝐶 + 2)!4)

≤ 29 (C + 3)!4
𝜖6 · T2 ,

(C.24)

using Lemma 4.1, the inequality exp(−𝑥) ≤ 1 − 𝑥/2 for 𝑥 ∈ [0, 1], and the fact that we

pull each arm tini /𝐾 ≥ 28 (C+2)!4
𝜖6 · ln(𝑇) times during the initialization phase.

258

Useful matrix inequalities. For any basis 𝑥, assume that {|𝑐𝑘,𝑡(𝑖) − 𝜇𝑐
𝑘(𝑖)| ≤ 𝜖3

16·(C+2)!2 },

for any arm 𝑘 ∈ 𝒦𝑥 and resource 𝑖 ∈ 𝒞𝑥. We have:

| det(𝐴𝑥,𝑡) − det(𝐴𝑥)|

= |
∑︁

𝜎∈𝑆(𝒦𝑥,𝒞𝑥)
[
∏︁

𝑘∈𝒦𝑥

𝑐𝑘,𝑡(𝜎(𝑘)) −
∏︁

𝑘∈𝒦𝑥

𝜇𝑐
𝑘(𝜎(𝑘))]|

= |
∑︁

𝜎∈𝑆(𝒦𝑥,𝒞𝑥)

∑︁
𝑙∈𝒦𝑥

∏︁
𝑘<𝑙

𝑐𝑘,𝑡(𝜎(𝑘)) · [𝑐𝑙,𝑡(𝜎(𝑙)) − 𝜇𝑐
𝑙 (𝜎(𝑙))] ·

∏︁
𝑘>𝑙

𝜇𝑐
𝑘(𝜎(𝑘))|

≤
∑︁

𝜎∈𝑆(𝒦𝑥,𝒞𝑥)

∑︁
𝑙∈𝒦𝑥

|𝑐𝑙,𝑡(𝜎(𝑙)) − 𝜇𝑐
𝑙 (𝜎(𝑙))|

≤ 𝜖3

16 · (𝐶 + 2)!

≤ 𝜖

2 ,

since the amounts of resources consumed at any round are no larger than 1. This yields:

| det(𝐴𝑥,𝑡)| ≥ | det(𝐴𝑥)| − | det(𝐴𝑥,𝑡) − det(𝐴𝑥)| ≥ 𝜖

2 , (C.25)

using Assumption 4.8. Now consider any vector 𝑐 such that ‖𝑐‖∞ ≤ 1, we have:

|𝑐T𝐴−1
𝑥,𝑡𝑏𝒦𝑥 − 𝑐T𝐴−1

𝑥 𝑏𝒦𝑥|

= 1
| det(𝐴𝑥)| · | det(𝐴𝑥,𝑡)|

| · | det(𝐴𝑥) · 𝑐T adj(𝐴𝑥,𝑡)𝑏𝒦𝑥 − det(𝐴𝑥,𝑡) · 𝑐T adj(𝐴𝑥)𝑏𝒦𝑥|

≤ 1
| det(𝐴𝑥,𝑡)|

| · |𝑐T(adj(𝐴𝑥,𝑡) − adj(𝐴𝑥))𝑏𝒦𝑥|

+ 1
| det(𝐴𝑥)| · | det(𝐴𝑥,𝑡)|

| · | det(𝐴𝑥,𝑡) − det(𝐴𝑥)| · |𝑐T adj(𝐴𝑥)𝑏𝒦𝑥|

≤ 𝜖2

8 + 𝜖

8 · (𝐶 + 2)! · ‖𝑐‖2 · ‖adj(𝐴𝑥)𝑏𝒦𝑥‖2

≤ 𝜖

4 .

The second inequality is obtained using Assumption 4.8 and (C.25) by proceeding along the

same lines as above to bound the difference between two determinants for each component

of adj(𝐴𝑥,𝑡) − adj(𝐴𝑥). The last inequality is obtained using ‖𝑐‖2 ≤
√

𝐶 and the fact that

259

each component of 𝐴𝑥 is smaller than 1. If we take 𝑐 = 𝑒𝑘 for 𝑘 ∈ 𝒦𝑥, this yields:

|𝜉𝑥
𝑘,𝑡 − 𝜉𝑥

𝑘 | ≤ 𝜖

4 . (C.26)

If we take 𝑐 = (𝜇𝑐
𝑘(𝑖))𝑘∈𝒦𝑥 , for any 𝑖 ∈ {1, · · · , 𝐶}, we get:

|
∑︁

𝑘∈𝒦𝑥

𝜇𝑐
𝑘(𝑖) · 𝜉𝑥

𝑘,𝑡 −
∑︁

𝑘∈𝒦𝑥

𝜇𝑐
𝑘(𝑖) · 𝜉𝑥

𝑘 | ≤ 𝜖

4 (C.27)

and

|
∑︁

𝑘∈𝒦𝑥

𝑐𝑘,𝑡(𝑖) · 𝜉𝑥
𝑘,𝑡 −

∑︁
𝑘∈𝒦𝑥

𝜇𝑐
𝑘(𝑖) · 𝜉𝑥

𝑘 | = |𝑐T𝐴−1
𝑥,𝑡𝑏𝒦𝑥 − 𝑐T𝐴−1

𝑥 𝑏𝒦𝑥|

≤ |(𝑐 − 𝑐)T𝐴−1
𝑥,𝑡𝑏𝒦𝑥| + |𝑐T𝐴−1

𝑥,𝑡𝑏𝒦𝑥 − 𝑐T𝐴−1
𝑥 𝑏𝒦𝑥|

≤ ‖𝑐 − 𝑐‖2 · 1
| det(𝐴𝑥,𝑡)|

·
⃦⃦⃦
adj(𝐴𝑥,𝑡)𝑏𝒦𝑥

⃦⃦⃦
2

+ 𝜖

4

≤
√

𝐶 · 𝜖3

16 · (C + 2)!2 ·2
𝜖

· 𝐶! + 𝜖

4

≤ 𝜖

2 ,

(C.28)

where 𝑐 = (𝑐𝑘,𝑡(𝑖))𝑘∈𝒦𝑥 .

C.6.2 Proof of Lemma 4.13

First, consider a basis 𝑥 /∈ ℬ. Since 𝑥 is 𝜖-non-degenerate by Assumption 4.8, there must

exist 𝑘 ∈ 𝒦𝑥 such that 𝜉𝑥
𝑘 ≤ −𝜖 or 𝑖 ∈ {1, · · · , 𝐶} such that

∑︀𝐾
𝑘=1 𝜇𝑐

𝑘(𝑖) · 𝜉𝑥
𝑘 ≥ 𝑏(𝑖)+ 𝜖. Let

us assume that we are in the first situation (the proof is symmetric in the other scenario).

Using (C.26) in the preliminary work of Section C.6.1, we have:

𝜉𝑥
𝑘,𝑡 = 𝜉𝑥

𝑘 + (𝜉𝑥
𝑘,𝑡 − 𝜉𝑥

𝑘) ≤ − 𝜖

2 , (C.29)

260

if {|𝑐𝑘,𝑡(𝑖)−𝜇𝑐
𝑘(𝑖)| ≤ 𝜖3

16·(C+2)!2 } for all arms 𝑘 ∈ 𝒦𝑥 and resources 𝑖 ∈ {1, · · · , 𝐶}. Hence:

E[𝑛𝑥,𝑇] = E[
𝑇∑︁

𝑡=tini

𝐼𝑥𝑡=𝑥]

≤
𝑇∑︁

𝑡=tini

P[𝜉𝑥
𝑘,𝑡 ≥ 0]

≤
𝑇∑︁

𝑡=tini

∑︁
𝑘∈𝒦𝑥

𝑖∈{1,··· ,𝐶}

P[|𝑐𝑘,𝑡(𝑖) − 𝜇𝑐
𝑘(𝑖)| >

𝜖3

16 · (C + 2)!2]

≤ 29 (C + 3)!4
𝜖6 ,

where the third inequality is derived with (C.24).

Second, consider a pseudo-basis 𝑥 for (4.3) that is not a basis. Since det(𝐴𝑥) = 0, either

every component of 𝐴𝑥 is 0, in which case det(𝐴𝑥,𝑡) = 0 at every round 𝑡 and 𝑥 can never

be selected, or there exists a basis 𝑥̃ for (4.3) with 𝒦𝑥̃ ⊂ 𝒦𝑥 and 𝒞𝑥̃ ⊂ 𝒞𝑥 along with

coefficients (𝛼𝑘𝑙)𝑘∈𝒦𝑥−𝒦𝑥̃,𝑙∈𝒦𝑥̃ such that 𝜇𝑐
𝑘(𝑖) = ∑︀

𝑙∈𝒦𝑥̃
𝛼𝑘𝑙 · 𝜇𝑐

𝑙 (𝑖) for any resource 𝑖 ∈ 𝒞𝑥.

Assuming we are in the second scenario and since 𝑥̃ is 𝜖-non-degenerate by Assumption

4.8, we have
∑︀𝐾

𝑘=1 𝜇𝑐
𝑘(𝑗) · 𝜉𝑥̃

𝑘 ≤ 𝑏(𝑗) − 𝜖 for any 𝑗 /∈ 𝒞𝑥̃. Take 𝑖 ∈ 𝒞𝑥 − 𝒞𝑥̃. Suppose

that 𝑥 is feasible for (4.8) at round 𝑡 and assume by contradiction that {|𝑐𝑘,𝑡(𝑗) − 𝜇𝑐
𝑘(𝑗)| ≤

𝜖3

16·(C+2)!2 } for all arms 𝑘 ∈ 𝒦𝑥 and resources 𝑗 ∈ {1, · · · , 𝐶}. Using the notations 𝜉𝑥
𝑘,𝑡 =

𝜉𝑥
𝑘,𝑡 +∑︀

𝑙∈𝒦𝑥−𝒦𝑥̃
𝛼𝑘𝑙 · 𝜉𝑥

𝑙,𝑡, we have, for any resource 𝑗 ∈ 𝒞𝑥̃:

𝑏(𝑗) =
∑︁

𝑙∈𝒦𝑥

𝑐𝑙,𝑡(𝑗) · 𝜉𝑥
𝑙,𝑡

= 𝛼(𝑗) +
∑︁

𝑙∈𝒦𝑥

𝜇𝑐
𝑙 (𝑗) · 𝜉𝑥

𝑙,𝑡

= 𝛼(𝑗) +
∑︁

𝑙∈𝒦𝑥̃

𝜇𝑐
𝑙 (𝑗) · 𝜉𝑥

𝑙,𝑡,

261

where |𝛼(𝑗)| ≤ 𝜖3

16·(C+2)!2 since 𝜉𝑘 ∈ [0, 1] ∀𝑘 ∈ {1, · · · , 𝐾} for any feasible solution to

(4.8). We get 𝐴𝑥̃𝜉𝑥
𝒦𝑥̃,𝑡 = 𝑏𝒞𝑥̃ − 𝛼𝒞𝑥̃ while 𝐴𝑥̃𝜉𝑥̃

𝒦𝑥̃
= 𝑏𝒞𝑥̃ . We derive:

|
𝐾∑︁

𝑘=1
𝑐𝑘,𝑡(𝑖) · 𝜉𝑥

𝑘,𝑡 −
𝐾∑︁

𝑘=1
𝜇𝑐

𝑘(𝑖) · 𝜉𝑥̃
𝑘 |

≤ |
𝐾∑︁

𝑘=1
𝜇𝑐

𝑘(𝑖) · 𝜉𝑥
𝑘,𝑡 −

𝐾∑︁
𝑘=1

𝜇𝑐
𝑘(𝑖) · 𝜉𝑥̃

𝑘 | + 𝜖3

16 · (C + 2)!2

≤ |
∑︁

𝑘∈𝒦𝑥̃

𝜇𝑐
𝑘(𝑖) · (𝜉𝑥

𝑘,𝑡 − 𝜉𝑥̃
𝑘)| + 𝜖

4

= 𝜖

4 + |𝜇𝑐
𝒦𝑥̃

(𝑖)T𝐴−1
𝑥̃ 𝛼𝒞𝑥̃|

≤ 𝜖

4 +
√

𝐶 · 1
| det(𝐴𝑥̃)| · ‖adj(𝐴𝑥̃)𝛼𝒞𝑥̃‖2

≤ 𝜖

4 + (𝐶 + 1)!
𝜖

· 𝜖3

16 · (C + 2)!2

≤ 𝜖

2 .

Thus we obtain:

𝐾∑︁
𝑘=1

𝑐𝑘,𝑡(𝑖) · 𝜉𝑥
𝑘,𝑡 ≤

𝐾∑︁
𝑘=1

𝜇𝑐
𝑘(𝑖) · 𝜉𝑥̃

𝑘 + 𝜖

2 ≤ 𝑏(𝑖) − 𝜖

2 < 𝑏(𝑖),

a contradiction since this inequality must be binding by definition if 𝑥 is selected at round

𝑡. We finally conclude:

E[𝑛𝑥,𝑇] = E[
𝑇∑︁

𝑡=tini

𝐼𝑥𝑡=𝑥]

≤
𝑇∑︁

𝑡=tini

∑︁
𝑘∈𝒦𝑥

𝑗∈{1,··· ,𝐶}

P[|𝑐𝑘,𝑡(𝑗) − 𝜇𝑐
𝑘(𝑗)| >

𝜖3

16 · (C + 2)!2]

≤ 29 (C + 3)!4
𝜖6 .

C.6.3 Proof of Lemma 4.14

Proof of (4.12). Consider a resource 𝑖 ∈ 𝒞𝑥 and 𝑢 ≥ 1. We study P[𝑏𝑥,𝑡(𝑖)−𝑛𝑥,𝑡·𝑏(𝑖) ≥ 𝑢]

but the same technique can be used to bound P[𝑏𝑥,𝑡(𝑖) − 𝑛𝑥,𝑡 · 𝑏(𝑖) ≤ −𝑢]. If 𝑏𝑥,𝑡(𝑖) − 𝑛𝑥,𝑡 ·

262

𝑏(𝑖) ≥ 𝑢, it must be that 𝑒𝑥
𝑖,𝜏 = −1 for at least 𝑠 ≥ ⌊𝑢⌋ rounds 𝜏 = 𝑡1 ≤ · · · ≤ 𝑡𝑠 ≤ 𝑡 − 1

where 𝑥 was selected at Step-Simplex since the last time, denoted by 𝑡0 < 𝑡1, where 𝑥 was

selected at Step-Simplex and the budget was below the target, i.e. 𝑏𝑥,𝑡0(𝑖) ≤ 𝑛𝑥,𝑡0 · 𝑏(𝑖)

(because the amounts of resources consumed at each round are bounded by 1). Moreover,

we have:

𝑠∑︁
𝑞=1

𝑐𝑎𝑡𝑞 ,𝑡𝑞(𝑖) =
𝑡−1∑︁

𝜏=𝑡0+1
𝐼𝑥𝜏 =𝑥 · 𝑐𝑎𝜏 ,𝜏 (𝑖)

= 𝑏𝑥,𝑡(𝑖) − 𝑏𝑥,𝑡0+1(𝑖)

≥ (𝑛𝑥,𝑡 − 𝑛𝑥,𝑡0) · 𝑏(𝑖) + 𝑢 − 1

≥ 𝑠 · 𝑏(𝑖) + 𝑢 − 1.

Hence:

P[𝑏𝑥,𝑡(𝑖) − 𝑛𝑥,𝑡 · 𝑏(𝑖) ≥ 𝑢]

≤
𝑡∑︁

𝑠=⌊𝑢⌋
P[

𝑠∑︁
𝑞=1

𝑐𝑎𝑡𝑞 ,𝑡𝑞(𝑖) ≥ 𝑠 · 𝑏(𝑖) + 𝑢 − 1 ; 𝑒𝑥
𝑖,𝑡𝑞

= −1 ∀𝑞 ∈ {1, · · · , 𝑠}]

≤
𝑡∑︁

𝑠=⌊𝑢⌋
P[

𝑠∑︁
𝑞=1

𝑐𝑎𝑡𝑞 ,𝑡𝑞(𝑖) ≥ 𝑠 · 𝑏(𝑖) ;
𝐾∑︁

𝑘=1
𝜇𝑐

𝑘(𝑖) · 𝑝𝑥
𝑘,𝑡𝑞

≤ 𝑏(𝑖) − 𝜖2

4 · (C + 1)! ∀𝑞 ∈ {1, · · · , 𝑠}]

+
𝑇∑︁

𝜏=tini

∑︁
𝑘∈𝒦𝑥

𝑗∈{1,··· ,𝐶}

P[|𝑐𝑘,𝜏 (𝑗) − 𝜇𝑐
𝑘(𝑗)| >

𝜖3

16 · (C + 2)!2]

≤
∞∑︁

𝑠=⌊𝑢⌋
exp(−2𝑠 · (𝜖2

4 · (C + 1)!)
2) + 29 (C + 3)!4

𝜖6 · 1
𝑇

≤ 16(𝐶 + 1)!2
𝜖4 · exp(−𝑢 · (𝜖2

4 · (C + 1)!)
2) + 29 (C + 3)!4

𝜖6 · 1
𝑇

.

The last inequality is obtained using exp(−𝑥) ≤ 1−𝑥/2 for 𝑥 ∈ [0, 1]. The third inequality

is derived using Lemma 4.1 for the first term and (C.24) for the second term. The second

inequality is obtained by observing that if 𝑥 was selected at time 𝜏 and |𝑐𝑘,𝜏 (𝑗) − 𝜇𝑐
𝑘(𝑗)| ≤

𝜖3

16·(C+2)!2 for any arm 𝑘 ∈ 𝒦𝑥 and resource 𝑗 ∈ {1, · · · , 𝐶}, then we must have 𝛿*
𝑥,𝜏 ≥

263

𝜖2

4·(C+1)! . Indeed, using (C.25) and (C.26), we have, for 𝛿 ≤ 𝜖2

4·(C+1)! and any arm 𝑘 ∈ 𝒦𝑥:

𝑐T𝐴−1
𝑥,𝜏 (𝑏𝒞𝑥 + 𝛿 · 𝑒𝑥

𝜏) = 𝜉𝑥
𝑘,𝜏 + 𝛿 · 𝑐T𝐴−1

𝑥,𝜏 𝑒𝑥
𝜏

≥ 𝜉𝑥
𝑘 − |𝜉𝑥

𝑘 − 𝜉𝑥
𝑘,𝜏 | − 𝛿 · |𝑐T𝐴−1

𝑥,𝜏 𝑒𝑥
𝜏 |

≥ 𝜖

2 − 𝛿 ·
⃦⃦⃦
𝐴−1

𝑥,𝜏 𝑒𝑥
𝜏

⃦⃦⃦
2

≥ 𝜖

2 − 𝛿 · 1
| det(𝐴𝑥,𝜏)|

·
⃦⃦⃦
adj(𝐴𝑥,𝜏)𝑒𝑥

𝜏

⃦⃦⃦
2

≥ 𝜖

2 − 2𝛿

𝜖
·
√

𝐶 · 𝐶!

≥ 0,

where 𝑐 = 𝑒𝑘 and since 𝑥 is 𝜖-non-degenerate by Assumption 4.8. Similarly, using (C.25)

and (C.28), we have, for 𝛿 ≤ 𝜖2

4·(C+1)! and any resource 𝑗 /∈ 𝒞𝑥:

𝑐T𝐴−1
𝑥,𝜏 (𝑏𝒞𝑥 + 𝛿 · 𝑒𝑥

𝜏) =
∑︁

𝑘∈𝒦𝑥

𝑐𝑘,𝜏 (𝑗) · 𝜉𝑥
𝑘,𝜏 + 𝛿 · 𝑐T𝐴−1

𝑥,𝜏 𝑒𝑥
𝜏

≤
∑︁

𝑘∈𝒦𝑥

𝜇𝑐
𝑘(𝑗) · 𝜉𝑥

𝑘,𝜏 + |
∑︁

𝑘∈𝒦𝑥

𝑐𝑘,𝜏 (𝑗) · 𝜉𝑥
𝑘,𝜏 −

∑︁
𝑘∈𝒦𝑥

𝜇𝑐
𝑘(𝑗) · 𝜉𝑥

𝑘,𝜏 |

+ 𝛿 · |𝑐T𝐴−1
𝑥,𝜏 𝑒𝑥

𝜏 |

≤ 𝑏(𝑗) − 𝜖

2 + 𝛿 ·
√

𝐶 ·
⃦⃦⃦
𝐴−1

𝑥,𝜏 𝑒𝑥
𝜏

⃦⃦⃦
2

≤ 𝑏(𝑗) − 𝜖

2 + 2𝛿

𝜖
· (𝐶 + 1)!

≤ 𝑏(𝑗),

where 𝑐 = (𝑐𝑘,𝜏 (𝑗))𝑘∈𝒦𝑥 and since 𝑥 is 𝜖-non-degenerate by Assumption 4.8.

264

Proof of (4.14). First observe that, using (4.12), we have:

max
𝑖∈𝒞𝑥

|E[𝑏𝑥,𝑇 (𝑖)] − E[𝑛𝑥,𝑇] · 𝑏(𝑖)|

≤ E[max
𝑖∈𝒞𝑥

|𝑏𝑥,𝑇 (𝑖) − 𝑛𝑥,𝑇 · 𝑏(𝑖)|]

=
∫︁ 𝑇

0
P[max

𝑖∈𝒞𝑥

|𝑏𝑥,𝑇 (𝑖) − 𝑛𝑥,𝑇 · 𝑏(𝑖)| ≥ 𝑢]d𝑢

=
∑︁
𝑖∈𝒞𝑥

∫︁ 𝑇

0
P[|𝑏𝑥,𝑇 (𝑖) − 𝑛𝑥,𝑇 · 𝑏(𝑖)| ≥ 𝑢]d𝑢

≤ 32𝐶 · (𝐶 + 1)!2
𝜖4 ·

∫︁ 𝑇

0
exp(−𝑢 · (𝜖2

4 · (C + 1)!)
2)d𝑢 + 𝐶 + 𝐶 · 29 (C + 3)!4

𝜖6

= 29𝐶 · (𝐶 + 1)!4
𝜖8 + 𝐶 + 𝐶 · 29 (C + 3)!4

𝜖6

≤ 210𝐶 · (𝐶 + 3)!4
𝜖8 .

Now observe that, for any resource 𝑖 ∈ 𝒞𝑥, we have E[𝑏𝑥,𝑇 (𝑖)] = ∑︀
𝑘∈𝒦𝑥

𝜇𝑐
𝑘(𝑖) · E[𝑛𝑥

𝑘,𝑇].

Hence, defining the vector 𝑝 = (E[𝑛𝑥
𝑘,𝑇]

E[𝑛𝑥,𝑇])𝑘∈𝒦𝑥 , we get:

E[𝑛𝑥,𝑇] · ‖𝑝 − 𝜉𝑥‖2 = E[𝑛𝑥,𝑇] ·
⃦⃦⃦
𝐴−1

𝑥 𝐴𝑥(𝑝 − 𝜉𝑥)
⃦⃦⃦

2

≤
⃒⃒⃒⃒⃒⃒ ⃒⃒⃒

𝐴−1
𝑥

⃒⃒⃒⃒⃒⃒ ⃒⃒⃒
2

· ‖E[𝑛𝑥,𝑇] · 𝐴𝑥(𝑝 − 𝜉𝑥)‖2

= 1
| det(𝐴𝑥)| · |||adj(𝐴𝑥)|||2 · ‖(E[𝑏𝑥,𝑇 (𝑖)])𝑖∈𝒞𝑥 − (E[𝑛𝑥,𝑇] · 𝑏(𝑖))𝑖∈𝒞𝑥‖2

≤ 1
𝜖

· (𝐶 + 1)! ·
√

𝐶 · 210𝐶 · (𝐶 + 3)!4
𝜖8

≤ 210 (𝐶 + 3)!5
𝜖9 ,

using Assumption 4.8. Finally we obtain:

E[𝑛𝑥,𝑇] · 𝜉𝑥
𝑘 − E[𝑛𝑥

𝑘,𝑇] ≤ E[𝑛𝑥,𝑇] · ‖𝑝 − 𝜉𝑥‖2

≤ 210 (𝐶 + 3)!5
𝜖9 ,

for any arm 𝑘 ∈ 𝒦𝑥.

265

Proof of (4.13). Consider a resource 𝑖 /∈ 𝒞𝑥 and assume that 𝑏𝑥,𝑡(𝑖)−𝑛𝑥,𝑡·𝑏(𝑖) ≥ 28 (𝐶+3)!3
𝜖6 ·

ln(𝑇). By contradiction, suppose that:

∙ |𝑏𝑥,𝑡(𝑗) − 𝑛𝑥,𝑡 · 𝑏(𝑗)| ≤ 16 (𝐶+1)!2
𝜖4 · ln(𝑇) for all resources 𝑗 ∈ 𝒞𝑥,

∙ |𝜇𝑐
𝑘(𝑗) − 𝑐𝑘(𝑗)| ≤ 𝜖2

8·(𝐶+2)! for all resources 𝑗 ∈ {1, · · · , 𝐶} and for all arms 𝑘 ∈ 𝒦𝑥

such that 𝑛𝑥
𝑘,𝑡 ≥ 26 (𝐶+2)!2

𝜖4 · ln(𝑇), where 𝑐𝑘(𝑗) denotes the empirical average amount

of resource 𝑗 consumed when selecting basis 𝑥 and pulling arm 𝑘, i.e. 𝑐𝑘(𝑗) =
1

𝑛𝑥
𝑘,𝑡

·∑︀𝑡−1
𝜏=tini 𝐼𝑥𝜏 =𝑥 · 𝐼𝑎𝜏 =𝑘 · 𝑐𝑘,𝜏 (𝑗).

Observe that if 𝑏𝑥,𝑡(𝑖) − 𝑛𝑥,𝑡 · 𝑏(𝑖) ≥ 28 (𝐶+3)!3
𝜖6 · ln(𝑇), it must be that 𝑥 has been selected

at least 28 (𝐶+3)!3
𝜖6 · ln(𝑇) times at Step-Simplex since tini, i.e. 𝑛𝑥,𝑡 ≥ 28 (𝐶+3)!3

𝜖6 · ln(𝑇). We

can partition 𝒦𝑥 into two sets 𝒦1

𝑥 and 𝒦2
𝑥 such that 𝑛𝑥

𝑘,𝑡 ≥ 26 (𝐶+2)!2
𝜖4 · ln(𝑇) for all 𝑘 ∈ 𝒦1

𝑥

and 𝑛𝑥
𝑘,𝑡 < 26 (𝐶+2)!2

𝜖4 · ln(𝑇) for all 𝑘 ∈ 𝒦2
𝑥. We get, for any 𝑗 ∈ 𝒞𝑥:

16(𝐶 + 1)!2
𝜖4 · ln(𝑇) ≥ |𝑏𝑥,𝑡(𝑗) − 𝑛𝑥,𝑡 · 𝑏(𝑗)|

≥ 𝑛𝑥,𝑡 · |
∑︁

𝑘∈𝒦1
𝑥

𝑐𝑘(𝑗) · 𝑝𝑘 − 𝑏(𝑗)| −
∑︁

𝑘∈𝒦2
𝑥

𝑛𝑥
𝑘,𝑡

≥ 𝑛𝑥,𝑡 · |
∑︁

𝑘∈𝒦1
𝑥

𝑐𝑘(𝑗) · 𝑝𝑘 − 𝑏(𝑗)| − 26𝐶 · (𝐶 + 2)!2
𝜖4 · ln(𝑇),

where 𝑝𝑘 = 𝑛𝑥
𝑘,𝑡

𝑛𝑥,𝑡
for 𝑘 ∈ 𝒦𝑥

1 and 𝑝𝑘 = 0 otherwise. Hence:

|
∑︁

𝑘∈𝒦𝑥

𝜇𝑐
𝑘(𝑗) · 𝑝𝑘 − 𝑏(𝑗)| ≤ max

𝑘∈𝒦1
𝑥

|𝜇𝑐
𝑘(𝑗) − 𝑐𝑘(𝑗)| + |

∑︁
𝑘∈𝒦1

𝑥

𝑐𝑘(𝑗) · 𝑝𝑘 − 𝑏(𝑗)|

≤ 𝜖2

8 · (𝐶 + 2)! +
(16 (𝐶+1)!2

𝜖4 + 26𝐶 · (𝐶+2)!2
𝜖4) · ln(𝑇)

𝑛𝑥,𝑡

≤ 𝜖2

4 · (𝐶 + 2)! ,

266

where we use the fact that
∑︀𝐾

𝑘=1 𝑝𝑘 ≤ 1 and 𝑝𝑘 ≥ 0 for any arm 𝑘 for the first inequality

and 𝑛𝑥,𝑡 ≥ 28 (𝐶+3)!3
𝜖6 · ln(𝑇) for the last one. We get:

‖𝑝 − 𝜉𝑥‖2 =
⃦⃦⃦
𝐴−1

𝑥 𝐴𝑥(𝑝 − 𝜉𝑥)
⃦⃦⃦

2

≤
⃒⃒⃒⃒⃒⃒ ⃒⃒⃒

𝐴−1
𝑥

⃒⃒⃒⃒⃒⃒ ⃒⃒⃒
2

· ‖𝐴𝑥(𝑝 − 𝜉𝑥)‖2

≤ 1
| det(𝐴𝑥)| · |||adj(𝐴𝑥)|||2 ·

√
𝐶 · 𝜖2

4 · (𝐶 + 2)!

≤ 1
𝜖

· (𝐶 + 1)! ·
√

𝐶 · 𝜖2

4 · (𝐶 + 2)!

≤ 𝜖

4 ·
√

𝐶
,

using Assumption 4.8. Hence:

28 (𝐶 + 3)!3
𝜖6 · ln(𝑇) ≤ 𝑏𝑥,𝑡(𝑖) − 𝑛𝑥,𝑡 · 𝑏(𝑖)

≤ 𝑛𝑥,𝑡 · (
∑︁

𝑘∈𝒦1
𝑥

𝑐𝑘(𝑖) · 𝑝𝑘 − 𝑏(𝑖)) +
∑︁

𝑘∈𝒦2
𝑥

𝑛𝑥
𝑘,𝑡

≤ 𝑛𝑥,𝑡 · (
∑︁

𝑘∈𝒦1
𝑥

𝑐𝑘(𝑖) · 𝑝𝑘 − 𝑏(𝑖)) + 26𝐶 · (𝐶 + 2)!2
𝜖4 · ln(𝑇).

Using the shorthand notation 𝑐 = (𝜇𝑐
𝑘(𝑖))𝑘∈𝒦𝑥 , this implies:

0 ≤
∑︁

𝑘∈𝒦1
𝑥

𝑐𝑘(𝑖) · 𝑝𝑘 − 𝑏(𝑖)

≤
∑︁

𝑘∈𝒦1
𝑥

𝜇𝑐
𝑘(𝑖) · 𝑝𝑘 + 𝜖2

8 · (𝐶 + 2)! − (
∑︁

𝑘∈𝒦𝑥

𝜇𝑐
𝑘(𝑖) · 𝜉𝑥

𝑘 + 𝜖)

≤ 𝑐T(𝑝 − 𝜉𝑥) − 𝜖

2
≤

√
𝐶 · ‖𝑝 − 𝜉𝑥‖2 − 𝜖

2
< 0,

267

a contradiction. Note that we use the fact that
∑︀𝐾

𝑘=1 𝑝𝑘 ≤ 1 and 𝑝𝑘 ≥ 0 for any arm 𝑘 and

Assumption 4.8 for the second inequality. We conclude that:

P[𝑏𝑥,𝑡(𝑖) − 𝑛𝑥,𝑡 · 𝑏(𝑖) ≥ 28 (𝐶 + 3)!3
𝜖6 · ln(𝑇)]

≤
∑︁
𝑗∈𝒞𝑥

P[|𝑏𝑥,𝑡(𝑗) − 𝑛𝑥,𝑡 · 𝑏(𝑗)| ≥ 16(𝐶 + 1)!2
𝜖4 · ln(𝑇)]

+
∑︁

𝑘∈𝒦𝑥
𝑗∈{1,··· ,𝐶}

P[|𝜇𝑐
𝑘(𝑗) − 𝑐𝑘(𝑗)| ≥ 𝜖2

8 · (𝐶 + 2)! ; 𝑛𝑥
𝑘,𝑡 ≥ 26 (𝐶 + 2)!2

𝜖4 · ln(𝑇)]

≤ 25𝐶 · (𝐶 + 1)!2
𝜖4 · 𝑇

+ 𝐶 · 𝑇 · 29 (C + 3)!4
𝜖6 · T2

+
∑︁

𝑘∈𝒦𝑥
𝑗∈{1,··· ,𝐶}

∑︁
𝑠=26·(𝐶+2)!2/𝜖4·ln(𝑇)

P[|𝜇𝑐
𝑘(𝑗) − 𝑐𝑘(𝑗)| ≥ 𝜖2

8 · (𝐶 + 2)! ; 𝑛𝑥
𝑘,𝑡 = 𝑠]

≤ 2𝐶 · 𝑇 · 29 (C + 3)!4
𝜖6 · T2 +28𝐶2 · (𝐶 + 2)!2

𝜖4 · 𝑇 2

≤ 210 (𝐶 + 4)!4
𝜖6 · 𝑇

,

where we use (4.12) for the second inequality and Lemma 4.1 for the third inequality.

C.6.4 Proof of Lemma 4.15

Consider any suboptimal basis 𝑥 ∈ ℬ. The proof is along the same lines as for Lemmas

4.5, 4.8, and 4.12. We break down the analysis in a series of facts where we emphasize the

main differences. We start off with an inequality similar to Fact C.1. We use the shorthand

notation 𝛽𝑥 = 210 (𝐶+3)!3
𝜖6 · (𝜆

Δ𝑥
)2.

Fact C.11.

E[𝑛𝑥,𝑇] ≤2𝛽𝑥 · ln(𝑇) + 29 (C + 3)!4
𝜖6

+ E[
𝑇∑︁

𝑡=tini

𝐼𝑥𝑡=𝑥 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡) · 𝐼𝑥*∈ℬ𝑡]. (C.30)

268

Proof. Similarly as in Fact C.1, we have:

E[𝑛𝑥,𝑇] ≤2𝛽𝑥 · ln(𝑇) + E[
𝑇∑︁

𝑡=tini

𝐼𝑥𝑡=𝑥 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)].

This yields:

E[𝑛𝑥,𝑇] ≤ 2𝛽𝑥 · ln(𝑇) + E[
𝑇∑︁

𝑡=tini

𝐼𝑥𝑡=𝑥 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡) · 𝐼𝑥*∈ℬ𝑡] + E[
𝑇∑︁

𝑡=tini

𝐼𝑥* /∈ℬ𝑡].

Using (C.26), (C.28), and Assumption 4.8, we have:

𝜉𝑥*

𝑘,𝑡 = 𝜉𝑥*

𝑘 − (𝜉𝑥*

𝑘 − 𝜉𝑥*

𝑘,𝑡) ≥ 𝜖

2 ≥ 0,

for any 𝑘 ∈ 𝒦𝑥* and

∑︁
𝑘∈𝒦𝑥*

𝑐𝑘,𝑡(𝑖) · 𝜉𝑥*

𝑘,𝑡 =
∑︁

𝑘∈𝒦𝑥*

𝜇𝑐
𝑘(𝑖) · 𝜉𝑥*

𝑘 + (
∑︁

𝑘∈𝒦𝑥*

𝑐𝑘,𝑡(𝑖) · 𝜉𝑥*

𝑘,𝑡 −
∑︁

𝑘∈𝒦𝑥*

𝜇𝑐
𝑘(𝑖) · 𝜉𝑥*

𝑘)

≤ 𝑏(𝑖) − 𝜖 + 𝜖

2
≤ 𝑏(𝑖) − 𝜖

2
≤ 𝑏(𝑖),

for any resource 𝑖 /∈ 𝒞𝑥* if {|𝑐𝑙,𝑡(𝑗)−𝜇𝑐
𝑙 (𝑗)| ≤ 𝜖3

16·(C+2)!2 } for any arm 𝑙 ∈ 𝒦𝑥* and resource

𝑗 ∈ {1, · · · , 𝐶}. Hence:

E[𝑛𝑥,𝑇] ≤ 2𝛽𝑥 · ln(𝑇) + E[
𝑇∑︁

𝑡=tini

𝐼𝑥𝑡=𝑥 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡) · 𝐼𝑥*∈ℬ𝑡]

+
𝑇∑︁

𝑡=tini

∑︁
𝑙∈𝒦𝑥*

𝑗∈{1,··· ,𝐶}

P[|𝑐𝑙,𝑡(𝑗) − 𝜇𝑐
𝑙 (𝑗)| >

𝜖3

16 · (C + 2)!2]

≤ 2𝛽𝑥 · ln(𝑇) + E[
𝑇∑︁

𝑡=tini

𝐼𝑥𝑡=𝑥 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡) · 𝐼𝑥*∈ℬ𝑡] + 29 (C + 3)!4
𝜖6 ,

where we bound the third term appearing in the right-hand side using (C.24).

The remainder of this proof is dedicated to show that the last term in (C.30) can be bounded

269

by a constant. This term can be broken down in three terms similarly as in Lemmas 4.5 and

4.8.

E[
𝑇∑︁

𝑡=tini

𝐼𝑥𝑡=𝑥 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡) · 𝐼𝑥*∈ℬ𝑡]

≤ E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥,𝑡+𝐸𝑥,𝑡≥obj𝑥*,𝑡+𝐸𝑥*,𝑡
· 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡) · 𝐼𝑥∈ℬ𝑡,𝑥*∈ℬ𝑡]

≤ E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡 · 𝐼𝑥∈ℬ𝑡] (C.31)

+ E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥*,𝑡≤obj𝑥* −𝐸𝑥*,𝑡
· 𝐼𝑥*∈ℬ𝑡] (C.32)

+ E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥* <obj𝑥+2𝐸𝑥,𝑡 · 𝐼𝑥∈ℬ𝑡 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)]. (C.33)

Fact C.12.

E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥* <obj𝑥+2𝐸𝑥,𝑡 · 𝐼𝑥∈ℬ𝑡 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)] ≤ 211 (𝐶 + 4)!4
𝜖6 .

Proof. Using the shorthand notation 𝛼𝑥 = 8(𝜆
Δ𝑥

)2, we have:

E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥* <obj𝑥+2𝐸𝑥,𝑡 · 𝐼𝑥∈ℬ𝑡 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)]

≤ E[
𝑇∑︁

𝑡=tini

𝐼Δ𝑥<2𝜆·max𝑘∈𝒦𝑥 𝜖𝑘,𝑡
· 𝐼𝑛𝑥,𝑡≥𝛽𝑥 ln(𝑡)]

≤ E[
𝑇∑︁

𝑡=tini

𝐼min𝑘∈𝒦𝑥 𝑛𝑘,𝑡≤𝛼𝑥 ln(𝑡) · 𝐼𝑛𝑥,𝑡≥𝛽𝑥·ln(𝑡)]

≤
𝑇∑︁

𝑡=tini

∑︁
𝑘∈𝒦𝑥

P[𝑛𝑘,𝑡 ≤ 𝛼𝑥 ln(𝑡) ; 𝑛𝑥,𝑡 ≥ 𝛽𝑥 ln(𝑡)],

since
∑︀𝐾

𝑙=1 𝜉𝑥
𝑙,𝑡 ≤ 1 and 𝜉𝑥

𝑙,𝑡 ≥ 0 for any arm 𝑙 when 𝑥 is feasible for (4.8) at time 𝑡.

Consider 𝑘 ∈ 𝒦𝑥 and assume that 𝑛𝑘,𝑡 ≤ 𝛼𝑥 · ln(𝑡) and 𝑛𝑥,𝑡 ≥ 𝛽𝑥 · ln(𝑡). Suppose, by

contradiction, that |𝑏𝑥,𝑡(𝑖) − 𝑛𝑥,𝑡 · 𝑏(𝑖)| ≤ 32 (𝐶+1)!2
𝜖4 · ln(𝑡) for any resource 𝑖 ∈ 𝒞𝑥 and that

|𝜇𝑐
𝑙 (𝑖) − 𝑐𝑙(𝑖)| ≤ 𝜖2

8·(𝐶+2)! for any resource 𝑖 ∈ {1, · · · , 𝐶} for all arms 𝑙 ∈ 𝒦𝑥 such that

𝑛𝑥
𝑙,𝑡 ≥ 27 (𝐶+2)!2

𝜖4 · ln(𝑡), where 𝑐𝑙(𝑖) is the empirical average amount of resource 𝑖 consumed

270

when selecting basis 𝑥 and pulling arm 𝑙, i.e. 𝑐𝑙(𝑖) = 1
𝑛𝑥

𝑙,𝑡
·∑︀𝑡−1

𝜏=tini 𝐼𝑥𝜏 =𝑥 · 𝐼𝑎𝜏 =𝑙 · 𝑐𝑙,𝜏 (𝑖). We

can partition 𝒦𝑥 − {𝑘} into two sets 𝒦1

𝑥 and 𝒦2
𝑥 such that 𝑛𝑥

𝑙,𝑡 ≥ 27 (𝐶+2)!2
𝜖4 · ln(𝑡) for all

𝑙 ∈ 𝒦1

𝑥 and 𝑛𝑥
𝑙,𝑡 < 27 (𝐶+2)!2

𝜖4 · ln(𝑡) for all 𝑙 ∈ 𝒦2
𝑥. Similarly as in the proof of Lemma 4.14,

we have, for any resource 𝑖 ∈ 𝒞𝑥:

32(𝐶 + 1)!2
𝜖4 · ln(𝑡) ≥ |𝑏𝑥,𝑡(𝑖) − 𝑛𝑥,𝑡 · 𝑏(𝑖)|

≥ 𝑛𝑥,𝑡 · |
∑︁

𝑙∈𝒦1
𝑥

𝑐𝑙(𝑖) · 𝑝𝑙 − 𝑏(𝑖)| − 𝑛𝑘,𝑡 −
∑︁

𝑙∈𝒦2
𝑥

𝑛𝑥
𝑙,𝑡

≥ 𝑛𝑥,𝑡 · |
∑︁

𝑙∈𝒦1
𝑥

𝑐𝑙(𝑖) · 𝑝𝑙 − 𝑏(𝑖)| − 𝛼𝑥 · ln(𝑡) − 𝐶 · 27 · (𝐶 + 2)!2
𝜖4 · ln(𝑡),

where 𝑝𝑙 = 𝑛𝑥
𝑙,𝑡

𝑛𝑥,𝑡
for 𝑙 ∈ 𝒦𝑥

1 and 𝑝𝑙 = 0 otherwise. Hence:

|
∑︁

𝑙∈𝒦𝑥

𝜇𝑐
𝑙 (𝑖) · 𝑝𝑙 − 𝑏(𝑖)| ≤ max

𝑙∈𝒦1
𝑥

|𝜇𝑐
𝑙 (𝑖) − 𝑐𝑙(𝑖)| + |

∑︁
𝑙∈𝒦1

𝑥

𝑐𝑙(𝑖) · 𝑝𝑙 − 𝑏(𝑖)|

≤ 𝜖2

8 · (𝐶 + 2)! +
(𝛼𝑥 + 𝐶 · 27·(𝐶+2)!2

𝜖4) · ln(𝑡)
𝑛𝑥,𝑡

≤ 𝜖2

4 · (𝐶 + 2)! .

To derive the first inequality, we use the fact that
∑︀𝐾

𝑙=1 𝑝𝑙 ≤ 1 and 𝑝𝑙 ≥ 0 for any arm

𝑙. For the last inequality, we use 𝑛𝑥,𝑡 ≥ 210 (𝐶+3)!3
𝜖6 · (𝜆

Δ𝑥
)2 · ln(𝑡) along with 𝜆 ≥ 1 and

Δ𝑥 ≤ obj𝑥* = ∑︀𝐾
𝑘=1 𝜇𝑟

𝑘 · 𝜉𝑥*
𝑘 ≤ ∑︀𝐾

𝑘=1 𝜉𝑥*
𝑘 ≤ 1 because of the time constraint imposed in

(4.3). We get:

𝜉𝑥
𝑘 ≤ ‖𝑝 − 𝜉𝑥‖2

=
⃦⃦⃦
𝐴−1

𝑥 𝐴𝑥(𝑝 − 𝜉𝑥)
⃦⃦⃦

2

≤
⃒⃒⃒⃒⃒⃒ ⃒⃒⃒

𝐴−1
𝑥

⃒⃒⃒⃒⃒⃒ ⃒⃒⃒
2

· ‖𝐴𝑥(𝑝 − 𝜉𝑥)‖2

≤ 1
| det(𝐴𝑥)| · |||adj(𝐴𝑥)|||2 ·

√
𝐶 · 𝜖2

4 · (𝐶 + 2)!

≤ 1
𝜖

· (𝐶 + 1)! ·
√

𝐶 · 𝜖2

4 · (𝐶 + 2)!

≤ 𝜖

2 ,

271

a contradiction since 𝑥 is 𝜖-non-degenerate by Assumption 4.8. We conclude that:

E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥* <obj𝑥+2𝐸𝑥,𝑡 · 𝐼𝑥∈ℬ𝑡 · 𝐼𝑛𝑥,𝑡≥𝛽𝑥·ln(𝑡)]

≤ 𝐶 ·
𝑇∑︁

𝑡=tini

∑︁
𝑖∈𝒞𝑥

P[|𝑏𝑥,𝑡(𝑖) − 𝑛𝑥,𝑡 · 𝑏(𝑖)| ≥ 32(𝐶 + 1)!2
𝜖4 · ln(𝑡)]

+ 𝐶 ·
𝑇∑︁

𝑡=tini

∑︁
𝑙∈𝒦𝑥
𝑖∈𝒞𝑥

P[|𝜇𝑐
𝑙 (𝑖) − 𝑐𝑙(𝑖)| ≥ 𝜖2

8 · (𝐶 + 2)! ; 𝑛𝑥
𝑙,𝑡 ≥ 27 (𝐶 + 2)!2

𝜖4 · ln(𝑡)]

≤ 32𝐶2 · (𝐶 + 1)!2
𝜖4 · 𝜋2

6 + 𝐶 · 29 (C + 3)!4
𝜖6

+
∑︁

𝑙∈𝒦𝑥
𝑗∈𝒞𝑥

∑︁
𝑠=27·(𝐶+2)!2/𝜖4·ln(𝑇)

P[|𝜇𝑐
𝑙 (𝑗) − 𝑐𝑙(𝑗)| ≥ 𝜖2

8 · (𝐶 + 2)! ; 𝑛𝑥
𝑙,𝑇 = 𝑠]

≤ 4𝐶 · 29 (C + 3)!4
𝜖6 +27𝐶2 · (𝐶 + 2)!2

𝜖4 · 𝜋2

6

≤ 211 (𝐶 + 4)!4
𝜖6 ,

where we use (4.12) for the second inequality and Lemma 4.1 for the third inequality.

Fact C.13.

E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡 · 𝐼𝑥∈ℬ𝑡] ≤ 210 (𝐶 + 3)!2
𝜖6 .

Proof. First observe that:

E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡 · 𝐼𝑥∈ℬ𝑡]

≤ E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡 · 𝐼𝑥∈ℬ𝑡 · 𝐼| det(𝐴𝑥,𝑡)|≥𝜖/2] + E[
𝑇∑︁

𝑡=tini

𝐼| det(𝐴𝑥,𝑡)|<𝜖/2]

≤ E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡 · 𝐼𝑥∈ℬ𝑡 · 𝐼| det(𝐴𝑥,𝑡)|≥𝜖/2]

+
𝑇∑︁

𝑡=tini

∑︁
𝑘∈𝒦𝑥
𝑖∈𝒞𝑥

P[|𝑐𝑘,𝑡(𝑖) − 𝜇𝑐
𝑘(𝑖)| >

𝜖3

16 · (C + 2)!2]

≤ E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡 · 𝐼𝑥∈ℬ𝑡 · 𝐼| det(𝐴𝑥,𝑡)|≥𝜖/2] + 29 (C + 3)!4
𝜖6 ,

272

where we use the preliminary work of Section C.6.1 and in particular (C.25). The key

observation now is that if obj𝑥,𝑡 ≥ obj𝑥 + 𝐸𝑥,𝑡, 𝑥 ∈ ℬ𝑡, and | det(𝐴𝑥,𝑡)| ≥ 𝜖/2, at least one

of the following events {𝑟𝑘,𝑡 ≥ 𝜇𝑟
𝑘 + 𝜖𝑘,𝑡}, for 𝑘 ∈ 𝒦𝑥, or {|𝑐𝑘,𝑡(𝑖) − 𝜇𝑐

𝑘(𝑖)| ≥ 𝜖𝑘,𝑡}, for

𝑘 ∈ 𝒦𝑥 and 𝑖 ∈ {1, · · · , 𝐶}, occurs. Otherwise we have:

obj𝑥,𝑡 − obj𝑥 = (𝐴−1
𝑥,𝑡𝑏𝒞𝑥)T𝑟𝒦𝑥,𝑡 − (𝐴−1

𝑥 𝑏𝒞𝑥)T𝜇𝑟
𝒦𝑥

< (𝐴−1
𝑥,𝑡𝑏𝒞𝑥)T(𝜇𝑟

𝒦𝑥
+ 𝜖𝒦𝑥,𝑡) − (𝐴−1

𝑥 𝑏𝒞𝑥)T𝜇𝑟
𝒦𝑥

= 1
𝜆

· 𝐸𝑥,𝑡 + ((𝐴−1
𝑥,𝑡 − 𝐴−1

𝑥)𝑏𝒞𝑥)T𝜇𝑟
𝒦𝑥

,

where the first inequality is a consequence of the fact that 𝑥 is feasible for (4.8), i.e.

𝐴−1
𝑥,𝑡𝑏𝒞𝑥 ≥ 0 with at least one non-zero coordinate since 𝑐𝑘,𝑡(𝑖) ≥ 𝜖 for all arms 𝑘 and

resource 𝑖 by Assumption 4.8. Writing 𝜇𝑐
𝑘(𝑖) = 𝑐𝑘,𝑡(𝑖) + 𝑢𝑖,𝑘 · 𝜖𝑘,𝑡, with 𝑢𝑖,𝑘 ∈ [−1, 1] for

all (𝑖, 𝑘) ∈ 𝒞𝑥 × 𝒦𝑥, and defining the matrix 𝑈 = (𝑢𝑖,𝑘)(𝑖,𝑘)∈𝒞𝑥×𝒦𝑥 , we get:

obj𝑥,𝑡 − obj𝑥

<
𝐸𝑥,𝑡

𝜆
+ |(𝐴−1

𝑥,𝑡 − (𝐴𝑥,𝑡 + 𝑈 diag(𝜖𝒦𝑥,𝑡))−1)𝑏𝒞𝑥)T𝜇𝑟
𝒦𝑥

|

= 𝐸𝑥,𝑡

𝜆
+ |(𝐴−1

𝑥,𝑡𝑈(𝐼 + diag(𝜖𝒦𝑥,𝑡)𝐴−1
𝑥,𝑡𝑈)−1 diag(𝜖𝒦𝑥,𝑡)𝐴−1

𝑥,𝑡𝑏𝒞𝑥)T𝜇𝑟
𝒦𝑥

|

≤ 𝐸𝑥,𝑡

𝜆

+ | det(𝐴𝑥,𝑡 + 𝑈 diag(𝜖𝒦𝑥,𝑡)) · (𝐴−1
𝑥,𝑡𝑈(𝐼 + diag(𝜖𝒦𝑥,𝑡)𝐴−1

𝑥,𝑡𝑈)−1 diag(𝜖𝒦𝑥,𝑡)𝐴−1
𝑥,𝑡𝑏𝒞𝑥)T𝜇𝑟

𝒦𝑥
|

𝜖

= 𝐸𝑥,𝑡

𝜆
+ 1

𝜖
· |(adj(𝐴𝑥,𝑡)𝑈 adj(𝐼 + diag(𝜖𝒦𝑥,𝑡)𝐴−1

𝑥,𝑡𝑈) diag(𝜖𝒦𝑥,𝑡)𝐴−1
𝑥,𝑡𝑏𝒞𝑥)T𝜇𝑟

𝒦𝑥
|

≤ 𝐸𝑥,𝑡

𝜆
+ 1

𝜖
·
⃒⃒⃒⃒⃒⃒ ⃒⃒⃒

adj(𝐴𝑥,𝑡)𝑈 adj(𝐼 + diag(𝜖𝒦𝑥,𝑡)𝐴−1
𝑥,𝑡𝑈)

⃒⃒⃒⃒⃒⃒ ⃒⃒⃒
2

·
⃦⃦⃦
diag(𝜖𝒦𝑥,𝑡)𝐴−1

𝑥,𝑡𝑏𝒞𝑥

⃦⃦⃦
2

·
⃦⃦⃦
𝜇𝑟

𝒦𝑥

⃦⃦⃦
2

≤ 𝐸𝑥,𝑡

𝜆
+ 1

𝜖
·
⃒⃒⃒⃒⃒⃒ ⃒⃒⃒

adj(𝐴𝑥,𝑡)𝑈
⃒⃒⃒⃒⃒⃒ ⃒⃒⃒

2
·
⃒⃒⃒⃒⃒⃒ ⃒⃒⃒

adj(𝐼 + diag(𝜖𝒦𝑥,𝑡)𝐴−1
𝑥,𝑡𝑈)

⃒⃒⃒⃒⃒⃒ ⃒⃒⃒
2

· 𝐸𝑥,𝑡

𝜆
·
√

𝐶

≤ 𝐸𝑥,𝑡

𝜆
+ 1

𝜖
· (𝐶 + 1)! ·

⃒⃒⃒⃒⃒⃒ ⃒⃒⃒
adj(𝐼 + diag(𝜖𝒦𝑥,𝑡)𝐴−1

𝑥,𝑡𝑈)
⃒⃒⃒⃒⃒⃒ ⃒⃒⃒

2
· 𝐸𝑥,𝑡

𝜆

≤ 𝐸𝑥,𝑡

𝜆
+ 2

𝜖
· (𝐶 + 1)!2 · 𝐸𝑥,𝑡

𝜆

= 𝐸𝑥,𝑡.

273

We use the Woodbury matrix identity to derive the first equality and the matrix determinant

lemma for the second equality. The second inequality is derived from Assumption 4.8

since 𝜖 ≤ det(𝐴𝑥) = det(𝐴𝑥,𝑡 + 𝑈 diag(𝜖𝒦𝑥,𝑡)) by definition of 𝑈 . The fourth inequality is

derived from the observation that diag(𝜖𝒦𝑥,𝑡)𝐴−1
𝑥,𝑡𝑏𝒞𝑥 is the vector (𝜖𝑘,𝑡 · 𝜉𝑥

𝑘,𝑡)𝑘∈𝒦𝑥 . The fifth

inequality is obtained by observing that the components of 𝐴𝑥,𝑡 and 𝑈 are all smaller than

1 in absolute value. The sixth inequality is obtained by observing that the elements of 𝐴−1
𝑥,𝑡

are smaller than 2
𝜖

· (𝐶 − 1)! since det(𝐴𝑥,𝑡) ≥ 𝜖
2 and that 𝜖𝑘,𝑡 ≤ 𝜖

2·𝐶! for all arms 𝑘 as a

result of the initialization phase. We get:

E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥,𝑡≥obj𝑥+𝐸𝑥,𝑡 · 𝐼𝑥∈ℬ𝑡]

≤
𝑇∑︁

𝑡=tini

∑︁
𝑘∈𝒦𝑥
𝑖∈𝒞𝑥

P[|𝑐𝑘,𝑡(𝑖) − 𝜇𝑐
𝑘(𝑖)| ≥ 𝜖𝑘,𝑡] +

𝑇∑︁
𝑡=tini

∑︁
𝑘∈𝒦𝑥

P[𝑟𝑘,𝑡 ≥ 𝜇𝑟
𝑘 + 𝜖𝑘,𝑡] + 29 (C + 3)!4

𝜖6

≤ 2 · 29 (C + 3)!4
𝜖6 .

Fact C.14.

E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥*,𝑡≤obj𝑥* −𝐸𝑥,𝑡 · 𝐼𝑥*∈ℬ𝑡] ≤ 210 (𝐶 + 3)!2
𝜖6 .

We omit the proof since it is almost identical to the proof of Fact C.13.

C.6.5 Proof of Theorem 4.8

Along the same lines as for Theorem 4.5, we build upon (4.4):

𝑅𝐵(1),··· ,𝐵(𝐶−1),𝑇 ≤ 𝑇 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 − E[
𝜏*∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] + 𝑂(1)

= 𝑇 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 − E[
𝑇∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] + E[

𝑇∑︁
𝑡=𝜏*+1

𝑟𝑎𝑡,𝑡] + 𝑂(1)

≤ 𝑇 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 − E[
𝑇∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] + 𝜎 · E[min

𝑖=1,··· ,𝐶

𝑇∑︁
𝑡=𝜏*+1

𝑐𝑎𝑡,𝑡(𝑖)] + 𝑂(1)

≤ 𝑇 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 − E[
𝑇∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] + 𝜎 ·

𝐶∑︁
𝑖=1

E[(
𝑇∑︁

𝑡=1
𝑐𝑎𝑡,𝑡(𝑖) − 𝐵(𝑖))+] + 𝑂(1).

274

The second inequality is a direct consequence of Assumption 4.7. To derive the last in-

equality, observe that if 𝜏 * = 𝑇 + 1, we have:

𝑇∑︁
𝑡=𝜏*+1

𝑐𝑎𝑡,𝑡(𝑗) = 0 ≤
𝐶∑︁

𝑖=1
E[(

𝑇∑︁
𝑡=1

𝑐𝑎𝑡,𝑡(𝑖) − 𝐵(𝑖))+],

for any 𝑗 ∈ {1, · · · , 𝐶} while if 𝜏 * < 𝑇 + 1 we have run out of resources before the end of

the game, i.e. there exists 𝑗 ∈ {1, · · · , 𝐶} such that
∑︀𝜏*

𝑡=1 𝑐𝑎𝑡,𝑡(𝑗) ≥ 𝐵(𝑗), which implies

that:

min
𝑖=1,··· ,𝐶

𝑇∑︁
𝑡=𝜏*+1

𝑐𝑎𝑡,𝑡(𝑖) ≤
𝑇∑︁

𝑡=𝜏*+1
𝑐𝑎𝑡,𝑡(𝑗)

≤
𝑇∑︁

𝑡=𝜏*+1
𝑐𝑎𝑡,𝑡(𝑗) +

𝜏*∑︁
𝑡=1

𝑐𝑎𝑡,𝑡(𝑗) − 𝐵(𝑗)

= (
𝑇∑︁

𝑡=1
𝑐𝑎𝑡,𝑡(𝑗) − 𝐵(𝑗))+ ≤

𝐶∑︁
𝑖=1

(
𝑇∑︁

𝑡=1
𝑐𝑎𝑡,𝑡(𝑖) − 𝐵(𝑖))+.

Now observe that, for any resource 𝑖 ∈ {1, · · · , 𝐶}:

E[(
𝑇∑︁

𝑡=1
𝑐𝑎𝑡,𝑡(𝑖) − 𝐵)+]

≤ E[(
𝑇∑︁

𝑡=tini

𝑐𝑎𝑡,𝑡(𝑖) − 𝑏(𝑖))+] + 𝐾 · 28 (C + 2)!4
𝜖6 · ln(𝑇)

= E[(
∑︁

𝑥 basis for (4.3)

{𝑏𝑥,𝑇 (𝑖) − 𝑛𝑥,𝑇 · 𝑏(𝑖)})+] + 𝑂(𝐾 · (𝐶 + 2)!4
𝜖6 · ln(𝑇))

≤
∑︁
𝑥∈ℬ

E[(𝑏𝑥,𝑇 (𝑖) − 𝑛𝑥,𝑇 · 𝑏(𝑖))+] +
∑︁
𝑥/∈ℬ

E[𝑛𝑥,𝑇]

+
∑︁

𝑥 pseudo-basis for (4.3)
with det(𝐴𝑥)=0

E[𝑛𝑥,𝑇] + 𝑂(𝐾 · (𝐶 + 2)!4
𝜖6 · ln(𝑇))

≤
∑︁
𝑥∈ℬ

∫︁ 𝑇

0
P[𝑏𝑥,𝑇 (𝑖) − 𝑛𝑥,𝑇 · 𝑏(𝑖) ≥ 𝑢]d𝑢 + 𝑂(𝐾 · (𝐶 + 3)!4

𝜖6 · ln(𝑇))

≤
∑︁
𝑥∈ℬ

𝑇 · P[𝑏𝑥,𝑇 (𝑖) − 𝑛𝑥,𝑇 · 𝑏(𝑖) ≥ 28 (𝐶 + 3)!4
𝜖6 · ln(𝑇)]

+ 28|ℬ| · (𝐶 + 3)!4
𝜖6 · ln(𝑇) + 𝑂(𝐾 · (𝐶 + 3)!4

𝜖6 · ln(𝑇)) = 𝑂(|ℬ| · (𝐶 + 3)!4
𝜖6 · ln(𝑇)),

275

where we use the fact that the amounts of resources consumed at any time period are no

larger than 1 for the first and second inequalities, Lemma 4.13 for the third inequality and

inequalities (4.12) and (4.13) from Lemma 4.14 along with the fact that there are at least

𝐾 feasible basis for (4.3) (corresponding to single-armed strategies) for the last equality.

Plugging this back into the regret bound yields:

𝑅𝐵(1),··· ,𝐵(𝐶−1),𝑇 (C.34)

≤ 𝑇 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 − E[
𝑇∑︁

𝑡=tini

𝑟𝑎𝑡,𝑡] + 𝑂(𝜎 · |ℬ| · (𝐶 + 3)!4
𝜖6 · ln(𝑇))

= 𝑇 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 −
∑︁
𝑥∈ℬ

𝐾∑︁
𝑘=1

𝜇𝑟
𝑘 · E[𝑛𝑥

𝑘,𝑇] + 𝑂(𝜎 · |ℬ| · (𝐶 + 3)!4
𝜖6 · ln(𝑇))

≤ 𝑇 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 −
∑︁
𝑥∈ℬ

(
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥
𝑘) · E[𝑛𝑥,𝑇] + 𝑂(𝜎 · |ℬ| · (𝐶 + 3)!4

𝜖6 · ln(𝑇))

=
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 · (𝑇 −
∑︁

𝑥∈ℬ | Δ𝑥=0
E[𝑛𝑥,𝑇]) (C.35)

−
∑︁

𝑥∈ℬ | Δ𝑥>0
(

𝐾∑︁
𝑘=1

𝜇𝑟
𝑘 · 𝜉𝑥

𝑘) · E[𝑛𝑥,𝑇] + 𝑂(𝜎 · |ℬ| · (𝐶 + 3)!4
𝜖6 · ln(𝑇))

=
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 · (tini +
∑︁

𝑥∈ℬ | Δ𝑥>0
E[𝑛𝑥,𝑇] +

∑︁
𝑥/∈ℬ

E[𝑛𝑥,𝑇] +
∑︁

𝑥 pseudo-basis for (4.3)
with det(𝐴𝑥)=0

E[𝑛𝑥,𝑇])

−
∑︁

𝑥∈ℬ | Δ𝑥>0
(

𝐾∑︁
𝑘=1

𝜇𝑟
𝑘 · 𝜉𝑥

𝑘) · E[𝑛𝑥,𝑇] + 𝑂(𝜎 · |ℬ| · (𝐶 + 3)!4
𝜖6 · ln(𝑇))

≤
∑︁

𝑥∈ℬ | Δ𝑥>0
Δ𝑥 · E[𝑛𝑥,𝑇] + 𝑂(𝜎 · |ℬ| · (𝐶 + 3)!4

𝜖6 · ln(𝑇)) (C.36)

≤ 210 (𝐶 + 3)!3 · 𝜆2

𝜖6 · (
∑︁

𝑥∈ℬ | Δ𝑥>0

1
Δ𝑥

) · ln(𝑇) + 𝑂(𝜎 · |ℬ| · (𝐶 + 3)!4
𝜖6 · ln(𝑇)),

where we use (4.14) from Lemma 4.14 for the second inequality, Lemma 4.13 for the third

inequality. To derive the last inequality, we use Lemma 4.15 and the fact that Δ𝑥 ≤ obj𝑥* =∑︀𝐾
𝑘=1 𝜇𝑟

𝑘 · 𝜉𝑥*
𝑘 ≤ ∑︀𝐾

𝑘=1 𝜉𝑥*
𝑘 ≤ 1.

276

C.6.6 Proof of Theorem 4.9

Along the same lines as for the proof of Theorem 4.6, we start from inequality (C.36)

derived in the proof of Theorem 4.8 and apply Lemma 4.15 only if Δ𝑥 is big enough,

taking into account the fact that
∑︀

𝑥∈ℬ E[𝑛𝑥,𝑇] ≤ 𝑇 . Specifically, we have:

𝑅𝐵(1),··· ,𝐵(𝐶−1),𝑇

= sup
(𝑛𝑥)𝑥∈ℬ≥0∑︀

𝑥∈ℬ 𝑛𝑥≤𝑇

{
∑︁

𝑥∈ℬ | Δ𝑥>0
min(Δ𝑥 · 𝑛𝑥, 210 (𝐶 + 3)!3 · 𝜆2

𝜖6 · ln(𝑇)
Δ𝑥

+ 211 (𝐶 + 4)!2
𝜖6 · Δ𝑥) })

+ 𝑂(𝜎 · |ℬ| · (𝐶 + 3)!4
𝜖6 · ln(𝑇))

= sup
(𝑛𝑥)𝑥∈ℬ≥0∑︀

𝑥∈ℬ 𝑛𝑥≤𝑇

{
∑︁

𝑥∈ℬ | Δ𝑥>0
min(Δ𝑥 · 𝑛𝑥, 210 (𝐶 + 3)!3 · 𝜆2

𝜖6 · ln(𝑇)
Δ𝑥

) }

+ 𝑂(𝜎 · |ℬ| · (𝐶 + 3)!4
𝜖6 · ln(𝑇))

≤ sup
(𝑛𝑥)𝑥∈ℬ≥0∑︀

𝑥∈ℬ 𝑛𝑥≤𝑇

{
∑︁
𝑥∈ℬ

√︃
210 (𝐶 + 3)!3 · 𝜆2

𝜖6 · ln(𝑇) · 𝑛𝑥 } + 𝑂(𝜎 · |ℬ| · (𝐶 + 3)!4
𝜖6 · ln(𝑇))

≤ 25 (𝐶 + 3)!2 · 𝜆

𝜖3 ·
√︁

ln(𝑇) · sup
(𝑛𝑥)𝑥∈ℬ≥0∑︀

𝑥∈ℬ 𝑛𝑥≤𝑇

{
∑︁
𝑥∈ℬ

√
𝑛𝑥 } + 𝑂(𝜎 · |ℬ| · (𝐶 + 3)!4

𝜖6 · ln(𝑇))

≤ 25 (𝐶 + 3)!2 · 𝜆

𝜖3 ·
√︁

𝜎 · |ℬ| · 𝑇 · ln(𝑇) + 𝑂(𝜎 · |ℬ| · (𝐶 + 3)!4
𝜖6 · ln(𝑇)),

where we use the fact that Δ𝑥 ≤ 1 (see the proof of Theorem 4.8) for the second equality,

we maximize over each Δ𝑥 ≥ 0 to derive the first inequality, and we use Cauchy-Schwartz

for the last inequality.

C.6.7 Proof of Theorem 4.10

Define 𝑏̃(𝑖) = 𝐵(𝑖)/𝑇 for any 𝑖 ∈ {1, · · · , 𝐶}. If the decision maker stops pulling arms at

round 𝑇 at the latest, all the results derived in Section 4.7 hold as long as we substitute 𝑇

277

with 𝑇 and we get:

𝑇 · õpt − E[
min(𝜏*,𝑇)∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] ≤ 𝑋,

where 𝑋 denotes the right-hand side of the regret bound derived in either Theorem 4.8 or

Theorem 4.9 and õpt denotes the optimal value of (4.3) when 𝑏(𝑖) is substituted with 𝑏̃(𝑖)

for any 𝑖 ∈ {1, · · · , 𝐶}. The key observation is that 𝑇 · õpt = 𝑇 · opt, where opt denotes

the optimal value of (4.3), because the time constraint is redundant in (4.3) even when 𝑏(𝑖)

is substituted with 𝑏̃(𝑖) for any 𝑖 ∈ {1, · · · , 𝐶}. This is enough to show the claim as we

get:

𝑋 ≥ 𝑇 · opt − E[
𝜏*∑︁

𝑡=1
𝑟𝑎𝑡,𝑡] ≥ 𝑅𝐵(1),··· ,𝐵(𝐶−1),𝑇 ,

where we use Lemma 4.2 for the last inequality.

278

C.6.8 Proof of Theorem 4.11

The only difference with the proofs of Theorems 4.8 and 4.9 lies in the following bounds:

E[
𝑇∑︁

𝑡=𝜏*+1
𝑟𝑎𝑡,𝑡]

≤ E[(𝑇 − 𝜏 *)+]

=
𝑇∑︁

𝑡=0
P[𝜏 * ≤ 𝑇 − 𝑡]

≤
𝐶∑︁

𝑖=1

𝑇∑︁
𝑡=0

P[
𝑇 −𝑡∑︁
𝜏=1

𝑐𝑎𝜏 ,𝜏 (𝑖) ≥ 𝐵(𝑖)]

=
𝐶∑︁

𝑖=1

𝑇∑︁
𝑡=0

P[
𝑇 −𝑡∑︁
𝜏=1

(𝑐𝑎𝜏 ,𝜏 (𝑖) − 𝑏(𝑖)) ≥ 𝑡 · 𝑏(𝑖)]

=
𝐶∑︁

𝑖=1

𝑇∑︁
𝑡=0

P[tini +
∑︁
𝑥/∈ℬ

𝑛𝑥,𝑇 +
∑︁

𝑥 pseudo-basis for (4.3)
with det(𝐴𝑥)=0

𝑛𝑥,𝑇 +
∑︁
𝑥∈ℬ

𝑏𝑥,𝑇 −𝑡(𝑖) − 𝑛𝑥,𝑇 −𝑡 · 𝑏(𝑖) ≥ 𝑡 · 𝑏(𝑖)]

=
𝐶∑︁

𝑖=1

𝑇∑︁
𝑡=0

P[tini +
∑︁
𝑥/∈ℬ

𝑛𝑥,𝑇 +
∑︁

𝑥 pseudo-basis for (4.3)
with det(𝐴𝑥)=0

𝑛𝑥,𝑇 ≥ 𝑡 · 𝑏(𝑖)
2]

+
𝐶∑︁

𝑖=1

𝑇∑︁
𝑡=0

∑︁
𝑥∈ℬ

P[𝑏𝑥,𝑇 −𝑡(𝑖) − 𝑛𝑥,𝑇 −𝑡 · 𝑏(𝑖) ≥ 𝑡 · 𝑏(𝑖)
2 · |ℬ|

]

≤ 2
𝐶∑︁

𝑖=1

𝑇∑︁
𝑡=1

tini +∑︀
𝑥/∈ℬ E[𝑛𝑥,𝑇] +∑︀

𝑥 pseudo-basis for (4.3)
with det(𝐴𝑥)=0

E[𝑛𝑥,𝑇]

𝑡 · 𝑏(𝑖)

+ 2|ℬ| ·
𝐶∑︁

𝑖=1

𝑇∑︁
𝑡=1

∑︁
𝑥∈ℬ

E[|𝑏𝑥,𝑇 −𝑡(𝑖) − 𝑛𝑥,𝑇 −𝑡 · 𝑏(𝑖)|]
𝑡 · 𝑏(𝑖) + 𝑂(1) = 𝑂((𝐶 + 4)!4 · |ℬ|2

𝑏 · 𝜖6 · ln2(𝑇)),

where we use Lemma 4.13 and we bound E[|𝑏𝑥,𝑇 −𝑡(𝑖) − 𝑛𝑥,𝑇 −𝑡 · 𝑏(𝑖)|] in the same fashion

as in the proof of Theorem 4.8 using Lemma 4.14.

C.7 Proofs for Section 2.6

C.7.1 Proof of Lemma C.1

The proof follows the same steps as for Lemma 4.8. We use the shorthand notations 𝛽𝑘 =

8𝜌·(
∑︀𝐶

𝑖=1 𝑏(𝑖))2

𝜖2 ·(1
Δ𝑘

)2 and 𝑛̸=𝑥*

𝑘,𝑡 = ∑︀
𝑥∈ℬ | 𝑘∈𝒦𝑥,𝑥 ̸=𝑥* 𝑛𝑥

𝑘,𝑡. Along the same lines as in Fact C.1,

279

we have:

E[𝑛𝑘,𝜏*] ≤ 2𝛽𝑘 · E[ln(𝜏 *)] + E[
𝜏*∑︁

𝑡=1
𝐼𝑥𝑡 ̸=𝑥* · 𝐼𝑎𝑡=𝑘 · 𝐼

𝑛̸=𝑥*
𝑘,𝑡

≥𝛽𝑘 ln(𝑡)],

and we can focus on bounding the second term, which can be broken down as follows:

E[
𝜏*∑︁

𝑡=1
𝐼𝑥𝑡 ̸=𝑥* · 𝐼𝑎𝑡=𝑘 · 𝐼

𝑛̸=𝑥*
𝑘,𝑡

≥𝛽𝑘 ln(𝑡)]

= E[
𝜏*∑︁

𝑡=1
𝐼obj𝑥𝑡,𝑡+𝐸𝑥𝑡,𝑡≥obj𝑥*,𝑡+𝐸𝑥*,𝑡

· 𝐼𝑥𝑡 ̸=𝑥* · 𝐼𝑎𝑡=𝑘 · 𝐼
𝑛̸=𝑥*

𝑘,𝑡
≥𝛽𝑘 ln(𝑡)]

≤ E[
𝜏*∑︁

𝑡=1
𝐼obj𝑥𝑡,𝑡≥obj𝑥𝑡

+𝐸𝑥𝑡,𝑡]

+ E[
𝜏*∑︁

𝑡=1
𝐼obj𝑥*,𝑡≤obj𝑥* −𝐸𝑥*,𝑡

]

+ E[
𝜏*∑︁

𝑡=1
𝐼obj𝑥* <obj𝑥𝑡

+2𝐸𝑥𝑡,𝑡 · 𝐼𝑥𝑡 ̸=𝑥* · 𝐼𝑎𝑡=𝑘 · 𝐼
𝑛̸=𝑥*

𝑘,𝑡
≥𝛽𝑘 ln(𝑡)].

We study each term separately, just like in Lemma 4.8.

Fact C.15.

E[
𝜏*∑︁

𝑡=1
𝐼obj𝑥𝑡,𝑡≥obj𝑥𝑡

+𝐸𝑥𝑡,𝑡] ≤ 𝐾 · 𝜋2

6 .

Proof. If obj𝑥𝑡,𝑡 ≥ obj𝑥𝑡
+ 𝐸𝑥𝑡,𝑡, there must exist 𝑙 ∈ 𝒦𝑥𝑡 such that 𝑟𝑙,𝑡 ≥ 𝜇𝑟

𝑙 + 𝜖𝑙,𝑡,

otherwise:

obj𝑥𝑡,𝑡 − obj𝑥𝑡
=

∑︁
𝑙∈𝒦𝑥𝑡

(𝑟𝑙,𝑡 − 𝜇𝑟
𝑙) · 𝜉𝑥𝑡

𝑙

<
∑︁

𝑙∈𝒦𝑥𝑡

𝜖𝑙,𝑡 · 𝜉𝑥𝑡
𝑙

= 𝐸𝑥𝑡,𝑡,

where the inequality is strict because there must exist 𝑙 ∈ 𝒦𝑥𝑡 such that 𝜉𝑥𝑡
𝑙 > 0 (at least one

resource constraint is binding for a feasible basis to (4.3) aside from the basis 𝑥̃ associated

280

with 𝒦𝑥̃ = ∅). We obtain:

E[
𝜏*∑︁

𝑡=1
𝐼obj𝑥𝑡,𝑡≥obj𝑥𝑡

+𝐸𝑥𝑡,𝑡] ≤ E[
𝜏*∑︁

𝑡=1

𝐾∑︁
𝑙=1

𝐼𝑟𝑙,𝑡≥𝜇𝑟
𝑙
+𝜖𝑙,𝑡

]

≤
𝐾∑︁

𝑙=1

∞∑︁
𝑡=1

P[𝑟𝑙,𝑡 ≥ 𝜇𝑟
𝑙 + 𝜖𝑙,𝑡]

≤ 𝐾 · 𝜋2

6 ,

where the last inequality is derived along the same lines as in the proof of Fact C.3.

Similarly, we can show that:

E[
𝜏*∑︁

𝑡=1
𝐼obj𝑥*,𝑡≤obj𝑥* −𝐸𝑥*,𝑡

] ≤ 𝐾 · 𝜋2

6 .

We move on to study the last term.

Fact C.16.

E[
𝜏*∑︁

𝑡=1
𝐼obj𝑥* <obj𝑥𝑡

+2𝐸𝑥𝑡,𝑡 · 𝐼𝑥𝑡 ̸=𝑥* · 𝐼𝑎𝑡=𝑘 · 𝐼
𝑛̸=𝑥*

𝑘,𝑡
≥𝛽𝑘 ln(𝑡)] = 0.

Proof. If obj𝑥* < obj𝑥𝑡
+ 2𝐸𝑥𝑡,𝑡, 𝑥𝑡 ̸= 𝑥*, and 𝑎𝑡 = 𝑘, we have:

Δ𝑘

2 ≤ Δ𝑥𝑡

2

<
∑︁

𝑙∈𝒦𝑥𝑡

𝜉𝑥𝑡
𝑙 ·

⎯⎸⎸⎷2 ln(𝑡)
𝑛𝑙,𝑡

≤
∑︁

𝑙∈𝒦𝑥𝑡

⎯⎸⎸⎷2𝜉𝑥𝑡
𝑙 · 𝜉𝑥𝑡

𝑘 ln(𝑡)
𝑛𝑘,𝑡

,

where we use the fact that, by definition of the load balancing algorithm and since 𝑎𝑡 = 𝑘,

𝜉𝑥𝑡
𝑘 ̸= 0 (otherwise arm 𝑘 would not have been selected) and:

𝑛𝑙,𝑡 ≥ 𝜉𝑥𝑡
𝑙

𝜉𝑥𝑡
𝑘

𝑛𝑘,𝑡, (C.37)

281

for all arms 𝑙 ∈ 𝒦𝑥𝑡 . We get:

𝑛𝑘,𝑡 <
8

(Δ𝑘)2 · 𝜉𝑥𝑡
𝑘 · (

∑︁
𝑙∈𝒦𝑥𝑡

√︁
𝜉𝑥𝑡

𝑙)2 · ln(𝑡)

≤ 8
(Δ𝑘)2 · 𝜉𝑥𝑡

𝑘 · 𝜌 ·
∑︁

𝑙∈𝒦𝑥𝑡

𝜉𝑥𝑡
𝑙 · ln(𝑡) ≤ 8

(Δ𝑘)2 · 𝜌 · (
∑︁

𝑙∈𝒦𝑥𝑡

𝜉𝑥𝑡
𝑙)2 · ln(𝑡),

using the Cauchy−Schwarz inequality and the fact that a basis involves at most 𝜌 arms.

Now observe that:

∑︁
𝑙∈𝒦𝑥𝑡

𝜉𝑥𝑡
𝑙 ≤

∑︁
𝑙∈𝒦𝑥𝑡

∑︀𝐶
𝑖=1 𝑐𝑙(𝑖)

𝜖
· 𝜉𝑥𝑡

𝑙 ≤
∑︀𝐶

𝑖=1 𝑏(𝑖)
𝜖

as 𝑥𝑡 is a feasible basis to (4.8) and using Assumption 4.2. We obtain:

𝑛 ̸=𝑥*

𝑘,𝑡 ≤ 𝑛𝑘,𝑡 < 8 · 𝜌 · (∑︀𝐶
𝑖=1 𝑏(𝑖))2

𝜖2 · (Δ𝑘)2 · ln(𝑡) = 𝛽𝑘 · ln(𝑡).

C.7.2 Proof of Lemma C.2

We first show (C.2) by induction on 𝑡. The base case is straightforward. Suppose that the

inequality holds at time 𝑡 − 1. There are three cases:

∙ arm 𝑘 is not pulled at time 𝑡 − 1, in which case the left-hand side of the inequality

remains unchanged while the right-hand side can only increase, hence the inequality

still holds at time 𝑡,

∙ arm 𝑘 is pulled at time 𝑡 − 1 after selecting 𝑥𝑡−1 ̸= 𝑥*, in which case both sides of

the inequality increase by one and the inequality still holds at time 𝑡,

∙ arm 𝑘 is pulled at time 𝑡 − 1 after selecting 𝑥𝑡−1 = 𝑥*. First observe that there must

exist 𝑙 ∈ 𝒦𝑥* such that 𝑛𝑙,𝑡−1 ≤ (𝑡 − 1) · 𝜉𝑥*
𝑙∑︀𝐾

𝑟=1 𝜉𝑥*
𝑟

. Suppose otherwise, we have:

𝑡 − 1 =
𝐾∑︁

𝑙=1
𝑛𝑙,𝑡 ≥

∑︁
𝑙∈𝒦𝑥*

𝑛𝑙,𝑡 >
∑︁

𝑙∈𝒦𝑥*

(𝑡 − 1) · 𝜉𝑥*
𝑙∑︀𝐾

𝑟=1 𝜉𝑥*
𝑟

= 𝑡 − 1,

282

a contradiction. Suppose now by contradiction that inequality (C.2) no longer holds

at time 𝑡, we have:

𝑛𝑘,𝑡−1 = 𝑛𝑘,𝑡 − 1

> 𝑛𝑥*,𝑡 · 𝜉𝑥*
𝑘∑︀𝐾

𝑙=1 𝜉𝑥*
𝑙

+
∑︁

𝑥∈ℬ,𝑥 ̸=𝑥*
𝑛𝑥,𝑡

≥ (𝑛𝑥*,𝑡 +
∑︁

𝑥∈ℬ,𝑥 ̸=𝑥*
𝑛𝑥,𝑡) · 𝜉𝑥*

𝑘∑︀𝐾
𝑙=1 𝜉𝑥*

𝑙

= (𝑡 − 1) · 𝜉𝑥*
𝑘∑︀𝐾

𝑙=1 𝜉𝑥*
𝑙

,

which implies, using the preliminary remark above, that 𝜉𝑥*
𝑘

𝑛𝑘,𝑡−1
< max

𝑙∈𝒦𝑥*

𝜉𝑥*
𝑙

𝑛𝑙,𝑡−1
, a con-

tradiction given the definition of the load balancing algorithm.

We conclude that inequality (C.2) holds for all times 𝑡 and arms 𝑘 ∈ 𝒦𝑥* . We also derive

inequality (C.1) as a byproduct, since, at any time 𝑡 and for any arm 𝑘 ∈ 𝒦𝑥*:

𝑛𝑘,𝑡 ≥ 𝑛𝑥*,𝑡 −
∑︁

𝑙∈𝒦𝑥* ,𝑙 ̸=𝑘

𝑛𝑙,𝑡

≥ 𝑛𝑥*,𝑡 · (1 −
∑︀

𝑙∈𝒦𝑥* ,𝑙 ̸=𝑘 𝜉𝑥*
𝑙∑︀𝐾

𝑙=1 𝜉𝑥*
𝑙

) − 𝜌 · (
∑︁

𝑥∈ℬ,𝑥 ̸=𝑥*
𝑛𝑥,𝑡 + 1)

= 𝑛𝑥*,𝑡 · 𝜉𝑥*
𝑘∑︀𝐾

𝑙=1 𝜉𝑥*
𝑙

− 𝜌 · (
∑︁

𝑥∈ℬ,𝑥 ̸=𝑥*
𝑛𝑥,𝑡 + 1),

as a basis involves at most 𝜌 arms.

C.7.3 Proof of Theorem C.1

The proof proceeds along the same lines as for Theorem 4.3. We build upon (4.4):

𝑅𝐵(1),··· ,𝐵(𝐶) ≤ 𝐵 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 −
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · E[𝑛𝑘,𝜏*] + 𝑂(1)

≤ 𝐵 ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 −
∑︁

𝑘∈𝒦𝑥*

𝜇𝑟
𝑘 · E[𝑛𝑘,𝜏*] + 𝑂(1)

≤ (𝐵 − E[𝑛𝑥*,𝜏*]∑︀𝐾
𝑘=1 𝜉𝑥*

𝑘

) ·
𝐾∑︁

𝑘=1
𝜇𝑟

𝑘 · 𝜉𝑥*

𝑘 + 𝜌2 ·
∑︁

𝑥∈ℬ,𝑥 ̸=𝑥*
E[𝑛𝑥,𝜏*] + 𝑂(1),

283

where we use (C.1) to derive the third inequality. Now observe that, by definition, at least

one resource is exhausted at time 𝜏 *. Hence, there exists 𝑖 ∈ {1, · · · , 𝐶} such that the

following holds almost surely:

𝐵(𝑖) ≤
𝐾∑︁

𝑘=1
𝑐𝑘(𝑖) · 𝑛𝑘,𝜏*

≤
∑︁

𝑘 /∈𝒦𝑥*

𝑛𝑘,𝜏* +
∑︁

𝑘∈𝒦𝑥*

𝑐𝑘(𝑖) · 𝑛𝑘,𝜏*

≤
∑︁

𝑥∈ℬ,𝑥 ̸=𝑥*
𝑛𝑥,𝜏* +

∑︁
𝑘∈𝒦𝑥*

𝑐𝑘(𝑖) · 𝑛𝑘,𝜏*

≤ 𝜌 · (
∑︁

𝑥∈ℬ,𝑥 ̸=𝑥*
𝑛𝑥,𝜏* + 2) + 𝑛𝑥*,𝜏* ·

∑︁
𝑘∈𝒦𝑥*

𝑐𝑘(𝑖) · 𝜉𝑥*
𝑘∑︀𝐾

𝑙=1 𝜉𝑥*
𝑙

≤ 𝜌 · (
∑︁

𝑥∈ℬ,𝑥 ̸=𝑥*
𝑛𝑥,𝜏* + 2) + 𝑏(𝑖) · 𝑛𝑥*,𝜏*∑︀𝐾

𝑘=1 𝜉𝑥*
𝑘

,

where we use (C.2) and the fact that 𝑥* is a feasible basis to (4.3). Rearranging yields:

𝑛𝑥*,𝜏*∑︀𝐾
𝑘=1 𝜉𝑥*

𝑘

≥ 𝐵 − 𝜌

𝑏
· (

∑︁
𝑥∈ℬ,𝑥 ̸=𝑥*

𝑛𝑥,𝜏* + 2),

almost surely. Plugging this last inequality back into the regret bound, we get:

𝑅𝐵(1),··· ,𝐵(𝐶) ≤ 𝜌 ·
∑︁

𝑥∈ℬ,𝑥 ̸=𝑥*
E[𝑛𝑥,𝑡] · (

∑︀𝐾
𝑘=1 𝜇𝑟

𝑘 · 𝜉𝑥*
𝑘

𝑏
+ 𝜌) + 𝑂(1)

≤ 𝜌 ·
∑︁

𝑥∈ℬ,𝑥 ̸=𝑥*
E[𝑛𝑥,𝑡] · (

∑︀𝐾
𝑘=1

∑︀𝐶
𝑖=1 𝑐𝑘(𝑖) · 𝜉𝑥*

𝑘

𝜖 · 𝑏
+ 𝜌) + 𝑂(1)

≤ (𝜌 ·∑︀𝐶
𝑖=1 𝑏(𝑖)

𝜖 · 𝑏
+ (𝜌)2) ·

∑︁
𝑥∈ℬ,𝑥 ̸=𝑥*

E[𝑛𝑥,𝑡] + 𝑂(1)

= (𝜌 ·∑︀𝐶
𝑖=1 𝑏(𝑖)

𝜖 · 𝑏
+ (𝜌)2) ·

𝐾∑︁
𝑘=1

E[
∑︁

𝑥∈ℬ | 𝑘∈𝒦𝑥,𝑥 ̸=𝑥*

𝑛𝑥
𝑘,𝜏*] + 𝑂(1)

≤ 32𝜌3 · (∑︀𝐶
𝑖=1 𝑏(𝑖))3

𝜖3 · 𝑏
· (

𝐾∑︁
𝑘=1

1
(Δ𝑘)2) · E[ln(𝜏 *)] + 𝑂(1)

≤ 32𝜌3 · (∑︀𝐶
𝑖=1 𝑏(𝑖))3

𝜖3 · 𝑏
· (

𝐾∑︁
𝑘=1

1
(Δ𝑘)2) · ln(

∑︀𝐶
𝑖=1 𝑏(𝑖) · 𝐵

𝜖
+ 1) + 𝑂(1),

where we use the fact that 𝑥* is a feasible basis to (4.3) for the third inequality, Lemma C.1

for the fourth inequality, the concavity of the logarithmic function along with Lemma 4.7

284

for the last inequality.

C.7.4 Proof of Lemma C.3

We use the shorthand notations 𝛽𝑘 = 8𝐶 · (𝜆
Δ𝑘

)2 and, for any round 𝑡:

𝑛/∈𝒪
𝑘,𝑡 =

∑︁
𝑥∈ℬ | 𝑘∈𝒦𝑥, 𝑥/∈𝒪

𝑛𝑥
𝑘,𝑡.

Similarly as in Fact C.11, we have:

E[𝑛/∈𝒪
𝑘,𝑇] ≤ 2𝛽𝑘 · ln(𝑇) + 29 (C + 3)!4

𝜖6

+ E[
𝑇∑︁

𝑡=tini

𝐼𝑥𝑡 /∈𝒪 · 𝐼𝑎𝑡=𝑘 · 𝐼𝑛/∈𝒪
𝑘,𝑡

≥𝛽𝑘 ln(𝑡) · 𝐼𝑥*∈ℬ𝑡],

and what remains to be done is to bound the second term, which we can break down as

follows:

E[
𝑇∑︁

𝑡=tini

𝐼𝑥𝑡 /∈𝒪 · 𝐼𝑎𝑡=𝑘 · 𝐼𝑛/∈𝒪
𝑘,𝑡

≥𝛽𝑘 ln(𝑡) · 𝐼𝑥*∈ℬ𝑡]

≤ E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥𝑡,𝑡+𝐸𝑥𝑡,𝑡≥obj𝑥*,𝑡+𝐸𝑥*,𝑡
· 𝐼𝑥𝑡 /∈𝒪 · 𝐼𝑎𝑡=𝑘 · 𝐼𝑛/∈𝒪

𝑘,𝑡
≥𝛽𝑘 ln(𝑡) · 𝐼𝑥*∈ℬ𝑡]

≤ E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥𝑡,𝑡≥obj𝑥𝑡
+𝐸𝑥𝑡,𝑡 · 𝐼𝑥𝑡∈ℬ𝑡]

+ E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥*,𝑡≤obj𝑥* −𝐸𝑥*,𝑡
· 𝐼𝑥*∈ℬ𝑡]

+ E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥* <obj𝑥𝑡
+2𝐸𝑥𝑡,𝑡 · 𝐼𝑥𝑡 /∈𝒪 · 𝐼𝑎𝑡=𝑘 · 𝐼𝑛/∈𝒪

𝑘,𝑡
≥𝛽𝑘 ln(𝑡)].

The study of the second term is the same as in the proof of Lemma 4.15. We can also bound

the first term in the same fashion as in the proof of Lemma 4.15 since there is no reference

to the load balancing algorithm in the proof of Fact C.13. The major difference with the

proof of Lemma 4.15 lies in the study of the last term.

285

Fact C.17.

E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥𝑡,𝑡≥obj𝑥𝑡
+𝐸𝑥𝑡,𝑡 · 𝐼𝑥∈ℬ𝑡] ≤ 210 𝐾 · (𝐶 + 3)!2

𝜖6 .

Proof. The only difference with the proof of Fact C.13 is that the number of arms that

belong to 𝒦𝑥 for 𝑥 ranging in {𝑥̃ ∈ ℬ | 𝑘 ∈ 𝒦𝑥̃, 𝑥̃ /∈ 𝒪} can be as big as 𝐾, as opposed to

𝐶 when we are considering one basis at a time. This increases the bound by a multiplicative

factor 𝐾.

Fact C.18.

E[
𝑇∑︁

𝑡=tini

𝐼obj𝑥* <obj𝑥𝑡
+2𝐸𝑥𝑡,𝑡 · 𝐼𝑥𝑡 /∈𝒪 · 𝐼𝑎𝑡=𝑘 · 𝐼𝑛/∈𝒪

𝑘,𝑡
≥𝛽𝑘 ln(𝑡)] = 0.

Proof. Assume that obj𝑥* < obj𝑥𝑡
+ 2𝐸𝑥𝑡,𝑡, 𝑥𝑡 /∈ 𝒪, and 𝑎𝑡 = 𝑘. We have:

Δ𝑘

2 ≤ Δ𝑥𝑡

2

< 𝜆 ·
∑︁

𝑙∈𝒦𝑥𝑡

𝜉𝑥𝑡
𝑙,𝑡 ·

⎯⎸⎸⎷2 ln(𝑡)
𝑛𝑙,𝑡

≤ 𝜆 ·
∑︁

𝑙∈𝒦𝑥𝑡

⎯⎸⎸⎷2𝜉𝑥𝑡
𝑙,𝑡 · 𝜉𝑥𝑡

𝑘,𝑡 ln(𝑡)
𝑛𝑘,𝑡

,

where we use the fact that, by definition of the load balancing algorithm and since 𝑎𝑡 = 𝑘,

𝜉𝑥𝑡
𝑘,𝑡 ̸= 0 (otherwise arm 𝑘 would not have been selected) and:

𝑛𝑙,𝑡 ≥
𝜉𝑥𝑡

𝑙,𝑡

𝜉𝑥𝑡
𝑘,𝑡

· 𝑛𝑘,𝑡, (C.38)

for any arm 𝑙 ∈ 𝒦𝑥𝑡 . We get:

𝑛/∈𝒪
𝑘,𝑡 ≤ 𝑛𝑘,𝑡

< 8(𝜆

Δ𝑘

)2 · 𝜉𝑥𝑡
𝑘,𝑡 · (

∑︁
𝑙∈𝒦𝑥𝑡

√︁
𝜉𝑥𝑡

𝑙,𝑡)2 · ln(𝑡)

≤ 8(𝜆

Δ𝑘

)2 · 𝜉𝑥𝑡
𝑘,𝑡 · 𝐶 ·

∑︁
𝑙∈𝒦𝑥𝑡

𝜉𝑥𝑡
𝑙,𝑡 · ln(𝑡)

≤ 8(𝜆

Δ𝑘

)2 · 𝐶 · (
∑︁

𝑙∈𝒦𝑥𝑡

𝜉𝑥𝑡
𝑙,𝑡)2 · ln(𝑡) ≤ 8𝐶 · (𝜆

Δ𝑘

)2 · ln(𝑡),

286

using the Cauchy−Schwarz inequality, the fact that a basis involves at most 𝐶 arms, and

the fact that 𝑥𝑡 is feasible for (4.8) whose linear constraints include
∑︀𝐾

𝑙=1 𝜉𝑙 ≤ 1 and 𝜉𝑙 ≥

0, ∀𝑙 ∈ {1, · · · , 𝐾}. We get 𝑛/∈𝒪
𝑘,𝑡 < 𝛽𝑘 ln(𝑡) by defintion of 𝛽𝑘.

C.7.5 Proof of Theorem C.2

Substituting 𝑏(𝑖) with 𝐵(𝑖)/𝐵(𝐶) for every resource 𝑖 ∈ {1, · · · , 𝐶}, the regret bound

obtained in Theorem 4.3 turns into:

𝑅𝐵(1),··· ,𝐵(𝐶) ≤ 16𝜌

𝜖
·
∑︀𝐶

𝑖=1 𝐵(𝑖)
𝐵(𝐶) · (

∑︁
𝑥∈ℬ | Δ𝑥>0

1
Δ𝑥

) · ln(
∑︀𝐶

𝑖=1 𝐵(𝑖)
𝜖

+ 1) + 𝑂(1). (C.39)

Observe that ℬ{ and 𝒪{ are defined by strict inequalities that are linear in the vector

(𝐵(1)/𝐵(𝐶), · · · , 𝐵(𝐶 − 1)/𝐵(𝐶)). Hence, for 𝐵(𝐶) large enough, ℬ{
∞ ⊂ ℬ{ and

𝒪{
∞ ⊂ 𝒪{ and thus ℬ ⊂ ℬ∞ and 𝒪 ⊂ 𝒪∞. We now move on to prove each claim

separately.

First claim. Suppose that there exists a unique optimal basis to (4.3), which we denote by

𝑥*. Then, we must have 𝒪 = {𝑥*} = 𝒪∞ for 𝐵(𝐶) large enough. Indeed, using the set

inclusion relations shown above, we have 𝒪 ⊂ 𝒪∞ = {𝑥*} and 𝒪 can never be empty as

there exists at least one optimal basis to (4.3) (this linear program is feasible and bounded).

We get 𝒪{ ∩ ℬ ⊂ 𝒪{
∞ ∩ ℬ∞ for 𝐵(𝐶) large enough. Note moreover that, for any 𝑥 ∈ ℬ,

Δ𝑥 converges to Δ∞
𝑥 (because both the objective value of a feasible basis and the optimal

value of a linear program are Lipschitz in the right-hand side of the inequality constraint),

which implies that Δ𝑥 > Δ∞
𝑥

2 > 0 when 𝑥 ∈ ℬ ∩ 𝒪{ for 𝐵(𝐶) large enough. We conclude

with (C.39) that:

𝑅𝐵(1),··· ,𝐵(𝐶) ≤ 32𝜌

𝜖
·
∑︀𝐶

𝑖=1 𝐵(𝑖)
𝐵(𝐶) · (

∑︁
𝑥∈ℬ∞ | Δ∞

𝑥 >0

1
Δ𝑥

) · ln(
∑︀𝐶

𝑖=1 𝐵(𝑖)
𝜖

+ 1) + 𝑂(1),

for 𝐵(𝐶) large enough. This yields the result since 𝐵(𝑖)/𝐵(𝐶) → 𝑏(𝑖) > 0 for any

resource 𝑖 = 1, · · · , 𝐶 − 1.

Second claim. Suppose that 𝐵(𝑖)
𝐵(𝐶) −𝑏(𝑖) = 𝑂(ln(𝐵(𝐶))

𝐵(𝐶)) for any resource 𝑖 ∈ {1, · · · , 𝐶−1}.

287

Starting from (C.16) derived in the proof of Theorem 4.3 and applying Lemma 4.8 only if

Δ𝑥 is big enough, we have:

𝑅𝐵(1),··· ,𝐵(𝐶)

≤ 𝑂(1) +
∑︁

𝑥∈ℬ | Δ𝑥>0
min{ Δ𝑥∑︀𝐾

𝑘=1 𝜉𝑥
𝑘

· E[𝑛𝑥,𝜏*],

16𝜌 ·
∑︀𝐾

𝑘=1 𝜉𝑥
𝑘

Δ𝑥

· ln(
∑︀𝐶

𝑖=1 𝐵(𝑖)
𝜖

+ 1) + 𝜋2

3 𝜌 · Δ𝑥∑︀𝐾
𝑘=1 𝜉𝑥

𝑘

}

≤ 𝑂(1) +
∑︁

𝑥∈ℬ | Δ𝑥>0
min{ Δ𝑥 · 𝐵(𝐶)

min𝑖=1,··· ,𝐶 𝐵(𝑖) ·
∑︀𝐶

𝑖=1 𝐵(𝑖)
𝜖

,

16𝜌 ·∑︀𝐶
𝑖=1 𝐵(𝑖)/𝐵(𝐶)

𝜖
· 1

Δ𝑥

· ln(
∑︀𝐶

𝑖=1 𝐵(𝑖)
𝜖

+ 1)}.

Thus, we get:

𝑅𝐵(1),··· ,𝐵(𝐶)

≤ 16𝜌 ·∑︀𝐶
𝑖=1 𝐵(𝑖)/𝐵(𝐶)

𝜖
· (

∑︁
𝑥∈ℬ∩𝒪{∩𝒪{

∞

1
Δ𝑥

) · ln(
∑︀𝐶

𝑖=1 𝐵(𝑖)
𝜖

+ 1)

+ (
∑︁

𝑥∈ℬ∩𝒪{∩𝒪∞

Δ𝑥) · 𝐵(𝐶)
min𝑖=1,··· ,𝐶 𝐵(𝑖) ·

∑︀𝐶
𝑖=1 𝐵(𝑖)

𝜖
+ 𝑂(1), ‘

where we use:
𝐾∑︁

𝑘=1
𝜉𝑥

𝑘 ∈ [min
𝑖=1,··· ,𝐶

𝐵(𝑖)/𝐵(𝐶),
∑︀𝐶

𝑖=1 𝐵(𝑖)/𝐵(𝐶)
𝜖

]

and

Δ𝑥 ≤
∑︀𝐶

𝑖=1 𝐵(𝑖)/𝐵(𝐶)
𝜖

,

as shown in the proof of Theorem 4.3 (substituting 𝑏 with min𝑖=1,··· ,𝐶 𝐵(𝑖)/𝐵(𝐶)). For

𝑥 ∈ ℬ ∩ 𝒪{ ∩ 𝒪{
∞, we have 𝑥 ∈ ℬ∞ and Δ𝑥 > Δ∞

𝑥

2 > 0 for 𝐵(𝐶) large enough, as shown

for the first claim. For 𝑥 ∈ ℬ ∩ 𝒪{ ∩ 𝒪∞, we have Δ𝑥 = 𝑂(ln(𝐵(𝐶))/𝐵(𝐶)) as both the

objective value of a feasible basis and the optimal value of a linear program are Lipschitz in

288

the right-hand side of the inequality constraints. We conclude that, for 𝐵(𝐶) large enough:

𝑅𝐵(1),··· ,𝐵(𝐶)

≤ 32𝜌 ·∑︀𝐶
𝑖=1 𝐵(𝑖)/𝐵(𝐶)

𝜖
· (

∑︁
𝑥∈ℬ∞∩𝒪{

∞

1
Δ∞

𝑥

) · ln(
∑︀𝐶

𝑖=1 𝐵(𝑖)
𝜖

+ 1)

+ 1
𝜖

· 𝐵(𝐶)
min𝑖=1,··· ,𝐶 𝐵(𝑖) ·

∑︁
𝑥∈ℬ∩𝒪{∩𝒪∞

𝑂(ln(𝐵(𝐶))) + 𝑂(1).

This yields the result since |ℬ ∩ 𝒪{ ∩ 𝒪∞| ≤ |𝒪∞| and 𝐵(𝑖)/𝐵(𝐶) → 𝑏(𝑖) > 0 for any

resource 𝑖 = 1, · · · , 𝐶 − 1.

C.7.6 Proof of Theorem C.3

The proof is along the same lines as for Theorem C.2. Specifically, in a first step, we

observe that all the proofs of Section 4.6 remain valid (up to universal constant factors) for

𝑇 large enough as long as we substitute 𝑏 with 𝐵/𝑇 . Indeed, for 𝑇 large enough, we have
𝐵
𝑇

≤ 2 and |𝜇𝑐
𝑘 − 𝐵

𝑇
| > 𝜖

2 for all arms 𝑘 ∈ {1, · · · , 𝐾} under Assumption 4.6. In a second

step, just like in the proof of Theorem C.2, we show that we can substitute
∑︀

𝑥∈ℬ | Δ𝑥>0
1

Δ𝑥

with
∑︀

𝑥∈ℬ∞ | Δ∞
𝑥 >0

1
Δ∞

𝑥
in the regret bound up to universal constant factors.

C.7.7 Proof of Theorem C.4

The proof is along the same lines as for Theorem C.2. Specifically, in a first step, we

observe that all the proofs of Section 4.7 remain valid (up to universal constant factors)

for 𝑇 large enough as long as we substitute 𝑏 with min𝑖=1,··· ,𝐶−1 𝐵(𝑖)/𝑇 . Indeed, for 𝑇

large enough, we have min𝑖=1,··· ,𝐶−1 𝐵(𝑖)/𝑇 ≤ 2 and, under Assumption 4.8, any basis

to (C.3) has determinannt larger than 𝜖/2 in absolute value and is 𝜖/2−non-degenerate by

continuity of linear functions. In a second step, just like in the proof of Theorem C.2, we

show that we can substitute
∑︀

𝑥∈ℬ | Δ𝑥>0
1

Δ𝑥
with

∑︀
𝑥∈ℬ∞ | Δ∞

𝑥 >0
1

Δ∞
𝑥

in the regret bound up

to universal constant factors.

289

290

Appendix D

Appendix For Chapter 5

D.1 Proof of Lemma 5.1

Consider any non-anticipating algorithm. The expected reward obtained at period 𝑡 ∈ N is:

E[(𝑣𝑡 − 𝑝𝑡) · 1𝑏𝑡≥𝑝𝑡] = E[E[(𝑣𝑡 − 𝑝𝑡) · 1𝑏𝑡≥𝑝𝑡 | ℱ̃𝑡−1]]

= E[(E[𝑣𝑡 | ℱ̃𝑡−1, 𝑏𝑡] − 𝑝𝑡) · 1𝑏𝑡≥𝑝𝑡]

= E[(𝑥T
𝑡 𝜃* − 𝑝𝑡) · 1𝑏𝑡≥𝑝𝑡]

≤ E[(𝑥T
𝑡 𝜃* − 𝑝𝑡)+].

To derive the first equality, we use the fact that ((𝑥𝜏 , 𝑣𝜏 , 𝑝𝜏))𝜏∈N is an i.i.d. sequence, that

(𝑣𝑡, 𝑝𝑡) is independent of 𝑏𝑡 conditioned on 𝑥𝑡 since the algorithm is non-anticipating, and

that 𝑣𝑡 is independent of 𝑝𝑡 conditioned on 𝑥𝑡. This shows that:

EROPT(𝑇) ≤
𝑇∑︁

𝑡=1
E[(𝑥T

𝑡 𝜃* − 𝑝𝑡)+].

291

Moreover, this last inequality is in fact an equality since bidding 𝑏𝑡 = 𝑥T
𝑡 𝜃* at any time

period 𝑡 ∈ N yields the expected reward:

E[(𝑣𝑡 − 𝑝𝑡) · 1𝑥T
𝑡 𝜃*≥𝑝𝑡

] = E[E[(𝑣𝑡 − 𝑝𝑡) · 1𝑥T
𝑡 𝜃*≥𝑝𝑡

| ℱ̃𝑡−1]]

= E[(E[𝑣𝑡 | ℱ̃𝑡−1] − 𝑝𝑡) · 1𝑥T
𝑡 𝜃*≥𝑝𝑡

]

= E[(𝑥T
𝑡 𝜃* − 𝑝𝑡) · 1𝑥T

𝑡 𝜃*≥𝑝𝑡
]

= E[(𝑥T
𝑡 𝜃* − 𝑝𝑡)+].

D.2 Proof of Lemma 5.2

This is almost a direct consequence of Theorems 1 and 2 of [1] with the minor change

(in their notations): 𝜂𝑡 = (𝑣𝑡 − 𝑥T
𝑡 𝜃*) · 1𝑏𝑡≥𝑝𝑡 , 𝑋𝑡 = 1𝑏𝑡≥𝑝𝑡 · 𝑥𝑡, and 𝑌𝑡 = 𝑣𝑡 · 1𝑏𝑡≥𝑝𝑡 .

Defining the 𝜎-algebra 𝐹𝑡 = 𝜎(𝑥1, · · · , 𝑥𝑡+1, 𝑝1, · · · , 𝑝𝑡+1, 𝑣1, · · · , 𝑣𝑡), observe that 𝑋𝑡 is

𝐹𝑡−1-measurable since (5.5) defines a non-anticipating algorithm, that 𝜂𝑡 is 𝐹𝑡-measurable,

and that 𝜂𝑡 ∈ [−1, 1] and has mean 0 conditioned on 𝐹𝑡−1 since 𝑣𝑡 is independent of 𝑝𝑡

conditioned on 𝑥𝑡 with mean 𝑥T
𝑡 𝜃* and since ((𝑥𝜏 , 𝑣𝜏 , 𝑝𝜏))𝜏∈N is an i.i.d. sequence. This

implies that the assumptions of Theorems 1 and 2 of [1] are satisfied with 𝑅 = 1, 𝑉 = 𝐼𝑑,

𝑆 =
√

𝑑 (since ‖𝜃*‖∞ ≤ 1), 𝛿 = 1/𝑇 , and 𝐿 =
√

𝑑 (since ‖𝑥𝑡‖∞ ≤ 1).

D.3 Proof of Theorem 5.1

At any time period 𝑡 ∈ N, we denote by 𝜃𝑡 an arbitrary element of argmax𝜃∈𝒞𝑡
𝑥T

𝑡 𝜃 so that

𝑏𝑡 = max(0, min(1, 𝑥T
𝑡 𝜃𝑡)). Using Lemma 5.1, we have:

𝑅𝑇 =
𝑇∑︁

𝑡=1
E[(𝑥T

𝑡 𝜃* − 𝑝𝑡)+] −
𝑇∑︁

𝑡=1
E[(𝑣𝑡 − 𝑝𝑡) · 1𝑏𝑡≥𝑝𝑡]

=
𝑇∑︁

𝑡=1
E[(𝑥T

𝑡 𝜃* − 𝑝𝑡)+] −
𝑇∑︁

𝑡=1
E[(𝑥T

𝑡 𝜃* − 𝑝𝑡) · 1𝑏𝑡≥𝑝𝑡].

292

The second equality is derived by conditioning on ℱ̃𝑡−1 in the same fashion as done in the

proof of Lemma 5.1 since 𝑏𝑡 is entirely determined by ℱ̃𝑡−1, see (5.5). Observe that:

(𝑥T
𝑡 𝜃* − 𝑝𝑡)+ = (𝑥T

𝑡 𝜃* − 𝑝𝑡)+ · 1𝑥T
𝑡 𝜃*≥𝑝𝑡>𝑏𝑡

+ (𝑥T
𝑡 𝜃* − 𝑝𝑡)+ · 1𝑏𝑡≥𝑝𝑡

≤ (𝑥T
𝑡 𝜃* − 𝑝𝑡)+ · 1𝑥T

𝑡 𝜃*>𝑏𝑡
+ (𝑥T

𝑡 𝜃* − 𝑝𝑡)+ · 1𝑏𝑡≥𝑝𝑡

≤ 1𝑥T
𝑡 𝜃*>𝑏𝑡

+ (𝑥T
𝑡 𝜃* − 𝑝𝑡)+ · 1𝑏𝑡≥𝑝𝑡 ,

since 𝑣𝑡 ∈ [0, 1] (which implies that 𝑥T
𝑡 𝜃* = E[𝑣𝑡|𝑥𝑡] ∈ [0, 1]) and 𝑝𝑡 ≥ 0. Plugging this

inequality back into the regret bound yields:

𝑅𝑇 ≤
𝑇∑︁

𝑡=1
P[𝑥T

𝑡 𝜃* > 𝑏𝑡] + E[((𝑥T
𝑡 𝜃* − 𝑝𝑡)+ − (𝑥T

𝑡 𝜃* − 𝑝𝑡)) · 1𝑏𝑡≥𝑝𝑡]

=
𝑇∑︁

𝑡=1
P[𝑥T

𝑡 𝜃* > 𝑏𝑡] + E[(𝑝𝑡 − 𝑥T
𝑡 𝜃*)+ · 1𝑏𝑡≥𝑝𝑡].

(D.1)

Since 𝑥T
𝑡 𝜃* ∈ [0, 1], 𝑥T

𝑡 𝜃* > 𝑏𝑡 implies that 𝑥T
𝑡 𝜃* > max𝜃∈𝒞𝑡 𝑥T

𝑡 𝜃 and we conclude that

𝜃* /∈ 𝒞𝑡. Using Lemma 5.2, we get:

𝑇∑︁
𝑡=1

P[𝑥T
𝑡 𝜃* > 𝑏𝑡] ≤

𝑇∑︁
𝑡=1

P[𝜃* /∈ 𝒞𝑡] ≤ 1.

What remains to be done is to upper bound the second term in the right-hand side of (D.1).

Using Fubini’s theorem, we have:

𝑇∑︁
𝑡=1

E[(𝑝𝑡 − 𝑥T
𝑡 𝜃*)+ · 1𝑏𝑡≥𝑝𝑡] =

∫︁ ∞

0
E[

𝑇∑︁
𝑡=1

1𝑝𝑡−𝑥T
𝑡 𝜃*≥𝑢 · 1𝑏𝑡≥𝑝𝑡]d𝑢

≤
∫︁ ∞

0
E[

𝑇∑︁
𝑡=1

1𝑏𝑡−𝑥T
𝑡 𝜃*≥𝑢 · 1𝑏𝑡≥𝑝𝑡]d𝑢

= E[
𝑇∑︁

𝑡=1
(𝑏𝑡 − 𝑥T

𝑡 𝜃*)+ · 1𝑏𝑡≥𝑝𝑡].

(D.2)

Using Lemma 5.2, we have that 𝜃* ∈ 𝒞𝑡 (which implies
⃦⃦⃦
𝜃𝑡 − 𝜃*

⃦⃦⃦
𝑀𝑡

≤ 2𝛿𝑇) for all 𝑡 ∈

{𝑡, · · · , 𝑇} with probability at least 1 − 1/𝑇 . Using the shorthand 𝐸 = {𝜃* ∈ ∩𝑇
𝑡=1𝒞𝑡}, we

293

get:

𝑇∑︁
𝑡=1

E[(𝑏𝑡 − 𝑥T
𝑡 𝜃*)+ · 1𝑏𝑡≥𝑝𝑡] ≤ 𝑇 · P[𝐸{] + E[1𝐸 ·

𝑇∑︁
𝑡=1

(𝑏𝑡 − 𝑥T
𝑡 𝜃*)+ · 1𝑏𝑡≥𝑝𝑡]

≤ 1 + E[1𝐸 ·
𝑇∑︁

𝑡=1
|𝑥T

𝑡 𝜃𝑡 − 𝑥T
𝑡 𝜃*| · 1𝑏𝑡≥𝑝𝑡]

≤ 1 + E[1𝐸 ·
𝑇∑︁

𝑡=1
‖1𝑏𝑡≥𝑝𝑡 · 𝑥𝑡‖𝑀−1

𝑡
·
⃦⃦⃦
𝜃𝑡 − 𝜃*

⃦⃦⃦
𝑀𝑡

]

≤ 1 + 2𝛿𝑇 · E[
𝑇∑︁

𝑡=1
‖1𝑏𝑡≥𝑝𝑡 · 𝑥𝑡‖𝑀−1

𝑡
]

≤ 1 + 2𝛿𝑇 ·
√︁

𝑑 · 𝑇 · ln(𝑇),

where we use 𝑏𝑡 ∈ [0, 1] and 𝑥T
𝑡 𝜃* ∈ [0, 1] for the first inequality and where the last inequal-

ity is derived in Lemma 11 of [11].

D.4 Proof of Theorem 5.2

At any time period 𝑡 ∈ N, we denote by 𝜃𝑡 an arbitrary element of argmax𝜃∈𝒞𝜏𝑡
𝑥T

𝑡 𝜃. The

proof is along the same lines as for Theorem 5.1 except for two inequalities. First, we now

bound the first term in the right-hand side of D.1 as follows:

𝑇∑︁
𝑡=1

P[𝑥T
𝑡 𝜃* > 𝑏𝑡] ≤

𝑇∑︁
𝑡=1

P[𝜃* /∈ 𝒞𝜏𝑡]

≤
𝑇∑︁

𝑡=1
P[𝜃* /∈ ∩𝑇

𝜏=1𝒞𝜏]

≤ 1,

294

which leads to the same conclusion. Second, using the shorthand 𝐸 = {𝜃* ∈ ∩𝑇
𝑡=1𝒞𝑡}, we

bound the right-hand side of (D.2) as follows:

E[
𝑇∑︁

𝑡=1
(𝑏𝑡 − 𝑥T

𝑡 𝜃*)+ · 1𝑏𝑡≥𝑝𝑡] ≤ 𝑇 · P[𝐸{] + E[1𝐸 ·
𝑇∑︁

𝑡=1
|𝑥T

𝑡 𝜃𝑡 − 𝑥T
𝑡 𝜃*| · 1𝑏𝑡≥𝑝𝑡]

≤ 1 + 2
√

1 + 𝐴 · 𝛿𝑇 · E[
𝑇∑︁

𝑡=1
‖1𝑏𝑡≥𝑝𝑡 · 𝑥𝑡‖𝑀−1

𝑡
]

≤ 1 + 2
√

1 + 𝐴 · 𝛿𝑇 ·
√︁

𝑑 · 𝑇 · ln(𝑇),

where the second inequality is a direct consequence of the proof of Theorem 4 in [1] and

the last inequality is derived in Lemma 11 of [11] just like for Theorem 5.1.

D.5 Proof of Lemma 5.3

There are two cases depending on whether E[𝑃] ≤ 𝛽 or not.

Case 1: E[𝑃] ≤ 𝛽.

In this case 𝜆* = 0 and the total expected reward obtained by any non-anticipating algo-

rithm is:

E[
𝜏*−1∑︁
𝑡=1

𝑣𝑡 · 1𝑏𝑡≥𝑝𝑡] ≤ E[
𝑇∑︁

𝑡=1
𝑣𝑡]

= 𝑇 · E[𝑉]

= 𝑇 · E[E[𝑉 | 𝑋]]

= 𝑇 · E[𝑔(𝑋)],

which shows that EROPT(𝐵, 𝑇) ≤ 𝑇 · 𝑅(𝜆*, 𝒞).

Case 2: E[𝑃] > 𝛽.

The total expected reward obtained by any non-anticipating algorithm can be bounded as

295

follows:

E[
𝜏*−1∑︁
𝑡=1

𝑣𝑡 · 1𝑏𝑡≥𝑝𝑡] ≤ E[
𝜏*∑︁

𝑡=1
𝑣𝑡 · 1𝑏𝑡≥𝑝𝑡]

=
∞∑︁

𝑡=1
E[𝐼𝜏*≥𝑡 · 𝑣𝑡 · 1𝑏𝑡≥𝑝𝑡]

=
∞∑︁

𝑡=1
E[𝐼𝜏*≥𝑡 · E[𝑣𝑡 | ℱ̃𝑡−1, 𝑏𝑡] · 1𝑏𝑡≥𝑝𝑡]

=
∞∑︁

𝑡=1
E[𝐼𝜏*≥𝑡 · min(1, max

𝜃∈𝒞
𝑥T

𝑡 𝜃) · 1𝑏𝑡≥𝑝𝑡]

= E[
𝜏*∑︁

𝑡=1
min(1, max

𝜃∈𝒞
𝑥T

𝑡 𝜃) · 1𝑏𝑡≥𝑝𝑡]

≤ E[
𝜏*−1∑︁
𝑡=1

min(1, max
𝜃∈𝒞

𝑥T
𝑡 𝜃) · 1𝑏𝑡≥𝑝𝑡] + 1,

where we use the the fact that ((𝑥𝑡, 𝑣𝑡, 𝑝𝑡))𝑡∈N is an i.i.d. sequence, that (𝑣𝑡, 𝑝𝑡) is indepen-

dent of 𝑏𝑡 conditioned on 𝑥𝑡 since the algorithm is non-anticipating, that 𝑣𝑡 is independent

of 𝑝𝑡 conditioned on 𝑥𝑡, and that 𝜏 * is a stopping time with respect to ((𝑥𝑡, 𝑣𝑡, 𝑝𝑡))𝑡∈N. As

a result, up to an additive term of order 𝑂(1) in the final bound, we just need to bound

the performance of any non-anticipating algorithm when the reward obtained at round 𝑡

is min(1, max𝜃∈𝒞 𝑥T
𝑡 𝜃) · 1𝑏𝑡≥𝑝𝑡 as opposed to 𝑣𝑡 · 1𝑏𝑡≥𝑝𝑡 . Observe that, in this setting, the

total reward (resp. cost) obtained (resp. incurred) by any non-anticipating algorithm can be

written as
∑︀𝑇

𝑡=1 min(1, max𝜃∈𝒞 𝑥T
𝑡 𝜃) · 𝑦𝑡 (resp.

∑︀𝑇
𝑡=1 𝑝𝑡 · 𝑦𝑡) where 𝑦𝑡 = 1𝑏𝑡≥𝑝𝑡 for 𝑡 < 𝜏 *

and 𝑦𝑡 = 0 for 𝑡 ≥ 𝜏 *. Remark that 𝑦𝑡 ∈ [0, 1] for all 𝑡 ∈ {1, · · · , 𝑇} and that, by definition

of 𝜏 *,
∑︀𝑇

𝑡=1 𝑝𝑡 · 𝑦𝑡 ≤ 𝐵. Thus (𝑦𝑡)𝑡=1,··· ,𝑇 is always a feasible solution to the knapsack

problem:

sup
(𝜉𝑡)𝑡=1,··· ,𝑇

𝑇∑︁
𝑡=1

min(1, max
𝜃∈𝒞

𝑥T
𝑡 𝜃) · 𝜉𝑡

subject to
𝑇∑︁

𝑡=1
𝑝𝑡 · 𝜉𝑡 ≤ 𝐵

𝜉𝑡 ∈ [0, 1], 𝑡 = 1, · · · , 𝑇.

(D.3)

As a consequence, we conclude that the expected total reward obtained by any non-anticipating

algorithm is always no larger than the expected optimal value of (D.3). This reduces the

problem of bounding EROPT(𝐵, 𝑇) to a stochastic i.i.d. knapsack problem with 𝑇 items

296

and a knapsack capacity of 𝐵 when the 𝑡-th item has value min(1, max𝜃∈𝒞 𝑥T
𝑡 𝜃) and weights

𝑝𝑡. [63] study the expected optimal value of the knapsack problem:

sup
(𝜉𝑡)𝑡=1,··· ,𝑇

𝑇∑︁
𝑡=1

𝑌𝑡 · 𝜉𝑡

subject to
𝑇∑︁

𝑡=1
𝑊𝑡 · 𝜉𝑡 ≤ 𝐵

𝜉𝑡 ∈ [0, 1], 𝑡 = 1, · · · , 𝑇

(D.4)

when ((𝑌𝑡, 𝑊𝑡))𝑡=1,··· ,𝑇 is an i.i.d. stochastic process with distribution 𝜈 and when 𝐵 = 𝛽 ·

𝑇 . Denoting by (𝑌, 𝑊) a 2-dimensional vector of random variables with distribution 𝜈, the

author of [63] shows that, under the five conditions listed below, the expected optimal value

of (D.4) is E[𝑌 · 1𝑌 ≥𝛾*·𝑊] + 𝑂(1) as 𝑇 → ∞ where 𝛾* ≥ 0 satisfies E[𝑊 · 1𝑌 ≥𝛾*·𝑊] = 𝛽.

Defining the mapping Φ : 𝛾 ∈ R+ → E[𝑊 · 1𝑌 ≥𝛾·𝑊], the five conditions mentioned above

are:

1. 𝑌 and 𝑊 are non-negative bounded random variables,

2. there exists 𝛾* ≥ 0 such that Φ(𝛾*) = 𝛽,

3. Φ(·) is differentiable in a neighborhood of 𝛾*,

4. Φ′(·) is negative in a neighborhood of 𝛾*,

5. Φ′(·) is Lipschitz in a neighborhood of 𝛾*.

As a result, showing that these five conditions hold for the choice (𝑌 = 𝑔(𝑋), 𝑊 = 𝑃) will

conclude the proof. Observe that the first condition is satisfied since (𝑔(𝑋), 𝑃) ∈ [0, 1]2

because max𝜃∈𝒞 𝑋T𝜃 ≥ 𝑋T𝜃* ≥ 0 as 𝜃* ∈ 𝒞. Adapting notations, we need to show that

there exists 𝜆* ≥ 0 such that 𝜑(𝜆*, 𝒞) = 𝛽 to establish that the second condition holds.

This is true since: (i) 𝜑(0, 𝒞) = E[𝑃] > 𝛽 (by assumption), (ii) 𝜑(2/𝑟, 𝒞) = 0 since

297

𝑔(𝑋) ∈ [0, 1] and 𝑃 ≥ 𝑟, and (iii) 𝜑(·, 𝒞) is continuous since:

𝜑(𝜆, 𝒞) = E[E[𝑃 · 1𝑔(𝑋)≥𝜆·𝑃 | 𝑋]]

= E[
∫︁ 𝑔(𝑋)/𝜆

0
𝑤 · 𝑓𝑋(𝑤)d𝑤]

= E[
∫︁ 1/𝜆

0
𝑔(𝑋) · 𝑤 · 𝑓𝑋(𝑔(𝑋) · 𝑤)d𝑤]

=
∫︁ 1/𝜆

0
E[𝑔(𝑋) · 𝑤 · 𝑓𝑋(𝑔(𝑋) · 𝑤)]d𝑤,

(D.5)

for any 𝜆 ≥ 0 and since:

∫︁ ∞

0
E[𝑔(𝑋) · 𝑤 · 𝑓𝑋(𝑔(𝑋) · 𝑤)]d𝑤 = E[𝑃] ≤ 1 < ∞

by Fubini’s theorem. We move on to show that the third condition is satisfied. Observe

that since E[𝑃] > 𝛽 we must have 𝜆* > 0. Moreover, using (D.5), 𝜑(·, 𝒞) is continuously

differentiable on R*
+ by continuity under the integral sign with:

𝜑′(𝜆, 𝒞) = − 1
𝜆3 · E[𝑔(𝑋) · 𝑓𝑋(𝑔(𝑋)/𝜆)]

for 𝜆 > 0 since 𝑓𝑥(·) is continuous for all 𝑥 ∈ 𝒳 and 𝑔(𝑋) · 𝑓𝑋(𝑔(𝑋)/𝜆) lies in [0, 𝐿̄] by

Assumption 5.2. The fourth condition is satisfied since 𝜑(·, 𝒞) is non-increasing. Finally,

we show that 𝜑′(·, 𝒞) is Lipschitz on R*
+. Indeed, for any 𝜆1 ≥ 𝜆2 > 0, we have:

|𝜑′(𝜆1, 𝒞) − 𝜑′(𝜆2, 𝒞)| = |E[𝑔(𝑋)
𝜆3

1
· 𝑓𝑋(𝑔(𝑋)

𝜆1
)] − E[𝑔(𝑋)

𝜆3
2

· 𝑓𝑋(𝑔(𝑋)
𝜆2

)]|

≤ E[1
𝜆2

1
· |𝑔(𝑋)

𝜆1
· 𝑓𝑋(𝑔(𝑋)

𝜆1
) − 𝑔(𝑋)

𝜆2
· 𝑓𝑋(𝑔(𝑋)

𝜆2
)|]

+ E[| 1
𝜆2

1
− 1

𝜆2
2
| · 1

𝜆2
· |𝑔(𝑋) · 𝑓𝑋(𝑔(𝑋)

𝜆2
)|].

298

Observe that:

| 1
𝜆2

1
− 1

𝜆2
2
| · 1

𝜆2
· |𝑔(𝑋) · 𝑓𝑋(𝑔(𝑋)

𝜆2
)| ≤ 2(𝜆1 − 𝜆2) · |𝑔(𝑋)

𝜆4
2

· 𝑓𝑋(𝑔(𝑋)
𝜆2

)|

≤ 2 𝐿̄

𝑔(𝑋)3 · (𝜆1 − 𝜆2)

≤ 2 𝐿̄

(𝑋T𝜃*)3 · (𝜆1 − 𝜆2),

irrespective of whether 𝑔(𝑋)/𝜆2 ≤ 1 or 𝑔(𝑋)/𝜆2 > 1 (in which case 𝑓𝑋(𝑔(𝑋)/𝜆2) = 0).

We use 𝜃* ∈ 𝒞 to derive the last inequality. Similarly, we have:

E[1
𝜆2

1
· |𝑔(𝑋)

𝜆1
· 𝑓𝑋(𝑔(𝑋)

𝜆1
) − 𝑔(𝑋)

𝜆2
· 𝑓𝑋(𝑔(𝑋)

𝜆2
)|] ≤ 𝐾

𝑔(𝑋)3 · (𝜆1 − 𝜆2)

≤ 𝐾

(𝑋T𝜃*)3 · (𝜆1 − 𝜆2)

irrespective of whether 𝑔(𝑋)/𝜆1 ∈ supp 𝑓𝑋(·) (which implies 𝑔(𝑋)/𝜆1 ≤ 1), 𝑔(𝑋)/𝜆1 /∈

supp 𝑓𝑋(·), 𝑔(𝑋)/𝜆2 ∈ supp 𝑓𝑋(·) (which implies 𝑔(𝑋)/𝜆2 ≤ 1), or whether 𝑔(𝑋)/𝜆2 /∈

supp 𝑓𝑋(·) (using 𝜃* ∈ 𝒞 for the last inequality). Bringing everything together, we get:

|𝜑′(𝜆1, 𝒞) − 𝜑′(𝜆2, 𝒞)| ≤ (2𝐿̄ + 𝐾) · E[1
(𝑋T𝜃*)3] · |𝜆1 − 𝜆2|,

and (2𝐿̄ + 𝐾) · E[1/(𝑋T𝜃*)3] < ∞ by Assumption 5.2.

D.6 Proof of Lemma 5.4

For any 𝜆1 ≥ 𝜆2 ≥ 0, we have:

|𝑅(𝜆1, 𝒞) − 𝑅(𝜆2, 𝒞)| = E[𝑔(𝑋) · 1𝑔(𝑋)/𝜆2≥𝑃 >𝑔(𝑋)/𝜆1]

≤ 1
𝑟

· E[𝑃 · 1𝑔(𝑋)/𝜆2≥𝑃 >𝑔(𝑋)/𝜆1]

= 1
𝑟

· |𝜑(𝜆1, 𝒞) − 𝜑(𝜆2, 𝒞)|,

where the first inequality is a consequence of 𝑔(𝑋) ∈ [0, 1] and 𝑃 ≥ 𝑟.

299

D.7 Proof of Lemma 5.5

For any 𝜆2 ≥ 𝜆1 > 0, we have:

|𝜑(𝜆2, 𝒞) − 𝜑(𝜆1, 𝒞)| = E[𝑃 · 1min(1,𝑔(𝑋)/𝜆1)≥𝑃 >min(1,𝑔(𝑋)/𝜆2)]‘

≤ E[1min(1,𝑔(𝑋)/𝜆1)≥𝑃 >min(1,𝑔(𝑋)/𝜆2)]

= E[
∫︁ min(1,𝑔(𝑋)/𝜆1)

min(1,𝑔(𝑋)/𝜆2)
𝑓𝑋(𝑤)d𝑤]

≤ 𝐿̄ · E[min(1, 𝑔(𝑋)/𝜆1) − min(1, 𝑔(𝑋)/𝜆2)]

≤ 𝐿̄ · E[1
𝑔(𝑋)] · |𝜆1 − 𝜆2|

≤ 𝐿̄ · E[1
𝑋T𝜃*

] · |𝜆1 − 𝜆2|,

where the first inequality is obtained using 𝑃 ∈ [0, 1], the second inequality is a conse-

quence of Assumption 5.2, the third inequality actually holds almost surely irrespective of

whether 𝑔(𝑋)/𝜆1 ≤ 1, 𝑔(𝑋)/𝜆1 > 1, 𝑔(𝑋)/𝜆2 ≤ 1, or 𝑔(𝑋)/𝜆2 > 1, and the last inequal-

ity is obtained using the fact that 𝜃* ∈ 𝒞. Also, observe that the last inequality holds even

when 𝜆1 = 0.

D.8 Proof of Lemma 5.6

For any phase 𝑘 ∈ N, we denote by 𝑡𝑘 the time period at which phase 𝑘 starts. First note that

we can reason conditionally on ℱ𝑡𝑘−1 since ((𝑥𝑡, 𝑣𝑡, 𝑝𝑡))𝑡∈N is an i.i.d. stochastic process.

We use the Rademacher complexity approach to concentration inequalities for empirical

processes to derive the result, see, for example, [20] and [29]. Specifically, the class of

functions of interest is ℱ = {ℓ𝜆 : (𝑥, 𝑦) ∈ [0, 1] × [𝑟, 1] → 𝑦 · 1𝑥≥𝜆·𝑦 | 𝜆 ∈ [𝜆𝑘, 2/𝑟]}. Ob-

serve that ℓ𝜆(𝑥, 𝑦) ∈ [0, 1] for any (𝑥, 𝑦) ∈ [0, 1]×[𝑟, 1] and that 𝜑(𝜆, 𝒞) = E[ℓ𝜆(𝑔(𝑋), 𝑃)].

Moreover, note that 𝑁𝑘 samples, denoted by (min(1, max𝜃∈𝒞 𝑋T
𝑛𝜃), 𝑃𝑛)𝑛=1,··· ,𝑁𝑘

, have been

generated according to the same distribution as (𝑔(𝑋), 𝑃) in an i.i.d. fashion at the end of

300

phase 𝑘. Using Theorem 3.2 from [29], we get:

P[∃𝜆 ∈ [𝜆𝑘, 2/𝑟] | 𝜑𝑘(𝜆, 𝒞)−𝜑(𝜆, 𝒞)| ≥ 2ℛ𝑁𝑘
(ℱ)+𝑡 | ℱ𝑡𝑘−1] ≤ exp(−2𝑁𝑘 ·𝑡2) ∀𝑡 ≥ 0,

(D.6)

where ℛ𝑁𝑘
(ℱ) is the Rademacher complexity of ℱ for 𝑁𝑘 samples. What remains to

be done is to upper bound this last quantity. By definition, we have, for 𝑁𝑘 independent

Rademacher variables (𝜖𝑛)𝑛=1,··· ,𝑁𝑘
that are independent of (𝑋𝑛, 𝑃𝑛)𝑛=1,··· ,𝑁𝑘

:

ℛ𝑁𝑘
(ℱ) = 1

𝑁𝑘

· E[sup
𝜆∈[𝜆𝑘,2/𝑟]

|
𝑁𝑘∑︁

𝑛=1
𝜖𝑛 · ℓ𝜆(min(1, max

𝜃∈𝒞
𝑋T

𝑛𝜃), 𝑃𝑛)|]

= 1
𝑁𝑘

· E[E[sup
𝑧∈𝑆((𝑋𝑛,𝑃𝑛)𝑛=1,··· ,𝑁𝑘

)
|

𝑁𝑘∑︁
𝑛=1

𝜖𝑛 · 𝑧𝑛| | (𝑋𝑛, 𝑃𝑛)𝑛=1,··· ,𝑁𝑘
]]

≤ 1
𝑁𝑘

· E[
√︁

2𝑁𝑘 · ln(2|𝑆((𝑋𝑛, 𝑃𝑛)𝑛=1,··· ,𝑁𝑘
)|)]

≤
√︃

2 ln(2(𝑁𝑘 + 1))
𝑁𝑘

≤
√︃

2 ln(2𝑇)
𝑁𝑘

,

with:

𝑆((𝑋𝑛, 𝑃𝑛)𝑛=1,··· ,𝑁𝑘
) = {(𝑃𝑓(𝑛) · 1min(1,max𝜃∈𝒞 𝑋T

𝑓(𝑛)𝜃)/𝑃𝑓(𝑛)≥𝜆)𝑛=1,··· ,𝑁𝑘
| 𝜆 ≥ 0},

where the permutation 𝑓(·) of {1, · · · , 𝑁𝑘} is determined by:

min(1, max
𝜃∈𝒞

𝑋T
𝑓(𝑛)𝜃)/𝑃𝑓(𝑛) ≤ · · · ≤ min(1, max

𝜃∈𝒞
𝑋T

𝑓(1)𝜃)/𝑃𝑓(1).

The second equality is obtained by reindexing the vector (𝑧1, · · · , 𝑧𝑁𝑘
) according to the

mapping 𝑓(·) which does not change the inner expectation since (𝜖𝑛)𝑛=1,··· ,𝑁𝑘
is indepen-

dent of (𝑋𝑛, 𝑃𝑛)𝑛=1,··· ,𝑁𝑘
. Note that 𝑆((𝑋𝑛, 𝑃𝑛)𝑛=1,··· ,𝑁𝑘

) is always a finite set with cardi-

nality no larger than 𝑁𝑘 + 1, which yields the second and third inequality using standard

bounds on the Rademacher complexity of a finite set, see Theorem 3.3 of [29]. Plugging

301

𝑡 =
√︂

2 ln(2𝑇)
𝑁𝑘

in (D.6) and using the definition of Δ𝑘, we conclude that:

P[∃𝜆 ∈ [𝜆𝑘, 2/𝑟] | 𝜑𝑘(𝜆, 𝒞) − 𝜑(𝜆, 𝒞)| ≥ Δ𝑘 | ℱ𝑡𝑘−1] ≤ exp(−4 ln(2𝑇)) ≤ 1/𝑇,

which, in particular, implies that:

P[sup
𝜆∈[𝜆𝑘,2/𝑟]

|𝜑𝑘(𝜆, 𝒞) − 𝜑(𝜆, 𝒞)| ≤ Δ𝑘] ≥ 1 − 1/𝑇.

D.9 Proof of Lemma 5.7

By definition, we have:

𝑇 ≥
𝑘𝑇 −1∑︁
𝑘=0

𝑁𝑘

≥ 3
𝑘𝑇 −1∑︁
𝑘=0

4𝑘 · ln2(𝑇)

≥ (4𝑘𝑇 − 1) · ln2(𝑇),

which implies 4𝑘𝑇 ≤ 𝑇/ ln2(𝑇) + 1. Since ln2(𝑇) ≥ 1 for 𝑇 ≥ 3, we get 4𝑘𝑇 ≤ 𝑇 + 1.

Taking logarithms yields the claim since ln(4) ≥ 1.

D.10 Proof of Proposition 5.1

To simplify the discussion, we assume that E[𝑃] ≤ 𝛽 so that 𝜑(𝜆*, 𝒞) = 𝛽 but the

discussion would be almost identical if E[𝑃] > 𝛽 (in which case 𝜆* = 0). For any

𝑘 ∈ {0, · · · , 𝑘𝑇 }, we define the event:

𝐴𝑘 = {𝜆* ≥ 𝜆𝑘, |𝜑𝑘(𝜆𝑘, 𝒞) − 𝛽| ≤ 4𝐶 · |𝐼𝑘|, |𝜑(𝜆𝑘+1, 𝒞) − 𝛽| ≤ 3𝐶 · |𝐼𝑘+1|}.

302

Using the shorthand 𝐸 = ∩𝑘𝑇
𝑘=0𝐴𝑘, we have:

P[𝐸{] ≤
𝑘𝑇∑︁

𝑘=0
P[𝐴{

𝑘].

Note that we exclude the condition |𝜑(𝜆0, 𝒞)−𝛽| ≤ 3𝐶 · |𝐼0| from the definition of 𝐸 since

this condition is automatically satisfied almost surely given Lemma 5.5. By induction, we

have:

P[𝐴{
𝑘] ≤ P[𝐴{

0] +
𝑘−1∑︁
𝑗=0

P[𝐴{
𝑗+1 ∩ 𝐴𝑗]

=
𝑘−1∑︁
𝑗=0

P[𝐴{
𝑗+1 ∩ 𝐴𝑗]

for any 𝑘 > 0 since, by construction, 𝜆* ∈ [𝜆0, 𝜆̄0] = [0, 2/𝑟] which implies that P[𝐴{
0] = 0.

Rearranging yields:

P[𝐸{] ≤
𝑘𝑇∑︁

𝑘=0
(𝑘𝑇 − 𝑘) · P[𝐴{

𝑘+1 ∩ 𝐴𝑘]

≤
𝑘𝑇∑︁

𝑘=0
(𝑘𝑇 − 𝑘) · P[𝐵{

𝑘] +
𝑘𝑇∑︁

𝑘=0
(𝑘𝑇 − 𝑘) · P[𝐴{

𝑘+1 ∩ 𝐴𝑘 ∩ 𝐵𝑘]

≤ 1
𝑇

· 𝑘𝑇 · (𝑘𝑇 + 1) +
𝑘𝑇∑︁

𝑘=0
(𝑘𝑇 − 𝑘) · P[𝐴{

𝑘+1 ∩ 𝐴𝑘 ∩ 𝐵𝑘]

≤ ln(𝑇 + 1)2

𝑇
+

𝑘𝑇∑︁
𝑘=0

(𝑘𝑇 − 𝑘) · P[𝐴{
𝑘+1 ∩ 𝐴𝑘 ∩ 𝐵𝑘],

where 𝐵𝑘 = {sup
𝜆∈[𝜆𝑘,2/𝑟] |𝜑𝑘(𝜆, 𝒞) − 𝜑(𝜆, 𝒞)| ≤ Δ𝑘}. We use Lemma 5.6 to derive

the third inequality and Lemma 5.7 for the last inequality. What remains to be done is

to show that the second term in the right-hand side is 0. Consider 𝑘 ∈ {1, · · · , 𝑘𝑇 } and

suppose that 𝐴𝑘−1 and 𝐵𝑘−1 hold. We show that 𝐴𝑘 must hold which will imply that

303

P[𝐴{
𝑘 ∩ 𝐴𝑘−1 ∩ 𝐵𝑘−1] = 0. First observe that we have:

|𝜑𝑘(𝜆𝑘, 𝒞) − 𝛽| ≤ |𝜑𝑘(𝜆𝑘, 𝒞) − 𝜑(𝜆𝑘, 𝒞)| + |𝜑(𝜆𝑘, 𝒞) − 𝛽|

≤ Δ𝑘 + 3𝐶 · |𝐼𝑘|

≤ 4𝐶 · |𝐼𝑘|,

where we use the fact that 𝐴𝑘−1 and 𝐵𝑘−1 hold for the first inequality and the fact that

𝑇 ≥ exp(8𝑟2/𝐶2) for the last inequality. At the end of Algorithm 5 for the 𝑘-th phase,

we end up with an interval [𝛾
𝑘
, 𝛾𝑘] of length |𝐼𝑘| such that either (i) 𝛾

𝑘
> 𝜆𝑘 or (ii) 𝛾

𝑘
=

𝜆𝑘. In situation (i), by definition of the ending criterion of Algorithm 5, we must have

𝜑𝑘(𝛾𝑘, 𝒞) ≤ 𝛽 + Δ𝑘 and 𝜑𝑘(𝛾
𝑘
, 𝒞) > 𝛽 + Δ𝑘. This last inequality, combined with the fact

that 𝐵𝑘−1 holds, implies that 𝜑(𝛾
𝑘
, 𝒞) > 𝛽 and thus we have 𝛾

𝑘
≤ 𝜆*. In situation (ii),

we automatically have 𝛾
𝑘

≤ 𝜆* since 𝐴𝑘−1 holds. Moreover, by definition of the ending

criterion of Algorithm 5, we must have 𝜑𝑘(𝛾𝑘, 𝒞) ≤ 𝛽 + Δ𝑘. We conclude that 𝛾
𝑘

≤ 𝜆*

and:

𝜑𝑘(𝛾𝑘, 𝒞) ≤ 𝛽 + Δ𝑘 (D.7)

irrespective of whether (i) or (ii) holds. There are several cases to consider at this point

depending on the value of |𝜑𝑘(1/2𝛾
𝑘

+ 1/2𝛾𝑘, 𝒞) − 𝛽|. We show that, in any case, we have

𝜆𝑘+1 ≤ 𝜆* and |𝜑(𝜆𝑘+1, 𝒞) − 𝛽| ≤ 3𝐶 · |𝐼𝑘+1| which will conclude the proof.

Case 1: 𝜑𝑘(1/2𝛾
𝑘

+ 1/2𝛾𝑘, 𝒞) < 𝛽 − Δ𝑘.

In this case, we have 𝜆𝑘+1 = 𝛾
𝑘

≤ 𝜆* and 𝜆̄𝑘+1 = 1/2𝛾
𝑘

+ 1/2𝛾𝑘. Using 𝜑𝑘(𝜆̄𝑘+1, 𝒞) <

𝛽 − Δ𝑘 along with the fact that 𝐵𝑘−1 holds, we get 𝜑(𝜆̄𝑘+1, 𝒞) < 𝛽 which implies that

𝜆* ∈ [𝜆𝑘+1, 𝜆̄𝑘+1] and, as a result, |𝜑(𝜆𝑘+1, 𝒞) − 𝛽| = |𝜑(𝜆𝑘+1, 𝒞) − 𝜑(𝜆*, 𝒞)| ≤ 𝐶 · |𝐼𝑘+1|

using Lemma 5.5.

Case 2: |𝜑𝑘(1/2𝛾
𝑘

+ 1/2𝛾𝑘, 𝒞) − 𝛽| ≤ Δ𝑘.

304

In this case, we have 𝜆𝑘+1 = 𝛾
𝑘

≤ 𝜆* and 𝜆̄𝑘+1 = 1/2𝛾
𝑘

+ 1/2𝛾𝑘. We get:

|𝜑(𝜆𝑘+1, 𝒞) − 𝛽|

= |𝜑(𝜆𝑘+1, 𝒞) − 𝜑(𝜆*, 𝒞)|

≤ |𝜑(𝜆𝑘+1, 𝒞) − 𝜑(𝜆̄𝑘+1, 𝒞)| + |𝜑(𝜆̄𝑘+1, 𝒞) − 𝜑𝑘(𝜆̄𝑘+1, 𝒞)| + |𝜑𝑘(𝜆̄𝑘+1, 𝒞) − 𝛽|

≤ 𝐶 · |𝐼𝑘+1| + Δ𝑘 + Δ𝑘

≤ 3𝐶 · |𝐼𝑘+1|,

where we use Lemma 5.5, the fact 𝐵𝑘−1 hold, and |𝜑𝑘(1/2𝛾
𝑘

+ 1/2𝛾𝑘, 𝒞) − 𝛽| ≤ Δ𝑘 for

the second inequality while we use 𝑇 ≥ exp(8𝑟2/𝐶2) for the last inequality.

Case 3: 𝜑𝑘(1/2𝛾
𝑘

+ 1/2𝛾𝑘, 𝒞) > 𝛽 + Δ𝑘.

In this case, 𝜆𝑘+1 = 1/2𝛾
𝑘
+1/2𝛾𝑘 and 𝜆̄𝑘+1 = 𝛾𝑘. Since 𝐵𝑘−1 holds, we get 𝜑(𝜆𝑘+1, 𝒞) >

𝛽 and thus 𝜆𝑘+1 ≤ 𝜆*. Using (D.7), we have either (a) 𝜑𝑘(𝛾𝑘, 𝒞) < 𝛽 − Δ𝑘 or (b)

|𝜑𝑘(𝛾𝑘, 𝒞) − 𝛽| ≤ Δ𝑘. If (a) is true then, since 𝐵𝑘−1 holds, it must be that 𝜑(𝜆̄𝑘+1, 𝒞) < 𝛽

and thus we get 𝜆* ∈ [𝜆𝑘+1, 𝜆̄𝑘+1] which implies that |𝜑(𝜆𝑘+1, 𝒞) − 𝛽| = |𝜑(𝜆𝑘+1, 𝒞) −

𝜑(𝜆*, 𝒞)| ≤ 𝐶 · |𝐼𝑘+1| using Lemma 5.5. If (b) is true then we have:

|𝜑(𝜆𝑘+1, 𝒞) − 𝛽|

= |𝜑(𝜆𝑘+1, 𝒞) − 𝜑(𝜆*, 𝒞)|

≤ |𝜑(𝜆𝑘+1, 𝒞) − 𝜑(𝜆̄𝑘+1, 𝒞)| + |𝜑(𝜆̄𝑘+1, 𝒞) − 𝜑𝑘(𝜆̄𝑘+1, 𝒞)| + |𝜑𝑘(𝜆̄𝑘+1, 𝒞) − 𝛽|

≤ 𝐶 · |𝐼𝑘+1| + Δ𝑘 + Δ𝑘

≤ 3𝐶 · |𝐼𝑘+1|.

where we use (D.7), the fact that 𝐵𝑘−1 holds, and (b) for the second inequality while we

use 𝑇 ≥ exp(8𝑟2/𝐶2) for the last inequality.

305

D.11 Proof of Theorem 5.3

For any phase 𝑘 ∈ N, we denote by 𝑡𝑘 the time period at which phase 𝑘 starts. Using

Lemma 5.3, we have:

𝑅𝐵,𝑇 ≤ 𝑇 · 𝑅(𝜆*, 𝒞) − E[
𝜏*−1∑︁
𝑡=1

𝑣𝑡 · 1𝑏𝑡≥𝑝𝑡] + 𝑂(1)

= 𝑇 · 𝑅(𝜆*, 𝒞) − E[
𝜏*∑︁

𝑡=1
𝑣𝑡 · 1𝑏𝑡≥𝑝𝑡] + 𝑂(1).

Since 𝜏 * is a stopping time with respect to the sequence ((𝑥𝑡, 𝑣𝑡, 𝑝𝑡))𝑡∈N and since 𝑏𝑡 =

min(1, min(1, max𝜃∈𝒞 𝑥T
𝑡 𝜃)/𝜆𝑡) is ℱ̃𝑡−1-measurable, we have:

E[
𝜏*∑︁

𝑡=1
𝑣𝑡 · 1𝑏𝑡≥𝑝𝑡] =

∞∑︁
𝑡=1

E[1𝜏*≥𝑡 · E[𝑣𝑡 | ℱ̃𝑡−1] · 1𝑏𝑡≥𝑝𝑡]

=
∞∑︁

𝑡=1
E[1𝜏*≥𝑡 · min(1, max

𝜃∈𝒞
𝑥T

𝑡 𝜃) · 1𝑏𝑡≥𝑝𝑡]

= E[
𝜏*∑︁

𝑡=1
min(1, max

𝜃∈𝒞
𝑥T

𝑡 𝜃) · 1𝑏𝑡≥𝑝𝑡]

=
𝑇∑︁

𝑡=1
E[min(1, max

𝜃∈𝒞
𝑥T

𝑡 𝜃) · 1𝑏𝑡≥𝑝𝑡] − E[
𝑇∑︁

𝑡=𝜏*+1
min(1, max

𝜃∈𝒞
𝑥T

𝑡 𝜃) · 1𝑏𝑡≥𝑝𝑡]

≥
𝑇∑︁

𝑡=1
E[min(1, max

𝜃∈𝒞
𝑥T

𝑡 𝜃) · 1𝑏𝑡≥𝑝𝑡] − 1
𝑟

· E[
𝑇∑︁

𝑡=𝜏*+1
𝑝𝑡 · 1𝑏𝑡≥𝑝𝑡],

where we use min(1, max𝜃∈𝒞 𝑥T
𝑡 𝜃) ≤ 1, 𝑝𝑡 ≥ 𝑟, and the fact that 𝑣𝑡 is independent of 𝑝𝑡

conditioned on 𝑥𝑡. Observe that:

𝑇∑︁
𝑡=𝜏*+1

𝑝𝑡 · 1𝑏𝑡≥𝑝𝑡 = 0 ≤ (
𝑇∑︁

𝑡=1
𝑝𝑡 · 1𝑏𝑡≥𝑝𝑡 − 𝐵)+,

if 𝜏 * = 𝑇 + 1 while:

𝑇∑︁
𝑡=𝜏*+1

𝑝𝑡 · 1𝑏𝑡≥𝑝𝑡 ≤
𝑇∑︁

𝑡=𝜏*+1
𝑝𝑡 · 1𝑏𝑡≥𝑝𝑡 +

𝜏*∑︁
𝑡=1

𝑝𝑡 · 1𝑏𝑡≥𝑝𝑡 − 𝐵

≤ (
𝑇∑︁

𝑡=1
𝑝𝑡 · 1𝑏𝑡≥𝑝𝑡 − 𝐵)+

306

if 𝜏 * < 𝑇 + 1 since, in this case, we have
∑︀𝜏*

𝑡=1 𝑝𝑡 · 1𝑏𝑡≥𝑝𝑡 ≥ 𝐵. We derive:

𝑅𝐵,𝑇 ≤ 𝑇 · 𝑅(𝜆*, 𝒞) −
𝑇∑︁

𝑡=1
E[min(1, max

𝜃∈𝒞
𝑥T

𝑡 𝜃) · 1𝑏𝑡≥𝑝𝑡] + 1
𝑟

· E[(
𝑇∑︁

𝑡=1
𝑝𝑡 · 1𝑏𝑡≥𝑝𝑡 − 𝐵)+]

+ 𝑂(1).
(D.8)

We bound the two terms appearing in the right-hand side of (D.8) separately starting with

the first one. Using the shorthand notation:

𝐸 = ∩𝑘𝑇
𝑘=0{|𝜑𝑘(𝜆𝑘, 𝒞) − 𝜑(𝜆*, 𝒞)| ≤ 4𝐶 · |𝐼𝑘|, |𝜑(𝜆𝑘, 𝒞) − 𝜑(𝜆*, 𝒞)| ≤ 3𝐶 · |𝐼𝑘|},

where 𝐶 = 𝐿̄ · E[1
𝑋T𝜃*

], we have:

𝑇 ·𝑅(𝜆*, 𝒞) −
𝑇∑︁

𝑡=1
E[min(1, max

𝜃∈𝒞
𝑥T

𝑡 𝜃) · 1𝑏𝑡≥𝑝𝑡]

=
𝑇∑︁

𝑡=1
{𝑅(𝜆*, 𝒞) − E[min(1, max

𝜃∈𝒞
𝑥T

𝑡 𝜃) · 1min(1,max𝜃∈𝒞 𝑥T
𝑡 𝜃)≥𝜆𝑡·𝑝𝑡

]}

=
𝑇∑︁

𝑡=1
{𝑅(𝜆*, 𝒞) − E[E[min(1, max

𝜃∈𝒞
𝑥T

𝑡 𝜃) · 1min(1,max𝜃∈𝒞 𝑥T
𝑡 𝜃)≥𝜆𝑡·𝑝𝑡

| ℱ𝑡−1]]}

=
𝑇∑︁

𝑡=1
{𝑅(𝜆*, 𝒞) − E[𝑅(𝜆𝑡, 𝒞)]}

≤
𝑇∑︁

𝑡=1
E[|𝑅(𝜆*, 𝒞) − 𝑅(𝜆𝑡, 𝒞)|]

≤ 1
𝑟

·
𝑇∑︁

𝑡=1
E[|𝜑(𝜆*, 𝒞) − 𝜑(𝜆𝑡, 𝒞)|]

≤ 1
𝑟

·
𝑘𝑇∑︁

𝑘=0
𝑁𝑘 · E[|𝜑(𝜆*, 𝒞) − 𝜑(𝜆𝑘, 𝒞)|]

≤ 𝑇

𝑟
· P[𝐸{] + 1

𝑟
·

𝑘𝑇∑︁
𝑘=0

𝑁𝑘 · E[|𝜑(𝜆*, 𝒞) − 𝜑(𝜆𝑘, 𝒞)| · 1𝐸]

≤ 2ln2(𝑇)
𝑟

+ 3𝐶

𝑟
·

𝑘𝑇∑︁
𝑘=0

𝑁𝑘 · |𝐼𝑘|

≤ 2ln2(𝑇)
𝑟

+ 18𝐶

𝑟2 ·
𝑘𝑇∑︁

𝑘=0
2𝑘 · ln2(𝑇)

≤ 2ln2(𝑇)
𝑟

+ 36𝐶

𝑟2 ·
√

𝑇 · ln(𝑇).

307

To derive the third equality we use the fact that 𝜆𝑡 is ℱ𝑡−1-measurable. For the second

inequality, we use Lemma 5.4 For the fourth inequality, we use 𝜑(𝜆𝑘, 𝒞), 𝛽 ∈ [0, 1]. We

use Proposition 5.1 to derive the fifth inequality while we use Lemma 5.7 for the last one.

We can now focus on the second term appearing in the right-hand side of (D.8):

E[(
𝑇∑︁

𝑡=1
𝑝𝑡 · 1𝑏𝑡≥𝑝𝑡 − 𝐵)+] = E[(

𝑇∑︁
𝑡=1

𝑝𝑡 · 1min(1,max𝜃∈𝒞 𝑥T
𝑡 𝜃)≥𝜆𝑡·𝑝𝑡

− 𝐵)+]

≤
𝑘𝑇 −1∑︁
𝑘=0

E[(
𝑡𝑘+1−1∑︁

𝑡=𝑡𝑘

𝑝𝑡 · 1min(1,max𝜃∈𝒞 𝑥T
𝑡 𝜃)≥𝜆𝑘 ·𝑝𝑡

− 𝑁𝑘 · 𝛽)+]

+ E[(
𝑇∑︁

𝑡=𝑡𝑘̄𝑇

𝑝𝑡 · 1min(1,max𝜃∈𝒞 𝑥T
𝑡 𝜃)≥𝜆𝑘𝑇

·𝑝𝑡
− (𝑇 −

𝑘𝑇 −1∑︁
𝑘=0

𝑁𝑘) · 𝛽)+]

≤
𝑘𝑇 −1∑︁
𝑘=0

𝑁𝑘 · E[(𝜑𝑘(𝜆𝑘, 𝒞) − 𝜑(𝜆*, 𝒞))+]

+ (𝑇 −
𝑘𝑇 −1∑︁
𝑘=0

𝑁𝑘) · E[(𝜑𝑘𝑇
(𝜆𝑘𝑇

, 𝒞) − 𝜑(𝜆*, 𝒞))+]

≤ 𝑇 · P[𝐸{] +
𝑘𝑇∑︁

𝑘=0
𝑁𝑘 · E[|𝜑𝑘(𝜆𝑘, 𝒞) − 𝜑(𝜆*, 𝒞)| · 1𝐸]

≤ 2 ln2(𝑇) + 4𝐶 ·
𝑘𝑇∑︁

𝑘=0
𝑁𝑘 · |𝐼𝑘|

≤ 2 ln2(𝑇) + 24𝐶

𝑟
·

𝑘𝑇∑︁
𝑘=0

2𝑘 · ln2(𝑇)

≤ 2 ln2(𝑇) + 48𝐶

𝑟
·
√

𝑇 · ln(𝑇).

To derive the second inequality, we use 𝛽 ≥ 𝜑(𝜆*, 𝒞). To derive the third inequality, we use

𝜑𝑘(𝜆𝑘, 𝒞), 𝜑(𝜆*, 𝒞) ∈ [0, 1] and 𝑁𝑘𝑇
≥ 𝑇 − ∑︀𝑘𝑇 −1

𝑘=0 𝑁𝑘. We use Proposition 5.1 to derive

the fourth inequality while we use Lemma 5.7 for the last one.

308

D.12 Proof of Lemma 5.8

We have:

det(𝑀0) · (1 + 𝐴)𝑄 ≤ det(𝑀𝑇)

≤ det((𝑇 · 𝑑)𝐼𝑑)

= (𝑇 · 𝑑)𝑑,

by definition of 𝑄. The second inequality is obtained using ‖𝑥𝑡‖∞ ≤ 1 (which implies that

𝑑𝐼𝑑 − 𝑥𝑡𝑥
T
𝑡 is positive semidefinite) and the fact that det(𝐵 + 𝐶) ≥ det(𝐵) for positive

semidefinite matrices 𝐵 and 𝐶. Taking logarithms yields the claim.

D.13 Proof of Theorem 5.4

For any master phase 𝑞 ∈ {0, · · · , 𝑄̄}, we denote by 𝑡𝑞 ∈ N the round at which phase 𝑞

starts. For any master phase 𝑞 ∈ {0, · · · , 𝑄̄}, any phase 𝑘 ∈ {0, · · · , 𝑘𝑇 }, and any 𝜆 ≥ 0,

we denote by 𝜑𝑞,𝑘(𝜆, 𝒞𝑞) the empirical estimate of 𝜑(𝜆, 𝒞𝑞) using all 𝑁𝑘 samples obtained

during the 𝑘-th phase of the binary search that runs during the 𝑞-th master phase. We also

use the shorthand notations 𝐸 = {𝜃* ∈ ∩𝑇
𝑡=1𝒞𝑡} and:

𝐸𝑞 = ∩𝑘𝑇
𝑘=0{|𝜑𝑞,𝑘(𝜆𝑞,𝑘, 𝒞𝑞)−𝜑(𝜆𝑞,*, 𝒞𝑞)| ≤ 4𝐶 · |𝐼𝑘|, |𝜑(𝜆𝑞,𝑘, 𝒞𝑞)−𝜑(𝜆𝑞,*, 𝒞𝑞)| ≤ 3𝐶 · |𝐼𝑘|},

for any 𝑞 ∈ {0, · · · , 𝑄̄}. Using the same analysis as in the proof of Theorem 5.3 with

𝒞 = {𝜃*} (see (D.8)), we derive:

𝑅𝐵,𝑇 ≤ 𝑇 · 𝑅(𝜆*, {𝜃*}) −
𝑇∑︁

𝑡=1
E[𝑥T

𝑡 𝜃* · 1𝑏𝑡≥𝑝𝑡] + 1
𝑟

· E[(
𝑇∑︁

𝑡=1
𝑝𝑡 · 1𝑏𝑡≥𝑝𝑡 − 𝐵)+] + 𝑂(1).

(D.9)

309

We first study the third term in (D.9). Observe that, along the same lines as what is done in

the proof of Theorem 5.3, we have:

E[(
𝑇∑︁

𝑡=1
𝑝𝑡 · 1𝑏𝑡≥𝑝𝑡 − 𝐵)+] ≤ E[(

𝑇∑︁
𝑡=1

𝑝𝑡 · 1𝑏𝑡≥𝑝𝑡 − 𝐵)+ · 1𝐸] + 𝑇 · P[𝐸]

≤ E[
𝑄∑︁

𝑞=0

𝑘𝑞∑︁
𝑘=0

𝑁𝑘 · |𝜑𝑞,𝑘(𝜆𝑞,𝑘, 𝒞𝑞) − 𝜑(𝜆𝑞,*, 𝒞𝑞)| · 1𝐸] + 1

≤ E[
𝑄∑︁

𝑞=0

𝑘𝑞∑︁
𝑘=0

4𝑁𝑘 · 𝐶 · |𝐼𝑘|] + 𝑇 ·
𝑄̄∑︁

𝑞=0
P[𝐸{

𝑞 ∩ 𝐸] + 𝑂(1)

≤ 24𝐶

𝑟
·

𝑄̄∑︁
𝑞=0

𝑘𝑇∑︁
𝑘=0

2𝑘 · ln2(𝑇) + 2 ln2(𝑇) · (𝑄̄ + 1) + 𝑂(1)

≤ 48𝐶

𝑟
·
√

𝑇 · ln(𝑇) · (𝑄̄ + 1) + 2 ln2(𝑇) · (𝑄̄ + 1) + 𝑂(1)

= 𝑂(𝑑 · 𝐶

𝑟 · ln(1 + 𝐴) ·
√

𝑇 · ln2(𝑇 · 𝑑))

= 𝑂̃(𝑑 · 𝐶

𝑟 · ln(1 + 𝐴) ·
√

𝑇).

We use the same analysis as in the proof of Theorem 5.3 along with Lemma 5.2 to derive

the second inequality. We use Proposition 5.1 for the fourth inequality and we use Lemma

5.8 to get the final asymptotic bound. We move on to study the second term in (D.9).

Denoting by 𝜃𝑡 an arbitrary element of argmax𝜃∈𝒞𝜏𝑡
𝑥T

𝑡 𝜃, we have:

𝑇∑︁
𝑡=1

E[𝑥T
𝑡 𝜃* · 1𝑏𝑡≥𝑝𝑡] =

𝑇∑︁
𝑡=1

E[min(1, max
𝜃∈𝒞𝜏𝑡

𝑥T
𝑡 𝜃) · 1𝑏𝑡≥𝑝𝑡]

− E[
𝑇∑︁

𝑡=1
(min(1, max

𝜃∈𝒞𝜏𝑡

𝑥T
𝑡 𝜃) − 𝑥T

𝑡 𝜃*) · 1𝑏𝑡≥𝑝𝑡]

≥
𝑇∑︁

𝑡=1
E[𝑅(𝜆𝑡, 𝒞𝜏𝑡)] − E[

𝑇∑︁
𝑡=1

|𝑥T
𝑡 𝜃𝑡 − 𝑥T

𝑡 𝜃*| · 1𝑏𝑡≥𝑝𝑡]

≥
𝑇∑︁

𝑡=1
E[𝑅(𝜆𝑡, 𝒞𝜏𝑡)] + 𝑂̃(𝑑 ·

√
𝐴 · 𝑇),

310

where the last inequality is obtained in the proof of Theorem 5.2. Hence, what remains to

be done to get the regret bound is to upper bound:

𝑇 · 𝑅(𝜆*, {𝜃*}) −
𝑇∑︁

𝑡=1
E[𝑅(𝜆𝑡, 𝒞𝜏𝑡)].

First note that:

E[|
𝑇∑︁

𝑡=1
𝑅(𝜆𝑡, 𝒞𝜏𝑡) −

𝑄∑︁
𝑞=0

(𝑡𝑞+1 − 𝑡𝑞) · 𝑅(𝜆𝑞,*, 𝒞𝑞)|]

≤ E[
𝑄∑︁

𝑞=0

𝑘𝑞∑︁
𝑘=0

𝑁𝑘 · |𝑅(𝜆𝑞,𝑘, 𝒞𝑞) − 𝑅(𝜆𝑞,*, 𝒞𝑞)|]

≤ 1
𝑟

· E[
𝑄∑︁

𝑞=0

𝑘𝑞∑︁
𝑘=0

𝑁𝑘 · |𝜑(𝜆𝑞,𝑘, 𝒞𝑞) − 𝜑(𝜆𝑞,*, 𝒞𝑞)|]

≤ 1
𝑟

· (𝑇 · P[𝐸] +
𝑄̄∑︁

𝑞=0
𝑇 · P[𝐸{

𝑞 ∩ 𝐸] +
𝑄̄∑︁

𝑞=0

𝑘𝑇∑︁
𝑘=0

3𝑁𝑘 · 𝐶 · |𝐼𝑘|)

≤ 1
𝑟

· (1 + 2 ln2(𝑇) · (𝑄̄ + 1) + 48𝐶

𝑟
·
√

𝑇 · ln(𝑇) · (𝑄̄ + 1))

= 𝑂̃(𝑑 · 𝐶

𝑟2 · ln(1 + 𝐴) ·
√

𝑇).

We derive the second inequality using Lemma 5.4 We derive the fourth inequality using

Lemma 5.2 and Proposition 5.1 in the same fashion as done for the third term in (D.9). We

conclude that all that is left to be done is to upper bound:

𝑇 · 𝑅(𝜆*, {𝜃*}) − E[
𝑄∑︁

𝑞=0
(𝑡𝑞+1 − 𝑡𝑞) · 𝑅(𝜆𝑞,*, 𝒞𝑞)],

which we do next. Using Lemma 5.3, observe that, conditioned on ℱ𝑡𝑞−1 and assuming that

𝜃* ∈ 𝒞𝑞, 𝑅(𝜆𝑞,*, 𝒞𝑞) is almost surely larger than EROPT(𝐵, 𝑇)/𝑇 + 𝑂(1/𝑇) by definition

of 𝜆𝑞,* when 𝒞 = 𝒞𝑞. Note that bidding 𝑏𝑡 = min(𝑥T
𝑡 𝜃*/𝜆*, 1) at any time period 𝑡 is a valid

311

algorithm for this problem that yields an expected total reward:

E[
𝜏*∑︁

𝑡=1
𝑣𝑡 · 1𝑏̃𝑡≥𝑝𝑡

]

≥ 𝑇 · E[min(1, max
𝜃∈𝒞𝑞

𝑋T𝜃) · 1𝑋T𝜃*≥𝜆*·𝑃] − 1
𝑟

· E[(
𝑇∑︁

𝑡=1
𝑝𝑡 · 1𝑏̃𝑡≥𝑝𝑡

− 𝐵)+]

≥ 𝑇 · E[min(1, max
𝜃∈𝒞𝑞

𝑋T𝜃) · 1𝑋T𝜃*≥𝜆*·𝑃] − 1
𝑟

· E[|
𝑇∑︁

𝑡=1
𝑝𝑡 · 1𝑏̃𝑡≥𝑝𝑡

− 𝑇 · 𝜑(𝜆*, {𝜃*})|]

≥ 𝑇 · E[min(1, max
𝜃∈𝒞𝑞

𝑋T𝜃) · 1𝑋T𝜃*≥𝜆*·𝑃] −
√

𝑇

𝑟
,

where the expectations are all conditioned on ℱ𝑡𝑞−1 and the inequalities hold almost surely.

The first inequality is derived in the same fashion as done in the proof of Theorem 5.3 to

derive (D.8). The second inequality is a consequence of 𝐵 = 𝛽 · 𝑇 and 𝜑(𝜆*, {𝜃*}) ≤ 𝛽.

The third inequality is obtained with Khintchine’s inequality (by symmetrization) since

𝑝𝑡 ∈ [0, 1] and (𝑝𝑡 · 1𝑏̃𝑡≥𝑝𝑡
)𝑡∈N is an i.i.d. stochastic process with mean 𝜑(𝜆*, {𝜃*}). We

conclude that:

𝑅(𝜆𝑞,*, 𝒞𝑞) ≥ E[min(1, max
𝜃∈𝒞𝑞

𝑋T𝜃) · 1𝑋T𝜃*≥𝜆*·𝑃 |ℱ𝑡𝑞−1] − 1
𝑟 ·

√
𝑇

+ 𝑂(1
𝑇

)

≥ E[𝑋T𝜃* · 1𝑋T𝜃*≥𝜆*·𝑃 |ℱ𝑡𝑞−1] − 1
𝑟 ·

√
𝑇

+ 𝑂(1
𝑇

)

= 𝑅(𝜆*, {𝜃*}) − 1
𝑟 ·

√
𝑇

+ 𝑂(1
𝑇

)

almost surely as long as 𝜃* ∈ 𝒞𝑞. This implies that:

𝑇 ·𝑅(𝜆*, {𝜃*}) − E[
𝑄∑︁

𝑞=0
(𝑡𝑞+1 − 𝑡𝑞) · 𝑅(𝜆𝑞,*, 𝒞𝑞)]

= E[
𝑄∑︁

𝑞=0
(𝑡𝑞+1 − 𝑡𝑞) · (𝑅(𝜆*, {𝜃*}) − 𝑅(𝜆𝑞,*, 𝒞𝑞))]

≤ E[
𝑄∑︁

𝑞=0
(𝑡𝑞+1 − 𝑡𝑞) · (1𝐸 + 1

𝑟 ·
√

𝑇
+ 𝑂(1

𝑇
))]

≤ 𝑇 · P[𝐸] +
√

𝑇

𝑟
+ 𝑂(1)

= 𝑂(
√

𝑇

𝑟
),

312

where we use Lemma 5.2 for the last step. This concludes the proof.

313

	Introduction
	Motivation and General Setting
	Mathematical Framework
	Worst-Case Approach
	Hindsight Approach

	Overview of Thesis

	Robust Adaptive Routing under Uncertainty
	Introduction
	Motivation
	Related Work and Contributions

	Problem Formulation
	Nominal Problem
	Distributionally Robust Problem

	Theoretical and Computational Analysis of the Nominal Problem
	Characterization of Optimal Policies
	Solution Methodology

	Theoretical and Computational Analysis of the Robust Problem
	Characterization of Optimal Policies
	Tightness of the Robust Problem
	Solution Methodology

	Numerical Experiments
	Framework
	Results

	Extensions
	Relaxing Assumption 2.1: Markovian Costs
	Relaxing Assumption 2.2: -dependent Arc Cost Probability Distributions

	No-Regret Learnability for Piecewise Linear Losses
	Introduction
	Applications
	Related Work

	Lower Bounds
	Upper Bounds
	Concluding Remark

	Logarithmic Regret Bounds for Bandits with Knapsacks
	Introduction
	Motivation
	Problem Statement and Contributions
	Literature Review

	Applications
	Online Advertising
	Revenue Management
	Dynamic Procurement
	Wireless Sensor Networks

	Algorithmic Ideas
	Preliminaries
	Solution Methodology

	A Single Limited Resource
	Arbitrarily Many Limited Resources whose Consumptions are Deterministic
	A Time Horizon and Another Limited Resource
	Arbitrarily Many Limited Resources
	Concluding Remark

	Real-Time Bidding with Side Information
	Introduction
	Problem Statement and Contributions
	Literature Review

	Unlimited Budget
	Limited Budget
	Preliminary Work
	General Case

	Concluding Remark

	Concluding Remarks
	Summary
	Future Research Directions

	Appendix for Chapter 2
	Tailored Dynamic Convex Hull Algorithm
	Omitted Proofs
	Proof of Theorem 2.1
	Proof of Proposition 2.1
	Proof of Proposition 2.2
	Proof of Theorem 2.2
	Proof of Proposition 2.3.
	Proof of Proposition 2.4
	Proof of Lemma 2.1
	Proof of Lemma 2.2
	Proof of Lemma 2.3
	Proof of Lemma 2.4
	Proof of Lemma 2.5
	Proof of Lemma 2.7

	Appendix for Chapter 3
	Proof of Theorem 3.1
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Lemma 3.4
	Proof of Theorem 3.2
	Alternative Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Lemma 3.5
	Proof of Lemma 3.6
	Proof of Theorem 3.5
	Proof of Theorem 3.6
	Proof of Lemma 3.7

	Appendix For Chapter 4
	Extensions
	Improving the Multiplicative Factors in the Regret Bounds
	Relaxing Assumption 4.1

	Proofs for Section 4.3
	Proof of Lemma 4.2

	Proofs for Section 4.4
	Proof of Lemma 4.4
	Proof of Lemma 4.5
	Proof of Theorem 4.1

	Proofs for Section 4.5
	Proof of Lemma 4.8
	Proof of Theorem 4.3
	Proof of Theorem 4.4

	Proofs for Section 4.6
	Proof of Lemma 4.9
	Proof of Lemma 4.10
	Proof of Lemma 4.11
	Proof of Lemma 4.12
	Proof of Theorem 4.5
	Proof of Theorem 4.6
	Proof of Theorem 4.7

	Proofs for Section 4.7
	Preliminary work for the proofs of Section 4.7
	Proof of Lemma 4.13
	Proof of Lemma 4.14
	Proof of Lemma 4.15
	Proof of Theorem 4.8
	Proof of Theorem 4.9
	Proof of Theorem 4.10
	Proof of Theorem 4.11

	Proofs for Section 2.6
	Proof of Lemma C.1
	Proof of Lemma C.2
	Proof of Theorem C.1
	Proof of Lemma C.3
	Proof of Theorem C.2
	Proof of Theorem C.3
	Proof of Theorem C.4

	Appendix For Chapter 5
	Proof of Lemma 5.1
	Proof of Lemma 5.2
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Lemma 5.3
	Proof of Lemma 5.4
	Proof of Lemma 5.5
	Proof of Lemma 5.6
	Proof of Lemma 5.7
	Proof of Proposition 5.1
	Proof of Theorem 5.3
	Proof of Lemma 5.8
	Proof of Theorem 5.4

