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Abstract
Artificial perception systems, like autonomous cars and augmented reality headsets, rely
on dense 3D sensing technology such as RGB-D cameras and LiDAR. scanners. Due to
the structural simplicity of man-made environments, understanding and leveraging not
only the 3D data but also the local orientations of the constituent surfaces, has huge
potential. From an indoor scene to large-scale urban environments, a large fraction of
the surfaces can be described by just a few planes with even fewer different normal
directions. This sparsity is evident in the surface normal distributions, which exhibit
a small number of concentrated clusters. In this work, I draw a rigorous connection
between surface normal distributions and 3D structure, and explore this connection in
light of different environmental assumptions to further 3D perception. Specifically, I
propose the concepts of the Manhattan Frame and the unconstrained directional seg-
mentation. These capture, in the space of surface normals, scenes composed of multiple
Manhattan Worlds and more general Stata Center Worlds, in which the orthogonality
assumption of the Manhattan World is not applicable. This exploration is theoretically
founded in Bayesian nonparametric models, which capture two key properties of the
3D sensing process of an artificial perception system: (1) the inherent sequential nature
of data acquisition and (2) that the required model complexity grows with the amount
of observed data. Herein, I derive inference algorithms for directional clustering and
segmentation which inherently exploit and respect these properties. The fundamen-
tal insights gleaned from the connection between surface normal distributions and 3D
structure lead to practical advances in scene segmentation, drift-free rotation estima-
tion, global point cloud registration and real-time direction-aware 3D reconstruction to
aid artificial perception systems.
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Thesis Co-Supervisor: John J. Leonard
Title: Samuel C. Collins Professor of Mechanical and Ocean Engineering



iv



Acknowledgments

This research would not have been possible and definitely not as enjoyable without the
support, camaraderie and friendships with various people in my life at MIT and beyond.

In relation to this amazing research journey, I want to thank my PhD committee
John W. Fisher III, John Leonard, Leslie Kaelbling and Frank Dellaert. Their guidance
and constructive feedback have shaped this research and enriched the breadth and
potential impact of it. Specifically, I am deeply grateful to John W. Fisher III for
his guidance, the freedom and support to pursue this research, and many fun and
thought provoking white-board discussions. I want to thank John Leonard for his wise
counsel, for all the encouragement and for serving as a reminder to to keep grounded
in real-world applications. I am grateful for the honest and direct feedback from Leslie
Kaelbling in our first meeting, when she asked why a roboticist should care about my
work. This single question caused me to think hard about the potential impact of this
research and spawned many ideas some of which are written up in Chapter 5. I am very
thankful to Frank Dellaert, my long-term mentor of seven years, with whom I started
this amazing research journey during my time at Georgia Tech. Thank you for believing
in my potential when I had little to show and for your guidance and honest feedback
along the way. I still remember your encouragement to see Michael Jordan's talk about
Bayesian nonparametric models at Georgia Tech. This was one of the deciding factors
in picking up research in that field.

Much of my research would not have happened in this form and so swiftly without
my collaborators Trevor Campbell, Randi Cabezas, Jason Chang, Sue Zheng, Nishchal
Bhandari, Oren Freifeld, Guy Rosman, and Jonathan How. Trevor von de Papiermolen,
thank you for all the coffee- and green-tea-induced brain-storming, white boarding,
function bounding, and paper smithing. It was and is a pure joy to work with you.
Thank you also for introducing me to picking up and putting down heavy things and
for always being ready for a joke and some good laughter. Randi, thanks for always
being there to help. Be it with technical difficulties, research blues, having late night
coffee, pointing out all the inconsistencies (literally all of them), or going through last-
minute corrections after an all-nighter. I am inspired by your generosity in terms of
spending your own time to help and just giving random gifts (I loved all the apples).
Thank you Sue for your thoughtful comments, fixing thought-process and math bugs
and always being there to listen. I throughly enjoyed our conversations and making
you laugh every once in a while. Thanks Nishchal for exploring 3D perception on real
robots with me. I enjoyed working with you and seeing our ideas and discussions turn
into reality. Jason thank you for teaching me all about Dirichlet processes and inference
methods for them. Similarly, thank you Oren for teaching me all about Riemannian

V



vi

manifolds and Lie groups in the very beginning. Thank you Guy for helping with
and teaching me about surface normal denoising. The mentoring by the three of you
undoubtedly helped kickstart my PhD research. I am deeply thankful that all our paths
crossed.

I am very grateful for having been part of the Sensing Learning and Inference and the
Marine Robotics group. Thank you Christopher Dean, David Hayden, Randi Cabezas,
Sue Zheng, Vadim Smolyakov, Jason Chang, Zoran Duric, Georgios Papachristoudis,
Oren Freifeld, Guy Rosman, Jason Pacheco and Rujian Chen for giving feedback on
various ideas, papers, posters and presentations. You helped shape, fix and improve my
work, personality and this thesis. Beyond that I am grateful for all the camaraderie,
support and laughter we shared. Thanks Chris for ordering all this vegan food, always
being ready for a joke and for fixing my English like no other. Thanks David for en-
couraging reflection and sharing and discussing insights from your or my latest books.
Thank you David Rosen, Sudeep Pillai, Michael Kaess, Liam Paull, Ross Finman, De-
han Fourie, Peter K.T. Yu for giving feedback from the robotics perceptive on various
ideas and talks. You helped me broaden my horizon, and to keep grounded in prac-
tical application. I throughly enjoyed hearing about your various robotics perception
problems in group meeting and over lunch or coffee.

Besides my PhD thesis research, I am very grateful for the opportunity to develop
a 3D perception system to help breast-cancer patients by detecting lymphedema with
Professor Regina Barzilay. Thanks to my undergraduate collaborators Eric Chen, Fer-
nando Yordan, Hayley Song, Erik Nguyen and Gabriel Ginorio for joining me on this
endeavor and helping to develop this 3D perception system. Thank you for trusting in
my guidance and for bearing with me as I am figuring out how to be a good mentor.
Thank you Regina for supporting this project, trusting my judgement, sharing your
experience, and all the insightful discussions over tea about research and beyond.

And last but not least I am deeply thankful to my Mom and Dad for helping me
find and then supporting my passion in electronics, robots and perception.



Contents

Abstract iii

Acknowledgments v

Contents vii

List of Figures xiii

List of Algorithms xvii

List of Tables xix

Notation xxi

1 Introduction and Problem Definition 1
1.1 Related W ork .. .. . ... . . . . . . . . . . . . . . . . . . . . . . . . .. 6

1.1.1 Geometric Scene Segmentation Priors . . . . . . . . . . . . . . . 7
1.1.2 Geometric Scene Segmentation and Reconstruction . . . . . . . 11
1.1.3 Beyond Geometric Scene Segmentation . . . . . . . . . . . . . . 13

1.2 Outline and Summary of Contributions . . . . . . . . . . . . . . . . . . 14
1.2.1 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Background 19
2.1 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Sampling-based Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 The Metropolis-Hastings Algorithm . . . . . . . . . . . . . . . . 23
2.2.2 Gibbs Sam pling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Reversible Jump Markov Chain Monte Carlo . . . . . . . . . . . 24
2.2.4 Slice Sam pling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Common Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Exponential Family . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Categorical and Dirichlet Distribution . . . . . . . . . . . . . . . 26

vii



2.3.3 Gaussian and Normal Inverse Wishart Distribution . . . . . . . . 28
2.4 Bayesian Nonparametric Mixture Models . . . . . . . . . . . . . . . . . 29
2.5 Low Variance Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Distributions over the Unit Sphere . . . . . . . . . . . . . . . . . . . . . 34

2.6.1 The Manifold of the Unit Sphere . . . . . . . . . . . . . . . . . . 35
The Karcher Mean . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.2 The Tangent Space Gaussian (TG) Distribution . . . . . . . . . 37
Log-map Approximation . . . . . . . . . . . . . . . . . . . . . . 39

2.6.3 The von-Mises-Fisher Distribution . . . . . . . . . . . . . . . . . 41
2.7 Rigid-body Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7.1 The Special Orthogonal Group S0(3) . . . . . . . . . . . . . . . 50
2.7.2 The Special Euclidean Group SE(3) . . . . . . . . . . . . . . . . 53
2.7.3 Optimization of Functions over Transformations . . . . . . . . . 55

First and Second order Incremental Methods . . . . . . . . . . . 55
Closed-Form Rotation Optimization via Orthonormal Procrustes 55

2.7.4 Additional Rotation Representations . . . . . . . . . . . . . . . 56
Unit Quaternions S3 . . . . . . . . . . . . . . . . . . . . . . . . . 56
Axis Angle (AA) . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.7.5 Distributions over SO(3) . . . . . . . . . . . . . . . . . . . . . . . 57
Gaussian Distribution in so(3) . . . . . . . . . . . . . . . . . . . 57
The Matrix von-Mises-Fisher Distribution . . . . . . . . . . . . . 58

2.8 Surface Normals and Connection to the Gauss Map . . . . . . . . . . . . 59
2.8.1 Surface Normal Extraction Algorithms . . . . . . . . . . . . . . . 60

2.9 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Manhattan World Constrained Scene Representation 69
3.1 Related W ork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 The Manhattan Frame (MF) . . . . ... . . . . . . . . . . . . . . . . . . 75

3.2.1 The Probabilistic Manhattan Frame Model . . . . . . . . . . . . 77
3.2.2 Tangent Space Gaussian Manhattan Frame Model . . . . . . . . 78
3.2.3 von-Mises-Fisher Manhattan Frame Model . . . . . . . . . . . . 79

3.3 Real-time Manhattan Frame MAP Inference . . . . . . . . . . . . . . . . 80
3.3.1 Direct MAP Manhattan Frame Estimation for the TG-MF . . . 80
3.3.2 Approximate MAP Manhattan Frame Rotation Estimation . . . 82
3.3.3 MAP Inference in the vMF Manhattan Frame Model . . . . . . . 83
3.3.4 Real-time Manhattan Frame Inference on Streaming Data . . . . 85

3.4 The Mixture of Manhattan Frames . . . . . . . . . . . . . . . . . . . . . 86
3.4.1 Probabilistic Model . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4.2 Metropolis-Hastings MCMC Inference . . . . . . . . . . . . . . . 87

Posterior Distributions for MCMC Sampling . . . . . . . . . . . 87
Metropolis-Hastings MCMC Sampling . . . . . . . . . . . . . . . 88

3.4.3 Split/Merge Proposals . . . . . . . . . . . . . . . . . . . . . . . . 88

viii CONTENTS



CONTENTS ix

RJMCMC Split/Merge Moves in an MMF .......
Merge Proposal in an MMF .................
Split Proposal in an MMF ..................
RJMCMC Acceptance Probability ..........

3.5 Evaluation and Results .....................
3.5.1 Evaluation of Real-time MAP Inference .......
3.5.2 Evaluation of MMF Inference . . . . . . . . . . . . .

MMF Inference from Depth Images . . . . . . . . . .
Additional Qualitative MMF Inference Results . . .

3.6 D iscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . .

4 Unconstrained Directional Scene Representation
4.1 Related W ork . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 The Stata Center World . . . . . . . . . . . . . . . . . . . .
4.3 Dirichlet Process Tangential Gaussian Mixture Model . . .

4.3.1 Bayesian Nonparametric Mixtures of Spherical Data

. . . . . . . 89

. . . . . . . 90

. . . . . . . 91

. . . . . . . 92

. . . . . . . 92

. . . . . . . 92
97

. . . . . . . 97

. . . . . . . 101

. . . . . . . 102

. . . . . . . 103

4.3.2 Probabilistic Dirichlet Process Mixture Model for Spherical Data
4.3.3 Manifold-Aware MCMC Inference . . . . . . . . . . . . . . . . .

Restricted Gibbs Sampling . . . . . . . . . . . . . . . . . . . . .
Sub-Cluster Split/Merge Proposals . . . . . . . . . . . . . . . . .
Merging Sufficient Statistics between Tangent Spaces . . . . . . .

4.3.4 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . .
4.4 Fast Nonparametric Directional Clustering Algorithms for Batch and

Stream ing D ata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.1 Dirichlet Distribution vMF-MM . . . . . . . . . . . . . . . . . .
4.4.2 Dirichlet Process vMF-MM . . . . . . . . . . . . . . . . . . . . .
4.4.3 DP-vMF-means . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.4 Dependent Dirichlet Process vMF-MM . . . . . . . . . . . . . . .
4.4.5 DDP-vMF-means . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.6 Optimistic Iterated Restarts (OIR) . . . . . . . . . . . . . . . .
4.4.7 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . .

4.5 D iscussion . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .
4.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Nonparametric Directional Perception Systems
5.1 Global Point Cloud Alignment using Bayesian Nonparametric Mixtures

5.1.1 Related W ork . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.2 The Point Cloud Alignment Problem . . . . . . . . . . . . . . . .
5.1.3 von-Mises-Fisher Mixture Rotational Alignment . . . . . . . . .

Cover and Refinement of the Rotation Space S3 . . . . . . . . . .

von-Mises-Fisher Mixture Model Bounds . . . . . . . . . . . . . .
Convergence Properties . . . . . . . . . . . . . . . . . . . . . . .

105
108
111
112
113
114
116
116
119
121
123

128
129
131
131
134
135
139
140
146
147

149
150
152
153
155
156
159
162

ixCONTENTS



5.1.4 Gaussian Mixture Translational Alignment . . . . . . . . . . . . 163
Cover and Refinement of R3 . . . . . . . . . . . . . . . . . . . . . 163
Gaussian Mixture Model Bounds . . . . . . . . . . . . . . . . . . 164
Convergence Properties . . . . . . . . . . . . . . . . . . . . . . . 165

5.1.5 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . 165
5.2 Nonparametric Direction-aware 3D Reconstruction . . . . . . . . . . . . 171

5.2.1 Joint Directional Segmentation, Localization and Mapping . . . 172
World Representation . . . . . . . . . . . . . . . . . . . . . . . . 175
Stata Center World Directional Segmentation . . . . . . . . . . 176
Direction-aware Mapping . . . . . . . . . . . . . . . . . . . . . . 176

5.2.2 Sampling-based Inference over Map and Directional Segmentation 178
Gibbs-sampling Conditionals . . . . . . . . . . . . . . . . . . . . 179
Expectations and Estimates Computed from Samples . . . . . . 183

5.2.3 Direction-aware Camera Pose Estimation . . . . . . . . . . . . . 184
5.2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.2.5 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . 194

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... 203
5.4 Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6 Conclusion 207

A Derivations Pertaining to the Background 209
A. 1 Direct Surface Normal Extraction from Depth Images . . . . . . . . . . 209
A.2 Analysis of the Joint Prior for the von-Mises-Fisher Distribution . . . . 210

A.3 Normalizer of the Joint von-Mises-Fisher Prior for D = 3 and a = 1 . . 213
A.4 Marginal Data Distribution of the von-Mises-Fisher Distribution . . . . 214

A.5 First Derivative of the S(3) Exponential Map . . . . . . . . . . . . . . 214
A.6 Second Derivative of the SO(3) Exponential Map . . . . . . . . . . . . 215
A.7 First Derivative of Functions over SO(3) . . . . . . . . . . . . . . . . . . 216
A.8 Second Derivative of Functions over SO(3) . . . . . . . . . . . . . . . . . 217
A.9 Derivatives Involving the SE(3) Exponential Map . . . . . . . . . . . . 217

A.9.1 Analysis of V(w) around w = 0 . . . . . . . . . . . . . . . . . . . 218
A.9.2 Derivative of Exp(w)p . . . . . . . . . . . . . . . . . . . . . . . . 219
A.9.3 Derivative of TExp(w)p . . . . . . . . . . . . . . . . . . . . . . . 220
A.9.4 Derivative of (TExp(w))-lp . . . . . . . . . . . . . . . . . . . . 221

B Derivations Pertaining to Directional Clustering 223
B.1 Proof of Laplace Approximation on General Differentiable Manifolds . 223

C Derivations Pertaining to Global Point Cloud Alignment 227
C.1 Rotational Alignment Details . . . . . . . . . . . . . . . . . . . . . . . . 227

C.1.1 The M atrix =kk' . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
C.1.2 Quadratic Upper Bound on f . . . . . . . . . . . . . . . . . . . 227

Alffim"IMPRV-, IPIloppppp "P 1-T'M1qjq1R Pall 14 1 Ir

x CONTENTS



CONTENTS Xi

C.1.3 Derivation of the YN Bound . . . . . . . . . . . . . . . . . . . . 228
C.1.4 Proof of Theorem 1 (Rotational Convergence) . . . . . . . . . . 230
C.1.5 Derivation for the fkk, and ukk' Optimization . . . . . . . . . . . 231

C.2 Translational Alignment Derivations and Proofs . . . . . . . . . . . . . . 233

C.2.1 Linear Upper Bound on f . . . . . . . . . . . . . . . . . . . . . 233
C.2.2 Proof of Theorem 2 (Translational Convergence) . . . . . .. ..233

D Derivations Pertaining to Direction-aware SLAM 235

D.0.3 Bingham Distribution Approximation via a von-Mises-Fisher Dis-

tribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

D.0.4 ICP Point-to-Plane Alignment Contribution . . . . . . . . . . . . 237

D.0.5 ICP Photometric Term . . . . . . . . . . . . . . . . . . . . . . . 238

Bibliography 239



CONTENTSxii



List of Figures

1.1 Segmentation of a large indoor scene. . . . . . . . . . . . . . . . . . . . . 2
1.2 Surface normal distributions of man-made environments. . . . . . . . . . 6
1.3 Taxonomoy of Scene representations . . . . . . . . . . . . . . . . . . . . 8

1.4 The Manhattan World . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Mixture of Manhattan Worlds . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Stata Center W orld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Visualization of the Dirichlet distribution density . . . . . . . . ..... 28

2.2 Explicit and implicit Dirichlet process mixture model representations. 30

2.3 Limit of the Gaussian distribution. . . . . . . . . . . . . . . . . . . . . . 32

2.4 Two principal approaches for modeling directional data . . . . . . . . . 34

2.5 The manifold of the sphere S2 and its tangent space. . . . . . . . . . . . 35
2.6 The tangent space Gaussian distribution. . . . . . . . . . . . . . . . . . 38

2.7 Tangent space Gaussian probability mass inside TpS2 . . . . . . . . . . . 38
2.8 Norm of the log-map approximation error . . . . . . . . . . . . . . . . . 40

2.9 The von-Mises-Fisher distribution . . . . . . . . . . . . . . . . . . . . . 41

2.10 The conjugate prior for the parameters of a von-Mises-Fisher . . . . . . 45

2.11 The marginal data distribution of the von-Mises-Fisher . . . . . . . . . . 46

2.12 The cumulative density of the von-Mises-Fisher distribution . . . . . . . 47

2.13 The entropy of the vMF distribution on S2 . . . . . . . . . . . . . . . . 48

2.14 Tangent space Gaussian probability mass inside so(3) . . . . . . . . . . 58
2.15 Correspondence between scene parts and surface normals. . . . . . . . . 59

2.16 Point clouds of the different scenarios considered for surface normal ex-

traction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.17 Comparison of surface normal extraction algorithms from depth images 62

3.1 Manhattan Frame and MMF inference for indoor scenes . . . . . . . . . 69

3.2 Manhattan World versus multiple Manhattan Worlds . . . . . . . . . . . 70

3.3 Taxonomoy of scene representations focused on Manhattan Frames . . . 73

3.4 Manhattan World, Manhattan Frame and vanishing points . . . . . . . 75

3.5 Graphical model of the Manhattan Frame . . . . . . . . . . . . . . . . . 76

xiii

I



LIST OF FIGURES

3.6 Tangent Space Gaussian Manhattan Frame . . . . . . . . . . . . . . . . 78
3.7 Illustration of mappings between T,S 2 and S2 . . . . . . . . . . . . . . . 78
3.8 The von-Mises-Fisher distribution based Manhattan Frame . . . . . . . 79
3.9 Depiction of the 2D von-Mises-Fisher distribution . . . . . . . . . . . . . 79
3.10 Illustration of the geometry underling the logarithm map approximation 82
3.11 Graphical model for a mixture of K Manhattan Frames . . . . . . . . . 87
3.12 Realtime Manhattan Frame rotation estimation accuracy evaluation 93
3.13 Timing breakdown for the three realtime Manhattan Frame algorithms . 94
3.14 Manhattan Frames extracted from the hallways around Killian court 95
3.15 Realtime Manhattan Frame algorithm segmentation of indoor scenes 96
3.16 Complex indoor scene composed of three Manhattan Frames . . . . . . 97
3.17 (M)MF segmentations of various indoor scenes . . . . . . . . . . . . . . 98
3.18 Common failure cases of the MMF inference . . . . . . . . . . . . . . . . 99
3.19 Evaluation of gravity and Manhattan World orientation estimation . . . 100

3.20 MMF segmentation of mesh of larger indoor scene . . . . . . . . . . . . 101
3.21 MMF segmentation of large-scale urban scene . . . . . . . . . . . . . . 102

4.1 Directional clustering and Stata Center World segmentation example . . 105
4.2 The Stata Center World . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3 Two principal approaches for modeling directional data . . . . . . . . . 108
4.4 Relationship between the Stata Center World assumption, surface nor-

mals and vanishing points . . . . . . . . . . . . . . . . . . . . . . . . . .111
4.5 Illustration of the Dirichlet process tangential Gaussian mixture model . 112
4.6 Modeling directional data as Bayesian mixture models . . . . . . . . . . 113
4.7 The tangent space Gaussian distribution . . . . . . . . . . . . . . . . . . 114
4.8 Graphical model of the Dirichlet process tangential Gaussian mixture 115
4.9 Illustration of merging sufficient statistics from different tangent spaces 121
4.10 DP-TGMM synthetic evaluation data visualization . . . . . . . . . . . . 124
4.11 DP-TGMM synthetic evaluation . . . . . . . . . . . . . . . . . . . . . . 125
4.12 Additional DP-TGMM synthetic evaluation . . . . . . . . . . . . . . . . 126
4.13 Directional segmentation of indoor scenes . . . . . . . . . . . . . . . . . 127
4.14 DP-TGMM inference on 20D semantic word vectors . . . . . . . . . . . 128
4.15 Illustration and intuition for the DDP-vMF-MM model . . . . . . . . . 129
4.16 Limit of the von-Mises-Fisher distribution . . . . . . . . . . . . . . . . . 132
4.17 The maximum likelihood setting of I-4O, Pki, .. . , Ikat, for transitions . . 137
4.18 DP-vMF-means and spkm comparison on synthetic data . . . . . . . . . 141
4.19 DP-vMF-means and spkm statistics and silhouette score for NYU dataset 144
4.20 Qualitative directional segmentations of RGBD scenes . . . . . . . . . . 144
4.21 DDP-vMF-means directional segmentation of RGBD camera stream . . 145

5.1 The 600-cell tessellation of the rotation space . . . . . . . . . . . . . . . 151
5.2 Tessellation of S2 via iterated triangle subdivision . . . . . . . . . . . . . 156
5.3 Tessellation of 52 via uniform tangent space tessellation . . . . . . . . . 157

OXR IMRPPWT6 I.- 111M.1?0'W'TW "MUMM

Xiv



5.4 Tetrahdron subdivision patterns . . . . . . . . . . . . . . . . . . . . . . 158
5.5 Bounds and true maximum and minimum Tetrahedra angles . . . . . . 159
5.6 Upper bound for rotational alignment . . . . . . . . . . . . . . . . . . . 160
5.7 Closest point within bounded area on sphere from a given query point . 161
5.8 Upper bound for translational alignment . . . . . . . . . . . . . . . . . . 164
5.9 Branch-and-bound alignment of the full Stanford Bunny . . . . . . . . . 166
5.10 Branch-and-bound alignment of partial scans of the Stanford Bunny . . 167
5.11 Alignment error under additive isotropic Gaussian noise and outliers . . 167
5.12 Alignment of partial scans of Happy Buddha . . . . . . . . . . . . . . . 168
5.13 Alignment of RGB-D indoor scans via BB+ICP . . . . . . . . . . . . . . 169
5.14 Apartment dataset aligned using BB+ICP . . . . . . . . . . . . . . . . . 169
5.15 Quantitative evaluation of the Apartment dataset . . . . . . . . . . . . . 170
5.16 Depictions of alignments of the Gazebo SUmmer dataset . . . . . . . . . 171
5.17 High-level Overview over Direction-aware SLAM system . . . . . . . . . 173
5.18 Sparsity of man-made environments in terms of planes . . . . . . . . . . 174
5.19 Nearest neighbor graph over surfels . . . . . . . . . . . . . . . . . . . . . 175
5.20 Illustration of the point-to-plane cost function . . . . . . . . . . . . . . . 177
5.21 Approximation of the Bingham with a von-Mises-Fisher distribution . . 180
5.22 Point-to-plane ICP constraints . . . . . . . . . . . . . . . . . . . . . . . 188
5.23 Architecture of the direction-aware 3D reconstruction system . . . . . . 191
5.24 Direction-aware 3D reconstruction of an office area . . . . . . . . . . . . 195
5.25 Direction-aware 3D reconstruction of a room corner . . . . . . . . . . . .196
5.26 Direction-aware 3D reconstruction of a desk area . . . . . . . . . . . . . 197
5.27 Direction-aware 3D reconstruction of the fr2_xyz dataset . . . . . . . . 198
5.28 Direction-aware 3D reconstruction of the fr2_desk dataset . . . . . . . 199
5.29 Surfel and sample count statistics . . . . . . . . . . . . . . . . . . . . . . 200
5.30 Timings of the direction-aware SLAM system . . . . . . . . . . . . . . . 201
5.31 Direction-aware versus uninformed observation selection for ICP . . . . 202

C.1 Tetrahdron subdivision patterns . . . . . . . . . . . . . . . . . . . . . . 228

D.1 Approximation of the Bingham with a von-Mises-Fisher distribution . .2

LIST OF FIGURES XV

236



xvi LIST OF FIGURES



List of Algorithms

1 Metropolis-Hastings algorithm . . . . . . . . . . . . . . . . . . . . . . . 23
2 Gibbs-sampling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3 DP-means algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4 Karcher mean algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5 Slice sampler for the prior on the von-Mises-Fisher concentration . . . . 44

6 Algorithm for robust moving least squares fitting . . . . . . . . . . . . . 64

7 Gradient descent algorithm for real-time Manhattan Frame inference . . 84
8 Algorithm for vMF Manhattan Frame MAP inference . . . . . . . . . . 85
9 One iteration of the MMF inference algorithm . . . . . . . . . . . . . . . 89

10 DP-vMF-means algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 133
11 DP-vMF-means sequential label assignments algorithm . . . . . . . . . . 134

12 DDP-vMF-means algorithm for a single time-step . . . . . . . . . . . . . 140

13 DDP-vMF-means sequential label assignments . . . . . . . . . . . . . . 142

14 DP-vMF-means optimistic iterated restarts label assignment . . . . . . . 143

15 Branch and Bound algorithm . . . . . . . . . . . . . . . . . . . . . . . . 155
16 Gibbs-sampling for joint map and directional segmentation inference . . 179
17 Direction-aware incremental ICP . . . . . . . . . . . . . . . . . . . . . . 190

xvii



Xviii LIST OF ALGORITHMS



List of Tables

3.1 Algorithm timings on NYU V2 dataset . . . . . . . . . . . . . . . . . . . 101

4.1 Properties of different directional clustering algorithms . . . . . . . . . . 109

5.1 Accuracy and timing results for the Apartment dataset . . . . . . . . . 170
5.2 Accuracy and timing results for the Gazebo Summer dataset . . . . . . 170
5.3 Ablation study of the components of the direction-aware SLAM system 202
5.4 Evaluation of the absolute trajectory error on different datasets . . . . . 204

xix



XX LIST OF TABLES



Notation

n directional data, i.e. surface normal
x Euclidean data
q unit Quaternion rotation

BRA Rotation matrix C 50(3) from coordinate system A to B
w Rotation expressed E so(3)

w, 0 Rotation expressed in axis w and angle 6
BTA Transformation matrix E SE(3) from coordinate system A to B

z Labels

11, Indicator function returning 1 of c is true and 0 otherwise
Ik Given a set of labels z, I -- fk : zi = k} is the set of indices with label k
Nk Ak I = 1 zj=k counts the number of labels with value k
[x] normalize x E R D to unit length, i.e. to lie on SD-1

xxi



NOTATIONxxii



Chapter 1

Introduction and Problem Definition

At a fundamental level our environment consists of open space and textured surfaces
with physical properties. Since this 3D structure sets the stage for the actions of bio-
logical and artificial agents, a capable perception system is key to any intelligent agent.
Beyond textured surfaces, we humans associate meaning with scene parts that are based
on geometrical and physical understanding of space, prior personal experiences, and oth-
erwise acquired knowledge. Geometrical and physical understanding of space captures
priors on how spaces are usually organized and shapes our expectations of which spa-
tial configurations are even feasible. We associate meaning to surfaces such as "chair",
"office" or "tea mug", probably by matching their shape, texture and context against
our prior knowledge and experiences. Without our higher-level mental processes to
segment and attach meaning to the 3D structure surrounding us, our mental processes
would indeed be limited. Even the very basic task of avoiding injury in a cluttered
environment necessitates the mental concept of obstacle versus traversable space.

In an effort to enable autonomous agents and artificial perception systems to inter-
act and understand their surroundings, the main goal of decades of research effort in
computer vision and robotics has been to obtain geometric computer representations
of the environment. These representations have been mostly concerned with obtaining
sparse [56, 67, 138, 172] and more recently dense 3D representations [110, 135, 177, 178,
248] of an environment.

Adding higher-level information about the relationships of scene parts and their
semantic or categorical meaning into such structure representations is the natural next
step in developing artificial perception systems that can perform at human levels and
beyond. Scene-part relationships such as that chairs are usually close to tables, and
meaning such as that a chair can be used to sit down are likely essential to higher-
level scene understanding and truly intelligent autonomous agents. While human level
capabilities are slowly being achieved in specialized and curated datasets (largely thanks
to deep convolutional networks), general-purpose scene understanding and perception
systems remains elusive. This is especially true in the realm of real-time 3D perception
from streams of camera and depth sensor data as encountered in applications such as
autonomous robotics and cars, and augmented reality.

An important question to ask in this context is: to what end do semantic segmenta-
tions actually facilitate operation of an artificial perception system? What is meaningful

1
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Figure 1.1: Scene segmentation of a large indoor reconstruction (reconstruction via

Kintinuous [246]). For an autonomous agent or perception system, the segmentation is

immediately useful: all green areas are either traversable or locations that could harbor

objects the robot might be looking for. Blue and red areas should not be bumped into

but might for example contain door signs.

to a human, such as good places to have vegan food, might be irrelevant to a machine

(unless it is needed for interaction with the human). On the other hand, even simple

(not necessarily semantic) scene-part relationships can help downstream inference and

planning systems. Consider for example the segmentation of a 3D reconstruction shown

in Fig. 1.1. The segmentation of the environment can be used by an autonomous agent

to determine traversable areas, or where to look for door signs and other objects. In

other words it can serve as a basis for higher-level, task-specific scene understanding.

More formally, the aforementioned problem of attaching meaning to the geometric

perception of the surroundings is to infer not only a map m of the world that captures the

textured geometric structure of the environment and the trajectory T of the perception

system inside this map, but also a segmentation z of the inferred map given a batch or

a stream of data x. The segmentation z assigns categorical information to each part

of the world map. Because categorical information may be associated with semantic

concepts, this problem is often termed semantic simultaneous localization and mapping

(SLAM) [16,72,98,143,209,211]. Semantic implies that z carries some meaning in

relation to a human observer. The more general problem of categorical SLAM does not

necessarily ask that the segmentation be meaningful to a human for reasons outlined

before. Adopting, for the sake of argumentation, the Bayesian approach, the inference

can be cast as reasoning about the posterior probability

p(m, T, z I x) "categorical or semantic SLAM" . (1.1)

While the segmentation variable z has importance in itself it could also be thought of

as an auxiliary variable which is explicitly instantiated for two purposes: (1) to enable

more efficient and higher quality inference and (2) for the benefit of higher-level scene

understanding and decision making systems as mentioned beforehand.

Most previous and some current 3D reconstruction systems purely aim to infer the

3D structure of the environment as well as the trajectory of the perception system.

2 CHAPTER 1. INTRODUCTION AND PROBLEM DEFINITION
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More formally, they seek to characterize the joint belief of map m and perception
system trajectory T given a set of observations x:

p(m, T I x) = jp(m, T, z I x) dz "SLAM". (1.2)

As indicated in the equation above, this can be understood as aiming to directly infer
the marginal distribution of the map and trajectory given observed data. Often for
efficiency reasons only the most likely map m* and trajectory estimate T* is sought.
This is usually performed in an alternating fashion by (1) finding the most likely map
configuration m* given data x and the current best estimate of the trajectory T and
then (2) updating the most likely trajectory T* given map and data:

m arg max p(m, T*, x) "mapping" (1.3)
m

T* arg max p(T m*, x) "localization" . (1.4)
T

In isolation the first equation is called mapping, and the second equation is called
localization. This alternating optimization hints at the chicken and egg problem faced
in the simultaneous localization and mapping problem (SLAM) [148]: the trajectory of
the perception system is needed to update the map but a map is also needed to update
the belief of the perception system trajectory.

The problem of obtaining a meaningful segmentation of an environment has been
studied extensively for 3D meshes and in computer vision for 2D projections of envi-
ronments (i.e. images). In fact, while in some instances inference is performed over
the underlying world map m before segmentation, most of the work on image and
mesh segmentation and categorization including recent advances in deep learning [88,
91, 140, 218] may be understood as reasoning about the distribution of the segmentation
marginalized over the map m and trajectory T:

p(z I x) = J p(m, T, z x) dT dm "segmentation". (1.5)

In this framework, deep learning systems could be understood as learning a function
of the data, f(x), that is proportional to the marginal segmentation posterior: f(x) 0c
p(z I x). They use a very flexible function approximator, namely convolutional neural
networks, and large corpora of training data. In these systems the aforementioned
marginalization is usually achieved by selecting a training dataset which comprises a
range of viewpoints (T) and a range of geometrically differing instantiations (m) of
the same category. It remains an open problem to see if this is a feasible approach
or if instantiating map and trajectory explicitly, as auxiliary variables, leads to better
scene understanding. There are indications that latter is indeed beneficial. An example
is face recognition, where explicitly inferring face geometry and view-point improves
recognition rates [230].



Returning to categorical SLAM of Eq. (1.1), we can extend the inference approach
of SLAM to include the segmentation z. Since one might not only care about the most
likely configurations of map, trajectory and segmentation, the alternating approach
would iteratively reason1 about the following posterior distributions:

p(m I T, z, x) "semantic mapping" (1.6)

p(T m, z, x) "semantic localization" (1.7)

p(z m, T, x) "scene understanding" . (1.8)

From these conditional distributions it can be gleaned that explicitly instantiating the
scene segmentation z can be utilized to help mapping and localization because these
tasks now have access to the output of a some form of scene understanding captured by
z. Scene understanding in turn not only has access to all data but also to the consistent
aggregation of 3D information into a world map and the perception system trajectory
within the map. Note that in this setup any scene understanding may be used that can
be expressed in terms of a segmentation of the scene.

Mapping as defined in Eq. (1.6) can take into account not only the trajectory T of
the perception system but also the meaning or category of the surfaces as captured in
the inferred scene segmentation z. This could be useful for defining segment-dependent
operations such as category-dependent regularization of the reconstruction, scene part
compression, or sub-mapping. We could call this categorical or semantic mapping.
Indeed in Sec. 5.2 a geometric segmentation of the scene will be used to aid mapping
and improve the accuracy of the system.

In a similar fashion localization can take into account the category of surfaces the
system observed at certain timesteps to, for example, adapt the observation model
accordingly. Scenarios such as taking into account the intent of the wearer of an aug-
mented reality headset are captured under this model as well. We will see an instan-
tiation of this in Sec. 5.2 where directional scene understanding can be leveraged to
achieve efficient camera pose tracking. Reasoning about the trajectory posterior in-
cludes the essential problem of loop closure: the ability to determine switches between
different modes of the trajectory posterior. Higher-level scene understanding and scene
segmentation has the potential to aid and robustify current loop closure techniques.
Current methods for loop closure involve extracting a high dimensional descriptor for
key view-points of the scene [6,89] to allow matching a current view to some known
previous pose. This mechanism can be understood as a (non-semantic) segmentation
or annotation of the map according to some feature extraction function.

Scene understanding, i.e. reasoning about the posterior of the segmentation z of an
environment as defined in Eq. (1.8), can draw not only on the raw data x but also on the
consistent integration of 3D information into a world map m and the perception system's
trajectory T in it. Therefore the segmentation z could capture notions such as points of

'Many inference algorithms such as Gibbs sampling (see Sec. 2.2.2) and expectation maximization
(EM) indeed subscribe to this alternating approach.
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interest, inferred from the trajectory's viewing directions, spoken annotations obtained
from sound data contained in data x, or geometric information inferred from the map
such as which parts of the map are traversable, i.e. belong to the floor, and which
parts are obstacles. In this context, I claim that unless an artificial perception system
is able to utilize the segmentation of the environment it is not really "understanding"
the environment but merely recalling and reproducing concepts without understanding
their implications. Much like we can learn to say words in a new language without
having to understand their meaning. Often segmentations are inferred but not at all or
only partially used (see Sec. 1.1.2 for a full review). That is, while a scene segmentation
is inferred, the conditional dependence of map and trajectory on the segmentation
implied by Eq. (1.6) and (1.7) is ignored. There are only a handful of systems that
fully integrate the higher-level concepts such as a scene segmentation into the SLAM
process [29, 35, 41, 129, 158, 186, 209] such that mapping as well as trajectory estimation
actually utilize the inferred segmentation. Falling into this category we introduce the
first semi-dense nonparametric direction-aware SLAM system in Sec. 5.2.

It is essential for scene understanding, i.e. reasoning about Eq. (1.8), that the num-
ber of categories or semantic concepts expressed by z be flexible and adaptive to the
observations of the perception system. There are many approaches to selecting a model
of the right complexity. In this thesis we rely on Bayesian nonparametric models (see
Sec. 2.4) since they offer an elegant way of making model selection part of the generative
model and therefore the inference procedure. The Dirichlet process, used extensively
in this thesis, explicitly models the sequential arrival of data from a potentially infinite
number of different categories. The Bayesian approach also has the advantage of al-
lowing explicit reasoning about uncertainty, a large body of theoretical guarantees for
inference algorithms and has proved to be a reliable foundation for reasoning about the
real-world quantities in applications ranging from autonomous robots to bio informatics.

Since the segmentation could attach a wide range of categorical or semantic infor-
mation to the world, it is important to understand the aim of adding the auxiliary
segmentation variable z. Here we focus on geometric segmentations of the world map
m as a first step to higher-level and perhaps more human-centric scene segmentations.
Similar to face recognition where best results are achieved after first solving for the
geometry and aligning all faces into a canonical view for the convolutional neural net-
work [230], I contest that solving for geometry and a better spatial awareness is crucial
for higher-level inference and perception. For example, higher-level inference about
scene part relations are routinely using spatial cues to orient 3D scenes into a common
frame of reference to aid and improve scene understanding [96,173].

Due to the structural simplicity of man-made environments, understanding and
leveraging local orientations of the constituent surfaces, gives more direct access to
some geometric properties of the environment. From an indoor scene to large-scale
urban environments, a major fraction of surfaces can be described by just a few planes
with even fewer different surface normal directions. This sparsity is evident in the
surface normal distributions, which exhibit a small number of characteristic, concen-
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Figure 1.2: From a single view-point to large-scale urban scenes, the surface normal
distributions are low entropy and exhibit similar characteristic patterns. This research
seeks to characterize and utilize those patterns to further scene understanding and

environment perception.

trated clusters as displayed in Fig. 1.2. For example, the segmentation in Fig. 1.1 was

inferred solely based on the surface normal distribution of the scene. I term this a
directional segmentation of the scene since surface areas in the same category share the

same surface normal direction.
In this work I draw a rigorous connection between surface normal distributions

and 3D structure, and explore this connection in light of different environmental as-
sumptions. This leads us to propose several probabilistic scene models that facilitate

directional scene segmentation and understanding. Hence, Chapters 3 and 4 essentially

describe reasoning about the posterior of the scene segmentation (Eq. (1.8)) for dif-

ferent scene models expressed in terms of surface normal distributions. In Chapter 5
we first show how embedding a directional scene segmentation can be leveraged in the

common problem of global point cloud alignment, thus reasoning about scene segmen-

tation (Eq. (1.8)) and camera location (Eq. (1.7)). In the second part of the chapter we

introduce the first semi-dense nonparametric direction-aware SLAM system that jointly

reasons about the full categorical SLAM posterior (Eq. (1.1)) using the aforementioned
alternating inference approach. These contributions are summarized in Sec. 1.2 after

reviewing various related and prior work on geometric scene priors in the next section.

We leave the detailed review of related work of the individual contributions to the

respective chapters.

* 1.1 Related Work

In the following we first explore the gamut of assumptions about scenes commonly

employed in related work before focusing on the use of such assumptions in computer

6 CHAPTER 1. INTRODUCTION AND PROBLEM DEFINITION



vision and 3D reconstruction systems. Most approaches focus on the segmentation or
scene understanding task given known 3D structure, camera poses and RGB images

(or any subset thereof). These are reviewed in the next section. Some related work
goes a step further and aims to jointly infer segmentation and 3D structure and/or the
trajectory of the perception system. I will touch on such joint approaches in Sec. 1.1.1
with a focus on which assumptions they make and expand on how they perform joint
reasoning in Sec. 1.1.2. Finally, in Sec. 1.1.3 I review related work that reason about
semantic segmentations and other semantic concepts.

U 1.1.1 Geometric Scene Segmentation Priors

The different assumptions made in the literature about the geometry of the environment
can be categorized in terms of their expressiveness as depicted in Fig. 1.3. The assump-
tions range from mostly unrestricted representations such as point clouds, meshes and
volumetric level-sets [52], which can in the limit represent any surface exactly, to the
rather strict Manhattan World assumption as indicated by the inclusion diagram. The
herein proposed Mixture of Manhattan Frames (MMF) assumption subsumes the At-
lanta World (AW) which in turn subsumes the Manhattan World (MW) assumption.
The MMF provides a directional segmentation under the orthogonality constraints im-
posed by the Manhattan World assumption. Relaxing the orthogonality constraints
completely, we arrive at what we term the Stata Center World (SCW) (see Fig. 1.6
for a depiction of the Ray and Maria Stata Center). It captures only the directional
composition of a scene. Planar scene representations differ from the Stata Center World
in that different planes with the same orientation are separated in space.

These different assumptions about scenes can be observed directly in the 3D struc-
ture or indirectly in the projection of the 3D structure into a camera [102]. Models and
inference algorithms based on the former utilize 3D representations such as meshes,
point clouds and derived data such as surface normals. Intersections of planes in 3D
are lines which can be observed as lines in the image space. A vanishing point (VP) is
the intersection of multiple such image-space lines where the lines in 3D are all parallel
to each other. Models built on VPs usually use image gradient orientations directly or
indirectly via line segment extraction. Specifically, the Manhattan World is manifested
as orthogonally-coupled VPs (OVPs) in the image space and a Manhattan Frame in the
surface-normal space. Multiple Manhattan Worlds cause multiple orthogonal VPs and
Manhattan Frames. The Stata Center World can be observed via independent VPs in
the image or independent surface normal clusters.

Scene priors observed in the 2D image-space There is a vast literature on VP estimation
from R.GB images. The. goals for VP estimation range from single-image scene pars-
ing [18] and 3D reconstruction [57, 109,146,153], VP direction estimation for rotation
estimation with respect to man-made environments [7, 20, 49, 139,141] to VP direction
tracking over time to estimate camera rotation and scene structure [29, 79,169,213].

While early VP extraction algorithms relied on image gradients [49, 214], most mod-
ern algorithms operate on line segments extracted from the image. This has been found

7Sec. 1.1. Related Work



Manhattan World Atlanta World Mixture of Manhattan
Frames

MW AW MMF SCW Planes Pon Coud

Stata Center World Planes

Figure 1.3: Depiction of the most common geometric scene priors and representations.

The level of generality and expressiveness is indicated by the taxonomy. In Chapter 3
the Manhattan Frame and the MMF model are introduced (shaded orange). Chapter 4

contains two directional models to capture the Stata Center World in surface normal

space (shaded blue). Chapter 53 introduces a plane-based 3D reconstruction algorithm

that jointly infers and utilizes a Stata Center World scene segmentation.



to yield superior direction estimation results over dense image-gradient approaches [59].
Generally, VPs are extracted by intersecting lines in the image. These intersections are
often found after mapping lines to the unit sphere [19, 48,141], or into other accumu-
lator spaces [149]. Introduced in [18], horizon estimation has emerged as a benchmark
for VP estimation algorithms [252, 255].

Many VP extraction algorithms rely on the Manhattan World assumption [20, 29, 49,
79,139,157, 203, 252] which is manifested as three OVPs. Incorporating the Manhattan
World assumption into the VP estimation algorithms not only increases estimation
accuracy (if the Manhattan World assumption holds) [149] but also allows estimation
of the focal length of the camera [40,47,139,149,203, 252], and rejection of spurious
VP detections. Another avenue of research uses the Manhattan World assumption for
single-image 3D reconstruction [57, 109,146,153. The inferred Manhattan World and
associations of lines to Manhattan World axes combined with geometric reasoning are
used to reconstruct the 3D scene in [57, 146]. Hedau et al. [109] use a Manhattan
World prior to iteratively infer the 3D room layout and segment out clutter in the
room. Liu et al. [153] use a floor plan in conjunction with a set of monocular images
to reconstruct whole apartments.

The AW model of Schindler et al. [214] assumes that the world is composed of
multiple Manhattan Worlds sharing the same z-axis (which is assumed to be known).
This facilitates inference from R.GB images as only a single angle per MW has to be
estimated as opposed to a full 3D rotation. The approach by Antunes et al. [9] infers
the full MMF from RGB images. Relaxing the assumptions about the scene, VPs
can be extracted independently [7, 18,48,59, 141,149,169,231,255] akin to the SCW
assumption.

Scene priors in 3D representations There are many approaches that rely purely on 3D
representations of surfaces and scenes. Assumptions such as the Manhattan World or
SCW, are used to align scenes into a common frame of reference for scene segmentation
and understanding [96,173], and to regularize 3D reconstruction [170, 186] (more to
that in the next section).

Similar to the image space, the Manhattan World assumption has been used most
commonly [96,173]. This is probably due to the fact that man-made environments tend
to exhibit strong Manhattan World characteristics on a local scale, i.e. on the level of
a single RGBD frame of a scene. In the application of Simultaneous Localization and
Mapping (SLAM) [148], the Manhattan World assumption has been used to impose
constraints on the inferred map [186]. Our original idea of the MF [225] has been
adapted by Ghanem et al. [87] who propose a robust inference scheme for Manhattan
Frame estimation and by Joo et al. [127] who use a branch-and-bound scheme to perform
real-time globally optimal Manhattan Frame inference.

To the best of our knowledge the assumption of multiple Manhattan Worlds in the
3D data setting (as opposed to RGB 2D-images) has not been explored prior to our
own work [225, 226] which is described in Chapter 3.

Similar to the Manhattan Frame and MMF model, the Stata Center World can be
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inferred solely from surface-normal distributions. We explored this in two preliminary
manuscripts [222,224] and give a more detailed account in Chapter 4. Monszpart et
al. [170] couple a local plane-based approach with global directional regularity con-
straints to regularize 3D reconstructions of man-made environments from point clouds.
Gupta et al. [96] assume the only relevant direction for semantic scene segmentation is
the direction of gravity to enable alignment of the ground plane across scenes. They
propose a simple algorithm to segment the scene into the gravity and all other directions
based on surface-normal observations. Triebel et al. [237] extract the main directions of
planes in a scene using a hierarchical Expectation-Maximization (EM) approach. Using
the Bayesian Information Criterion (BIC) they infer the number of main directions as
well. Note, that the Manhattan Frame and MMF model could be inferred from the
Stata Center World by grouping inferred directions into Manhattan Frames.

An alternative to the Manhattan World, MMF or Stata Center World model de-
scribes man-made structures by individual planes with no constraints on their relative
normal directions. This assumption is widely used for scene segmentation [112] and
understanding, to aid 3D reconstruction [129, 210,219], and optical flow [200] compu-
tation. Triebel et al. [237] use hierarchical expectation maximization (EM) to jointly
infer the main directions as well as a plane segmentation of a 3D scene. To overcome
issues related to the sheer amount of data of dense meshes, Whelan et al. have proposed
a planar simplification algorithm [249] which relies on plane segmentation. Surfel-based
methods describe the environment as a set of localized planes each associated with a
radius. Typically the radii are small and a large collection of surfels is used to describe
an environment densely [133,250]. Since surfels are assumed to be independent of each
other, updates can be computed efficiently in parallel.

The orthogonality constraints in the Manhattan World or MMF models enable sta-
tistical pooling of measurements across different orientations. This means not only that
fewer measurements (per plane) are needed to achieve the same amount of accuracy as
without those constraints but also that reliable measurements from one or more direc-
tions help in handling cases where there are only few observations of other directions.
Similarly, the Stata Center World encapsulates the notion of parallel planes which also
provides a mechanism for statistical pooling across a scene as we will see in Sec. 5.2.

Joint 2D image and 3D structure based scene priors The connection between VPs in
images and 3D Manhattan World structures has been used to infer dense 3D structure
from sets of images by Furukawa et al. [82]. They employ a greedy algorithm for a single-
MF extraction from normal estimates that works on a discretized sphere. Neverova et
al. [176] integrate RGB images with associated depth data from a Kinect camera to
obtain a 2.5D representation of indoor scenes under the Manhattan World assumption.
Silberman et al. [173] infer the dominant Manhattan World using VPs extracted from
the RGB image and surface normals computed from the depth image. They leverage
the inferred Manhattan World rotation to align scenes into a common frame of reference
for higher-level scene segmentation and reasoning.

10 CHAPTER 1. INTRODUCTION AND PROBLEM DEFINITION
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Other shape-based segmentation algorithms Beyond global geometric scene priors that
imply specific scene segmentations other approaches rely more on local shape features
for segmentation.

One class of such approaches compute local feature vectors, train a feature-based
classifier and then impose spatial label smoothness via a Markov Random field. Zhang
et al. [257] follow this approach and show that using dense depth images leads to
better segmentations than using sparse colored point clouds. Along the same lines,
Rouhani et al. [204] partition an input mesh into superpixels, compute a feature vector
for each vertex (geometric and texture) and then use a Markov random field to smooth
the labeling produced by random forests.

Finman et al. [71] demonstrate geometry-feature-based online incremental scene
segmentations of dense 3D scene. Their algorithm relies on the popular Felzenszwalb
segmentation algorithm [69], which is based on a local neighborhood graph and relative
geometric properties of neighbors. By local greedy segmentation choices the Felzen-
szwalb algorithm obtains controllable global segmentation properties.

N 1.1.2 Geometric Scene Segmentation and Reconstruction

After reviewing the overarching literature on the different kinds of geometric scene
priors in the previous section, we now focus on how scene priors are used in different
3D perception systems. On a high level there are three different classes of approaches
in how scene priors or assumptions are used: (1) for trajectory estimation only, (2)
for mapping or 3D reconstruction only, or (3) for trajectory and mapping jointly. The
previous section includes all related work that purely reasons about scene priors without
using it in either trajectory estimation or mapping.

Joint 3D mapping and segmentation systems We first turn to systems that jointly rea-
son about the 3D structure and a segmentation of the scene. Triebel et al. [237] essen-
tially use the Stata Center World assumption and extract the main directions of planes
in a scene using a hierarchical Expectation-Maximization (EM) approach. Using the
Bayesian Information Criterion (BIC) they infer the number of main directions as well.
Their results show that the statistical pooling of plane orientation measurements for all
planes with the same orientation improves the plane orientation estimate. Initiated by
the seminal work of Delage et al. [57] there is a series of work [109,146] on single-image
Manhattan World segmentation and 3D reconstruction. Of these, Hedau et al. [109]
add the capability to reason about clutter as an outlier to the Manhattan World model.
This is extended to the multi-image case by Flint et al. [79] who utilize the Manhattan
World assumption to perform 3D reconstruction and Manhattan World segmentation
from a set of images from known poses. Hine et al. [98, 100] perform joint inference over
scene segmentation and 3D structure and show how joint inference leads to better re-
constructions and allows impressive, plausible hallucination of unobserved scene parts.
Their approach relies on hand-crafted class-specific geometry priors that are trained on
hand-labeled data. Observations are given in the form of geo-referenced depth and RGB
images and the trajectory of the camera is assumed fixed and not part of the inferehce
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process. Blaha et al. [26] building on the same approach, scale the inference to enable
large city-scale semantic reconstructions. Monszpart et al. [170] couple a local plane-
based approach with global directional regularity constraints to regularize plane-based
3D reconstructions of man-made environments from point clouds. In joint work lead by
R. Cabezas [35] we define a joint distribution over geometry, camera poses and a scene
segmentation. Elaborate sampling-based inference leads to a categorical scene segmen-
tation that is informed by semantic observations from OpenStreetMap data. Results
demonstrate that adding the scene segmentation into the inference procedure improves
the quality of the map.

The ideas of Monszpart et al. [170] and Triebel et al. [237] are related to what we
term the Stata Center World assumption and will be explored in Sec. 5.2 in the context
of fully joint direction-aware SLAM.

Joint 3D pose or trajectory estimation and segmentation systems Some assumptions
like the Manhattan World assumption lend themselves to estimation of the perception
system trajectory. Specifically, there is a wealth of work on rotation estimation from
vanishing points under the Manhattan World assumption[7, 20, 49, 139, 141]. The ap-
proach take in the Atlanta world model [214] also facilitates rotation estimation albeit
in more complex environments following the Atlanta world. Chapter 3 introduces drift-
free rotation estimation for Manhattan World environments based solely on the surface
normal distribution. The Stata Center World models in Chapter 4 could also be used
for rotation estimation by associating directional clusters over time using, for exam-
ple, the proposed DDP-vMF-means algorithm. Using the Stata Center World model
Zhou et al. [260] demonstrate drift-free rotation estimation with respect to a key-frame
by associating and robustly aligning directional clusters obtained via mean-shift cluster-
ing. The clustering approach they employ includes keeping around unobserved clusters
and is curiously similar to the DDP-vMF-means algorithm. Saurer et al. [213] improve
the efficiency of a visual odometry system given a gravity direction estimate and assum-
ing a Manhattan World. Liu et al. [153] jointly utilize a floor plan and a set of images of
the environment to reason about the segmentation of the images into left, right, front,
top and bottom walls and camera poses in the environment. Their algorithm yields a
textured wall reconstruction given the room layout.

Section 5.1 demonstrates a global point cloud alignment system that relies on a
directional and spatial segmentation of the environment for efficient operation.

Joint 3D SLAM and segmentation systems The following systems are among the few
who jointly reason about 3D structure, geometric segmentation, and the trajectory of
the perception system. Bosse et al. [29] utilize vanishing point detection and tracking
of prominent lines in the environment in a SLAM system to jointly estimate a robot's
trajectory and the 3D location of lines in the environment. Castle et al. [41] are among
the visual SLAM systems to incorporate planar geometry into the camera tracking and
reconstruction pipeline. They augment their visual SLAM system with the ability to
detect known planar patches and use them to jointly improve mapping and localization.

AIRPRp"p", qwlolmllp R III
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Peasley et al. [186] use the Manhattan World assumption to impose constraints on the
trajectory of a robot though an Manhattan World environment and show that this yields
drift-free SLAM, eliminating the need for loop-closures, given that the assumption
holds. They detect the dominant orientation using RANSAC on LiDAR scans and
match it to one of the four possible Manhattan World directions (the system operates
in 2D). Salas-Moreno et al. [209] integrate plane segmentation into the tracking and
reconstruction pipeline of a dense surfel-based reconstruction system. Numeric results
show that utilizing a plane segmentation of the environment leads to improved tracking
accuracy. Kaess [129] explores a direct plane-based SLAM formulation wherein the map
directly consists of infinite planes which are being jointly optimized with the camera
pose. In a way this approach fuses map and segmentation into one entity. Ma et al. [158]
demonstrate joint inference over a key-frame-based map and a plane segmentation of
the environment. The joint formulation with soft plane-assignments reduces drift of the
SLAM system.

Section 5.2 introduces the first directional-aware SLAM system that jointly reasons
about the directional Stata Center World segmentation, camera trajectory and 3D
structure of the environment.

U 1.1.3 Beyond Geometric Scene Segmentation

Beyond geometric scene priors and segmentations several approaches have been pro-
posed that aim at incorporating human-annotated semantic labels into the 3D recon-
struction process. Before reviewing such joint reasoning systems I touch on systems that
given a 3D reconstruction or in parallel to the reconstruction process infer a surface
segmentation but do not use it further.

Semantics without further use Reasoning about semantic content of a scene is in itself
an interesting problem since semantic scene understanding could be used for interac-
tions with humans. Silberman et al. [173] are among the first to reason about the
semantic segmentation and support relations of the environment using RGB and depth
information captured via a Kinect camera. They orient all scenes into a canonical view
using the Manhattan World assumption. Building on the NYU RGBD dataset by Sil-
berman et al., Ren et al. [196] improve on the scene segmentation quality by improved
feature extraction via the use of Kernel descriptors. Similarly, Gupta et al. [96] work on
the NYU v2 depth data and improve on scene segmentation with up to 40 categories.
Hermans et al. [111] run a dense SLAM system in parallel to a pixel-wise classifier in
image space. They fuse the pixel-wise labels on the 3D map using a conditional random
field. Dai et al. [54] use BundleFusion [55] to reconstruct 1513 scenes and crowd source
dense semantic labels for each of them. ScanNet, their deep convolutional neuronal
network, is trained on the annotated 3D reconstructions and can then be used to infer
a semantic segmentation of voxelized 3D scenes.

Semantics inferred and used jointly Arguably the ability of a system to utilize the
inferred (semantic) segmentation of an environment can be seen as some (rudimentary)

13Sec. 1.1. Related Work



understanding of the meaning of the segmentation. Bao et al. [16,17] jointly estimate
object and region segmentation of a sparse point cloud in the structure from motion
framework. Object detection is carried out in the image space. Fioraio et al. [72]
jointly perform object detection, mapping and camera pose estimation in what they
refer to as semantic bundle adjustment. In contrast to Bao et al. their algorithm works
incrementally and not in batch, and the object detection is part of the SLAM system and
not via an external object recognition algorithm. Xiao et al. [254] show how enforcing
label consistency in a 3D reconstruction system leads to better 3D reconstruction by
decreasing drift and correcting loop closures. Kundun et al. [143] jointly use dense
image segmentation and the raw RGB image captured from a single camera to infer
a semantic 3D reconstruction as well as the camera trajectory. Working in the realm
of RGBD cameras as well, Kim et al. [137] use a voxel-based world representation
and, for a given R.GBD image, infer the 3D occupancy (i.e. the 3D structure) and the
segmentation of the environment into semantic classes. Their model allows reasoning
about occluded scene parts. Salas-Moreno et al. [211] are the first to demonstrate a
SLAM system that utilizes dense 3D object models as beacons for camera tracking and
map representation. At its core the system has an efficient way of detecting dense 3D
mesh models of objects. The map is represented via a pose-graph of objects.

* 1.2 Outline and Summary of Contributions

At a high level, Chapters 3 and 4 of this thesis introduce surface normal models for
geometric scene segmentation. In Chapter 5 we leverage the nonparametric models
developed in the previous chapters to improve the fundamental 3D perception problems
of global point cloud alignment and 3D reconstruction.

In Chapter 3 we first investigate the properties of surface normal distributions of 3D
environments that follow the Manhattan World assumption. That is the assumption
that all planes in a scene are parallel to one of three major planes that are mutually
orthogonal as displayed in Fig. 1.4. We propose and formalize the novel Manhattan
Frame model which captures the Manhattan World assumption in the surface normal
space. Based on this we introduce the first probabilistic Manhattan Frame model and
derive efficient maximum a posteriori inference algorithms for two Manhattan Frame
models with different surface normal noise assumptions. The resulting algorithm can
be run in real-time, is robust to rapid camera motion and yields drift-free rotation
estimation. This model and the results have been published in [221, 226].

The second contribution described in Chapter 3 is the generalization of the Manhat-
tan World model to capture multiple Manhattan Worlds. This is necessary to describe
man-made environments at a larger scale as shown in Fig. 1.5. While locally a scene
or a part of a city may be well described by the Manhattan World assumption, the
whole scene or the collection of neighborhoods in a city has to be modeled by multiple
Manhattan Worlds. The contribution published in [225, 226] is to (1) outline this gen-
eralization, and to (2) draw the connection between 3D structure and surface normal

lop
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Figure 1.4: The Manhattan World model assumes that all planes in a scene are parallel
to one of three mutually orthogonal planes. These planes are indicated in red, green,
and blue.

space in the form of what we term the Mixture of Manhattan Frames (MMF). Again
we define a probabilistic model describing the phenomenon of the MMF and show how
to perform sampling-based inference such that the number of Manhattan Frames can
be inferred as well as the Manhattan Frame rotations themselves. Additionally, we
propose a fast alternative for MMF inference by maximum a posteriori inference. We
show that the inferred MMF models lead to expressive directional scene segmentations
that are consistent with a human annotator.

The contributions in Chapter 4 are two Bayesian nonparametric mixture models
for surface normal modeling that can be applied to any-dimensional directional data.
Both models, when applied to surface normal data, generalize the MMF model in that
they relax the orthogonality constraints of the Manhattan World. These relaxed mod-
els capture environments we refer to as the Stata Center World (SCW) because of the
"relaxed" building style of the Ray and Maria Stata Center of MIT as displayed in
Fig. 1.6. While there are few orthogonal corners in the Stata Center, there are still par-
allel planes, which manifest as clusters in the surface normal space. First, in Sec. 4.3.2,
we propose a Dirichlet process mixture model of Gaussians in dedicated tangent spaces
to the sphere, the space of directional data. This model, published in [224], is able
to adapt the number of clusters to fit the observed data, and can capture anisotropic
directional clusters. We carefully exploit the geometry of the sphere to derive efficient
sampling-based inference. Second, in Sec. 4.4.3, we derive a k-means-like directional
clustering algorithm, called DP-vMF-means, as the low-variance limit of the posterior
inference in the Dirichlet process von-Mises-Fisher (vMF) mixture model. Additionally,
we propose the dependent Dirichlet process vMF mixture model to capture temporal

15Sec. 1.2. Outline and Summary of Contributions
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Figure 1.5: On a larger scale scenes can often be described by multiple Manhattan
Frames as shown in this aerial view of Cambridge and Boston. Colored areas indicate
areas following different Manhattan Worlds. Within each region planes are assumed to
follow the Manhattan World assumption for some local orientation.

evolution of the mixture model. Again, by analyzing the low-variance limit, we derive
a real-time capable k-means-like temporally consistent clustering algorithm we term
DDP-vMF-means. Part of the contribution in this section is algorithmic development
to exploit massively parallel processing on Graphics Processing Units to enable real-
time operation on batches of 300k data-points at a frame-rate of 30 Hz. Related work
on general directional clustering is reviewed in Sec. 4.1.

In Chapter 5 we leverage the Stata Center world surface normal model to improve
global point cloud alignment and 3D reconstruction. The global point cloud alignment
approach described in Sec. 5.1 can be seen as reasoning about the posterior over the
camera pose given a segmentation and a map in Eq. (1.7). The contributions to global
point cloud alignment include the use of Bayesian nonparametric mixture models to
describe point and surface normal densities, the decomposition of the search into two
3D problems aided by surface normals, a novel discretization of the rotation space, and
convergence and performance guarantees for the branch-and-bound search algorithm.
In Sec. 5.2 we introduce the first nonparametric direction-aware SLAM system that
reasons about the joint posterior over map, camera trajectory and directional geometric
scene segmentation as posed in Eq. (1.1). Contributions comprise the first use of a
Dirichlet-process-based scene prior in a real-time reconstruction system and the first use
of a directional segmentation to improve camera tracking and map quality. The map
formulation establishes a connection between the scene-wide directional segmentation
and local surface properties for joint inference. The proposed inference architecture
relies on sampling-based inference which allows quantification of uncertainty and opens

16 CHAPTER 1. INTRODUCTION AND PROBLEM DEFINITION
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Figure 1.6: The Stata Center world relaxes the orthogonality constraints of the Manhat-

tan World to describe environments that consist of sets of parallel planes with arbitrary

orientation differences as illustrated in different colors in the figure via manual shading

(not a result). The model is inspired by the very "relaxed" building style of the Ray

and Maria Stata Center at MIT depicted above.

up the field of realtime 3D reconstruction to utilize complex Bayesian nonparametric

models.
We conclude this thesis in Chapter 6 with a high level discussion of the results and

propose future directions.
Code for all chapters can be found at http://people.csail.mit.edu/jstraub/.
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Chapter 2

Background

This thesis draws on fundamentals in Bayesian statistics (Sec. 2.1), sampling-based in-

ference (Sec. 2.2) and common distributions such as the categorical and the Gaussian
distribution and their conjugate priors (Sec. 2.3). In addition, Bayesian nonparametric
mixture models are reviewed in Sec. 2.4 as they form the backbone of flexible generative
models that are used to describe aspects of the environment in Chapter 4. Because of
its use throughout this work special attention is paid to the class of Dirichlet process
mixture models. To derive efficient inference from such Bayesian nonparametric models
one recent method is small variance asymptotic analysis which is reviewed in Sec. 2.5.
Reasoning about surface normal distributions is a key contribution of this thesis and
Sec. 2.6 therefore introduces different directional distributions used herein. In Sec. 2.7
we provide an introduction to rigid-body transformations and the three most prominent
3D rotation representations. A thorough understanding of these representations and
their connections is important for the representation and inference of the Manhattan
Frame as introduced in Chapter 3 and for the derivation of the branch and bound algo-
rithm to optimally search over the space of rotations in Sec. 5.1. Finally, the connection
between surface normals and the Gauss map as well as the computation of surface nor-
mals in practice is described in Sec. 2.8. Since all contributions in this thesis to some
degree rely on surface normals extracted from point clouds, depth images, meshes or
implicit shape representations, understanding the tradeoffs between the different tech-
niques for extracting surface normals from various shape representations are essential
and reviewed in Sec. 2.8 as well.

* 2.1 Bayesian Inference

Bayes' rule is fundamental to modern probabilistic inference in fields ranging from
robotics and computer vision to finance, politics, and biology applications. It states that
the distribution over parameters 9 given observed data x and hyper-parameters a, the
so called posterior distribution, can be computed solely from the likelihood distribution

p(x 19) and the prior distribution over the parameters p(6; a):

(9 I X;z) p(x O)p(; a) p(x )p(O; a) (2.1)
p(x; a) fep(x I O)p(O; a) dO
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Bayes' rule is important since it characterizes how the belief about the parameters 9
changes after observing some data x solely based on knowledge, via the likelihood, of
how likely we are to observe the data and some prior distribution on the parameters.
The utility of Bayes' formula is that is generally easier to define the likelihood and
the prior distribution than it is to know the form of the posterior distribution p(O I
x; a). Another way of looking at the prior and likelihood is that they captures how
parameters 9 are generated from a model and how data x are generated from the
model parameterized by 9. In this thesis we often adopt a generative viewpoint when
describing a probabilistic model. That is we describe how parameters 9 and data x are
generated under a proposed probabilistic model.

One important realization is, that since data x is given, the denominator of Eq. (2.1)
is a constant. This constant is called the normalizer or partition function. This means
the posterior is proportional to the likelihood times the prior:

A( I X) o p(x )p(O; a). (2.2)

For some applications such as maximum-a-posterior inference, it is sufficient to know
the posterior up to proportionality, which eliminates the hard problem of computing or
estimating the partition function.

Bayesian inference is the process of computing or estimating the posterior, that is
to compute the distribution over parameters after observing some data given a prior
distribution (i.e. a belief) about the parameter distribution. Broadly speaking there are
the three main approaches to posterior inference: sampling-based inference, variational
inference and expectation maximization. While we do utilize low variance analysis (a
fourth, less common approach; see Sec. 2.5) in Chapter 4 we mostly focus on sampling-
based inference for this thesis. See Sec. 2.2 for an introduction to sampling-based infer-
ence and for the motivation of its use. A broad overview over the different techniques
may be found in [24].

In some applications it might be enough to get the most likely set of parameters on
the support of the parameters . This is called maximum a posteriori estimation and
is formally defined as

9* = argmaxp( x) =argmaxp(x l)p(9; a). (2.3)
see see

If the prior is uniform on the support of 9 maximum a posteriori estimation reduces to
maximum likelihood estimation

9* argmaxp(X 9). (2.4)
oee

The difference to full posterior inference is that we only get a point estimate of the
peak of the full posterior distribution. This for example means that we can get no
information about the uncertainty of the parameter estimate 9*, one major advantage
of full posterior distribution inference.

In the following we briefly introduce and review key concepts of Bayesian modeling
and inference.
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Exchangeability Throughout this thesis we will often make the (silent) assumption
that observations x 1 , X2, - - -, XN in a batch of data are exchangeable. That is the order
of observation does not matter, i.e. the probability of the set of data is invariant to
reordering. Formally, for any permutation ri of the indices of the data

p(X1, X2, - I . I XN) = p(Xri I Xr2l .. ) - XrN ) . (2.5)

One of the simplest exchangeable distributions follows the form

N

p({Xi} 10) = p(xi I )p(O) (2.6)
i=1

Since the product of likelihood terms p(xi 1 0) can be arranged in any order this dis-
tribution is exchangeable. Indeed we will encounter variants of this model throughout
the thesis.

Sufficient Statistics For some posterior distributions it is possible to "summarize" all
information about a set of data {x} in a statistic of the data sN i 1)- I
the statistic captures all information such that

p(O| {xI} 1 ) =p(O SN) (2.7)

the statistic is called sufficient. Sufficient statistics are of great importance for deriving
efficient inference algorithms: the amount of storage needed to capture all relevant in-
formation about a set of data can be compressed from O(ND) to O(Poly(D)), where D
is the dimension of the data and Poly(D) is usually a low degree polynomial. Addition-
ally, once the sufficient statistic is computed inference algorithms can save computation
time since no further iterations over all data are necessary. Sufficient statistics are
especially useful in CPU-GPU systems because of the limited memory bandwidth be-
tween CPU and GPU. By keeping the data to be processed on GPU memory and only
transferring sufficient statistics to CPU, algorithms can be sped up significantly. This
will be exploited in several places in this thesis.

Conjugate prior distributions Given a likelihood p(x 1 0), which is usually known or
defined because of the phenomenon to be modeled, different priors p(O; a) can be con-
sidered determining the form of the posterior p(6 I x; a). It turns out that for a large
class of likelihood distributions (e.g. the exponential family of distributions introduced
in Sec. 2.3.1) there exists a conjugate prior. Under a conjugate prior distribution, the
posterior has the same algebraic form as the prior with updated parameters aN:

p(0 x; a) = p(; &N) - (2.8)

This means that inference is simplified because the form of the posterior is known
exactly. Often the update to the hyper-parameters a can be written as a function of
the sufficient statistics of the data x (e.g. in the case of exponential family distributions)
allowing for efficient inference as discussed before.
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Marginal data distribution The marginal data distribution is the distribution of the
data x under the prior distribution marginalized over the parameters 6

p(x; a) = Jp(x I )p(; a) d9. (2.9)

This captures the distribution of data x as predicted under all possible parameters 6
distributed according to the prior p(&; a).

Posterior predictive distribution The posterior predictive likelihood is the likelihood of
a new data z given a set of observed data x marginalized over the parameters

P(I I x; a) = 1 p( O I O)p(O I x; a) dO. (2.10)

The posterior predictive distribution captures the predicted distribution of new data i
after observing data x. In practice, for example, we can use this distribution to evaluate
how well an inferred model can explains the data in a held-out dataset.

U 2.2 Sampling-based Inference

In contrast to parameter estimation which generally leads to optimization problems,
Bayesian inference generally leads to the evaluation or estimation of expectations of
functions f of the random variable

IE [f (x)] = f (x)p(x) dx. (2.11)

Sampling-based inference aims to draw samples from a given distribution p(x) to allow
the approximation of such expectations of functions of the random variable x via the
strong law of large numbers which states that given N samples xi from p(x)

()1E,[f(x)}. (2.12)
i=1

This process is called Monte Carlo integration. Noting that expectations of random
variables, probabilities and density normalizers can all be expressed as integrals over
some function, it is clear that being able to obtain samples from arbitrary distributions
is a very powerful tool.

For simple distributions like a uniform or a Gaussian distribution efficient methods
exist to directly draw samples from the distribution. In general, for arbitrary and
potentially quite complex p(x), drawing samples is not straightforward especially if the
normalization constant is unknown.

There are various algorithms for sampling arbitrary distributions. Importance sam-
pling, rejection sampling, slice sampling and particle filtering are methods suitable for
sampling low dimensional variables x, since they suffer from the curse of dimensionality
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Sec. 2.2. Sampling-based Inference

or are hard to extend to high dimensions. For distributions over a high dimensional
state x such as the ones we are mostly investigating in this thesis, Markov chain Monte
Carlo methods are better suited.

In [198] Robert and Casella give an excellent introduction and a comprehensive
overview and discussion of sampling based inference methods. In the following we
briefly review key algorithms used in this thesis.

M 2.2.1 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm [105] constructs an ergodic Markov chain over the
state variables x such that the stationary distribution is p(x). This means that in
the limit of sampler iterations the samples x are guaranteed to be drawn from the
desired distribution p(x) (Sec. 7 [198]) Interestingly, such an ergodic Markov chain can
be constructed from any proposal distribution q(x' I x) known up to proportionality.
In each iteration, the Metropolis-Hastings algorithm samples a proposal x' given the
current state x from q(x' I x) and accepts it with the Metropolis-Hastings acceptance
probability:

P, (x', x) = min ,x (2.13)
m p(x)q(x' x) (

The Metropolis-Hastings algorithm is outlined in Alg. 1. From a practical standpoint
one chooses the proposal distribution such that it is easy and efficient to sample x'.

1: Initialize x = xo
2: while more samples desired do
3: Sample proposal x' ~ q(x' x)

4: Compute Pa(X', x) = min 71, p(x,)q(xI

5: Sample a uniformly at random between 0 and 1
6: if a < Pa then
7: Accept proposal x = x'
8: end if
9: end while

Algorithm 1: Metropolis-Hastings algorithm.

To guarantee that p(x) is indeed stationary distribution of the Markov chain es-
tablished by the Metropolis-Hastings algorithm, the transition kernel K(x', x) of the
Markov Chain has to fulfill the detailed balance condition (Defn. 6.45. [198]):

K(x', x)p(x') = K(x, x')p(x). (2.14)

Detailed balance is established for any proposal distribution subject to the aforemen-
tioned constraints by construction of the Metropolis-Hastings algorithm as shown in
Thrm. 7.2 [198]. To guarantee that the Markov Chain converges to the stationary
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distribution, the Markov Chain has to be ergodic. A way of ensuring ergodicity is to
construct the proposal distribution such that all parts of the support of p(x) can be
reached (see Lemma 7.6. [198]).

While in theory it takes infinite sample iterations to reach the stationary distribu-
tion, there are elaborate algorithms and techniques to asses approximate convergence
to the stationary distribution (see Sec. 12 [198]). In practice it is often sufficient to just
sample for some predetermined amount of time.

E 2.2.2 Gibbs Sampling

Assume we can split the state variables into two sets x and y such that we can sample
from the conditional distributions p(y I x) and p(x I y). As outlined in Alg. 2, the Gibbs
sampling algorithm simply consists of alternating sampling from the two conditional
distributions. Gibbs sampling can be understood as an instantiation of the Metropolis-

1: Initialize x = x0 and y = yo
2: while more samples desired do
3: Sample x ~ p(x y)
4: Sample y ~ p(y x)
5: end while

Algorithm 2: Gibbs-sampling algorithm.

Hastings algorithm where the proposal distributions are conditional distributions of
p(x, y) (see Sec. 10.2.2 [198]):

q(x', y' x, y) = 6y (y')p(x' y y) (proposal for x') (2.15)

q(x', y' x, y) = 6x(x')p(y' x x) (proposal for y') . (2.16)

This leads to an acceptance probability of 1 as can be verified for the proposal of x'
(the same applies to the proposal of y'):

p(x', y')q(x, y x', y') _ p(x' I y)p(y)6y(y')p(x y)- 1 . (2.17)
p(x,y)q(x',y' I x,y) p(x y)p(y)6y(y')p(x' y)

This is an important connection since it means that the guarantees of sampling from
the target joint distribution p(x, y) of the Metropolis-Hastings algorithm carry over to
the Gibbs sampler.

Here we have examined the case of two sets of random variables, but the Gibbs
algorithms extends to an arbitrary number of sets of random variables as long as one

can sample from the full conditional distributions (see Sec. 10 [198]).

* 2.2.3 Reversible Jump Markov Chain Monte Carlo

The Reversible Jump Markov chain Monte Carlo (RJMCMC) sampler by Green et al. [94]
(see Sec. 11 [198]) is a slight generalization of the Metropolis-Hastings algorithm, that

MMMOPIPM lip 1" 10 P1141P11'R RM"I R"11 R, 0
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utilizes auxiliary variables to propose deterministic moves to change between model
orders. This is important in the context of Bayesian nonparametric models (introduced
in Sec. 2.4) where the number of clusters, i.e. the model order, is part of the inference.

In general the RJMCMC algorithm executes the following three steps. First, draw
auxiliary variables v given the current state x from some proposal distribution q(v I x):

v ~ I x). (2.18)

Second, apply a deterministic function f([x, v]) to generate the state after the move k
as well as auxiliary variables u:

f ([x, v]I)= [uR]. (2.19)

By [x, v] we denote stacking of all parameters in x and v. Third, accept the move from
state x to state R with acceptance probability Pa:

f p(k) q(x) '1i
P,, = min 1, P|) det(Jf)I (2.20)

p(x) &~ I x)

where the Jacobian Jf = . As can be observed, the acceptance probability is

the same as for the vanilla Metropolis-Hastings algorithm in Eq. (2.13) modulo the
multiplication by the determinant of the Jacobian of the deterministic transformation.
This factors in the scaling incurred by the transformation. It turns out that in all cases
relevant to this thesis the determinant is 1, and that therefore the RJMCMC and the
Metropolis-Hastings acceptance probabilities are equal.

E 2.2.4 Slice Sampling

Slice sampling [175] allows sampling from any distribution p(x) known up to propor-
tionality. The idea is to sample uniformly from the area under p(x). Introducing an
auxiliary random variable u, the area is

A = {(x,u) : 0 < u < p(x)}. (2.21)

The joint distribution of x and u is defined to be uniform over A. The probability
density function value is Z- 1 where Z = fA dx du = f p(x) dx is the normalizer of the
target density p(x). Sampling from this uniform joint distribution is achieved using a
Gibbs sampler where the conditional distributions are

p(u | x) = Unif(0, p(x)) (2.22)

p(x u) = Unif(p(x) > u). (2.23)

While sampling u is straightforward and requires only a single evaluation of p(x), sam-
pling from x can be difficult if the distribution p(x) is multimodal. Neal [175] proposes
several algorithms for efficiently sampling from the conditional distribution of x. For
additional discussion and practical examples refer to Sec. 8 [198].
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N 2.3 Common Distributions

In the following we review the exponential distribution family before introducing two
common family members in detail, the categorical and the Gaussian distribution, as
well as their conjugate priors. These distributions are used throughout the thesis.
More extensive discussion of these distributions and others can be found in [85].

* 2.3.1 Exponential Family

The exponential family of distributions is a class of distributions that follow the form

p(x 10) = h(x) exp (1(0) T T(x) - A(6)) , (2.24)

where q(6) are called the natural parameters, T(x) are the sufficient statistics of the data
and A(O) is called the log-partition function. The log-partition function is determined
such that the distribution is normalized to integrate to 1:

exp(A(0)) = J h(x) exp (,(9)T T(x)) dO. (2.25)

We will sometimes refer to the inverse partition function as Z(9) = exp(-A(O)).
Various important distributions belong to the exponential family: the categorical,

the Dirichlet, the Gaussian, the Wishart, the inverse Wishart, the beta, the Poisson,
the exponential, the gamma, the Bernoulli, and the chi-squared distribution. Less
common distributions like the von-Mises-Fisher distribution (see Sec. 2.6.3) and the
Bingham distribution [23] are also exponential family members. The exponential family
distributions have two important properties for efficient inference: they have a sufficient
statistic and a conjugate prior associated with them. In the following we review a subset
of the exponential family distributions that are relevant for this thesis.

N 2.3.2 Categorical and Dirichlet Distribution

The categorical distribution is a distribution over K independent events. The different
event probabilities are captured by the parameter { k 1  where EK=1 7rk = 1. The
toss of a fair die, for example, can be modeled by a categorical distribution with all

7rk = . The distribution can be written as

K

p(z I 7r) = J , rz=k, (2.26)
k=1

where z {1,. .. ,K}. To designate the drawing or sampling of a random event z E
{ 1,... , K} from a categorical distribution we write:

z - Cat(7r) . (2.27)

In practice one can sample from a categorical distribution using the inversion method

(see the general treatment in Sec. 2.1.2 and Example 2.10 of [198]). This method involves
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sampling a value v from the uniform distribution between 0 and 1 and comparing the
value against the cumulative sums cj over rk, which represent the cumulative density
function:

Ci = k , co = 0. (2.28)
k=1

The random sample z is the value that satisfies c,-1 < v < c.
In many real-world Bayesian generative modeling problems the event probabilities

7r are not known and thus assumed to be random as well. The common distribution
assumed for the event probabilities is the Dirichlet distribution. It is a conjugate prior
distribution for the categorical (and the multinomial) distribution, which means that
the posterior distribution is Dirichlet again. The distribution is

k=1 ak) K
p(7; O) = K 7 k , (2.29)

k~=1 F(Oak) k=1

where r(.) is the gamma function. Sampling event probabilities r from a Dirichlet

distribution parameterized by the pseudo counts {ak(f , ak ;> 0 is denoted as:

7r ~ Dir(a). (2.30)

In practice sampling from a Dirichlet distribution can be accomplished via sampling

from a gamma distribution (which is implemented in most scientific programming lan-

guages and libraries) and making the resulting samples sum to 1:

rk - KT k ,rk ~ Gamma(Yk, 1). (2.31)
Ek=1 Tk

In summary, the Dirichlet distribution is a distribution over a distributions. To go

back to the example with rolling a die: The Dirichlet distribution is like having a big

bag of infinitely many dice with different event probabilities. Before rolling a die we

blindly draw a die from the bag. Now the die we are going to roll to obtain a number is

distributed according to the distribution of dice that we put into the bag. The Dirichlet

distribution is a distribution over the simplex defined by E 1 7r = 1. For K = 3 can

visualize it for different parameter values a in Fig. 2.1.

Assume that we are given a set of labels z = {zi}_i= 1 and are interested in knowing

the posterior distribution on 7r given the observed labels. We will assume a Dirichlet

prior with parameter a on the event probabilities 7r. Since the Dirichlet distribution is

conjugate to the categorical distribution of the data the posterior is Dirichlet again:

N

p(r I z; a) = Dir(ali + Nl,. .. ,aK + Nk), Nk = lz=k, (2.32)
i=1

where 1(.) is the indicator function which is 1 if (-) is true and 0 otherwise. Hence Nk

is the number of labels z having the value k.
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r = (0, 0, 1) 7r =(0, 1, 0)

r= (1, 0, 0) a = (100, 100, 1) a = (1, 1, 100) a = (0.1, 0.1, 0.1)

a = (100,100,100)

Figure 2.1: Visualization of the Dirichlet distribution density for K = 3 categories.
Each location on the simplex corresponds to a Categorical distribution parameter ir as
indicated for the corners to the left. "Hotter" coloring indicates a higher density value.
For a = (1, 1, 1) the distribution is uniform over the simplex.

* 2.3.3 Gaussian and Normal Inverse Wishart Distribution

The Gaussian distribution is a well known distribution for a concentrated cluster of

data in Euclidean space. Its density in D dimensions is given as

((2r)DTj) ex (_.(X -,)
T EZ1 (x - II)) (.3

A(x I p, E) = ((27r)D E -1exp 2 (2.34)

((27r ) -1 e , _ 1X _A1)(.4)

There are various methods for sampling from the 1D Gaussian distribution (see Exam-

ple 2.8 of [198]) and most scientific libraries and programming languages allow have one

of the variants implemented. To sample from the multivariate Gaussian distribution
we use the fact that we can sample from the D-dimensional zero-mean unit-variance
Gaussian distribution by simply sampling D draws from P'(0, 1):

X = (X, .. ,xD) where xi ~ (0,1) (2.35)

E2X + p ~ JV(L, E), (2.36)

where E2 is the matrix square root of the covariance matrix which can be obtained via

the Cholesky decomposition.
In Bayesian generative modeling the parameters p and E should often be part of

the inference procedure and are thus assumed the have prior distribution. While one

could put various prior distributions, it is convenient to choose the Normal inverse

Wishart (NIW) distribution because it is a conjugate prior for the Normal distribution.

This makes posterior inference easier since the posterior distribution of the Gaussian

parameters is NIW again. The NIW distribution is given as the product of a Gaussian
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distribution (as a prior on the Gaussian mean) and a inverse Wishart (IW) distribution:

NIW (p, E; t, 19, v, A) = K (p; V, ) W(E; v, A). (2.37)

Sampling from the NIW distributions proceeds in two steps:

E ~ IW(v, A) (2.38)

p ~ A (9, j).(2.39)

While sampling from the Gaussian is quite straightforward, sampling from the inverse
Wishart amounts to sampling from a Wishart distribution as described in [181] and
inverting the resulting matrix [85].

Given some Gaussian observations x the posterior distribution for the Gaussian
mean and covariance matrix is NIW with the parameters [85]:

KN = ro +N (2.40)

vN = V0 + N (2.41)

9N = n0  + - (2.42)
KN KN

AN=Ao + S + oN(,do -t 5(,do _- )T,AN KN(2.43)

where we have used the sufficient statistics N and

N

;r- k L xi (2.44)
i=1

N

S = LxixT - Njz T. (2.45)
i=1

The importance of sufficient statistics in general is that once we have computed them,
we can discard the underlying data points xi because everything needed for inference
is captured in the statistics. This is an important factor in deriving and implementing
efficient inference algorithms. One can either incrementally add and remove data points
to and from the statistics, or even run pyramid-schemed reduction operations that can
be parallelized and run on a graphics processing unit (GPU).

U 2.4 Bayesian Nonparametric Mixture Models

Bayesian nonparametrics (BNP) is a subset of Bayesian statistics that investigates mod-
els with an infinite parameter space. Like standard Bayesian models (see Sec. 2.1),
Bayesian nonparametric models describe observations x as drawn randomly from the
likelihood distribution p(x 9 0) parameterized by 9. The parameter 9 is assumed to
be a random variable distributed according to the prior p(9; a) with hyper-parameters
a. In contrast to standard Bayesian models, the dimension of 9 is by construction
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Go

Go
a G

0i Ilrk , k

N

(a) Implicit graphical representation of the
Dirichlet process mixture model.

a Go

zi

N

(b) Explicit Dirichlet process mixture model
with instantiated mixture weights 7r00 and in-
dicators { zi } .

Figure 2.2: Explicit and implicit Dirichlet process mixture model representations.

infinite in the Bayesian nonparametric case. Examples of BNP priors are the Dirichlet
process (DP) prior [8, 70, 233], Indian buffet process [86], or the Gaussian process (GP)
prior [194,253]. For this work DP mixture models [8] (DP-MM) are of main interest
and are thus introduced next.

The DP prior is used as a prior for probabilistic models with a countably-infinite
number of mixture components. Formally, a DP is a stochastic process whose sample
path defines a probability distribution over the event space Q. It is defined via a base
measure Go on Q and a concentration a > 0. A realization G ~ DP(Go, a) of the
Dirichlet process satisfies the property that for any finite partition of the event space

UK J a

(G(A1), ... , G(AK)) ~ Dir(aGo(A1), ... , aGo(AK)) . (2.46)

In other words, the probability mass of the partitions Ak under the realization G of the
DP follows a Dirichlet distribution whose weights are proportional to the probability
mass of the partitions under the base measure Go. A draw G ~ DP(a, Go) can be
represented as the sum of delta functions at the atom locations 0j:

G = Zris(O). (2.47)

Figure 2.2 depicts the base measure Go as well as the random measure G drawn from it
by the atoms 6k with associated weights 7rk. From a generative point of view a data point
xi is generated by drawing a parameter Oi from G followed by drawing xi ~ p(xi I Oi).
This model is depicted in Fig. 2.2a. The structure of G implies that samples 9i ~ G
will repeat with non-zero probability. This observation clarifies the clustering property
of the DP prior and motivates its use in Bayesian mixture models.

An alternate construction due to Sethuraman [216] is called the stick-breaking con-
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struction of a DP. The aforementioned atom weights 7rk are defined recursively as:

k-i

7rk = k (1 - Cj) Ck- ~Beta(1, a) Vk c [1,...,oo). (2.48)
j=1

Atoms 9 k are drawn from the base measure Go. The stick-breaking formulation pro-
vides a way of sequentially sampling from the DP. Since parameters Oi will repeat with
certainty, it is not necessary to instantiate a dedicated parameter O2 per data point.
Instead a set of distinct parameters {0k} i is maintained. To indicate the assign-
ment of a data point xi to one of the atoms 6k indicator variables zi are commonly
instantiated. The resulting graphical model is depicted in the explicit model of a DP-
MM in Fig. 2.2b. Using the stick-breaking construction the DP-MM is defined from a
generative standpoint as

7r0 ~ GEM(1, a) (2.49)

0 ~ p(O; Go) (2.50)

zi ~ Cat(7o0) (2.51)

i ~ p(xi 10, zi) , (2.52)

where the stick breaking process was denoted GEM(1, a) after its inventors Griffiths,
Engen and McCloskey [190].

A second approach to constructing the draw G from a DP utilizes a Poisson process
with a specific measure to define a Gamma process [151]. The DP is obtained as the
normalization of the draw from a Gamma process. This approach can also be used to
construct dependencies between DPs via dependencies between the underlying Poisson
processes [151].

One way to intuitively understand the effects of a DP prior is via the so called
Chinese Restaurant process (CRP). The CRP is obtained from the DP by marginalizing
over the random measure G [25,174]. It can be understood by visualizing the process
of customers sitting down at tables in a restaurant. Customers are the equivalent of
data-points and tables correspond to mixture components in the actual DP-MM. The
probability of customer i being assigned to table k (zi = k) can be derived to be:

p(zi = k I z\i; a) cx Nk <k<K (2.53)

This highlights the "rich-get-richer" property of the CRP and thus the DP: the more
customers sit at a certain table (i.e. are assigned to a mixture component) the more
likely it is that new customers will join them. There are three main inference methods
for DP-MMs: (1) sampling-based inference, (2) variational inference, and (3) low vari-
ance asymptotic analysis. MCMC-based inference algorithms [42, 174, 193] aiming to
sample from the true posterior distribution using Gibbs or Metropolis-Hastings samplers
as introduced in Sec. 2.2. Early work on inference for Dirichlet process mixture mod-
els (DP-MM) relied on the CR.P in the sampling-based inference algorithm [174,193].
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(a) a = 1 (b) a = 0.1 (C) 0, = 0.01

Figure 2.3: Zero-mean Gaussians with variance o. In the limit as o -+ 0 the Gaussian
distribution approaches a Dirac delta function.

This approach exhibits slow convergence, is prone to get -stuck in local optima and does
not lend itself to parallelization [42,121]. Variational inference algorithms which aim to
minimize the Kullback-Leibler divergence between the unknown true DP posterior and
a mean-field approximation to it. The stick-breaking construction is usually used to de-
rive variational inference methods. See [27,128] for an introduction to these methods.
Low variance analysis applied to the DP posterior distribution [33, 39, 123,142, 222]
yields k-means-like inference algorithms [101] (see Sec. 2.5 for more details).

A variety of more complex models has been proposed based on the DP such as the
hierarchical DP [232] (HDP) or the dependent DP (DDP) [151,160]. These models
allow modeling of dependencies between DPs and hence sharing of data between them
in specific ways.

* 2.5 Low Variance Asymptotics

It is well known that the k-means clustering algorithm [155] can be obtained from the
expectation-maximization (EM) inference in a finite Gaussian mixture model (GMM)
by analyzing the limit as the variance aI of the Gaussians approaches zero [24]. In
the limit as a -+ 0 the Gaussian distribution approaches a Dirac delta function (c.f.
Fig. 2.3) and the label posterior distribution becomes an assignment to the closest
cluster with probability 1.

Kulis et al. [142] were first to apply the same analysis to a BNP Dirichlet process
GMM. The resulting DP-means algorithm resembles the k-means algorithm while also
allowing the creation of additional clusters. As shown in Algorithm 3, a new cluster is
created if a data-point's squared Euclidean distance from all currently existing clusters
exceeds a predefined threshold A on the cluster radius:

xi - 1k| for k < K and Ik \ i| > 0
zi= arg min 00 for k < K and lk \ i =0 . (2.54)

kE{1,...,K+1} A for k= K + 1

If data point i is the last in cluster k and hence Ik \ il = 0, it cannot be re-assigned to
the same cluster as expressed by the infinite cost on the assignment. If xi gets assigned
to a new cluster the new cluster is instantiated with mean pK+1 = xi and the cluster
count K is incremented. After each assignment cycle the means pk are updated to the

32



Sec. 2.5. Low Variance Asymptotics 33

sample means of the respective cluster:

lkIk

(2.55)

Jiang et al. [123] generalize this derivation to DP mixtures of general exponential
family distributions. Broderick et al. [33] show a different derivation for the DP-means
algorithm by directly taking the low variance limit on the posterior distribution of the
model. The result of this is an objective function that resembles the k-means objective
with the addition of a term that penalizes the creation of new clusters:

K

J=55 i - pk12 + A(K - 1).
k=1 iElk

(2.56)

This objective function can be optimized in many different ways, one of which is the
aforementioned DP-means algorithm.

J +-0

while J not converged do
for i C {1, ... ,N} do

5: zi = arg minkE{1,...,K+1}

6: if zi = ||+ 1 then

7: I . A U {xi}
8: end if
9: end for
0: for k c {1,..., Ii} do
1: if IIkI > 0 then
2: Pk - E

13:

14:

15:

16:

17:

18:

{ ||xi - PkI||2
00

A

for k < IpI and |Ik \ i| > 0
fork< ipI and Ik\i 0
for k = pLI + 1

// add new cluster

else

A p- A \ Pk // remove cluster k
end if

end for

J - EiK Ii -- sk| -+ A(Ittl - 1)
end while

Algorithm 3: DP-means algorithm.

Campbell et al. [39] derive a k-means-like clustering algorithm for streaming data.
The starting point for their derivation is a dependent DP-GMM (DDP-GMM) that
couples clusters between batches data as constructed in [151]. The algorithm allows

1:

2:

3:

4:

1

I

I
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Linearization

von-Mises-Fisher, 5 D-1 TSD -1 Tangent space

Kent, Bingham Gaussian

Figure 2.4: Two different approaches to modeling a cluster of directional data. A

directional distribution can either be defined directly over the manifold of the sphere

(left) or implicitly via a distribution in a linearization of the sphere (right).

for death, revival, movement, and birth of clusters. The technique has also been ex-

tended to develop asymptotic algorithms for mixtures with general exponential fam-

ily likelihoods [123], and HMMs with an unknown number of states [206]. However,

small-variance analysis has, to date, been limited to discrete and Euclidean spaces. In

Sec. 4.4.3, we derive the first k-means-like algorithms for directional data.

* 2.6 Distributions over the Unit Sphere

Classical statistics rely on the Euclidean structure of RD. If the data naturally resides

on a manifold, special care needs to be taken since the notion of distance on a man-

ifold is different than in Euclidean space [63]. In this section we focus on directional

data n which naturally resides on the unit sphere in D dimensions SD-1. Due to the

nonlinearity of the sphere the statistical analysis of spherical data requires special care

[75, 164].
As depicted in Fig. 2.4, we explore two different approaches to modeling directional

data. Since the sphere is a (D - 1)-dimensional nonlinear Riemannian manifold [63]

we can use Riemannian geometry in combination with the standard Euclidean distri-

butions, such as the Gaussian distribution, to define distributions on the sphere such

as the tangent space Gaussian depicted to the right in Fig. 2.4. The advantages of this

approach are that there exists conjugate priors for the Gaussian distribution parame-

ters, that the Gaussian distribution can represent anisotropic distributions, and that

there are fast samplers for the Gaussian as well as its prior distributions. Additionally,

we explore distributions from directional statistics [164] that are naturally defined over

the unit sphere SD-1. Examples of directional distributions are the antipodal sym-

metric Bingham distribution [23], the anisotropic Kent or also called Fisher-Bingham

distribution [134] and the isotropic von-Mises-Fisher (vMF) distribution [74]. Because

of its comparative simplicity, the vMF distribution is most commonly used. Aside from

being natively defined over the unit sphere, those distributions have some advantages in

posterior inference as we will show. Unfortunately the normalizers tend to involve com-
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p

Figure 2.5: The blue plane illustrates TpS 2 , the tangent space to the sphere 2 at p e S2

(here p is taken to be the north pole). A tangent vector i E TS2 is mapped to n (E 2

via ExpP.

plicated functions such as the Bessel function of the first kind [74]. Another drawback

is that in some cases conjugate prior distributions are only known up to proportionality

(see Sec. 2.6.3). We first introduce details on the manifold of the sphere to set the stage

for distributions over data on the sphere.

U 2.6.1 The Manifold of the Unit Sphere

Directional data n resides on the unit sphere in D dimensions defined as

SD-1 n:nTn = 1; n E RD}. (2.57)

We now give a brief introduction to the geometric concepts useful for statistical

modeling on the manifold of the unit sphere SD-1. The interested reader can consult [63]

for a more detailed discussion and other manifolds. In statistical modeling, distances

are of paramount importance. On SD-1, rather than using the Euclidean distance of

the ambient space, RD, an appropriate measure is the geodesic distance between points,

which is simply the angle between them:

dG(p,n) = arccos (pTn), (2.58)

where p, n C SD-1. The probability measure we will define on SD-1 will exploit this

distance measure implicitly through the concept of a tangent space. While SD-1 is

nonlinear, every point p E SD-1 is associated with a linear tangent space, denoted

TpSD-1, as illustrated in Fig. 2.5:

TPSD- 1  1 {f : pT 0}. (2.59)

Elements X' of TpSD-1 are called tangent vectors and may be viewed as "arrows" based at

p and tangent to SD-1. Note that dim(TSD-1) = D -1 and that the point of tangency,

p, may be identified with the origin of SD-1 (i.e., a zero-length tangent vector). A point,

n E D-1 \ {-p}, is mapped to a point, . E TyD-, via

LogP(n) = (n - p cos 0) = 6,)(2.60)
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where 9 = dG(p, n) and .$ = 1. At the antipodal point -p the mapping is not defined.
Conversely, E TpSD-1 is mapped to x E SD-1 by the Riemannian exponential:

Expp(i) =pcos(|I||I 2 )+ x -sin(||I||2) =n. (2.61)

The 2 norm I|f|X 2 in TSD-1 is equal to the distance between p and n: |W12 = =

dG (p, n). However, this is true only since p is the point of tangency. This implies that
TpSD-1 is a bounded open set of radius 7r. In general, the distance between two other
points in TpSD-1 is not equal to the geodesic distance between their corresponding
points in SD-1.

Due to their linearity, tangent spaces often provide a convenient way to model
spherical data using distributions native to Euclidean spaces. In fact, this is also true for
more general manifolds [78, 80, 187, 220]. This linearity, together with aforementioned

mappings between SD-1 and TpSD-1, enables modeling directional data points via a
zero-mean Gaussian distribution in the tangents space as described in Sec. 2.6.2.

Note that in the formulas for the Riemannian exp and log map points x E TpD-1

are vectors in the ambient Euclidean space RD fulfilling Eq. (2.59). In the following
we express X in local tangent space coordinates as Xm by parallel transporting all
data into the tangent space around the north pole m = (0, ... , 0,1) E SD-1 using a

rotation R. Vectors " E TSD-l all have F_ = 1 and hence im is obtained from
i by simply discarding the last coordinate entry. In the following all this process is
implicitly assumed whenever a point on the sphere is mapped into a tangent space via
the log map. Likewise whenever the exp map is used the process is performed in the
inverse direction: first augment the vector with another coordinate with value 1, then
rotate the resulting point down to the tangent space via RT.

While the rotation R can be computed in any dimension, it is straightforward in
3D via the axis-angle formulation with axis w = and angle 9 = arccos(nTp) as
described in Sec. 2.7.4.

Numeric and implementation considerations When implementing the log map numerical
instabilities can be avoided by using Taylor expansions around the instable points:

arccos(pTn) T

Logp(n) = (n - n) /--(pTn). (2.62)
1 - (pTn - 1) + 2 (pTn - 1)2 otherwise

The Riemannian exponential map can be implemented as in Eq. (2.61) and using the

Taylor expansion of the sinc ||II2 for small angles I|H2:

S 1for 1|H2 <E
Expp() = pcos(II '112) + I !T ! (+ 2 . (2.63)

1 - -f+ 120 otherwise

Furthermore, due to numerical inaccuracies dot products like pTn might not be strictly

inside [-1, 1]. Hence, it is generally advisable to truncate the dot product to be inside
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[-1,1] to ensure that, for example, the arccos can be computed:

pT n = min (1, max (-1, pTn)) . (2.64)

Surface area and volume of unit (D - 1)-sphere The area ASD-1 and the volume VID-1
of the sphere in D dimensions, SD-1, are

D

A2D-1 = (2.65)

D

VD-1 (2.66)
]p (I+ D)

Interestingly both volume and area approach 0 as the dimension increases.

The Karcher Mean

The Karcher mean h is a generalization of the sample mean in Euclidean space [95, 130,
131] to manifold-valued data. For a set of points {ni}f 1 on manifold M with associated
distance measure d(., .), the Karcher mean is defined as the (local) minimizer of the
following weighted cost function:

N N
i = arg mind(p, ni , wi 1. (2.67)

For the purpose of this thesis we are focusing on the manifold of the sphere, M = SD-1,
and usually have uniform weights w = !. For directional data the distance function is
d(., =dG(-,.) arccos(pT n). In this case, excepting degenerate sets, the optimization
problem has a single minimum. It may be obtained by iterating the computation of
the data sample mean in the tangent space around the current estimate of the Karcher
mean, and updating the Karcher mean to the projection of that sample mean back
onto the sphere [187]. Outlined in Algorithm 4, the Karcher mean algorithm takes the
geometry of the sphere into account and exhibits fast convergence.

1: Initialize ho to any data point ni
2: do
3: z = ENJ wiLog,(ni)

4: ht+l - Expft(z)
5: while L|v||2 > E

Algorithm 4: Karcher mean algorithm.

* 2.6.2 The Tangent Space Gaussian (TG) Distribution

Under the tangent space Gaussian model the deviations of observed D-dimensional
directional data from a mean direction i are modeled by a D - 1-dimensional zero-mean
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Figure 2.6: Left: Directional data can be described via zero-mean Gaussian distribu-
tions in cluster dependent tangent spaces TS 2. Right: Illustration of the geometry
underlying the approximation of the mapping of ni into TS2 via Log,(nj).
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Figure 2.7: Probability that a data point x lies inside a disk with radius -r under a zero-
mean Gaussian distribution with covariance E = 2I as a function of a. For o < 220
the probability mass of a Gaussian distribution is approximately contained in T S2.
Beyond 22* the tangent-space Gaussian distribution is less and less well normalized.

Gaussian distribution with covariance E E= RD-1XD-1 in the tangent space around A.
The conjugate prior distribution for covariance matrices E is the inverse Wishart (IW)
distribution (see Sec. 2.3) parameterized by A E RD-1,D-1 and v > 0:

p(n I p, E) = K(Log,(n); 0, E) (2.68)

p(E; A, v) = IW(E; V, A), (2.69)

where Log,,(n) c T,SD- 1. In other words, we evaluate the probability density function

of n E SD-1 by first mapping it into TSD-1 and then evaluating it under the Gaussian
distribution with covariance E E RD-1xD-1. The probability density function of the
directional data over the nonlinear SD-1 is then induced by the Riemannian exponential
map:

n ~ Exp, (K(0, )) . (2.70)

This setup is depicted in Fig. 2.6. The range of Logp is contained within a disk of finite
radius (ir) while the Gaussian distribution has infinite support. Hence, the tails of the
Gaussian are "cut-off" outside that area. As a result the implied distribution on the
sphere is only approximate since it does not integrate to one. As long as the variance is
small, however, the approximation-error is small because most of the probability mass of
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the Gaussian is inside the open set with radius 7r as depicted in Fig. 2.7. Consequently,
for probabilistic inference, we use the inverse Wishart prior to favor small covariances
resulting in a probability distribution that, except a negligible fraction, is within the
range of LogP and concentrated about the mean. Note that all proposed approaches
utilizing Riemannian geometry and the notion of tangent spaces to define a probability
distribution on a sphere can be extended to arbitrary simply connected Riemannian
manifolds.

Log-map Approximation

The tangent space Gaussian model described previously necessitates the evaluation of
Log,(ni) to evaluate the data likelihood. This can become computationally expensive
especially in iterative inference algorithms such as MCMC or optimization-based meth-
ods. To improve computational efficiency in such cases we introduce an approximation
to Log,1 (ni). The approximation necessitates the computation of the Karcher mean h
for the set of normals associated with the cluster on the sphere. After this preparation
step, we can approximate Log,(ni) using the Karcher mean h of its associated set of
data {n} 1 :

Log,(ni) ~ Log,(h) + "RA Log, (ni) . (2.71)

where IRf rotates vectors in TFS2 to T, S2 . Intuitively this approximates the mapping
of ni into p by the mapping of the Karcher mean into p plus a correction term that
accounts for the deviation of ni from the ft. See Fig. 2.6 for an illustration of underlying
geometry.

Clearly when p = h the expression above is exact. For other cases, we analyze the
nature of the approximation in more detail in the following.

p, h and n on geodesic If p, h and n lie on a geodesic, then the approximation is exact.
This is because points on a straight line in TSD-1 correspond to points on a geodesic
in the direction of E- T SD-1 by the definition of the Riemannian exponential map.
The length of the vector X is equivalent to the angle from p to Exp,,() = . Hence we
can write that

Log, (n) = Log,,(A) + 6, (2.72)

where 6 is the vector in the same direction of Log,,(h) that leads to the equality. Because
all points lie on a geodesic, 6 has to have a length equal to the angle between h and n and
has to point in the same direction as Log,1 (A) in T,SD-1. Logf(n) has the appropriate
length and by rotating it from being orthogonal to h to being orthogonal to p via the
rotation AR we obtain the desired vector delta as:

S= IRjLog,(n). (2.73)

This geometric arguments shows that the approximation is exact for p, h and n on a
geodesic. Numerical simulation corroborates this argument.
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Figure 2.8: The norm of the log map approximation error as a function of angle a

between A and Karcher mean h and 3 between h and n. In the experiment A was

chosen to be the north pole, h to be at elevation a and n to be at elevation a and

azimuth 8. This simulates the worst case situation where the two logarithm maps

Log,(i) and Logh(n) are orthogonal. The left plot shows that for small angles a the

approximation is close to the true logarithm map. The plot on the right shows the error

plots for smaller a values. Note that the inference implicitly aims to minimize a thus

improving the approximation.

pI, A and n in arbitrary locations With the angle a between 1L and ft and the angle /

between n and fi:

Log,,(i) + RLogj(n) =( - p cos a) + Ri(n - h cos3) 16

= (i - p cos a) j + (RiN - p cos#3)

= - + RAn-1- - p( a + 3) (2.74)sin a A sin (i tan/a tan +

=an+ ) + &i5 6) -, - [,(a- + 6)

nl+/~ a( +ita + - R=sin + yid -( a~ + $ )+ 56 - &if

where we have used n +6 = h. Note that 116112 < /. For small 3, a e 0 and 116112 /3-

Using 0 = 1 + L + O(x4) and 0= 1 0- - O(x4 ), we can simplify for small /:

Log,(5i) + RLogfi(n) ~:z n 0 + p - p( 0 + 1) + 6g io (.5
=Log,(n) + 8 0 - R6.

Inspecting the remaining approximation error 6 0 - RI6, we see that the norm of the

error is bounded as:

116 - R |6I12 < 116 0 112 + 11Rf6|1 2 = (1 + ) 116112 < (1 + ) /. (2.76)

Clearly, for I and ft pointing in opposite directions (9 -+ 1r) the approximation is

arbitrarily bad since limo_, -4 oo (unless 116112 = 8 = 0). For p less than orthogonal
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(c) r = 100

Figure 2.9: The von-Mises-Fisher distributions on the unit sphere in 3D, S2, with mean
at the north pole and concentrations r. The color encodes the probability density
function value of the vMF over the whole sphere. From the coloring it can be observed
that the von-Mises-Fisher distribution is isotropic.

to A (0 < 7r), 0 < 0 and thus the error norm is bounded by (1+)#. Hence, for small
9 the approximation error vanishes.

Fig. 2.8 shows the norm of the approximation error as a function of a and /. In
the experiment p was chosen to be the north pole, h to be at elevation a and n to be
at elevation a and azimuth #. This simulates the worst case scenario where the two
logarithm maps are at orthogonal angles. It is evident that the approximation is close
to the true log-map value for h in the proximity of p (small a). We will see that in the
inference procedure proposed in Sec. 4.3.2 this is automatically enforced because i! will
be treated as the sufficient statistic for the mean p of a cluster. So in general p will be
sampled close to h. Additionally, the data clusters from which 'h will be computed in
practice tends to be concentrated, making # small as well.

* 2.6.3 The von-Mises-Fisher Distribution

The von-Mises-Fisher distribution is commonly used [14,15, 92,222] and can be re-
garded as akin to the isotropic Gaussian distribution of the sphere. It is parametrized
by a mean direction p C RD and a concentration r > 0 (see Fig. 2.9). Its density is
defined as [15]

vMF(n; P, r) = Z(-r) exp(rpTn)

Z~) r D/2 -l (2.77)Z(-r) = (27r)-D/2 7D21(.7
ID/2- 1 (7)

where I, is the modified Bessel function [1] of the first kind of order v. Figure 2.9
illustrates the vMF distribution in 3D for different concentration parameters. In D = 3

dimensions, with ' = 1/2 sinhr-) and sinh-r = pr-exp(-r), the normalizer of the

vMF distribution simplifies to

- 7-

47r sinh(r) 27r(exp r - exp(-r))*
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A numerically more stable way of writing the vMF distribution in 3D is

vMF(n; , r) = -r -)) (2.79)
27r (1 - exp(-2r))

Sampling An efficient approach for sampling from a vMF distribution was describe by
Ulrich [240]. While the approach works for any dimension we describe it for D = 3
dimensions for clarity reasons. To sample a random vector from a vMF distribution
with mode m = (0, 0, 1) first sample the two variables u and v:

v Unif(SD- 2) (2.80)

u p(u; _) = exp(ru) (2.81)
2 sinh r

and then compute the vMF distributed sample n as

n = (v/1 -U2V u) . (2.82)

In practice we obtain v by sampling from a zero-mean isotropic Gaussian with unit
variance and normalizing the resulting sample to unit length. The inversion method is
used to sample u (see general treatment in Sec. 2.1.2 of [198]): With the cumulative
density of u, F(u), derived from p(u; r)

~ Unif(0, 1) (2.83)

u = F-1 () = 1 + r-1 log ( + (1 - ) exp(-2r)) . (2.84)

Finally, we rotate the sampled vector n from m to p via the rotation "Rm which can
be computed from axis w = m x 1L and angle 0 = arccos(p T m) as outlined in Sec. 2.7.4.
This makes the overall sampling of a vMF distributed data point very efficient for
D = 3 dimensions and the computational complexity independent of the concentration
r (which rejection sampling is not for example).

Conjugate prior of p given r For Bayesian inference it is convenient to have conjugate
priors for the parameters of a distribution because posterior distributions remain in the
same class as the prior distribution. For the vMF distribution mean parameter yI the
conjugate prior, given a fixed r, is a vMF distribution vMF(p; p.O, ro) [180]. Note that
setting To to 0 amounts to assuming an uniform prior distribution for the mean p. The
corresponding posterior given data n = {rni} 1 is -

N

p(p I n; r, o, ro) oc vMF(p; po, ro) flvMF(ni; p, r)

ZN i=)ZT ()N 
(2.85)

= Z(-o) Z (-r exp (pT ( +'r i

Il1 1 1 'I 1 I I I ' llI'I' I
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The last expression has the form of a vMF distribution in p and thus:

p (p I n; T, p0, To) = vMF (P; 9N 19NI12

where 19N = +rTpo T EN ni. Under the conjugate prior for p we can
marginalization in closed form as:

p(n; r, po, To) = I 1

(2.86)

compute the

vMF(n; p, r) vMF(p; po, To) dp

= Z(T)Z(ro) ID-1

Z(T)Z) ISD-1

exp (pT(Tn + Topo)) dp

exp (Il 1129 1_, - d/i

(2.87)

Z(r)Z((ro) Z(T)Z(To)
Z(||191||2) Z(1T|rn + T090 p|2)

where i = -rn + ropo as introduced in Eq. (2.86).

Joint conjugate prior for p and T There also exists a conjugate prior distribution for
the mean M and the concentration parameter -r which unfortunately is only known up
to proportionality [180]:

p(p, r I po, a, b) oc __D/2-1 a

(ID/2-1 (r))
exp (brTJp'o) ,

where 0 < b < a. The normalizing constant can only be computed analytically in
special cases. Knowing this prior only up to proportionality still allows sampling from
it for sampling-based inference. The posterior given observed data {rni}n 1 is

, i,, po, a, b) oc
N (D/2-1 a

0 Zr)exp(nT p I) Z ID/2-1(T)

a+N
T D/2-1

0C(ID/2-1(T)

TD/2-1 aN

ID/2-1(T)

where the posterior parameters are

exp (r T

exp (rbN TPN)

aN = a+ N, bN = 119 2 , PN = [0

N

V ni + bpo.

Observe that 0 < bN < aN because of 0 < b < a. This shows that a acts similar to
the pseudo counts v and r, of the normal inverse Wishart distribution introduced in
Sec. 2.3.3.

(2.88)

exp (b~rT po)

U+ bpo )
N

(2.89)

(2.90)

(2.91)

(2.92)
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Sampling from the joint prior One way to sample from this prior distribution is using
Gibbs sampling (see Sec. 2.2.2):

p p(p IT; tio, a, b) oc vMF(p; po, bw) (2.93)

'r ~p(-r Ip; [to, a, b) . (2.94)

Sampling t amounts to sampling from a vMF distribution as described earlier in this
section, while sampling from the conditional distribution of -r needs special care. In-
version sampling is not applicable since the cumulative density could not be inverted.
Instead, we choose to use a slice sampler [175], an efficient sampling strategy for low-
dimensional distributions (see also Sec. 2.2.4). Since the distribution is unimodal (see
Fig. 2.10 and Appendix A.2 for a full characterization), a slice sampler can be imple-
mented more efficiently than standard more universal algorithms explored in [175]. In
the following we use f (r) oc p(-r I; ALo, a, b).

Require: f(r) Oc p(r IP; [to, a, b) and TO

1: Find maximum T* of f(T)

2: Initialize r = ro
3: while more samples desired do
4: Sample U ~ Unif(0, f(T))
5: if r* > 0 then
6: Find left slice border rL of f (r) using Newton starting from 10-3*

7: Find right slice border -rR of f(T) using Newton starting from 1.5T*

8: else
9: TL = 0

10: Find right slice border r of f(T) using Newton starting from 0.5
11: end if

12: Sample r ~ Unif(TL, -rR)

13: end while

Algorithm 5: Slice sampler for the prior distribution on the von-Mises-Fisher concen-

tration Tr.

The slice sampler outlined in Alg. 5 alternates between sampling u uniformly from

0 to f(T) and sampling 7- uniformly from the set T = {-r : f(T) ;> u}. As discussed
in depth in Appendix A.2, there are two cases for the set T: either the maximum is

attained at r* = 0 and the function decreases for T > 0 or the maximum is attained

for some T* > 0 and the function increases for T < T* and decreases for -r > r*. In

the first case T is the set from 0 to f(-r) = u, which can be found efficiently using

Newton's method starting from some arbitrary small r = 0.5. In the second case T is

set from rL to rR, where TL and TR are the locations of f(r) = u left and right of the

maximum. The two intersection points can be found by running Newton's algorithm

from sufficiently far left/right of the maximum -r*. In practice we start Newton's method

from -rF = 103r* to obtain the left intersection point and from 0T = 1.5r* to obtain
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Figure 2.10: The conjugate prior for the parameters of a von-Mises-Fisher distribution is

depicted for different values of b and dot-product p Tpo. From left to right dot products

of 1 (p and /1o are equal), 0 (p and Mu are orthogonal), and -1 (p and po pointing in

opposite directions) are shown. Hyper-parameters b are sampled in the allowed interval

from 0 to 1.

the right intersection point. Starting closer to r* leads to numerical problems. In all

instances Newton's method converges in less than 10 iterations.

Normalization of joint prior for a = 1 and D = 3 While we can directly sample from

the joint prior using the aforementioned method, we do need a parametric normalized

form for the evaluation of the marginal data distribution for Bayesian nonparametric

inference. The problem with finding a normalizer for the prior is largely due to the

exponentiation with a. Setting a = 1 and working in D = 3 dimensions, we can derive

a closed form normalizer as shown in Appendix A.3. Setting a = 1 amounts to assuming

a weak prior since a can be thought of as pseudo counts as discussed in relation to the

posterior parameter updates in Eq. (2.92). Using a weak prior is a common practice if

there are is no strong prior information about the distribution of the parameters. With

this the properly normalized prior for yt and r is

byr ex p (br p'po)
p(pt, -r I po, 1, b) = 2- a 2.

2ir tan ( -y) sinh(r)

Slices of the prior density are plotted for aligned p and po (MT/IO = 1), orthogonal p and

M (pTpo = 0), and flipped A and po (/T/1 = -1) and different b between 0 and 1 in

Fig. 2.10. They show that the prior encourages a low concentration for unaligned p and

p/o. Only once yi and M1 become aligned, the prior encourages higher concentrations.

The magnitude of the most likely concentration then increases with b as can be seen

from the left-most plot in Fig. 2.10.

Marginal data distribution For D = 3 dimensions and a = 1 we can derive a closed form

normalized probability density function for the marginal distribution of the data under
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Figure 2.11: The marginal distribution of a von-Mises-Fisher distributed data point

under the conjugate prior for b, = IIxi + bpo 112. Since a given value b restricts the range

of bi = IIxi + bpo 112 the plots all have a different support.

the prior:

p(xi; po, 1, b) =j f vMF(xi; /t, r)p(p, r; /o, 1, b) dp dr (2.96)

b 1 - sinc(biir) (297)
23 tan (M) sin2 ( bi)

where 0 < b, = |ixi + bpI11 2 < 2. For the full derivation refer to Appendix A.4. This
marginal distribution is displayed as a function of bi for several b values in Fig. 2.11.
Since a given value b restricts the range of b1 = IIxi + bpo 112 the plots all have a different
support. For b = 0 the prior is uniform over the sphere, b, = 1 for all xi and we
therefore expect p(xi; po, 1, 0) to be equal to one over the area of the sphere S2 which
is indeed the case.

Cumulative density The cumulative density function (cdf) of the radially symmetric
vMF distribution is the probability that the angle between the mode p and a data point
n is smaller than a. Working in spherical coordinates and arbitrarily fixing p = (0, 0, 1)
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Figure 2.12: The left plot shows the cumulative density P of the vMF distribution as
a function of the concentration r depending on desired percentile P. On the right, the
blue line of P = 99% indicates that a concentration of at least 300 leads to 99% of the
probability mass to be concentrated within a solid angle of a = 100 around the mode.
This is akin to the 3o- rule of the Gaussian distribution.

the cdf is:

P [aXccos(iiTn) <a] = J 27r (YJ Z(r) exp(r cos 0) sin 4 d d0
o J

/a=27rjf Z(r) exp(rcos$) sin0 do

27rZ(r)
- (exp r-exp(rcosa))

exp r - exp (r cos a)
exp r - exp(-r)

(2.98)

1 -exp(r(cosa- 1))

1 - exp(-2r)

The cdf is shown in Fig. 2.12 to the left for different concentrations r. The plot to the
right shows the solid angle a as a function of concentration and probability P. The
blue line for P = 99% shows the equivalent to the 3c- rule for the Gaussian distribution:
for a concentration r = 100 99% of the probability mass is within a solid angle of
approximately a = 180. To get to a probability mass of 99% inside a solid angle of
10' a concentration of r = 300 is needed. Such intuitions are useful when judging an
inferred r or choosing a fixed concentration.

Maximum Likelihood Estimate Parameters IL and -r in 3D For ML estimation of the von-
Mises-Fisher parameters it will be convenient to work in log scale. The log likelihood

- r=A0.1

- r=
5
10

-- r 100
-= =500
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Figure 2.13: Entropy of the vMF distribution on S2
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r C [0, 10] whereas the plot to the

of a set of data {X}fN is:

logp({ni} I p,-r) = logvMF(ni I p,7-)

= r/IT ni + N log-r - N log (27r(exp r - exp(-r))).

(2.99)

(2.100)

The ML estimate for 1 can directly be read of: independent of the concentration r the
maximum with respect to the mode p is attained if p E S2 is directionally aligned with
the sum over data vectors:

p _i= , ni . (2.101)

To derive the maximum likelihood estimator for the concentration r we set the derivative
to 0:

- log p({ni} I t, r) =0

1iTl~i',j+1 1 exp(-2,r
N' 1

Z-i'?rm 1-exp(-2Tr

(2.102)

(2.103)

Since no closed form solution can be found we resort to Newton's method to efficiently
obtain the ML estimate for the concentration r. The thus obtained extremum is indeed
a maximum since the second derivative of the log likelihood is always negative:

logp({ni} I p, r) = -y + (ex 2r1)2 <0. (2.104)
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Entropy The entropy of a von-Mises-Fisher distribution in 3D is computed as:

H =- vMF(x; p, -r) log vMF(x; p, r) dx (2.105)
XC-s2

- I2 vMF(x; A, T)(log Z(r) + XTyr) dx (2.106)
JzE2

- log(Z(T)) - TZ(T) j exp(XTIpAr)XTp dx (2.107)

- log(Z(T)) - TZ(r) 1 1 exp(r cos #) cos 4 sin 0 dO d# (2.108)

-log(Z(r)) - 27rrZ(T) Jexp(r cos ) cos # sin k do (2.109)

- log(Z(T)) - 27rcZ(o) -2 sinhT (2.110)

( -log(T 2rTh2 2r cosh r -2 sinh (2.111) 47r sinh T 47r sinh T T2

- -log ( - 27 cosh T - 2 sinh r (2.112)
47r sinh / 2sinhT

= -log T T +1, (2.113)
\47r sinhr/ tanhr '

where we have used p = (0, 0, 1) without loss of generality (the integral and therefore
the entropy is invariant to position of p). At T = 0 the vMF distribution is uniform
over the sphere. Hence its entropy is equivalent to the entropy of a uniform distribution
over S2 which is log(47r) ~= 2.53, as can be verified in Fig. 2.13.

M 2.7 Rigid-body Transformations

Rigid-body transformations are used to describe the pose of a perception system with
respect to some world coordinate system. Rigid body transformation matrices lie on a
manifold, the so called Special Euclidean group in 3D, SE(3).

A transformation matrix T E R4 X4 is on the manifold if it has the structure:

T= ) R SO(3), t c R3 , (2.114)

where R is a 3 x 3 rotation matrix in the Special Orthogonal group, SO(3), and t is a
translation vector in R3 . See Sec. 2.7.1 for details about the space of rotation matrices.
A transformation takes points in one coordinate system to another. To be explicit
about the starting and destination coordinate system, we use the following notation:

49Sec. 2.7. Rigid-body Transformations
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Using homogeneous coordinates we can transform a point PA E R' in coordinate system
A to the coordinate system B as:

TB) BT . (2.116)

For notational brevity we sometimes implicitly assume homogeneous coordinates with-
out explicitly denoting it. This is equivalent to directly writing out the transformation
in terms of rotation BRA and translation BtA:

PB = B RAPA + BtA- (2.117)

This explicit notation suggests that the rotation matrix BRA could be replaced by any

other mechanism for rotating PA appropriately. Indeed, another way of describing rota-

tions that can be used to rotate points are unit Quaternions as described in Sec. 2.7.4.

We first introduce the Special Orthogonal group of rotation matrices, SO(3), be-

fore focusing on full rigid-body transformations, i.e. matrices on the Special Euclidean

group, SE(3). After the introduction of the special Euclidean group we show two ap-

proaches for optimizing functions over S(3) and SE(3) in Sec. 2.7.3. We complete the

background survey of rotations by describing two alternate ways of describing rotations:

unit Quaternions and axis and angle in Sec. 2.7.4. We conclude this background section

by introducing two distributions over the space of rotations in Sec. 2.7.5.

* 2.7.1 The Special Orthogonal Group S(3)

A general rotation matrix R E RDxD is orthonormal and has unit determinant. The set

of all such matrices is the Special Orthogonal Group in D dimensions and is denoted

SO(D). It is formally defined as:

90(D) = {R E RDxD : RTR = I, det(R) =1} . (2.118)

Here we focus on 3-dimensional rotations as this thesis is concerned with transforma-

tions and rotations of 3D perception systems. As introduced in the beginning of this

section, we will use the following notation to denote a rotation from coordinate frame

A to B:

BRA = toRfrom- (2.119)

The inverse rotation is simply the transpose of the rotation matrix:

ARBBR . (2.120)

Before describing distributions or optimization strategies over S(3), we introduce

some tools for working with S(3). The Lie algebra so(3) can be understood as a

linearization of the rotation manifold around the identity rotation. This linearization
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is key for defining distributions over the rotation space and for deriving optimization
algorithms that directly optimize on SO(3). Next we introduce mappings from S(3)
to so(3) and vice versa.

The logarithm map of R E S0(3) into the Lie algebra so(3), Log(R) : S(3) -
so(3), is defined as

Log(R) = 2sin(0) (R - RT) (2.121)

0 = arccos }(trace(R) - 1). (2.122)

Elements of the Lie algebra are all skew-symmetric matrices W in R3
x3. They can be

represented as

0 -W3 W2
Log (R) = W = [w] W3 0 -Wi wiG1 + W 2 G2 + w 3 G3  (2.123)

-W2 W1 0

F0 0 [0011 -0]
=01 00 -l +W2 0 001 +W3 [1 0 01. (2.124)

01 0 -100 0 0 0

The matrices G 1 , G2 and G 3 are the so called bases or generators of so(3). The vee
operator v [45] extracts the three unique elements of W = [w], into a vector w:

WV = =Wi3 J R3 . (2.125)
W21

The exponential map Exp : so(3) - SO(3) maps an element of the Lie algebra back
onto the manifold of rotations. It is indeed equivalent to the matrix exponential. Since
W c so(3) are skew symmetric matrices the exponential map can be computed in closed
form. The formula is also called Rodrigues' formula [5, 199]:

Exp(W) = I + sin(O) aW + 1 Cos(0)W2  (2.126)

0 = |IWV112 . (2.127)

Sometimes we will, for the sake of notational simplicity, omit the explicit [] and
directly write

Exp (w) = Exp ([w] ) . (2.128)

The exponential and logarithm map can be understood as mapping between the
rotation manifold and its tangent space around the identity rotation. If we want to
map a rotation into a different tangent space around R0 we simply compute:

ExpRo(W) RoExp(W) (2.129)

LogR,(R) RoLog(R TR) (2.130)

0 = arccos }(trace(R T R) - 1).
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For further details on the manifold of rotations SO(3), the logarithm and exponential
maps, and the relation to the Lie Algebra so(3), refer to [45,63].

We now focus on how to take derivatives over functions on Si(3). To take a deriva-
tive of a function f(R) : SG(3) -+ R with respect to the rotation matrix R we compose
R with a small rotation Exp(w), take the derivative with respect to w, and evaluate
at w = 0 [2,65,83]. Note that we can compose R from the left or from the right with
Exp(w). Let R B B RA transform from coordinate system A to B. Then if we compose
from the left, the derivative will be in coordinate system B, and vice versa.

The first derivative of the exponential map with respect to w at w = 0 is

a Exp (w) =Gi. (2.132)

See Appendix A.5 for the full derivation. As derived in Appendix A.6, the second
derivative of the exponential map is

02
ao Exp (u) 0_= !(GiGj + GGi). (2.133)

First derivative of functions over SO(3) Here we focus on scalar functions of the form
f (Rx), i.e. functions of rotated data points x, since these are commonly used in this
thesis. For a more general derivation see Appendix A.7. Using the chain rule we obtain
the right derivative with respect to R as

Df(Rx) _ f(y) _&
R -yaRExp(w)x (2.134)

aR 09Yy= _ w W=
Df(y)

- (Y R (Gix G2x G3 x) (2.135)

=- (y) R[x] . (2.136)
y=Rx

Analogously the left derivative is

Df(Rx) _ f(y) 0OR - D (Y -Exp(w)Rx (2.137)
wR y wO a W

_ f(y)
- (Y) y=R(G1Rx G2 Rx G3 Rx) (2.138)

- Of(y) [Rx] . (2.139)
y =Rx

Second derivative of functions over 50(3) The second derivative, the so called Hessian,
can be useful for second order optimization methods such as Newton's method and to
get a covariance estimate. The approach is the same as for the gradient. The Hessian
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is computed as the matrix of all combinations of second derivatives

H R2 f(R)

( 2
f(R)

awiOwi
a2f(R)
&w

2
Bw

1a2 f(R)
aw3Ow1

a2f(R)
&wiaw2
a

2 f(R)
Dw 2 1&W2a2 f(R)
w3 0W2

(2.140)

a2 f(R)

a2f (R)
aW2aW3a2f (R)
3F(JaCJ3

where the individual second right derivatives are computed as

aw aw r O aR T

The left derivative is:

a2f(R)-tr a af (R) T
'9W 9i ~ w aR )

RGi + Of (R)T 1 R(GiG j + GjG)
W=0 R

GiR + af (R)T (GiGj + GjGi)R}.

See Appendix A.8 for derivations as well as detailed examples.

U 2.7.2 The Special Euclidean Group SE(3)

As noted in the beginning of the section, a rigid body transformation T can be used to
describe the pose of a perception system and to transform points from one coordinate
system to another. Transformation matrices T E R x4 are elements of the Special
Euclidean group SE(3) which has the structure:

SE(3) T C R4x4 : 1) R So(3) , GE R3 ,

where R is a 3 x 3 rotation matrix of the Special Orthogonal group, SD(3), and t is a
translation vector in R3

The inverse of a transformation can be computed in closed form as

AT BT B _BRTBtA ARB
1o

Similar to the rotation space SO(3), the Special Euclidean group is equipped with a
Lie algebra, se(3), which can again be understood as a linearization around the identity
transformation. The exponential map for SE(3), mapping from se(3) to SE(3), can be
computed in closed form as:

Exp (2 R(WR) V(WR)Wt (2.145)

where R(wR) is equivalent to the exponential map of the rotation group:

R(WR) = + ()[4 R ], + -cos(o) R x WR x

V(WR) = I +-cos O[WR1 + 0-si"[WR xRx

0 = I|WR 2 -

(2.146)

(2.147)

(2.148)

(2.141)

(2.142)

(2.143)

AtB)
(2.144)
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The logarithm map associated with SE(3) maps a transformation into the Lie algebra:

Log(T) = Log (R) ,
(V1 (Log(R))tJ

(2.149)

where the inverse V-(Log(R)) can be computed in terms of wR computed via the
logarithm map of S(3) as

WR = Log(R)V (2.150)

0 = |ICJR112

-= I - 0[w + 7 (1- 2(1-cos)) [wR]x[wRx

(2.151)

(2.152)

For the purpose of optimization of functions over SE(3) we now focus on how to take
derivatives over such functions properly. Analogous to taking derivatives of functions
over SO(3), the strategy is to left or right multiply the transformation T with Exp(w),
to take the derivative with respect to w and to evaluate the resulting function at w = 0.
To this end it is necessary to analyse the behavior of V(WR) around WR = 0. As derived
in Appendix A.9.1, the matrix has the following behavior:

lim V(W) = I
WR -40

V(W) = Gi=.

(2.153)

(2.154)

First derivative of functions over SE(3) Since we exclusively encounter derivatives of
functions of transformations of 3D points x, we focus on functions of the form f (Tx).
Via the chain rule we obtain the right derivative as

f(Tx) af(y) a TExp(W) = (-R[p] R) , (2.155)
oT o y=Tx 0T9 p W0 y yTx

where we have used

a TExp O) p - R t) (R(WR) V(wR)wt p
Wt W =0 aw 0 1) 0 1 )

=- (RR(WR)P + RV(wR)wt + t)
wO

= (-R[p]x R).

Some more important derivatives are

GwExp WR Tp = (-[Tp] I)aw (Wt )
(TExp WRp = (-R[p]x R)

U' (LAWL?)

TExp 'I = (pR T )1 -I

See detailed derivations in the Appendix A.9.

(2.156)

(2.157)

(2.158)

(2.159)

(2.160)

(2.161)
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E 2.7.3 Optimization of Functions over Transformations

Using the properties of SO(3) and SE(3) introduced in the previous sections, we now
show how to extend the classical first and second order optimization methods to opti-
mization over the special orthogonal and the special Euclidean group. It turns out that
some optimizations over the rotation group, which we consider in this thesis, can be
solved globally in closed form by utilizing the solution to the orthonormal Procrustes
problem as introduced in the second subsection.

First and Second order Incremental Methods

In the following we describe the general optimization of a scalar valued function defined
over the manifold of transformation matrices SE(3). By changing the exponential maps
the same approach may be taken to optimize functions defined over S (3).

Let f(T) be a scalar function defined over the manifold of transformations i.e.
T E SE(3). Gradient descent on this objective function follows the usual form but
has to be adapted to move along the manifold. Specifically, we compute the gradient of
f (T) at the current transformation estimate T, move in the negative direction of the
gradient in the tangent space and then map the resulting vector back onto SE(3):

Tt+1 = ExpT, (-6tJ) , (2.162)

where J = (T) is the so called Jacobian and 6 t is the step size which may vary with
iteration t.

For second order optimization, i.e. Newton optimization, we need to additionally
compute the Hessian as outlined in the previous section. Given the Hessian H and
the Jacobian J, we again compute a update in the tangent space around the previous
rotation and map it back onto SIE(3) via the exponential map:

Tt+1 = ExpT, (-6tH-1 J) . (2.163)

where H = 92 f(. See the excellent book by Absil et al. [2] for a comprehensive guide
to optimization over manifolds.

Closed-Form Rotation Optimization via Orthonormal Procrustes

In various inference problems considered in this thesis we aim to find the maximizing
rotation R* of a cost function of the form:

1 0 0 U
R= arg max tr{RN} = V 0 1 0UT where N = USVT. (2.164)

RES0(3) 0 0 det(VUT)

The solution can be found in closed form using the SVD of N because the problem is
an instantiation of the orthonormal Procrustes problem where N = ABT.

The orthonormal Procrustes problem is the problem of finding a rotation matrix
that brings two matrices A and B into alignment. Originally only the constraint of
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orthogonality and not orthonormality was enforced [215]. It is straightforward to extend
the original problem to orthonormality [93] as we show below.

We can derive the result of the orthonormal Procrustes problem as follows. With

I|XHJF = tr XXT denoting the Frobenius norm:

R* = argmin I|RA - B||1 = arg min|| A\11 + |IB||1 - 2 tr{ RAB T } (2.165)
RESO(3) RESO(3)

= arg max tr{ RAB } with ABT - USVT (2.166)
RESO(3)

arg max tr{RUSVT} = arg max tr{V T RUS} (2.167)
RESO(3) RESO(3)

/10 0
V 01 0 )UT (2.168)

0 0 det(VUT) '

where the last line follows because tr{TS} is maximized for T = I which is attained for
R = VUT. The diagonal matrix between V and UT is needed to satisfy the constraint
that R* should have determinant 1.

U 2.7.4 Additional Rotation Representations

Besides the representation of rotations via matrices in the special orthogonal group,
two alternate common representations are unit Quaternions and axis and angle. In the
following we highlight these representations and show their connections with rotation
matrices.

Unit Quaternions S3

Quaternions are 4D extensions of the imaginary numbers q = qw + iqx + jqy + kqz.

The unit length quaternions can be used to describe 3D rotations. For our purposes we
think of unit quaternions q = (qg, qxyz) as points lying on the sphere in 4D, S3. S3 is

a double cover of the rotation space. Hence it is sufficient to only consider the upper
half sphere in 4D to completely cover the space of rotations.

Quaternion rotations can be composed and can directly be used to transform 3D
points [114]. A rotation matrix R in S (3) can be converted into a unit quaternion q
via the intermediate axis angle representation:

w = Ow = Log(R)v (2.169)

q = (cos 2, sin 2w) = (cos 11, sin ) . (2.170)

From unit quaternion to rotation matrix we use the intermediate axis angle represen-

tation as well:

6 2 arctan l"qXy.II2 (2.171)

q = (2.172)

R = Exp([9w].). (2.173)

I I I I 11111111111111 IM F I
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The advantage of quaternions is that by re-normalizing to unit length accumulated
numeric errors can be eliminated. Furthermore it only takes four values to store a
rotation in this representation. On the downside it takes more operations to transform
a point than using rotation matrices.

Axis Angle (AA)

A 3D rotation can be uniquely described via a rotation axis w and a rotation angle 0

(employing the right hand rule). The axis angle notation is relevant because it connects
rotation matrices and unit quaternions:

[Ow]. = [w]= Log(R) c so(3) (2.174)

q (cos 2, sin 2w) = (cos 1EI, sin ) (2.175)

Axis angle rotations can neither be composed directly nor can they directly trans-
form 3D points. They have to first be converted to either rotation matrices or unit
quaternions. Since it is sufficient to store the product Ow it only takes three values to
store a rotation in this notation.

* 2.7.5 Distributions over S (3)

Probability distributions over rotation matrices can be defined by exploiting the mani-
fold structure of SO(3) (e.g. [45,187]) as introduced in the first subsection. Similar to
distributions over the sphere (Sec. 2.6), there exist distributions directly defined over
the rotation space such as the matrix von-Mises-Fisher distribution introduced in the
second subsection.

Gaussian Distribution in so(3)

In particular, a way to construct the analog of a Gaussian distribution utilizes the
linearity of the tangent spaces. The logarithm map allows us to define a normal dis-
tribution with mean rotation R. and covariance E o(3) E R3x3 in the tangent space

TRPSO (3):

p(R; Rt, Eso(3)) = A(LogR, (R)v; 0, Eso(3)) .(2.176)

In order to sample from the distribution in Eq. (2.176), we sample a 3D vector
and map it back from the tangent space TRSO(3) to S (3) using the Riemannian
exponential map:

AA N0 Eso(3)) (2.177)

R ExpR,([w] X). (2.178)

Note that so(3) is a finite space (a ball with radius 7r). This means that the Gaussian in
so(3) is not properly normalized anymore since some of its probability mass lies outside
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Figure 2.14: Probability that a data point lies inside so(3), a 3D sphere with radius
ir, under a zero-mean Gaussian with covariance a 21. For covariances a < 220 the

distribution is approximately normalized.

so(3). In practice, as long as the covariance E7o(3) is small enough the fraction of the

probability density function outside of so(3) is negligible as can be observed in Fig. 2.14.

The Matrix von-Mises-Fisher Distribution

The von-Mises-Fisher distribution can also be defined for rotation matrices [32, 136]

(Example 2). This is a special case for the general von Mises-distribution over elements

of the Stiefel manifold [1361 (n = p). Intuitively this is possible since every rotation

can be described by a unit Quaternion as described in Sec. 2.7.4. After converting a

rotation to its Quaternion representation, its distribution could hence be described by

the vMF distribution over the sphere in 4D as introduced in Sec. 2.6.3. Alternatively

one can directly define what is called the matrix vMF (MvMF) distribution directly

over the space of rotation matrices R E SO(3) as:

vMF(R; R1, SR) = Z(SR)~ 1 exp(tr(RT RISR)) where SR = diag(so, sl, s2) (2.179)

Z(SR) = OF1 ( , 2), (2.180)

where OF1 is the hypergeometric function of the matrix argument [136]. The diagonal
entries in SR, si, weigh the deviations along the respective axes and thus lead to a

non-isotropic distribution.

Sometimes it is convenient to simply assume an isotropic distribution by letting all
si = rR. In this case the distribution can be simplified to [32]

vMF(R; R,, TrI) = Z(Tr)- 1 exp(rR tr(R R)) (2.181)

Z (-rR) = exp(-r)(Io(2rp) - Ii(2r)), (2.182)

where I,(-) is the modified Bessel function of the first kind of order v, R, c SO(3)

is the mode and TR E R is the concentration of the MvMF distribution. Rearranging

the relationship between the angle 0 and two rotation matrices R, and R defined in

58 CHAPTER 2. BACKGROUND



Sec. 2.8. Surface Normals and Connection to the Gauss Map 59

Figure 2.15: Correspondence between scene parts and surface normals.

Eq. (2.122) we can gain some intuition for this distribution:

0 = arccos (I(tr(RTR) - 1))
2 A (2.183)

> tr(R R) = 2 cos(0) + 1.

Plugging this result into Eq. (2.181) we can see the +1 gets absorbed into the normalizer

and the factor of 2 can be absorbed into the concentration TR. That means that the

MvMF distribution is essentially a distribution over the angle between a mean rotation

and another rotation matrix.

* 2.8 Surface Normals and Connection to the Gauss Map

In this work we will often utilize surface normals as observations of a scene as depicted

in Fig. 2.15. Therefore it is important to understand the underlying theory of surfaces

and normals. For a regular orientable surface S the map from the surface to the normals

n to the surface is called the Gauss map [62]. Mathematically, for a parametrization

x(u, v) of the surface x : U C R2 -+ S the Gauss map n : S -+ S2 at a point x(u, v) on

the surface is defined as

n(u, v) = X" (u, v) = [xu xvj (u, v) , x(u, v) E S , (2.184)

where we have used the derivatives xU = a (uv) and x = ax(uV) and x denotes the
au 9

cross-product operation and [xl the normalization of x to unit length. In practice,
when working with depth images the parameterization is given directly in terms of the

location (u, v) of the depth value in the image. For point-clouds the surface normals

are commonly extracted by robustly fitting a local tangent plane around the point p of

interest. The normal to that tangent plane is n(u, v).



Another issue in practice is that the resolution of surface observations decreases with
increasing distance to the surface due to fundamental sensing methodology limitations.
One way of taking this into account is the Extended Gaussian image (EGI) [116] pro-
posed by Horn. The EGI corresponds to the image of a 3D object under the Gauss map
where each surface normal is weighted by the surface area it represents. Equivalently,
surface normals can be extracted at the same scale i.e. from the same constant surface
area. Interestingly, for convex polyhedra the representation in terms of their surface
normal distribution is unique [154] and it is possible to obtain the 3D structure solely
from its surface normals.

One important property of the EGI and the surface normals of an object or a scene
is that they are invariant to translations. This allows us to isolate the effects of rotations
by analyzing only the surface normals. The advantages of being able to isolate rotation
estimation will become clear in Chapter 5.

Surface normals are straightforward to extract from most 3D scene representations
such as depth images [112], point clouds [168], triangle-meshes [31] and volumetric rep-
resentations. In the following we review different surface normal extraction algorithms
and their properties.

U 2.8.1 Surface Normal Extraction Algorithms

There are various algorithms to extract surface normals from different 3D structure
representations. By definition the surface normal is the vector orthogonal to the sur-
face at a given location. In practice we are given an imperfect, noisy, not necessarily
uniformly or densely sampled 3D representation of the true surface. Therefore surface
normal extraction is an estimation process from noisy input data. Ideally we would
rely only on the immediate neighborhood to estimate the surface normal direction but
a larger neighborhood leads to more robust estimates in the face of noisy data. There-
fore any practical algorithm has to either actively estimate a plane-inlier set in a larger
neighborhood or choose a small neighborhood.

The two most common approaches to defining a neighborhood are via the k nearest
neighbor search or via radius search in the point cloud. Both search operations are
rather costly even if approximate nearest neighborhood algorithms are used [12, 171]. If
we have an organized point cloud computed from a depth image, the neighborhood can
be defined efficiently in terms of image coordinates. Surface normal extraction methods
for point-clouds can therefore be utilized for depth images as well. The approximation of
relying on the image space neighborhood eliminates the need for neighborhood searches
but might lead to wrong associations at, for example, depth discontinuities. Extraction
algorithms that are robust to such artifacts are important for high quality surface
normal estimation.

For the different algorithms outlined in the following, Fig. 2.17 shows the perfor-
mance for geometries captured by a depth camera. For each geometry, we show the
zero-noise case and inverse depth noise of a = 0.01 and o- = 0.03. Each shape, depicted
in Fig. 2.16, is roughly im from the simulated depth camera.
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.... ..0 lot-.

Figure 2.16: Point clouds of the different scenarios considered for surface normal ex-
traction. From left to right: a plane, part of a sphere, a 900 corner, and a discontinuity.
All point clouds contain additive Gaussian noise with a standard deviation of o- = 0.01.

There is a trade-off between speed and accuracy of the surface normal extraction
algorithms. In general one should use the most accurate algorithm possible under the
given time budget. For example, we use the fast extraction algorithm for the real-time
Manhattan Frame algorithms described in Sec. 3.3. In Sec. 5.2, on the other hand,
we utilize the slower more and accurate unconstrained least squares method to obtain
high quality surface normals. In the following we first focus on accurate surface normal
extraction from general point clouds, meshes and volumetric representations before
deriving a fast and direct surface normal extraction method for depth images.

Least Squares Plane fitting The most commonly used approach to surface normal esti-
mation is for a given neighborhood Ni of point xi to seek the least squares fitting plane
surface normal ni:

ni = arg min | n'pj - a|, (2.185)
n~G2 jENi

where a is a parameter of the plane. Mitra et al. [167] show that the solution to this
problem is the eigenvector of the smallest eigenvalue of the sample covariance matrix
S:

S, = Xx - ;iT (2.186)
jENi

-= xj, (2.187)
j ENi

where N is the number of points in the neighborhood Ni. This connection had been
used previously [113] but not theoretically justified. The neighborhood can be defined
in various ways as discussed previously.

Badino et al. [13] relax the constraint of ni E S2 and divide by a to arrive at

ni = arg min 5 p- 1| , (2.188)
ni jENi
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Figure 2.17: Comparison of surface normal extraction algorithms from depth images on
four different types of surfaces. The left-most colunin shows the depth image, whereas

the other columns show angular deviation between groundtruth and estimated surface
normals in degree. The derivative and the least squares (LS) approaches exhibit con-

sistent artifacts at depth discontinuities and 90' corners. Voting and robust moving

least squares (RMLS) handle these challenging conditions better. Interestingly, the

more efficient unconstrained and approximate RMLS perform very similarly to vanilla

RMLS and are therefore the preferred method for accurate and robust surface normal

extraction.
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which can be solved more efficiently as:

ni = Si].(2.189)

They also derive an approximate computation for organized point clouds obtained,
for example, from a depth camera or a LiDAR, scanner, by noting that the point xi can
be described by the product of a ray ri with the depth di. The ray ri is computed via
the unprojection operation of the depth camera and can be precomputed for every ray
of the sensor. With this the minimization can be approximated as

armi 2 drTj 1i12 jI11(290ni = arg min E dj |n ri - T 2 arg min E r- . (2.190)
n,, jENj ni j ENj

The approximation lies in dropping the d? which is reasonable since we are assuming
that the points on the plane are all roughly at the same depth. The solution to this
approximate problem is:

ni = l T (2.191)

This approximation has been used previously by Hebert et al. [108]. Importantly the
outer products and sums over rays ri can be precomputed. Furthermore, an efficient
implementation would use integral images to compute the sum over a rectangular neigh-
borhood in constant time. Precomputing the inverse depths gives additional speedups.

We note that the constrained least square method is not robust to outliers to the
plane model and tends to smooth over corners and depth discontinuities as can be
seen in Fig. 2.17. Interestingly, the solution to the unconstrained and the approximate
problems show slightly better performance. Badino et al. argue that this is due to bad
conditioning of the solution to the constraint LS formulation.

Robust Moving Least Squares fitting (RMLS) The RMLS algorithm aims to robustify
the previous method by growing the inlier set among the neighborhood [76] incremen-
tally. For this purpose the algorithm keeps track of the error of all neighboring points
that are not yet incorporated into the model and, one-by-one, adds the lowest error
points into the model. Each time a point is added to the model a least squares fit
to the inliers as well as the error of all outliers is updated. This approach for surface
normal fitting is outlined in Algorithm 6. In practice we add more than one point per
iteration to speed up the algorithm. Specifically, we add [1.3'1 points in iteration i.
This ensures that initially points are added one-by-one and that the algorithm speeds
up after a few initial model updates.

We can use any algorithm to update the surface normal given the inlier data points.
In Fig. 2.17 we show angular fit for all three aforementioned least squares solutions.
Again the unconstrained and the approximate least squares solutions yield (slightly)
better results.
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1: Select initial inlier set of 3 points (including query point po)
2: Construct outlier set 0 from all other points in neighborhood Ni
3: while error of pi is smaller than threshold do
4: Update errors of all outliers pi via Ei = n'(p0 - pi)
5: Find point pi with smallest error
6: if error of pi is greater than threshold then
7: Return n
8: end if
9: Update n using the inlier data

10: Remove pi from 0
11: end while

Algorithm 6: Algorithm for robust moving least squares (R.MLS) fitting.

Voting-based surface normal extraction Another approach to surface normal extrac-
tion, established in this research program, was motivated by the approach to gravity
estimation of Gupta et al. [96]. The idea is to extract the local surface normal using
inlier/outlier inference via simulated annealing from a starting surface normal estimate.
Per iteration each point is classified as inlier if it is within 900 Aa with respect to
the current surface normal estimate. Then a new surface normal estimate is computed
from only the inlier points. Aa is annealed starting from 350 down to 15' in steps of
100. The initial surface normal estimate is obtained as the normalized cross product of
the local forward gradients of the organized point cloud p(u, v) following Eq. (A.1):

n F p(uv) U) = [(p(u, v) - p(u + 1, v)) x (p(u, v) - p(u, v + 1))]au 49V
(2.192)

As Figure 2.17 shows, the voting-based approach yields comparable results to RMLS
except for depth discontinuities, where it tends to use points from both planes and thus
produce incorrect surface normal estimates at the discontinuity. The advantage of this
method is that while producing estimates of similar quality it is generally faster then
RMLS since no sorting is required.

Triangle meshes On first sight extracting surface normals from a triangle mesh is
straightforward since each triangle describes a surface and we can directly compute
the triangles surface normal as:

n = [(p - po) x (p2 -po) . (2.193)

Since each point of the triangle mesh is potentially part of multiple triangles, it is unclear
which triangles surface normal to choose as the surface normal for a given vertex. One
approach would be to just compute a new point cloud from the triangle mesh as the set
of triangle-center points. In general it is more desirable to use the point cloud of mesh
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vertices for efficiency reasons. The surface normal of a mesh vertex is computed as the
normalized sum over the normals of the triangles this vertex is part of:

n = [EiENi [(Pil ~- PiO) X (Pi2 -- PiO)] ]- (2.194)

To perform this operation efficiently an inverted index from vertex id to triangle id
should be precomputed.

Implicit signed distance function representations Newcombe et al. [177] popularized the
use of the truncated signed distance function (TSDF) for dense reconstruction systems.
Originally proposed in [52], the TSDF represents a surface as the zero-crossing in this
3D volumetric function. In the TSDF volume the surface normals are computed as the
normalized gradient of the TSDF at the zero-crossing:

n = [V,,y,zTSDF(x, y, z)] . (2.195)

We found that surface normals derived from TSDF-fused surfaces are of high quality.

Fast surface normal extraction from depth image While some tasks necessitate accurate
surface normals and can afford the additional computation time, sacrificing some of the
quality, we can obtain huge speedups. To efficiently extract all surface normals from
the depth image, we can make use of the ordering imposed by the depth image itself
and utilize GPUs for fast parallel processing. We derive the algorithm by going back to
the definition of the Gauss map in Eq. (2.184). Accordingly, we can obtain the surface
normals from the point cloud using the cross-product of the local gradients:

F p(u, v) Dp(u,) 1)
n = x (2.196)

where the derivatives are along the u and v axis of the image coordinate system. Note
that the derivatives and cross-products can be computed completely in parallel. We
could simply compute the point cloud using any camera model, compute the local
gradients using forward differences and then compute surface normals. But since the
point cloud is fully determined by the unprojection function 7r-1(u, v, d) of the camera
model and the depth image d(u, v) we can compute the derivatives using the chain rule:

[7r (u, v, d(u, v)) 7r- 1(u, V, d(u, v)) (2.197)
au i8v I

[ 7r(-1(u, v, d) 7r- 1 (u, v, d) dd (8r-1(u, v, d) 097r 1 (u, v, d) Od
au + d oU) X K Dv 9 Od 0v) I

(2.198)

With this, surfaces normal computation formulas can be derived for any caniera model
for which the derivatives of the inverse projection operation can be computed in closed

65



CHAPTER 2. BACKGROUND

form. Under the pinhole camera model [102], for example, the point cloud p(u, v) can
be recovered from a depth image d(u, v) as:

(u - uc)

p(u, v) = r- 1(u, v, d(u, v))= I (v - v) , (2.199)

d(u, v)

where fu and fv are the focal lengths of the depth camera (in u and v direction) and

[uc, vc] is the center of the depth-image. As shown in Appendix A.1 this leads to a
direct formula for computing surface normals from a depth image:

od -i

9 

= fd (2.200)

The derivatives L and ! can be approximated using first order finite differences. An

efficient way of implementing this operation is by convolution with normalized Sobel
or Schar kernels, which can be performed on a GPU as well. We use Schar kernels

in practice since they were found to yield better gradients. Note that these kernels
are separable which means we can compute the convolution more efficiently using two
passes first with a column and then with a row filter or vice versa. The 3 x 3 Schar
kernels are:

--3 0 3 3 
D = -100 10 10 , (2.201)36(-3 0 3 3

D = o3  0o 3 ) (o 1 )(3 10 3) . (2.202)
32 3 10 3 32 1

The vanilla algorithm of computing the depth image gradients using convolution and
then computing surface normals according to Eq. (2.200) is sensitive to noise because
of the reliance of only the smallest neighborhood. By preprocessing the depth image to
remove noise this sensitivity can be alleviated. The common approach of convolution

(smoothing) with a Gaussian kernel has problems at depth discontinuities where the
filtering leads to interpolation of the depth values between two surfaces leading to
erroneous depths. This can be improved by using anisotropic filtering methods such as
bilateral filters [184, 235] which do not smooth across value discontinuities. Bilateral
filters can be implemented efficiently using a guided filter [107]. Guided filters rely on
box filters which can be sped up using integral images [242].

Figure 2.17 shows that this derivative-based approach works generally well for
smooth surfaces but fails to accurately capture surface normals near depth disconti-
nuities and around corners. The Gaussian pre-filtering smoothes across these surface
features and leads to consistent (and predictable) inaccuracies. This motivates the use
of the bilateral filter in practice.
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E 2.9 Summary

With an introduction to Bayesian sampling-based inference, Bayesian nonparametric
models as well as common discrete, Euclidean and spherical distributions this chapter
has set the stage for the models developed and employed in this thesis. Details on the
manifolds of rigid body transformations, SO(3) and SE(3), and a discussion of different
surface normal extraction algorithms complete the background material. In the next
chapters we apply these tools and the introduced machinery to develop Manhattan
constrained and unconstrained directional scene models before proceeding to derive a
global localization algorithm and the first nonparametric direction-aware SLAM system.
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Chapter 3

Manhattan World Constrained
Scene Representation

Inference of geonetry-based scene models and scene segmentations can be considered
a stepping stone for higher-level scene understanding as argued in the introductory
chapter. Such segmentations impose an organization of the scene implied by the spe-
cific geometry that can be used to simplify further reasoning tasks such as extracting
traversable floor space and obstacles or inferring a canonical scene orientation to transfer

4

Point Cloud Surface Normal
Distribution

MF and MMF
clustering

Directional Scene
Segmentation

Figure 3.1: To infer the Manhattan Frame and MMF orientations and scene segmen-
tation, we first extract surface normals from a given point cloud before performing
inference to fit the probabilistic Manhattan Frame or MMF model, proposed in this
chapter, to the surface normal distribution on the unit sphere in 3D. This is motivated
by the observation that man-made environments exhibit characteristic low-entropy sur-
face normals as can be seen in the middle left. The inferred Manhattan Frame or MMF
clustering provides a directional scene segmentation as displayed to the right. Note
that the orthogonality constraints imposed by the Manhattan Frame and MMF model
inform about directional relationships between scene parts.
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Figure 3.2: The Manhattan World model assumes that all planes in a scene are parallel

to one of three mutually orthogonal planes. These planes are indicated in red, green,
and blue to the left. While the Manhattan World assumption is often valid on a local

scale in man-made environments, on a larger scale scenes are often better described

by multiple Manhattan Worlds as shown to the right in aerial view of Cambridge and

Boston. Colored areas indicate city parts following different Manhattan Worlds. Within

each region planes are assumed to follow the Manhattan World assumption for some

local orientation.

knowledge between different scenes [173]. Consider for example the scene segmentation

displayed in the first row of Fig. 3.1 which was inferred by one of the methods proposed

in this chapter. An autonomous agent with a gravity sensor would be able to asso-

ciate the green areas with traversable floor-space while red and blue scene parts would

represent obstacles at an orthogonal angle to the floor.

To facilitate reasoning about complex scenes we build on simplifying assumptions

about the 3D structure of the environment. Observe that, on a wide range of scales,
from the layout of a city to structures such as buildings, furniture and many other

objects, man-made environments lend themselves to a description in terms of parallel

and orthogonal planes as depicted in Fig. 3.2 to the left. This intuition is formalized

as the Manhattan World (MW) assumption [49] which posits that most man-made

structures may be approximated by planar surfaces that are parallel to one of the three

principal planes of a common orthogonal coordinate system.

At a local level, this assumption holds for parts of city layouts, most buildings,
hallways, offices and other man-made environments. However, the strict Manhattan

World assumption is often a poor representation of real-world scenes on a global level:

a rotated desk inside a room, more complex room and city layouts (as opposed to

planned cities like Manhattan). While local parts of the scene can be modeled as a

Manhattan World, the entire scene cannot. Figure 3.2 to the right depicts an aerial

view of Cambridge and Boston to illustrate the concept of describing a scene via multiple

Manhattan Worlds. This suggests a more flexible description of a scene is required-one
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that is composed of multiple Manhattan Worlds of different orientations.
Motivated by the observation that across a wide range of scales, man-made envi-

ronments exhibit structured, low-entropy surface-normal distributions as displayed in
the middle of Fig. 3.1 we directly work in the surface normal space rather than via
intermediate plane segmentations or via the point cloud. Surface-normal distributions
are invariant to translation and scale [116] which makes the proposed approach largely
independent of the measurement and 3D reconstruction process. Finally, surface nor-
mals are straightforward to extract from most 3D scene representations such as depth
images, point clouds and meshes as discussed in Sec. 2.8. Careful implementations of
surface normal extraction can mitigate but not eliminate the effects of noisy surface
estimates and surface discontinuities. This motivates the use of latent variable models
to model surface normal noise explicitly and properly.

The contributions in this chapter comprise the introduction of the Manhattan
Frame (MF) which represents the Manhattan World structure in the space of surface
normals, i.e., the unit sphere, as orthogonally-coupled clusters (see top row of Fig. 3.1).
Modeling surface-normal noise with two different distributions on the sphere, we formu-
late two probabilistic generative Manhattan Frame models. Depending on the model,
real-time MAP inference is carried out in closed form or via optimization on the mani-
fold of rotation matrices S(3). In the second part of this chapter the Manhattan Frame
model is used to construct a mixture of Manhattan Frames (MMF) to represent complex
scenes composed of multiple Manhattan Frames (see bottom row of Fig. 3.1). For the
MMF model, we derive a simple MAP inference algorithm and a Gibbs-sampling-based
algorithm that using Metropolis-Hastings [105] split/merge proposals [197], adapts the
number of Manhattan Frames to best capture the surface-normal distribution of a scene.

Before introducing the Manhattan Frame and the MMF model, we review related
scene representations in the next section. In Sec. 3.5, we examine the properties of the
proposed models and inference algorithms in a variety of qualitative and quantitative
experiments. These demonstrate the expressiveness and versatility of the novel Man-
hattan Frame and MMF model across scales: depth images of a single view of a scene,
larger indoor reconstructions and large-scale aerial LiDAR data of an urban center.

* 3.1 Related Work

The different assumptions made in the literature about the environment can be cate-
gorized in terms of their expressiveness as depicted in Fig. 3.3. The assumptions range
from mostly unrestricted representations such as point clouds, mesh and level-set, which
can in the limit represent any surface exactly, to the rather strict Manhattan World
assumption as indicated by taxonomoy. The proposed MMF assumption subsumes the
Atlanta World (AW) which in turn subsumes the Manhattan World assumption. The
MMF provides a directional segmentation under the orthogonality constraints imposed
by the Manhattan World assumption. Relaxing the orthogonality constraints com-
pletely, we arrive at what we term the Stata Center World (SCW). It captures only the
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directional composition of a scene. Planar scene representations differ from the Stata
Center World in that different planes with the same orientation are separated in space.

These different assumptions about scenes can be observed directly in the 3D struc-
ture or indirectly in the projection of the 3D structure into a camera [102]. Models and
inference algorithms based on the former utilize 3D representations such as meshes,
point clouds and derived data such as surface normals. Intersections of planes in 3D
are lines which can be observed as lines in the image space. A vanishing point (VP)
is the intersection of multiple such lines where the 3D lines are all parallel to each
other. Models built on VPs usually use image gradient orientations directly or indi-
rectly via line segment extraction. Specifically, the Manhattan World is manifested as
orthogonally-coupled VPs (OVPs) in the image space and an Manhattan Frame in the
surface-normal space. Multiple Manhattan Worlds cause multiple orthogonal VPs and
Manhattan Frames. The Stata Center World can be observed via independent VPs in
the image or independent surface normal clusters.

2D image-space There is a vast literature on VP estimation from RGB images. The
goals for VP estimation range from single-image scene parsing [18] and 3D reconstruc-
tion [57,109,146,153], VP direction estimation for rotation estimation with respect to
man-made environments [7,20,49,139] to VP direction tracking over time to estimate
camera rotation and scene structure [29, 79, 141, 169, 213].

While early VP extraction algorithms relied on image gradients [49, 214], most mod-
ern algorithms operate on line segments extracted from the image. This has been found
to yield superior direction estimation results over dense image-gradient approaches [59].
Generally, VPs are extracted by intersecting lines in the image. These intersections are
often found after mapping lines to the unit sphere [19,48,141], or into other accumu-
lator spaces [149]. Introduced in [18], horizon estimation has emerged as a benchmark
for VP estimation algorithms [252, 255].

Many VP extraction algorithms rely on the Manhattan World assumption [20,29,
49, 79, 139, 157, 203, 252] which is manifested as three orthogonal VPs. Incorporating
the Manhattan World assumption into the VP estimation algorithms not only increases
estimation accuracy (if the Manhattan World assumption holds) [149] but also allows
estimation of the focal length of the camera [40, 47,139,149, 203, 252], and rejection
of spurious VP detections. Another avenue of research uses the Manhattan World as-
sumption for single-image 3D reconstruction [57,109,146,153]. The inferred Manhattan
World and associations of lines to Manhattan World axes combined with geometric rea-
soning are used to reconstruct the 3D scene in [57,146]. Hedau et al. [109] use an
Manhattan World prior to iteratively infer the 3D room layout and segment out clutter
in the room. Liu et al. [153] use a floor plan in conjunction with a set of monocular
images to reconstruct whole apartments.

The AW model of Schindler et al. [214] assumes that the world is composed of
multiple Manhattan Worlds sharing the same z-axis (which is assumed to be known).
This facilitates inference from RGB images as only a single angle per MW has to be
estimated as opposed to a full 3D rotation. The approach by Antunes et al. [9] infers
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Manhattan World Atlanta World Mixture of Manhattan
Frames

Mesh

MW AWV MMF SCW Planes Point Cloud

Level-Set

Stata Center World Planes

Figure 3.3: Depiction of different scene priors and their relationship to the proposed

Manhattan Frame and MMF model. The MMF generalizes both the Manhattan World
and the Atlanta world assumption. The Stata Center World relaxes the orthogonality
constraints of the Manhattan World based models and is thus more general. In this

chapter we focus on single and multiple Manhattan World-based models as indicated

by the orange shading.
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the full MMF from RGB images. Relaxing the assumptions about the scene, VPs can
be extracted independently [7,18, 48, 59,141, 149,169, 231, 255] akin to the Stata Center
World assumption.

3D representations There are many approaches that rely purely on 3D representations
of surfaces and scenes. Assumptions such as the Manhattan World or SCW, are used to
align scenes into a common frame of reference for scene segmentation and understand-
ing [96,173], and to regularize 3D reconstruction [170,186]. The AW and MMF model
could be used similarly.

Similar to the image space, the Manhattan World assumption has been used most
commonly [96,173]. This is probably due to the fact that man-made environments
exhibit strong Manhattan World characteristics on a local scale, i.e. on the level of a
single RGBD frame of a scene. In the application of Simultaneous Localization and
Mapping (SLAM) [148], the Manhattan World assumption has been used to impose
constraints on the inferred map [186]. Our original idea of the Manhattan Frame [225]
has been adapted by Ghanem et al. [87] who propose a robust inference scheme for
MF estimation (RMF) and by Joo et al. [127] who use a branch-and-bound scheme to
perform real-time globally optimal Manhattan Frame inference (MF BB).

To the best of our knowledge the assumption of multiple Manhattan Worlds in the
3D data setting (as opposed to RGB 2D-images) has not been explored prior to our
own work described in this chapter.

Similar to the Manhattan Frame and MMF model, the Stata Center World can be
inferred solely from surface-normal distributions as described in Chapter 4. Note, that
the Manhattan Frame and MMF model could be inferred from the Stata Center World
by grouping inferred directions into Manhattan Frames.

Somewhat outside all these categories, Gupta et al. [96] assume the only relevant
direction for semantic scene segmentation is the direction of gravity to enable alignment
of the ground plane across scenes. They propose a simple algorithm to segment the scene
into the gravity and all other directions based on surface-normal observations.

An alternative to the Manhattan World, MMF or Stata Center World model de-
scribes man-made structures by individual planes with no constraints on their relative
normal directions. The orthogonality constraints in the Manhattan World or MMW
models enable statistical pooling of measurements across different orientations. This
means not only that fewer measurements (per plane) are needed to achieve the same
amount of accuracy as without those constraints but also that reliable measurements
from one or more directions help in handling cases where there are only few reliable
measurements from other directions.

2D & 3D The connection between VPs in images and 3D Manhattan World structures
has been used to infer dense 3D structure from sets of images by Furukawa et al. [82].
They employ a greedy algorithm for a single-MF extraction from normal estimates that
works on a discretized sphere. Neverova et al. [176] integrate RGB images with as-
sociated depth data from a Kinect camera to obtain a 2.5D representation of indoor
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Orth. Vanishing Manhattan World Manhattan Frame
Points (OVP) (MW) (MF)

Projection Gauss Map

R2 3 g2

Figure 3.4: A 3D Manhattan World maps to a Manhattan Frame in the surface normal

space under the Gauss map. Under camera projection it maps to three orthogonal

vanishing points in the image plane.

scenes under the Manhattan World assumption. Silberman et al. [173] infer the domi-

nant Manhattan World using VPs extracted from the RGB image and surface normals

computed from the depth image.

U 3.2 The Manhattan Frame (MF)

The Manhattan Frame (MF) is the image of a 3D Manhattan World structure under

the Gauss Map (see Sec. 2.8) as depicted in Fig. 3.4. In other words, the Manhattan

Frame describes the notion of the Manhattan World in the space of surface normals.

In a noise-free, perfect Manhattan World the surface normals would align with the six

directions in world coordinates collected as columns in:

F1 -1 0 0 0 01
E = 10 0 1 -1 0 0 , ej denotes the jth col. of E. (3.1)

0 0 0 0 1 -1

In the camera coordinate system these six directions will appear rotated by cR,:

M = CR.E, pi denotes the jth col. of M. (3.2)

The rotation CR, is an element of S(3) the space of orthonormal matrices in 3D with

determinant 1 as introduced in Sec. 2.7.1. This rotation of the camera, 'R, = CRT, is
unknown and hence a key parameter to be estimated by an inference algorithm. In the

following we will use R = CR, for the sake of notational simplicity. In other words, if

a 3D scene consists of only planar surfaces such that the set of their surface normals is

contained in the set {pjy}61, then M captures all possible directions in the scene-the

scene follows the Manhattan World assumption.
Specifically, let ni C S2 denote the ith observed surface normal. A latent label,

zi {1, ... , 6}, assigns ni to one of the six directions of the Manhattan Frame. Hence

Au is the direction associated with ni. In the following we will denote the set of

all labels as z = {zi}'Vl and the set of all surface normals as n = {ni} l. The

unit normals are elements of the unit sphere in R3, denoted by S2, a 2D manifold
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N 6

Figure 3.5: Graphical model capturing the assumed distribution of observed normals
under the Manhattan Frame distribution.

whose geometry is outlined in Sec. 2.6.1. Commonly, in 3D processing pipelines (e.g.
in surface fairing or reconstruction [124,132]), the unit normals are estimated from
noisy measurements of the 3D scene structure such as depth images [112, 221], point
clouds [168] and meshes [35]. Surface normals n may deviate from their associated MF
axis for several reasons. First, noisy input data such as depth images, point-clouds or
meshes lead to noisy surface normal observations since they are computed from the
3D observations (see Sec. 2.8). Second, the underlying 3D structure being sensed may
not follow the Manhattan World assumption in parts of the scene such as on curved,
round or unstructured surfaces. For such scene parts it might still be useful to assign
them to a Manhattan Frame direction as the Manhattan Frame provides an ordering

and segmentation of the environment that can be exploited for downstream inferences.
Even in environments dominated by curved shapes the Manhattan Frame can provide
a quantization into orthogonal scene parts that can be utilized.

In order to fit the parameters of an Manhattan Frame, one would seek to penalize

those deviations. While, in principle, this can be formulated directly as a deterministic

optimization, we adopt a probabilistic modeling approach. This allows us to derive a

real-time algorithm for single Manhattan Frame inference as well as MCMC inference

(see Sec. 2.2.1) for the more complicated MMF model all from the same base Man-

hattan Frame model. Another key advantage over deterministic approaches is that

probabilistic inference allows reasoning about uncertainty which is important for scene

understanding. Furthermore, the probabilistic nature of the MMF model means that

it can be integrated into larger and more complex environment models, as we showed
in [35]. Another approach would be to utilize a non-parametric directional segmenta-
tion algorithm such as [222] or [224] and to fit MFs to the inferred modes of the surface

normal distribution. The advantage of directly inferring an MF model is that data
from the different (orthogonal and opposing directions) all jointly contributed to the

estimation of the MF orientation. This is especially important in scenes like the urban

scene in Fig. 1.2 where there is only few data points for some of the directions. To

this end, we propose two different noise models to describe those random deviations:

tangent space Gaussian (TG) noise as well as von-Mises-Fisher (vMF) noise.
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* 3.2.1 The Probabilistic Manhattan Frame Model

Let R E SC(3) denote the rotation of the Manhattan Frame. Making no a-priori
assumptions about which orientation of the Manhattan Frame is more likely than others,
R is distributed uniformly:

R ~ Unif(SC(3)) . (3.3)

Since S (3) is a manifold with finite support, we can compute its volume and obtain
8r2 [45] which implies that all rotations have equal likelihood of 1/82. In practice
secondary sensors such as inertial measurement sensors (IMUs) can yield additional
information about the rotation of the Manhattan Frame via the measurement of the
gravity direction. Similarly, in the streaming setting the Manhattan Frame rotation is
likely to be close to the previous frames Manhattan Frame rotation. In those situations
one can capture the additional knowledge in the prior on R. Indeed in Sec. 3.3.4 we
explore the streaming Manhattan Frame inference setting and show that it is straight-
forward to incorporate a zero-motion prior on the Manhattan Frame rotation.

As is standard in Bayesian mixture modeling, the Manhattan Frame axis assign-
ments zi of a surface normal ni to an Manhattan Frame axis are assumed to be dis-
tributed according to a categorical distribution Cat(w) with a Dirichlet distribution
prior parameterized by y:

w ~ Dir(-y) (3.4)

zi ~ Cat(w). (3.5)

The deviations of the observed normals from their assigned directions are modeled
by a directional distribution parameterized by . We only require this directional
distribution to have the assigned Manhattan Frame direction 'Z,% as its mode. Following
a Bayesian approach we assume a prior p(0; A) for the parameters E of the Manhattan
Frame axis distributions:

E ~ p(O; A) (3.6)

ni ~ p(ni I zi, R, E) s.t. pz, = arg max p(n zi, R, E), (3.7)
nES 2

where A are the so-called hyperparameters of the prior on the Manhattan Frame axis
distributions. As reviewed in Sec. 2.6, many directional distributions exist (e.g., the
Bingham [23], and the Kent [134] distribution, and others [164]) and most are valid
choices for the distribution of surface normals. We focus on the tangent-space Gaussian

(see Sec. 3.2.2) and the von-Mises-Fisher distribution (see Sec. 3.2.3) as depicted in
Fig. 3.6 and 3.8 respectively.

Finally, the graphical model for the MF is depicted in Fig. 3.5 and the joint distri-
bution is:

N
p(z, n, w, R, E; -y, A) = p(w; 7)p(O; A) wzip(ni I zi, R, E).
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Figure 3.6: Graphical depiction of the tangent space Gaussian Manhattan Frame model.

'IA
Figure 3.7: The blue plane illustrates T,S 2 , the tangent space to the sphere S2 at
Manhattan Frame axis p E S2. A surface normal n E S2 is mapped to tangent vector

TpS2 via Log,.

Both, the graphical model and the factoring of the joint distribution, suggest that
the surfaces normals are assumed to be generated independently given assignments
to Manhattan Frame axes, the Manhattan Frame rotation and other parameters of
the Manhattan Frame axis distributions 8. This is an approximate assumption, since
nearby surface normals generally depend on each other. Most man-made environments
consist of planes and smooth surfaces, making the directions of most surface normals
dependent on its neighborhood. This assumption, however, enables more efficient in-
ference because, for example, each normals assignment to a Manhattan Frame axis can
be computed independently and in parallel. Furthermore, the results in Sec. 3.5.1 show
smooth scene segmentations despite assuming conditional independence.

E 3.2.2 Tangent Space Gaussian Manhattan Frame Model

The tangent-space Gaussian MF (TG-MF) model describes the deviations not on S2
directly but in a tangent plane to the sphere using the tanget-space Gaussian model as
introduced in Sec. 2.6.2. The TG-MF distribution is visualized in Fig. 3.6. Under the
TG-MF model observed normals are modeled by a tangent space Gaussian distribution
with covariance 0 = E E R 2

x
2 and mean p,, centered on the respective assigned MF

axis.

p(ni I zi, R, E)) = jV(Log,, (ni); 0, E2,) (3.9)

where Log, (ni) C T,,, S2. In other words, we evaluate the probability density function

of ni E S2 by first mapping it into T,, S2, as visualized in Fig. 3.7, and then evalu-
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Figure 3.8: Graphical depiction of the von-Mises-Fisher based Manhattan Frame model.

(a) r =0 (b) r= 1 (c) = 10 (d) r =100

Figure 3.9: Depiction of the von-Mises-Fisher distributions in 2D with different con-
centrations -r around the same mean p. Note that the von-Mises-Fisher can capture a
uniform distribution over the sphere for r = 0 as well as concentrated isotropic distri-
butions for larger -r.

ating it under the Gaussian distribution with covariance Ez2 E R2 x2 . The conjugate
prior distribution for covariance matrices E is the inverse Wishart distribution [85]
parameterized by A = {A c R 2 x 2 , V E R}:

p(e; A) = IW(Ez,; A, V) (3.10)

As alluded to and examined in Sec. 2.6.2, the range of Logp is contained within a
disk of radius 7r while the Gaussian distribution has infinite support. Consequently,
for probabilistic inference, we use the inverse Wishart prior to favor small covariances
resulting in a probability distribution that, except a negligible fraction, is within the
range of LogP and concentrated about the respective axis. The advantage of choosing the
tanget-space Gaussian distribution is that it allows modeling and capturing anisotropic
surface normal distributions in contrast to the isotropic vMF distribution.

* 3.2.3 von-Mises-Fisher Manhattan Frame Model

As introduced in Sec. 2.6.3, the vMF distribution is natively defined over the manifold
of the sphere and commonly used to model directional data [14,15, 92, 222]. We utilize
the vMF distribution to model the deviation of a surface normal from its assigned Man-
hattan Frame axis. In 3D, the vMF defines an isotropic distribution for 3D directional
data n E S2, i.e. surface normals, around a mode pa E S2 with a concentration wTE R +
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and has the following form:

vMF(n; p, -r) = Z(r) exp(rnTp) (3.11)

Z(-r) = T (3.12)
47r sinh r

The concentration parameter behaves inversely to the variance of a Gaussian: increasing
the concentration leads to a more peaked distribution whereas setting T = 0 leads to a
uniform distribution over the sphere. This is illustrated in Fig. 3.9 for the 2D vMF.

In the vMF Manhattan Frame model, a surface normal ni E S2 is distributed ac-
cording to a vMF distribution centered on the associated Manhattan Frame axis, pZ,
with concentration E = T:

p(ni I zi, R, 8) = vMF(nj;Zj, T), (3.13)

p(E; A) oC Z(T)a exp(bT) , A= {a, b}, (3.14)

where the prior p(E; A) on the concentration parameter of the vMF is only known up to
proportionality [180]. The vMF Manhattan Frame distribution is conceptually depicted
in Fig. 3.8.

N 3.3 Real-time Manhattan Frame MAP Inference

Based on the probabilistic generative models for the Manhattan Frame setup in the
previous sections, we now develop real-time Manhattan Frame (RTMF) maximum-
a-posteriori (MAP) inference methods. These algorithms are used to infer the local
Manhattan Frame structure of an environment efficiently. Starting from the TG-MF
model we first derive the MAP inference algorithm directly before employing an ap-
proximation that yields more efficient inference. Lastly, the vMF Manhattan Frame
MAP inference is derived. Those three Manhattan Frame algorithms are instantiations
of the hard-assignment expectation maximization algorithm (EM): We iterate assigning
surface normals to the most likely Manhattan Frame axis and updating the Manhattan
Frame rotation estimate until convergence. It would be straightforward to convert the
inference to a MCMC-based method such as Gibbs sampling. This is likely to yield
more accurate inference of all parameters at the cost of increased computation time.

In this section, for efficiency reasons and in the absence of further knowledge about
the scene, the surface normals are assumed to be generated with equal probability from
any of the axes, i.e. all wj = . For the same reason we assume identical isotropic
covariances Ej = .21 for all TG-MF axes and identical concentration parameters rj
for all vMF Manhattan Frame axes. In Section 3.4, the TG-MF assumptions will be
relaxed.

* 3.3.1 Direct MAP Manhattan Frame Estimation for the TG-MF

Starting from the tangent-space Gaussian Manhattan Frame model set up in Sec. 3.2.2,
we derive the direct MAP Manhattan Frame rotation estimation algorithm. The poste-
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rior over assignments zi of surface normals ni to axis of the Manhattan Frame is given
by

p(zi j I R, ni;i7r, E) oc wj (Log,1 3 (ni); 0, E). (3.15)

Therefore the MAP estimate for the label zi becomes:

zi arg min Log,,j (ni)T E- Log,,j (ni) = arg min arccos2(nAj)
jE{1...6} jE{1...6} (3.16)

arg max ni p,
jC{1...6}

where we have used arccos(nipj) = ||Log, (ni)1I2 and assumed that the covariance E
is isotropic. This assumption is made for efficiency reasons: otherwise we would have
to compute the logarithm map Logy,,(ni) and the product with E for all six different
Manhattan Frame directions. While it would be possible to infer E as well in the MAP
setting or using sampling-based inference, we keep it fixed for efficiency reasons. With
p(R) = Unif(SO(3)), the posterior over the Manhattan Frame rotation R is

N

p(R I n, z; E) oc p(n I z, R; E)p(R) oc p(n I z, R; E) =lA (Log,1 i (ni); 0, E) .

(3.17)

Working in the log-domain, the MAP estimate for R is

R* =arg min - logp(R I n, z; E) := arg min f (R). (3.18)
RESC(3) RESQ(3)

With the posterior in Eq. (3.17), the cost function f(R) is

N ~N

f(R) -log [JK(Log, (ni); 0, E) Dc Log, (ni)TE -'Log, (ni)

N N = (3.19)

c > arccos 2 (n[Ai ) = arccos 2 (nT Reze),

i=1 i=1

where we have used a derivation similar to Eq. (3.16). We call this method direct since
the cost function directly penalizes a normal's deviation from its associated Manhattan
Frame axis.

We enforce the constraints on R (RTR = I & det(R) = 1) by explicitly optimiz-
ing the cost function on the S0(3) manifold using gradient descent with backtracking
linesearch. More details can be found in [2, 65,83] and in Sec. 2.7.3. As introduced in
Sec. 2.7.1, we use that perturbations of R from R0 can be written as R(W) = RoExp(W)
where W = [w]x E so(3) and Exp is the exponential map from so(3) to 50(3) defined
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Log (ni) ~ Logg, ('h) + i' UR- L)gg, (n;)

A ALog(ni)
ni

Figure 3.10: The geometry underlying the approximation of the mapping of ni into
TS 2 via Log,(ni).

in Eq. (2.126). Then the Jacobian is J f(W)) I W=O, the derivative of f with respect
to the perturbation w E R3 at w = 0:

N ~ 2 (X N
a (arccos2 E 2Tarccos(nRe)

J =-rnT RExp(W)ez = 2 ac[Rez] x
i=1 w=O 9=1 1 -(nrRezi)2

(3.20)

Backtracking line search in the direction of the negative Jacobian at iteration t, Jt, until
the Armijo conditions [2, 11] are met provides an appropriate step size 6 which allows
us to obtain a new rotation estimate using the exponential map:

R = Ret-Exp(-6Jt) (3.21)

The complete algorithm is given in Algorithm 7.

* 3.3.2 Approximate MAP Manhattan Frame Rotation Estimation

The direct approach derived in the previous section is inefficient since the cost function
in Eq. (3.19) and the respective Jacobian involve a sum over all data-points. The

Jacobian needs to be re-computed after each update to R and the cost function multiple
times during the backtracking linesearch. To address this inefficiency, we derive an

approximate estimation algorithm by exploiting the geometry of S2.
The approximation necessitates the computation of the Karcher means {iij }6 for

each of the sets of normals, {ni},, associated with the respective Manhattan Frame
axis. The Karcher mean is a generalization of the standard Euclidean sample mean

to arbitrary manifolds as introduced in Sec. 2.6.1. After this preprocessing step, we
approximate Log,,a (ni) using the Karcher mean as introduced and further analyzed
in Sec. 2.6.2:

Log,(ni) ~~ Log,(ii) + RLog (ni) . (3.22)

where the subscript zi was omitted for the sake of clarity and fR1 rotates vectors in TiS2
to T,S 2 . Intuitively this approximates the mapping of ni into pz, with the mapping of

the Karcher mean into Mpz plus a correction term that accounts for the deviation of ni
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from the hi. See Fig. 3.10 for an illustration of underlying geometry. Analysis outlined
in Sec. 2.6.2 shows that even in the worst case the approximation holds well for small
angles (< 350) between y and h. This will generally be fulfilled since aligning A and
h is the part of the inference objective. In the best case, when IL, ni and h lie on a
geodesic or if p = h, the approximation is exact. With this the cost function f(R) from
Eq. (3.19) can be approximated by f(R) as

N

f(R) oc Log,,, (ni)TE-Log, (ni)
i=1

6

Log,,, (5)TLog,,, (5j) + 2Logf (ni) (R) Log, (h) (3.23)
j=1 icI,

6 6

1 I arccos 2 ( fpj) = Ij arccos 2 (if Re) :=
j=1 j=1

where we have used that the sample mean in the tangent space of their Karcher mean

E>j- Logfj (ni) = 0 by definition. With pu = Rej the Jacobian for f(R) is

&f(R(w)) 6 21j Iarccos(hTRej)
J - w I (hTRej) hj[Rej] x .(3.24)

Thus the gradient descent optimization over R only utilizes the Karcher means {j J=1,
which can be pre-computed since the labels are fixed for the rotation estimation. This
eliminates the costly iteration through all data-points at each gradient descent iteration
in Alg. 7.

* 3.3.3 MAP Inference in the vMF Manhattan Frame Model

In the previous section we derived a direct and an approximate MAP inference algorithm
for the Manhattan Frame which assumes zero-mean Gaussian noise for surface normals
in the tangent space around an associated Manhattan Frame axis. In this section,
we derive the MAP inference for the vMF Manhattan Frame model and show that the
structure of the vMF distribution allows the Manhattan Frame rotation to be computed
in closed form.

61With the uniform distribution over labels, i.e. wrg = , the posterior distribution
over label zi follows the proportionality:

p(zi = j I ni, R; r) oc vMF(ni; pj, T) oc exp(rnii). (3.25)

Since we assume equal concentration parameter r for the six vMF distributions, the
MAP assignment for zi is:

Tzi = arg max n pj. (3.26)
jE {1.6}
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1: Initialize Ro (to identity or the previous timestep's MF rotation (streaming))
2: while log p(R I n, z; E) not converged do
3: On GPU: obtain zi = arg maxTetl.6} r4pj V E {1... N}
4: On GPU: compute statistics (for approx. method)
5: Compute J0 using Eq. (3.20) or (3.24) respectively
6: for t E {1... T} do
7: 6 +- backtracking line-search along the geodesic in direction J
8: Rt+1 = ExpR,(-6Jt)
9: Compute Jt+1 using Eq. (3.20) or (3.24) respectively

10: end for
11: end while

-12: return RT

Algorithm 7: Optimization over the Manhattan Frame rotation R E SO(3). The dif-
ference between the proposed approaches (direct and approximate) is in how the labels

{zi}f ,= and the Jacobians are computed and which statistics are used.

This amounts to assigning the data point ni to the closest Manhattan Frame axis in
terms of angle. Interestingly this is the same assignment rule as for the TG-MF in
Eq. (3.16).

With p(R) = Unif(SQ(3)) = the posterior distribution over the Manhattan
Frame rotation is:

N

p(R I n, z; T) oc p(n I z, R; T)p(R) oc p(n I z, R; r) = f vMF(ni I [zL; T). (3.27)
i=1

We find the optimal rotation as the maximizer of the log posterior according to:

N

R* = argmaxlogp(R j n,z;r) =argmax 'rnpzi
RESO(3) RESO(3)

6(
= arg max n7 Rej (3.28)

RESO(3) j=1 iElj

6

=argmaxtr{RN}, N= ej n 1: .
RES0(3) j=1 iEij

This has the same form as the orthonormal Procrustes problem [215] outline as well in
Sec. 2.7.3. Hence, the optimal rotation can be computed in closed form using the SVD
N =USVT as

V 10 0 u
R*=V 101 U'. (3.29)

0 0 det(VU T )
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This has been used before to align point patterns by Umeyama [241] and applied to the
Manhattan Frame rotation estimation in a slightly different way by [87]. The algorithm
for vMF-MF inference is straight-forward as can be seen in Alg. 8.

1: Initialize R0 (to identity or the previous timestep's MF rotation (streaming))
2: while log p(R I n, z; r) not converged do
3: On GPU: obtain zi = argmax{i 6... 6i n7 y Vi E {1 ... N}
4: On GPU: compute statistics Eg. ni Vj E {1, ... , 6}

5: Compute R using Eq. (3.29)
6: end while

7: return R

Algorithm 8: Computing the Manhattan Frame rotation R C S(3) under the vMF
Manhattan Frame model.

U 3.3.4 Real-time Manhattan Frame Inference on Streaming Data

In the case of a stream of batches of surface normals obtained, for example, from an
R.GB-D camera, we impose a matrix vMF [136] diffusion model with concentration -rR.
The conditional distribution of the current rotation R given the previous rotation R_
is:

p(RIR_, -rR) oc exp (rR tr{R R}). (3.30)

This distribution is uniform over the rotation space for rR 0 and concentrates on R_
as -rR increases. See [32] Ex. 2 and Sec. 2.7.5 for a modern treatment of the matrix vMF
distribution. In practice we chose r = 1. This adds the negative log likelihood term

fR =-rRtr{RTR} (3.31)

to the MAP cost functions derived in the previous sections. For the direct and the
approximate 1RTMF algorithm this means an additional term in the Jacobian:

DfR(R(w)) = - At{ R(w)}w -TRL rf R_ ) (3.32)
-TR [tr{RIG1R} tr{RG2R} tr{RIG3R}].

For the vMF-based algorithm we can still derive a closed from rotation MAP estimate:

R* arg maxReSO(3) log p(R q, z; -r) + rR tr{RT R}
T (3.33)

arg maxRCSO(3) tr{NR}, N = N + -rR R.

Note that the additional term stemming from the matrix vMF distribution acts as a
regularizer if only one MF axis has associated observations.
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* 3.4 The Mixture of Manhattan Frames

As alluded to in the introduction, the description of man-made environments on a global
scale necessitates a more flexible model that can capture Manhattan Worlds with some
relative rotation between them. This motivates the extension of the MF framework
described in Sec. 3.2 to the MMF. In practice, scene representations may be composed
of multiple intermediate representations, which may include MMFs, to facilitate higher-
level reasoning (e.g. [35]). As such, adopting a probabilistic model allows one to describe
and propagate uncertainty in the representation. Prior knowledge and model inherent
measurement noise can be incorporated in a principled way. Conditional independence
allows drawing samples in parallel and hence leads to tractable inference.

In the proposed MMF representation scenes consist of K MFs, {M1 ,.. ., MK} which
jointly define 6K signed axes. For K = 1, the MMF coincides with the MF. Specifically,
let ni E S2 denote the ith observed normal. In the MMF, each ni has two levels
of association. The first, ci E {1,. .. , K}, assigns ni to the cith MF. The second,
zi E {1,.. . , 6}, assigns ni to a specific signed axis within the MF Mc, as described
in Sec. 3.2. In the following sections it will be convenient to collect all variables of
the kth MF into Ik = Ck, Zk, Wk,Rk, Ek} whereEk = {Zkj},i, Ck = {Cj}i:ci=k and
Zk = {Zi}ji:c=k denote all labels ci or zi which are associated to the kth MF via c. The
MF axes of the kth MF are a function of the rotation Rk according to Eq. (3.2) and
will be denoted {Ipkj} .

First we define the MMF's probabilistic model before we outline a sampling-based-
inference scheme. We restrict the analysis and inference method to the TG-MF model
because the vMF distributions in the vMF-MF model necessitate more involved in-
ference methods since the prior on the concentration does not have a closed form as
mentioned in Sec. 3.2.3. Hence an internal slice sampler would be required to sample
posterior concentration parameters for the vMF-MF.

* 3.4.1 Probabilistic Model

Figure 3.11 depicts a graphical representation of the probabilistic MMF model. It is
a Bayesian finite mixture model that takes into account the geometries of both S2
and SO(3). In this probabilistic model, the MMF parameters are regarded as random
variables and we avoid assumptions from Sec. 3.3 about weights and covariances of the
individual MFs.

A surface normal ni is associated with an MF via the assignment variable ci. These
MF-level assignments are assumed to be distributed according to a categorical distri-
bution with a Dirichlet distribution prior with parameters a:

7r ~ Dir(a) (3.34)

ci ~ Cat(7r). (3.35)

Each MF follows the mixture distribution outlined in Sec. 3.2.2 and hence a surface
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N 6 J

Figure 3.11: Graphical model for a mixture of K Manhattan Frames.

normal is distributed as

ni p (i'c; -, A, v) . (3.36)

We set a < 1 to favor models with few MFs, which is typical for man-made scenes.

Contemporary buildings, for example, customarily exhibit a small number of MFs. To

encourage the association of equal numbers of normals to all MF axes, we place a strong

prior -y > 1 on the distribution of axis assignments zi. Intuitively, this encourages an

MF to explain several normal directions and not just a single one.

U 3.4.2 Metropolis-Hastings MCMC Inference

We perform inference over the probabilistic MMF model described in the previous sec-

tion using Gibbs sampling with Metropolis-Hastings [105] split/merge proposals [197].
Specifically, the sampler iterates over the latent assignment variables c and z, their cat-

egorical distribution parameters r and w = {wk 1, as well as the covariances in the

tangent spaces around the MF axes E= {Jk}j i and the MF rotations R = ={Rk}1.
We first explain all posterior distributions needed for Gibbs sampling before we outline
the algorithm.

Posterior Distributions for MCMC Sampling

The posterior distributions of both mixture weights are:

p(7r I c; a) = Dir(ai + N1 , ... , aK + NK) (3.37)

p(Wk I c, z; y) = Dir(-q + Nk, ... yk6 + Nk6), (3.38)

where Nk j= 1 
11c=k is the number of normals assigned to the kth MF and NkJ =

Ej= 1 ,ic=k1zi=j is the number of normals assigned to the jth axis of the kth MF. The

indicator function 1a=b is 1 if a = b and 0 otherwise
Using the likelihood of ni from Eq. (3.9), the conditional distributions for labels ci
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and zi are given as:

6

p(ci = k -r, ni, 8) oc rk Wkj p(rni 11%) ,Ek) (3.39)
j=1

p(zi = j I ci, ni, 8) oc we j p(ni I pIcj, Ecij), (3.40)

where E = {w, E, R}. We compute xi = Log,1 , (ni), the mapping of ni into T, S2,
to obtain the scatter matrix Skj = EN eI1=lzi=jXjXT in TkjS2. Using Skj the poste-
rior distribution over covariances Ekj is:

P(Flkj I C, z, n, R; A, v) = IW (A + Skj, v + Nkj) .(3.41)

Since there is no closed-form posterior distribution for an MF rotation given axis-
associated normals, we approximate it as a narrow Gaussian distribution on SO(3)
around the optimal rotation R* under normal assignments z and c:

p(Rk I z, c, n) ~ M(Rk; R* (RO, z, C, n), Eso(3)), (3.42)

where Eso(3) E R3
x3 and Ro is set to Rk from the previous Gibbs iteration. Refer to

Sec. 2.7.1 for details on how to evaluate and sample from this distribution.

The (locally-) optimal rotation R* E S(3) of MF Mk given the assigned normals

n = {ni}i:cj=k and their associations zi to one of the six axes Akz, can be found using

any of the MAP MF inference algorithms (i.e. Sec. 3.3.1 or 3.3.3).

Metropolis-Hastings MCMC Sampling

The Gibbs sampler with Metropolis-Hastings split/merge proposals is outlined in Al-

gorithm 9. For K MFs and N normals the computational complexity per iteration is

O(K 2 N). To let the order of the model adapt to the complexity of the distribution of

normals on the sphere, we implement Metropolis-Hastings-based split/merge proposals.

The details of the algorithm are described in the following sections.

* 3.4.3 Split/Merge Proposals

Here we derive split and merge proposals for the MMF model as well as their acceptance

probability in an approach similar to Richardson and Green [197]. Note that a merge

involves moving all points from MF 1 and m into a new MF n and then removing

MFs 1 and m. Similarly, a split creates two new MFs 1 and m from a single MF

n. Hence, both a split and a merge change the number of parameters in the model.

Specifically the parameters that change their dimension are the set of MF rotations, R,
and the set of covariances on the MF axes, E. The labels z and c remain of the same

dimensions; only the range for c changes from [1, K] to [1, K - 1] (merge) or from [1, K]

to [1, K +1] (split). Therefore, we employ the theory of Reversible Jump Markov Chain

Monte Carlo (RJMCMC) [94] to derive a proper acceptance probability. RJMCMC is a
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1: Draw ir c; a using Eq. (3.37)
2: Draw c r, n, R, E in parallel using Eq. (3.39)
3: for k E {1,... ,K} do
4: Draw Wk I c, z; -y using Eq. (3.38)
5: Draw z I c, w, n, R, E in parallel using Eq. (3.40)
6: Draw Rk I z, c, n; E, (3) using Eq. (3.42)
7: Draw {Ekj}l I c, z, n, R; A, v using Eq. (3.41)
8: end for
9: Propose splits for all MFs

10: Propose merges for all MF combinations

Algorithm 9: One iteration of the MMF inference algorithm.

generalization of Metropolis-Hastings MCMC [105] and provides a way of computing an
acceptance probability when the number of parameters changes between moves. We will
see that the split/merge proposals as well as the acceptance probabilities are similar
to what one would expect from the Metropolis-Hastings algorithm. For this reason
and because the MH algorithm is more well-known, we chose to refer to the inference
algorithm as to Metropolis-Hastings MCMC.

RJMCMC Split/Merge Moves in an MMF

RJMCMC utilizes auxiliary variables to propose deterministic moves to change between
model orders. In the following, we will give the RJMCMC algorithm for a merge
proposal between two MFs. The inverse proposal of a split of an MF into two MFs
follows the same but inverted process.

Let a MF A be parameterized by the random variables "'A. An R.JMCMC merge
proposal between MFs m and 1 is executed in three steps. First, an auxiliary MF
v is sampled from q(merge) to propose a merge of the current MFs 1 and m as will
be described in Section 3.4.3. Second, the deterministic function f([xi, Tm, Tv])

[u1 , u2 , 4',] is used to obtain the merged MF n parameterized by T,. The auxiliary MFs

ul and u 2 absorb the MFs 1 and m from before the merge. The function f(['i, xp'm, T,])
is hence defined as

U1 = u2 = m, 'n = T. (3.43)

Therefore, the Jacobian Jf of the function f([WQj, T, Tv]) is

if= f([qf , qjm, XFV]) (.4
Jf [P1 (3.44)V

where I is the identity matrix with determinant 1.
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Third, the proposed merge is accepted with probability

min I, Ik1Pdk; a, Y, A, I") q(split) det(JJ) (3.45)
k=1 P('Pk; Oz, vA ) q(merge)

where parameters after the merge are designated with a hat. The proposal distributions
for a split of MFs 1 and m into MF n is denoted q(split).

The RJMCMC split proposal of an MF n into MFs 1 and m follows the same
process except that a split is proposed according to Sec. 3.4.3 instead of a merge. The
deterministic transformation is the inverse of f(.). This means that the determinant
of the Jacobian is 1 and the acceptance probability for the split is Eq. 3.45 where the
ratio has been inverted.

Note that the RJMCMC acceptance probability for split/merge moves in an MMF
looks like the Metropolis-Hastings acceptance probability, because I det(JJ)I = 1. How-
ever, since the model orders in the nominator and denominator of the fractions are
different, it technically is not a Metropolis-Hastings acceptance probability.

Merge Proposal in an MMF

Let the two MFs 1 and m be parameterized by the random variables 'J' and "m. A
merged MF n can be sampled from the current MFs 1 and m as follows. We first assign
all normals of MF 1 and m to MF n: ccE{1,m} = n, which corresponds to the proposal
distribution:

q(cl, cm I c) =({cl, cm} - n). (3.46)

Second, we sample the axes assignments z, according to

q(zi = j I wi, R1, El, n) oc wij p(ni; pi, Eij). (3.47)

Next, given associations c, and zu, we find the optimal rotation using the closed form
solution of the vMF-based model derived in Sec. 3.3.3. This is justified because the
direct and the vMF-based algorithms generally found the same optimum in our exper-
iments. Then we sample Rn from a narrow Gaussian distribution over rotations with
mean R*n

q(R, I z, c, n, R1 ) = N(Rn; R* (z, Cn, n), E(3)(3))
*T n E(3.48)-

= A((R* LogR,*(.)(Rf)); 0, so(3)),

where LogR (R) : SG(3) - TRaSO(3) denotes the logarithm map of R into the tangent
space TR, O(3) around R*. The vee operator v [45] extracts the unique elements of a

skew-symmetric matrix W E R 3x3 into a vector w: WV = w = [-W23 ; W 13 ; -W 12] E
I3. E 0(3) E R 3x3 is the covariance of the Normal distribution in TR*SO(3). Refer to

Sec. 2.7.1 for an in depth discussion.
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Finally, we obtain samples for the axis covariances E, according to the proposal
distribution

6

q(En I c, z, Rn, n) = p(Enj I zn, Cn, n, R), (3.49)
j=1

where p(Enj I zn, Cn, n, Rn; A, v) is the posterior distribution over covariance Enj under
the IW prior given the assigned normals in the tangent space Tttn2*

The proposal of merging MF 1 and m into MF n factors as

q(merge) =q('Ji TIi, Tm, n; a,, A, v) = q(cl,cm I c)

q(Rn I R1,z, c, n)q(ln I c, z, n, Rn; A, v) H q(zi I wi, R1, El, n) . (3.50)
i:ci=n

Split Proposal in an MMF

First, we randomly assign normals in MF n to MF 1 or m by drawing MF labels

according to the Dirichlet Multinomial (DirMult) distribution:

q(cn I c; a) = DirMult (cn; al, am) j Cat(c I 7r) Dir(7r; al, am) d7r, (3.51)

K

DirMult(c; a) = k(Z-1 ak) I(ak+Nk) (3.52)
F(k=-1 ak+Nk) k1 F(a k)

k=1

and the counts Nk of labels ci = k are Nk- = ENI1c=k.
Within each of the MFs 1 and m we assign normals n to an axis by drawing the

assignments zn as

q(zi =j I Wn, Rn, En, n) ocwnj p(ni; inj, Enj) . (3.53)

Using these assignments, we find optimal rotations R* and R* and draw RI and Rm:

q(RI, Rm I z, c, n, Rn) = (Rj; R* (Rn, z, c, n), E,5 (3)) ()
jV(Rm; R* (Rn, z, c, n), E,, (3)).

Given rotations as well as labels, we can draw axis covariances E{I,m} from the respective

posterior:

6

q(Ejj,m} I c, z, n, R{l,m}; A, v) = 1 p(Elj I z, c, n, Ri)p(Emj Z C, n, Rm) (3.55)
j=1

The 'split proposal distribution factors as

q(split) =q(x, xm; a in, n; ,, f q, A, V)

=q(cn I c; ce)q(Rfj,m} I z, c, n, Rn)q(Efj,m} I C, z, n, Rjj,m}) (3.56)

H q (zi I Wn, Rn, En, n).
i:ci=n
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RJMCMC Acceptance Probability

After introducing the RJMCMC merge and the split proposals in the previous sections,
we will now derive the acceptance probabilities for those two moves by detailing the

distributions involved in the computation of Eq. (3.45).
The joint distribution for the MMF model is defined by the graphical model depicted

in Fig. 3.11. For the evaluation of the acceptance probability, we marginalize over the

categorical variables 7r and w as in the split proposal in Eq. (3.51):

p(c; a) = jp(c I 7r)p(7r; a) d7r = DirMult(c; a) (3.57)

p(zk Icy; -) = WP(zk c, wk)p(wk; y ) dwk = DirMult(zk; Y)., (3.58)

After marginalization of 7r and w, the joint distribution is:

6 N

p(n, c, z, E, R; a, 7, A, v) =p(c; a) f1p(Ek; A, V) f p(ni I ci, zi, Rci, Ecizi)

i=1 (3.59)

17 p(Rk)p(zk I C; -)

k=1

where we have assumed that the prior over rotations factors according to p(R) =

=1 p(Rk). Therefore, the ratio of joint probabilities in the merge move acceptance

probability in Eq. (3.45) becomes

p(n, i, i, i, f; a, -y, A, v) p(6; a)p(n , , R, t)p(i I ; -y)p(i; A, v)p(R)

p(n, c, z, E, R; a, y, A, v) p(c; a)p(n c, z, R, E)p(z I c; -)p(E; A, v)p(R)

87r2 p(; a) (H p(ni I , Hii)tP(zk ; ) 9 i p(kj; A, v) (3.60)

p(c; a) (FN p(ni I ci, zi, R, E)) H ip(zk c; Y) H61 p(Ekj; A, v)

where K = K - 1. For a split proposal this ratio is inverted.

The acceptance probability of splits and merges of MFs can be computed, by plug-

ging Eq. (3.60) into Eq. (3.45).

* 3.5 Evaluation and Results

We evaluate the properties and performance of the real-time MF (RTMF) before the

MMF inference algorithms. All evaluations were run on an Intel Core i7-3940XM CPU

at 3.00GHz with an NVIDIA Quadro K2000M GPU.

N 3.5.1 Evaluation of Real-time MAP Inference

We show run-times and rotation estimation accuracy of all three derived real-time MF

inference (RTMF) algorithms on two datasets with groundtruth (GT) camera rotations
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direct-
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Figure 3.13: Timing breakdown for the three different real-time Manhattan Frame

algorithms. The error bars show the one-a- range.

from a Vicon motion-capture system. The datasets were obtained by waving a Xtion

Pro RGBD camera randomly in full 3D motion up-down as well as left-right in front

of a simple MW scene for 90 s and 4:30 min respectively as can be seen in the GT

yaw-pitch-roll angles in the first row of Fig. 3.12.
The approximate RTMF algorithm was run for 25 iterations at most while the direct

RTMF algorithm was run for at most ten to keep computation time low. Any fewer

iterations rendered the direct MF rotation estimation unusable.

Timings We split the computation times into the following stages: (1) applying a

guided filter to the raw depth image, (2) computing surface normals from the smoothed

depth image, (3) pre-computing of data statistics and (4) optimization for the MF ro-

tation. The timings shown in Fig. 3.13 were computed over all frames of the dataset.

At 111 ms per frame the direct method cannot be run in real-time. While the approx-

imate method improves the runtime, it is 15 ms slower than the vMF-based approach

which runs in 18 ms. The approximate algorithm is slower since the Karcher mean pre-

computation is iterative whereas the vMF pre-computation is single pass. As intended

by shifting all computations over the full data into a pre-processing step, the latter two

RTMF algorithms can be run at a camera frame-rate of 30 Hz. In the following we

omit the direct method from the evaluation due to its slow runtime.

Accuracy Besides the evaluation of the rotation estimates of the proposed RTMF al-

gorithms, we show the rotation estimates obtained by integrating rotational velocities

measured by a Microstrain 3DM-GX3 IMU using an EKF as proposed in [236]. The
state of the EKF contains the estimated fused rotation represented as a Quaternion and

the bias of the IMU. While the rotational velocities measurements of the IMU are used

for the EKF prediction step, the RTMF rotation estimate is used in the update step.

For the shorter groundtruth dataset of 90 s length, displayed on the top in Fig. 3.12, we

obtain an angular RMSE from the Vicon groundtruth rotation of 6.36' for the vMF-

based algorithm and 4.920 for the approximate method. The IMU rotation estimate

drifts and exhibits an RMSE of 3.91'. Fusing the RTMF rotation estimates with the

IMU using the EKF achieves even lower RMSEs of 3.05* for the vMF-based and 3.280

for the approximate method. Figure 3.12 on the bottom shows the angular deviation
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Figure 3.14: MF orientations extracted as a Turtlebot V2 traverses the hallways around
Killian court in the main building of MIT. The zoomed in area displays the top left
corner of the loop. Note that the orientations align with the local MW structure of the
environment.

from Vicon groundtruth during a longer sequence of about 4:30 min taken at the same
location. Similar to the shorter sequence, the two MF rotation estimation algorithms
exhibit zero drift and an RMSE below 3.4*. The drift of the IMU is clearly observable
and explains the high RMSE of 8.500. Note that while the drift of the IMU can be re-
duced by utilizing acceleration and magnetic field data, it can not be fully eliminated.
The fusion of the rotation estimates using the Quaternion EKF again improves the
RMSEs to below 2.80.

The percentages of surface normals associated with the MF axes displayed in the
second rows of Fig. 3.12 support the intuition that a less uniform distribution of normals
across the MF axes results in a worse rotation estimate: large angular deviations occur
when there are surface normals on only one or two MF axes for several frames.

The angular accuracy results also highlight the complementary nature of the rota-
tional estimates from IMU and RTMF algorithms: the IMU's rotation estimates over
short timescales complements the MF rotation estimates if it is not well constrained.
In turn the RTMF rotation estimates helps estimate and thus eliminate the bias from
the gyroscope measurements. Note that while the drift of the IMU can be reduced by
utilizing acceleration and magnetic field data, it can not be fully eliminated.

Manhattan Frame Inference on the Killian Court Dataset For this experiment a Turtlebot
V2 robot equipped with a laser-scanner-based SLAM system was driven through the
hallways surrounding Killian court in the main building of MIT. We ran the vMF-
based RTMF algorithm on the depth stream from the Kinect camera of the robot.

95Sec. 3.5. Evaluation and Results
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Figure 3.15: In each row the MF segmentations of several scenes from the NYU depth
dataset [173] are displayed for one of the different RTMF algorithms. For the direct
method the third row displays results with the real-time configuration whereas the
fourth row (direct HQ) shows segmentations obtained with slower but theoretically
higher quality parameter settings. For each image, the segmentation is overlaid on top

of the grayscale image of the respective scene. Note that unlabeled areas are due to
lack of depth data. The inferred MF orientation is shown in the bottom right corner of

each frame.

Figure 3.14 shows the inferred MF rotations for every 200th frame at the respective
position obtained via the SLAM system. It can be seen that the algorithm correctly
tracks the orientation of the local MW. A part of the hallway on the top right does not

align with the overall MW orientation. The estimated orientations are thus aligned with

this local MW, which is at an angle with respect to the rest of the map. This highlights

that the MW assumption is best treated as a local property of the environment as

argued in the introduction. In parts of the map without nearby structure the MW

rotation estimate is off due to the lack of data.

Manhattan World Scene Segmentation As a by-product of the MF rotation estimate the

algorithm also provides a segmentation of the frame into the six different orthogonal

and opposite directions. This segmentation can be used as an additional source of

information for further processing. For example, using the direction of gravity it would

be easy to extract the ground plane for obstacle avoidance. We show several examples

of segmented scenes taken from the NYU depth dataset [173] in Fig. 3.15. The RTMF

algorithms used the same parameters as before. The segmentations show that the

vMF-based and the approximate method perform well on a wide range of cluttered
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Figure 3.16: A complex indoor scene (left) and its surface normal distribution on the
unit sphere (middle left). The MMF inference algorithm converges to three distinct
Manhattan Frames, shown in different colors to the right. The inferred Manhattan
Frames imply a directional scene segmentation as shown in the middle right.

scenes. The direct algorithm with a fine-grained line-search in the conjugate gradient
optimization (denoted direct HQ) gives similar results to the two other approaches but
is significantly slower.

N 3.5.2 Evaluation of MM F Inference

We now evaluate MMF inference on various datasets across scales and compare against
MF and VP estimation algorithms.

With the RJMCMC-based approach, we infer an MMF in a coarse-to-fine approach.
First, we down-sample to 120k normals and run the algorithm for T = 150 iterations,
proposing splits and merges throughout as described in Sec. 3.4.2. We use the following
parameters: E,,,(3) = (2.50)2 13x3, 0 = 0.01, y = 120, v = 12k, and A = (11*) 2V 12x2-
For the purpose of displaying results, we obtain MAP estimates from samples from
the posterior distribution of the MMF. First, we find the most likely number of MFs
K* from all samples after a burn-in of 100 RJMCMC iterations. We then run MCMC
starting form the latest sample that has K* MFs using all data without proposing splits
and merges. All MMF results displayed herein show the last MMF sample of that chain.

The vMF-MMF MAP inference algorithm is sensitive to the initial MF rotations.
Hence, we run it 11 times each time starting from 6 randomly rotated MFs and choose
one of the models with the moste likely number of MFs after discarding MFs with less
than 10% of surface normals.

MMF Inference from Depth Images

We first highlight different aspects and properties of the inference using the 3-box scene
depicted in Fig. 3.16. For this scene, we initialized the number of MFs to K = 6. The
algorithm correctly infers K = 3 MFs corresponding to the three differently rotated
boxes as displayed in Fig. 3.16 on the sphere and in the point cloud. While the pink
Manhattan Frame consists only of the single box standing on one corner, the turquoise
and orange MFs contain planes of the surrounding room in addition to their respective
boxes. This highlights the ability of our model to pool normal measurements from the
whole scene.

Sec. 3.5. Evaluation and Results 97
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IMF 1MF 2MF 2MF 2MF 3MF

Figure 3.17: Segmentation and inferred (M)MF of various indoor scenes partly taken

from the NYU V2 depth dataset [173]. The first and second row shows MAP inference

results under the von-Mises-Fisher Manhattan Frame model and the vMF MMF model

respectively. The third row shows the inferred MMF model using RJMCMC. For single-

MF scenes we color-code the assignment to Manhattan Frame axes and for MMF scenes

the assignments to MFs.

In Fig. 3.17 we show several typical indoor scenes of varying complexity and the

inferred Manhattan Frame using the vMF-based RTMF algorithm, the MMF inferred by

the MAP von-Mises-Fisher MMF algorithm (vMF-MMF) and the MMF inferred by the

RJMCMC algorithm (MMF). The MMF inference algorithms were started with six MFs

in all cases. For the single MW scenes, all these algorithms infer the same Manhattan

Frame, for the multiple-MW scenes the MMF and the MAP-MMF algorithm infer the

same reasonable MFs while the vMF RTMF algorithm seems to pick the most prominent

Manhattan Frame.
Besides poor depth measurements due to reflections, strong ambient light, black

surfaces, or range limitations of the sensor, the inference converged to the wrong num-

ber of MFs mainly because of violations of the MW assumption such as round objects

or significant clutter in the scene. We observe that the algorithm fails gracefully, ap-

proximating round objects with several MFs or adding a "noise MF" to capture clutter

as can be seen in Fig. 3.18. Hence, to eliminate "noise MFs", we consider only MFs

with more than 10% of all normals for the following quantitative evaluation. A more

principled approach that could be explored is to explicitly instantiate a noise model in

the form of an uniform distribution over the sphere. For the RJMCMC-based inference

approach the inference would not significantly change.

To evaluate the performance of the MMF inference algorithms, we ran them on the

NYU V2 dataset [173] which contains 1449 RGB-D images of various indoor scenes.
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Figure 3.18: Failure cases for the MAP (first row) and RJMCMC MMF (second row)
inference. MMF inference fails due to bad, noisy or erroneous surface normal estimates
and if the multiple Manhattan World assumption is violated. In the case of round
objects, a common violation of the Manhattan World assumption, the MMF inference
fails gracefully by approximating the surfaces via multiple Manhattan Frames.

Inference of the number of Manhattan Frames For each scene, we compare the number

of MFs the algorithm infers to the number of MFs a human annotator perceives. The
confusion matrices for the two MMF algorithms are:

(557 467 108 3 0)
CMMF = (130 152 28 1 1) (3.61)

CvMF MMF ( 528 283 186 138) (362)
C37 118 83 74)

The MMF algorithm infers the human perceived MMFs in 49.0% of the scenes while

vMF-MMF is slightly worse with 44.6% and a tendency to overestimate the number of

MFs.

Manhattan World orientation accuracy We use the groundtruth MW orientation of the

most prominent MW provided by [87] to directly evaluate MW orientation estimation
accuracy. We take into account that the same MF axes defined according to Eq. (3.2)
can be described by 24 rotations {RMF,i Z1. These are constructed as: for all six
permutations of choosing two columns from RMF,i, r and r', construct four rotation
matrices:

[r, r', rx], [-r, r', -rx], [r, - -rx], [-r, -r', x ] (3.63)

where rx = r x r'. To compute the angular deviation 9 of an estimated MF to the ground
truth Manhattan Frame rotation we construct the set {RMF,i }?i from the inferred MF

rotation, compute all angular rotation deviations to the groundtruth RGT and choose
the smallest deviation:

(3.64)0 = min arccos (. tr (RNTRMF,i) -
i e{1.,24}
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Figure 3.19: Cumulative density functions of deviations from true gravity and true
Manhattan World orientation for different Manhattan Frame and vanishing point algo-
rithms.

In case of MMFs we choose the smallest deviation across MFs.
Figure 3.19 (right) depicts cumulative distribution functions (CDF) for the angular

deviation of the different MF and MMF algorithms, and two VP extraction algorithms,
[149] (VP Lez) and [146] (VP Lee), which extract three OVPs. Evidently, MF algo-
rithms estimate the MW rotation more accurately than the OVP algorithms. The MMF
algorithms show higher accuracy on the whole dataset than single MF algorithms.

Gravity direction estimation Like the algorithms by Silberman et al. [173] and Gupta
et al. [96] the proposed MF and MMF inference algorithms can be used to estimate the
gravity direction to facilitate rotating scenes into a canonical frame for scene under-
standing. VPs are also indicative of the gravity direction and we show the performance
of two additional VP algorithms [139] (VP Kos) and [19] (VP Barn). The mean direc-
tion of surface normals in the scene parts labeled as "floor" serves as a proxy for the
true gravity direction in the evaluation.

The cumulative density functions of the angular deviation from the gravity direction
in Fig. 3.19 (left) demonstrates that all Manhattan Frame inference algorithms match
the performance of Gupta et al. and clearly outperform all VP-based estimates. The
inferred MMF models outperform all other methods because of the higher flexibility of
the model. The Manhattan Frame algorithms all show similar performance.

Timing Table 3.1 gives an overview of run-times for the different algorithms averaged
over the 1449 scenes from the NYU V2 dataset. RTMF-vMF is the fastest algorithm
while the sampling-based algorithm is, unsurprisingly, the slowest. It could, however, be
sped up, e.g., by employing a sub-cluster approach for split-merge proposals [42,224].
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Method RTMF MMF vMF MMF RMF MF BB Lez Lee Kos Barn

Time [s] 0.037 0.18 3312 23.6 0.061 3.99 5.76 0.21 0.015

Table 3.1: Comparison of Manhattan Frame and vanishing point algorithm timings over

the whole NYU V2 dataset.

Figure 3.20: MMF extracted from a mesh obtained using Kintinuous [246]. Note that

for an robot the MMF segmentation is immediately useful: All green areas are either
traversable or locations that could harbor objects the robot might be looking for. Blue

and red areas should not be bumped into but might for example contain door signs.

Additional Qualitative MMF Inference Results

Triangulated meshes Algorithms such as Kintinuous [246] and Elastic Fusion [248] allow
dense larger scale indoor reconstructions from a stream of RGBD frames as depicted in

to the right in Fig. 3.20 for a couch area with some boxes, shelves and a Lego house.
Using the triangles' surface normals, the MMF can be inferred. The associations to

one of the inferred Manhattan Frames is shown in the middle of Fig. 3.20 while the
associations to the Manhattan Frame axes within each of the Manhattan Frames is
shown to the right. Note that a robot could use the MMF segmentation directly:
all green areas are either traversable or locations that could harbor objects the robot
might be looking for. Blue and red areas should not be run into but might, for example,
contain door signs.

LiDAR data The large-scale LiDAR. scan of Cambridge (Fig. 3.21 left) has few measure-
ments on the sides of buildings due to reflections off the glass facades and inhomogeneous
point density because of overlapping scan-paths. To handle these properties, we imple-
ment a variant of robust moving-least-squares normal estimation [77]. The local plane
is estimated using RANSAC, based on a preset width that defines outliers of the plane

model. The normal votes are averaged for each point from neighboring estimates based
on a Gaussian weight with respect to the Euclidean distance from the estimator. We
count only votes whose estimation had sufficient support in the RANSAC computation
in the nearby point set. Figure 3.21 to the left shows the point cloud colored according
to Manhattan Frame assignment of the normals overlaid on a gray street-map. The in-

ferred Manhattan Frames share the upward direction without imposing any constraints.
Interestingly, the MMF captures large scale organizational structure in this man-made

environment: blue and green are the directions of Boston and Harvard respectively,

101Sec. 3.5. Evaluation and Results
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Figure 3.21: Left: Mesh of Kendall Square color-coded by height. Right: Inferred
MMF overlayed on top of a gray street map. There is a clear separation into three

MFs colored red, green and blue with the orientations indicated by the axes in the top-
left corner. These MFs share the upward direction without imposing any constraints.

Normals associated with upward axes are hidden for clarity. Note that -the underlying
point cloud has varying density due to the scan-paths of the airplane.

and red is aligned with the Charles river. The locations belonging to the Manhattan

Frames are spatially separated supporting that the MW assumption is best treated as
a local property as argued in the introduction.

0 3.6 Discussion

Guided by the observation that regularities in man-made environments manifest in
structured surface normal distributions, we have proposed the Manhattan Frame model
which captures the Manhattan World assumption in the space of surface normals. We

have formalized the notion of the Manhattan Frame and explored two different prob-
abilistic models and resulting maximum a-posteriori inference algorithms. These real-
time-capable inference algorithms are useful for extracting the local MW orientation

and segmentation of a scene.

Motivated by the observation that on a larger scale the commonly-made MW as-
sumption is often invalid, we have extended the Manhattan Frame model to a mix-

ture of Manhattan Frames which can describe scenes consisting of multiple Manhat-

tan Worlds. The proposed inference algorithm, a manifold-aware Gibbs sampler with
Metropolis-Hastings split/merge proposals, allows adaptive and robust inference of
MMFs. This enables the proposed model to describe both complex small-scale-indoor

and large-scale-urban scenes. We have demonstrated the versatility of our model by
extracting MMFs from 1.5k indoor scenes, from a larger dense indoor reconstruction
and from an aerial LiDAR point cloud of Cambridge, MA. Code for sampling-based
MMF inference and real-time Manhattan FRame rotation estimation can be found at

ht tp : //people . cs ail .mit . edu/j str aub/.
The joint work with R.. Cabezas [351 has demonstrated the use of Manhattan Frame

scene priors to regularize 3D reconstructions at city-scale. It would be interesting to



see how Manhattan Frame priors can be incorporated into online 3D reconstruction of
indoor scenes where there might be a higher degree of clutter. The experiments showing
drift-free Manhattan World rotation tracking using the Manhattan Frame model hint
at the potential to obtain drift-free 3D reconstructions if the system can successfully
deal with clutter and detect transitions between Manhattan Worlds online. The latter
task could be aided by an inertial measurement unit (IMU).

In the current instantiation of the MMF model all spatial information is ignored.
As seen in the results, different scene parts belong to different Manhattan Frames and
explicitly modeling this spatial smoothness of the Manhattan Frames might lead to more
spatially scalable models as well as more precise Manhattan Frame rotation inference.

As discussed in the introduction, the Manhattan Frame and MMF segmentation of a
scene should be useful for scene understanding. One way of utilizing inferred Manhattan
Frame rotations is to reduce the search space for 3D bounding box proposal algorithms,
a common initial step for convolutional neural networks for 3D object recognition in 3D
reconstructions. Instead of having to marginalize over rotations in training or having
to search over the full rotation space, only the four different directions implied by the
Manhattan Frame rotation have to be searched. As demonstrated in the results section
the Manhattan Frame inference algorithms proposed herein outperform related scene
orientation estimators proposed in related work for scene understanding.

* 3.7 Acknowledgments

This research published in [221, 225, 226] was conducted in collaboration with Oren
Freifeld, Guy Rosman, Jason Chang, John J. Leonard, Nishchal Bhandari, and John
W. Fisher III. The idea of the Manhattan Frame was formalized in a theoretically
sound way with the help of Oren Freifeld. Guy Rosman helped with edge-preserving
smoothing of surface normals, the robust extraction of surface normals from noisy
LiDAR, data and had the idea of depth camera focal length calibration using the MW
assumption [225]. Jason Chang helped develop the Metropolis-Hastings-based inference
for the MMF model. Nishchal Bhandari ran the Turtlebot experiment in Killian Court
at MIT. Randi Cabezas kindly provided the LiDAR, point cloud of Kendall Square.

103Sec. 3.7. Acknowledgments



104 CHAPTER 3. MANHATTAN WORLD CONSTRAINED SCENE REPRESENTATION

W-,wm" "M R'm I -1min , IqR



Chapter 4

Unconstrained Directional Scene
Representation

While directional models based on the Manhattan World assumption can capture a
wide variety of man-made environments, it is natural to ask if the orthogonality con-
straints can be relaxed to capture more general and hence a wider class of environments.
Clearly restricting a perception systems operation to Manhattan World-type environ-
ments would limit its capabilities. Therefore we explore a less expressive (because direc-
tions are assumed independent) but more general class of environments in this chapter.
In the surface normal space such environments are characterized by a set of pronounced
clusters that may have arbitrary angles with respect to eachother as depicted in Fig. 4.1.
This assumption on the surface normal space manifests in the 3D structure of a scene
via a number of principal planes to which all other planes are parallel. The Manhattan
World is a special case with three principal planes that are orthogonal to each other.
The Ray and Maria Stata Center (see Fig. 4.2) is an example of a man-made envi-
ronment where, for the most part, the Manhattan World assumption neither applies
locally nor globally: in many areas wall intersection angles are non-orthogonal. There

Scene Surface Normals Directional Stata Center World
Clustering Segmentation

Figure 4.1: An example of a Stata Center World scene: the left and the right wall are
not parallel. This manifests in non-orthogonal surface normal clusters. The directional
clustering of the surface normal distribution implies a directional segmentation of the
scene which we term a Stata Center World segmentation.
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Figure 4.2: The Stata Center World relaxes the orthogonality constraints of the Manhat-

tan World to describe environments that consist of sets of parallel planes with arbitrary
orientation differences as illustrated by different colors in the figure via manual shading

(not a result). The model is inspired by the very "relaxed" building style of the Ray

and Maria Stata Center at MIT depicted above.

are, however, still parallel walls (in hallways for example). For this reason we term the

aforementioned scene prior the Stata Center World (SCW). By clustering the surface

normals without orthogonality constraints we obtain a scene segmentation as depicted

in Fig. 4.1. Observe that this unconstrained directional segmentations still captures

regularities in the environment. The Stata Center World segmentation may therefore

be used for further reasoning about the scene in a similar way as the Manhattan World

and MMF segmentations from the previous chapter. Again, a perception system may

use secondary information about the gravity direction to reason about traversable and

obstructed scene parts. By aligning the directional clusters (as shown in Chapter 5)
we may leverage unconstrained directional segmentations for scene alignment and thus

knowledge transfer between scenes without making an Manhattan World assumption.

Inferring surface normal clusters to obtain the Stata Center World scene segmen-

tation leads to the general problem of directional data modeling, i.e. modeling of data

on the unit hyper-sphere in D dimensions, SD-1. In order to be able to model com-

plex distributions on the sphere, this chapter extends Bayesian nonparametric Dirichlet

process mixture models (DP-MM) to directional data. The resulting models describe

data on the sphere with a potentially infinite number of clusters. This allows the pos-

terior inference to adapt the number of mixture components to the complexity of the

distribution of the data. In order to explicitly describe directional data in its natural

space, the tangent space Gaussian and the von-Mises-Fisher distributions, introduced

in Sec. 2.6, are used as mixture component distributions.
The two main contributions of this chapter are: (1) modeling the distribution of a

batch of directional data with anisotropic mixture components and (2) efficient clus-

tering of large batches or streams of batches of directional data with isotropic clusters.
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While both contributions impact directional data modeling in general, the former yields
more expressive inferred models that can capture correlations in directional data clus-
ters. The latter is more applicable if the dataset size is large or if online operation on
a stream of data is desired.

Specifically, the first contribution is a Dirichlet process tangent space Gaussian
mixture model (DP-TGMM) that models anisotropic data distributions accurately and
flexibly. Published in [224] and explained in Sec. 4.3.2, the DP-TGMM is a Bayesian
nonparametric mixture model as introduced in Sec. 2.4 but for directional data. We
utilize the tangent space Gaussian distributions (see Sec. 2.6.2) for similar reasons as
in the MMF: it can describe anisotropic distributions and has a closed-form conjugate
prior distribution. Part of the contribution lies in the adaption of the efficient sub-
cluster split-based MCMC inference algorithm of [42] to exploit the manifold properties
of the sphere.

The second contribution, described in Sec. 4.4.3, is to extend the capability of direc-
tional clustering algorithms to online time-constrained or large data scenarios. Inference
algorithms in fields such as robotics or augmented reality, which would benefit from the
use of surface normal statistics, are not generally provided a single batch of data a priori.
Instead, they are often provided a stream of data batches from depth cameras. Thus,
capturing the surface normal statistics of man-made structures often necessitates the
temporal integration of observations from a vast data stream of varying cluster mixtures.
Additionally, such applications pose hard constraints on the amount of computational
power available, as well as tight timing constraints. We address these challenges by
focusing on flexible Bayesian nonparametric (BNP) Dirichlet process mixture models
(DP-MM) which describe the distribution of surface normals in their natural space,
the unit sphere in 3D, S2 . Taking the small-variance asymptotic limit of this DP-
MM of von-Mises-Fisher (vMF) distributions, we obtain a fast k-means-like algorithm,
which we call DP-vMF-means, to perform nonparametric clustering of data on the unit
hypersphere. Furthermore, we propose a novel dependent DP mixture of vMF distribu-
tions to achieve integration of directional data into a temporally consistent streaming
model. Small-variance asymptotic analysis yields the k-means-like DDP-vMF-means
algorithm. Finally, we propose a method, inspired by optimistic concurrency control,
for parallelizing the inherently sequential labeling process of BNP-derived algorithms.
This allows real-time processing of batches of 300k data-points at 30 Hz. The use of
vMF component distributions is partially motivated by the real-time Manhattan Frame
algorithm evaluation in Sec. 3.5.1, which showed that the structure of the vMF poste-
rior distribution lends itself to more efficient inference in comparison to approximate
tangent space Gaussian Manhattan Frame algorithm.

After the literature review in the next section, we first formalize the Stata Center
World assumption in Sec. 4.2 before we introduce the DP-TGMM model and manifold-
aware MCMC inference for it in Sec. 4.3.2. In Sec. 4.4.3 we develop the (D)DP-vMF-
means algorithms via low-variance asymptotic analysis.
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Linearization

von-Mises-Fisher, TD-1 T D-1 Tangent Space

Kent, Bingham Gaussian

Figure 4.3: Two different approaches to modeling a cluster of directional data. A

directional distribution can either be defined directly over the manifold of the sphere

(left) or implicitly via a distribution in a linearization of the sphere (right). Here we

specifically explore linearization via Riemannian geometry.

Impact beyond surface normal distributions The DP-TGMM as well as the (D)DP-vMF-

MM are framed as models to capture the directional segmentation of an environment by

describing its surface normal distribution. Surface normal distributions, however, are

only one example of directional distributions that the proposed models can describe.

There are numerous other naturally directional data sources such as protein backbone

configurations in computational biology [192], or 3D rotations expressed as Quaternions

(see Sec. 2.7.4). In other instances data is Euclidean, but the distinguishing factor be-

tween data-points is the angle between them and not their magnitude. For example,
word-frequency vectors are often clustered using the cosine similarity [61], which mea-

sures the cosine of the angle formed by two vectors. This measure essentially treats

the word-frequency vectors as directional data, and has been shown to be superior to

Euclidean distance for document clustering [228]. Another example of directional data

is semantic word vectors [165], which associate a high-dimensional vector with each

word in a given corpus. The semantic word vectors capture the semantic context of

the associated words, and should not to be confused with the word-frequency vectors

of documents. Again, cosine similarity is used as the distance measure to find words

with similar meaning. The use of angular distance metrics such as the cosine similarity

reveals the use of directional information. This motivates normalizing the data to unit

length and modeling their distribution on the unit sphere using the proposed models.

An example of modeling the distribution of semantic word vectors can be found in

our publication [224]. In short, the clustering of unit-length-normalized semantic word

vectors captures semantically similar words.

* 4.1 Related Work

As outlined in the previous introductory section, the models proposed herein fundamen-

tally model directional data, i.e. surface normal distributions. Directional data can be

modeled in two principally different ways as depicted in Fig. 4.3: (1) in a linearization
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[101] [61, 258] [14] [68,217] [15] [42] [*] [**] [***]

Spherical geometry /
Bayesian inference .V- /
Anisotropic cov. .--
BNP - - -
Parallelizeable -
Realtime capable / / - -
Streaming data -

Table 4.1: Properties of different typically-used clustering algorithms for directional
data. Parametric variants are k-means [101], spkm [61,258] vMF-MM [14], and
TGMM [68, 217]. The Bayesian nonparametric (BNP) models and respective infer-
ence algorithms contain DP-vMF-MM[15], DP-GMM [42], and the proposed DP-vMF-
means [*], DDP-vMF-means [**], and DP-TGMM [***] .

of the sphere and (2) directly on the manifold of the sphere. Sometimes the directional
nature of the data is ignored as well (a poor choice as we will find in Sec. 4.3.4). Ta-
ble 4.1 summarizes and highlights the differences between the proposed and previous
approaches which are reviewed in the following.

Directional distributions A variety of distributions [164] has been proposed in the field
of directional statistics to model data on the unit sphere. Examples are the antipodal
symmetric Bingham distribution [23], the anisotropic Kent distribution [134], and the
isotropic von-Mises-Fisher (vMF) distribution [74]. Because of its comparative simplic-
ity, the vMF distribution is most commonly used (see Sec. 2.6.3). Other approaches to
modeling data on the unit hypersphere use Riemanian geometry [63] to locally linearize
the sphere. In this linearized space standard Euclidean distributions can then be used
to model the data distribution. One example is the Tangent space Gaussian model
introduced in Sec. 2.6.2.

von-Mises-Fisher mixture models vMF mixture models (vMF-MM) are especially pop-
ular for modeling and inference purposes. Banerjee et al. [14] perform Expectation
Maximization (EM) for a finite vMF mixture model to cluster text and genomic data.
This method is related to the spherical k-means (spkm) algorithm [61], which can be
obtained from a finite vMF-MM by taking the infinite limit of the concentration param-
eter [14]. Zhong [258] extends the spherical k-means algorithm to an online clustering
framework by performing stochastic gradient descent on the spkm objective. This ap-
proach requires the number of clusters to be known, does not allow the creation or dele-
tion of clusters, and heuristically weights the contribution of old data. Gopal et al. [92]
derive variational as well as collapsed Gibbs sampling inference for finite vMF-MMs, for
a finite hierarchical vMF-MM and for a finite temporally evolving vMF-MM. The vMF
distribution has also been used in BNP and hierarchical MMs. Bangert et al. [15] formu-
late an infinite vMF-MM using a Dirichlet process (DP) prior, but their sampling-based
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inference is known to have convergence issues and to be inefficient [121]. Furthermore,
scaling this method to large datasets is problematic because the inference procedure is
based on the Chinese Restaurant Process [189], and cannot be parallelized. Reisinger et
al. [195] formulate a finite, latent Dirichlet allocation (LDA) model [28] for directional
data using the vMF distribution. Since there is no closed form prior for the concen-
tration parameter in the vMF distribution they simply fix it and do not sample from
its posterior distribution. This is akin to using a GMM with a fixed variance, which is
known to perform poorly if the model variance does not match the noise characteris-
tics. To the best of our knowledge there are no other related k-means-like algorithms
for directional batch data besides the spkm algorithm.

Surface normal modeling In the context of object and 3D shape representation, ex-
tended Gaussian images (EGI) have been studied [116,119]. The EGI of a surface is
the distribution of surface normals where each surface normal is weighted by the area
of the surface it represents. For computations the EGI was approximated via a tessel-
lation of the sphere. A crucial property of EGI is that the representation is invariant to
translation. Exploiting this property, Makadia et al. [163] extract maxima in the EGI
and use the spherical FFT to compute an initial rotation estimate for point-cloud regis-
tration. Note that these maxima correspond to the cluster centers which the proposed
(D)DP-vMF-means algorithm extracts. Furukawa et al. [81] use a tessellation of the
unit sphere to extract the dominant directions in a scene as part of a depth regulariza-
tion algorithm based on the Manhattan World (MW) assumption [49]. Tribel et al. [237
employ EM to perform plane segmentation using surface normals in combination with
3D locations. Assuming a finite vMF-MM and using a hierarchical clustering approach,
Hasnat et al. [104] model surface normal distributions. The Manhattan Frame model
presented in Sec. 3 and published as [221, 225, 226] describes orthogonally coupled clus-
ters of surface normals on the sphere using vMF as well as the tangent space Gaussian
model.

Other applications In other applications, the inherent geometry of the problem is often
ignored and, without taking the spherical geometry into account, algorithms developed
for Euclidean geometry are used; e.g., k-means [101], the finite Gaussian mixture model
(GMM) [24], as well as the Dirichlet process GMM [70,159]. The work in protein-
configuration modeling from Ramachandran plots [192] exemplifies this well. First
Dahl et al. [53] introduced modeling the angular data as a DP-GMM, ignoring the
spherical manifold of the angular data. To solve this issue Lennox et al. [147] model
the data on the 3D sphere as a DP-vMF mixture, but require an approximation to the
vMF posterior. Work by Ting et al. [234] uses an HDP with normal-inverse-Wishart
base measure to share data between proteins, but does not respect the manifold of
the data. Approaches utilizing a single tangent space to define distributions over the
hyper-sphere have been proposed for rotation estimation and tracking [46,90]. Finite
mixture models of Gaussians in separate tangent spaces have been explored to estimate
rigid-body motion in robotics [68] and for human body-pose regression [217]. While
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Vanishing Points Stata Center World Directional Clusters

Projection Gauss Map.

R2  R3 2

Figure 4.4: An environment following the Stata Center World assumption projects via
the Gauss map to directional clusters in the surface normal space. Under the standard
camera projection the Stata Center World leads to a collection of vanishing points.
While the latter has received a lot of attention in previous work, the former has not.

Simo-Serra et al. [217] show a way to reduce (but not increase) the number of clusters
within their EM inference framework, both models are finite mixture models in contrast
to our DP-based infinite mixture model. Rotation data, which can be described as a
4D directional data in the form of Quaternions, has previously been described in the
tangent space around a current estimate in rotation estimation [46, 90]. Feiten et al. [68]
use a fixed and finite mixture of Gaussians in distinct tangent spaces to estimate rigid
body motion in robotics. Simo-Serra et al. [217] do the same but allow for elimination
of clusters in the EM inference. Archambeau et al. [10] propose a finit Gaussian mixture
model for data-defined manifolds.

M 4.2 The Stata Center World

As described in the introductory section of this chapter, the Stata Center World assump-
tion relaxes the orthogonality constraints imposed by the common Manhattan World
model. As such, it captures the idealized notion that an environment is composed of a
set of planes such that all planes are parallel to some (smaller) set of principal planes
as depicted in Fig. 4.2.

Under the Gauss map, in the ideal noise-free case, the Stata Center World maps to
the set of direction vectors of the principal planes as illustrated in Fig. 4.4. Hence we
define the Stata Center World model in surface normal space as the set of directional
vectors Ilk:

{I IkKI where pk - S2 (4 1)

Generally the number of directional vectors is unknown a priori and should therefore
be part of the inference process. This motivates the use of Dirichlet process mixture
models, which assume an infinite number of clusters and that the number of clusters
grows logarithmically with the amount of observed data. For a given set of data part
of the posterior inference becomes determining the number of clusters K to best fit the
data distribution (see Sec. 2.4).
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Figure 4.5: An illustration of the of the proposed Dirichlet process tangential Gaussian
mixture model (DP-TGMM) for K = 2 clusters, k and j, in their respective tangent
spaces to the sphere 52.

In reality, planes in an environment may not be exactly planar and the observation
process is subject to noise. This is reflected in the surface normal distributions by
directional clusters as can be seen in Fig. 4.1. Therefore, to model real surface normal
distribution observations, a directional noise model should be employed. In Sec. 4.3.2
we explore the use of the tangent space Gaussian distribution (see Sec. 2.6.2) which
allows modeling anisotropic distributions on the sphere. A simpler noise model based
in the isotropic von-Mises-Fisher distribution (see Sec. 2.6.3) is introduced in Sec. 4.4.3.

As a side note, to draw the connection to image-based computer vision, a collection
of vanishing points can be observed as the projection of the Stata Center World into a
camera image. While one contribution of this chapter is the formalization of the Stata
Center World and the exploration of its image under the Gauss map, the vanishing
point estimation problem has been explored extensively in prior work as reviewed in
Sec. 1.1.1.

* 4.3 Dirichlet Process Tangential Gaussian Mixture Model

We present a flexible Bayesian nonparametric model for data residing on a hyper-
sphere that respects the inherent geometry of the manifold. As shown in Fig. 4.5, our
approach draws on the Dirichlet process Gaussian mixture model (DP-GMM), and mod-
els full covariance matrices on (linear) tangent spaces to the sphere, as opposed to the
isotropic covariances associated with a von-Mises-Fisher distribution [14,15, 195,258].
Importantly, the covariances of the Gaussians, capturing intra-cluster correlations, have
analytical conjugate priors that enable efficient inference. Additionally, the approach
transparently scales to high-dimensional data. We extend the efficient inference method
of Chang et al. [42], a parallelized restricted Gibbs sampler with sub-cluster split/merge
moves, to account for the geometry of the sphere. Moreover, we show how to combine
sufficient statistics from tangent spaces around different points of tangency to propose
merges efficiently.

In contrast to previous approaches, the proposed DP-TGMM allows for anisotropic
distributions on the sphere, lends itself to consistent Bayesian inference, and adapts the
model complexity to the observations. We develop a corresponding inference algorithm
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Figure 4.6: Different approaches to modeling clusters of directional data as Bayesian
mixture models. One can either use directional distributions that are natively defined
over the unit sphere or linearize the sphere around one or more tangent spaces. The
problem of choosing just a single linearization point is that it might be poorly chosen

(see to the right) and thus lead to very high distortion of the data. Instead we utilize
multiple cluster-dependent linearization points.

that can be parallelized and respects the geometry of the unit sphere.
To highlight the differences of the proposed Dirichlet process tangential Gaussian

mixture model (DP-TGMM), we quantitatively compare it with four other methods on
synthetic directional data with ground-truth labels. Additionally, we demonstrate the
scalability and efficiency of the inference algorithm and the applicability of the DP-
TGMM to real-world directional data by modeling 3D surface normals under the Stata
Center World assumption. Furthermore, we show its scalability to higher dimensions
by clustering the 20-dimensional semantic word vectors of 41k words extracted from
the English Wikipedia corpus [251].

* 4.3.1 Bayesian Nonparametric Mixtures of Spherical Data

Classical Statistics rely on the Euclidean structure of RD. Thus, due to the nonlinearity
of the sphere, the statistical analysis of spherical data requires special care [75, 164]. In
this section we introduce the Dirichlet process tangential Gaussian mixture model (DP-
TGMM), a Bayesian nonparametric mixture model for data lying on the unit sphere,
ED-1. Importantly, the model as well as the inference algorithm respects that the sphere

113Sec. 4.3. Dirichlet Process Tangential Gaussian Mixture Model
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'r)

Figure 4.7: Left: The blue plane illustrates TpS2 , the tangent space to the sphere S2 at

p C S2. A tangent vector E Tp S2 is mapped to n E S2 via Expp. Right: We describe
the data in each cluster as zero-mean Gaussian in TS2.

is a (D - 1)-dimensional Riemannian manifold. Before introducing the probabilistic
model, we now briefly restate the geometric concepts used in the DP-TGMM. See
Sec. 2.6.1 for a more detailed discussion of the manifold of the sphere and Sec. 2.4 for
a general introduction of Bayesian nonparametric mixture models.

While SD-1 is nonlinear, every point, p E SD-1, is associated with a linear tangent
space, denoted Tp Dl. A point , in the tangent space around p satisfies p = 0.
Elements of T, SD-1 are called tangent vectors and may be viewed as "arrows" based at
p and tangent to SD-1. Note that dim(TpSD-1) = D - 1 and that the point of tangency,
p, may be identified with the origin of TpSD-1. Due to their linearity, tangent spaces
often provide a convenient way to model spherical data. In fact, this is also true
for more general manifolds [80,106,187,220]. This linearity, together with mappings
between SD-1 and TpSD-1 (see Sec. 2.6.1), enables the modeling and clustering of data
points via the tangent space Gaussian distribution, introduced in Sec. 2.6.2, a zero-mean
Gaussian distribution in a cluster-dependent tangent space. Note that while a single
zero-mean Gaussian in the tangent space around a point, p, provides an effective model
for the within-cluster deviations from p provided it is the Karcher mean of this cluster.
However, using a Gaussian mixture model whose (non-zero mean) components live on
the same tangent space is a poor choice as depicted in Fig. 4.6. Thus, in the proposed
model, each mixture component exists in its own tangent space, and each tangent space
is unique with certainty due to the continuous base measure. We illustrate details for a
single cluster in Fig. 4.7, where denotes the point n E SD-1 mapped to TD-1, and
the model for K = 2 clusters in Fig. 4.5.

N 4.3.2 Probabilistic Dirichlet Process Mixture Model for Spherical Data

The Dirichlet process [70] has been extensively used to model data in Euclidean spaces.
As introduced in Sec. 2.4, the DP mixture model (DP-MM) uses the DP as a prior to
weight a countably-infinite set of clusters, where the distribution of weights is controlled
by a concentration parameter, a. Here, we formulate the Dirichlet process tangential
Gaussian mixture model (DP-TGMM) which extends DP-MMs to data on the unit
sphere, SD-1, in a manner that explicitly respects the intrinsic geometry. The graphical
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Figure 4.8: The graphical model of the proposed Dirichlet process tangential Gaussian

mixture (DP-TGMM).

model is depicted in Fig. 4.8.
The generative DP-MM first samples the infinite-length cluster proportions, 7r, from

a stick-breaking process [216]. Then cluster assignments, z = {z} 1 , are sampled from
the categorical distribution defined by 7r:

7r - GEM(1, ) (4.2)

zi ~ Cat(rr2,. .. )(4.3)

Associated with each cluster, k E {1, ... , oo}, is a mean location on the sphere, ik,

and a covariance, Ek, in the corresponding tangent space, TikSD-1. These parameters
are drawn from the following priors:

'k ~ Unif(SD-1) (44)

Ek ~ IW(A, v), (4.5)

where Unif and IW are the uniform and inverse-Wishart distributions, respectively.

Note that D-1 has a finite surface area of 27r 2 /F(:) which is used as the normalizing

constant of Unif. This will later play a role in the inference procedure.
Observations, ni, are drawn from their associated TG distributions with covariance

Ez, centered at pii followed by mapping them to SD-1 via the exponential map of

Eq. (2.61). This can be understood as a two step process:

'i ~ A(O, Ezi) (4.6)

ni ~ Expozi (: j) Vi E {1, . .. , N}J. (4.7)

We can also concatenate the two steps to reveal the tangent space Gaussian distribution:

ni ~ Exp,, (.A(O, E22)) Vi E {1, ... , N}. (4.8)

The Gaussian on T,,SD-1 induces a probability measure on SD-1. Refer to Sec. 2.6.2
for an in depth characterization and discussion of the TG distribution. More detailed
information about the aforementioned basic distributions (Cat and 1W) as well as how

to sample from them can be found in Sec. 2.3. We now describe efficient MCMC
inference for aforementioned geometry-respecting model.
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* 4.3.3 Manifold-Aware MCMC Inference

Markov chain Monte Carlo (MCMC) techniques [198] provide a computational mech-
anism for sampling from complex Bayesian models. See Sec. 2.2.1 for a general in-
troduction. Unfortunately, in DP mixture models, MCMC methods are often slow.
When parameters are marginalized, inference scales poorly because algorithms can-
not be parallelized. When parameters are instantiated, the algorithm is parallelizable,
but typically requires approximations and exhibits slow convergence. The recent DP
sub-cluster algorithm of [42] addresses these issues by combining Metropolis-Hastings
(MH) split/merge moves with a restricted Gibbs sampler, which is not allowed to add
or remove clusters. The resulting Markov chain is guaranteed to converge to the de-
sired posterior distribution. Additionally, this approach allows parallelization and the
support of non-conjugate priors.

The DP sub-cluster algorithm proposes splits effectively via the MH framework [105]
by exploiting an inferred auxiliary two-component, "sub-cluster" model for each regular
cluster. The sub-clusters are inferred within the restricted Gibbs sampler. Excluding
the varying complexity of posterior parameter sampling (O(KD2 ) for a GMM), the
computational complexity per MCMC iteration is O(NK + K2 ), K is the maximum
number of non-empty clusters. While the algorithm from [42] was originally suggested
for DP models in RD, we show here that it can be extended to the DP-TGMM. This
extension requires: (1) respecting the geometry of SD-1 when computing posterior
distributions; and (2) combining sufficient statistics from different tangent spaces to
propose splits efficiently. Additionally, we propose a MH algorithm to sample from the
true posterior of the mean location on SD-1

Restricted Gibbs Sampling

We now discuss restricted Gibbs sampling of the labels z A {zi , means IL A {/ ki
and covariances E A {E}K 1 for K clusters. We note that each Ek is defined over a
separate tangent space, TkSD-1.

The covariances for each cluster are first sampled. Conditioned on the mean, pk, the
data, n A {nij, are modeled via a zero-mean Gaussian distribution in the tangent
plane, T1lk SD-1, as defined in Eq. (4.8). Hence, the same analysis as in the Euclidean
space applies, and we sample E from the IW posterior [85]:

Ek ~ P(Ek I n, z, pk) = IW(A + Sk, v + N) (4.9)

where 'k A {i : zi = k} is the set of indices with label k, Nk A IkI counts the points
assigned to cluster k, and Slk is the scatter matrix at T1lk SD-1, defined as:

A L (ni)Lg(ni . (4.10)

Since TilkSD-1 is a (D - 1) dimensional space, Ek and S E R(D-1)x(D-1). Computa-
tionally, the Logi, map returns D-dimensional vectors that are orthogonal to pk. To
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obtain a (D - 1) dimensional representation, after applying the log map, we transport
all data to the north pole m = (0, . . . , 0, 1) using a rotation IRAk and drop the last
dimension of the resulting vector (which is going to be 1). This is discussed in more
detail in Sec. 2.6.1 for arbitrary dimension D.

Note, however, that the geometry of SD-1 and the aforementioned process renders
the frequently-required computation of Sk inefficient. The bottleneck of the calcula-
tion is attributed to the computationally-intensive evaluation of {Logy,1 (i~)ielk that
depends on the point of tangency, [k, which constantly changes during sampling-based
inference.

To circumvent this issue, we exploit the logarithm map approximation outlined in

Sec. 2.6.2 namely that

Log,,, (ni) - Log,1 k (Flk) + PkR kLogfk(ni), (4.11)

where rii is the Karcher mean of n-E . Under this approximation, starting from Eq. (4.10),
and dropping indices k for the sake of clarity, the scatter matrix Sl = S,1 can be ap-
proximated as

S, ~ [Log,1(i!) + MRijLogf1 (ni)] [Log,1(h) + /R Logf (ni )] T  (4.12)
icI

= Log,(i)Log,(i)T + 2 RfLogf(ni)Log,(j)T
iE1 (4.13)

T

+ 4RfLogf (ni)Logg (ni)Tt'Ri

= N Log,(h) Log,(ij)T -+ 21'Rf,[ Logf (ni) Log,(j)T

wine (4.14)

+ E (.)Log (ni)LogA(n tKr
iE

= N Log,(h) Log, (h)T + P Rf Logf (ni)Logf (ni)T I-RT (4.15)
iEl

= N Log,(ii)Log,(h)T +TR~" .(.6

where Sg k is the scatter matrix computed in the tangent plane Of hk. From Eq. (4.14)
to Eq. (4.15) we have used the definition of the Karcher mean that the sample mean

in its tangent space is 0: EiElk Loghk (ni) = 0. This approximation has the desired
advantage that unless the set, Ik, of data points associated with cluster k changes, hk
and Sf k do not have to be recomputed. If the mean Pk changes the scatter matrix

Sti can be updated efficiently without having to iterate through all associated data
points: the computation of NkLog, (0)Log,,, (hk )T involves just one outer product
and neither Nk nor hk changes. The rotation of the unchanged S1, by the modified
Ilk Rf,k is also at most O(D 3), scaling with dimension rather than the number of data
points as desired. We will also use this approximation for proposing merges.
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Conditioned on the sampled covariance matrix, Ek, we then sample pk. Ideally, we
would sample directly from the following posterior distribution of pk:

P(k I n, z, E-k) c P(k)p(n I pk, Z, Ek) = P(Ak) 1J A (Loglk (ni); 0, Ek) . (4.17)
iEIk

Unfortunately, due to the nonlinearity of SD-1, this distribution cannot be expressed
in a closed form. Instead, we utilize the Metropolis-Hastings framework to sample Pk.
It is well known in the literature that the closer the proposal distribution is to the
target posterior distribution, the faster the convergence. We therefore use the following
proposal as an approximation to Eq. (4.17):

q(Ak I n, z, Ek) = P(Ik). A(Logfk (); 0, (4.18)

The approximation lies in the assumption, that the data nflk have a small spread.
This implies that the distance 9% = dG(ni, 1k) from a datapoint ni to the mean Ak is
approximately the same as the distance 9 = dG(iik, p') of the Karcher mean to the
mean. This can be seen when looking more closely at the product of Gaussians when
expanding the log map (Eq. (2.60)):

1J K (Logl (ni); 0, Ek)
iEIk

oc exp - n{-E-1n - 2?cos O _nTZ1ft COS2 , T(41

exp -N [E2 jT-1ji - 262 COe TE-1 11 + #2 COS2#ATp -1

0c V (Lg ( N) A, ~ (Logf, (pA); 0, Nk

The approximation in the last line stems from the fact, that both Gaussian densi-
ties have the same covariances that shrink with Nk. That means the distribution

A/ (LogIk (i); 0, is (very) concentrated about LogIk (ft) allowing us to flip pk and

h while approximately describing the same distribution for pk close to ri.

The proposed mean pk is accepted according to the Metropolis-Hastings algorithm,
with probability Pr (accept) = min (1, r), where the Hastings ratio, r, is

- p(nlz,/ik,Ek)P(ik)q(-tkIn,Z,Ek) _N(Log k(,k);0,Ek/Nk) K(Log 4 (nj);0,Xk)
r _p(n1Z,,tkEk)P(Ak )q(Akjn,ZEk ) ~ V(Logiik ( Ak);0,Xk /NY) rl)(Logtk (nj);0,Xk) ' 4.2'

iEIk

We have used the modeling assumption that the distribution of means, p(pk), is uni-
form over the sphere. Without prior information this is generally the most reasonable
assumption. In some problems one might want to have a more informative prior based
on other additional information. Since we are using the Metropolis-Hastings sampling
algorithm, it is straightforward to extend the herein described method to other prior
distributions (like for example a tangent space Gaussian distribution).
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Finally, given means, p, and covariances, E, we sample new labels, z, for all data,
n, as

K

z' 1: ( r A ( Log,(ni); 0, Ek) Izi=k ,(.1
k=1

where c denotes sampling from the distribution proportional to the right side, and the
indicator function lzi=k is 1 if zi = k and 0 otherwise. In practice, one computes the K
different probability density function values, normalizes these values to sum to 1, and
samples from the resulting Categorical distribution as described in Sec. 2.3.2.

Sub-Cluster Split/Merge Proposals

We now describe the Metropolis-Hastings split-and-merge proposals that are special-
ized to the geometry of ED-1. For a general introduction to Metropolis-Hastings see
Sec. 2.2.1. The previously-defined posterior distributions for directional data uniquely
define posterior inference in the sub-clusters [42]. When constructing split-and-merge
moves, joint proposals over the entire latent space, {z, , E}, must be constructed. The
proposed labels, i, will be constructed from the inferred sub-clusters. Ideally, the pa-
rameters, yi and E, will be proposed from the true posteriors. However, as discussed
previously, no conjugate prior exists for pi. Hence we propose the parameters from

Aa ~ (Aa I n, z) = A(Log,, (pa); 0, E), (4.22)

Ea ~ P(Ea n, Z, Aa), (4.23)

where E* - arg maxr IW(A + S Va V + Na). The scatter matrix, Sa , in Ta D- is
computed according to Eq. (4.47), and p(Ea I n, Z, Aa) is the true posterior denoted in
Eq. (4.9). We note that Eq. (4.22) uses the covariance E* instead of Ea because Ea
depends on Aa through the point of tangency.

The Dirichlet process Sub-Cluster algorithm then deterministically constructs moves
from the sub-clusters. We extend the algorithm to the DP-TGMM by splitting cluster
a into clusters b and c with:

i-a = split-a(z) ,

(Ab, Ac) = (Aaf, Aar), (4.24)

(Eb, F$c) ~ P(Eb I n, Z, Ab)P(Ec I n, z, Ac),

and by merging clusters b and c into cluster a with:

ZIbuIc = merge-bc(z) ,

Aa ~ q(a fn, z), (4.25)

Za ~ P(Ea n, Z, Aa),
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where split-a(z) splits cluster a into clusters b and c deterministically based on the
sub-cluster labels, and merge-bc(z) merges clusters b and c into cluster a.

Next we derive the Hastings ratio for a deterministic split proposal based on the
sub-clusters. In general the Hastings ratio for the DP-TGMM model is:

r = P('i t ~, t)(4.26)
p(x, z, y,7 E) q(2,i, #) *

Since we can propose covariances t from the posterior given the means 4, we factor
the Hastings ratio as follows:

p(i)p(#)p(x | i, #)p(t | x, i, 4) q(z)q(p I x, z)p(E x, z, ti)

p(z)p(p)p(x I z, pi)p(E 1 xz, M) q(i)q(# I x, i)p(i x, i, #)

We can further expand and simplify this to

rslt- p(2)p#& I i, #) q(z)q(I x, z) (4.28)
p(z)p(t)p(x I z, i') q(z)q(p I x, z)

p(i)q(z) P(Ab)p(Ac)P(X I z, A)P(X I i, Ac)q(pa I x, z) (4.29)
p(z)q(i) P(Pa)P(X I z, a)q(Ab I x, i)q( x, ) 4.9)

Since the labels i and the parameters Ab,c are proposed analogous to [42] and because
the prior distribution on the means yi are uniform we have

aF(Nb)F(Nc) p(ft)p(x z, tAb)p(x I 2, Ac)
rsplit - (Na) p(x q(pa I x, z) . (4.30)

r(Na) pXx I Z, pa)

As shown in [42], any proposed deterministic merge move will be rejected with
very high probability. As such, the DP Sub-Cluster incorporates a set of randomized
split/merge proposals that are generated from a data-independent, two-dimensional
Dirichlet distribution. We use this formulation as well, and introduce the following
randomized split/merge proposals. The random splits are proposed as:

i1a ~ DirMult(a/2, a/2),

(Ab, Ac) ~ q(Ab I n, i)q(Ac I n, ),

($b, Ec) ~ P($b I n, Z, Ab)P($c I n, z, Ac) , (4.31)

and the random merges according to:

i.b uc = merge-bc(z),

ya ~ q(Aa I n, z), (4.32)

E. ~ P(Ea I n, Z, Aa).
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Ta S2

Logf,,(110,) Logj-,(hc)

T es2 Tc2

S2

Figure 4.9: Illustration of the problem of computing sufficient statistics for cluster a
from clusters b and c. Depicted are the tangent plane around the Karcher mean ila of
cluster a in blue and the two tangent planes by clusters b and c to the left and right in
orange.

The Metropolis-Hastings ratio for the random split/merge proposals can be derived
starting from Eq. (4.30). Using derivations from [42] we arrive at

rand cW(a/2) 21'(a+Na)F(Nb)F(Nc) p(xI,A)p(Ab) q(jza n,z)Fsplit (a)F(Na)F(a/2+Nb)r(a/2+NC) p(xlz,p) q(A4bn,i)q(jzcjn,z) (

rand F(a)F(Na)F(o/2+N)F(a/2+Nc) p(xz,fz) q(pbjn,z)q(pc In,z)7 merge aF(a/2)2 P(a+Na)F(Nb)F(Nc) p(xli,A)p(Ab) q(A.In,z) (4.34)

Note that while ri, ke, Sib, and Sjc must be recomputed for the random split proposal,
we efficiently approximate these quantities for the deterministic split and the random

merge from the statistics of clusters b and c as described in the next section.

Merging Sufficient Statistics between Tangent Spaces

When we propose merges, and to compute the sufficient statistics of the "upper" cluster

consisting of the left and right sub-clusters, we use the following approach to efficiently

compute the needed sufficient statistics solely from the already computed sufficient

statistics. While we describe the process in the context of merging two clusters b and

c into cluster a, the approach is the same for computing the sufficient statistics of the

"upper" cluster from left and right sub-cluster.

Assume we want to merge cluster b with cluster c to obtain the merged cluster a

as depicted in Fig. 4.9. We need to obtain its Karcher mean ha E SD-1 as well as the

sufficient statistics

Na Nb + Nc (4.35)

Xa = Log,, (ni) (4.36)
a z =a

Sa = Log/,,,,(ni)Log11a(ni)T (437)
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Clearly, we could just compute the Karcher mean and the sufficient statistics from
scratch each time we propose a merge. Instead, in order to save computations and
make the inference more efficient we reuse the already computed statistics and Karcher
means for clusters b and c.

Merged Karcher mean The Karcher mean fia can be computed form the Karcher means

ki and ft without having to run the Karcher mean algorithm on the joint set of data
points as follows. Let cluster b contain Nb and cluster c N, data points. We approximate
the Karcher mean of the merged cluster i, as the weighted Karcher mean, of 5 b and ii
with weights Nb and Nc respectively. Using Eq. (2.67) the optimization problem that
yielding iia becomes:

arg min Nb arccos(p T ib)2 + N, arccos(pTijc)2 . (4.38)
pEED-

1

Since the geodesic between any two points is the shortest path on the manifold between
the two of them, we know that p has to lie on the geodesic. On the unit sphere we
can describe the location on the geodesic as a rotation about the axis defined by the
cross product of the two vectors hb and ii, by an angle 9 b, which we define such that
the location of rib on the geodesic has 6b = 0. This implies that the location of n-e on
the geodesic has angle Oc = arccos(iiTiic). With this intuition we can reformulate the
optimization problem in terms of angles on the geodesic as:

6* = arg min Nb6 2 + NC(6 - 6C)2 . (4.39)
0

The minimizer of this function is 6* = Nc+0c. Hence we can compute iia by rotatingNc NbC

rib by an angle of 6* about the aforementioned axis.

Merged sufficient statistics The sufficient statistics for clusters b and c are computed
in the tangent spaces around their respective Karcher means. Therefore their sample
means Xb,c in the tangent space will be very close to zero. However, the sample mean
in TfiSD-1 is generally non-zero and we compute it as the weighted mean between the
sample means of cluster b and c mapped into TiSD-1:

Xa = N- (NbLogf (Exp ':(b)) + NcLogjj (Expf, (Xc))) (4.40)

Similarly, we can map the scatter matrices Sb,c into TiaSD-1 to obtain Sb,c with the

........................... ................... ... .. . ............ ......
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following approximation:

Sb = Logfa (ni) Logf (n,)T (4.41)

iE-b

S (Logfa(pb) + fla RfLog, (ni)) (Logfa(pb) + Fla RA Logj~b(nj))T  (4.42)
iElb

=laRab Logne(ni)Log jnrn 24Re2Lgg~i on(T>ha (R)TflaRT +2h a R L (na

+ NbLogha (M) Loga(b )T

(4.43)
= flaR, Sbf T4 + NbLoga (Ab) Logna (Ab)T (4.44)

where we have used the fact, that the Karcher mean algorithm gives us rb such that

>Z12b Logfe (ni) = 0. Equation (4.44) gives us an approximate way of computing the

statistics Sb in Ta SD-1 using only the already computed statistics Sb in TbsSD-1 and
the mean hb of cluster b. Note that we can do exactly the same computation for cluster

c'to obtain Sc.
The approximation we made lies in the fact that {rin}j 4 were linearized around ni

and hence the deviations from 5ib which they describe are only valid in TfbsD-1. By
approximating

Log~a2(ni) ~ LogF,(/Ib) + fla R Logf1 (ni) (4.45)

we make a small error that stems from the different linearizations. However, if the

spread of cluster b (or c) is small, the approximation error is small. Note that after
burn-in of the MCMC algorithm ib j pb and Eq. 4.45 thus converges to the log map

approximation discussed in Sec. 2.6.2.
Using Sb and SC we compute the scatter matrix Sa of the merged cluster in Tia"SD-1

as

Sa =Sb + a - Na axa (4.46)

=a Rfl ( A + Nb :b ) i R T + NbLogf, (b)Log A)T .
XT X(4.47)

+ flaRj (Sc + Ne -cUT)f aRc + NeLogfa L - Na a L ar

* 4.3.4 Evaluation and Results

In the following we compare the DP-TGMM inference algorithm on synthetic data

with ground-truth labels against four related algorithms. Subsequently, we evaluate the

clustering on real data, namely, surface normals extracted from Kinect depth images,
and 20-dimensional semantic word vectors [165]. All MCMC inference algorithms are

evaluated based on one sample from the Markov chain after burn-in.
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DP-TGMM

Figure 4.10: Visualization of synthetic datasets of 30 isotropic (top) and anisotropic

(bottom) clusters on 2. In the sphere-plots to the right it can be observed that, in

contrast to the DP-TGMM, the DP-GMM fails to separate (top) or incorrectly splits

(bottom) clusters.

Comparisons on Synthetic Data We generate ground-truth data on the 3D unit sphere

by sampling from a 30-component mixture model with equi-probable classes. The

cluster means are drawn from a uniform distribution on the unit sphere and covariances

from an IW prior. As depicted in Fig. 4.10 the datasets for evaluation encompass

isotropic as well as anisotropic data.
We compare the DP-TGMM with two commonly-used optimization-based cluster-

ing algorithms, k-means [101] and spherical k-means (spkm) [61], as well as with the

finite symmetric Dirichlet approximation (FSD-TGMM) [120] to the DP-TGMM. Ad-

ditionally, we show the performance of the DP-GMM, a BNP infinite GMM, that does

not exploit the geometry of the sphere. DP-GMM inference uses the sub-cluster-split

algorithm [42]. All algorithms are initialized with a random labeling of the data. We

use normalized mutual information (NMI) [227] between the groundtruth and the in-

ferred labels as a measure for clustering quality which penalizes the use of superfluous

clusters. Additionally, we show the number of clusters per iteration, which changes only

for the BNP models.
From the right plots in Fig. 4.11 it can be seen that the inference for the DP-

TGMM finds the true number of clusters in both cases, while the DP-GMM does not.

The FSD-TGMM method gives an incorrect estimate of the number of clusters, which

is consistent with what was observed in [43]. This motivates the need for our proposed

sub-cluster inference algorithm. The depiction of the clustering results on the sphere

124 CHAPTER 4. UNCONSTRAINED DIRECTIONAL SCENE REPRESENTATION



1.0 
440

--.- ----- - - ---- -
- spkm (K, 30) t 30 .

. - k-means (K -30)

- FSD-TGMM (K,,-100) 2

- DP-GMM (K, 1) 10

- DP-TGMM (K, 1) ground-truthI

0 06 400600 800 1000 1200 1400 1600 200 400 600 800 1000 1200 1400 1600

1.0 35

0.8 3
L25

0.6 
20,

0.2 5

00, 200 400 660 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 160
iterations iterations

Figure 4.11: Mean and standard deviation over ten sampler runs of normalized mu-

tual information (NMI) and cluster-count for synthetic datasets of 30 isotropic (top)

and anisotropic (bottom) clusters on S2 . The colors for the different algorithms are

consistent across all plots.

in Fig. 4.10, shows that the DP-GMM fails to separate isotropic clusters and splits

anisotropic clusters incorrectly. The parametric algorithms, k-means and spkm, were

set to the true number of clusters, which is unknown in many problems of interest.

The evolution of the NMI with iterations, depicted in the left plots of Fig. 4.A11, shows

that the optimization-based methods quickly converge to a (sub-optimal) solution. The

sampling based algorithms generally achieve better solutions. The DP-TGMM finds

the best fit to the data as it explicitly allows for anisotropic distributions and respects

the geometry of the sphere.

These findings are corroborated by additional results on different synthetic datasets

displayed in Fig. 4.12 The two rows show the NMI and cluster-counts for two different

mixed isotropic and anisotropic datasets. The dataset in the second row is more difficult

since it contains more spread-out clusters with overlaps.
All the algorithms converge to close to the true number of clusters for the dataset

in the first row. For the more difficult dataset in the second row, the DP-GMM and the

FSD-TGMM both overestimate the number of clusters while the DP-TGMM converges

to the true number of clusters on average. The larger standard deviation of the DP-

TGMM and the overestimation of the number of clusters for the DP-GMM and the

FSD-TGMM are likely due to the spread-out and overlapping clusters in the dataset.

Surface Normals in Point-cloud Data Surface normals extracted from point-clouds ex-

hibit clusters on the unit sphere since planes in a scene create sets of normals pointing

into the same direction. Hence, clustering these normals amounts to segmenting the

scene into planes with similar orientation. We extract surface normals from raw Kineet

depth images of the NYU V2 dataset [173] using the algorithm described in [1121 and
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Figure 4.12: Mean and standard deviation over ten sampler runs of normalized mutual
information (NMI) and cluster-count for synthetic datasets of 30 more challenging mixed
isotropic and anisotropic clusters on S2

apply total variation regularization [201] to smooth the initial normal estimate.
We show a set of example scenes in Fig. 1.13 and the segmentation into planes with

equal orientation as implied by the clustering of normals on the unit sphere obtained
using three different algorithms. In the second and third row we display results from
clustering with spkin where k = 4 and 5, in the fourth row clusterings obtained using
the DP-TGMM inference algorithm, and in the last row the segmentation obtained with
the DP-GMM sub-cluster algorithm. Note that the scene images in the first row are
only for reference - only surface normals were used as input to the algorithms. The
DP-GMM as well as the DP-TGMM inference was initialized to two clusters with the
hyper-parameters of the IW prior set to v = 10k and A = (12*) 2v13x3. Each scene
contains around 300k data points on 52.

The differences in segmentation illuminate the shortcomings of spkm and DP-GMM.
The spkm algorithm finds a decent segmentation, but we get spurious clusters since
the number of clusters is generally unknown. The inferred DP-GMM tends to under-
segment the data because it ignores the manifold of the data and hence does not properly
split clusters of normals in the presence of significant noise in the real data. For example
in column two and five of Fig. 4.13 the floor and the wall are not separated into distinct
clusters. By respecting the manifold as well as adopting a BNP model the DP-TGMM
infers the intuitively correct segmentation as can be seen in the last row of Fig. 4.13.

Clustering of Semantic Word-Vectors We extract 20-dimensional semantic word vec-
tors [165] from the English Wikipedia corpus and filter out all words with less than 100
counts to arrive at a set of 41k semantic word vectors for English words. Note that we
normalize the word vectors to unit length before clustering. This is motivated by the
fact that [165] utilizes the cosine similarity to find the semantically closest word to a



C,

Figure 4.13: Directional segmentation of scenes from the NYU v2 RGB-D dataset [173]
as implied by surface normal clusters. The complexity of the scenes increases from left
to right as can be observed from the RGB images in the top row. The second and third
show directional segmentations obtained via spherical k-means for comparison. The
fourth and fifth rows depict samples from the DP-TGMM and DP-GMM respectively
after 200 MCMC iterations. Note that DP-TGMM adapts the number of clusters to the

complexity of the scene while DP-GMM fails to split clusters. Black denotes missing
data due to sensor limitations.
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Figure 4.14: Evaluation of DP-TGMM inference on 20D semantic word vectors trained
on the Wikipedia corpus. Left: most likely words for 6 clusters. Right: log probability
and histogram over condition numbers for clusters.

given location in the vector space. The use of the cosine similarity is equivalent to the

assumption that all the information about semantic proximity resides in the angular
difference.

Therefore, by clustering the semantic word-vectors by their directions we obtain
clusters of semantically similar words as can be observed in the table of Fig. 4.14. The

table lists the ten most likely words of a subset of the clusters obtained when running

the DP-TGMM inference algorithm. We start the algorithm from 20 centroids and run

it for 800 iterations. After about 250 iterations the algorithm converges to 96 clusters.
Note that this clustering is different from conventional topic modeling, which relies on

document-level word counts. Semantic word-vectors depend on nearby words, and our

clustering disregards document groupings.
To validate our hypothesis that real directional data exhibits anisotropic distribu-

tions on the sphere, we com ute the condition number of the inferred cluster covariance

matrices i(Ek) = max a EK where 0(EK) is the set of all eigenvalues of Ek. The con-
minfa(EK)]

dition number thus serves as a measure for how elliptical the clusters are: ",(Ek) - 1
means the cluster is isotropic whereas K(Ek) >> 1 indicates an elliptical or anisotropic
distribution. The spread-out histogram over condition numbers shown in Fig. 4.14

indicates that the inferred covariances are indeed anisotropic.

U 4.4 Fast Nonparametric Directional Clustering Algorithms for Batch and
Streaming Data

After introducing the DP-TGMM that can demonstrably capture anisotropic directional

distributions, we now turn to the problem of clustering large amounts of directional data

more efficiently by relaxing the expressiveness of the mixture component distribution

to model only isotropic von-Mises-Fisher distributions.
Based on the low-variance limit of Bayesian nonparametric von-Mises-Fisher (vMF)

mixture distributions, we propose two new flexible and efficient k-means-like clustering

algorithms for directional data such as surface normals. The first, DP-vMF-means, is

a batch clustering algorithm derived from the Dirichlet process (DP) vMF mixture.

Recognizing the sequential nature of data collection in many applications, we extend
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Figure 4.15: Evolution of the data distribution on the sphere which we model using a
Dependent Dirichlet Process von-Mises-Fisher mixture model (DDP-vMF-MM).

this algorithm to DDP-vMF-means, which infers temporally evolving cluster structure
from streaming data as depicted in Fig. 4.15. Both algorithms naturally respect the
geometry of directional data, which lies on the unit sphere. We demonstrate their
performance on synthetic directional data and real 3D surface normals from RGB-D
sensors. While our experiments focus on 3D data, both algorithms generalize to high
dimensional directional data such as protein backbone configurations and semantic word
vectors.

In the following we first introduce the low-variance asymptotic analysis of vMF-
based mixture models by re-deriving the spherical k-means algorithm from a Dirichlet
Distribution vMF-MM. Second we introduce the DP-vMF-MM and derive the DP-vMF-
means algorithm from it before extending the analysis to the dependent DP-vMF-MM
and the DDP-vMF-means algorithm.

* 4.4.1 Dirichlet Distribution vMF-MM

A finite mixture of K vMF distributions (introduced in Sec. 2.6.3) with known con-
centration r may be obtained by placing a Dirichlet distribution prior Dir(a) on the
mixture weights 7r, and a vMF prior on the mean directions I'. Data points n A ni}K1
are assigned to clusters via latent indicator variables z = {z }N. From a generative
modeling perspective one first samples mixture weights 7r, labels z and mean vMF
parameters:

7 ~ Dir(a)

zi ~ Cat(r) Vi E {,... , N} (4.48)

pAk~vMF(p~o,-rO) Vk E {,..., K}.

Given labels and vMF parameters the data n are sampled as:

- nj-~vMF(pz,r) Vi E {, ... , N}J. (4.49)

Let z = {z}N 1, and i = {IIk} 1. Further, let negative subscript j, u-j = u \ uj
denote removal of item j from a set, and Ik denote the set {i : zi = k}. The Gibbs
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sampling inference algorithm for the finite vMF mixture iterates between sampling the
label zi given {z-i, } and the mean direction Ak given {z}. The posterior to sample
labels from is

p(zj = k z-4)vMF(ni;Iyk,Tr)
p(zi = k z_, , n) vMF(i;,) (4.50)

,=1 p(zi = r, I z_j) vMF(ni; p, -r)

and, as introduced in Sec. 2.6.3, the posterior for sampling the means /k from is

P(kI z, n) = vMF (Pk; k I k ' 2) , (4.51)

where Ok = Topo +-r ik n-
Parallel to the connection between k-means and the Gaussian mixture model in the

small-variance asymptotic limit (see Sec. 2.5), we can derive a deterministic clustering
algorithm, called spherical k-means [14]. Taking the small-variance limit in the Gaussian
case amounts to analyzing the limit as the Gaussian becomes a delta function. The
parallel for the vMF distribution is the limit as the concentration goes to infinity as
depicted in Fig. 4.16. Taking r -+ oo yields the following deterministic updates:

lim P(z= k I z2 ,, n) =lim p(zi = k I zj) vMF(ni; Ak, r)
-+QO T-400 Zsi p(zi = I zj) vMF(ni; p, r)

p(zi = k I z_j) exp(rp ni) 1 nT k > nT11 VK E {1, . .. , K}

T4 K .p(zi = zi) exp(T~ryi) ^ 0 otherwise
(4.52)

and

lim P(k I z, n) = lim Z(019k 1 2) exp(tPk)
T-OO T-+OO

=lim Z (||roiio + r Eink ni1 2) exp ( kopjio + TILT n,

=lim Z (LIT I ni2 112 exp TI Ei n

= 6 (k = iE__knil)

(4.53)

These two updates together form the spherical k-means algorithm [14]. The algo-
rithm iterates between assigning data points ni to the closest cluster via label zi and
recomputing the cluster means Ak:

zi +- arg max r ni Vi E {1, ... N}
kE{1,...,K} (4.54)

Ik p [ZEk nil Vk E {1,...,K}.

If the number of desired clusters is known the spherical k-means algorithm provides
a data-adaptive clustering of {n}= 1. Often the number of clusters is not known a
priori and should be part of the inference procedure. This motivates the small-variance
analysis of the Dirichlet process vMF mixture model in the next section.
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M 4.4.2 Dirichlet Process vMF-MM

As reviewed in Sec. 2.4, the Dirichlet process (DP) [70, 233] has been widely used
as a prior for mixture models with a countably-infinite set of clusters [8,15, 42,174].
Assuming a base distribution vMF(g; go, TO), the DP is an appropriate prior for a vMF
mixture with an unknown number of components and known vMF concentration T.

See Sec. 2.6.3 for an in depth characterization of the vMF distribution. Gibbs sampling
inference only differs from the finite Dirichlet vMF-MM in the label sampling step;
the mixing weights 7r are integrated out, resulting in the Chinese Restaurant Process
(CRP) [25,174]

f |I~VMF(n2i |Ipk;) k <
p(zi = k I z__i, , n; 7, /o, To) c I ap(ni;T, o, o) k = K 1, (4.55)

where Ik is the set of data indices assigned to cluster k not counting the previous label of
zi. Note that the DP concentration parameter, a > 0, influences the likelihood of adding
a new clusters. The conjugate prior for pk yields p(ni; T, po, ro) via marginalization:

f Z(T )Z(To)
p(ni; T, po, To) = vMF(ni i pL; r) vMF(pk; po, TO) dPk Z(T0 Z To)

SD-1 Z(1rni + TOPO 1 2)
(4.56)

Refer to Sec. 2.6.3 for a detailed derivation.

* 4.4.3 DP-vMF-means

In this section, we provide a small-variance asymptotic analysis of the label and param-
eter update steps of the Gibbs sampling algorithm for the DP-vMF mixture, yielding
deterministic updates. Figure 4.16 shows that, similar to the Gaussian case, the vMF
distribution approaches a delta function as the concentration increases. As with k-
means, the label assignments are computed sequentially for all datapoints before the
means are updated, and the process is iterated until convergence as outlined in Algo-
rithm 10.

Label Update To derive a hyperspherical analog to DP-means [142], consider the limit
of the label sampling step (4.55) as r -* oo. The normalizer Z(IITni+Topo 12) approaches

Z(H|rni + TOIpO12) exp(-T), (4.57)

where overscript T(*) denotes proportionality up to a finite power of r, and where
we have used the fact that as T -+ 00, the modified Bessel function of the first kind
satisfies [1]

exp( 1 (.8
ID/2-1(T) = ( (1 - exp(T) (4.58)

2lrT (*
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(a) r = 1 (b) r = 10 (c) r = 100 (d) r -+ oo

Figure 4.16: Depiction of 2D von-Mises-Fisher distributions with increasing concentra-
tion r. As r -+ oo the von-Mises-Fisher distribution approaches a delta function on the

sphere at its mode p.

To achieve a nontrivial result, the asymptotic behavior of Z(r) must be matched by

a, so let a = exp(Ar) to obtain

aZ(T)Z~ro) 5(*)
aZ( T+ro) = Z(T) exp(r(A + 1)).

Z( 7-ni + 7-0o A0112)

Therefore, as r - oc, the label sampling step becomes

I-k l n uk \ '

lim p(zi = k I z-i, Iy, n; T, JLo, ro) = lim Z- 2 eZ +C(7)1-oro cr-II0e( r)
-,= ja|Ise7 Z Mi--+c(-r)

(4.59)

k < K

k = K + 1,

(4.60)

where we have used that the normalizers Z(r) of vMF(ni I ik; T) and Eq. (4.59) cancel
T(*)

and c(T) 7= 1. Thus, as -r - oo, sampling from p(zi I zj, yL, n; r, Lo, ro) is equivalent

to the following assignment rule:

r Tk
z= arg max A T+ IkkE{1,...,K+1}

k < K
k = K + 1.

(4.61)

Since -1 < nipk < 1, the parameter A can be restricted to the set A E [-2,0] without

loss of generality. Intuitively A defines the maximum angular spread #,\ of clusters

about their mean direction, via A = cos(#A) - 1. Note, that upon assigning a datapoint

to a new cluster, i.e. zi = K + 1, the mean of that cluster is initialized to pK+1 = ni.

Finally, if an observation ni is the last one in its cluster, the cluster is removed prior to

finding the new label for ni using Eq. (4.61).

Parameter Update Taking r -+ cc in the parameter posterior for cluster k from

Eq. (2.86) causes ro and M0 to become negligible. Hence the parameter update be-
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comes:

[Z = icni ] Ek Vk E {1, ... , K}. (4.62)

This amounts to summing all data points in cluster k. In practice one can keep track
of these sums by adding and removing data points ni as their cluster assignments
change. That way the parameter update step just involves normalizing k vectors to
unit length. The increase in efficiency is especially noticeable once the algorithm gets
close to convergence, when only very few data points are reassigned each iteration.

Objective Function From Eq. (4.61) we can see that assigning a datapoint ni to cluster

TTk provides a score of ni Ak, whereas adding a new cluster provides a score of A + I -

nip K+1 = A, since new mean directions are initialized directly to pK+1 ni. Hence,
the objective function that DP-vMF-means maximizes is

K

JDP-vMF n 1pIk + AK. (4.63)
k=1 iEk

In practice the objective is used to determine convergence of the DP-vMF-means algo-
rithm.

DP-vMF-means algorithm The DP-vMF-means algorithm is given in full detail in Al-
gorithm 10. For the label assignment step both Algorithms 11 and 14 can be used. The
former, sequential label assignment Algorithm 11 is directly derived from the Gibbs
sampling posterior. The latter label assignment algorithm is parallelized using the
concept of optimistic iterated restarts as described in Sec. 4.4.6.

1: JDP-vMF - 00
2: A i-0
3: while JDP-vMF not converged do
4: {zi}=Y1,IL ÷-DP-vMF-MEANsLABELASIGNMENTS({ni 1 ,=1 A)
5: for k (E {,..., }do
6: ifnk >0 then

7: Pk [Lkn l
8: else
9: A A \ yk // remove cluster k

10: end if
11: end for
12: JDP-vMF TEIk T pk + A y

13: end while

Algorithm 10: DP-vMF-means algorithm.
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Algorithm 11: DP-vMF-means sequential label assignments algorithm.

* 4.4.4 Dependent Dirichlet Process vMF-MM

Suppose now that, in addition to an unknown number K of components, the vMF mix-
ture undergoes temporal evolution in discrete timesteps t C N as depicted in Fig. 4.15:
mixture components can move, be destroyed, and new ones can be created at each
timestep. For such a scenario, the dependent Dirichlet process (DDP) [39, 151, 160] is
an appropriate prior over the mixture components and weights. Using intermediate
auxiliary DPs F0 and F1 , the DDP constructs a Markov chain of DPs Gt, where Gt+i
is sampled from Gt as follows:

1. (Death) For each atom 0 in Gt, sample from Bernoulli(q). If the result is 1, add
9 to F0 .

2. (Motion) Replace each 0 in Fo with 9' - T(6' 90).

3. (Birth) Sample a DP F1 - DP(a, H). Let Gt+1 be a random convex combination
of F and F1 .

There are four parameters in this model: a > 0 and H (.), the concentration parameter
and base measure of the innovation process; q E (0, 1), the Bernoulli cluster survival
probability; and finally T (. I .), the random walk transition distribution. In the present
work, both the base and random transition distributions are von-Mises-Fisher: H (L) =
vMF (p; po, ro), and T (t I v) = vMF (p; v, ).

Suppose at timestep t, a new batch of data n is observed. Then Gibbs sampling
posterior inference for the DDP mixture, as in the previous sections, iteratively samples
labels and parameters. Let the set of tracked mean directions from previous timesteps
be {[k=o}K I, where pkO - vMF(mk, -rk) and Atk denotes the number of timesteps since
cluster k was last instantiated (i.e. when it last had data assigned to it).' Then the

'Note that all quantities (n, PkO, Mk, rk, ck, nk, etc.) are now time-varying. This dependence is not
shown in the notation for brevity, and all quantities are assumed to be shown for the current timestep
t.

1: function DP-vMF-MEANSSEQUENTIALLABELASSIGNMENT({ri)_ 1, i ,A

2: for i E {1, ... , N} do
3: // only consider clusters that contain more than ni

( T
4: zi arg max + f pk k I uland 2Ik\zi >0

kE{1,...,Ips+1} 1 k l 1
5: if zi = pLI + 1 then
6: A1- / A U I + ri} // add cluster K + 1 and initialize

7: end if
8: end for
9: return {z} 1 ,1
0: end function
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label sampling distribution is

a ( kf a p(ni; po, To) k = K + 1

pz (ck + Ik1) vMF(ni I Ak; r) k < K,| k| >0 (4.64)
qAtkckp(ni ; m, T) k < K, IkI = 0,

where Ck is the number of observations assigned to cluster k in past timesteps. The
parameter sampling distribution is

P(pk | P-k, z, n) vMFAk; JF 11k112) Ck =0 (4.65)
P(k | n,z; mk,Tk) Ck > 0,

where ok = ropo+T EjI.k nj, and p(Pk I n, z; mk, Tk) is the distribution over the current
cluster k mean direction Ak given the assigned data and the old mean direction pujko.

* 4.4.5 DDP-vMF-means

In the following, we analyze the small-variance asymptotics of the DDP-vMF mixture
model. We first derive the label assignment rules, followed by the parameter updates.

Label Update First, let a = exp(AT), q = exp(Q-r), = exp(3r), and rk = TWk, with

A C [-2, 0] as before, Q < 0, and 0, Wk > 0. Note that limTl = 1, and thus
_ ~~1-q 1,adtu

the asymptotics of the label assignment probability for current and new clusters is the
same as in Section 4.4.3.

Hence, we focus on the assignment of a datapoint to a previously observed, but
currently not instantiated, cluster k. During the Atk timesteps since cluster k was last
observed, the mean direction Pk underwent a random vMF walk AkO - Pki -+ - - -+

AkAtk = yk with initial distribution PkO - vMF(tko; mk, TO. Therefore, the intermedi-
ate mean directions {pkn},tk must be marginalized out when computing p(ni; m, Tk

Atk

p(ni; mk,k) = ] p(ni I PkAtk; T) * p(Po; mk,Tk)' 1 P(Pkn I Ak(n-1); 0)
1k01,--- ikstk n=1

= Z(Tr)Z(Or) t
k Z(wk-r) J J exp (rf) (4.66)

.kO,--.. kAtk

Atk

f =n pkAtk + t T Pnpk(n-1) + Wk Tmk-

n=1

The integration in Eq. (4.66) cannot be computed in closed form; however, the value
of the integral is only of interest in the limit as -r -+ oc. Therefore, Theorem 4.4.1, an
extension of Laplace's approximation to general differentiable manifolds, may be used
to obtain an exact formula.
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Theorem 4.4.1 (Manifold Laplace Approximation). Suppose M C R' is a bounded
m-dimensional differentiable manifold and f : Rn -+ R is a smooth function on M.
Further, suppose f has a unique global maximum on M, x* = arg maxxEM f(x). Then

lim fM erf(x) 1, (4.67)
7-40' ( ) Idet UTV2f (x*)UI e-f(x*)

where U E Rn m is a matrix whose columns are an orthonormal basis for the tangent
space of M at x*.

Proof. See Appendix B.1. The general technique of this proof is to transform coordi-
nates between the manifold and its tangent plane using the exponential map [63], and
then apply the multidimensional Laplace approximation in the transformed Euclidean
space. U

Corollary 4.4.1. Given a smooth function f : (RD)N -+ R, with a unique global

maximum over the N-product of (D - 1)-spheres x* E (SD-1)N

jsD-1)N e + ef(x*) (4.68)

Proof. This is Theorem 4.4.1 applied to (SD-1)N.

Using Corollary 4.4.1 and the limiting approximation of the modified Bessel function
in Eq. (4.58), Eq. (4.66)) yields the following asymptotic behavior as T -+ oc:

p(ni; mk,k) exp (r(f* - 3tk - k)) -(4.69)

The only remaining unknown in the asymptotic expression, f*, can be found via
constrained optimization

Atk,

max nT pkAtk ~ A T nAk(n-1) + WkA T mkmak i kn kO (4.70)
J~k~jn=1n=1

s.t. pknPkn=1VnEf0,...,Atk-

The optimization (4.70) has a closed-form solution:

wkmk + 0/k1
'kO - I Wkrn+ Mk (Pk1)2

Jkn - 1k(n+1) + /k(n-1) VnE{1,...,Atk-1} (4.71)
1k(n+1) + k(n-1) 12

ni + /1k(Atk-l)

I ni + 013tk( t-1)H2
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%k
% k o

/1 AkAtk

Figure 4.17: Geometry of the maximum likelihood setting of -ko, 'k, ... , /kAt for the
transition distribution.

These ternary relationships enforce that the optimal von-Mises-Fisher mean directions
along the random walk lie on the geodesic between Mk and ni. Therefore, this walk
can be described geometrically by three angles, as shown in Fig. 4.17 (with ik = ni):
the angle # between consecutive Pkn, the angle y7 between ni and pkAt,, and the angle

9 between mk and pko. Given these definitions, standard trigonometry yields a set of

three equations in #, 71, and 9:

Wk sin(9*) = sin(*) = sin(rq*) (4.72)

0* + /AtkJ* + Y* = arccos(m ni ),

where ( is the full angle between ni and mk. Since (4.72) cannot be solved in closed-

form, Newton's method is used to compute 0*, 0*, and r/*, which in turn determines

f*:

f Wk cos(*) + OQtk cos(W*) + cos(7*). (4.73)

Returning to (4.69), the transition asymptotics are

p(ni; mk;Tk) -4 exp (r (wk (cos 0* - 1) + 3Atk (cos5 -1) + cos* -1)) . (4.74)

Substituting this into Eq. (4.64) with the earlier definition q = exp(-rQ), and taking the

limit T -+ oc yields the assignment rule

(A+1 k=K+h1

P Tnn k < K,|ITk| > 0zi = arg max k (4.75)
k Atk(cos * - 1) + cosY k < K,|-kI = 0.

+Wk(COS 0* - 1) + AtkQ )

Note that if QAtk < A, cluster k can be removed permanently as it will never be revived

again. Furthermore, for any Q < A all clusters are removed after each timestep, and

the algorithm reduces to DP-vMF-means.
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Parameter Update The parameter update rule for DDP-vMF-means comes from the
asymptotic behavior of (4.65) as r - oo. The analysis for any new cluster is the same as
that in Section 4.4.3, so our focus is again on the transitioned mean direction posterior

P(kAtk I n, z; mk, Tk) (recall that Ilk = /kAtk in the definition of the random vMF

walk). This distribution can be expanded, similarly to (4.66), as:

Atk

P(pkAtk | n, z; mk,rk) = - p(n I [kAtk; 7)P([o; mk,TkT) 1J P(kn I Pk(n-1); 0
/1k0.--,k(Atk-1) n=1

Z(T)I-kIZ(3r)Atk Z(wkr) ... exp (Tf)

.k. .-,k(Atk-1)

Atk

f Ikt /35 + fknk(n-1) + wkIk0mk-
ieIk n=1

(4.76)

Define Ak = Ei k ni. Once again, applying Corollary 4.4.1, the limit r -+ oc removes
the integrals over the marginalized mean directions. However, in contrast to the label
assignment update, 'kAtk is not marginalized out. Therefore, an additional maximiza-
tion with respect to AkAtk to find the concentration point of the posterior yields

P(IkAtk in, z; ink, Tk) - exp(-r(f* - 1Ik - AVtk - wk))

f wk cos(O*) + /3/tk cos(#*) +I ik 112 cos(q*) .

Analyzing the geometry of the geodesic between iik/lifik12 and mk (Fig. 4.17) there

exist #*, 9* and j* such that

wk sin(O*) = /3 sin(#*) = IIk 112 sin(*) (4.78)

= 9* + Atk* + q* = arccos(m F',-) ,

which can be solved via Newton's method. Given the solution, yk can be obtained by
rotating by angle q* on the geodesic shown in Fig. 4.17 towards Mk,

Pk = R(n*) nk (4.79)

Weight Update After the iteration of label and parameter updates has converged, the
weight wk must be updated for all clusters to reflect the new uncertainty in the mean
direction of cluster k. This can be done by examining (4.77): Since at the maximum of
a vMF(i; Mk, WkT) density, exp(TwkM A) = exp(Twk), Wk is updated to f*.
Solving for state transition geometry for label and parameter update As depicted in
Fig. 4.17 and as alluded to previously the setting of AkO, tkl, . . . , bkAtk for the transition
distribution can be described in terms of the angles q, 71, and 9. The maximum likelihood
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parameters q*, 77* and 6* follow Eq. 4.78 for the parameter update with ii = EiEk n
and Eq. 4.72 for the label assignment with Ak = ni.

This set of equations can be solved exactly and efficiently using Newton's method
which in practice converges very quickly for this problem. Starting from # = 0, Newton's
method iterates over the following steps until convergence of #:

" compute f() arcsin (2 sin(#)) + Atk# + arcsin - |3 sin(#)) --

" compute =f (0) Atk + iCos() + /cos($)
lin -0~,2 sin2(0) 02 i 2 sin2 (0)

" update f - ()

A second approach, which is faster but approximate, is to assume that all angles
are small. For small angles sin(a) - a is a good approximation. With this we obtain
the following closed form solutions:

* [ (1 + + Atk] (4.80)

0 a + Wk (1 + (4.81)

7* Wk 1+ (4.82)

DDP-vMF-means algorithm Algorithm 12 outlines the necessary operations of the DDP-
vMF-means algorithm per timestep. The sequential label assignment algorithm for
DDP-vMF-means is shown in Algorithm 13.

* 4.4.6 Optimistic Iterated Restarts (OIR)

In our implementation of the algorithm we pay special attention to speed and parallel
execution to enable real-time performance for streaming R.GB-D data. Observe that
the main bottleneck of DP-based hard clustering algorithms, such as the proposed
(D)DP-vMF-means, DP-means [142] or Dynamic means [39], is the inherently sequential
assignment of labels: due to the creation of new clusters, the label assignments depend
on all previous assignments. While this is a key feature of the streaming clustering
algorithms, it poses a computational hindrance. We address this issue with an optimistic
parallel label assignment procedure inspired by techniques for database concurrency
control [183].

First, we compute assignments in parallel (e.g. on a GPU). If all datapoints were
assigned only to instantiated clusters, we output the labeling. Otherwise, we find the
lowest observation id i that modified the number of clusters, apply the modification,
and recompute the assignments for all observations i' > i in parallel. Thus, per data-
batch, DP-vMF-means restarts once per new cluster, while DDP-vMF-means restarts
once for each new or revived cluster.
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1:

2:

3:

4:

5:
6:

7:
8:

9:

10:

11:

12:

13:

14:

15:

16:

17:
18:

19:

20:

21:

22:

23:

E < I

A <-- 0

{zj}4f + - unassigned
while not converged do

4 Z: j 1, p <-DDP-vMF-MEANSLABELASSIGNMENTS({ni 1, i, A)
for k E {1,...,pL} do

if IlkI > 0 then /if the cluster is currently ins
if k < Lt-1I then /7 cluster is not a novel cluster

8k <- R(r,*) h" // reinstantiate the cluster
else

end if
end if

end for
end while
for k e {1,. .. , do

if I, I > 0 then /if the cluster is currently instantiated
Solve for #*, 6*, q* in Eq. (4.72) with ik = ni as described in Sec. 4.4.5

Wk = Wk cos(0*) + / Atk cos(*) + ||lk||2 cos(?*)
end if

if QAtk < A then /7 cluster cannot be revived again

A +- A \ /k /7 remove the cluster
end if

end for

Algorithm 12: DDP-vMF-means algorithm for a single time-step.

// update the center of the novel cluster

Algorithm 14 details the optimistic iterated restarts algorithm which can be mas-
sively parallelized both in CPU and GPU for the DP-vMF-means algorithm. The OIR.
label assignment algorithm for DDP-vMF-means follows the same pattern as Alg. 14
with the additional possibility of reviving a cluster. Reviving a cluster changes the
number of active clusters and thus requires a restart in the same way as creating a new
cluster does.

N 4.4.7 Evaluation and Results

In the following we first quantitatively evaluate the clustering quality achieved by DP-
vMF-means in comparison to spkm on synthetic and then real-wold data derived form
RGBD images of the NYU depth dataset. Second we qualitatively show the behavior
and clustering quality of DDP-vMF-means.

Synthetic Data First, we evaluate the behavior of the DP-vMF-means algorithm in
comparison to its parametric cousin, the spkm algorithm, on synthetic 3D spherical
data sampled from KT = 30 true vMF distributions. All evaluation results are shown

- I 1 0 m I RpRF" '' . . I ", -
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Figure 4.18: Comparison of the spkm and the DP-vMF-means clustering algorithms on

synthetic spherical data with KT = 30 clusters. Note DP-vMF-means' better labeling

quality indicated by higher maximum normalized mutual information (NMI) as well as

silhouette score. Red doted lines indicate the parameters achieving the true number of

clusters.
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1: function DDP-vMF-MEANSSEQUENTIALLABELASSIGNMENT(ni) 1 , p, A)

2: for i c {1,. .., N} do
3: Solve for 0*, 9*, q* in Eq. (4.72) with a =ni as described in Sec. 4.4.5

A + 1 k = Ihp + 1
pi k < p|-L, |Ik \ zi| > 0

4: zi+- arg max kk
kE{1,...,LpI+1} Atk/3 (CoS(0*) - 1) + A k k

+wk(cos(O*) - 1) + cos(q*) - '
if zi = pLI + 1 then

Ip <- p U {pfpl+1 R fi}

else
// add cluster K + 1 and initialize to ni

// check that cluster zi is not yet instantiated
if ITzi = 0 then

Ik <- R(,*)ni // reinstantiate the cluster
end if

end if
end for
return {zi} 1, I

end function

Algorithm 13: DDP-vMF-means sequential label assignments.

as the mean and standard deviation over 50 runs. The top left plot of Fig. 4.18 depicts
the inferred number of clusters K on the horizontal axis as a function of the respective
parameters of the two algorithms: the number of clusters K for spkm and the parameter
0,X for DP-vMF-means (recall that ,X = cos-1(A + 1) as defined in Sec. 4.4.3). This
figure demonstrates the ability of the DP-vMF-means algorithm to discover the correct
number of clusters KT, and the relative insensitivity of the discovered number of clusters
with respect to its parameter 0,. The number of inferred clusters of the DP-vMF-
means algorithm bends towards the true number of clusters, KT, for a wide range of 0,
parameters. This indicates the ability of the algorithm to adapt the number of clusters
to the data and its relative insensitivity to #A in comparison to K for spkm.

The bottom row of plots show two measures for clustering quality. The normalized
Mutual Information (NMI) [227], depicted in the middle, is computed using the true la-
bels. DP-vMF-means achieves an almost perfect NMI of 0.99, while spkm only reaches
0.94 NMI even with K = KT. The slightly superior performance of DP-vMF-means
stems from its enhanced ability to avoid local optima due to the way labels are ini-
tialized: while spkm is forced to initialize K cluster parameters, DP-vMF-means starts
with an empty set and adds clusters on the fly as more data are labelled. The NMI
results are corroborated by the silhouette score [205], shown to the bottom right in
Fig. 4.18. The silhouette score is an internal measure for clustering quality that can be
computed without knowledge of the true clustering, and is used to tune parametric clus-
tering algorithms. With a maximum of 0.92 DP-vMF-means reaches a close to perfect
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1: function DP-vMF-MEANSOIR LABELASSIGNMENT({ni j 1 , A)
2: 1<-N
3: repeat
4: for i E {I, ... , N} in parallel do
5: 7/ only consider clusters that contain more than n

(T
6: zi <- arg max niPk k< || and |IVk\ziI >0

kE{1,...,pI +1} /+1 k /j+1

7: if zi = p| + 1 or any(jIkI = 0) then
8: // obtain the first index of cluster number change
9: atomic: I = min(I, i)

10: end if
11: end for
12: if I < N then
13: if zi = tLI + I then

14: I <- A U {illl+1 - ni} /7 add cluster K + 1 and initialize to ij

15: else

16: A A \ pk:IlkI=0 /7 remove empty cluster
17: end if

18: end if
19: until I = N

20: return Nzi I , p
21: end function

Algorithm 14: DP-vMF-means optimistic iterated restarts (OIR) label assignments

algorithm. The min-reduction which is key to this algorithm can be implemented effi-

ciently on GPUs using built in atomic functions. The creation and removal of clusters

happens on CPU.

silhouette score, indicating well-separated, concentrated clusters. Again, spkm does not

reach the same clustering performance even for K = KT for the same aforementioned

reasons.

NYU v2 depth dataset In this experiment, the DP-vMF-means and spkm algorithms

were compared on the NYU v2 R.GB-D dataset [173]. Surface normals were extracted

from the depth images [112] and preprocessed with total variation smoothing [202].

We quantify the clustering quality in terms of the average silhouette score over the

clusterings of the 1449 scenes of the NYU v2 depth dataset. Since we do not possess

the true scene labeling, we use the silhouette quality metric as a proxy for the NMI

metric; this was motivated by the agreement between the maxima of the NMI and

silhouette scores in the previous synthetic experiment.

Across the whole NYU v2 dataset, the DP-vMF-means algorithm achieves the high-

est average silhouette score of 0.75 for 4* = 1000 as depicted in Fig. 4.19. The histogram

over the number of inferred clusters by DP-vMF-means for 0* indicates the varying com-
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Figure 4.19: Histogram over the number of clusters for optimal 4 found by DP-vMF-
means (left) and silhouette values for DP-vMF-means and spkm (right) across the whole
NYU dataset [1731. DP-vMF-means achieves higher overall silhouette scores (right)
because it can adapt the number of clusters to the observed data as the cluster number
statistics show (left).
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Figure 4.20: Directional segmentation of scenes from the NYU v2 RGB-D dataset [1731
as implied by surface normal clusters. The complexity of the scenes increases from left

to right as can be observed from the RGB images in the top row. The second row

shows the clustering inferred using DP-vMF-means with Ox = 1000 while the third and

fourth show the spherical k-means results for comparison. Black denotes missing data

due to sensor limitations. Note that DP-vMF-means adapts the number of clusters to

the complexity of the scene.
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2 a
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frame number

Figure 4.21: Clustering of a surface normal stream recorded when walking a 900 turn

in an office environment. We depict key-frames color-coded with the implied surface-
normal clustering for three different clustering algorithms. The plots in the second and

third row depict the percentage of normals associated to the respective cluster for the
DDP-vMF-means as well as sequential DP-vMF-means. Note that the clustering ob-
tained via the DDP-vMF-means algorithm is consistent across the whole run as opposed
to the other algorithms.

plexity of the scenes ranging from three to eleven. The clear peak at K = 4 coincides
with the highest silhouette score for spkm (0.73) and explains the only slightly lower
silhouette score of spkm: most scenes in the dataset exhibit four primary directions.

Figure 4.20 shows a qualitative comparison of the scene segmentation implied by the

clustering of surface normals. In comparison to spkm, the DP-vMF-means clustering
results show the ability of the algorithm to adapt the number of clusters to the scene

at hand. If the right number of clusters is selected for the spkm clustering, the results
have similar quality; however, the number of clusters is generally not known a priori
and varies across scenes. This demonstrates two major advantages of DP-vMF-means
over spkm: (1) DP-vMF-means is less sensitive to the parameter setting (see Fig, 4.18,
top left) and (2) it is easier to choose (b,\ than K since it intuitively corresponds to

the maximum angular radius of a cluster, which can be gauged from the type of data
and its noise characteristics. For this experiment #, = 1000 is justified by the typical

Manhattan structure [49] of the indoor environment plus 100 to account for sensor noise.

Real-time Sequential Directional Segmentation In fields such as mobile robotics or aug-
mented reality, it is uncommon to observe just a single RGB-D frame of a scene; more
typically, the sensor will observe a temporal sequence of frames. The following exper-
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iment demonstrates the temporally consistent clustering capability of the DDP-vMF-
means algorithm on surface normals extracted from a sequence of depth images recorded
in an indoor environment. Each frame is preprocessed in lms using edge-preserving
smoothing with a hybrid CPU-GPU guided filter [107]. Choosing the guidance image
equivalent to the input image results in an O(N) filter that provides similar smoothing
results to a bilateral filter [235], which is O(Nr2 ), where N is the number of pixels and
r the filter radius. The independence of the guided filters runtime from the filter radius
allows us to use a filter window of 20 x 20 pixels.

We compare against the ad-hoc approaches of clustering on a frame-by-frame basis
using DP-vMF-means, both with and without initializing the algorithm from the previ-
ous frame's clusters. The former is referred to as sequential DP-vMF-means (sDP-vMF-
means). sDP-vMF-means achieves a greedy frame-to-frame label consistency, but, un-
like DDP-vMF-means, it cannot reinstantiate previous clusters after multiframe lapses.
Motivated by the DP-vMF-means evaluation, all algorithms were run with q = 1000.
For DDP-vMF-means 0 = 105 and Q = .

The differences in labeling consistency can be observed in rows two and three of
Fig. 4.21, which shows the percentage of normals associated with a specific cluster.
While DDP-vMF-means is temporally consistent and reinstantiates the lime-green and
red clusters, observed in the first half of the run, DP-vMF-means erroneously creates
new clusters. We do not depict the percentages of surface normals associated with the
clusters for the batch DP-vMF-means algorithm, since the there is no label consistency
between time-steps as can be observed in the last row of Fig. 4.21.

The average run-time per frame was 28.4 ms for batch DP-vMF-means, 12.8 ms for
sDP-vMF-means, 20.4 ms for DDP-vMF-means, and 13.6 ms for spkm with K = 5.
The increased running time of batch DP-vMF-means is a result of clustering each
batch of surface normals in isolation; optimistic iterated restarted label assignment
needs several restarts to assign labels to all surface normals. By initializing the clusters
from a previous frame, sDP-vMF-means only incurs labeling restarts if a new cluster
is observed, and hence has significantly lower run time. DDP-vMF-means is slightly
slower than sDP-vMF-means since it is keeping track of both observed and unobserved
clusters.

* 4.5 Discussion

In the first part of this chapter we introduce the DP-TGMM, a Dirichlet process mixture
model over Gaussian distributions in multiple tangent spaces to the unit sphere in
RD. Aimed at modeling directional data, this Bayesian nonparametric model not only
adapts to the complexity of the data but also describes anisotropic distributions on the
sphere. Experiments on synthetic data demonstrate that the proposed DP-TGMM is
more expressive in describing anisotropic directional data than other commonly-used
approaches. Moreover, we have shown the scalability and effectiveness of the inference
algorithm as well as the applicability and versatility of the model on batches of 300k
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real-world 3D surface normals and on 20-dimensional semantic word-vectors for 41k
English words. Code for the proposed sub-cluster-based inference algorithm can be
found at http: //people. csail.mit. edu/jstraub/.

In the second half of this chapter, we have derived two novel k-means-like algo-
rithms for efficient batch and streaming clustering of data on the unit hypersphere
by taking the small-variance asymptotic limit of the Bayesian nonparametric DP-vMF
and DDP-vMF mixture models. The performance and flexibility of DP-vMF-means
was demonstrated on both synthetic data and the NYU v2 RGB-D dataset. For DDP-
vMF-means, optimistic iterated restarts parallelized label assignments, enable real-time
temporally consistent clustering of batches of 300k surface normals collected at 30 Hz
from a RGB-D camera. Implementations of the DP-vMF-means and the DDP-vMF-
means algorithms can be found at http://people.csai1.mit.edu/jstraub/.

Future work could investigate the extension of the DP-TGMM model to other Rie-
mannian manifolds. The approach of modeling data in tangent spaces to a manifold
is quite universal as long as a manifold is equipped with an exp and log map as well
as a mechanism for parallel transport to a common location on the manifold (for SD-1
this amounts to rotations). Potential manifolds for such extension would be the Stiefel
manifold, the manifold of rotations 50(3) and rigid-body transformations SE(3).

Another promising research direction is embedding DP-TGMM and/or DP-vMF-
MM in a hierarchical structure (akin to the Hierarchical DP-GMM for RD-valued data)
to allow information sharing between batches of data in applications such as protein
backbone configuration modeling or hierarchical scene segmentation across a corpus of
indoor scenes.

A third avenue of further exploration would be how to incorporate the notion that
Stata Center World segmentations are mostly spatially smooth (whole planes should
belong to the same Stata Center World segment). There is some interesting work on
imposing spatial smoothness on the segmentation via a Markov Random Field (MRF)
defined via local neighborhood information [182] that we will utilize to some degree in
Chapter 5. However, it is unclear how the addition of a MRF changes the low-variance
analysis of Sec. 4.4.3.

N 4.6 Acknowledgments

This part of the overall research was conducted in collaboration with Jason Chang,
Trevor Campbell, Oren Freifeld, Jonathan P. How, John J. Leonard as well as John W.
Fisher III and published in [222, 224]. Specifically, Trevor Campbell's prior expertise
with low-variance analysis helped make fast progress in deriving the DDP-vMF-means
algorithm. He also formally proved the Laplace approximation for the sphere while I
was busy working on the GPU-based DDP-vMF-means implementation. Jason Chang's
input when deriving the DP-TGMM inference was crucial for the fast progress on the
DP-TGMM project.

147Sec. 4.6. Acknowledgments



148 CHAPTER 4. UNCONSTRAINED DIRECTIONAL SCENE REPRESENTATION



Chapter 5

Nonparametric Directional
Perception Systems

In this final chapter we focus on equipping perception systems with direction-awareness,
i.e. the ability to infer and utilize a directional segmentation of their environment. We
explore the idea that directional models such as introduced in Chapters 3 and 4, provide
useful information for general 3D perception systems because they capture structural
regularities of the environment. Recognizing and utilizing such regularities should help
localization, mapping and higher-level inference about an environment. In this chapter
we focus on showing the impact of direction-awareness onto mapping and localization,
two of the most fundamental perception tasks.

Recall the categorical SLAM problem from the introductory chapter. Under a di-
rectional scene segmentation we term this problem direction-aware SLAM. Specifically,
direction-aware SLAM amounts to reasoning about the joint distribution of a world
map m, the trajectory of a perception system T, and a directional segmentation z of
the environment given a set of observations x:

p(m, T, z I x) "direction-aware SLAM" . (5.1)

To approach this joint inference problem we follow the approach of iteratively reasoning
about the conditional distributions, a common strategy in inference algorithms such as
Gibbs sampling and expectation maximization. The conditional distributions are

p(m T, z, x) "direction-aware mapping" , (5.2)

p(T m, z, x) "direction-aware localization" , (5.3)

p(z m, T, x) "directional segmentation" . (5.4)

That the full joint direction-aware SLAM is a hard problem can be gleaned from the fact
that the problem of SLAM itself has spawned decades of research [36,148]. Therefore
we approach incorporating direction-awareness into the SLAM problem in two steps:
we first focus on direction-aware localization in the form of global point cloud alignment
before introducing the first approach to solving the full direction-aware SLAM problem.

In the first half of this chapter we focus on the subproblem of direction-aware point
cloud alignment. In the aforementioned framework this amounts to inference on the
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directional segmentation of the two point clouds, i.e. reasoning about Eq. (5.4), and
inference about the relative pose between the point clouds, i.e. Eq. (5.3). Specifically,
we seek to find the optimal pose to align two point clouds that have been segmented in
terms of their directional and spatial distributions via Dirichlet process mixture models
of von-Mises-Fisher and Gaussian distributions. Operating over these nonparametric
mixture models instead of the point densities directly makes the approach tractable. By
exploiting the fact that surface normal distributions are invariant to translation, we de-
compose the alignment problem into first finding the rotation R by aligning the surface
normal distributions and then, given R, finding the translation by aligning the point dis-
tributions. Both optimization problems are solved optimally using branch-and-bound
search. Contributions include the use of Bayesian nonparametric density estimates for
the alignment task, a novel, approximately uniform tessellation of the rotation space
and branch-and-bound convergence guarantees for this new tessellation. We demon-
strate that the novel tessellation improves branch-and-bound exploration efficiency and
thus runtime of the algorithm. Comparisons to related algorithms show the advantages
of the decomposed approach which achieves better alignment with significant speedups
over competing algorithms.

In the second half of the chapter we turn to the full direction-aware SLAM problem
and introduce the first realtime-capable system that performs iterated inference on all
three posteriors in Equations (5.2), (5.3), and (5.4). Based on a sparse collection of
surfels to represent the map, the system performs joint inference on map, camera trajec-
tory, and nonparametric Stata Center World segmentation. Specifically, we establish an
explicit connection between the scene-wide directional segmentation and local surface
properties which yields direction-aware mapping as defined in Eq. (5.2). Furthermore,
the directional segmentation is used to guide observation selection for camera pose
estimation as suggested by Eq. (5.3). This leads to improved 3D reconstruction and
improved and more efficient camera tracking. The proposed system architecture is the
first to demonstrate real-time performance while running sampling-based inference over
the map and segmentation distributions. This allows the computation of expectations
over arbitrary functions of the random variables such as expectations, variances and
uncertainty of surfel locations, orientations, and color. It opens up further avenues of
investigation with more complex models (such as the Bayesian nonparametric models
utilized in this work) for which inference is not directly possible using mode-seeking
methods such as maximum a posterior estimation, the standard tool of 3D reconstruc-
tion systems.

N 5.1 Global Point Cloud Alignment using Bayesian Nonparametric Mix-
tures

Point cloud alignment is a fundamental problem for many applications in robotics [110,
161] and computer vision [177,212,247. Finding the global transformation is generally
hard: point-to-point correspondences typically do not exist, the point clouds might only
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Figure 5.1: A 3D projection of the 600-cell [2431-a 4D object tessellating the space of
rotations for the proposed branch and bound approach to point cloud alignment.

have partial overlap, and the underlying objects themselves are often nonconvex, leading
to a potentially large number of alignment local minima. As such, popular local opti-
mization techniques suffice only in circumstances with small true relative transforma-
tions and large overlap, such as in dense 3D incremental mapping [110, 177, 247]. Solving
the alignment problem for large unknown relative transformations and small point cloud
overlap calls for a global approach. Example applications are the loop-closure problem
in SLAM [30] and the model-based detection of objects in 3D scenes [125].

Motivated by the observation that surface normal distributions are translation in-
variant [116] and straightforward to compute [168, 221], we develop a two-stage branch
and bound (BB) [144, 115] optimization algorithm for point cloud alignment. We model
the surface normal distribution of each point cloud as a Dirichlet process (DP) [70, 233]
von-Mises-Fisher (vMF) [74] mixture [222] (DP-vMF-MM). To find the optimal ro-
tation, we minimize the L2 distance between the distributions over the space of 3D
rotations. We develop a novel refinable tessellation consisting of 4D tetrahedra (see
Fig. 5.1) which more uniformly approximates rotation space and is more efficient than
the common axis-angle tessellation [103, 150] during BB optimization. Given the opti-
mal rotation and modeling the two point distributions as DP Gaussian mixtures [8, 42]
(DP-GMM), we obtain the optimal translation similarly via BB over the space of 3D
translations. The use of mixture models circumvents discretization artifacts, while still
permitting efficient optimization. In addition to algorithmic developments, we provide
corresponding theoretical bounds on the convergence of both BB stages, linking the
quality of the derived rotation and translation estimates to the depth of the search tree
and thus the computation time of the algorithm. Experiments on real data corroborate
the theory, and demonstrate the accuracy and efficiency of BB as well as its robust-
ness to real-world conditions, such as partial overlap, high noise, and large relative
transformat ions.
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* 5.1.1 Related Work

Local Methods There exists a variety of approaches for local point cloud alignment [38,
212]. Iterative closest point (ICP) [21], the most common of these, alternates between
associating the points in both clouds and updating the relative transformation estimate
under those associations. There are many variants of ICP [207] differing in their choice of
cost function, how correspondences are established, and how the objective is optimized
at each iteration. An alternative developed by Magnusson et al. [161] relies on the
normal distribution transform (NDT) [22], which represents the density of the scans
as a structured GMM. This approach has been shown to be more robust than ICP
in certain cases [162]. Approaches that use correlation of kernel density estimates
(KDE) for alignment [238] or GMMs [122] use a similar representation as the proposed
approach. KDE-based methods scale poorly with the number of points. In contrast, we
use mixture models inferred by nonparametric clustering algorithms (DP-means [142]
and DP-vMF-means [222]). This allows adaptive compression of the data, enabling the
processing of large noisy point clouds (see Sec. 5.1.5 for experiments with more than
300k points). Straub et al. propose two local rotational alignment algorithms [221, 222]
that, similarly to the proposed approach, utilize surface normal distributions modeled
as vMF mixtures. Common to all local methods is the assumption of an initialization
close to the true transformation and significant overlap between the two point clouds.
If either of these assumptions are violated, local methods become unreliable as they
tend to get stuck in suboptimal local minima [162,207,212].

Global Methods Global point cloud alignment algorithms make no prior assumptions
about the relative transformation or amount of overlap. For those reasons global al-
gorithms, such as the proposed one, are often used to initialize local methods. 3D-
surface-feature-based algorithms [3,84,125,208] involve extracting local features, ob-
taining matches between features in the two point clouds, and finally estimating the
relative pose using RANSAC [73] or other robust estimators [117]. Recently, Al-
barelli et al. [4] have proposed an alignment algorithm that is resilient to large outlier
ratios without resorting to robust estimators. Another recent featured-based approach
by Zhou et al. [259] uses correspondences established once before optimization and is
robust to large fractions of wrong correspondences. Though popular, feature-based
algorithms are generally vulnerable to large fractions of incorrect feature matches, as
well as repetitive scene elements and textures. A second class of approaches, including
the proposed approach, rely on statistical properties of the two point clouds. Maka-
dia et al. [163] separate rotational and translational alignment. Rotation is obtained by
maximizing the convolution of the peaks of the extended Gaussian images (EGI) [116]
of the two surface normal sets. This search is performed using the spherical Fourier
Transform [64]. After rotational alignment, the translation is found similarly via the
fast Fourier Transform. The use of histogram-based density estimates for the surface
normal and point distributions introduces discretization artifacts. Additionally, the
sole use of the peaks of the EGI makes the method vulnerable to noise in the data.
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Sec. 5.1. Global Point Cloud Alignment using Bayesian Nonparametric Mixtures

For the alignment of 2D scans, Weiss et al. [245] and Bosse et al. [30] follow a similar
convolution-based approach. Early work by Li, Hartley and Kahl [103,150] on BB for
point cloud alignment used the axis-angle (AA) representation of rotations. A drawback
of this approach is that a uniform AA tessellation does not lead to a uniform tessellation
in rotation space (see Sec. 5.1.3). As we show in Sec. 5.1.5, this leads to less efficient
BB search. Parra Bustos et al. [185] propose improved bounds for rotational align-
ment by reasoning carefully about the geometry of the AA tessellation. GoICP [256]
nests BB over translations inside BB over rotations and utilizes ICP internally to im-
prove the BB bounds. GOGMA [37] uses a similar approach, but replaces the objective
with a convolution of GMMs. Both GoICP and GOGMA involve BB over the joint
6-dimensional rotation and translation space; since the complexity of BB is exponential
in the dimension, these methods are relatively computationally expensive (see results
Fig. 5.14).

0 5.1.2 The Point Cloud Alignment Problem

Our approach to point cloud alignment relies on the fact that surface normal distri-
butions are invariant to translation [116] and easily computed [168, 221], allowing us
to isolate the effects of rotation. Thus we decompose the task of finding the relative
transformation into first finding the rotation using only the surface normal distribution,
and then obtaining the translation given the optimal rotation.

Let a noisy sampling of a surface S be described by the joint point and surface normal
density p(x, n), where x E R3 and n E S2 . A sensor observes two independent samples
from this model: one from p,(x,rn) = p(x,rn), and one from p2(x,rn) = p(R*T(X -
t*), R*T n) differing in an unknown rotation R* E SO(3) (see Sec 2.7.1) and translation
t* E R3 . Given these samples, we model the marginal point densities z1(x), P2 (X)
using the posterior of a Dirichlet process Gaussian mixture (DP-GMM) [8], and model
the marginal surface normal densities Pi(n), P2(n) using the posterior of a Dirichlet
process von Mises-Fisher mixture (DP-vMF-MM) [15, 222]. Note that the formulation
using Dirichlet process mixture models admits arbitrarily accurate estimates of a large
class of noisy surface densities (Theorem 2.2 in [60]). Given the density estimates, we
formulate the problem of finding the relative transformation as

4 = arg max P 1(n)h2(q o n)dn
qES 3  IS2 

(5.5)
t= arg max P1 (x)P2(4 o x + t)dx,

tER3  JR 3

where we represent rotations using unit quaternions in 53, the 4D sphere [115], and
where q o n denotes the rotation of a surface normal n by a unit quaternion q (see
Sec. 2.7.4). Eq. (5.5) minimizes the L2 metric via maximization of the convolution,
which has been shown to be robust in practice [122]. The equivalence between L2
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metric minimization and maximization of the convolution follows for q from:

4 arg min 1fii(n) - P2(q o n)12
qES3

=arg min p2 (n) - 2f1(n)h(q o n) + p2(q o n) dn (56)
qES3 fS212(56

=arg max i(n)h2 (q o n) dn.
qES3 J

The same is true for the optimization of i. The L2 norm minimization is a common

approach for Gaussian MMs [37,122,238] but to our knowledge has not been explored
for vMF-MMs, nor for Bayesian nonparametric DP mixtures. In fact, the use of DP
mixtures is critical, as it allows the automatic selection of a parsimonious, but accu-
rate, representation of the point cloud data. This improves upon both kernel density
estimates [238], which are highly flexible but make optimizing Eq. (5.5) intractable for
large RGB-D datasets, and fixed-sized GMMs [37,122], which require heuristic model
selection and may not be rich enough to capture complex scene geometry. While exact
posterior predictive DP-MM densities cannot be computed tractably, excellent estima-
tion algorithms are available, which we use in this work [142, 222].

Both optimization problems in Eq. (5.5) are nonconcave maximizations. Considering
the geometry of the problem, we expect many local maxima, rendering typical gradient-
based methods ineffective. This motivates the use of a global approach. We develop
a two-step BB procedure [144,145] that first searches over 53 for the optimal rotation
4, and then over R3 for the optimal translation i. As BB may return multiple optimal
rotations (e.g. if the scene has rotational symmetry) we estimate the optimal translation
under each of those rotations, and return the joint transformation with the highest
translational cost lower bound. Note that while 4, i is not necessarily the optimal

transformation under rotation and translation jointly, the decoupling of rotation and
translation we propose reduces the computational complexity of BB significantly. This
is because the complexity scales exponentially in the search space dimension; optimizing
over two 3D spaces (R3 and S3) separately is significantly less costly than over the joint
6D space.

BB requires three major components: (1) a tessellation method for covering the
optimization domain with subsets (see Sec. 5.1.3 and 5.1.4); (2) a branch/refinement
procedure for subdividing any subset into smaller subsets (see Sec. 5.1.3 and 5.1.4);
and (3) upper and lower bounds of the maximum objective on each subset to be used
for pruning (see Sec. 5.1.3 and 5.1.4). As shown in Algorithm 15, BB proceeds by
bounding the optimal objective in each subset, pruning those which cannot contain the
maximum, subdividing the best subset to refine the bounds, and iterating. Note that
in this work we select the node with the highest upper bound for subdivision. More
nuanced strategies have been developed and could also be utilized [118,145].

NMI III 1111111"11191911011 "'Mm"M pm"'"
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1: T +- TESSELLATION(Q)

2: repeat
3: Q* <- arg maxQ,7 UPPERBOUND(Q)

4: 7 +- (T \ Q*) U BRANCH(Q*)

5: 1 = maxQE-T LOWERBOUND(Q)

6: Prune any Q with UPPERBOUND(Q) < 1 from T
7: U = maxQET UPPERBOUND(Q)
8: until u - I < c return T

Algorithm 15: Branch and Bound on a space Q. We first run BB over the space of
rotations (Q = S3) and then over the space of translations (Q = R3)

* 5.1.3 von-Mises-Fisher Mixture Rotational Alignment

We model the distributions of surface normals n as von-Mises-Fisher [74] mixture mod-
els (vMF-MM) with means {pfik}K 1 , concentrations {Tik} 1, and positive weights

{rik}ki1, EK1 ik = 1, for i C {1, 2}, with density

Ki

Pi(n) = 7rikCik exp (Tik pn) Cik g Tik (5.7)
k=1 47r sinh(rik)

See Sec. 2.6.3 for more details about the vMF distribution. While there are many tech-
niques for inferring vMF-MMs [14,61, 222], we use the nonparametric method described
in [222] and Sec. 4.4.3 that infers an appropriate Ki automatically. This model simulta-
neously circumvents discretizing the sphere, thus avoiding the artifacts associated with
discretization, and is more expressive than a collection of delta functions on S2 as used
by [163]. The rotational alignment problem from Eq. (5.5) with this model becomes

arg max L DT- exp ((71k1k +- T2k'q o P2k' n) dn
qGS

3 2k,k' 7 2

DkkI A (2r)71lkir2k'ClkC2k' .

We obtain the following objective function by noting that the integral is the normal-
ization constant of a vMF density with concentration zkk,(q) 4 1ik1 k + T2k/ q 0 p2k'f1:

- argmax(Dkkf(zkk'(q))
gES3 k,k' (5.9)

where f(z) A 2sinh(z)z-- (ez - e-z) z- 1 .

We now provide a novel refinable tessellation of 53 in Sec. 5.1.3 and upper/lower
objective function bounds in each of its subsets in Sec. 5.1.3 for use with BB in op-
timizing Eq. (5.9). Finally, given the proposed tessellation and objective bounds, we
provide convergence guarantees for the rotational alignment optimization algorithm in
Sec. 5.1.3.
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Icosahedron Subdivision 1 Subdivision 2

Figure 5.2:
follows the
uniformity

Tessellation of 2 via iterated triangle subdivision. The tessellation of 3

same principles, but with 4D tetrahedra instead of 3D triangles. Note the

of the tessellation.

Cover and Refinement of the Rotation Space 53

In this section, we develop a novel tessellation scheme for the space of rotations, and

show how to refine it in a way that guarantees convergence of BB for rotational align-

ment. We follow a similar approach to the geodesic grid tessellation of a sphere in 3D

(i.e. S2): as depicted in Fig. 5.2, starting from an icosahedron, each of the 20 triangular

faces is subdivided into four triangles of equal size. Then the newly created triangle

corners are normalized to unit length, projecting them onto the unit sphere. Note that

in this last step, the formerly equally-sized triangles become slightly distorted, as the

middle triangle becomes larger than the other three triangles surrounding it. For this

reason, the resulting tiling of the sphere is only approximately uniform.

In four dimensions we instead start with the analogue of the icosahedron, the 600-

cell [50] (shown in Fig. 5.1), an object composed of 600 4D tetrahedra. We first generate

its 120 vertices with the following algorithm [50, pp. 402-403]. Let = (1+ 5).

Then the (unnormalized) 120 vertices of the 600-cell in 4D are

" even permutations of [ #, 1, 0-1, 0 ]T (96 vertices),

" all permutations of [ 2 ,0, 0, 0]T (8 vertices), and

" all permutations of [ 1, 1, 1, i]T (16 vertices).

We then scale the 120 vertices to each have unit norm, representing a 3D quaternion

0
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Axis-angle Space Top View Side View

Figure 5.3: Tessellation of S2 via uniform tessellation in the axis-angle (AA) space. The
axis-angle tessellation of S3 follows the same principle and incurs similar distortion.
Note that orange tiles contain surface area on the lower half-sphere, so parts of the
rotation space are covered twice, making BB inefficient.

rotation. Next, noting that the angle between any two connected tetrahedra vertices
is 36w, we iterate over all (120) possible choices of 4 vertices, and only select those 600

tetrahedra for which all pairwise angles are 36'. This collection of tetrahedra, which are
"flat" in 4D analogous to triangles in 3D, comprises a 4D object which approximates the
4D sphere, 53. Then, since the set of all quaternion rotations may be represented by any
hemisphere of S3 (q and -q describe the same rotation), we define the "north" vector
to be [0, 0, 0, 1 ]T C S3, and only keep those tetrahedra for which at least one vertex
has angle < 90' to the north vector. This results in 330 tetrahedra that approximate
the 4D upper hemisphere in S3, i.e. the space of quaternion rotations. Note that this
construction procedure is the same for any optimization on 3, so it can be performed
once and the result may be stored for efficiency.

One major advantage of the proposed S3 tessellation is that it is exactly uniform at
the Oth level and approximately uniform for deeper subdivision levels (Fig. 5.2 shows
the analogous near-uniformity for S2). This generally tightens bounds employed by
BB, leading to more efficient optimization. Another advantage is that this tessellation
is a near-exact covering of the upper hemisphere of 3. Only 7% of rotation space is
covered twice, meaning that BB wastes little time with duplicate searching. The widely
employed AA-tessellation scheme [103,150, 185, 256], in contrast, uniformly tessellates
a cube enclosing the axis-angle space, a 3D sphere with radius 7r, and maps that tes-
sellation onto the rotation space. There are two major issues with the AA approach.
First, it covers 46% of rotation space twice [103,150] (see Fig. 5.3 for a depiction of the
analogous scenario for 2). Second, it does not lead to uniform tessellation in rotation
space. The reason for this is that the Euclidean metric in AA space is a poor approxi-
mation of the distance on the rotation manifold [150]. Fig. 5.3 shows the AA tessellation
analog for S2, highlighting its significant non-uniformity. We empirically find that the

3 tessellation leads to more efficient BB optimization than the AA tessellation (see
results in Figs. 5.9 and 5.10).



Figure 5.4: The three subdivision patterns-due to the choice of the green edge-of a

tetrahedron displayed in 3D. Colors designate different edge types: corner edges (blue)

from an edge midpoint to a vertex; tie edges (orange) between two edge midpoints,
running along a tetrahedron face; and skew edges (green) between two edge midpoints,
running through the inside of the tetrahedron. The internal skew edge (green) is chosen

to minimize distortion.

We now discuss two properties of the proposed tessellation required by BB: (1) that

it is a cover for the upper hemisphere of S3, guaranteeing that BB will search the whole

space of rotations; and (2) that it is refinable, so BB can search promising subsets in

increasingly more detail.

Cover Let the four vertices of a single tetrahedron from our approximation of S3 be

denoted qj E S3, j E {1,...,4}. Then, stacking them horizontally into a matrix Q E

R4 x 4 , the projection 9 of the tetrahedron onto S3 is:

Q={q E R4 : q =1, q = Qa, a R} . (5.10)

In other words, Q is the set of unit quaternions found by extending the (flat in 4D)

tetrahedron to the unit sphere using rays from the origin. For S2, this is displayed in

the second row of Fig. 5.2. The proposed set of 330 projected tetrahedra Q forms a

cover of the upper hemisphere of S3.

Refinement Next, we require a method of subdividing -any Q in the cover. Similar to

the triangle subdivision method for refining the tessellation of S2, each 4D tetrahedron

can be subdivided into eight smaller tetrahedra [152] as depicted in Fig. C.1. The

resulting six new vertices for the subdivided tetrahedra are scaled to unit length. As we

have the freedom to choose one of three internal edges for subdivision, we choose the

internal edge with the minimum angle between its unit-norm vertices. In other words,
denoting k for k E {1, 2, 3} to be the three internal dot products,

k* arg max k (5.11)
kE{1,2,3}

This process forms the eight new subdivided cover elements Q. For example, if qi,

i E {,.. ., 4} are the vertices of Q, then one of the subdivisions (corresponding to one
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Figure 5.5: The bounds in Eq. (5.13) compared to the true min & max angles between

tetrahedron vertices for increasing refinement level.

of the "corner" subtetrahedra in Fig. C.1) of Q would have vertices

ql+q2 ql+q3 ql+q4
V1, + 2 ,q q3 and .i q4 (5.12)

Selecting the internal edge via Eq. (5.11) is critical to our BB convergence guarantee
in Sec. 5.1.3. If Eq. (5.11) is not used, the individual subsets Q can become highly
skewed due to repeated distortion from the unit-norm projection of the vertices, and

refining Q does not necessarily correspond to shrinking the angular range of rotations it

captures. Since we use Eq. (5.11), however, Lemma 5.1.1 guarantees that subdividing

Q shrinks its set of rotations appropriately:

Lemma 5.1.1. Let -YN be the min dot product between vertices of any one Q at refine-
ment level N. Then

2
^YN-1 < N, where 70 A cos 36o. (5.13)

1 1N-1

This result (proof in Appendix C.1.3) shows that the tetrahedra shrink and allow

BB to improve its bounds during subdivision. Figure 5.5 demonstrates the tightness
of this bound, showing that cos-1 7N converges to 0 as N -+ oo. We conjecture that

the max dot product FN satisfies a similar recursion, FN }(1 + FN-1)/2, although
this is not required for our convergence analysis. Fig. 5.5 shows empirically that this
matches the true max dot product, but we leave the proof as an open problem.

von-Mises-Fisher Mixture Model Bounds

BB requires both upper and lower bounds on the maximum of the objective function

within each projected tetrahedron Q, i.e. we need L and U such that

L < max kk, Dkk1 f(zkk'(q)) U. (5.14)
qEQ

For the lower bound L, one can evaluate the objective at any point in Q (e.g. its center).
For the upper bound U, we use a quadratic upper bound on f(z) (see Fig. 5.6 and
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Figure 5.6: The function f(z) quantifying the rotational alignment between two DP-
vMF mixture models and its quadratic upper bound, valid for z E [ekk',ukk'I (here,
ekk' = 1 and Uk' = 4).

Appendix C.1.2 for details), noting that ekk' zkk,(q) u kk' for all q E Q, where

fkk' A min zkk' (q) and Ukk' A max zkk'(q), (5.15)
qeQ qEQ

whose computation is discussed in Sec. 5.1.3. This results in the upper bound U where

U = max qTAq+ B
qEQ

A Zk,k, 2Dkk'71kT2k'gkk'Bkkl

B I Zk,k, Dkk' (('rk + r22I)gkk' + hkk') (5.16)

Auk&,)-ff(kk')gkk' UZ -zik kk'

Ik# ekk'

and 'kk' E R414 is defined as the matrix for which p4k(q o /2k') = ' for any
quaternion q. For clarity reasons let u = 14k and v = g2k' then

UiVi - Uj3 - UkVk UVi + ?IjV UtiVk + UkVi Ukj - UjVk
= Uji +Uivi UjV-UiVi- UkVk U VjIk+UkVj Uivj-UkVi

(u, V) UiVk + UkVi UjVk + UkVj UkVk - iVi -UjVj UjVi - tVI (5.17)
L UkVj - Uj~lk 7 11k - kVi ujVi - uivj uTv J

See Appendix C.1.i for derivation and details. Writing q = Qa as a linear combination

of vertices of Q as in Eq. (5.10), the upper bound can be found as

U = max oTQTAQa + B
ER4 =,(5.18)

s.t. aTQTQa = 1, a>O.

Since a C R4 , and we have the constraint a > 0, we can search over all E4 () =15

possible combinations of components of a being zero or nonzero. Thus we solve the
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Figure 5.7: Closest point (green) inside the area implied by a tetrahedra cell of the

tessellation from a query point p (orange, Eq. 5.22).

optimization for U given each possible subset I C {1, 2, 3, 4} of nonzero components

of a, and set

U = B + max UE. (5.19)
IC{1,2,3,4}

For U2 , we use a Lagrange multiplier for the equality constraint in Eq. (5.18) and set the

derivative to 0, yielding a small generalized eigenvalue problem of dimension III < 4,

UT=max{A : ]v > 0, (QTAQ)V v = A (QTQ), v}, (5.20)

where v is a III-dimensional vector, and subscript I denotes the submatrix with rows

and columns selected from -E. The condition that all elements of v are nonnegative

in Eq. (5.20) enforces that a > 0 and thus a corresponds to a solution q that lies in

Q. Note that if v is an eigenvector, so is -v. If no v satisfies v > 0, then we define

UT = -00.

Computing fkk' and ukk' To find the upper bound U in Eq. (5.18), we require the

constants fkk' and Ukk' for each pair of mixture components k, k'. Given their definitions

in Eq. (5.15), we have

Ukk' = 12k + 72k, + 2 TlkT2k' m k(q o A2k'),
T 

Q A(5.21)

ekk' = /Ik + T2k, -
2 T1kT2k' maX(--p1 k)T(q o 2k')-

Since the inner optimization objective only depends on the rotation of p2k' by q, we

can reformulate the optimization as being over the set of 3D vectors v E S2 such that

v = q o p2k' for some q E Q. Thus, finding Ukk, and kk' is equivalent to finding the

closest and furthest unit vectors in 3D to Pik over the set of such vectors v, shown in

Fig. 5.7. To solve this problem, let the vertices of Q be qi, i E {1,..., 4}, and define

the matrix M A [Mi,... m4] E R3x4 where mi A qi o I2k'. The inner optimization in
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Eq. (5.21) can be written as (for Ukk' set A = /lk; for fkk' set p = -pik)

J = max pLTMa
aER4  

(5.22)
s.t. aMTMa=1 a>0.

Showing that Eq. (5.22) is equivalent to solving the inner optimizations of Eq. (5.21) is
quite technical and is deferred to Appendix C.1.5. Again we search over all Z 3  (4) =
14 possible combinations of components of a being zero or nonzero (we do not check the

i = 4 case since in this case the matrix MT below is rank-deficient). We thus solve the

optimization for JT given each subset I C {1,... , 4}, I < 3 of nonzero components,
and set

J max JE. (5.23)
EC{1,2,3,4} s.t. I1113

To solve for J1, we use a Lagrange multiplier for the equality constraint, and set deriva-

tives to 0 to find that

JE r TMI (MfM ) 1 MTp (5.24)

where

1 (MIMI) 1 Mf 1 ;> 0
0- 1 (M ) M < 0 (5.25)

-oo else,

and MT is the matrix constructed from the set of columns in M corresponding to I.
Note that o- is also defined to be o- = -00 if MIM1 is not invertible. After solving for

the value of J via Eq. (5.23), we substitute it back into Eq. (5.21) to obtain ukk' or kk'
as desired.

Convergence Properties

We have now developed all the components necessary to optimize Eq. (5.9) via BB

on S3. Theorem 5.1.1 (proof in Appendix C.1.4) provides a bound on the worst-case

search tree depth N to guarantee BB terminates with rotational precision of e degrees,
along with the overall computational complexity. Note that the complexity of BB is

exponential in N, but since N is logarithmic in E- 2 (by Theorem 5.1.1, Eq. (5.26) and
cos x ~ 1 - X2 for x < 1), the complexity of BB is polynomial in e- 1 . Recall from

Sec. 5.1.3 that -yo for the 600-cell is -yo A cos 36'.

Theorem 5.1.1. Suppose -yo is the initial maximum angle between vertices in the tetra-

hedra tessellation of S3, and let

N A max {0, [log 2 cs )- } . (5.26)

Then at most N refinements are required to achieve an angular tolerance of e on S
and BB has complexity O(e-6).
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M 5.1.4 Gaussian Mixture Translational Alignment

In this section, we reuse notation for simplicity and to highlight parallels between the
translational and rotational alignment problems. We model the density of points in the
two point clouds as Gaussian mixture models (GMMs) with means {pikKi 1, covariances

{Eik}ki1, and weights {rjikIKsi, L: Ki 7rik= 1, for i E {1, 2}, with density

Ki

i(x) = 7rik (x; Pik, Eik) . (5.27)
k=1

If BB over the rotation space returns multiple optimal rotations q*, we solve the trans-
lational alignment problem for each of them. For the remainder of this section, we
fix q* and show how to solve the translational alignment problem for that particular
q* without explicit representation in notation. GMMs can be inferred in a variety of
ways [42,142]. Let R* E SO(3) be the optimal rotation corresponding to a q* recovered
using BB over S3. Then defining

mkki 1 R*p2k - Plk ,

Skk' Elk + R*E 2k,R*T , (5.28)

Zkk' (t) A (t - mkk')S-, (t -- mk)

the translational optimization in Eq. (5.5) becomes:

t =arg max E DkkI f(zkk (t))
tER3  kk' 5.29

where f(z) exp(z), Dkk' - (2k

V'(27r)3 I Skk,

This is again a non-concave maximization, motivating the use of a global approach.

Thus, we develop a second BB procedure on R3 to find the optimal translation.

Note that this section has strong parallels with the rotational alignment section

to make it easier to follow but also to point out parallels in the approaches that can

be exploited in an actual implementation of the algorithms. An implementation of

the previous branch and bound procedure can be modified to solve this problem by

replacing f, Dkk', the covering/subdivision procedure, and the upper/lower bounds

appropriately.

Cover and Refinement of R3

We tessellate the space of translations, R3 with rectangular cells. The initial tessellation

is obtained by enclosing both point clouds with a single rectangular bounding box with

diagonal length Yo. For the refinement step, we choose to subdivide the cell into eight

equal-sized rectangular cells. Thus, the minimum 7yN diagonal of the rectangular cells at
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Figure 5.8: The translational alignment cost function f(z) and its linear upper bound,
valid for z E [Ekk', UkkI (here, ekk' = 1 and Ukk, = 4).

refinement level N possesses a straightforward shrinkage property similar to Eq. (5.13),

7N-1= N. (5.30)
2

Gaussian Mixture Model Bounds

As in the rotational problem, the translational BB algorithm requires lower and upper

bounds on the objective function in Eq. (5.29):

L < max k k, Dkk' f(zkk'(t)) < U. (5.31)
tEQ

For the lower bound L, one can evaluate the objective at any t E Q (e.g. its center).

For the upper bound U, we use a linear upper bound on f(z) (see Fig. 5.8 and

Appendix C.2.1 for details), noting that kk <z kk,(t) ukk' for all q C Q, where

ekk' A min Zkk (t) and Ukk' A max Zkk,(t), (5.32)
tEQ tEQ

whose computation is discussed in Section 5.1.4. This results in the upper bound U,
where

U maxtT At + B Tt+C
tEQ

A A -{ 1k,k, Dkk 1gk kSj,

B A 1 
~,DkgnQmk B k~k, Dkk/gkk1SijMkk1 (5.33)

C A Zkk, Dkk' (hkk' - ig kk1mTSk,mkk')

gkk' = lkkk

hkk' A ukk~f Vkk)etkk~f (ukk)Ukk'1kk'

This is a concave quadratic maximization over a rectangular cell Q. Thus, we obtain

U as the maximum over all local optima in the interior, faces, edges, and vertices of Q.



Sec. 5.1. Global Point Cloud Alignment using Bayesian Nonparametric Mixtures

Computing fkk' and Ukk' Using the form of Zkk,(t) in Eq. (5.28), we have that

fkkI = int At + BTt + C

Ukk/ = maxtT At + BTt + C
tEQ

A -1 Q-1 (5.34)

B kk'

C -~kk SkkI.k'

Because of the concavity of the objective, ukk' can be obtained with the exact same

algorithm as used to solve Eq. (5.33). Namely, kk' can be obtained by checking the 8

vertices of Q, as the minimum of a concave function over a rectangular cell must occur

at one of its vertices.

Convergence Properties

We now have all the components necessary to optimize Eq. (5.29) via BB on R3. As

in the rotational alignment case, we provide a characterization (Theorem 5.1.2, proof

in Appendix C.2.2) of the maximum refinement depth N required for a desired trans-

lational precision e, along with the complexity of the algorithm. Note that while the

complexity of BB is exponential in N, N is logarithmic in e- 1 (Theorem 5.1.2), so BB

has polynomial complexity in e-1.

Theorem 5.1.2. Suppose -yo is the initial diagonal length of the translation cell in R3,
and let

N A max 0, [log 2  } . (5.35)

Then at most N refinements are required to achieve a translational tolerance of e, and

BB has complexity O(E-3).

* 5.1.5 Evaluation and Results

We evaluate BB (both with and without final local refinement [44]) on four datasets [52,
191, 239] compared to three global methods: an FT-based method [163], GoICP [256]
(20% trimming), and GOGMA [37]. To generate the vMF-MMs and GMMs for BB,
we cluster the data with DP-vMF-means [222] and DP-means [142], and fit maximum

likelihood MMs to the clustered data. To account for nonuniform point densities due to

the sensing process, we weight each point's contribution to the MMs by its surface area,
estimated by the disc of radius equal to the fifth nearest neighbor distance. We use

kNN+PCA [167, 261, 262] to extract surface normals. See Sec. 2.8.1 for more details.

To improve the robustness of BB, it is run three times on each problem with scale values

An E {450 ,65, 800} in DP-vMF-means (included in the timing results). The scale A.
for DP-means is manually selected to yield around 50 mixture components.
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Figure 5.9: BB alignment of the full Stanford Bunny. The proposed tessellation ap-
proach ( 3) is compared against axis-angle space tessellation (AA). The proposed ap-
proach's more uniform tessellation leads to faster exploration, faster reduction of the
bound gap, more pruned nodes and roughly 4 x faster runtime.

Using Theorems 5.1.1 and 5.1.2, we terminate rotational BB at N = 11 and trans-
lational BB at N= 10 for a rotational accuracy of 10 and a translational accuracy
of 6, where ~Yo is defined in Eq. (5.30). All timing results include algorithm-specific
preprocessing of the data. We used a 3GHz core i7 CPU and a GeForce GTX 780 GPU.
While clustering via DP-means and DP-vMF-means uses the GPU, we only use parallel
CPU threads for the eight BB bound evaluations after each branch step.

Stanford Bunny [239] Independent of the tessellation strategy, BB perfectly aligns the
Stanford Bunny with a randomly transformed version of itself, as shown in Fig. 5.9.
This perfect alignment is expected for completely overlapping scans with low noise.
The results of aligning two partial scans of the Stanford Bunny with relative viewpoint
difference 450 are shown in Fig. 3.10. For partial scans the algorithm will generally not
3produce a perfect alignment by itself. Hence we run ICP, a local alignment method
starting from the pose obtained via BB. As can be seen, BB's initial alignment is close
enough to allow ICP to converge to a perfect alignment.

We compare the proposed S3 tessellation to the commonly used axis-angle-based
tessellation (AA). The AA-based BB algorithms upper bounds are obtained as the
maximum upper bound of the five Tetrahedra that tessellate a quadratic AA-cell. In
comparison to axis-angle-based BB, the proposed approach leads to a faster reduction
in the bound gap, faster exploration, and a smaller number of active nodes. These
factors combine to reduce the overall necessary number of iterations by 20% as well as
the computation time per iteration by an order of magnitude vs the AA tessellation.
This shows conclusively that the proposed tessellation leads to more efficient BB op-
timization. Note that the AA tessellation starts at 146% unexplored space because it
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Figure 5.10: Alignment of partial scans of the Stanford Bunny with 450 viewpoint
difference. The proposed tessellation approach (S3) is compared against axis-angle

space tessellation (AA). The proposed approach's more uniform tessellation leads to

faster exploration, faster reduction of the
4x faster runtime.
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Figure 5.11: Evaluation of translational and rotational error under additive isotropic

Gaussian noise and outliers. Shaded areas show one standard deviation around the

mean (solid line). The median errors are indicated with dashed lines.

covers the rotation space more than once as discussed in Sec. 5.1.3. In both cases BB

finds the optimal translation within 200 iterations.

Noise and Outliers The robustness to noise and outliers is important for any alignment

method. In Fig. 5.11 we show the angular and rotational BB+ICP alignment error as

a function of noise standard deviation and outlier ratio for the alignment of the full

Stanford Bunny. The synthetic data is created by first adding isotropic Gaussian noise

(with the designated standard deviation) and then sampling random outlier points
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Figure 5.12: Alignment of partial scans of Happy Buddha taken at 240 increments. The
only successful alignment is obtained by BB+ICP.

uniformly inside a sphere with twice the radius of the size of the Stanford Bunny.
Standard deviations and translational errors are reported as a fraction of the diameter
of the original Stanford Bunny point cloud. The evaluation of error statistics over
336 instantiations of the alignment problem, shows the robustness of our method to
unrealistic amounts of corruption (high noise, 60% outliers). Above a noise threshold,
surface normal computation fails leading to high alignment error.

Happy Buddha [52] This dataset consists of 15 scans taken at 24' rotational increments
about the vertical axis of a statue. This dataset is challenging, as the scans contain
few overlapping points, and the surface normal distributions are anisotropic. We per-
form pairwise alignment of consecutive scans, and render the aligned scans together
in one coordinate system (Fig. 5.12). The only successful alignment is produced by
BB+ICP. This shows the advantage of using surface normals for rotational alignment.
Other methods using points (GoICP) or GMMs (GOGMA) have difficulty dealing with
ambiguities due to the "flatness" of the scans.

Office Scan Figure 5.13 demonstrates that BB+ICP finds accurate registrations on
noisy, incomplete, cluttered and irregular point clouds as long as good surface normal
estimates are available. This demonstrates the potential use of BB+ICP for loop closure
detection.

Apartment Dataset [191] This dataset consists of 44 LiDAR scans with an average
overlap of 84%. We pick the Apartment dataset from [191] for evaluation since the
scans are sufficiently dense across the whole dataset to compute surface normals of
sufficient quality.

Figure 5.14 shows the BB+ICP aligned scans of the dataset. Table 5.1 compares
the accuracy and inlier percentages defined by (C)oarse (2m; 100), (M)edium (1m; 50)
and (F)ine (0.5m; 2.50) thresholds for all algorithms. For GoICP, we used 100 scan
points and an accuracy threshold of 0.01. Increasing N or decreasing e by an order of
magnitude lead to unreasonably long run times as also noted previously in [37]. We
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Figure 5.13: Correct alignment of noisy, incomplete, and partially overlapping RGB-D
point clouds of cluttered indoor scenes using BB+ICP. Left shows a desk with monitors
and a gymnastic ball for sitting and right shows a larger pretty cluttered indoor area
with a coffee table, parts of a table and a fridge and parts of the floor. Colors indicate
different scans.

4%

1~

A,

.4

Figure 5.14: Alignment of the apartment dataset [1911 using BB+ICP.
colors indicate distinct LiDAR. scans that were automatically aligned.

The different

used the scale parameter of A, = 1.3m for GMM computations in both GOGMA and
BB. This yields roughly 50 mixture components on average across the dataset. Picking
the scale to small leads to GOGMA being faster but also falling for the Manhattan
World ambiguity.

Man-made environments such as this dataset exhibit Manhattan World symmetry
in their surface normal distributions as explored in Chapter 3. We thus transform the
rotation obtained via rotational BB by all 24 Manhattan World rotations, and search
over all using translational BB. Note that doing this is straightforward in the proposed
decoupled BB approach, as opposed to a joint approach, e.g. GoICP and GOGMA.

Table 5.1 and Fig. 5.15 show that BB with searching over both scale and MW
rotations leads to the best accuracy among all algorithms, with a 3x speedup over
the 2nd best method, GOGMA (which uses a GPU). From the inlier percentages it
is clear that FT and GoICP do not perform well. The CDFs in Fig. 5.15 show that
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Method
Rotation [0] 28.6 26.9 5.52 1.61 3.77 1.36 7.14 5.14 24.2 30.0
Translation [m] 0.48 0.43 0.12 0.04 0.08 0.03 0.22 0.09 0.46 0.65
Inlier % C 79.6 81.8 90.9 95.5 93.2 97.7 97.5 97.5 47.7 29.5
Inlier % M 75.0 81.8 79.6 95.5 86.4 97.7 85.0 97.5 34.1 18.2
Inlier % F 54.6 81.8 36.4 95.5 61.4 97.7 47.5 97.5 13.6 2.27
Time [s] 32.6 50.0 38.4 57.3 140 156 405 675 62.0 470

Table 5.1: Apartment [191] results using BB [*], GOGMA [37], GoICP [256], and

FT [163]. We denote search over rotational scale via \, search over MW ambiguities
with M and local refinement with +. We report rotational (Rot), translational (Tran),
timing, and inlier (Inl) percentages for (C)oarse (2m; 100), (M)edium (1m; 50) and

(F)ine (0.5m; 2.50) alignment.

GoICP -GOGMA - FT -[]I
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Figure 5.15: Cumulative density functions of rotational error, translational error, and

runtime for the alignment of the Apartment dataset. The variants of the proposed BB

algorithm show higher rotational and translational alignment quality and are an order

of magnitude faster than the competing GOGMA algorithm.

Method BBA BBA+ GOGMA GOGMA+ GoICP FT
Rotation [0] 3.92 2.01 19.3 16.5 58.3 5.58
Translation [m] 0.25 0.11 1.45 0.71 0.66 0.68
Inlier % C 96.8 96.8 87.1 90.3 41.9 87.1
Inlier % M 77.4 87.1 54.8 87.1 38.7 80.7
Inlier % F 19.4 67.7 16.1 83.9 6.45 51.6
Time [s] 23.70 28.3 105 164 138 242

Table 5.2: Gazebo Summer [191] results for BB, GOGMA, GoICP, FT. We report
rotational (Rot), translational (Tran), timing, and inlier (Inl) percentages for (C)oarse

(2m; 100), (M)edium (1m; 50) and (F)ine (0.5m; 2.5*) alignment.

1.
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0.

0.

0.

0.

1*4 1*1,\+ 1*1' 1*1"+ 1*1,\ [*][,+ [371 [371+ [256] [163]
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Figure 5.16: Depiction of the BB+ICP alignment of the first 6 LiDAR. scans of the
Gazebo Summer dataset [191]. While details of the alignment could be improved,
the overall large scale alignment is inferred correctly. Different colors indicate distinct
LiDAR scans.

accounting for Manhattan World symmetry (red, green) is important. Ignoring it (blue)
causes scans to be flipped by 900/180', affecting the mean error strongly. Our method's
runtime is spent 80% on preprocessing (scale estimation, DP-vMF-means and DP-means
clustering, and DP-vMF-MM and DP-GMM parameter fitting) and 20% on the actual
BB search.

Gazebo Summer Dataset [191] The dataset contains of 33 scans taken in a mostly un-
structured outdoor setting with trees, bushes and a gazebo. We evaluate the alignment
in the same way as the Apartment dataset. Figure 5.16 shows some alignments of
the point cloud obtained via BB+ICP. The high degree of clutter, noise and outliers
is clearly visible. Despite those difficult conditions, the coarse alignment is correct.
Table 5.2 lists results for the alignment of all scans in the dataset. It is clear that all
algorithms have a harder time aligning the scans. Still BB performs well both in speed
and quality. Specifically BB gets the coarse alignment right in almost all cases whereas
GOGMA fails in 10% more cases. Looking at the alignments this is due to GOGMA
flipping scans on the head (this is also indicated by the high mean rotational error),
whereas BB has no trouble finding the right upward direction due to the strong upward
surface normal cluster from the ground.

E 5.2 Nonparametric Direction-aware 3D Reconstruction

After exploring and demonstrating the advantages of inferring and using a directional
segmentation of the environment for global point cloud alignment in the previous sec-
tion, we now turn to the full nonparametric direction-aware SLAM problem of joint
inference over map, camera trajectory and directional scene segmentation.

While the SLAM problem has received decades of attention [36] it is by definition



a subproblem to semantic or categorical SLAM which adds a component of scene un-
derstanding to the purely geometric reasoning about a world map and the pose of the
perception system. In a first step towards semantic SLAM and perception we explore
the utility of incorporating direction-awareness into the SLAM problem. As explored
and argued in the previous Chapters 3 and 4, directional segmentations capture regu-
larities of the environment that can be leveraged for further reasoning about the scene.
Because of its flexibility we use the Stata Center World assumption as a directional
scene prior. The utility of this assumption is twofold: (1) it directly provides a prior
on the surface normal distribution as shown in Chapter 4 and (2) by the definition of
surface normals it implies that locally surface areas that are in the same segment are
planar to the extend of the concentration of the directional cluster. In other words:
planar surface areas of the same segment lead to concentrated surface normal clusters
whereas curved surface areas lead to less peaked and more uniform surface normal dis-
tributions. This connection between the scene-wide surface normal distribution and the
local surface properties suggests the direction-aware mapping formulation we explore in
this section. Furthermore, we show that the directional clustering of a scene's surface
normals is useful to guide the selection of a diverse set of observations to improve cam-
era pose estimation. Since both mapping and localization use the inferred directional
segmentation, we ascribe direction-awareness to the SLAM system.

In contrast to plane-based categorical SLAM methods [41,129,158,210] the pro-
posed directional-segmentation-approach has the advantage that no planes have to be
extracted explicitly and that non-planar areas are captured by the model implicitly
without having to introduce a special "non-planar" class. Furthermore sampling-based
inference allows soft associations to directions whereas all related work but the EM-
based algorithm of CPA-SLAM [158] make hard assignments to specific planes that
are not revisited [41,129, 210]. Being able to revisit assignments allows refining and
correcting the model under additional observations.

The system described in this section is the first semi-dense nonparametric direction-
aware SLAM system and also the first system to perform joint inference over a Bayesian
nonparametric scene segmentation and the world map using Gibbs-sampling without
precluding real-time operation (see literature review in Sec. 1.1). We demonstrate
experimentally that using the directional Stata Center World segmentation improves
the efficiency of camera pose estimation and leads to higher joint accuracy in mapping
and camera tracking.

N 5.2.1 Joint Directional Segmentation, Localization and Mapping

As alluded to in the introduction, we define direction-aware SLAM as reasoning about
the joint distribution of a world map m, the trajectory of the perception system T and
the directional segmentation z given observations x. Concretely, we choose to represent
the map as a collection of surfels [97, 133, 244]. Surfels are localized planes with position
pi, orientation ni, color 1i (RGB for visualization and gray-scale for camera tracking)
and some radius ri. For notational clarity let si = {pi, ni, Ih, ri } collect all properties of
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Observations {xP, x", Ic}

Surfel Map {pi, ni, Is, ri} Localization {WTc,,}

Maximum Likelihood (Sec 5.2.3)

Segmentation {zi}

Gibbs-sampling (Sec. 5.2.2)

Background Realtime

Figure 5.17: An high-level overview over the direction-aware SLAM model and infer-

ence. Observation acquisition and maximum likelihood camera localization runs in

realtime whereas joint Gibbs-sampling-based inference over map and directional seg-

mentation runs in the background.

surfel i. The world is observed via a RGB-D camera at poses {'T,} where j indexes

the pose at the reception of the jth camera frame. From the depth image, we compute

point observations x? and surface normal observations x'. The RGB image gives direct

access to surface color information Ic. We collect all observations of the jth frame

in the variable xj = {x", xv, I,}. The directional Stata Center World segmentation

is associated to surfels via labels {zi}. In this setup, the directional SLAM problem

becomes inference over the posterior distribution:

p ({si}, {zi}, {Tc,3 } A {x,}) "direction-aware SLAM". (5.36)

where the sets {} are over all surfels for si and zi and over all frames for WT,, and

xj. We perform inference on this nonparametric direction-aware SLAM posterior by

iterating inference about the three subproblems of mapping, localization and directional

segmentation.

The direction-aware mapping posterior has the form:

p ({sj} I {zi}, {TC}, {x}) "direction-aware mapping" . (5.37)

It incorporates the directional segmentation into mapping by encapsulating the assump-

tion that neighboring surfels in the same segment should be part of the same plane.

As described in Sec. 5.2.1, the distribution capturing this assumption couples surface

normals and point locations and thus the global directional segmentation to the local

3D reconstruction.

For direction-aware localization we extend the iterative closest point (ICP) algo-

rithm to use the directional segmentation of the surfel map as indicated in the posterior

P ({WTc} {z}, {s}, {x}) "direction-aware localization" . (5.38)
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Figure 5.18: Percentage of inlier scene-points as described by a randomly sampled set
of planes as a function of the number of planes and as a function of the percentage of
scene points used to compute those planes. The plots summarize statistics over all of

the scenes in the NYU v2 dataset [173].

In Sec. 5.2.3 we argue that the selection of a directionally-diverse set of plane obser-

vations via the directional segmentation is expected to improve pose estimation before
demonstrating it in practice in Sec. 5.2.5.

The nonparametric directional segmentation captured in the following posterior dis-

tribution follows the Stata Center World assumption:

p ({zi} , I{Teg}, {z}) "directional segmentation". (5.39)

As described in detail in Sec. 5.2.1, we cast reasoning about the directional segmentation

as inference about a Dirichlet process von-Mises-Fisher mixture model given surface

normal observations similar to Sec. 4.4.3.
While it would be possible to perform fully joint inference using MCMC sampling-

based methods (see Sec. 2.2), this is not practical when realtime operation is desired.

To accommodate operation at camera frame-rate the inference is split into two main

parts: (1) sampling-based joined inference on map and segmentation which runs in

the background and (2) realtime camera pose estimation. A high-level overview over

the parts involved in the nonparametric direction-aware SLAM system is depicted in

Fig. 5.17.
With this introduction of the approach and the three dominant reasoning tasks, we

now turn to the details of the world representation and the models in the following

subsections before we describe the inference for segmentation and map in Sec. 5.2.2 and

camera tracking in Sec. 5.2.3.
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Figure 5.19: We maintain a nearest neighbor graph (grey lines) over surfel locations
(black dots). Surfel orientations are depicted in green. The graph is used to the define
a Markov random field over labels of the directional segmentation to yield spatially
smooth labeling. A conditional random field over the same graph encourages local
planarity between neighboring surfels in the same directional segment.

World Representation

As already mentioned previously, we describe the environment as a collection of surfels
with locations pi, surface orientations ni, grey-scale intensity i and radius ri. However,
instead of aiming to represent all surfaces in the environment densely, as in related
work [97, 133, 244], we opt to sample the surfaces of the environment sparsely with
a bias towards high intensity gradient areas for three reasons: (1) a sparse sampling
of environment surface captures the majority of surfaces and scene structure, (2) a
bias towards high intensity gradient areas captures visually salient regions for camera
tracking [67] and (3) sparse sampling facilitates reasoning about the proposed joint map
and directional segmentation on current hardware. To substantiate the first point we
show the percentage of inlier scene-points to a randomly sampled set of planes as a
function of the number of planes in Fig. 5.18 across all 1449 scenes of the NYU v2
dataset [173]. It can be observed that as little as 50 planes are enough to describe
an average of 60% of the scene. To compute the plane parameters around 6% of the
scene points had to be used in the current approach. If we had a sensor that allowed to
directly measure distance and surface normal only 0.002% of image pixels would have
had to be examined. This motivates the use of a sparse set of surfels to describe the
surfaces of an environment and hints at the potential for efficient algorithm operation.

The directional segmentation as well as mapping are defined via probabilistic models
that take into account the local neighborhood of each surfel. Therefore, as depicted in
Fig. 5.19, we maintain a nearest neighborhood graph Q for the surfel map for efficient
algorithm operation. The initial observed positions of surfels is used for the construc-
tion of Q so as to not mix posterior inference over surfel locations and local nearest
neighbor structure. This can be understood as conditioning all inference on the nearest
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neighborhood graph of surfels. Further implementation details of online graph con-
struction and maintenance are not important for the model and inference description
and are left to Sec. 5.2.4.

Stata Center World Directional Segmentation

Under the Stata Center World model we make the assumption that the surface normal
distribution of surfels has characteristic, low-entropy patterns (see Chapter 4). Similar
to Sec. 4.4.3, we capture the notion of the Stata Center World model, that the surfel
surface normal distribution consists of some variable, unknown number of clusters by
a Dirichlet process von-Mises-Fisher mixture model. Following the proposal of [182],
we impose spatial smoothness of the Stata Center World segmentation by assuming a
Markov random field (MRF) over the segmentation z that encourages uniform labeling
inside a neighborhood Ni defined by the nearest neighbor graph g.

From a generative standpoint, this model first samples a countably infinite set of
cluster weights wk, von-Mises-Fisher means Pk, and concentrations Tk from a Dirichlet
process with concentration parameter a and base measure Go:

{Wk, Ik, Tk}k'= 1 ~ DP(a, Go) (5.40)

We utilize the conjugate prior for the von-Mises-Fisher distribution (see Sec. 2.6.3) to
define the base measure. Second, given the cluster weights Wk and the local neighbor-
hood Ni, a label zi E {1, ... , oo} is sampled to assign each surfel to a von-Mises-Fisher
distribution zi:

zi ~ MRFZ (zi, {za}j xi; A) Cat ({wk}k'i) (5.41)

The MRF smoothness component in practice helps speed up inference and leads to
more uniform segmentations in the face of noise. It takes the form:

MRFz (zi, {zJ} EN; A) = exp (A EEN. zi=z - A INi , (5.42)

where A is the weight of the MRF contribution. As described in Sec. 5.2.2, we use the
Chinese restaurant process (CRP) representation (see Sec. 2.4) to facilitate posterior
inference.

Direction-aware Mapping

Following the Stata Center World assumption map surface normals are von-Mises-Fisher
distributed according to the parameters of the assigned (via zi) directional cluster. Con-
ditioned on the surface direction and the directional segmentation we utilize a Markov
random field (MRF) over neighboring surfels to express a local planarity assumption
over points in the same directional segment. In terms of probability distributions we
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Figure 5.20: Illustration of the point-to-plane cost function IriT(pj - Pi) 112 for a surfel
at location pi with orientation ni and a point p (left). A probabilistic interpretation of
this cost function is a Gaussian over the out-of-plane deviation of a point pj (right).

therefore assume the following factorization of the joint distribution over the surfel-
based map:

fp(pi, ni I pl , nv,, z) oc J7p(ni I Pzi z, zi)ql (Pi, Pus, ni, nX,, zi, zN) (5.43)

- 11 vMF(ni; PZi r) 171 (A(nipi; nip, op) (njp,;nJpj, , 1 )) "i (5.44)
JEN1

where 12,i=Z. is 1 only if zi = zj and 0 otherwise. The set Ni contains the IDs of
the neighboring surfels to surfel i as defined by the nearest neighbor graph 9. The
MRF term that encapsulates local planarity stems from the well known point-to-plane
distance function used in implementations of ICP [207]. This can be seen by analyzing
the negative log likelihood of the MRF term for surfel i:

-log 'l = C + 1 (JJn[(pj -pi) + \i\ + J\nJ'(pi -p3 )jJ\) . (5.45)

While the point-to-plane cost function penalizes the out-of-plane deviation of point

pj, the MRF potential employed herein is a symmetriced out-of-plane Gaussian which
makes the assumption that the out-of-plane deviation of the point p3 is Gaussian with
variance a 1. The geometry of both is illustrated in Fig. 5.20. The variance 2p can be
small since the MRF assumes the symmetriced out-of-plane Gaussian distribution only
if two surfels are in the same segment and thus likely to be in the same plane.

Surfel locations and orientations are observed via the camera located at pose wT,.
This pose is the maximum likelihood estimate under the observed RGB-D frame as
described in Sec. 5.2.3. Associations between observations located at pixels (u, v) in
the camera frame and surfels i comprising the map are established by transforming
surfels into the camera frame and then projecting them under a given camera model
7r(-) as is commonly done [177]:

(u, v) = lr(cTwpi). ((5.46)
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In a second step of occlusion reasoning, we prune associations if the probability of the
associated surfel is too low under the observation distribution marginalized over the
camera pose uncertainty as described in Sec. 5.2.3. Capturing the camera-frames at
which observations of surfel i were taken in the set Oi, we assume an iid Gaussian
observation model for locations {x }jeos:

p ({x4} 1 Pi) = 11 .A(x ; ciTpi, E,,j). (5.47)
ieoi

where we have used the inferred camera poses {c'JTw}Jeoi at the camera frames the
observations were taken. The observation covariances Epj are computed according to
a realistic depth camera noise model [179] and marginalizing over the camera pose
distribution as outlined in Sec. 5.2.3.

The surfel orientation observations {x } so, are assumed to be iid von-Mises-Fisher
distributed:

p (I I oi I ni; ro) = vMF(x'; c'iRni, ro) , (5.48)
jeoi

where we have used the inferred camera rotations {c'iRw}jeos. We use the fast yet
robust unconstrained scatter-matrix approach to surface normal extraction as outlined
in Sec. 2.8. The effect of depth sensor noise on the surface normal estimation uncer-
tainty is hard to analyze analytically. While we simply use a conservative observation
concentration of ro = 100, a more detailed model could be obtained with a controlled
experiment similar to [179]. Additionally, because it is unclear how to marginalize over
the rotation uncertainty, we keep ro fixed independent of the camera pose distribution.
A concentration of ro = 100 makes the realistic assumption that 99% of the observed
surface normals lie within a solid angle of about 180 around the true surface normal

(see Sec. 2.6.3).

U 5.2.2 Sampling-based Inference over Map and Directional Segmentation

Having outlined the joint mapping and directional segmentation model in the previous
section, we now turn to describing how to perform posterior inference on the model
given observations {xP, xn, Ic} from camera inferred camera poses 'Tc,j. As described
in Sec. 5.2.1, inference of the map and of the directional segmentation conditions on
the camera pose estimation which is explained in the next section.

Because the directional segmentation involves a Bayesian nonparametric Dirichlet
process prior, inference can be performed using either MCMC-based techniques or vari-
ational inference (see Sec. 2.4). Here we choose to rely on Gibbs sampling, which in
the limit of sampling guarantees samples from the true posterior distribution and al-
lows the approximate computation of any expectation over the data such as the mean,
uncertainty, or probabilities (see Sec. 2.2.2).
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As outlined in Algorithm 16 the Gibbs sampler iterates sampling from the different
conditional distributions of each random variable belonging to directional segmenta-
tion and surfel map. In the following we provide details on each of the conditional
distributions and give guidance as to how to sample from them before detailing which
expectations are computed from the samples to inform camera tracking.

Gibbs-sampling Conditionals

1: while more samples desired do
2: Update set of surfels, neighborhoods, and surfel observations
3: Sample surface normals ni - p(ni I pi, pN, Pzi , zi, f x}jEo) (Eq. (5.58))
4: Sample directional segmentation zi ~ p(zi I nit, T; a) (Eq. (5.59))
5: Sample directional clusters Pk, rk ~ p(I, Tk- I n, z, po, a, b) (Eq. (5.62))
6: Sample surfel locations pi ~ p(pi I ni, pNi , zi, zNv) (Eq. (5.69))
7: Update maximum likelihood estimates ii and hi for camera tracking
8: Update other statistics such as covariance estimates and entropy
9: end while

Algorithm 16: Gibbs-sampling algorithm for joint inference over surfel-based map and
directional segmentation.

Sampling Normals ni Via Bayes' law, the conditional distribution of surfel direction ni
is proportional to the joint distribution over the position and surface normal of surfel i
(Eq. (5.43)) times the observation model (Eq. (5.48)):

p(ni I{xJ}oi, z, p, T) Oc p(ni, pi I pzi, rzi, pNi, Z)p {xn}oi I ni, To)

oc vMF(ni; /zi, Tzi) 1 Ar(npi; nipj, Oy2)llzi=zj fi vMF(xn, ,j R.ni, To).

iENi jEOi
(5.49)

The first factor stems from the directional Stata Center World mixture model, the
second from the MRF capturing planarity of neighboring points, and the third from

the surface normal observation model. At first glance it is not obvious how to sample

from this distribution efficiently because of the out-of-plane Gaussian distributions:

Hj A p(n i; nipj, o 1 ) Z=". (5.50)

By analyzing this distribution we derive a close approximation that has the form of a

vMF distribution which in turn makes the posterior over surface normals von-Mises-

Fisher distributed and straightforward and efficient to sample.

The Gaussian distribution on out-of-plane deviations of neighboring points can be
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Figure 5.21: Comparison of the true Bingham distribution around one of its two modes
and the approximation with a von-Mises-Fisher distributions for different standard
deviations of the Bingham distribution (in log scale). The distributions shown are
evaluated on a great circle around the sphere leading through both antipodal modes.
Note that for small standard deviations, both distributions are essentially uniform over
the sphere as can be seen from the scale of the plot. For larger standard deviations,
the approximation is close to the true distribution around the mode.

re-arranged as

-1jc or(nip;nip j,4 )zi oc exp } _ zEz T l (pj - p,)| 1

2c exp z2L- 'L(pi - Pj )(Pi - p)T ni)

=exp (- nTSijni)

(5.51)

(5.52)

(5.53)

This distribution has the form of a Bingham distribution [23]. To keep in the realm of
the von-Mises-Fisher distribution, we approximate this Bingham with a vMF distribu-
tion using the eigen decomposition of Si3 with eigenvalues el < e2 < e3 and associated
eigenvectors qi, q2, q3:

(5.54)exp(- jnSi-n-I) e exp 2e2e2 qn oc vMF(ni; qi, 2e2e)

The Bingham can model more complex distributions than the vMF and it would
be interesting to extend this model and the inference to use Bingham instead of vMF
distributions. However, the vMF is sufficiently expressive to capture flat and uniformly
round surface geometries. The approximation is very close to the Bingham for planar
surfaces with a peaked surface normal distribution. At corners the Bingham can capture
the resulting anisotropy in the surface normal distribution while the isotropic vMF
distribution has to approximate the true density with a smaller concentration. In
practice, since Sij incorporates only neighbors in the same directional segment (which
are therefore likely to lie roughly in the same plane), we find the approximation to work
well. Figure 5.21 shows the approximation for several realistic standard deviations of
the Bingham distribution. The derivation can be found in Appendix D.0.3.

180 CHAPTER 5. NONPARAMETRIC DIRECTIONAL PERCEPTION SYSTEMS



Sec. 5.2. Nonparametric Direction-aware 3D Reconstruction

Under this approximation the posterior over surface normal ni is indeed von-Mises-
Fisher:

p(ni I{x7}o,, z, IT, -Fo) oc p ({xJ}o I ni, To) p(ni I pi, pm, pzi7, Tzi) (5.55)

nc exp (z"Rnj -oj + n rT - inTSijni) (5.56)

- exp n T(ZEO Rc,jxTo,j + pz rz + 212 q, (5.57)

oc vMF(ni; [1 , |IL?2) where V = Z Rcjxg1oj + pziTzi + 2 ege2 q. (5.58)

An efficient method for sampling from a von-Mises-Fisher distribution is outlined in
Sec. 2.6.3.

Sampling Directional Segmentation Labels zi We use the Chinese restaurant process
(CRP) representation of the Dirichlet process since it lends itself to straightforward
sampling-based inference. While other approaches have been proposed such as the
sub-cluster split/merge algorithm [42, 224] we find that the CRP inference converges
sufficiently fast when combined with the MRF for label smoothness. The posterior for
the directional segmentation label of surfel i is:

f NvMF(ni; Pk, K) fork < K
I| 7r, {z,}jcpWT) c MRFz(iA) ap(ni; Go) for k K + 1 (5.59)

MRFz(Ni, A) oc exp (Az i lz.--z - AjINjI) , (5.60)

where Nk is the number of surfels associated to cluster k excepting the ith surfel, a
is the Dirichlet process concentration and A is the weight of the MRF contribution.
The marginal distribution of surface normal ni under the prior on the vMF component
distribution, p(ni; Go), can be derived in closed form for the vMF prior parameters
a = 1 and 0 < b < 1 in D = 3 dimensions (see Sec. 2.6.3):

bT ex p (bTVpI o )
p(ni; [o, a = 1, b) = .T tan (.) sinh() (5.61)

2-7r2 tan ()smnh(r)

The parameters of the prior are the directional mode po and a and b where a can be
understood as pseudo-counts and b as the concentration mode. In practice zi is in
{1,.. . , K} (and not infinite as the DP prior formulation might suggest), thus making
it possible to compute the unnormalized probability density value of Eq. 5.59 for each
k E {1, ... , K + 1}. After normalization such that the values sum to 1, the inversion
method is used to sample from this categorical distribution.

Sampling von-Mises-Fisher Mixture Component Parameters pk and Tk Given sampled

normals ni assigned to von-Mises-Fisher clusters via labels zi the posterior over the kth

vMF mixture component mode Pk and concentration Tk is:

p( pk,Tk | n, z; po,b, a = 1) cxp(yk, Tk; po, b, a = 1) 1 p(ni I Pk, Tk) (5.62)
i .Ik
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where 'k collects all surfels associated to cluster k. The updated parameters &k and bk
are computed as

ak =a+I kI, k =III2 , = =[t , =Z ni + bo. (5.64)
iEIk

See Sec. 2.6.3 for more details.

Sampling Locations pi Conditioned on point observations {xP}jGOs, and a surfel's
neighborhood Ni, its position is distributed as:

p I {x }, ni, pN,, z) oc 17 Ti 171 p(x 1 pi) (5.65)
jeNj jEo1

oc 1l (K (nTpi; n pj, o1)K(nTpj; nipj, oi)) zizj 17 K (xP; C'jTwpi, Ep,j), (5.66)
jEni jeoi

where the observation model is Gaussian with a observation dependent covariance EJ,
as described in Sec. 5.2.3. The symmetriced out-of-plane Gaussian distribution in the
MRF potential may be rearranged as

Af(nfpi; npj, o21) AF(nTpj; n , aT ) oc exp ( p (ninT + njnit)pi (5.67)

+ pT(nin[ + njn )p (5.68)

to reveal a degenerate Gaussian. This can be handled in information form with infor-
mation matrix Iij = -7 (nin + njnT) and the scaled mean Iijpj. Since the individual

distributions are all Gaussian the posterior over surfel location pi is also Gaussian [34]
with the following mean and variance:

p(pi I {xf}, ni,pi, z) oc f(p; Aj, i) (5.69)

tj = (zJO Rc,jE-jRw + ZJ"JRlz+=z lij (5.70)

Ai = iZ JEEOi R ,j- + EjEn lzi=zjijPj) (5.71)

Note that there is always at least one observation associated with a point ((OI >
0) and therefore the inversion to compute the variance is always determined. For
efficiency reasons we keep track of the sums over observations and do not keep around
all individual observations. The downside to this approach is that the pose from which
observations were taken are baked into the sums and cannot be updated given later
pose corrections. Since we do not currently re-estimate older camera poses, this is not
a problem.
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Expectations and Estimates Computed from Samples

In the limit of sampling from the Markov chain constructed via the Gibbs-sampler

described in the first part of this section, samples are by construction guaranteed to

be drawn from the true joint posterior distribution over surfel map and directional

segmentation. In the Bayesian approach these samples are used to perform Monte

Carlo integration of arbitrary expectations of the random variables (see Sec. 2.2). In

the limit Monte Carlo integration converges to the true expectation via the law of large

numbers:

N

EX [f() j f (x)p(x) dx = lim f ( i) where i ~ p(x) . (5.72)
X N-+oo>

While in practice we only have a finit amount of samples that are only approximately

drawn from the true distribution since we sample only for a finite amount of time, we

can still compute useful approximate expectations from them. Intuitively, since in this

application most marginal distributions p(pi) or p(ni) are strongly concentrated about

a single mode, the estimation converges quite quickly. In our experiments in the order

of ten samples were sufficient to get usable estimates for real-time camera tracking as

described in Sec. 5.2.3.

Surfel Location pi Given a set of samples {Pj}s, from the distribution of surfel locations

pi, we keep track of the sufficient statistics of a Gaussian:

.~~~~~~ _Slp gg p EjCSi p'CpT. (5.73)

This allows the estimation of mean and variance of the surfel location:

pi=E,pi) ~N T ,~ i = Var (pi) ~ g p,-pii 5.4

Given the first two moments of the underlying true distribution of pi, the maximum

entropy distribution is Gaussian with those moments. Therefore, the entropy computed

from these estimates is an upper bound on the true entropy of the point distribution:

H(pi) < 1 log(27re) + . log Ipi |. (5.75)

This computable bound on entropy serves as a scalar indicator of uncertainty in the

estimate of the surfel location. It is crucial to realize that samples from the distribu-

tion of pi are not samples from a Gaussian distribution, even though the conditional

distribution in the Gibbs sampler is.

For camera pose estimation as outlined in Sec. 5.2.3, the estimated means and

covariances are used once the entropy of pi has converged. Before that we use the

initial point location and uncertainty. Since these estimates converge within a few

frames, the procedure is similar to the delayed addition of points to the map commonly

employed in related 3D reconstruction systems.
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Surfel Orientation ni From the surfel orientation samples {7}Eo we accumulate the
following statistics:

Isil ,h4 = EiESi .(5.76)

This allows us to compute the mode of a von-Mises-Fisher distribution as the surface
normal estimate to be used for camera tracking purposes:

Ai = [hil . (5.77)

We do not currently use the fact that these statistics are sufficient to estimate the vMF
concentration (see Sec. 2.6.3) and the entropy of the surfel orientation.

Surfel Segment Label zi To compute the most likely directional segment of surfel i
we would ideally keep a count of the number of times the surfel is assigned to each
directional cluster via label zi. Since the number of clusters keeps growing and we aim
for this estimation to be efficient for large numbers of surfels, we only keep track of the
K= 3 most likely cluster assignments incrementally. The most likely surfel segment is
used by the camera tracker to guide measurement selection as described in Sec. 5.2.3.

Surfel Intensity Value i Another property that we estimate using surfel position sam-
ples is the gray-scale and RGB intensity of the surfel. Given camera poses the expected
surfel intensity is

Ii = Ep, [Ic(7t(ciTWpi))] ~ I T Ejs, Ic(7r (c'jTw )) (5.78)

In practice we collect the sum over observed intensity values for the current sample

cp across all frames that observed pi to estimate the intensity. Note that the common
approach of computing the average over the intensity of the most likely surfel location

(as opposed to the sample locations) does not capture the inherent uncertainty of the
point location. In fact using the surfels, we could compute the variance of the surfel
intensity as implied by uncertainty in its location.

* 5.2.3 Direction-aware Camera Pose Estimation

After having explained Gibbs-sampling inference for the joint distribution over map
and directional segmentation, and how to compute estimates for surfel locations, ori-
entations and segment labels, we now turn to realtime localization. Note that while we
use the familiar notation for surfel properties, in practice sample-based estimates of the
quantities are used. These are computed as described in the previous section.

For a given association A between observations {xP, Ic} and surfels the posterior
over the camera pose 'Tc under the proposed model is proportional to the likelihood of
point observations xP and photometric intensities in the form of the current gray-scale
image I, as:

p(WTc {sI}, {x , I}) oc p({XP, Ic} I WTc, {s}) (5.79)

= p({xP} I 'Tc, {pi, ni})p({Ic} I 'Tc, {Ii, pi}) (5.80)

= H JigAN(ni Tcx ; n[Pi, o ) A(Ic(7r(Tc-pi)); I, cr)AI , (5.81)
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where 7r(.) is the camera model projection function from 3D point in camera coordi-
nates to the image space. The form of this camera pose posterior encapsulates the
assumption that the point-to-plane deviations and the photometric errors are Gaussian
distributed conditioned on the camera transformation 'Tc. The parameter AI weighs
the contribution of the photometric with respect to the geometric term.

In general the posterior in Eq. (5.79) might be multi-modal and hard to characterize
fully. Any global localization scheme would essentially seek to explore all modes in
order to detect what is commonly called loop closure. We will use the iterative closest
point (ICP) algorithm [207] to locally find the most likely camera pose starting from a
previous pose. ICP alternates between updating the associations A between map and
observations and updating the camera pose. The associations are obtained by rendering
the surfel map from the current camera pose estimate [177]. ICP can be understood
as performing alternating joint optimization over data association and camera pose.
The success of this local camera tracking method shows that the posterior distribution
generally does have a clear mode close to the mode characterized by the previous frame.

For each observed RGBD frame we run the iterative closest point algorithm to find
a local optimum of the camera pose as well as data association between the observations
and the global map surfels. The optimization of the camera pose given data association
amounts to maximizing the negative log likelihood of the camera pose:

'Tc* = arg min fp2pi(WTc) + Aifphoto(wTc) (5.82)
wTcESE(3)

This cost function is the commonly used combined point-to-plane (p2pl) and photo-
metric (photo) cost function [250]. Both cost functions f(.) can be formulated as sums
over squared error terms.

One strategy to derive the maximum likelihood camera pose estimate is to Taylor-
expand the error terms around the current transformation estimate:

) 

= S le(T)|| = ( ei(T) + -ei(TExp(w))w12 = flJW -b2, (5.83)
iEA icA

where we have collected the individual derivatives and error terms into the rows of J and
b respectively. The variable w E SC(3) is a small perturbation of the transformation in
the tangent space to SE(3) at the current estimate of the transformation T. Specifically,
row i in J and b have the values:

Ji = -e 2 (TExp(w)), b = -e(T). (5.84)

Then the least-squares solution for the (small) motion w along the manifold SE(3) is

w = (JTJ)-1JTb. - (5.85)

An efficient implementation will exploit that jTj E R6x6 and JTb c R6 can be com-
puted by accumulating the contributions of the individual error terms as

jTj 5jTj%, j Tb T 2 (.6
i i , Jb Jbi (5.86)

iE A ic-A
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The contributions of the different cost functions are weighted according to different
weights (here AI) and accumulated into a single jTJ and JTb to solve for the overall
most likely pose change w via Eq. (5.85). The pose is updated by taking a w step in
the tangent space of SE(3) and mapping back onto SE(3) via the exponential map (see
Sec. 2.7.2):

Tt+1 = ExpTt(w) = TtExp(w). (5.87)

In the following we give the error functions and derivatives for the different cost
function terms.

Point-to-Plane Alignment Contribution The point-to-plane cost function penalizes the
out of plane deviation of an observed point 'Tex'. The surfel is located at pi and has
orientation ni:

fp2pl = JnrT(wTcxi - P) 112 (5.88)
iA 0p2pl,,,

_ PT + nT I (5.89)
2 n('Tc P) + w (WTcExp(w)x)i (5.89)

iE p2pliz

Following the aforementioned strategy we can derive the rows of J and b as:

Ji = -[xp1 (EXP]TCRe cn n) a 1 (xp x (cRn) cRwni) (5.90)

bi = 2 lnT(Tcx - i). (5.91)

See Appendix D.0.4 for the full derivation.

Photometric Alignment Contribution The photometric error is the difference between
the surfel intensity Is at the surfel location pi in world coordinates and its current
observed intensity I. The current estimate of the camera pose wTc is used to transform
the point into the camera frame before projecting it into the image plane using the
camera projection function ir(.).

fphoto 13 111c(w(cTwpi)) -Ii (5.92)
ieA 0

1 1,, +ViO r(x)(wTcExp(w))-IwI 111 (5.93)Ic +Vc I|2 . (.93)
iEA IxOA

Again, the rows of b can be read of directly whereas the derivation of the rows of J is

more involved and left to Appendix D.0.5:

1 0 r(p) 1

Ji=-Ie [T (p, - wtc)], -I) (5.94)
eI

b = (I - Ic).
aI
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The image gradient VI, is computed numerically using convolution. The derivative of
the camera projection under the pinhole camera model is:

Pr ) . . (5.96)8p0 fV -_fPZ PZ

Note that more complicated camera models with distortion can also be utilized by using
the appropriate projection function.

Uncertainty of the ICP Transformation Estimate As introduced in this section, ICP seeks
to maximize the negative log likelihood of the data under the pose of the camera. As
shown in Eq. (5.85) the maximum likelihood estimator is equivalent to the least squares
estimate w = (JTJ)-JTb. The Fisher information matrix of the estimator is JTJ, as

previously noted by Kerl et al. [135]. The Cramer-Rao bound [51] then states that the
actual variance of the estimate is lower-bound by the inverse of the Fisher information
matrix:

Var (w) > (JTj)-l 2ICP. (5.97)

This means that independent of the pose estimate, purely due to the observe data, the
variance of the estimate w can never decrease below (jTj)l. Ignoring higher-order
moments, we may understand w as distributed according to a Gaussian with mean

(JTJ)-lJTb and variance of at least (jTj)-. This means the entropy of the estimate
can be lower-bound via

H(w) > H(A((JTJ)-JT b, (jTj)-l) (5.98)

> 3 log(27re) - } log (I JTJ) . (5.99)

The task of the perception system is then to improve the lower-bound on the true
variance, and entropy to enable more certain estimates (even if the estimate might not
actually be more certain). To save computational resources, one would like to select
the smallest set of observations to minimize the entropy lower-bound. Since this is a
hard problem to solve exactly, most approaches rely on greedy strategies of sequentially
picking the next observation J that minimizes the conditional entropy given the set of
already chosen observations JN. The conditional entropy of a set of data comprised in

JN and a new Ji is:

H(Ji | JN) H(JN+i) - H(JN) log (IJT+iNi ) -+ 1log (I j N) | (5.100)

= log ( Njlog ) (5.101)

-- 'log 1 J ( J) JT . (5.102)
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2 translation 1 translation fully constrained
1 rotation unconstrained unconstrained

Figure 5.22: Intuition about constraints on the ICP cost function depending on the

geometry of the map.

Note that Ji is a column vector. An efficient incremental technique for computing the

inverse of E jTJ= C after adding J Ji = D was described by Miller [166]:

(C + D)- = C-- 1r( C-DC-- . (5.103)

Even the greedy approach is still computationally expensive since it requires the evalu-

ation of all conditional entropies for each next data point choice. Instead we choose to

randomly select a set of planes with diverse directional distribution and strong texture

gradients as outlined next.

Direction-aware ICP Here we analyze the point-to-plane cost function for ICP given in

Eq. (5.88) to motivate the use of direction-aware ICP. As depicted in Fig. 5.22, if the

map consists of just a single plane, there are three unconstrained degrees of freedom

in the point-to-plane cost function: rotation about the surface normal direction, and

in-plane translation. Adding a second plane with non-negligible orientation difference

constrains the solution up to one degree of freedom in translation along the direction

of the plane intersection. Once the map consists of at least three planes with different

orientation the point-to-plane cost function is fully constrained. Intuitively, this suggest

that choosing a diverse set of orientations among the planes used for ICP leads to a

well constrained local optimum and hence camera tracking.

We utilize the directional segmentation of the map under the Stata Center World

model to guide the plane measurement selection for ICP. Instead of picking plane ob-

servations uniformly from the depth image (either all or at random), we pick plane

observations uniformly across the different observable directional segments. Addition-

ally, we sort the surfels in each directional segment by their image gradient strength to

bias towards visually distinct surfels which are expected to help photometric alignment.

From an uncertainty standpoint the intuition is that to reduce uncertainty in all

six pose parameters, we would like to add measurements such that the eigenvalues
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of the information matrix jTJ are uniformly increased. One simple (yet suboptimal)
strategy to achieve this is to add a diverse set of JTJ with large magnitude to the
information matrix. Due to the strong dependence of the J of the point-to-plane
cost function on the surface normal orientation (see Eq. (5.90)) choosing a directionally
diverse set of surfel observations contributes more to decrease the uncertainty uniformly
than choosing surfels with less diversity. For example, if only surfels with one or two
distinct directions are used the information matrix of the point-to-plane cost function
is singular. This is because one or two eigenvalues of the translation component remain
0: (JT J)trans = NnnT is rank one and hence has two zero eigenvalues and (JT J)trans =

Nanlanfln + Nbnrbn for two different directions na and nb is rank two and thus has one

zero eigenvalue.

For the photometric contribution to the Fisher information matrix, while there

certainly is a dependence on the orientation of the image gradient, a simpler dependency

is on the norm of the image gradient. Since it is computationally expensive to perform

directional analysis of the image gradient statistics each frame, we instead simply utilize

the image gradient norm by sorting all putative surfels in a directional segment by

the image gradient norm. High gradients contribute more information to the Fisher

information matrix as may be verified in Eq. (5.94). We observe that this combined

information driven surfel observation selection strategy yields accurate and efficient

camera tracking as described in Sec. 5.2.5.

Our variant of ICP, outlined in Algorithm 17, incrementally adds planes to the cost

function until low enough uncertainty is reached. Planes are chosen in a round-robin

style from each of the Stata Center World segments in order of decreasing surfel tex-

ture gradient strength. We only update the entropy every K (the number of currently

instantiated DP-vMF clusters) new data points to determine convergence of ICP. The

second criteria used is a threshold on the smallest eigenvalue of the Fisher informa-

tion matrix. Since the inverse of the Fisher information matrix lower-bounds the true

variance of the estimator, this criterion enforces that the largest best-case variance is

below some threshold. We find that this second criterion is effective in ensuring efficient

yet high quality camera tracking. Similar to the approach by Dellaert et al. [58], the

proposed ICP variant selectively integrates informative observations. As in [58] this

decreases the number of necessary observations in practice and thus speeds up camera
tracking.

Uncertainty Propagation into Observation Uncertainty The inverse of the Fisher infor-

mation matrix is only a lower bound on the actual variance on the camera pose. We

nevertheless propagate this uncertainty into the measurement uncertainty. Incorporat-

ing only the best-case uncertainty will lead to overconfident inference, but it is better

than not propagating uncertainty and thus assuming full certainty.

The observation of surfel location pi in the camera coordinate system via the point
x, is affected by two noise sources: (1) the noise of the sensing process captured by
Gaussian noise with variance Eoj computed according to a realistic depth camera model

and (2) uncertainty E eT, in the camera pose estimate 'Tc. Due to the formulation of
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Obtain list of observable surfels by project all surfels
while ICP not converged do

k = 0
while uncertainty too large do

Pick surfel with the next lower gradient norm
if plane passes occlusion reasoning then

Add to ICP jTJ and JTb
Update entropy

end if
k = (k + 1)%K

end while
Compute transformation update

end while

into current camera view

from segment k

Algorithm 17: Direction-aware incremental ICP. Surfels are added to the ICP estimator
incrementally until a threshold on the uncertainty is reached. The selection of surfels is
performed uniformly across the different directional segments and biased towards high
image gradient surfels.

ICP the uncertainty in the pose estimate is expressed as a Gaussian in the tangent
space to SE(3) at 'Tc. Therefore the noise model is:

W - (0, EwrT)

f NI(O, Eo,j)
x= (Exp (w)wTc)-pi + E.

By linearising around the current pose estimate we obtain:

X cTWPi + ((wTcExp (o)))- p w + e

= CTw + wR Tj(Pi - Wtc)] -I) LV + 6

CTwpi + JWTCW C.

(5.104)

(5.105)

(5.106)

(5.107)

(5.108)

(5.109)

From this we read off the distribution of xP:

x~ (eTw pi, > zj + JWTEZ JTr ). (5.110)

Therefore we add to the noise model of the RGB-D camera the projected covariance
matrix of the camera pose estimate.

A surface normal observation xi' is similarly exposed to noise from the sensing pro-
cess as well as to noise of the camera pose rotation estimate. There is no straightforward
derivation for how the camera rotation noise influences the observation concentration
ro. This derivation is hard because of the different distributions involved: Gaussian
sensing noise, Gaussian camera pose noise and von-Mises-Fisher noise on the surface
normals. We therefore simply choose -ro conservatively low.
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Sensor Camera Tracking) *Os xrction].~S RGBD. RGD, T

Segmentation z p, n of Surfels

StatisticsNew Surfels

Figure 5.23: Architecture of the direction-aware 3D reconstruction system. Boxes de-
note algorithm components, and dotted boxes designate the three different threads that
are running in parallel. Arrows are marked with the output produced by an algorithm
block and consumed by another. Note that the graph builder and Gibbs sampler threads
run at their own slower speeds in the background and jointly produce a maximum a-
posteriori surfel-map and segmentation estimate that is consumed in real-time by the
camera tracking thread. Splitting up the sampler into three threads is straightforward
due to the structure of the Gibbs-sampling algorithm.

.5.2.4 Implementation

In practice, to use the proposed approach we architect a multi-threaded system as de-
picted in Fig. 5.23. The main five threads are (1) a real-time data acquisition, camera
tracking and observation extraction thread, (2) a nearest neighborhood graph builder
thread and (3-5) three Gibbs sampler threads. As shown in the diagram, camera track-

ing utilizes RGBD frames and the current most likely estimate of the segmentation and
surfel map to infer the current camera pose w'Tc. To be able to deal with fast motions
we perform photometric rotational pre-alignment of the current RGBD frame against
the previous frame as described below. Given the pose, a set of new surfels and obser-
vations of existing map-surfels are extracted from the RGBD frame. The new surfels
are appended to the map and incorporated into the nearest neighborhood graph by
the graph builder thread. The observations of existing surfels are incorporated into the
statistics associated with the respective surfel as described in Sec. 5.2.2.

The Gibbs sampler threads produce samples from the joint map and segmentation
posterior and provide maximum a-posteriori estimates of the surfel map and segmen-
tation to the camera tracker. Due to the structure of the Gibbs sampling algorithm
it is straightforward to split the sampler into three threads each sampling (at its own
speed) from the respective posterior given samples from the other threads. Since each
thread produces one set of variables that is consumed by the others, no explicit thread
synchronization is implemented. The parallel execution of a Gibbs sampler and impli-
cations on theoretical guarantees have been investigated in literature under the term
Hogwild Gibbs sampling [126].
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Observation Extraction The observation extraction algorithm seeks to add new surfels
by uniformly sampling so-far unobserved surfaces. To improve camera tracking quality
we add a bias towards sampling high gradient surface areas similar to [67]. To perform
this sampling efficiently, the algorithm first projects all surfel locations into the current
camera view. This rendering directly allows associating new observations to existing
map surfels.

While our model makes the assumption that observations of the same surfel are
independent conditioned on the camera pose and the surfel location, this is not true in
practice. Since this assumption is violated, incorporating every single observation of a
surfel may lead the system to become overconfident in the surfels location. To mitigate
this effect, we randomly sample a subset of observations to take at each new frame. This
has the effect of taking fewer observations of each surfel with some temporal distance
between samples thus violating the assumption of conditional independence less.

Data Association and Occlusion Reasoning From a given camera pose estimate, data as-
sociation between observed RGB and depth image pixels and the surfel-map is obtained
by projecting surfel locations into the camera using the OpenGL rendering pipeline.
Each surfel is rendered as a colored point, where the 24 bits of RGB color value are
used to encode the ID of a surfel. This rendering yields putative associations which
might still be wrong due to occlusions and the observation of the back side of a surfel.
The angle between viewing direction and surfel normal is used for back-face culling
which takes care of the latter incorrect associations.

Occlusion reasoning explicitly takes into account the uncertainty of the camera pose
estimate as well as measurement uncertainty. Along a viewing ray rj the depth uncer-
tainty of an observed depth value xd is obtained by projecting the 3D point uncertainty

(see Sec. 5.2.3) onto the viewing ray:

a = rf (Zoj + JWTETJ Tr. (5.111)

We reject an association if the difference between observed depth xq and the predicted
depth of the associated surfel exceeds the predicted standard deviation adj by some
factor. Theoretically 99.7% of observations should be within 3 ad. In practice, the
estimated variance is overly confident most likely due to the over-confident pose variance
estimate (see Sec. 5.2.3) and we therefore use a factor of 20 to yield robust occlusion
reasoning. The robustness of the occlusion reasoning is important since eliminating
correct associations leads the system to add unnecessary surfels.

k-Nearest-Neighbor Graph Building and Maintenance The graph building thread uses
the initial observed location of all surfels to maintain a k-nearest-neighbor graph over
surfels based on the negative log MRF potential in Eq. (5.45). This is an approxima-
tion to the directed graph that could be obtained by connecting all surfels within some
distance. Retaining only the top k closest (under the potential) surfels improves algo-
rithm efficiency without notable differences in the reconstruction results. The thread
has two states: (1) incorporating a new surfels and (2) revisiting and potentially up-
dating the nearest neighbors of already incorporated surfels. Revisiting existing surfels

192



Sec. 5.2. Nonparametric Direction-aware 3D Reconstruction

is important to maintain the proper nearest neighbors when adding new surfels as well
as pruning bad surfels (as described below). In practice if no new surfels are to be
processed the thread randomly picks surfels to revisit. In both cases the graph builder
thread incrementally computes distances to all other surfels in the map while maintain-
ing a k-sorted list of the closest surfels.

Pruning of noisy surfels facilitates efficient operation of the overall algorithm as well
as a clean map. The map builder thread takes on this objective as well when it is
revisiting existing surfels. For all surfels that have been in the map for at least Atmap
frames, before recomputing the nearest neighbors, it checks if the entropy of the surfel
location exceeds a threshold or if the number of observations of the surfel is below some
threshold. A surfel is also pruned if it still does not have a full set of nearest neighbors
after Atmap.

In practice we construct the k = 12 nearest neighbor graph and consider another
surfel only a neighbor if it is within 0.2 m. The initial grace period before considering
pruning a surfel is Atmap = 100 frames, the entropy threshold is log E = -7.5 and the
observation count threshold is 10.

Photometric Rotational Pre-alignment As in most state-of-the-art visual SLAM sys-
tems [178, 250] we pre-align a new frame I by solving for the rotation that minimizes
the photometric error to the previous frame J, as introduced by Lovegrove [156]. Under
pure rotational motion 3D structure is not needed to compute the location of a pixel
from the previous frame in the current frame. It is sufficient to compute rotate the ray
7r

1 (u, v) into the coordinate system of the current camera via CRp and to project the
resulting ray back onto the image plane:

(UC, VC) = 7r(cR,7r-l(u, V)) (5.112)

This allows us to formulate the photometric error between the current and the previous
frame as a function of the rotation between them as:

fphoto c(7r(Rp7r- (u, v))) - I(u, v)|11. (5.113)

By Taylor-expanding the error term to the first derivative, writing the linearized error
term as a linear least squares problem we can solve for the rotation change WR via the
pseudo inverse in the same manner as in ICP. The rows of A and b of the linear system
are:

&ir(x)
Ai = VIc a K-cRp [7r- (u, v)] (5.114)

bi = Ip - Ic. (5.115)

To speed up the process and to yield a wider basin of attraction, we perform this
optimization on an image pyramid, starting at the highest level down to the first level.
In practice we utilize pyramid level 3 down to 1 and ignore the lowest level, the full-
resolution image. In building the image pyramid each higher level is half the resolution
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of the lower image. During pyramid construction a 9 x 9 Gaussian blur kernel is applied.
The rotational pre-alignment takes 5ms using GPU acceleration. The resulting rotation
CRp is applied to 'T, before running ICP:

WRc = wRcCRT. (5.116)

Multi-scale ICP As described for the rotational pre-alignment, we also run direction-
aware ICP on incrementally lower pyramid levels to improve the basin of attraction for
camera tracking against the surfel-map. In practice we rely on the 1st and Oth pyramid
level.

Gibbs Posterior-sample Balancing The usual setup for Gibbs sampling is batch process-
ing where all data is available a priori. In the 3D reconstruction setting, data is obtained
incrementally and the underlying state expands as well as new surfels are added to the
joint distribution. Simple iterative or uniformly random posterior sampling of the indi-
vidual conditional distributions means that new parts of the map are sample-starved.
This means estimates for new surfel locations, orientations and segmentation are slow
to converge. To mitigate this, we implement a random schedule that biases towards
sampling parameters with low sample counts with a higher probability. The sampler
iterates over all indices and for each samples the posterior with probability

Pr (sample from posterior i) = 1 - ,+ISI (5.117)

where ISiI is the number of samples drawn from posterior i and a is a scalar count
that can be increased to decrease the bias towards sampling low sample-count indices.
Implementing this sample balancing mechanism is straightforward and creates little
overhead since we only need to incrementally keep track of |I and E> |Sil.

* 5.2.5 Evaluation and Results

In the following we evaluate the proposed direction-aware 3D reconstruction system on
various challenging datasets quantitatively as well as qualitatively.

All experiments are performed on a machine with a Intel Xeon CPU with 16 cores
at 2.4 GHz and a Nvidia GTX-1080 graphics card. As described in Sec. 5.2.4, the algo-
rithm utilizes a total of 5 CPU cores for Gibbs sampling, camera tracking and nearest
neighbor graph maintenance. The GPU is only utilized for the full-frame operations of
SG(3) pre-alignment and data preprocessing like smoothing input images, image pyra-
mid construction, point cloud computation, and image gradient computation. Surface
normals are computed only sparsely wherever needed.

Qualitative Reconstructions and Directional Segmentation In Figures 5.24 to 5.28 we
show different layers of 3D reconstructions of different scenes obtained from the pro-
posed system. Besides the 3D structure captured via the collection of surfels, the
algorithm infers the RGB and grey-scale color of each surfel. The former is used for
visualization purposes, the latter is used by ICP for the photometric contribution to
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Figure 5.24: Different aspects of the inferred 3D reconstruction of an office area are
visualized. Besides RGB color, grey-scale value, and directional segmentation, the

entropy of each surfel's location using the hot colorscheme ("hotter" means higher).
Notice how areas in the scene that have been observed from close-by or for longer have
lower entropy, indicating better knowledge of the surfels location.
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Figure 5.25: Different aspects of the inferred 3D reconstruction of a room corner are

visualized. Besides RGB color, grey-scale value, and directional segmentation, the

entropy of each surfel's location using the hot colorscheme ("hotter" means higher).

Notice how areas in the scene that have been observed from close-by or for longer

have lower entropy, indicating better knowledge of the surfels location. The plot of

the number of observations taken for each surfel corroborates this. The large dark

green, yellow and purple directional clusters captures noisy parts of the reconstruction

at corners and discontinuities.
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Figure 5.26: Different aspects of the inferred 3D reconstruction of a desk area are
visualized. Besides RGB color, grey-scale value, and directional segmentation the
entropy of each surfel's location using the hot colorscheme ("hotter" means higher).
Notice how areas in the scene that have been observed from close-by or for longer
have lower entropy, indicating better knowledge of the surfels location. The plot of the
number of observations taken for each surfel corroborates this. Furthermore, notice the
detail in the directional segmentation: the laptop to the right is segmented into its own
two directional clusters for exanmple. The large dark blue directional cluster captures
noisy parts of the reconstruction at corners and discontinuities.
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Figure 5.27: Different aspects of the inferred 3D reconstruction of the fr2..xyz dataset

are visualized. See previous figures for description. Of note in this dataset is the large

black cluster that captures all the non-planar parts of the scene. The besides the main
"up" direction the sampling algorithm nevertheless captures also the finer details of the

direction of the monitor as well as the keyboard.
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Figure 5.28: Different aspects of the inferred 3D reconstruction of the fr2_desk dataset
are visualized. See previous figures for description. Of note in this dataset is the
large cluster that captures all the non-planar parts of the scene. The inferred model
nevertheless also captures the main "up" direction, and finer details such as the direction
of the monitor and the side of the desk.
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Figure 5.29: Surfel and sample count statistics for the direction-aware SLAM system
for the fr2_xyz dataset [229]. While the number of map-surfel keeps growing (slowly)
as the scene is explored, the number of surfels that are currently observed depends more
on the viewpoint. Of the surfels in view, the direction-aware SLAM system utilizes only
a fraction for camera tracking. As displayed to the right, the sampling threads are able
to keep up with the growth of the map, yielding ample samples per surfel to allow the
computation of confident estimates of the surfel and segmentation distribution.

camera tracking. The maximum a-posteriori estimate of the directional segmentation of
the environment sensibly partitions the environment according to the surfel directions.
A general pattern between all inferred directional segmentations is that the inference
extracts the main peaks of the distribution which correspond to planar regions in the
scene. The inference additionally automatically infers low concentration clusters that
capture noisy, non-planar regions. The availability of samples from the joint surfel-
based map posterior also allows the quantification of uncertainty via the computation
of entropy for a surfel's location as displayed in the figures. Observe how parts of the
map that have been observed from closer range or that have received more observations
generally have lower entropy indicating more certainty about the surfel location.

Algorithm Operation and Properties To give intuition for the operation of the algorithm,
we discuss timings, surfel and sampling statistics collected during the reconstruction
of the fr2.xyz dataset [229] displayed in Fig. 5.27. Figure 5.30 shows the runtime of
different parts of the 3D reconstruction system. The plot to the left shows that the
main camera tracking thread runs in less than 50ms per frame. The runtime of the
sampling threads scales with the number of surfels in the map which grows as new
scene parts are observed (see Fig 5.29). Since the number of DP-vMF clusters scales
with the complexity of the surface normal distribution, the samplers runtime is virtually
constant for this scene. The bump in the timing of the main thread happens when the
camera moves far away from the scene and ICP processes (see Fig. 5.30b) a lot more
points to bring down the largest standard deviation as described in Sec. 5.2.3. The other
algorithm components of the main thread are virtually constant time. The statistics in
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Figure 5.30: Timings of the direction-aware SLAM system during the reconstruction of

the f r2-xyz dataset [229]. To the left timings of the main threads running in parallel are

shown (sampling p, r, and z happens in one thread). While time for sampling all surfel

parameters for the given map increases with the map size, both sampling the parameters

1L and r of the DP-vMF mixture model and camera tracking and observation extraction

in the main thread have constant runtimes. As can be seen to the right, where the main

thread's components are timed, the spike in the runtime of the main thread is due to

camera tracking. In this part of the dataset the camera is far from any structure and

thus the algorithms collects more observations leading to slower camera tracking.

Fig. 5.29 show that while the number of surfels in the map keep growing, the sampling

threads yield sufficient samples per surfel to compute credible statistics and estimates

for reasoning about the underlying joint distribution of surels and segmentation. As

can also be seen, the number of surfels utilized for camera tracking is usually less than

1000 surfels even if a magnitude more surfels are in view. This efficient ICP operation

is enabled by the direction and gradient-aware selection of surfel observations.

On the same dataset, Fig. 5.31 compares direction-aware ICP against selecting ob-

servation points for ICP at random. Direction-guided observation selection leads to

a lower uncertainty lower-bound. The maximum standard deviation extracted from

the Fisher information matrix of the camera pose estimator is lower in hard-to-track

phases of the dataset. This superior tracking is achieved with significantly fewer surfel

observations. These two facts show the power of utilizing direction-guided measurement

selection for ICP.

Ablation Study on fr2-xyz To quantify the effect of utilizing the directional segmen-

tation we perform an ablation study on the fr2-xyz dataset [229] with groundtruth

trajectory. Specifically we explore all possible combinations of the following three com-

ponents of the system: (1) sampled map vs. standard surfel fusion, (2) direction-aware

surfel observation selection or not, and (3) image gradient norm sorting of surfel ob-

servations or not. In the experiments with standard surfel fusion, the directional seg-
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the fr2_xyz dataset.
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mentation is inferred solely based on the surface normal observations. Table 5.3 shows
camera tracking accuracy and algorithm timing on the fr2_xyz dataset for the eight
different configurations. The use of direction-aware mapping vs. standard surfel fusion
clearly improves tracking accuracy independent of the configuration of the observation
selection of ICP. This leads to the conclusion that the underlying cause for the improved
camera tracking accuracy is a higher quality map. Among the camera tracking configu-
rations both direction-awareness and gradient sorting improve the tracking performance
over just random selection. Interestingly as we will see next the accuracy improvement
is achieved by utilizing fewer surfel observations.

Camera Tracking Accuracy Comparison We use the TUM indoor dataset [229] and the
synthetic dataset by Handa et al. [99] to evaluate the camera tracking accuracy against
groundtruth tracking data and compare our system to related 3D SLAM systems. Un-
fortunately the noise model used to simulate the synthetic dataset has very different
artifacts than the one assumed herein. While we assume Kinect-like depth cameras
wich use triangulation for depth estimation, the dataset simulates time-of-flight (ToF)
sensor noise such as found in the Kinect v2 camera. Specifically at depth discontinu-
ities the simulated ToF noise manifests as large depth outliers anywhere between the
actual depths and the minimum depth. Spurious surfel observations are added due to
the aforementioned artifacts. This precludes any meaningful evaluation of the surface
reconstruction accuracy. The camera tracking system is robust to such noise and we
therefore report pose estimation accuracy in Table 5.4. As a measure for alignment
accuracy we use the absolute trajectory error (ATE) which is the error between time-
associated poses after aligning the estimated and the ground truth trajectory [229].
Table 5.4 demonstrates that the proposed nonparametric direction-aware SLAM sys-
tem is on par or better than related algorithms in terms of camera trajectory estimation
for datasets without the need for loop closures. The kt3 dataset is a hard dataset neces-
sitating loop closure and the proposed system suffers from the lack of such capability.
The related algorithms perform only slightly better on this challenging dataset.

M 5.3 Discussion

In the first section of this chapter, we introduced a branch-and-bound approach to global
point cloud alignment with convergence guarantees, based on a Bayesian nonparametric
point cloud and surface normal distribution representation and a novel tessellation of
the rotation space. The method decouples translation and rotation via the use of
surface normals, making it more efficient than previous joint approaches. Experiments
demonstrate the robustness of the method to noisy real world data, partial overlap,
and angular viewpoint differences. We expect that the proposed novel tessellation of S3
will be useful in optimizing other functions over the space of rotations with theoretical
guarantees using branch and bound. An efficient implementation of the proposed global
alignment algorithm can be found at http: //people. csail.mit. edu/jstraub/.

In the future it would be interesting to explore ways of guaranteeing global optimal-
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System kto ktl kt2 kt3 fr2_xyz fr2_desk
DVO-SLAM [135] 0.032 0.061 0.119 0.053 0.021 0.017
RGB-D SLAM [66] 0.044 0.032 0.031 0.167 0.023 0.095
ElasticFusion [250] 0.009 0.009 0.014 0.106 0.011 -

Kintinuous [246] 0.072 0.005 0.010 0.355 0.029 0.034
Dense Planar SLAM [210] 0.246 0.0169 - - - -

CPA-SLAM [158] - - - - 0.014 0.046
Directional SLAM 0.005 0.007 0.017 0.417 0.015 0.066

Table 5.4: Comparison of the absolute trajectory error (ATE) in meters as defined
in [229] of different SLAM systems for different synthetic datasets from the benchmark
dataset by Handa et al. [99] (kto-3) and the TUM indoor dataset [229]. Note that
all other systems utilize loop-closure techniques to correct for drift and tracking errors.
This explains the poor performance of the proposed algorithm on kt3 which necessitates
loop closure capabilities.

ity for the proposed point cloud alignment approach. Currently there is no reasoning
about which parts of the scene are actually co-observed leading to poor performance
in the case of small overlap. Incorporating such reasoning in effect would amount to
inference about the map and make the approach an instance of joint categorical SLAM.
If higher accuracy and better performance on smooth shapes were required, using a
sampling based inference method for fitting the Dirichlet process von-Mises-Fisher and
Gaussian mixture models would likely improve the alignment at the detriment of speed.

Another avenue of research for global alignment would be to explore rapid alignment
approaches based on matching directional clustering modes between frames for rota-
tional alignment that could be obtained in closed form via the orthonormal Procrustes
problem (see Sec. 2.7.3). Given a putative rotation the algorithm could then seek to
match clusters of points projected onto their associated directional cluster (via their
surface normal). Such matching could deliver translational alignment.

In the second part of this chapter, we have introduced the first nonparametric
direction-aware SLAM system that jointly reasons about directional segmentation, a
surfel-based world map, and the trajectory of a RGBD camera. We ascribe direction-
awareness to the system since it utilizes the directional segmentation for its other tasks
as opposed to inferring the segmentation without further purpose. A key contribution
is the proposed map formulation which establishes a connection between scene-wide
directional segmentation and local surface properties. The proposed system architec-
ture demonstrates that the Gibbs-sampling-based inference algorithm for the Bayesian
nonparametric directional segmentation and surfel locations and orientations can be
run in the background to facilitate realtime operation. Experiments show that in-
corporating directional segmentation into the mapping and camera tracking problem
yields improved camera tracking accuracy. Furthermore, in comparison to uninformed
measurement selection, direction-aware camera tracking improves camera pose estima-
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tion certainty and accuracy while reducing the number of surfels needed for accurate
tracking.

The use of Gibbs-sampling based inference on a complex Bayesian nonparamet-
ric model in a realtime reconstruction system has not been demonstrated before and
due to the flexibility of Gibbs-sampling opens up exciting possibilities for inference
on more complex and detailed environment models. Having access to samples from
the true posterior also allows reasoning about uncertainty which is not possible with
mode-seeking inference methods such as maximum-a-posteriori estimation. An imple-
mentation of the proposed nonparametric direction-aware SLAM system can be found
at http://people.csail.mit. edu/jstraub/.

Along the line of nonparametric direction-aware SLAM it would be interesting to
explore fully joint inference approach based on variational inference under, for example,
the mean-field assumption. This optimization-based, more efficient approach would
still provide not only the modes but also uncertainty estimates for the map as well
as the directional segmentation in a holistic fashion. As described in the background
section on Bayesian nonparametric models and inference Sec. 2.4, variational inference
is a common inference technique for such models, but it has not been applied to 3D
reconstruction techniques.

It would also be interesting to explore other scene priors for categorical SLAM, such
as the Manhattan Frame or the more flexible MMF model of Chapter 3. The Manhattan
World-based models could add regularity in terms of orthogonal angles to the proposed
Stata Center World-based directional segmentation and allow for more pronounced
pooling of measurements across the scene to yield more accurate 3D reconstructions.
Another approach would be to investigate a hybrid approach of Stata Center World and
Manhattan World. Since the directional segmentation is inferred using Gibbs-sampling
it is quite straightforward to incorporate Metropolis-Hastings proposals to join different
directional clusters into a Manhattan Frame.

N 5.4 Acknowledgments
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jointly with Trevor Campbell, John W. Fisher III and John P. How. While the initial
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Chapter 6

Conclusion

On a high level, the first main contribution of this thesis is the introduction of theoretical
and algorithmic concepts that are instrumental in providing artificial perception systems
with a directional understanding of their environment. Specifically, I have thoroughly
investigated the connection between the 3D structure of different environment types
and their surface normal distributions. Chapter 3 investigates Manhattan-constrained
directional scene models while Chapter 4 relaxes the orthogonality assumption and
focuses on general directional scene models. The models and algorithms herein for
Manhattan World and Stata Center World scene segmentation from surface normal
data provide an initial step towards directional scene understanding of man-made envi-
ronments. Since Mixture of Manhattan Frames and Stata Center World environments
cannot be described with a fixed number of parameters, a key contribution is showing
how to utilize Bayesian nonparametric modeling concepts to make model selection part
of the probabilistic inference process.

The second main contribution of this thesis is showing how to embed these non-
parametric directional scene models into 3D perception systems to improve 3D point
cloud alignment and realtime 3D reconstruction. The global point cloud alignment al-
gorithm described in Sec. 5.1 leverages a probabilistic directional Stata Center World
scene model for rotation alignment. This decomposes the global alignment problem
into rotational and translational alignment which makes the branch-and-bound search
an order of magnitude faster than related algorithms. Finally, the 3D reconstruction
system introduced in Sec. 5.2 is the first semi-dense nonparametric direction-aware
SLAM system, that jointly infers the nonparametric Stata Center World directional
segmentation, the 3D reconstruction, and the camera pose in realtime. The fact that
inference over map and Bayesian nonparametric directional segmentation is performed
using Gibbs-sampling opens up exciting possibilities to model more complex phenom-
ena using the proposed architecture. I believe that adding any categorical or semantic
segmentation should first and foremost serve the purpose of improving the operation of
the perception system. The underlying notion is that one way of gauging if an artificial
perception system "understands" a concept is by determining if it is able to use it in
ways that further its own purpose. In this context the systems presented in the last
chapter can be seen as "understanding" the directional composition of the environment.

Taken together these contributions yield the first nonparametric directional per-
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ception systems which in some sense are aware of the directional composition of the
scene and demonstrate this by improving on key 3D perception tasks. Since the pro-
posed directional scene models can capture the majority of surfaces in most man-made
environments, this ability presents a significant first step towards general scene under-
standing.

To make progress towards truly intelligent artificial perception systems, it will be
necessary to push beyond hand-engineered scene priors and assumptions. While the
directional scene models presented in this thesis capture a large fraction of surfaces in
man-made environments, there are long tails to the class of non-planar surfaces that
need to be addressed with more flexible data-driven approaches. For these cases, future
perception systems should be structured such that they can learn to extract geometric or
other concepts by themselves and such that they can discover how to use such concepts
to further their goal of operation.



Appendix A

Derivations Pertaining to the
Background

M A.1 Direct Surface Normal Extraction from Depth Images

As defined by the Gauss map in Eq. (2.184), we can obtain the surface normals from
the point cloud using the cross-product of the local gradients:

[aP(u, v) &r(uv)~ A1n = [ u x a(A.1)

where the derivatives are along the u and v axis of the image coordinate system. Note
that the derivatives and cross-products can be computed completely in parallel. We
could simply compute the point cloud using any camera model, compute the local
gradients using forward differences and then compute surface normals. But since the
point cloud is fully determined by the unprojection function r-1 (u, v, d) of the camera
model and the depth image d(u, v) we can compute the derivatives using the chain rule:

n [7r-1 (u, v, d(u, v)) X a7r- 1(U, V, d(u, v))(A2

87-(u, v, d) a7r-1 (u, v, d) ad a 7r-1 (u, v, d) a7r- (u, v, d) ad)
| an d auo av + d v)

(A.3)

Under the pinhole camera model [102], the point cloud p(u, v) can be recovered. from a
depth image d(u, v) as:

(u, v) = 7r-i (uv d -v) M-L, (V - v,) ,(A.4)

d(u, v)

where fu and fv are the focal lengths of the depth camera (in u and v direction) and

[uc, VC] is the center of the depth-image. Now the derivatives can be computed in terms
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of the depth image derivatives as:

ad(u,v) Au + d(u, )
_______ ) ( 9U fd fd

p(u, v) ad(uv) Av

DU a(u,v)d
au

/ d(u,v) Au

Dp(u, v) d(u,v) Av d(u,v)
09V av f fDd8uv)

av

where we used Au = u - u, and Av = v - v. For the purpose of computing the surface
normal we can simplify further:

adAu + d ad Au

n a X '5 7 V T
6t~2Xv fd d fd

OdU DVI~ )
ad ad AVfd - [ AV + d/ v]fd'

fdAu - fd[Au+ d/ d

1 ad [d AV - [Av + d/ ]
Au - [Au + d/ d]

fd au av { [Au + d/ad] [AV + d/ - Audv}

x d AUDv
X Ld

19 a

-a/-
{Aud/ ad + Avd /

1/Q
au

!L + Av/ad

a fd.
-v fd I

~dd+ A ad/

This derivation can be executed for any camera model for which the derivatives of the
inverse projection operation can be computed in closed form.

M A.2 Analysis of the Joint Prior for the von-Mises-Fisher Distribution

As introduced in Sec. 2.6.3, the joint prior of the vMF distribution is known up to
proportionality as

p(p, r; po, a, b) or f (r, ; a, b, Po) = ( i ) exp (rbpTbo) (A. 12)

We will now characterize this distribution with a focus on the variation in T to facilitate
the implementation and theoretical justification of a slice sampler to sample from p(yt I
r; po, a, b). Note that all analysis applies for the posterior distribution as well by using

(A.5)

d) (A.6)

(A.7)

(A.8)

1 ad ad

fd 9u av

d d ad

fd 9u D9V

+ d/D7d/ad}/

+ -JT-5}
49V au)( AU/

(A.9)

(A.10)

(A.11)
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the posterior parameter aN, bN, and pN instead of a, b and Mo. It will be convenient
to work in log space:

log f (r, p; a, b, yo) = a log r - a log sinh+ Trb Tto

= a log r + a log 2 - a log(1 - exp(-2T)) + T (bpTPo - a)

(A.13)

(A.14)

Keeping in mind that 0 < b < a, the limit of the function as r -+ 0 is 0 and as T - oo
is -00.

The derivative of log f(r) is

alog f(r) -
aT r

2aexp(-2T) T1+ bp- [o - a
1- exp(-2-r)

Unfortunately once cannot solve for the maximum in closed form by setting the deriva-
tive to 0 (I have tried). The limits of this first derivative as T -+ 0 is bl1Tpo and as
-r - oc is bpiTpo - a.

The second derivative of log f(T) is

a -4(1 - exp(-2r)) exp(-2-r) - 4 exp(-2-r) exp(-2r)

;72 (1 - exp(-2r)) 2

-4 exp(-2T) + 4 exp(-4,T) - 4 exp(-4-)

(1 - exp(-2T)) 2
a

- - a
T 2

a 4a exp(-2-)

T2 (1 - exp(-2r)) 2

a
T2

4aexp(-2T)

1 - 2 exp(-2T) + exp(-4T)

(A.16)

(A.17)

(A.18)

(A.19)

The limit of this second derivative as T -s 0 is -2 and as T - oo is 0. With a > 0 we
3

(A.15)

log f (T)r2
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can show that the second derivative is always negative:

a 4a exp(-2r)
r2 1 - 2 exp(-2r) + exp(-4r)

4 exp(--2r) < 1 (A.21)
1- 2exp(-2r) + exp(-4r) r2

4w 2 exp(-2r) < 1 - 2 exp(-2r) + exp(-4r) (A.22)

(4r2 + 2) exp(-2r) < 1 + exp(-4r) (A.23)

2w-2 + 1 <exp(2r) + exp(-2T) (A.24)
2

2w 2 + 1 < cosh(2r) (A.25)

4r2  16w4  E (2w) 2  (A.26)
2 24 (2n)!

n=

2 1 -r4 (2w)2

< E2 +--= (A.27)

6 n=2 (2n)!

The last statement is true since the infinite series is over strictly positive numbers be-
cause of the powers of even numbers 2n. Therefore the second derivative is strictly
negative with a limit of 0 for r -+ o. This means that the first derivative is mono-

tonically decreasing with a starting point (in the limit for r -4 0) of bp1Tpo and an
ending point at bpTpo - a for w - oc. That in turn means that the first derivative has
exactly one zero crossing (and hence the function one maximum) if baTAuo > 0 and none
if bpTpo < 0 (the largest function value is at 0). Therefore log f(w) is monotonically
decreasing in the latter case and has a single maximum in the former.

The location of the maximum r* cannot be computed in closed form, but we can
use the Newton algorithm to obtain its location less than 10 iterations on average.

The locations of the zero-crossings of g(r) = log f(r) - log(u) needed for the slice
sampler are then obtained using Newtons method. Note that g(r) has the same deriva-
tive as log f (w) derived in Eq. (A.15). The starting locations are set to w6L 0 001w* for
the left zero-crossing and to roR = 1.5w* for the right zero-crossing. This ensures that
Newton's method reliably converges to the desired zero crossing within a few iterations.
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U A.3 Normalizer of the Joint von-Mises-Fisher Prior for D = 3 and a = 1

We can derive a closed form normalizer for a = 1, 0 < b < a = 1 and D = 3 dimensions:

Z(po, 1, b)-- I' 2 (271)1/2 r ex2 sinbhTo) dp dT (A.29)

S2-1/ 2 71 / 2  T 1 exp(TbpT po) dpi d- (A.30)
J0 sinh -r S2

S2-1/27rl/ 2  T Z- 1(Tb) dr (A.31)
0o sinh T
00-1/271/2 T 47r sinh(rb) dr (A.32)

J- sinhT rb

(27r) 3/ 2  
00 sinh(rb)

b o sinh dr

1 / tan br V - 1 <b < 1 (A.34)
b 2

where we have used that the integral over the vMF exponential term yields the normal-
izer of the vMF distribution.
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* A.4 Marginal Data Distribution of the von-Mises-Fisher Distribution

For D = 3 dimensions and a = 1 we can derive a closed form normalized probability
density function for the marginal distribution of the data under the prior:

p(xi; po, 1, b) j j vMF(xi; t, r)p(p, r; po, 1, b) d1L dr (A.35)

10 f T bT exp (TpT (x' + bpo)) dp dT (A.36)
Jo ]2 47r sinh(r) 27r2 tan (L) sinh(T)

b P 2

- 0o 2 exp (rTT(Xi + bpo)) dp dr (A.37)23 7r 3 tan ()0 sinh2 (T) Zs2
b r2

b ~~ 0 2-Z- 1 (Tjjxj + bpo l|2) dr (A.38)
23 r 3 tan ( )]o bsimh2 (T)

47rb r2 sinh(rb)
237r3 tan () o rbsinh 2 (T)

b r - sinh(Tb) 0 b (A.40)
27r2bItan (b) 4 sinh 2(()

b 7r(bir - sin(b-7r))
, 0 < b < 2 (A.41)

27r2Ib tan ()4 sin2(17r

b 1 - sinc(b7r) (A.42)
23 tan (L) sin2(67r)

where we have used that the integrating over the vMF exponential term yields the

inverse of the normalizer of the vMF distribution and that 0 < b < 2 because 0 < b <
a = 1 which is imposed by the prior distributions properties.

E A.5 First Derivative of the S(3) Exponential Map

The first derivative of the exponential map associated with S(3) can be derived using
the closed form expression also called the Rodrigues' formula in Eq. (2.126):

,_Exp() (I (W + si+lJui)W(W) + IOWII W2

TW-i L - L=o (.3- ______ n(wI)sin(IjwI)W (w) __+ snIlw aw W(W) __(.3

+ .L 1 -CosI W 11H72 1-CoslI wi ___W2(W+ - W 2(w) L__+ IIw2 W 2(W



Additionally the following limits and relationships have been used:

lim a sinl oll = lim WI lwII cos i|wil-sin i|wli - 1 (A.44)
--a Ioll -wl( ) 3

lim sinx = 1 (A.45)
X-40 X

lim a1-cos lIL0 = lim Wi I wl isin IwLI+2cosIIwII-2 - (A.46)
W-4+010 i fI IIT _ W-4 llII 12

lim 1-cosx lim s_" = 1 (A.47)

lim _-W 2 () 0 (A.48)

awi 4 w
7W(Lj) = Gi (A.49)

W(0) = W 2 (0) 0 (A.50)

The derivative of the transpose of the exponential map is readily derived by noting
WT = -W because of skew-symmetry:

Ep)T - 3W(J) + 1CSwIW2(WBExp (w) _ (I - sin(lwIW ) coIww2w
W=O IIWII IIWI1 w=O (A.51)

=- Gi

M A.6 Second Derivative of the 5O(3) Exponential Map

The second derivative of the exponential map associated with S (3) is derived using
the closed form expression for the map in Eq. (2.126):

aW 2w a2_ I +~ _______I W 1-cosl IVV2'W2

a0 as exp(W(w)) -=_ awOw. (I+ W + voWn2  LO
a ( a sin( wil) W + sin(llwII) a.W + 1-cos w W 2 + 1-cos loll a W2

- O \AWi I1wlI IwII aOwi a |lwi IFoil 9 J
_ a2 sin(___) W + _ sin(IIwII) aW + 9 sin(lIwII) OW sin(IlIlw) 9

2 W

_a u -T aLi IICA)IIlwli +Uj w j y 71 5 i liil Owgwi
,2 1-cosIIwI W2 a 1-cosIIwII aw2  

-cwil %W2  1-COSIIWJI .2w2
+ T(, iawi ||Il W + awi IL02: Oj + 3 II2 9Wj + W2 amanj L

= {GjG + Gj GO
(A.52)

where we have used relations from Sec. A.5 in addition to

a j W(W) = 0 (A.53)

(A.54)a2 W2(W) = GiGj+GGi
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* A.7 First Derivative of Functions over SO(3)

For a scalar function f(R) : S0(3) -÷ R, we can take the left gradient on the manifold
with respect to R as

If(R) af (Exp (w)R)1, = tr )af 
- -jJ~ w ~ = r

= (tr { af (R)GT IaR I~lt
tr { (R) )TG2 R}

jExp(w)RL=}
(A.55)

tr { %R)TG 3 R

In the special case of f(Rx) Eq. (A.55) which is commonly encountered the derivative
simplifies to

Rf = r P
6P p:

p=Rx

2 Exp (w)Rx
aw L)0 p

p=Rx
a

(G1Rx G2 Rx G3Rx) =- _P

p p-=Rx

Exp(w)Rx w=O

[Rx].

(A.56)

The right gradients are obtained analogously as:

' f(RExp (w)) _ =

' f (RExp (w)x) 0 =

tr { B(R) T RG} tr af (R) T RG2 tr af )T}RG 3

(A.57)

(A.58)- p= R[x]

As an example consider f(R) - aTRx:

a&aTRx

aR

DaT p
09P

[RxT ] = -aT [Rx] x (A.59)

Another common function appearing in a rotated Gaussian distribution is the quadratic
f(R) = XTRTARx. First note that [188] (Eq. (82))

af (R)

aR

Then with Eq. (A.55) we can derive the derivative as

tr { (ARxx T )T G

= (tr {xxT RTAT G1

= (XT RTAT G1Rx

1R} tr { (ARxXT)TG 2R}

R} tr {XxT RTAT G2 R}

XT RTAT G2 Rx XT R TAT

tr { (ARxXT)TGR})

tr {XXT RTAT G3R)

G 3 Rx)
(A.61)

& XTRT ARx = (AT + A)Rxx T := ARxXT.
(9R

(A.60)
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The second derivative, the so called Hessian, can be useful for second order optimization
methods such as Newton's method and to get a covariance estimate. The approach is
the same as for the gradient. The Hessian is computed as the matrix of all combinations
of second derivatives

H = f(R)=
OR2

(2 f (R)

a2f(R)
19W2OW1
a

2f(R)

a2 f (R)

a2 f(R)
OW2 OW2
a

2 f(R)
0W3 EW2

a
2 f (R)

a2f(R)
DBo2&w3

2 f(R)
BoaW3(73

(A.62)

where the individual second right derivatives are computed as

a 2 f (R) 9 tr f R)T R Exp ()09Wj~~~ ~ ~ 09i .w R 7- =0

= tr

= tr

a (a) R a Exp(w) + Df)TR0 B- Exp(w)

f( R ) T
(awj M w=O

The left derivative is:

af) = tr a af (R) ) T
awj aw, 9w 5- L0=

(A.63)

RG + af (R)T R(GiGj + GjGiaRI

GiR + Of (R)T Gi Gj + GjGi)R (A.64)

For example consider again f(R) = aT Rb. Since __!Df (R) = -gabT = 0:

a2f(R(!))1TR(GG + G
Aati o ( aR is: Gi)b

And the second derivative of f (R) =bRb s

(A.65)

=tr (--ARbb T)T RGj + I (ARbb T )T R(GiGj + GjGj

=tr (ARGjbb ) T RG + bbTRTA TR(GiGj + Gj G)} (A.66)

=bT G R TTATRG + RTA TR(GiGj + GjGi)) b

* A.9 Derivatives Involving the SE(3) Exponential Map

As stated in Sec. 2.7.2, the exponential map for SE(3) can be computed in closed form
as:

V(WR)Wt)(R(WR)

a2f (R(w))

awiawi
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where

R(WR) = Exp(WR) (A.68)

1 - cos9 0 - sino
V(R) = I + 02 wR + 93 [WRx [WR]x (A.69)

Before deriving several important derivatives involving the exponential map we analyze
function V(WR) at WR = 0 to ease further derivations.

* A.9.1 Analysis of V(w) around w = 0

Around w = 0 the function V(w) behaves as:

1 -cos9 90- sinG
lim V(w) = lim I+ [R x + 93 [WR] [wR] (A.70)

WR W R4O 02 0

=I+ I[] + [0] [0] = I, (A.71)

where we have used limits from Sec. A.5.
The derivative of V(WR) at WR - 0 is:

,V(w) I (R + - [sIx WRx [WR) = (A.72)

S1-cos 11w wl-sin [w][] (A.73)

S7-wRII x wR] x wl R [R w= (A.75)

G , (A.76)
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where we have used

I Iw I13  3||wllwi

uim n |lolI-sin||iw||l im |

lim~~~ jjjimijj

w-*O -, 6

~AlmVaIjwjsiI -1i liM 1W1

= lim
W-40

3 a (liwli -sin liwil) -(Iloll -sin LL)ll ) a I1w113
11W 116_

11W 11,

L (1-cos|jwjj)-(jjwjj-sin 11w1)3|jwjjwj
011W11,

= lim iwli (1-cos jljwI)-3(IjwL-sin Iliil)
W-*O IlU;I1

= lim i -licil Cos l1wII-2jjw1+3sin liwli =
w;-O I1LU 1

liM ([WR) [WRI X = li- MO 0

(0

-W2

-W3 W2 0

0 -W, fW3

W 1 0/ \-w 2

-W 3 W2
0 -Wi

W1 0)
= 0 (A.86)

The last limit follows from the fact that the product of the skew matrices results in a
matrix with only quadratic terms in w.

Similar to the derivation in Sec. A.5 using the properties of the generator matrices
Gi of SO(3) we have

,V(W)p = - 1[P] X (A.87)

* A.9.2 Derivative of Exp(w)p

The derivative of the exponential map directly transforming a point p is:

awa Exp WR
Wt ) P

ao R(WR)
0

V(WR)Wt P

a
(R(WR)p + V(WR)Wt)

P ]x I) ,

where we have used the partial derivatives with respect to WR and wt:

R (R(OR)p + V(wR)Wt) - R(OR)p + V
WR 9R aWR

= -[P]x - -21[Lt], X J

(A.88)

(A.89)

(A.90)

(A.91)

(A.92)

(A.93)

(WR)Wt
w=0

(A.77)

(A.78)

(A.79)

(A.80)

(A.81)

(A.82)

(A.83)

(A.84)

(A.85)
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and

a a
(R(wR)p + V(wR)wt) = V( w=O = V(wR) 1=o = I (A.94)

M A.9.3 Derivative of TExp(w)p

The derivative of a change Exp(w) (right multiplied) in the translation T transforming
a point p is:

a TExp ()
TW (Wt )

P= a T (R(WR)

9 (R t)(
19W 0 1

a (RR(WR)
aw 0

V(wR)Wt 
P

R(wR)
0

V(wR)wt 
P

RV(wR)wt + t)

(A.95)

(A.96)

(A.97)

(A.98)

(A.99)

a (RR(WR)p +
aWR

a
RV(wR)wt + t) = a (RR(WR)P + RV(wR)wt)

aWR

= R R(WR)p
9wR w=0

and

a a
(RR(wR)p + RV(wR)wt + t RV(wR)wt = RV(WR)|w=O = R.

with

aa (RR(WR)P + RV(wR)wt + t)

(-R[p]x R)

(A.100)

(A.101)

(A.102)

(A.103)
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* A.9.4 Derivative of (TExp(w))-p

The derivative of a change Exp(w) (right multiplied) in the translation T inverse-
transforming a point p is:

aTExp WR)

t)(

a (RR(wR) I

(w 0R

- R(WR )T RT

aw 0

a

P(R)
0

(T
R(WR)

0

V(WR)wt 
P

V(wR)wt + t

-R(wR)TRT (RV(WR)wt + 0 P

-R(wR)TV(wR)wt - R(WR)TRTt )
a
a (R(WR)T RTp - R(wR)TV(wR)wt - R(WR)T RTt)

([RT(p - t)] -I)

where we have used the partial derivatives

a
OW (R(WR)TRT(P - t) - R(WR)TV(wR)wt)

0(WR

(R(WR)T R T(P _-t) -R(WR)TV (WR)LIt)

= [RT(p - t)] (A.111)
WA)=0

a
a wtR(WR)TV (WR)wt W0

(A. 112)

-R(wR)TV(wR) I =

V(wR)wt
p (A. 104)

(A.105)

(A.106)

(A. 10 7)

(A.108)

(A.109)

(A.110)

and

(A.113)

(A.114)
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Appendix B

Derivations Pertaining to
Directional Clustering

E B.1 Proof of Laplace Approximation on General Differentiable Manifolds

Lemma B.1.1 (Integration on a Manifold). Suppose M c R' is an m-dimensional
differentiable manifold given by the parametric form g : Rm -÷ R, where g C C 1 , and
g(A) = M for some measurable A C Rm, and let f : R --+ R be an integrable function
on M. Then

IM f ( = f (g(a)) Vdet Dg T Dg

.a. aam (B.1)
Dg = - .. -.. .

agn 19gn)
(al Dam/

Theorem B.1.1 (Manifold Laplace Approximation). Suppose M c Rn is a bounded
m-dimensional differentiable manifold and f : R -> R is a smooth function on M.
Further, suppose f has a unique global maximum on M, x* = arg maxX.M f (x). Then

lim fM erf(x) I = 1 (B.2)
($)m det UT Vlf(x*)U eif(x*)

where U G Rnx is a matrix whose columns are an orthonormal basis for Tx*M.

Proof. Suppose {uj} I, ui C R' is an orthonormal basis for Tx*M, and add to it any
orthonormal completion {u,}=m+1 to R". Then U = [ui ... uM] E R"nx is a matrix
that maps Rm - Tx*M. Finally, define g : V -÷ M as the transformed exponential map

g(v) = expx. (Uv), where UV C TxM is the local domain of validity of the exponential

map. Then by Lemma B.1.1,

I e-() [ e rf(x) + f eT(X) = I erh(v) X/det DgTDg + e .
M J g(V) J M\g(V) v J M\g(VB)

(B.3)
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where h(v) = f(g(v)). First, note that

[Dg] ij (0) =g- (0) = ._ exp,*(U1 1h) - exp., (0) (B.4)
Boy h-+0 h

= expx (ujh) - exp* (0) (B.5)
h-*0 h

= Ui) ,(B.6)

and thus by the fact that U is unitary and hence UTU = I, det Dg(0)TDg(0) = 1.
Next, using a second-order Taylor expansion of h,

1 T
h(v) ~ h(0) + Vvh(0)TV + Iv V2 h(0)v (B.7)

Note that h(O) = (x*),

n Of Ogk = Ukj$ = uTvf (X*) (B.8)
i 0 I = XkJVj 0 k=1 akX

and since f reaches a maximum at x* on M, and u3 span Tx*M,

Vvh(O) = 0. (B.9)

Further,

_2h n Of a2  n g92 f agk (g9 (B.10)
avi7T = x E v v xx 83 k=1a~ (9i~ aXkXIO0Vj 4Vi

once again, since f reaches a maximum at x* on M, and ' 2  has columns contained

in Tx* M, the first term is zero and thus

a2h n n (92f
O9vh _j \ -: Z-.kf Ukj Ui (B.11)

OViVj 0 k=1L=1 *xkxI

so

V2h(0) = UTV2 f (x*)U. (B.12)

Returning to the integral from earlier,

lim M erf(x) (B.13)

(27)m det UTV~f(x*)ULi erf(x*)

fv er(h(v)-f(x*)) Vdet DgTDg + fM\g(V) eT(fWf(x*))
=lim 1. (B.15)
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By assumption, maxEzM\g(v) f(x) < f(x*) - E for some E > 0, so using the Laplace

approximation for multivariate Euclidean spaces,

lim fM e-f W
7-+00 . ..

< lim
T-OO

fv er(h(v)-f(x*)) /det DgTDg + vol (M \ g(V)) e-r6

(q--) m Idet UTV f (X*) U 11

( 1l idet U T V~f(x*)U 2
Olim I i

m-0 2T

V/det Dg(0)TDg(0)
* 1

(I det U vlf x )U I
- 1

and since fM\g(V) erf(x) ;> 0, the lower bound is also 1, and the result follows.

(B.16)

(B.17)

(B.18)

U
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Appendix C

Derivations Pertaining to Global
Point Cloud Alignment

* C.1 Rotational Alignment Details

* C.1.1 The Matrix 7kk'

In the main text, we are given two unit vectors pLik and A2k' in R3. We define zkk' =

E(pik, A2k'), where E(u,v) E R4 x 4 is defined by UT(q o v) = qT,(u,v)q, where n =

(ui,uj,uk), V = (vi,vj,vk), and q = (qi, qj, qk, qr). By standard quaternion rotation

formula, we have

Ui~ T 1 - 2q - 2q2 2(qiqj - qkqr) 2 (qiqk + qjqr) Vi~
uT(q o v) = uj + - 2q2 - 2q2 2(qjqk - q1qr-) vLU [2(q;qj + qkq) i k ~

.Uk_ 2(qigk - gjqr) 2(qjqk + qiqr ) I - 2q2 -2j_ Vk_

q,2(-2ujvj - 2 UkVk) + q (-2uivi - 2Ukvk) + q 2(-2uivi - 2uvj)

+ qigj(2ujvi + 2 uivj) + qjqk(2ukvj + 2ujVk) + qiqk(2UiVk + 2Ukvi)

+ qiqr(2ukvj - 2ujVk) + qjqr(2uivk - 2Ukvi) + qkqr(2ujvi - 2uivj) + u v

Rearranging the quadratic expression in q into the form qTMq, we find the formula for

B(u, v):

UiVi - Ujvj - Ukvk u3 vj + ujvj Uivk + UkVi Ukvj - UjVk]

(uuvi + ui[ Uvvj - Uivi - UkVk UjVk + UkVj UiVk - Ukvi
Uivk + Ukvi Ujvk + UkVj UkVk - UiVi - ujvj ujvi - UiVj

UkVj - UjVk UiVk - UkVi ujvi - uivj UT V

* C.1.2 Quadratic Upper Bound on f

First, for any z c [a, b] where 0 < a < b, we can express z2 as a convex combination of

a2 and b2, i.e.

2 a2

z2 = Aa2 + (I - A)b2 -A2 (C.1)
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Figure C.1: The three subdivision patterns-due to the choice of the green edge-of a
tetrahedron displayed in 3D. Colors designate different edge types: corner edges (blue)
from an edge midpoint to a vertex; tie edges (orange) between two edge midpoints,
running along a tetrahedron face; and skew edges (green) between two edge midpoints,
running through the inside of the tetrahedron.

Since f( ,F/) = e'- for z > 0 is convex (this can be shown by taking the second

derivative and showing it is nonnegative), we have

f(z) = f z f ( Aa 2 + (1 - A)b2) (C.2)

<Af (a) + (1 - A)f (b) (C.3)

- 2 (f (b) - f (a) (b 2 f (a) - a2 f (b) (
b2 -a 2  b2 -a 2

In the main text, since we know Ckk' Zkk/ (q) Ukk' for any q C Q, we can use the
above upper bound formula with a = kk' and b UkkI.

U C.1.3 Derivation of the -YN Bound

Lemma C.1.1. Let -yN be the minimum dot product between any two tetrahedral vertices
at refinement level N. Then

2 _N1 < 7N. (C.5)
1+ 1IN-1

Proof. Let the vertices of the projected tetrahedron be qi, i E {1, 2, 3, 4}. Let 7 =

minjk q3 qk, F = maxj3 k q3 qk and define the vertex between qi and qj as qij = .

Upon subdividing the tetrahedron, there are three different types of edge in the new
smaller tetrahedra. Refer to Fig. C.1 for a depiction of these three types.

The first type of edge (blue in Fig. C.1) is a corner edge from a vertex to an edge
midpoint. The cosine angle between the vertices created by a corner edge is

qiqij= 1+ q > 1 +7. (C.6)
2 - 2

The second type of edge (orange in Fig. C.1) is a tie edge from an edge midpoint to
an edge midpoint along a face. The cosine angle between the vertices created by a tie
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edge is

T~q~ T T2 + qi qk + qj qj + q, qk
Ejvi = >

2 1+ qqj 1[+ q~iqk

T> T1+q 9k +%q_+y >I+3-y

2 1FI+ qT q 1-1-+qfqk 2 (1 '+)
(C.7)

To see the rightmost inequality, consider the minimization

min s.t. Y + x,y F .
xy 2V + +y

(C.8)

The optimum solution is at x = y =y, since the function is symmetric and monotonic
in x, y:

d (1+-y+x+y 1
d( 21 +xl1+y 4 1(+x1+y

1 (
4++>4N'P11 1v- -yk

7I+y)(+ )
- > 0.

1+

(C.9)

The final type of edge (green in Fig. C.1) is a skew edge from an edge midpoint to
an edge midpoint through the interior of the tetrahedron. The cosine angle between
vertices created by a skew edge is

T T T Tqj qk + q qj + qIqk + q,7 ql
T + q~kqj ql q~qlqqkl - T

2 i1+qqj l+qiqI

(C.10)

Note that we can choose any of three skew edges in our refinement. Therefore, we can
formulate bounding the skew edge dot product as a process where "nature" creates
three skew edges, and we select the best one (i.e. the one of maximum dot product).
Thus, in the worst case, nature solves the following problem: given a selection of a skew
edge, minimize its dot product such that the other two dot products are lower (and
thus nature forces us to pick that edge). Let

sqT q3+qT
si = 1q3 + q2 q4

82qT q4+qT
= q1 4 + q2 q3

T T
S3 -q 1 q2 +F qi q4

PI = (qTq3)(q2 q4)

P2 = (q Tq4)(q2 q3)

P3 = (q, q2) (qi q4 )-

(C.11)

Then without loss of generality, we assume the ordering

sl + S2 > + 8 3  > 82 +s 3

21 -+s3+P3 2-1-s2-+-p2 2+ si+pi
(C.12)

Now since the function f(x, y) = (1 + x)(1 + y) constrained by x + y = c, x, y ;> 0,
reaches its maximum at x = y =, we can reduce all of the fractions above until
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1 + si +Pi = (1 + si/2)2 , and therefore redefining xi = sj/2, this problem is reduced to
minimizing the maximum fraction of

X1 + X2 > X1 +X3 X2 + X 3  (C.13)
1+x 3 - 1+X 2 - 1+X1

Note that while the ordering of the inequalities may switch, we can assume without
loss of generality that the above holds (since we can simply redefine labels 1, 2, and 3
accordingly). Next, note that the first inequality above implies that x 2 > X3, and the
second inequality likewise implies that xj ;> X 2 . Therefore, minimizing over x, and X 2
while keeping x3 fixed yields

2X3  (C.14)
1 + X3

And finally, minimizing over x 3 C [-y, F] yields

max qi qkl ;> .(C. 15)
skew edges 1 > (

For the final result of the proof, note that

l +y 1 + 3 2'y> > VYE [0, 1]. (C.16)
2 2 (1 +-y) + y

* C.1.4 Proof of Theorem 1 (Rotational Convergence)

Theorem C.1.1. Suppose yo = 360 is the initial maximum angle between vertices in
the tetrahedra tessellation of S3, and let

N =max 0, [log 2  s/)i- 1}. (C.17)

Then at most N refinements are required to achieve a rotational tolerance of e degrees,
and BB has complexity O(e-6).

Proof. Using Lemma C.1.1, we know that the minimum dot product between any two
vertices in a single cover element Q at refinement level N satisfies

N 2N-1(C.18)
l+N-1

This function is monotonically increasing (by taking the derivative and showing it is
positive). So we recursively apply the bound:

2 2 YN-2

7N 1+YN-2 47N-2 > > 270_(C.19)
1+ 2 7N-2 1 + 3 YN-2 1 + (2 N - 1)yo(

1+YN-2



If we require a rotational tolerance of e degrees, we need that 2 cos-1 N < E (noting
that the rotation angle between two quaternions is 2 times the angle between their

vectors in S3). Therefore, we need

7/N > cos (E/2). (C.20)

Using our lower bound, this is satisfied if

> cos (e/2) -- > N > log 2  (C.21)
I + (2N _ 1) -yo -cos(e/2)> 1 - 1

Since N must be a nonnegative integer, the formula in Eq. (C.17) follows. At search

depth M, the BB algorithm will have examined at most M tetrahedra, where

8 N+1 _ 1 C.2
M = 600(1 +8 +8 2 + ... +8N=600 7

7

Using the formula for N in Eq. (C.17) (and noting 8 = 23), we have

M = 0 70 = 0 cos (e/2) )3) (C.23)
cos(c/2)-l - 1 1 - cos (e/2) (

Finally, using the Taylor expansion of cosine,

M= 2 E23) = 0 (E-6). (C.24)

* C.1.5 Derivation for the fkkf and ukk' Optimization

We need to show that maximizing pT(q o v) for q E Q is equivalent to maximizing puTV

for v= Ma, a > 0, a c R 4 , for some M E R3 x4 . The following lemma establishes this
fact.

Lemma C.1.2. Let Q be a projected tetrahedron cover element on S3 with vertices

qi, i = 1,...,4, define m E R3 satisfying ||ml = 1 (i.e. m E 52), and let M be the set
of vectors reached by rotating m by q E Q,

MA{x ER3 :x=qom,qEQ}. (C.25)

Then A can be described as a combination of vectors in R3 via

M = {x E R3 : = 1, Ma, ac R4+. (C.26)

where mi - qi o m c R 3, and M A [mi -m 4 ] . IR3
x4GR
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Proof. In this proof, we make use of quaternion notation. If q = xi + yj + zk + w is
a quaternion, then its pure component is - = xi + yj + zk, its scalar component is
q w, and conjugation is denoted q*.

To begin the proof, note that q E Q implies that q = Qa for some a C R4, by
definition. Since q o m is a rotation of a vector, it returns a pure quaternion; thus,

qom = = aajqimq = azajqtmq
(C.27)

= c aicjqimqiqiq = a ajmiqiqj
i~j iji

where ac is the ith component of a. Now note that qiq is the quaternion that rotates
mi to mi:

(qiq') o mi = (qiq )mj(qiq )* = qiqqjmqjq*qt = qimq' = mi. (C.28)

Therefore, the axis of rotation of qiq is the unit vector directed along mi x mi, and

the angle is Oij. Since mi x mi = sin (9ij) m- x mi, we have that

qsiqn* mi x m i  1 / + cos -l . (C.29)
sin 6ii ) LiJ

Using this expansion along with the identity r = riK + 9 + Y x k, we have that

q o m = aia miqiq

ij~

2 ((m.30)
= a Mi + aiaj (mniiqj + mi x qi(C30

a mi + a ae ((Mi + mi) cos

+ ( sin O2) (mi x (mi x mi) + mi x (mi x mj)))

Now noting that for any unit vectors a, b E R3 with angle 0 between them, we have

a x (b x a) = b - (cos O)a (C.31)

which can be derived from the triple product expansion identity a x (b x c) = b(a - c) -
c(a - b). So applying this to mi x (mi x mi) and mi x (,mi x mi)

qoim = Eami + Z aia (mi + mi ) cos 2

(C.32)
sin (92J/2)

+ sin /) (mi - cos j mi + mi - cos ijmi)
sin Oij



and finally using the double angle formulas,

qom2 mi +Zaia ((mi + mj) sec (C.33)
q o Oi n i <.E ji<j (i

combining, thus

q o m -- ajmi sec ( (C.34)

Since sec(6) 0 VO E ( the coefficients are 0 V6ij (-7r, 7). Therefore, q o m
is a linear combination of the vectors mi with nonnegative coefficients. U

* C.2 Translational Alignment Derivations and Proofs

Recall that we reuse notation in this section from the rotational section to simplify the
discourse and draw parallels to the rotational problem.

E C.2.1 Linear Upper Bound on f
For any z E [a, b] where 0 < a < b, we can express z as a convex combination of a and
b, i.e.

z = Aa + (1 - A)b = A -a (C.35)b - a

And, since f(z) = ez is convex,

f(z) = f(Aa + (1 - A)b) < Af(a) + (1 - A)f(b) (C.36)

Zf (b) - f (a)) + bf (a) - af (b) (.7
b -a b -a

In the main text, since we know ikkl zkk1 (q) ukk4 for any q E Q, we can use the
above upper bound formula with a = kkf and b = ukk.

* C.2.2 Proof of Theorem 2 (Translational Convergence)

For translation, we have a similar result to Lemma C.1.1, but it is much simpler to
show; the diagonal of each rectangular cell is simply 1/2 that of the previous refinement
level, i.e.

7N-1 _ 
=EN- (C.38)

2 2

Theorem C.2.1. Suppose 'Yo is the initial diagonal of the translation cell in R3, and
let

N 4 max {0, [log 2 20}. (C.39)
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Then at most N refinements are required to achieve a translational tolerance of e, and
BB has complexity O(E-3).

Proof. If -yo is the initial diagonal length, then 7yN 2 N-70 . So to achieve a transla-
tional tolerance of e, we need that YN < E, meaning

2 -N= < -- N > log2  . (C.40)

Since N must be at least 0 and must be an integer, the formula in the theorem follows.
As the branching factor at each refinement is 8, the BB algorithm at level N will have
examined at most M cells, where

M = I + 8 + 82 + +N=8N1-I (C.41)
7

Substituting the result in Eq. (C.39) (and noting 8 - 23), we have

M =O 6 _ E-3) . (C.42)

E
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Appendix D

Derivations Pertaining to
Direction-aware SLAM

M D.0.3 Bingham Distribution Approximation via a von-Mises-Fisher Distri-
bution

Here we show how to approximate the Bingham distribution which is obtained as the
posterior of the surfel orientation given surfel locations, with a von-Mises-Fisher distri-
bution. Recapitulate from Sec. 5.2.2 that

p(ni | pi, PNM, ZNj, Zi) = HjN, A(nTpi; En 1 T a) zi=zj (D.1)

oc exp 2jEN -1 zi (pj - p)11) (D.2)

cc exp -n n ~j6Ni ziz ,_pj(, jTn

exp (- !nTSijni) .(D.4)

This distribution has the form of a Bingham distribution [23]. To keep in the realm of
the von-Mises-Fisher distribution, we seek to approximate this Bingham with a vMF
distribution. We make the assumption that the Bingham distribution is peaked about
a single mode (and not fir example uniform on a great circle). This assumption is well
founded since only surfel locations belonging to the same directional cluster contribute
to it. This assumption manifests in the eigen decomposition of Sij which then has
one eigenvalue that is significantly smaller than the other two: ei < e2 < e3 . The
eigenvector qi corresponding to this eigenvalue then is the direction of the mode of the
Bingham distribution. We show this via Lagrangian multipliers:

argmin-inSn n argmin- i +A(nin-1) (D.5)
nES 2  nA

The derivatives with respect to n and A are:

a (i}nTSn + A(niTn - 1)) = -Sn + An (D.6)
(2n +

a (--!nTSn + A(n Tri n-1)) -Tn- 1. (D.7)
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Figure D.1: Comparison of the true Bingham distribution and the approximation with
two von-Mises-Fisher distributions for different standard deviations of the Bingham dis-
tribution (in log scale). The distributions shown are evaluate on a great circle around
the sphere leading through both antipodal modes. Note that for small standard devia-
tions, the both distributions are essentially uniform over the sphere as can be seen from
the scale of the plot. For larger standard deviations, the approximation is close to the
true distribution around the modes.
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Setting the derivatives to 0:

Sn = An nTn=1. (D.8)

By inspection the solution to these two equations are n equal to the eigenvectors and
A to equal to the eigenvectors of matrix S. In particular the maximum is attained
at the eigenvector corresponding to the smallest eigenvalue: n = qi. This motivates
setting the mode of the approximating von-Mises-Fisher distribution to the eigenvector
corresponding to the smallest eigenvalue: p = q1.

The remaining unknown is the concentration r of the approximating von-Mises-
Fisher distribution. While we conjecture that there is a derivation for the value of T

as a function of the eigenvalues of S via for example KL-Divergence minimization, the
involved math is hard because of the integrals over quantities on the sphere.

Instead, by simulating various matrices S from sampled Gaussian distributed vectors

pi - pj we find the relationship

2e2 e 2  (D.9)
e2 + e3

to yield von-Mises-Fisher distributions that closely match the Bingham distributions. In
Fig. D.l we plot the true Bingham log density in comparison to an approximation with
two von-Mises-Fisher distributions (one in the opposite direction) for different realistic
noise levels of S. The approximation seems valid especially around the modes of the
distribution and for concentrated Bingham distributions with standard deviations in
the range of 0.1m to 0.2m which is the range of standard deviations the direction-aware
SLAMsystem implicitly encourages by sampling sparse surfel locations and constraining
the nearest neighborhood graph to neighbors within 0.2m.

* D.0.4 ICP Point-to-Plane Alignment Contribution

The point-to-plane cost function is

fp2pl = In'(wTcx - P,) 11 (D.10)
icA

=~ ~~X _ Hn'"'~-p,) + Jo (WTcExp (w) x~ w (D. 11)
iEA

where, dropping the indices, the derivative is

nTaTExp(w)p = -nT (RR(WR)p + RV(WR)wt + t) (D.12)aw

= (nTRR(WR)p + nTRV(WR)wt + nit) (D.13)

= (-niTR[p] nTR) , (D.14)
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where we have used properties of the exponential map for SE(3) and its derivative
outlined in Sec. 2.7.2. Following the strategy from Sec. 5.2.3, the rows of J and b are:

-xi| TRwni cRwn) = (xP x (cRwni) cRwni) (D.15)

bi = -n(Texp - pi ) (D. 16 )

* D.O.5 ICP Photometric Term

As introduced in Sec. 5.2.3 the photometric error is the difference between the model
intensity I at a given point pi in world coordinates and its current observed intensity

Ic:

fi ||Ic(7r(CTWpi)) - I1,2 (D.17)
icA

11Z1c-VC + r(x) o(wTcExp(w))-pi _ hH11 (D.18)
ax aw

iEA

Dropping the indices, the derivative with respect to a small motion W is

a(TExp(w))-p = ([RT(p - t)]X -I) (D.19)

as derived in Appendix A.9.4.
Adopting the pinhole camera model the projection function r(p) is:

& fu + Uc
7r(P) = (D.20)

- fv +U,

where f, and f, are the focal lengths and uc and vc are the centers of the camera in u

(column) and v (row) direction.
The derivative of this projection operator is

&7r(p) _ 0 - fu (D.21)
Op 0 A - f

Putting everything together according to the strategy outlined in Sec. 5.2.3, the
rows of J and b are

i = Vic [) RT (p, - Wtc)] -I) (D.22)

bi = It - Ic. (D.23)
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