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Abstract

In this thesis, I have addressed the question of how to calculate the total relativistic

mass for a patch of a spherically-symmetric matter-dominated spacetime of nega-

tive curvature. This calculation provides the open-universe analogue to a similar

calculation first proposed by Zel'dovich in 1962. I consider a finite, spherically-

symmetric (SO(3)) spatial region of a Friedmann-Robertson-Walker (FRW) universe

surrounded with a vacuum described by the Schwarzschild metric. Provided that the

patch of FRW spacetime is glued along its boundary to a Schwarzschild spacetime in

a sufficiently smooth manner, the result is a spatial region of FRW which transitions

smoothly to an asymptotically flat exterior region such that spherical symmetry is

preserved throughout. I demonstrate that this mass diverges as the size of the patch

is taken to include the entire universe, and discuss the intuition provided by a classical

approximation to the total mass using the formalism of Newtonian Cosmology.

Thesis Supervisor: Alan H. Guth

Title: V F Weisskopf Professor of Physics and MacVicar Faculty Fellow
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1 Background and Motivation

1.1 Notations and Conventions

Notation Definition

n-dimensional manifold

(n-1)-dimensional hypersurface in M'

The manifold M "exterior" to E, described by the Schwarzschild metric

The manifold M "interior" to E, described by the FRW metric

M+I,, The Schwarzschild side of the hypersurface

M-|., The FRW side of the hypersurface

{M} = (t, X, ,)

{X4'} = (t', r', 9', ')

Hyperspherical coordinates on M-

Spherical coordinates on M+

Ya = ('r, 6, 0) Coordinates on E

The holonomic basis of M+, ea -

UA = e/ Tangent vectors to E,

expressed in the holonomic basis of M+

A normal (co)vector field to a hypersurface E

U/I

(n,,) n/-

8
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Notation Definition

ab

The metric in spherical/hyperspherical coordinates on M+

The metric induced on a hypersurface E

from the embedding space M', via the pullback map

The jump in a rank (k, 1) distribution-valued tensor A across a hypersurface E.

[A] AjZ, - AIr-

The scale factor as a function of coordinate time t

Uo- =nn., the square of the unit normal vector on a hypersurface E,

if E is timelike

if E is spacelike

The four-dimensional extrinsic curvature tensor

of a hypersurface E in the manifold M

The three-dimensional extrinsic curvature tensor of a hypersurface E,

defined by taking the projection of K to E

9
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1.2 Motivation

General Relativists have long debated the possibility of defining a meaningful expres-

sion for the total relativistic energy of an arbitrary curved spacetime (1). Existing

formalisms for calculating total relativistic energy, such as the Arnowitt-Deser-Misner

(ADM) energy, are applicable only to spacetime geometries which are asymptotically

flat. In 1962, the famous Russian astrophysicist Yakov Borisovich Zel'dovich devised

a method for computing the total relativistic mass of a closed universe described

by the Friedmann-Robertson-Walker (FRW) metric (2)(3). Zel'dovich considered a

finite spherically symmetric (0(3)) spatial region of an FRW universe surrounded

with a vacuum described by the Schwarzschild metric. Provided that the patch of

FRW spacetime is glued along its boundary to a Schwarzschild spacetime in a suf-

ficiently smooth manner, the result is a spatial region of FRW which transitions

smoothly to an asymptotically flat exterior region such that spherical symmetry is

preserved throughout. Some four years after Zel'dovich's initial calculation, Israel

first published his well-known Junction Conditions, a set of conditions that describe

the discontinuity, or junction, between two spacetimes separated by a boundary re-

gion (4). In this paper we adopt these formalisms laid out by Zel'dovich and Israel

to calculate an expression for the total relativistic mass of a spatial patch of an open

Friedmann-Robertson-Walker universe dominated by matter. We will show that this

mass diverges as the size of the patch is taken to include the entire universe. Sec I

will introduce some concepts and definitions of central importance to our calculation.

We will fully characterize the geometry of an FRW patch in Sec. II and perform the

embedding of its boundary in Sec III. In Sec IV we will apply the Israel Junction

Conditions to derive an expression for the total relativistic mass of an FRW patch.

We end with a discussion, in Sec V, of the physical interpretation of the total rela-

tivistic mass and compare our result at small circumferential radius to the classical

prediction of Newtonian cosmology.

10
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1.3 Background Theory

The Einstein Field Equations in General Relativity are a set of equations of mo-

tion which relate the Stress-Energy tensor, which specifies the distribution of energy

and momentum in a spacetime, with the Einstein tensor, which describes spacetime

curvature. Beginning with a spacetime metric g,, and Stress-Energy tensor Ttw,

it is necessary to solve the Field Equations to fully characterize the evolution of a

spacetime. Although we will assume a familiarity with the basic tenets of General

Relativity, a short summary of the Field Equations is provided for convenience. In

this paper we will work in natural units, in which Newton's gravitational constant

G has been set to unity. The content of this section follows, at various times, the

discussions in (5), (6), and (7).

Given a metric g,,, the spacetime interval ds2 is given by

ds 2 = g,,dx(1.1)

The Christoffel connection is the unique connection derived from the metric tensor.

It is defined by
1

OV = g (a0gAV+aV9AA-(A9OV) (1.2)

All the information about the intrinsic curvature of a spacetime is encoded in the

Riemann tensor, which is given, in terms of the metric and Christoffel connection, by

RaLA = - + & 0- F6 OV + AA (1.3)

Taking the trace of the Riemann tensor, we obtain the Ricci tensor R,,. A further

contraction produces the Ricci scalar R.

R[IV = RAV, (1.4)

R =R"O (1.5)

11



The Einstein tensor is constructed from the metric, along with Eqs (1.4) and (1.5)

1
G1V = RAV - Rg,, (1.6)

The stress-energy tensor T,,, specifies the energy and momentum density and distri-

bution in the spacetime that is the source of the gravitational field. It may also be

thought of, in the context of Noether's theorem, as the conserved current associated

with Lorentz translation symmetry. The Einstein Field Equations relate T,1 to Eq

(1.6),

GAL = 87rG T,, (1.7)

1.3.1 The Friedmann-Robertson-Walker Universe

Note: In this section, derivatives with respect to coordinate time t will be denoted by

dots. Later we will use dots to denote derivatives with respect to proper time on the

hypersurface, -r; we will indicate when this notation is to be adopted.

In the next section we will construct a spherically-symmetric patch of a Friedmann-

Robertson-Walker (FRW) universe, thus it will be important to have a thorough un-

derstanding of the FRW geometry. The FRW metric describes an isotropic, homoge-

nous, universe whose expansion is governed by a scale factor a(t). In (hyper)spherical

coordinates, the line element is given by

ds 2 = -dt 2 + a 2 (t) (dX 2 + (x)dQ 2) (1.8)

Where

dQ 2 = (O)d6 2 + sin2 0d 2  (1.9)

is the metric on the two-sphere, S2, and

sin(X), if K = +1 (closed)

( X, if K = 0 (flat) (1.10)

sinh(X) if K = -1(open)

12
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We will work throughout with the open FRW metric, in which , = -1. The FRW

solution has the following non-vanishing components of the Christoffel connection in

the holonomic basis, up to symmetries. 1

F = sin2 (6)F' 0  sin2(6) sinh2( X) F = sin 2(0) sinh2 (X)a(t)&(t)

&(t)
ff = 

Fo = Fd, = (t)

Il sin2 (0)F = -sin 2 (0) sinh(X) cosh(X) (1.11)

FO= F0 = coth(X)

FO= - cos(0) sin(6)

FO = cot(0)

Non-vanishing components of the Riemann tensor, again up to symmetries 2, are

given by

Rtoto = sin2 (0)Roto = sin2 (O) sinh2 (X)Rxtx = sin2 (6) sinh2 (X)ca(t)&(t)

RxtXt = Rotot Rtot - 6(t)
ast (t)

ROXk = ROXO = sinh2(X)Rxoxo = sinh2(X)R6oa = &(t)2 _ 1

sin2(0) sinh2 (X)Rog = sin2(0) sinh2(X)RX., , &(t)2 _ 1
(1.12)

From the Riemann tensor, we may compute the Ricci tensor.

-3d(t)
a(t) (1.13)

RXX = sinh- 2 (x)Roo = sin - 2 (0) sinh- 2 (x)RO4 = -2 + 2&(t) 2 + a(t)d(t)

'The Christoffel connection is symmetric under interchange of the two lower indices, PA, = IA
2When the Riemann tensor has all lower indices, RysM, it is antisymmetric in its first and

last pair of indices under interchange of indices, R,,, = -Rvtx, = R,,,x. It is also symmetric
under exchange of the first pair of indices with the last, R,,, = RA.... The Riemann tensor has
additional symmetries but those described here are sufficient for our purposes.
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Finally, the Ricci curvature scalar is

RA -R- 6[a(t)&(t) + 6(t)
2 

- 1]
a2(t)

(1.14)

1.3.2 The Friedmann Equations

The Friedmann equations are a pair of independent equations relating the energy-

momentum of an FRW universe to the scale factor, a(t). The form of the Friedmann

equations will depend on our choice of Stress-Energy tensor; we consider the T, for

a perfect fluid with mass density p and pressure P.

p

0
T =

0

\0

0 S0

giap
(1.15)

The equation of state relates mass density with pressure via

P = wp (1.16)

where the covariant conservation of

termine the dependence of the mass

refer to the following two equations

respectively.

((t))2

&(t)
a(t)

the Stress-Energy tensor, V,T"' = 0, will de-

density on the scale factor. Henceforth we will

as the first and second Friedmann Equations,

87rp(a) 1
=+

3 + 2(t)

= 4- (p(a) + 3P)
3

(1.17)

(1.18)

A little context may be helpful here. Astrophysical observations have suggested our

universe has gone through three periods of domination by different forms of energy-

momentum. For the first 5 x 104 years, our universe was dominated primarily by

radiation. In the following 9 x 10 years, our universe was dominated by matter, and

14
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for the most recent 5 x 109 years it has been dominated by dark energy. We have

considered a matter-dominated FRW universe, corresponding to the second energy-

momentum phase of our own universe, in which the pressure P can be neglected. A

perfect fluid with zero pressure is called dust, and the corresponding stress energy

tensor takes a particularly simple form

p 0 0 0

0 0 0 0) (1.19)
0 0 0 0

0O 0 0 0)

We will derive the Friedmann equations by manipulating the Einstein equations,

using (1.19), (1.13), and (1.14), for a universe dominated by dust. Beginning with

the Einstein tensor,

Gtt = 2 (_I + 6Z(t)2) (1.20)
a(t)2

Gx = sinh~-2(X) Goo = sin -2(0) sinh -2 Goo = I _ d(t)2 - 2a(t)d(t) (1.21)

the field equations produce two independent equations,

2 (_1 + &(t)2) = 87rp (1.22)
a(t)2

I - &(t)2 - 2a(t)d(t) = 0 (1.23)

Manipulating Eq (1.22) yields the first Friedmann equation, (1.17). Substituting for

&(t) from Eq (1.22) and rearranging, we arrive at the second Friedmann equation,

(1.18).

1.3.3 The Schwarzschild Solution

The Schwarzschild metric provides the unique spherically- symmetric vacuum solution

to the Einstein Field equations. In spherical coordinates, with the coordinate chart

15



-P {t',r', ', '}, the metric is written

1
ds 2 = -f (r')dt2 + dr'2 + r12 dQ'2  (1.24)

f(r')

where, as in the FRW metric, dQ 2 is the metric on a two-sphere S2. The non-vanishing

components of the Christoffel connection are

,-, M r (-2M + r')M
(2M - r')r' - r'3

Ot'/ = - cos(9') sin(9') F sin2 (') o, =sin2 ( ')(2M - r') (1.25)

,'o ,= 1o /, -cot(0')

The non-vanishing components of the Riemann Curvature tensor are given by

2M
Rt r/tr = 2R0'rtr'o, = 2RO" ,, = 2

(-2M + r')r'2

pt R'a, 1 R~ , -
R t/ottlo, = R i 0,,,r/= -- R01010101, =

2 r' (1.26)
, r -M sin2 (')
Rr =2 r'

tt'r= 2R'ttt' 2R t/ot_ 2AM(-2M + r')
rM

The Schwarzschild solution describes spacetime outside of the Schwarzschild radius,

R*, and it can also describe the spacetime inside the Schwarzschild radius, but one

must keep in mind that for r' < R*, r' is the timelike variable and t' is spacelike. The

Schwarzschild coordinates do not give a clear description of how these two regions

join, since the metric in these coordinates is singular at r = R*. The constant M is

identified as the mass of the gravitating body.The uniqueness of the Schwarzschild

metric as the only spherically symmetric vacuum solution to the field equations is

the subject of Birkhoff's theorem. It is a consequence of Birkhoff's theorem that

the Schwarzschild solution is also static for r > R*. 3 A crucial consequence of the

'A proof of Birkhoff's theorem consists of showing that a three-manifold that is spherically
symmetric, in the sense that is has three Killing vectors which are the generators of the Lie Algebra
so(3), may be foliated by two-spheres. By extending the coordinates on these spherical submanifolds
by the coordinates on the two dimensional orthogonal subspace generated by geodesics that intersect

16
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properties of Eq (1.24) is that the Schwarzschild metric is asymptotically flat, making

it an appropriate choice of spacetime with which to surround our open FRW patch.

1.4 Hypersurfaces

In this subsection, we present a collection of definitions and concepts which will be

important for our calculations in the following sections. We attempt to present the

necessary background theory with an appropriate degree of formality whilst indicating

the relevance of each definition to our eventual computation.

1.4.1 Definitions

Definition 1.1. Let E"' and M' be differentiable manifolds, where dim(Z) =m <

dim(M) = n. The differentiable mapping p E -+ M is called an immersion if the

differential map between tangent spaces, d9op TE -+ T,(p)M is injective for all points

p E E. When the immersed manifold has codimension one, n - m=1, En-1 is called

a hypersurface.

Definition 1.2. A parameterization of a surface En-1 C M' at a point p is a differ-

entiable homeomorphism

A : U c Rn-1 N n E c R (1.27)

where U C Rn-1 is an open subset and N n E C Rn is the intersection of a

neighborhood N C Rn about the point p and the hypersurface E. Then A is called the

parameterization or coordinate chart of the hypersurface E at p and the hypersurface

is regular.

A consequence of these definitions is that a function between parameterizations (or a

change of coordinate chart) is itself a diffeomorphism. Therefore, a hypersurface may

be thought of as the union of open subsets of R"-1 which overlap in a smooth way.

each sphere normally at every point, one can construct a full set of coordinates for the spacetime
and thus show the resultant metric, with an appropriate choice of coordinates, may be written in
the form of (1.24).

17



In the special case that the immersion mapping, p : E -+ M is also a homeomorphism

onto its image o(E) C M then we call the mapping o an embedding and En-I a

submanifold.'

Returning to our open FRW patch, we will see that the boundary of the patch as

we will define it constitutes a regular submanifold of codimension one. Although the

boundary is a true n - 1-dimensional submanifold, we will consistently refer to it as

a hypersurface, as is conventional.

Definition 1.3. Let Mn be a differentiable manifold. The interior of M , M', is the

set of all points p E M such that there exists a homeomorphism q : Np -+ Up C Rn

mapping a neighborhood of p to an open subset U of Rn. Define the boundary of Mn

as the relative complement of the interior, M - (MO)c

Definition 1.4. Given an n-dimensional manifold Mn and an atlas, or differentiable

structure (0a, Ua), consisting of differentiable homeomorphisms 0c that map open

subsets U of M to Rn , we define a transition map vfl to be the composition map

that takes points from one open set in the manifold to another via RI

V.0 = 00 oa p (1.28)

When all the transition maps va preserve orientation then the manifold as a whole

is said to be orientable.

One way to construct a manifold with boundary, which we will use in the next

section, is to define an orientable hypersurface 5 of a manifold and discard the portion

of the manifold that lies to one side, so that the hypersurface forms the boundary and

the remaining portion the interior.We will define an open FRW patch as a manifold

with boundary, where we will treat the boundary as a hypersurface to be embedded

4A submanifold need not be of codimension one, it may have codimension anywhere from zero
to n. A hypersurface whose immersion map is homeomorphic onto its image is a submanifold of
codimension one. Informally, an immersed hypersurface which is not a submanifold may be self
intersecting or, even if the immersion is injective, the immersed hypersurface may not be compact.

'Here the distinction between hypersurface and submanifold is important. Although we use the
term hypersurface here, this procedure requires a submanifold structure.

18
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in a manifold equipped with the Schwarzschild metric. Thus we will use the terms

boundary and hypersurface interchangeably.

Although it will be helpful to have a formal understanding of a hypersurface, in

practice we will construct a hypersurface by specifying a restriction on the set of

coordinates. Given coordinates 4/ on a manifold M, a hypersurface may be defined

by the function

f ( A (1.29)

for a constant fo.

It follows that if a manifold with boundary is orientable and connected, as our open

FRW patch will be, then there exist only two possible orientations on the manifold.

Orientation on a manifold with boundary induces an orientation on the boundary in

the natural way. If (0,, U,) is an oriented atlas on M, then the restriction of open

sets in the atlas to the boundary, U, aDM = (U,)r defines an oriented atlas for the

subspace OM = E. Under this construction, the tangent space of the manifold at any

point q E M, TqMla , is isomorphic to TqE E R, where R represents the choice of

a normal vector field. Thus, fully specifying the properties of an orientable boundary

requires the direction of the normal vector field be fixed.

1.4.2 Pullback Map and the Induced Metric

Definition 1.5. Let M and N be two smooth 6 manifolds, and consider the smooth

mappings yo: M -+ N and f : N -* R. The pullback of f by (o is defined to be

p*f = (f o o) : M --+ R (1.30)

Definition 1.6. Let o : M -+ N be a smooth map between two smooth manifolds.

The pushforward of p at a point p E M is defined to be the differential map

dp : TpM -+ T ,()N (1.31)

6 a smooth n-dimensional manifold is one whose atlas consists of infinitely differentiable mappings
of open sets into R'.

19



There is a natural way to pull back one-forms, or elements of the cotangent space

of N, wp E T*(N), and a natural way to push forward vectors, or elements of the

tangent space of M, Vq E TqM, but the converse is not true.7 The pullback of a

metric tensor, however, is well defined, as a pullback can be constructed for tensors

of rank (0, 1), since they only have covariant indices.

Definition 1.7. Let M and N be two smooth manifolds, and consider a metric tensor

g at a point p E N, g : TpN x TpN --+ R, and a smooth embedding map W : M -4 N.

The pullback of g to M, y, is called the induced metric on M

o*g = y : TM x TM -+ R (1.32)

Given coordinate charts {1} on N and {ya} on E, the induced metric is given by

Yab a yb Mv (1-33)

1.4.3 Extrinsic Curvature on E-

Definition 1.8. The Projection Tensor PA, for a hypersurface E with normal vector

field n4 is given by

P = gliv - c-njnv (1.34)

where o = nn".

Eq (1.34) implies that, for objects already tangent to E, Pyv behaves simply as

the metric tensor.

Definition 1.9. The Lie derivative along a vector field va of a vector u,8 is given by

the Lie bracket,

Le(Ud) = [v, u]" - v"(au) - u3 (&4va) (1.35)

'A more careful but, for our purposes, needlessly complex definition of the pullback map states
that the codomain of the pullback map is actually the pullback bundle. This subtlety is notable
when the image of the pullback map is a proper subset of its codomain.

20



The Lie derivative acts on one-forms as

L,(w) = v"(Ow,3 ) + (oe9,v')w, (1.36)

One can show that the Lie derivative along the normal vector field n" of the metric

9 /, takes a particularly simply form,

ngi= 2V(,1 nv) (1.37)

Definition 1.10. The extrinsic curvature on a four-dimensional manifold is defined

as
1

K -V = nPpv (1.38)

Thus, substituting the definition (1.34) for P,, into our definition for extrinsic cur-

vature, (1.38),
1

KAV - I nPv

1
= ILn(g, - on,n) (1.39)

2

V(cno) - o-n(,a)

Evidently, the component of the extrinsic curvature which lies tangent to E is given

by V(,ny), thus a projection of the extrinsic curvature to E admits the decomposition

___ 8( ( 8("
Kab = KA = Vn, (1.40)aya gyb agya gyb

1.4.4 Gaussian Normal Coordinates

In this subsection we will develop the useful notion of Gaussian normal coordinates,

which significantly reduces the amount of work required to calculate the induced

metric and extrinsic curvature of a given hypersurface. Begin with a manifold M-

equipped with the FRW metric, as in Eq (1.8), where r = -1, expressed in coordinates

{t, X, 0, }. We define a boundary in terms of a hypersurface E c M- in the manner

described in Eq (1.29) by taking

X = Xo (1.41)

21



where Xo is a constant. Then E retains the spherical symmetry of the the spacetime in

which it is embedded and the coordinates 0, # on M- map identically to the angular

coordinates on E. Now consider a point on the hypersurface, p E E, and take a

neighborhood B C M- about p. For any point q E B, q lies on precisely one geodesic

XO(z) (up to scaling) which intersects E orthogonally. This construction is unique

up to a choice of orientation of E. We choose the positive orientation to be that in

which the normal vector field nc' points outwards from the FRW spacetime (in the

direction of increasing x). The Gaussian Normal coordinates at q E B are given by

"' = {, z, , q}, where T is the value of coordinate time t at the intersection of x (z)

with E, and z is the proper distance along the geodesic from q to E in the positive

direction. If we label the intersection of x'(z) with E as x"(0) = q' =(T, 0, 0, #), then

the natural choice for the orientation of the normal vector is to take

ri = fracdx'dz(O) (1.42)

1.4.5 The Israel Junction Conditions

In the special case that a hypersurface E divides a spacetime into two distinct regions

M+ and M- with different metrics, one may ask the conditions which the metrics

must satisfy so that the two spacetimes are smoothly joined at the boundary and the

Einstein Field equations are satisfied at the boundary.

A familiar analogue from which we may gain some intuition for the junction condi-

tions is provided by the boundary conditions for an electric field at a sheet of charge.

Consider a charge distribution with density

p(X") = U-(Xi)6(z) (1.43)

where the coordinates x= {z, X'} are Gaussian Normal coordinates and z is the co-

ordinate normal to the surface E. o-(xi) is the surface charge density, which describes

a delta-function contribution to the charge distribution at E. From the Maxwell
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Equations,

V - E p(x") (1.44)
E0

the discontinuity in the electric field across the surface may be calculated

V -E = 
(1.45)

- 60Ir -(Xi) J(Z) (1.46)

E+ - E- =(1.47)z z E

Eq (1.47) says that discontinuity in the normal component of the electric field is ac-

counted for by the charge density on the surface in order for Maxwell's Equations to

be satisfied across the surface.

We will see a similar dynamic in the following derivation of the Israel Junction con-

ditions. Discontinuity in the covariant derivative of the normal vector field will come

with a physical meaning: the existence of a layer of energy-momentum along the

hypersurface. 8

Definition 1.11. The Heaviside Distribution 1(z) is the distribution such that

+ if z > 0

a(z) 0 if z < 0 (1.48)

indeterminate if z = 0

The Heaviside distribution has the following properties:

" It is idempotent

O(Z)2 = O(Z)

" It is antisymmetric under multiplication

e(z)e(-z) = 0
8 The derivation put forth in this subsection will closely follow the approach of Poisson (6).
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* Its derivative is the Dirac Delta distribution

de
-=6(z)

dz

Definition 1.12. The jump in a tensor A across a hypersurface E is the difference

[Aa,6] = A+13 - A-, (1.49)

where

A+p = A( M+)I (1.50)

Aa- = A(M-)I

Let E be a hypersurface that partitions two spacetimes on which are given the

coordinate charts {x"} and {x'_} and metrics g+ and g,-,, respectively. Define the

metric g,, by

g1V = e(z)g , + E(-z)g,-, (1.51)

We will derive the Riemann tensor from this distributional metric and determine the

conditions under which it is a valid solution to the field equations by explaining the

meaning of any singular terms. Taking partial derivatives of 1.51,

&gj, = e(z)aAg+ + E(-z)Oag-~ + 6(z)(g', - g- )n\ (1.52)

Where in the last line we have made use of the fact that, in Gaussian Normal coor-

dinates, the (normalized) normal vector field is given by

nx = n'n,A9z = AZ (1.53)

In computing the Christoffel connection from (1.52), we will clearly generate terms

proportional to e(z)3(z), which are not well defined tensor distributions. Thus a

condition on the metric to be well defined is that this singular term vanish. In

Gaussian Normal coordinates, this is equivalent to the requirement that the jump in

the metric itself vanish (Eq (1.54)). A slightly weaker requirement, that the jump in
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the induced metric be vanishing, is applicable in any coordinate system (Eq (1.56)).

(g, - g-~1) = [g'V] = 0 (1.54)

Note that, while this expression for the jump in g., is coordinate dependent, it is

possible to amend this condition to an equivalent one

[g ia 0 (1.55)

by noting that the jump in the holonomic basis vectors across E must also vanish.

Note that the left hand side of Eq (1.55) is precisely the jump in the induced metric.

This gives the first junction condition,

[Yab] = (b7b - %b-) = 0 (1.56)

The Christoffel connections on either side of the hypersurface are

% / = I JP (a,>g* -Og ) (1.57)

And the distribution-valued Christoffel connection is then

I" = O(z)r f + E(-z)Fr- (1.58)

We may derive the distribution-valued Riemann Tensor,

R U = E)(z)R+,,,\, + e(-z)R--,, + 6(z) ([Fm ]nA - [Ij]n,) (1.59)

Since the metric and its tangential derivative are continuous across the hypersurface,

any discontinuity in the derivative of the metric is along the normal direction, z.

Define a tensor h,,, proportional to the normal vector,

og+ - = htenA (1.60)
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We may solve for h,,, using

hl.IV = (nnp)[9Ag.,]nA = [PxgpIjn (1.61)

Together with the definition for IF', we may write

1

2

(1.62)

Now consider the 6-function term in the Riemann tensor, Eq 1.59. Define a tensor M

such that

RAVA = O(z)R+A + 0(-z)R-'4 + 6 (z)R A

SV~a = ([IF']nx - [I, ]n,)

1
MA = (hr,nx - h"Ann, - h,,rn/nr + hrin"n,)

(1.63)

(1.64)

(1.65)

Since 9 represents the 6-function part in the Riemann tensor, it is natural to define

the tensor ,

-4ta, = -V a (1.66)

for the 6-function part of the Ricci tensor,

1
M,' = (han'nr + harin'nr - hnun, - hAV) (1.67)

and the Ricci scalar,

M = M"Ju = (h,,nI'n" - h) (1.68)

where h = hA. With equations (1.66) and (1.68), the 6-function part of the Einstein

tensor is

(1.69)
1

&ALI = -44V - -5gy1t
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Now that we have the full form of the Einstein tensor, we may use it to solve the

Einstein Field equations, and find the stress-energy tensor of the form

T e, = O(z)T,+ + E(-z)T-+6(z)S, (1.70)

where the 6-function part of the stress-energy tensor, as expected, comes from Eq

(1.69),
1

81rS., = 9,, = Mvv - I gg, (1.71)
2

So, represents the surface stress-energy tensor, which describes the existence of a

surface layer of energy-momentum on the hypersurface.

With this interpretation, it is clear that if a curvature singularity exists, the associated

6-function term in the Riemann-Curvature is due to this shell of energy-momentum.

By examining the explicit form of S,,, we may show that there is a meaningful ten-

sorial object whose continuity, or lack thereof, fully characterizes the second Junction

condition. From Eqs (1.66) and (1.68),

167rS,, = -he"ev + y'hyee (1.72)

Note however that the covariant derivative of the normal is

Vn - (h,1, - h\gnvn - han,,nA) (1.73)

Recalling from Eq (1.40) the projection of extrinsic curvature tensor, we may note

that
1

[Kab] = ege'[V~nv] = hp eteU (1.74)
a b2 1Wa b

Which, together with Eq (1.72) enables us to relate the surface stress-energy tensor

S,, to the discontinuity of the extrinsic curvature across the hypersurface, [Kab]. Thus

we have arrived at the second junction condition,

-1
Sab = ([Kab] - YabE[K]) (1.75)

8-7r
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2 A Patch of an Open Friedmann-Robertson-Walker

Universe

Note: Beginning in this section, we will adopt the convention that derivatives with

respect to proper time T = tI. will be denoted by dots, and derivatives with respect to

the conformal time q by primes.

We will now construct a patch of an open Friedmann-Robertson-Walker universe,

M-, by specifying a boundary E+ = M-1. just as in Sec 1.4.4. Beginning with

the FRW metric as in Eq (1.8) in the coordinate basis, a closed form solution to the

Einstein field equations is given by the set of parametric equations for the scale factor

a and the coordinate time t in terms of a new timelike variable r,.

a(r) = (-1 + cosh r/) (2.1)

t(r7) = (-rq + sinhr) (2.2)

(2.3)

Notice the relationship between Eqs (2.1) and (2.2),

dt(=) _0z(2.4)
dr

which identifies the parameter 77 as the conformal time. In terms of the conformal

time, the metric of FRW may be written

ds2 = a2 (n)(-dr/2 + dX 2 + sinh2 xdQ 2) (2.5)

(2.4) implies that

da . da 1 a'(77)- = a = _ - (2.6)
dt d77 I a r7)
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Rewriting the first Friedmann Equation, (1.17) in terms of a(r) and a'(r),

3 /'a'(ry)2
8p= 3-1

a2(r) (1 (?)

3 (a2 sinh2(ri) _i) (2.7)
a2()\ 4a2 (j7)

3 1
a2 (r7) sinh2 ()

Where in the last line of 2.7 I have used the fact that cosh 2 (7) - sinh 2 ( ) = 1 to

write cosh 2 (r/) - 1 as a product of differences (1 - cosh(r/)) (1 + cosh(r7)). Letting

p(a) depend on ci(r), we arrive at

3
p (a) = (2.8)

a7r (-I1 + cosh T)3

p(a) 1 (2.9)
87 a

2.1 Gaussian Normal Coordinates

Note: Throughout this subsection only, the notation xA(z) will denote the normal

geodesic to the boundary parameterized by z. In later sections, a similar notation, x",

will be used for the coordinate chart on a Schwarzschild spacetime. As was discussed in

section 1.4.4, Gaussian Normal coordinates are a convenient way to express the metric

near to the hypersurface E and make the necessary computation of both the induced

metric and extrinsic curvatures on E much simpler. As z is the unique coordinate

along which a particle might move off the hypersurface, a restriction of the metric to

E, (at X = Xo) implies that the spacetime interval has no variation along z, and the

coordinates of E are clearly just y"' = {T, 0, 0>}, where x is restricted to Xo,

ds 2 -dT 2 + sinh2( Xo)dQ 2 (2.10)
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And the pullback of the metric g,, onto E in Gaussian Normal coordinates, i.e. the

induced metric on E, is given by

_-1 0 0

'GN 0 sinh2 X s 0 (2.11)

0 0 sin2 0 sinh2 X0

The extrinsic curvature on E also has a nice and simple form in Gaussian Normal

coordinates (8). Because the unique normal vector field to the hypersurface, expressed

in Gaussian Normal coordinates, is just n= (0, 1, 0, 0), Eq (1.38) reduces to

Kap = - = (2.12)

Where g,8 is given by Eq (2.11) and the indices a, / take values in {y"'} = (r, 0, 5).

Our project now is to find the precise form of the metric g.G,1 for the entire four-

dimensional FRW spacetime, from which we may deduce both the induced metric

and extrinsic curvatures on E with the help of the definitions above. We will once

again use the coordinate charts {{A} = (t, x, 0, ) and {{"'} = (r, z, 0, q) for the

original FRW coordinates and Gaussian normal coordinates on M-, respectively.

In order to find the metric on M- in Gaussian normal coordinates, gN, we must

solve the geodesic equation to determine the normal geodesics to the boundary. The

form of the geodesic equation best suited to our calculation is

-- (g'ao< - = -- lo --- (2.13)
dz jPdz 2&x!'&z iz

where z is an affine parameter. Now, expanding the coordinate time t around the

point z = 0 (i.e. on the boundary, where tlz o = t(0) = r and xL,- = x(O) = X0),

t(z) = t(0) + z dt + 1d2  + O(z3 ) (2.14)
d-r _O 2 dr2 z=O

As we are interested in regions close to the boundary, we consider only the terms in

Eq (2.14) up to second order in z, and note that we must have Lt = 0 in order
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that the geodesic x"(z) be normal to E- within a neighborhood of E. Additionally,

to lowest order in z, t ~ -, thus we may reasonably take the argument of the scale

factor to be r for small values of z.

Let us examine Eq (2.13) by components. We note that both x and t are functions

of T and z by writing explicitly x(T, z) and t(T, z). Neither 0 nor 0 depend on T and

z.

When y = 0, (2.13) becomes

= a()&(r) -- (2.15)
dZ2 dz

- a2(T)- = 0 (2.16)
dz _ dz

From Eq (2.16), we have that

a2(T) dX fod(Xy TO) (2.17)
dz

for an undetermined constant fo(xo, To) depending only on Xo and T0, where T0 is

the value of T at the point where the geodesic intersects E-. We will surpress the

arguments of fo from now on. Substituting for X in Eq (2.15), we obtain

d =t _ F)2 (2.18)
dz2 a3(r)

Using the formula for a change of coordinates from the original coordinates on FRW,

= (t, y 0, ), to the Gaussian normal coordinates {{'} = (T, z, 6, #), the metric

in Gaussian normal coordinates is given by

GN oyk
9 (2.19)
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Since the 0 and 0 coordinates on M- map identically to 0, # on E-,

GN 9

GN
g04,

(2.20)

(2.21)

it only remains to find g N and 9 GN. Furthermore, we will require that the coefficient

of dz 2 in the line element in Gaussian normal coordinates be normalized, consistent

with the definition of Gaussian normal coordinates, so that

gGN (2.22)

From Eq (2.19),

Within a neighborhood of the boundary, x(T, z) may be expanded about z = 0 such

that
ax

-Z
- , (x(O + z -

dz Z.0
+ O(z2))

(2.25)

= ay (Xo + zc1)

where we have defined ci = A . Equation (2.25) implies that, since 2 is approx-

imately constant close to the boundary,

Cl OX
C z

(2.26)

We can exploit the requirement that gGN = 1 to solve for ci by noting that

d
dZ zgz] z;=

d
dz L 2 (_)

(,,Xx) 2 (at) 
22 ~

Z=O Z=0- (2.27)

= - [a2(r~c]d a -F
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a2
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Thus
1

q, w a()

Substituting ci = 2 in Eq (2.17), we find that the constant function fo is

fo = a(To)

(2.28)

(2.29)

We now have the information we need to determine the right hand side of Eq (2.18)

near to the boundary,
d2 t 6(-r)

dZ2 a(Q)

Thus t(z, r) is completely determined to second non-vanishing order in z,

t (Z) =_ r - - (T)2 a(-F)

We may now calculate the (T'r) component of the induced metric, -Y, on E.

Eqs (2.31), (2.28), and (1.33),

(2.30)

(2.31)

Using

(2.32)

as expected.

2.2 Extrinsic Curvature

Recall that our objective is to calculate the extrinsic curvature tensor, (2.12), and

consider the K,, component

1 9 GN
K-2 - G

1
=2 az

z=O

Ox( >2(T (at> 21az , r -aT J

(2.33)

(2.34)
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Making use of the results from the previous section, it is evident that both terms of

Eq (2.34) vanish independently, so that we may conclude

K~r' = 0 (2.35)

The angular components of the extrinsic curvature, Koo and K00 are relatively simple

to obtain from Eqs (2.20), (2.21) and Eq (2.12)

1 (gGN COth(X)Koo  1 0-0N = a(r) sinh(X) cosh(X) KoV - (2.36)
2 az

gGN
Ko - I sin2 (6)Koo KOO' K 0

0  (2.37)
2 

(

3 Gluing an FRW Patch to Schwarzschild Spacetime

3.1 Embedding Equations

In order to glue the patch of FRW to Schwarzschild spacetime along the boundary

defined by X0 = x, it is necessary to find a set of equations which specify the way the

boundary may be embedded into Schwarzschild spacetime as a hypersurface. Recall

from our discussion in Section 1.4 that the embedding is specified by giving a set of

parametric equations for coordinates in the Schwarzschild spacetime as a function of

coordinates on E. In our notation, the coordinates on E are {ya} = (-r, 0, 0) and the

coordinates on M+ are {x'} (t', r', 0', 0').

X0(ya) = t'(ya)

Xl(ya) = r'(ya) 
(3.1)

X 2 (ya) QI(ya)

X3 (ya) 05,(Ya)

Our calculation is made easier by taking into account what we already know about the

hypersurface. Since E must have a spherical symmetry consistent with that of both

the FRW and Schwarzschild spacetimes, we know that 0'(ya) = 0 and q'(ya) = q5.
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Additionally, there can be no angular dependence in t' or r', so we may write both as

functions purely of the proper time on the hypersurface, T.

t'(y') = T(T)

r'(ya) = R(T)

O'(ya) = 0

0'(y) = q

(3.2)

(3.3)

(3.4)

(3.5)

To solve for explicit forms of (3.2) and (3.3), we now make use of the first of the

Israel Junction conditions, Eq (1.56), which requires that the induced metric on E+

be equivalent to that on E-. As we know, the induced metric on E- was computed

in Section 2. Since Eq (1.56) is manifestly coordinate invariant, we use the most

convenient form of -y-. In Gaussian normal coordinates,

-1 0

Yab 0 a2(T) sinh2 Xo

0 0

and the spacetime interval on E-

du2 - 7a-bdYady

d.2 = -- 1 2 + a 2 () sinh2(x o)d Q2

is
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On E+, we may calculate the induced metric by plugging in the embedding equations

and changing the time coordinate to proper time on the hypersurface, T,

ds2 = -f (r')dt2 + 1 dr'2 + r'2d Q2

(dt' ) 2 dT2 + 1 dr' 2
+a~ kdTr f(R(r)) d T(

= F)t2(7)+ F(+ ) i 2(,r) dT 2 + R2 (Tr)dQ2

(3.9)

(3.10)

where F(T) = (R(T)) = 1- 2(. Henceforth, we will usually surpress the argument w

of the functions R, i, and F unless it is instructive to include it. Comparing Eqs (3.8)

and (3.10), we get two independent equations from the condition that dU2 = do2

Fi2(r) - 1iN2( =T)

R2 (r) = af 2 (_) sinh2(Xo)

(3.11)

(3.12)

Eq (3.12) immediately gives an explicit analytic function for R(-),

R(r) = a(T) sinh(Xo) (3.13)

With a little more work, Eq (3.11) gives the following expression for d,

i2(T) = 1 (p2(r) + F)

(T)=- R 2 ()+F
F

(3.14)

Although Eq (3.14) could be integrated to determine T(r), we do not have an analytic

expression for this integral, and we won't need one. The current form is sufficient to

compute the extrinsic curvature on E+, our next project.

36



3.2 The Normal Vector Field

Recalling the definition of the holonomic basis vectors

(3.15)ya

we define a vector u which gives the velocity of a particle travelling along a geodesic

on E,

UA = e" = ~
7T TF

which has components
(at',

O 
= & Or' 

(1

aT' (3.17)
u1' 8 = iat' + R8r'

The normal vector field to E is the vector n" = g lu"n., where the normal covector

field satisfies
Dx"1,4ny = 0

for all a. Therefore, for a = -,

Ox"

n = Tnt, + Rn,, = 0

- y

(3.18)

(3.19)
nt/ = . nr/

T

The a = 0 and a = equations give no = no = 0. Expanding in components using

the one-form basis {dx'},

ndx" = nidt' + n,,dr' = .R n,,dt' + nrrdr'
T

Since n, is unique up to normalization, and both n,, and nt, are functions only of T,

there exists a normalization function A(T) such that nr. = +A(r)t, and

n,,dx" = A(r) (-k~dt' + idr') (3.21)

37

(3.16)

(3.20)



Evaluated at r' = R(T) and t' = T(r), gt't' =- and g' F, so

nta, = A(T) 1 + FTri) (3.22)
(F

We may enforce normalization to solve for A(T), where we choose n"n' = +1 because

the hypersurface is timelike (so the normal vector field must be spacelike).

A2(r) - F (3.23)
t 2 F 2 

_2

We need now consider that the normal vector field to E+ must be defined consistently

with that on E-, as they are the same vector field. In Section 2.1, the normal vector

field was constructed by taking nt(T, 0, <) at a point p E E to be the tangent vector

to the unique geodesic through p which intersects E orthogonally, xA(z, T), at z = 0.

In this construction we specified that the normal vector field points in the direction

of increasing x, which implies it must be pointing in the direction of increasing r', the

radial Schwarzschild coordinate, thus we require that the normalization factor A(T)

have the correct sign such that

nr",(r') - A(T)FiOrr' > 0 (3.24)

Eq (3.14) implies that Fi > 0 for all values of T > 0, therefore A(T) > 0. Referring

back to Eq (3.23) and substituting for j 2 (T) from Eq (3.14),

A 2(T) F
T 2 F 2 _ R2 (3.25)

= 1

38



So we must have A = +1. The normalized normal vector and covector fields are now

fully determined.

n, dxP = -Rdt' + idr'

np_, = Rat/ + FTari
-F

(3.26)

(3.27)

3.3 Extrinsic Curvature on E+

Let K,, be the four-dimensional tensor describing the extrinsic curvature of the hyper-

surface E+ embedded in the Schwarzschild spacetime M+. As previously described,

projecting K+ produces the three-tensor K,+ tangent to E+,

Ox" (9x"
K+ K+bya gyb A/

09ya &yb v

(3.28)

(3.29)

where, as before, {x"} = (t', r', 0', f') are coordinates on M+ and {ya} (T, 0, 0)

are coordinates on E+. Now, E+ was defined such that the angular coordinates on

M+ map identically to those on E+, 0' = 0, and 0' =, so KO+o and K+ are easily

calculated with Eq (3.29).

Koo = Vno

Where F(T) =f(R(T)) 1 - .M

raise an index,

= aono - I"n

- -(2M - R(T))T(r)

= R(T)F(T)t(r)

(3.30)

Using the induced inverse metric -yo on E+ to

1<0 OK FT Kkc
Ko = YKoo -= =TR KO
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Similarly,

=I = ri - I'n

- ~ ' - 0(3.32)

= sin2 (0)R(-r)F(-)iT(Tr)

And

0 + (R2 (7) sin2 ()) 
(3

_F(-r)i(T)
R(T)

Lastly we must determine the remaining component of extrinsic curvature on E+,

K+. Eq (3.29) requires we take a four-dimensional covariant derivative of the nor-

mal vector field n., but, although n, is a four-vector field it clearly depends only

upon three variables, and is defined only on E+. Both T(T) and R(T) vary with

proper time T along E+, thus a straightforward application of Eq (3.29) would re-

quire that we somehow extend the normal vector field off of the hypersurface.' We

will instead deploy a much simpler method, bypassing the need to calculate the full

four-dimensional tensor K,,, as we are really only interested in its restriction to E+.

Recall the definition of a velocity vector uA tangent to E+,

U/ = eA (3.34)

Eq (3.29), expressed in terms of these velocity vectors uA, is

Kf, = uAu"V (3.35)

'Extending the normal vector field to the entire spacetime may be achieved by choosing a foliation
of the spacetime into hypersurfaces, where each hypersurface has a normal vector field. Then any
point in spacetime lies on one such hypersurface and there is a unique normal to the hypersurface
at that point. Alternatively, we might simplify the calculation of extrinsic curvature by changing
from coordinates on the Schwarzschild spacetime from spherical to Gaussian normal coordinates by
solving the geodesic equation, as we did in Section 2. Both of these methods are computationally
more complex than the one we will employ here.
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Any component of the normal vector field is orthogonal to the vector u", so

nUi/I = 0 (3.36)

Since the left hand side of (3.36) is vanishing, so is its covariant derivative. Using the

chain rule, we may write

V,(nul") = nV,u" + u"Vrn, = 0

-n,V,u" = uVn,

We now define the acceleration vector, aA, to be

au = u"V Aug

so that the component of interest, K,,, can be written

(3.40)
K r =u"(u"V 0n,)

Therefore,

K; = -n. a" (3.41)

Expressing a' in terms of its components,

au a
(9= F PA (3.42)

Eq (3.42) can be expanded, using the Christoffel symbols for the Schwarzschild metric
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as given in Eq (1.25)

, .. 2MTR

FR
2

MR 2

ar 4 -FR
2

FMT 2

+ R2

(3.43)

(3.44)

Where, for neatness sake, we have suppressed the arguments of the functions T(T), R(r),

and F(r). Finally,

K4 = -nat/ - nar/

MR 2

FR2+

FMi2

R2
j t

(3.45)2MtRa

FR2)

The algebra is made easier by defining a function /(T),

0(r) = Ft (3.46)

By making use of the result of the first junction condition,

FT 2
F

we can see that 0(T) can also be written as

(-r)= R2 + F

The relevant derivatives with respect to proper time are then

t=- /
F

k = 1/ 2 -_F

2Mik

R2

These expressions can be used to eliminate 14, t, 14, and t from Eq 3.45, leaving an
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(3.48)

F2

S= .-P 2M

(3.49)

(3.50)

(3.51)

- -i . -
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expression that can only depend on /, /, and R. After simplification, one finds

K+ _ - - - -
7-2 _ -F R?

Raising the first index using the induced metric of Eq (3.6), one has finally

K+T -

4 The Junction Conditions

(3.52)

(3.53)

Now that we have explicit forms for the extrinsic curvature for both sides of the

hypersurface, we are at last in a position to apply the second junction condition

and finish gluing together the FRW and Schwarzschild spacetimes. As Koo and

KOO are equal to each other for both E+ and E-, the second junction condition

produces only two independent equations. As a consequence of the condition that

[Koo] = [KOO] = 0, one finds

(4.1)

(4.2)

K+oo =K-Goo

Fi coth xo

R a

Also, from the condition [K +TT] 0,

K =0
R

(4.3)

(4.4)

Recall the form of R(T) as derived from the first junction condition, Eq (3.13), restated

here for convenience

R(T) =a(T) sinh(Xo)
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Combining Eqs (3.46) and (3.48), one finds

Fi = \R 2 + F (4.6)

Substituting the right hand side of (4.6) for Ft in Eq (4.2) and after some manipu-

lation, we obtain

F = -6 2 (r) sinh2 (Xo) + cosh2 (Xo) (4.7)

As a(ir) obeys the first order Friedmann Equation, one can replace 6(T) with the

appropriate expression from Eq (1.17) in Eq (4.7), and, recalling the expression for

F, obtain the long sought expression for total relativistic mass of the embedded FRW

patch,

MRe = p(4.8)

Upon inserting the expression for mass density p(a) as a function of the scale factor,

given in Eq (5.3),
-

3 ao 1 (9
p(.O) = 3o1(4.9)87r a3(77)

the total relativistic mass is manifestly time independent

M = sinh3 (Xo) (4.10)

In the large X0 limit, which corresponds to taking the patch size to the size of the

whole FRW spacetime, the total mass diverges. Furthermore, using Eq (4.2) and the

definition of 0(F) Ft, along with Eq (3.13) for R(T), one finds that 0 = cosh(Xo)

is constant, thus # = 0, and the junction conditions have been fully satisfied.
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5 Conclusion: Understanding the Total Relativistic

Mass with Newtonian Cosmology

5.1 Newtonian Cosmology

Note: For consistency, we will continue to work throughout this section in natural

units in which c = = 1 '0 The dynamics of our universe are determined, at large

distance scales, by gravitation forces; the predominant theory for understanding these

dynamics is Einstein's theory of General Relativity. However, much of the dynamics

can be well approximated by classical Newtonian gravity; this formalism is called

Newtonian Cosmology. The familiar Newtonian equation of motion for two bodies

subject to a gravitational attraction may be written in the form of a gravitational

Poisson's equation,

V2 0= 47rp, 9=-V (5.1)

where ' is the gravitational acceleration, p is the mass density. Given the simplest

case of a uniform mass distribution of density p, Eq (5.1) may be integrated over a

finite region for the acceleration . At a point -'= (x, y, z),

p(p) p _ ) d3f (5.2)le -r13

Problems arise, however, when the integral in Eq (5.2) is taken over an infinite region

of uniform mass distribution; in such a limit, the integral is ill-defined and the result

depends upon the order of summation, that is, it is conditionally convergent. Thus

one cannot measure absolute acceleration of a given particle, but must settle for the

notion of relative acceleration of particles with respect to one another. The formalism

of Newtonian cosmology addresses this problem by considering the dynamics of a

mass distribution over a finite region and then taking the limit as the region becomes

infinite careful and well-defined way.

In our discussion we will consider a spherical region of initial radius RO " Consider

10The discussion in this subsection will closely follow that in (9).
"It is not necessary that the region under consideration be spherical, in fact, the results we will
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a sphere of initial radius Ri, the radius as an initial time ti, with a uniform mass

distribution of non-relativistic particles pi. At a time t, the mass density is

M (ri) 471_rp_ 1p3 - --= A (5.3)
( r)r4, 4 7 r~ t)3 3 (t)

where M(ri) is the mass enclosed within a spherical region of radius ri, ri < Ri is the

initial radial position of a given particle, and ce(t) - rltra is the scale factor. There

are two equations analogous to the relativistic Friedmann Equations which completely

determine the behavior of this spherical model universe.

47r(
aft) = - p(tOa(t)(.43

(&(t) 2 8wr
= -7-p(t) - (5.5)a(t) 3 a2 (t)

We will work with ui -1, in agreement with our relativistic model developed in

the previous sections. Equations (5.4) and (5.5) are the central results of Newtonian

Cosmology. The mechanical energy of a test particle in this Newtonian formalism,

EN is given by a sum of kinetic and potential energies, K and U, which may be

written in terms of the total mass M, initial radius of the sphere Ri, the initial and

time dependent mass densities pi and p(t) and the scale factor and its derivative, a(t)

and &(t).

3 (2 K -M R _2 (t) (5.6)

3 2 47r piU = -MR. (5.7)
5 "( 3 a(t)

Thus the Newtonian mechanical energy is

EN= K +U = 3MR 2 1 2 (t) _47r (5.8)
5 (2 3 a(t)

We are now in a position to use Eq (5.8) to compare the results of Newtonian cos-

develop here are applicable to any region whose quadrupole moment, in the limit as the size of the
region is taken to infinity, is the same as that of a sphere.

46



mology against Eq (4.8).

5.2 Comparison to the Total Relativistic Mass

In order to compare the result in (4.8) to the total energy (5.8), we must first find the

value of Ri which gives the spherical model universe of Subsec. 5.1 the same volume

as the FRW patch defined in Sec 2. Consider the FRW patch at a fixed arbitrary

time r, and note that this spatial slice has a metric hab, where (a (x, 0, #) and the

line element do.2 = <ad bhab is

du.2 = -a(T) 2 (dX 2 + sinh2 (X)d0 2 + sinh2 (X) sin2 (0)d02 ) (5.9)

Using the integral over the volume element, one finds the total volume of the FRW

patch is given by

V =J |hlidV

j d d. j# dx Isin 0 sinh2 Xa (T) 3 (

0 0 0 (5.10)

= 7r(-2Xo + sinh(2Xo))a (T) 3

= 7 -e3(( )x 3 + 4 7a ( T)x + O(x )

Thus it makes sense to choose the radius Ri to be the circumferential radius for

X = Xo,

Ri = a sinh 2 (Xo) (5.11)

where ai = a(r)1, and tj is the same initial time as in Subsec 5.1. One can see by

taking an expansion of (5.11) in powers of Xo that the relativistic rest mass,

Mrest,rei = pV (5.12)
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is equivalent to the classical rest mass,

Mrest,N 4 7rRp(t)3 (5.13)

up to third order in Xo. Using this value of Ri, the total Newtonian energy is the sum

of the rest energy and the total mechanical energy of (5.8).

Ett = -M sinh2 (Xo) + Mrest
10
3 4,7r 3= M sinh2(Xo) + -R2 p(t4)10 3

(5.14)

Expanding in powers of Xo, one finds

3 7
Eo= aOX0 + aO + 5aOX + O(x8)t 2 4 84 (5.15)

Expanding the total relativistic energy (4.8) in powers of Xo, one finds excellent

agreement in with the results of newtonian cosmology to fifth order in Xo,

Mrei = -R3 (xo)p(T)
3

3 5_OXo + aoXo
2 4

713aOox 0 ( 8 )+ 240
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