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Abstract

We apply machine-learning techniques to predict drug approvals and phase transi-
tions using drug-development and clinical-trial data from 2003 to 2015 involving sev-
eral thousand drug-indication pairs with over 140 features across 15 disease groups.
Imputation methods are used to deal with missing data, allowing us to fully exploit
the entire dataset, the largest of its kind. We achieve predictive measures of 0.74,
0.78, and 0.81 AUC for predicting transitions from phase 2 to phase 3, phase 2 to
approval, and phase 3 to approval, respectively. Using five-year rolling windows, we
document an increasing trend in the predictive power of these models, a consequence
of improving data quality and quantity. The most important features for predicting
success are trial outcomes, trial status, trial accrual rates, duration, prior approval for
another indication, and sponsor track records. We provide estimates of the probability
of success for all drugs in the current pipeline.
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Chapter 1

Introduction

1.1 Background

While many promising breakthroughs such as immuno-therapies and gene-editing

techniques offer new hope for patients, they have also made biomedical innovation

riskier and more expensive. These breakthroughs generate novel therapies for in-

vestigation, each of which requires many years of translational research and clinical

testing, costing hundreds of millions of dollars and yet often facing a high likelihood

of failure [2]. In fact, drug discovery efficiency has been declining steadily, despite

scientific and technical progress, over the past 50 years. This phenomenon, termed

"Eroom's Law" by Scannell et al. [31-the reverse of Moore's Law-suggests that

the cost of developing new drugs has doubled approximately every nine years since

the 1950s. In the face of multiple uncertainties, the need to better evaluate drug

candidates and to allocate capital to high-potential opportunities more efficiently has

only intensified.

Drug developers typically use general estimates of regulatory approval rates, or

estimates specific only to a drug's therapeutic class, when managing their portfolio

of investigational drugs. In this paper, we propose the use of a wider range of fac-

tors and machine-learning techniques to estimate success rates. Machine-learning is

a branch of computer science focused on tackling pattern recognition problems and

building predictive models to make data-driven decisions, and is well suited for this
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application. Predictive factors include drug compound characteristics, clinical trial

design, previous trial outcomes, and the sponsor track record. We hypothesize that

these features contain useful signals about drug development outcomes that will al-

low us to forecast the outcome of pipeline developments more accurately. Our goal

is to develop predictive algorithms for assessing the probability of success of drug

candidates in three scenarios: advancing from phase 2 to phase 3 testing, from phase

2 to regulatory approval, and from phase 3 to regulatory approval. Such predictions

may be used to evaluate the risks of different investigational drugs at different clinical

stages, thus reducing the risk and increasing the efficiency of drug development and

portfolio decision-making.

We construct three datasets, one for each scenario, from two proprietary phar-

maceutical pipeline databases, Pharmaprojects and Trialtrove provided by Informa@

[4]. The phase 2 to phase 3 dataset includes more than 5,200 unique drugs for 274

indications and over 8,800 phase 2 clinical trials, while the phase 2 to approval dataset

includes more than 6,000 unique drugs for 288 indications and over 14,500 phase 2

trials, and the phase 3 to approval dataset contains more than 1,800 unique drugs

for 253 indications and over 4,500 phase 3 trials. These data cover over 15 indication

groups.

To the best of our knowledge, this study is the largest of its kind. Most published

research on drug approval prediction have very small sample sizes, are concentrated on

specific therapeutic areas, and involve only one or a small number of predictive factors

(see Section 1.2). With the FDA Amendments Act of 2007, drug and clinical trial

data collection has been rapidly expanding. These data are often sparse, however,

and our dataset is not an exception. Related studies [1 typically use only complete-

cases observations-discarding clinical trials with any missing information-which

is highly restrictive and may lead to certain biases. In this paper, we characterize

the observed patterns of missing data and propose the use of standard imputation

methods-statistical procedures to infer missing data-to address this issue. We

explore four common approaches to "missingness" and demonstrate their advantages

and disadvantages over discarding incomplete-cases.
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We use machine-learning techniques to form our predictions, including cross-

validation for training and a held-out testing set for performance evaluation, and

use the standard "area under receiver operating characteristic curve" (AUC) metric

to measure model performance. We achieve AUCs of 0.74 for predicting transitions

from phase 2 to phase 3 testing (95% confidence interval (CI): [0.71,0.761), 0.78 for

predicting phase 2 to approval (95% CI: [0.75,0.81J); and 0.81 for predicting phase

3 to approval (95% CI: [0.78,0.831). A time-series, walk-forward analysis approach

shows similar results. We also apply our models to the current drug pipeline-that

is, all drugs still in development as of the end of our dataset-to identify the candi-

dates that have the highest and lowest probabilities of success. We examine the latest

development statuses of these pipeline drug-indication pairs-a true "out-of-sample"

experiment-and find that candidates with higher scores are, indeed, more likely to

progress to later clinical stages. This indicates that our classifiers do discriminate

between high- and low-potential candidates.

1.2 Literature Review

There are several published works on drug development prediction. These studies

largely adopt traditional statistical approaches to identify associations between pre-

dictive measures and likelihood of approval. Malik et al. [51 examined the trial

objective responses of 88 anti-cancer agents in phase 1. They used the Fisher's ex-

act and Chi-squared tests to determine predictive potential for regulatory approval.

Goffin et al. [6] studied the tumor response rates of 58 cytotoxic agents in 100 phase

1 trials and 46 agents in 499 phase 2 trials. They used the exact Cochran-Armitage

linear trend test and the exact logistic regression model to assess the relationship be-

tween response rate categories and approval probability. El-Maraghi and Eisenhauer

[7 looked at the objective responses of 19 phase 2 anti-cancer drugs in 89 single agent

trials. Similar to Goffin et al., they used the exact Cochran-Armitage linear trend test

to study the relationship between response rate categories and approval probability.

Wendler and Wehling [8] examined the predictive ability of a translatability scoring
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system proposed by Wehling [9]. They demonstrated its utility through case studies

of eight drugs from different therapeutic areas. The data sets used in these papers

are most commonly retrieved manually from the public domain (e.g. Drugs@FDA,

Clinicaltrials.gov, Clinicaltrialsregister.eu) and journal archives.

Recent work by DiMasi et al. [1] is most related to the present study. DiMasi et

al. [1] proposed an approved new drug index (ANDI) algorithm to predict approval

for lead indications of oncology drugs after phase 2 testing. They used a combination

of statistical and machine-learning techniques to narrow down a list of predictors

(including drug, trial and market characteristics) to four factors that have significant

associations with approval. They reported an impressive 0.92 AUC (95% CI: [0.81,

1.00]) for ANDI. The dataset used was constructed from the public domain and the

Tufts Center for the Study of Drug Development drug database. See Appendix F for

a comparison of our analysis to theirs.

20



Chapter 2

Data

2.1 Summary Statistics

We use two commercial pipeline databases from the commercial data vendor Informa®:

Pharmaprojects, which specializes in drug information, and Trialtrove, which special-

izes in clinical trials intelligence [4]. These two databases aggregate drug and trial

information from over 30,000 data sources in more than 150 countries, including

company press releases, government drug databases (e.g. Drugs@FDA) and trial

databases (e.g. Clinicaltrials.gov, Clinicaltrialsregister.eu), and scientific conferences

and publications. Using these sources, we construct three datasets of drug-indication

pairs: phase 2 to phase 3 (P2P3), phase 2 to approval (P2APP) and phase 3 to ap-

proval (P3APP). Applying machine-learning algorithms to these datasets allows us

to predict: (1) whether a drug-indication pair that has concluded phase 2 testing will

advance to phase 3 testing; (2) whether a pair that has concluded phase 2 testing will

be approved eventually; (3) whether a pair that has concluded phase 3 testing will

be approved eventually. Data cleaning procedures are outlined in Appendix A.

We consider all indications associated with a particular drug, as opposed to only

the lead indication. We extract all features that could conceivably be correlated

with the likelihood of success, from drug compound attributes (31 features from

Pharmaprojects profiles) to clinical trial characteristics (113 features from Trialtrove).

These features are defined in Table 2.1 and Appendix A. In general, each dataset may
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be partitioned into two disjoint subsets: one with samples that have known outcomes,

and another with samples that are still in the pipeline at the time of snapshot of

the databases (that is, the outcomes are unknown). To provide intuition for the

characteristics of the samples, we describe key summary statistics of each subset.

The P2P3 dataset consists of 5,288 drug-indication pairs that have ended phase

2 testing, that is, there are no phase 2 trials in progress or planned, as recorded in

the databases. The phase 2 trials in this dataset span from January 1, 1994 to De-

cember 15, 2015. In our sample, 4,168 pairs have known outcomes, while 1,120 pairs

are still in the pipeline at the time of this writing. For those pairs with known out-

comes, we classify instances that successfully advanced to phase 3 testing as successes

(18.7%), and instances that have suspended or discontinued development, or had no

development reported over 18 months, as failures (81.3%). The P2APP dataset con-

sists of 6,344 pairs that have ended phase 2 testing, of which 4,812 pairs have known

outcomes while 1,532 pairs are still in the pipeline. The trials range from August

8, 1990 to December 15, 2015. In the subset with known outcomes, we define the

development statuses of suspension, termination, and lack of development as failures

(86.8%), and registration and launch as successes or approvals (13.2%). The P3APP

dataset consists of 1,870 pairs that have ended phase 3 testing, of which 1,610 pairs

have known outcomes, while 260 pairs are still in the pipeline. For those pairs with

known outcomes, we define failures (59.1%) and successes (40.9%) in the same fashion

as P2APP. The phase 3 trials in P3APP span from January 1, 1988 to November 1,

2015. The sample sizes are summarized in Table 2.2.

The datasets cover 15 indication groups: alimentary, anti-infective, anti-parasitic,

blood and clotting, cardiovascular, dermatological, genitourinary, hormonal, immuno-

logical, musculoskeletal, neurological, anti-cancer, rare diseases, respiratory, and sen-

sory products. Anti-cancer agents make up the largest subgroup in P2P3 and P2APP,

and the second largest in P3APP (see Table 2.3). Industry-sponsored trials dominate

in all three datasets (see Table 2.4). In aggregate, we observe a decreasing trend in

success rates over five-year rolling windows from 2003 to 2015 (see Fig. 2-1).

To the best of our knowledge, this sample is the largest of its kind. All prior
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Table 2.1: Description of parent features extracted from Pharmaprojects and Trial-

trove. Some parent features are multi-label (e.g. a trial may be tagged with United

States and United Kingdom simultaneously). We transform all multi-label parent
features into binary child features (1 or 0). See Appendix A for specific examples of
each feature. Note that drug-indication pairs for the same drug have the same drug

features; drug-indication pairs involved in the same trial have the same trial features.

Description Type

Drug Features

Route Route of administration of the drug, the path Multi-label
by which the drug is taken into the body.

Origin Origin of the active ingredient in the drug. Multi-label
Medium Medium of the drug. Multi-label
Biological target family Family of proteins in the body whose activity Multi-label

is modified by the drug, resulting in a specific
effect.

Pharmacological target Mechanism of action of the drug, the Multi-label
family biochemical interaction through which the

drug produces its pharmacological effect.
Drug-indication Current phase of development of the drug for Binary
development status the indication.
Prior approval of drug Approval of the drug for another indication Binary
for another indication prior to the indication under consideration

(specific to drug-indication pair).

Trial Features

Duration Duration of the trial (from reported start date Continuous
to end date) in days.

Study design Design of the trial (keywords). Multi-label
Sponsor type Sponsors of the trial grouped by types. Multi-label
Therapeutic area Therapeutic areas targeted by the trial. Multi-label
Trial status Status of the trial. Binary
Trial outcome Results of the trial. Multi-label
Target accrual Target accrual of the trial. Continuous
Actual accrual Actual accrual of the trial. Continuous
Locations Locations of the trial by country. Multi-label
Number of identified Number of sites where the trial was conducted. Continuous
sites
Biomarker involvement Type of biomarker involvement in the trial. Multi-label
Sponsor track record Sponsor's success in developing other drugs Continuous

prior to the drug-indication pair under
consideration.

Investigator experience Primary investigator's success in developing Continuous
other drugs prior to the drug-indication pair
under consideration.
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Table 2.2: Sample sizes of P2P3, P2APP and P3APP datasets. We consider phase 2
trial information in P2P3 and P2APP datasets, phase 3 trial information in P3APP
dataset.

Counts

Drug-indication Phase 2/3 Unique Unique Unique Phase
Pairs Trials Drugs Indications 2/3 Trials

P2P3

Success 779 1,469 689 192 1,457
Failure 3,389 5,862 2,369 239 5,683
Pipeline 1,120 1,874 888 196 1,836
Total 5,288 9,205 3,548 274 8,839

P2APP

Success 635 2,563 540 173 2,486
Failure 4,177 10,328 2,779 263 9,722
Pipeline 1,532 2,815 1,189 221 2,713
Total 6,344 15,706 4,073 288 14,584

P3APP

Success 659 1,830 572 171 1,801
Failure 951 2,425 764 203 2,360
Pipeline 260 494 240 120 480
Total 1,870 4,749 1,451 253 4,552

Table 2.3: Breakdown of drug-indication pairs by indication groups. A drug-
indication pair may have multiple indication group tags. For instance, renal cancer
is tagged as both anti-cancer and rare disease in Pharmaprojects.

Counts

P2P3 P2APP P3APP

All 5,288 6,344 1,870
Anti-cancer 1,948 2,239 409
Rare Diseases 941 1,105 259
Neurological 845 1,069 444
Alimentary 620 757 249
Immunological 423 474 101
Anti-infective 381 493 177
Respiratory 367 428 134
Musculoskeletal 339 394 121
Cardiovascular 303 388 158
Dermatological 228 254 45
Genitourinary 159 210 85
Blood and Clotting 117 160 97
Sensory 116 137 41
Hormonal 14 17 4
Anti-parasitic 9 8 0
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Figure 2-1: Success rates in P2P3, P2APP and P3APP over five year rolling windows
from 2003-2015. At each time window, the P2APP success rate is strictly lesser than
that of P2P3 because drug-indication pairs that successfully progress to phase 3 may

still fail.

Table 2.4: Breakdown of trials by sponsor types. A trial may be sponsored by more

than one party (e.g. collaboration between industry developers and academia).

Counts

P2P3 P2APP P3APP

All 8,839 14,584 4,552
Other Pharma 4,246 5,432 1,721
Top 20 Pharma 3,379 5,322 2,369
Academic 1,920 4,869 736
Government 1,148 1,807 314
Cooperative Group 497 958 230
Not for Profit 115 181 51
Generic 31 52 54
Contract Research Organization 31 41 17
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published research in this literature involved fewer than 100 drugs or 500 trials [5, 6,

7, 1]. In addition, our datasets cover a diverse set of indication groups, as opposed

to a single area such as oncology.

2.2 Missing Data

Prior to the 2007 FDA Amendments Act (FDAAA), it was not uncommon for in-

vestigators to release only partial information about pipeline drugs and clinical trials

to protect trade secrets or simply because there was no incentive to do more. Even

today, some investigators still do not adhere to the FDAAA-mandated registration

policy or submit adequate registrations. Therefore, all historical drug development

databases have missing data.

Fig. 2-2, Fig. 2-3, Table 2.5 and Table 2.6 summarize the patterns of missingness

in our dataset (we exclude pipeline drug-indication pairs here because their outcomes

are still pending). The missing data patterns are multivariate. When conditioned

on the latest level of development, for any indication, we find that successful drugs

generally have lower levels of missingness compared to failed drugs. For instance, in

the P2APP dataset, 61% of failed drugs have an unknown medium, while only 15%

of approved drugs are missing this feature. We also observe that completed trials

tend to have greater levels of missingness than terminated trials. Across the three

datasets, we find that the P3APP dataset, which focuses on phase 3 drugs and trials,

generally has less missing data for both drug and trial features than the P2P3 and

P2APP datasets which focus on phase 2 drugs and trials. This is expected since phase

3 trials are primarily used to support registration filings.

Most related studies do not report the extent of missing data in their samples,

presumably because smaller datasets were used. DiMasi et al. [1] report missing

data for some of their factors, and address it through listwise deletion-deleting

all observations with any missing factors. Since statistical estimators often require

complete data, this approach is the simplest remedy for missingness. However, it

greatly reduces the amount of data available and decreases the statistical power of
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Figure 2-2: Missingness patterns of drug features. Each row corresponds to a unique
drug. Features not included in the figure are complete and do not have missing values.
Abbreviations. Dev status: highest level of development of a drug for any indication;
Pharma: pharmacological target family; Bio: biological target family.

Table 2.5: Missingness in drug features with respect to unique drugs (see Fig. 2-2).

Missingness

Unconditional Success Failure

P2P3

Route 0.04 0.01 0.05
Pharmacological target family 0.07 0.04 0.08
Biological target family 0.31 0.29 0.32
Medium 0.55 0.32 0.63

P2APP

Route 0.04 0.00 0.04
Pharmacological target family 0.06 0.02 0.07
Biological target family 0.32 0.27 0.32
Medium 0.53 0.15 0.61

P3APP

Route 0.01 0.00 0.02
Pharmacological target family 0.03 0.02 0.04
Biological target family 0.27 0.24 0.30
Medium 0.35 0.14 0.54
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Figure 2-3: Missingness patterns of trial features. Each row corresponds to a unique
clinical trial. Features not included in the figure are complete and do not have miss-
ing values. Abbreviations. Dev status: highest level of development of a drug for
any indication; Status: trial status; Idsi: number of identified sites; Actacc: actual
accrual; Dura: duration; Taracc: target accrual; Loc: locations; Dkw: trial study
design keywords; Term: trial outcomes.
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Table 2.6: Missingness in trial features with respect to unique trials (see Fig. 2-3).

Missingness

Unconditional Success Failure

P2P3

Number of identified sites 0.12 0.13 0.11
Actual accrual 0.14 0.12 0.21
Duration 0.18 0.21 0.05
Target accrual 0.27 0.31 0.09
Locations 0.02 0.02 0.02
Study design keywords 0.16 0.17 0.10
Trial outcomes 0.56 0.67 0.10

P2APP

Number of identified sites 0.10 0.10 0.10
Actual accrual 0.12 0.10 0.22
Duration 0.26 0.29 0.05
Target accrual 0.37 0.42 0.09
Locations 0.02 0.02 0.02
Study design keywords 0.22 0.24 0.10
Trial outcomes 0.63 0.73 0.11

P3APP

Number of identified sites 0.10 0.09 0.12
Actual accrual 0.12 0.09 0.26
Duration 0.17 0.19 0.06
Target accrual 0.27 0.31 0.09
Locations 0.01 0.01 0.02
Study design keywords 0.09 0.09 0.06
Trial outcomes 0.53 0.62 0.07
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the resulting statistics. Furthermore, listwise deletion is valid only under strict and

unrealistic assumptions (see below), and when such conditions are violated, inferences

are biased. In the current study, we make an effort to include in our analysis all

observed examples, with or without complete features, through the use of imputation.

Missing data may be classified into three categories [101: missing completely at

random (MCAR), missing at random (MAR), and missing not-at-random (MNAR).

MCAR refers to data that is missing for reasons entirely independent of the data;

MAR applies when the missingness can be fully accounted for by the observed vari-

ables; and MNAR refers to situations when neither MCAR nor MAR is appropriate, in

which case the probability of missingness is dependent on the value of an unobserved

variable [11]. See Appendix B for precise definitions of each type of missingness.

If the missingness is MCAR, the observed samples can be viewed as a random

subsample of the dataset. Consequently, using listwise deletion should not introduce

any bias. While convenient, this assumption is rarely satisfied in practice. In most

drug-development databases, failed drugs are more likely to have missing features

than successful drugs (see Table 2.5). Clearly, MCAR does not hold.

Applying listwise deletion when the missingness is not MCAR can lead to severely

biased estimates. Moreover, given the nature of drug-development reporting, we can

expect a substantial number of drugs and trials to have incomplete data in databases.

Thus, a large portion of the original data may be discarded if many variables have

missing values. For these reasons, the listwise deletion approach adopted by DiMasi

et al. [1] and others is less than ideal.

Given only the observed data, it is impossible to test for MAR versus MNAR

[121. However, our knowledge of the data-collection process suggests that MAR is a

plausible starting point, and we hypothesize that the missingness in drug and trial

features are mainly accounted for by drug development and trial statuses respectively.

This is supported by our observations in Table 2.5 and Table 2.6 where the missingness

proportions for some features differ greatly depending on the outcome.

Our assumption of MAR is also consistent with the data-collection methodology

in the Informa@ databases. Drug profiles are built up over time in Pharmaprojects.
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As a drug advances to later phases, more data is released, and information about

its characteristics becomes more readily available. Informa® inputs this information

into its databases as they become available in the public domain or through primary

research. Therefore, approved drugs are more likely to have more complete profiles,

while information about failed drugs tends to stay stagnant because no further studies

are conducted and/or there is little need nor value in reporting details about them. It

is very plausible that the MAR nature of our datasets is an artifact of data collection,

and by extension, so are similar pharmaceutical datasets extracted from the public

domain and maintained in the same fashion. We note that Pharmaprojects and

Trialtrove are originally meant for tracking drug and trial activities. These databases

are not structured to keep track of information updates over time since there was no

use for it. Without timestamps of the updates, we are not able to eliminate the MAR

artifact from our datasets.

In our analysis, we impute the missing data under the more plausible MAR as-

sumption to obtain complete datasets. In contrast to listwise deletion, we fill in

missing values using information in the observed variables. This allows us to uti-

lize data that would otherwise be discarded. Thereafter, we can apply all the usual

statistical estimators to this imputation-completed data.
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Chapter 3

Methods

Our analysis consists of two parts. First, we impute missing values to generate com-

plete datasets. Next, we apply a range of machine-learning algorithms to build pre-

dictive models based on the imputed data. Both parts are performed in R version

3.2.3.

3.1 Missing Data Approaches

In this paper, we explore complete-cases analysis and four statistical/machine-learning

imputation techniques commonly used in social science research and biostatistics: un-

conditional mean imputation, k nearest neighbors imputation, multiple imputation,

and decision tree algorithms.

3.1.1 Complete-Cases Analysis

In complete-cases analysis (also known as listwise deletion), we discard all obser-

vations with missing data, in which case there is no imputation. It is the default

method in many statistical programs. This method is generally not recommended

because it is valid only under strict MCAR conditions, which rarely holds in practice.

Applying this approach to MAR/MNAR data will likely yield biased inferences. It is

apparent that the dataset under study is not MCAR. Nevertheless, we can use this
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as comparison against other methods.

3.1.2 Unconditional Mean Imputation

In unconditional mean imputation, we fill in the missing values of a variable with the

mean/mode (for continuous/nominal variables respectively) of the observed cases of

that variable. This method is also highly discouraged because it distorts the data

distribution by reducing variability and undermining relationships between variables.

The use of mean imputation is non-ideal, nevertheless it can be used as a baseline. In

this study, we implement two variants: mean/mode and median/mode imputation.

3.1.3 k Nearest Neighbors Imputation

In k nearest neighbors imputation (kNN), given an instance with missing values, we

select the k' most similar2 cases that do not have missing values in the features to be

imputed. As the name suggests, the replacements for the missing values are chosen

from these k nearest neighbors. In this paper, we use the Gower distance for mixed

variables3 (range-normalized Manhattan distance for continuous variables and Jac-

card distance for categorical variables) and explore five and ten nearest neighbors. For

each missing value to be imputed, we use the median/mode (for continuous/binary

variables respectively) of the corresponding feature of the k closest neighbors as im-

putation.

3.1.4 Multiple Imputation

Multiple imputation (MI) is a principled missing data method that involves three

steps: imputation, analysis, and pooling. In the first step, we specify an imputation

model for each incomplete variable in the form of a conditional distribution, that is,

missing data conditioned on the observed data. Then we draw multiple plausible val-

ues for each missing data point according to the specified variable models, creating

'Where k is an integer.
2Similarity is measured according to some distance metric.
3Implemented in R, VIM package [13].
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multiple imputed datasets from one incomplete dataset. In this study, we specify

linear regression models for continuous variables and logistic regression models for

categorical variables. In the second step, we analyze each imputed dataset individ-

ually using standard statistical procedures. Finally, in the third step, we pool the

estimates obtained from the multiple individual analyses (e.g. probability predic-

tions, regression coefficients) using Rubin's rules [141 to yield a single estimate. See

Appendix C for more details on MI.

3.1.5 Decision Tree Algorithms

Decision trees are commonly used as predictive models. In contrast to most machine-

learning algorithms, some decision tree algorithms can handle missing values inter-

nally without the need for imputation. In this paper, we focus on the C5.0 algorithm4 .

C5.0 is a tree-based model developed by Quinlan [161. It uses entropy as the node

impurity measure. When considering a variable for a split, C5.0 uses only examples

for which that variable is not missing to calculate the node impurity. When an in-

stance sent down C5.0 encounters a split variable for which it has a missing value, it is

split into the branches fractionally, according to the split proportion of the observed

instances.

3.2 Machine-Learning Approach

We formulate the three scenarios (P2P3, P2APP, and P3APP) as supervised binary

classification problems, where the goal is to predict the outcome-success or failure-

of a drug-indication pair given a set of input features. Initially, we split each dataset

into training and testing sets. For each scenario, we train various classifiers based on

the corresponding training set, and compute the expected performance of our predic-

tive models by testing them on the held-out testing set. The specific components of

our analysis are illustrated in Fig. 3-1.
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Figure 3-1: Modeling methodology adopted in this study. We impute incomplete
datasets prior to the training and testing of predictive models. Abbreviations. CV:
cross validation.

3.2.1 Feature Matrix

Feature matrices are created from the datasets by representing drug and trial features

for each drug-indication pair as vectors (see Fig. 3-2). Drug-indication pairs associated

with multiple trials are represented by the same number of feature vectors, e.g., a pair

with two trials has two rows. We give a concrete example in Fig. 3-2. Consider the

drug-indication pair Analiptin-diabetes type 2 in the P2APP dataset. It has two

phase 2 trials in Trialtrove, and is thus represented by two vector rows. Note that the

feature matrix is incomplete due to missing drug and trial features. We also construct

a column vector of labels, which contains the outcomes of the drug-indication pairs.

Labels are not available for pipeline drug-indication pairs because they are still in

development and their outcomes are still uncertain, hence these observations are not

used to train our classifiers. However, with the trained classifiers, we can generate

predictions for pipeline data.

We split each dataset (excluding pipeline drugs-indication pairs) into two disjoint

sets, one training set and one testing set. Feature matrices for the training and testing

sets are formed according to the drug-indication pairs in each set. The testing sets

are meant to be out-of-sample datasets to evaluate our models. Therefore, we mask

their outcomes (that is, we treat them as unknown) and will access them only at the

very end to check our performance.
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Observed value
Missing/unknown value Dataset
Failed outcome
Approved outcome

Training set Testing set

Drug-indication Trial ID Weights Feature matrix Outcome
Megestrol-cancer, breast 130272 1.0 +- Aproved

Anagliptin-diabetes, type 2 10 0.5 Approved

Satavaptan-heart failure 14226 1.0 -1 1

31 drug features + 113 trial features

Figure 3-2: Feature matrix of dataset. Each row corresponds to a feature vector; each
feature corresponds to an entry in the vector; each vector has a length of 144 since
we have 31 drug and 113 trial features. Feature vectors of all drug-indication pairs in
the dataset form the feature matrix collectively. Trial ID is a unique trial identifier
in Trialtrove.

3.2.2 Imputation

To deal with missing data in both training and test sets, we considered the imputa-

tion methods outlined in Section 3.1. We follow best practices of the missing-data

literature by including as many relevant auxiliary variables 5 as possible, as well as all

variables used in subsequent models [12, 17, 18, 191. This makes the assumption of

MAR more plausible in our datasets, and helps to reduce bias in subsequent analyses

[201. In particular, it is necessary to include our target variable-the drug-indication

development status-in our imputation model because we hypothesized that missing-

ness is mainly accounted by it. This is not an issue for the training sets. However, the

outcomes in the testing sets are masked, and not supposed to be known6 . Therefore,

5Auxiliary variables are variables that correlate with either the missingness or the incomplete
variable under imputation.

6We know the outcomes of all examples in our data set. But we are not supposed to use the
testing set outcomes until the very end when we evaluate our classifiers. If we use them in any
way prior to evaluation, our models will be vulnerable to look-ahead bias. Therefore, at any point
before evaluation, we must treat the testing set as what we would encounter in reality, that is, their
outcomes unknown.
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we treat the testing set outcomes as though they were missing and impute them to-

gether with all the other missing features. After imputation, we discard the imputed

testing set outcomes, and use only the imputed feature values for predictions. We do

the same when evaluating pipeline datasets.

3.2.3 Training and Validation

With respect to the machine-learning algorithm we explore several linear and non-

linear classifiers commonly used in literature: penalized logistic regression (PLR),

random forests (RF), support vector machine with radial basis functions (SVM), and

decision trees C5.0. The first three algorithms are implemented in the Python scikit-

learn package [211 and the fourth is implemented using the C50 package in R [15].

For training, we weight each feature matrix row example according to the number

of trials of the corresponding drug-indication pair. In our earlier example, the drug-

indication pair Analiptin-diabetes type 2 was involved in two phase 2 trials. It is

represented by two vector rows in the feature matrix (see Fig. 3-2). Both rows are

used as training examples, and each is weighted equally during training (0.5, since

there are two trials in total). To obtain predictions for a drug-indication pair, we

average the output probabilities and scores of the corresponding feature vector rows

that are used as inputs to the classifier.

In Appendix D, we describe simulation experiments designed to evaluate the im-

pact of our imputation methods and machine-learning algorithms. These results

confirm the fact that imputation does offer improved fit and predictive power over

listwise deletion. Moreover, we find kNN imputation (with k=5), in combination with

an RF classifier, to be most effective methods for our datasets and use this approach

(5NN-RF) for our analysis.

All machine-learning algorithms have hyper-parameters that affect the flexibil-

ity of the model and must be tuned to each dataset to optimize goodness of fit.

Poorly chosen hyper-parameters can lead to overfitting (attributing signal to noise)

or underfitting (attributing noise to signal). We tune our parameters using k-fold

cross-validation (with k=5 or 10, depending on the sample size). Since the cross-
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validation process should be kept as similar to the testing process as possible, we

include imputation in the cross-validation loop as well. We split the training set

into validation and non-validation folds. Then we treat validation fold outcomes as

missing, and impute them as we would for a testing set. From here, we ignore the

imputed validation fold outcomes and proceed with the standard validation process.

In the final step, we test the trained classifiers on the unseen testing sets for

out-of-sample model validation. This gives the expected performance of our predic-

tive models for each of the three scenarios, using the standard "area under receiver

operating characteristic curve" (AUC) metric7 to measure model performance.

'AUC is the estimated probability that a classifier will rank a randomly chosen positive outcome

(e.g approved drug) higher than a randomly chosen negative outcome (e.g failed drug) [221. A
random classifier has 0.5 AUC; a perfect classifier has 1.0 AUC. In general, we want our classifiers
to have AUCs as close to 1.0 as possible.
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Chapter 4

Results

4.1 Predicting Clinical-Phase Transitions and Drug

Approvals

We analyze the three datasets (P2P3, P2APP and P3APP) by first splitting each

into a training set (30%) and a testing set (70%) randomly (pipeline drug-indication

pairs are omitted since their outcomes have yet to be determined). Subsequently,

we train 5NN-RF models for each scenario according to the methodology outlined

above. We repeat this experiment 100 times for robustness. Table 4.1 summarizes

the AUC performance metrics for the testing sets. On average, we achieve 0.74 AUC

for P2P3, 0.78 AUC for P2APP and 0.81 AUC for P3APP. It seems that predicting

phase transitions is more challenging than predicting drug approval.

The observed performance is essentially the MAR testing set AUC, since the

datasets used have already been affected by backfilling. In Appendix D, we highlight

the perils of relying on the MAR testing set for model validation, and suggest that

the gold standard and MCAR testing sets AUCs are more reflective of a classifier's

real performance. Unfortunately, we have access to neither the gold standard nor the

MCAR testing sets, because we do not know the true, underlying values of the missing

features. However, our experiments indicate that the MAR and MCAR testing set

AUCs of the 5NN-RF combination are very close (a difference of 0.002 on average).
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Table 4.1: Comparison of the general and indication-group specific classifiers for
selected indication groups. Abbreviations. Avg: average; Sd: standard deviation; 5%:
5th percentile; 50%: median; 95%: 95th percentile.

AUC

General Indication-group
Classifier Specific Classifiers

Avg Sd 5% 50% 95% Avg Sd 5% 50% 95%

P2P3

All 0.737 0.018 0.707 0.741 0.764 - - - - -
Anti-cancer 0.745 0.028 0.700 0.745 0.788 0.779 0.027 0.739 0.780 0.818
Rare Diseases 0.752 0.041 0.685 0.755 0.818 0.747 0.035 0.692 0.743 0.807
Neurological 0.776 0.034 0.716 0.778 0.835 0.769 0.034 0.709 0.767 0.826
Alimentary 0.733 0.034 0.679 0.736 0.789 0.727 0.042 0.657 0.726 0.799
Immunological 0.715 0.067 0.604 0.723 0.826 0.764 0.058 0.675 0.765 0.859
Anti-infective 0.693 0.066 0.594 0.695 0.797 0.752 0.052 0.670 0.756 0.836
Respiratory 0.693 0.059 0.592 0.699 0.774 0.733 0.058 0.620 0.735 0.818
Musculoskeletal 0.766 0.055 0.668 0.768 0.853 0.720 0.069 0.623 0.725 0.822
Cardiovascular 0.677 0.066 0.565 0.677 0.780 0.615 0.061 0.528 0.609 0.741
Genitourinary 0.719 0.082 0.579 0.729 0.836 0.686 0.084 0.543 0.694 0.804

P2APP

All 0.777 0.017 0.749 0.775 0.806 - - - - -
Anti-cancer 0.805 0.025 0.764 0.805 0.847 0.818 0.029 0.773 0.819 0.865
Rare Diseases 0.800 0.028 0.756 0.800 0.848 0.775 0.036 0.715 0.777 0.838
Neurological 0.767 0.036 0.710 0.769 0.819 0.778 0.039 0.721 0.779 0.834
Alimentary 0.749 0.045 0.672 0.751 0.817 0.732 0.048 0.651 0.734 0.807
Immunological 0.783 0.065 0.665 0.786 0.889 0.766 0.069 0.646 0.775 0.860
Anti-infective 0.735 0.043 0.673 0.736 0.800 0.750 0.047 0.684 0.746 0.832
Respiratory 0.756 0.055 0.648 0.764 0.835 0.867 0.043 0.794 0.872 0.921
Musculoskeletal 0.822 0.049 0.736 0.821 0.899 0.731 0.076 0.614 0.745 0.849
Cardiovascular 0.709 0.072 0.580 0.711 0.812 0.694 0.073 0.579 0.698 0.807
Genitourinary 0.633 0.086 0.503 0.634 0.790 0.706 0.091 0.552 0.710 0.840

P3APP

All 0.810 0.018 0.781 0.810 0.834 - - - - -

Anti-cancer 0.783 0.047 0.699 0.779 0.853 0.707 0.054 0.612 0.714 0.786
Rare Diseases 0.819 0.054 0.727 0.822 0.896 0.786 0.058 0.687 0.793 0.875
Neurological 0.796 0.037 0.734 0.794 0.857 0.789 0.038 0.741 0.787 0.853
Alimentary 0.817 0.047 0.744 0.820 0.891 0.805 0.054 0.718 0.808 0.888
Immunological 0.811 0.074 0.680 0.815 0.910 0.757 0.099 0.586 0.765 0.892
Anti-infective 0.757 0.065 0.644 0.752 0.854 0.708 0.068 0.600 0.707 0.808
Respiratory 0.823 0.065 0.712 0.831 0.920 0.773 0.083 0.627 0.784 0.907
Musculoskeletal 0.741 0.095 0.576 0.747 0.866 0.763 0.072 0.646 0.762 0.882
Cardiovascular 0.794 0.058 0.702 0.788 0.887 0.755 0.076 0.639 0.765 0.864
Genitourinary 0.814 0.083 0.670 0.821 0.937 0.801 0.090 0.635 0.808 0.927
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This means that we may use the former, the only observed figure, as a reasonable

estimate of the latter, which reflects real performance.

Next, we train classifiers based on the union of the training and testing sets,

and use them to generate predictions for pipeline drug-indication pairs. We generate

predictions for P2P3 and P2APP using only information from phase 2 trials, and for

P3APP using only information from phase 3 trials. While we cannot compute AUC

scores for these samples because their outcomes are still pending, we can compare

their prediction scores with their development statuses at the time of this writing.

These pipeline drug-indication pairs may still be in the same clinical stage (no change,

i.e. phase 2 for P2P3 and P2APP; phase 3 for P3APP), be terminated (failed), or

have progressed to higher phases (advanced).

Fig. 4-1, Table 4.2 and Table 4.3 summarize the distributions of pipeline prediction

scores. We find that pairs that fail generally have lower scores than those that advance

to later phases of development. In Fig. 4-1, we observe peaks at the lower end of the

score spectrum for failed pairs (red) for all three datasets. In contrast, pairs that

advance tend to have peaks at higher scores (green). We observe the same patterns

when we disaggregate the distributions by indication groups: the green parts tend to

cluster above the distribution median while the red parts below. However, there are

also some indication groups for which there are too few samples to make any useful

remarks (e.g. hormonal products in P2P3 and P2APP). From Table 4.2, we see that

the average scores of failed pairs are indeed lower than those that advance (differences

ranging from 0.05 to 0.15). In Table 4.3, we bin drug-indication pairs that have new

developments (whether failure or advancement) into four groupings, depending on

their prediction scores. For each bin, we compute the proportion of samples that

advance to later development stages. We find that the proportions generally increase

with the score magnitude, suggesting that pairs with higher scores are more likely

to advance than those with lower scores. For P2APP and P3APP, we note that

progress to later clinical stages does not always lead to approval. However, the results

are still promising because advancement is a necessary condition for approval. Our

experiments indicate that our trained classifiers are able to discriminate between high-
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Table 4.2: Distributions of prediction scores for all indication groups in aggregate

(see Fig. 4-1). Advanced refers to progress to a higher phase from the original phase.
Original phase for P2P3 and P2APP is phase 2; for P3APP is phase 3. For instance,
out of 1,105 drug-indication pairs in the P2P3 testing set, 858 pairs are still pending

decision in phase 2, 194 pairs have failed and 53 pairs have successfully advanced to
phase 3 testing. Abbreviations. n: sample size.

Prediction Scores

n Avg Sd 5% 50% 95%

P2P3

Aggregate 1,105 0.209 0.109 0.054 0.211 0.387
No change 858 0.211 0.108 0.054 0.216 0.388
Failed 194 0.191 0.112 0.052 0.157 0.375
Advanced 53 0.249 0.095 0.098 0.262 0.390

P2APP

Aggregate 1,511 0.153 0.061 0.044 0.155 0.258
No change 859 0.143 0.060 0.041 0.147 0.246
Failed 244 0.137 0.061 0.034 0.147 0.240
Advanced 408 0.183 0.056 0.093 0.178 0.274

P3APP

Aggregate 252 0.417 0.189 0.128 0.402 0.695
No change 142 0.392 0.185 0.129 0.384 0.693
Failed 32 0.348 0.185 0.100 0.344 0.656
Advanced 78 0.492 0.176 0.233 0.492 0.699

and low-potential candidates.

To gain insight into the logic of our trained predictive models, we compute the

average importance of features used in the 5NN-RF classifiers over all the experiments,

and extract the top ten most informative variables. The RF classifier [21j we used

computes the importance of a variable by finding the decrease in node impurity for

all nodes that split on that variable, weighted by the probability of reaching that

node (as estimated by the proportion of samples reaching that node), averaged over

all trees in the forest ensemble [23]. Table 4.4 summarizes the results.

We find that trial outcome (whether the trial was completed with its primary

endpoints met) and trial status (whether the trial was completed or terminated) have

significant associations with success. These two features were consistently ranked the

top two out of all variables and across all three datasets. It is easy to imagine that

a drug-indication pair whose trials were terminated has a low probability of success
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Figure 4-1: Distributions of prediction scores for P2P3, P2APP and P3APP. First
row for all indication groups in aggregate; subsequent rows for specific indication
groups.
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Table 4.3: Distributions of prediction scores for all indication groups in aggregate

(see Fig. 4-1). Proportion refers to the fraction of samples that advanced to a later
phase from the original phase.

Scores n Proportion

P2P3

< 0.1 61 0.082
0.1-0.2 66 0.167
0.2-0.3 60 0.317
> 0.3 60 0.300

P2APP

< 0.1 108 0.231
0.1-0.2 368 0.671
0.2-0.3 171 0.766
> 0.3 5 1.000

P3APP

< 0.2 13 0.308
0.2-0.4 35 0.686
0.4-0.6 27 0.667
> 0.6 35 0.914

in terms of advancing from phase 2 to phase 3 or from phases 2/3 to approval. In

contrast, candidates that achieve positive outcomes certainly have a better shot at

success. We also observe that prior approval of a drug has an effect on success for

new indications or patient segmentation. It is plausible that developing an approved

drug for a new indication has a greater likelihood of success than a new candidate.

In addition, trial characteristics such as accrual, duration, and the number of

identified sites frequently appear in the top ten important variables. There are several

possible explanations. For example, trials that end quickly without achieving primary

endpoints may undermine the likelihood of success, and drugs with trials that have

small accrual-and thus low statistical power-may have a lower probability of being

approved.

We also find sponsors' track records-quantified by the number of past successful

trials (trials that achieve positive results or meet primary endpoints)-to be a useful

factor for prediction. This factor has not been considered in previous related studies,

but the intuition for its predictive power is clear: strong track records are likely
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Table 4.4: Top ten important variables of 5NN-RF classifiers for P2P3, P2APP and

P3APP. Average and standard deviation taken across all experiments.

Importance

Avg Sd

P2P3

Trial outcome-completed, positive outcome or primary endpoint(s) met 0.345 0.031
Trial status 0.120 0.015
Prior approval of drug for another indication 0.040 0.014
Actual accrual 0.040 0.010
Duration 0.038 0.011
Sponsors track record-number of positive phase 2 trials 0.037 0.009
Number of identified sites 0.035 0.009
Sponsors track record-number of positive phase 1 trials 0.032 0.012
Target accrual 0.024 0.007
Trial outcome-completed, negative outcome or primary endpoint(s) not met 0.018 0.007

P2APP

Trial outcome-completed, positive outcome or primary endpoint(s) met 0.234 0.043
Trial status 0.160 0.026
Medium-solution 0.051 0.018
Actual accrual 0.046 0.010
Sponsor type-industry, all other pharma 0.025 0.008
Sponsors track record-number of positive phase 3 trials 0.023 0.006
Sponsors track record-number of failed drug-indication pairs 0.021 0.007
Study design-placebo control 0.019 0.009
Target accrual 0.018 0.005
Prior approval of drug for another indication 0.018 0.007

P3APP

Trial outcome-completed, positive outcome or primary endpoint(s) met 0.357 0.028
Trial status 0.148 0.014
Duration 0.099 0.016
Trial outcome-terminated, lack of efficacy 0.033 0.010
Trial outcome-completed, negative outcome or primary endpoint(s) not met 0.033 0.008
Therapeutic area-oncology 0.030 0.009
Prior approval of drug for another indication 0.021 0.007
Actual accrual 0.015 0.003
Medium-powder 0.014 0.007
Medium-solution 0.012 0.006
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associated with greater expertise in drug development, be it research and development

or regulatory prowess.

Since drugs developed for different indication groups may have very different char-

acteristics, we might expect classifiers trained on indication-group specific data to

outperform the general classifiers. We build and analyze such specialized classifiers

by filtering the datasets by indication group before performing the experiment de-

scribed in Section 3.2. As a comparison, we also break down the performance of the

general classifiers by indication group. Table 4.1 shows the results for selected indica-

tion groups. Unfortunately, we find that not all indication groups benefit from such

specialization. There are specialized classifiers that perform significantly better than

general classifiers (e.g. respiratory in P2APP), and ones that perform more poorly

(e.g. musculoskeletal in P2APP).

We note that the approach adopted in this section--splitting drug-indication pairs

into training and testing sets randomly without considering the dates of development-

may be less than ideal because of look-ahead bias. For example, if the results of a

2008 trial are included in the training set for predicting the outcome of a 2004 devel-

opment path for a drug-indication pair, our model will be using future information

during validation, which can yield misleading and impractical inferences. To address

this issue, in Section 4.2 we apply our machine-learning framework to time-series

data using rolling windows that account for temporal ordering in the construction of

training and testing sets. Although this process makes use of less data within each

estimation window than when the entire dataset is used, it minimizes the impact of

look-ahead bias and yields more realistic inferences. We study the effects of random

splitting versus temporal ordering in Appendix G.

4.2 Predictions Over Time

Drug development has changed substantially over time, thanks to new scientific dis-

coveries and technological improvements. To reflect these changes in our predictive

analytics, we adopt a time series, walk-forward approach to create training and test-
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Figure 4-2: Time-series walk-forward analysis approach. The testing set in the last
window (green) comprises drug-indication pairs in the pipeline at the time of snapshot
of the databases.

ing sets for each of the three datasets, P2P3, P2APP, and P3APP (see Fig. 4-2). We

sample five-year rolling windows between 2004 and 2014 from each dataset. Each

window consists of a training set of drug-indication pairs whose outcomes become

finalized within the window, and an out-of-sample, out-of-time testing set of drug-

indication pairs that ended phase 2 or phase 3 testing, but are still in the pipeline

with undetermined outcomes within the window. For example, consider the P2APP

dataset. We draw the first window from 2004-2008, train our algorithm on drug-

indication pairs that failed or approved within this period as the training set, and

apply the trained model to predict the outcomes of drug-indications that just ended

phase 2 testing within the same window as the testing set.

We evaluate the resulting classifier by comparing its predictions with outcomes

that are realized in the future (2009-2015). This rolling-window approach yields a

total of eight overlapping training and testing periods where a new 5NN-RF model

is trained for each period. The eighth testing period consists of drug-indication pairs

in the pipeline at the time of snapshot of the databases. Unlike the first seven peri-

ods, their outcomes are still pending current development, and therefore we cannot

compute a testing AUC for this window. However, we can examine the predictions

and compare the scores with their development statuses at the time of this writing.

Fig. 4-3 summarizes the results of the time-series analysis for the first seven win-

dows. We observe an increasing trend over the years for P2APP (0.67 in the first

and 0.80 in the last window) and P3APP (0.77 in the first and 0.88 in the last win-
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Figure 4-3: Time-series walk-forward analysis for P2P3, P2APP and P3APP using
5NN-RF. We use bootstrapping to determine the 95% CI for AUC (dotted lines).
The dashed lines plot the corresponding proportions of complete-cases in the training
sets of each five-year window. Abbreviations. CC: proportion of complete-cases.

dow). There is a slight dip in the first few windows of P2P3, but the performance

subsequently picks up in the last few periods (0.71 in the first and 0.85 in the last

window). Interestingly, we note that the proportions of complete-cases in the training

sets correlate well with the time series AUC (correlation coefficient 0.82 for P2P3,

0.95 for P2APP and 0.90 for P3APP). We compute the proportion of complete-cases

by taking the number of feature vector rows with complete information over the total

number of rows. As is apparent from Fig. 4-3, the proportions have been increas-

ing over the years for all three datasets. This is likely due to better data reporting

practices by drug developers, a possible consequence of FDAAA.

Next, we examine the 2011-2015 window. Fig. 4-4, Table 4.5 and Table 4.6

summarize the distributions of prediction scores for the P2P3, P2APP and P3APP

datasets. We observe very similar patterns to the static pipeline predictions above.

The histograms, average scores, and binning of samples indicate that pairs that fail
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Table 4.6: Distribution of prediction scores for all indication groups in aggregate (see
Fig. 4-4). Proportion refers to the fraction of samples that advanced to a higher phase
from the original phase.

Scores n Proportion

P2P3

< 0.1 59 0.051
0.1-0.2 59 0.169
0.2-0.3 33 0.242
> 0.3 58 0.466

P2APP

< 0.1 99 0.313
0.1-0.2 183 0.607
0.2-0.3 168 0.690
> 0.3 28 0.893

P3APP

< 0.2 17 0.412
0.2-0.4 17 0.706
0.4-0.6 17 0.647
> 0.6 46 0.848

used. In contrast, indication groups with larger sample sizes tend to give rise to rather

good classifiers (e.g. anti-cancer in P2APP).

For comparison, we disaggregate performance by indication groups. We find that

these classifiers do not lose out to their specialized counterparts. In fact, our re-

sults show that the former tend to exhibit more stable performance across the seven

windows, particularly on indication groups with small sample sizes. We hypothesize

that classifiers trained on all data benefit from having access to larger datasets with

greater diversity, and are thus able to make more informed predictions. This suggests

that it may be more appropriate to rely on general classifiers, rather than specialized

ones, for predictions over time where samples are spread out over multiple windows,

since further filtering by indication groups results in even smaller sample sizes.

Finally, we extract the top five P2APP pipeline drug candidates with the highest

scores in each indication group as predicted by our models. Table 4.11 summarizes

the results. We include only candidates that are still outstanding at the time of

writing (neither discontinued nor approved). It is encouraging that many of these
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Table 4.6: Distribution of prediction scores for all indication groups in aggregate (see
Fig. 4-4). Proportion refers to the fraction of samples that advanced to a higher phase
from the original phase.

Scores n Proportion

P2P3

< 0.1 59 0.051
0.1-0.2 59 0.169
0.2-0.3 33 0.242
> 0.3 58 0.466

P2APP

< 0.1 99 0.313
0.1-0.2 183 0.607
0.2-0.3 168 0.690
> 0.3 28 0.893

P3APP

< 0.2 17 0.412
0.2-0.4 17 0.706
0.4-0.6 17 0.647
> 0.6 46 0.848

used. In contrast, indication groups with larger sample sizes tend to give rise to rather

good classifiers (e.g. anti-cancer in P2APP).

For comparison, we disaggregate performance by indication groups. We find that

these classifiers do not lose out to their specialized counterparts. In fact, our re-

sults show that the former tend to exhibit more stable performance across the seven

windows, particularly on indication groups with small sample sizes. We hypothesize

that classifiers trained on all data benefit from having access to larger datasets with

greater diversity, and are thus able to make more informed predictions. This suggests

that it may be more appropriate to rely on general classifiers, rather than specialized

ones, for predictions over time where samples are spread out over multiple windows,

since further filtering by indication groups results in even smaller sample sizes.

Finally, we extract the top five P2APP pipeline drug candidates with the highest

scores in each indication group as predicted by our models. Table 4.11 summarizes

the results. We include only candidates that are still outstanding at the time of

writing (neither discontinued nor approved). It is encouraging that many of these
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Table 4.7: Top ten important variables in 5NN-RF classifiers for P2P3, P2APP and
P3APP. Average and standard deviation taken across the eight rolling windows.

Importance

Avg Sd

P2P3

Trial outcome-completed, positive outcome or primary endpoint(s) met 0.261 0.128
Trial status 0.088 0.016
Prior approval of drug for another indication 0.085 0.080
Actual accrual 0.042 0.007
Target accrual 0.040 0.016
Number of identified sites 0.038 0.013
Trial outcome-completed, negative outcome or primary endpoint(s) not met 0.030 0.023
Duration 0.030 0.010
Sponsor type-academic 0.026 0.024
Sponsor track record-number of positive phase 2 trials 0.017 0.011

P2APP

Trial outcome-completed, positive outcome or primary endpoint(s) met 0.203 0.083
Trial status 0.102 0.033
Prior approval of drug for another indication 0.077 0.061
Actual accrual 0.039 0.015
Target accrual 0.031 0.010
Duration 0.027 0.014
Sponsor track record-number of completed phase 3 trials 0.025 0.007
Medium-suspension 0.024 0.018
Sponsor type-academic 0.023 0.017
Medium-solution 0.021 0.019

P3APP

Trial outcome-completed, positive outcome or primary endpoint(s) met 0.348 0.028
Trial status 0.125 0.020
Duration 0.053 0.017
Prior approval of drug for another indication 0.046 0.028
Trial outcome-completed, negative outcome or primary endpoint(s) not met 0.033 0.026
Target accrual 0.021 0.005
Trial outcome-terminated, lack of efficacy 0.020 0.013
Actual accrual 0.019 0.004
Therapeutic area-oncology 0.017 0.013
Number of identified sites 0.012 0.002
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Table 4.8: Comparison of the general and indication-group specific classifiers for
selected indication groups in P2P3. We use bootstrapping to determine the 95% CI
for AUC.

General Indication-group
Classifier Specific Classifiers

Train Test AUC Train Test AUC
Set Set (95% CI) Set Set (95% CI)

All

2004-2008 1,278 420 0.708 (0.655, 0.761) - - -
2005-2009 1,442 455 0.678 (0.626, 0.730) - - -
2006-2010 1,634 467 0.688 (0.639, 0.737) - - -
2007-2011 1,790 433 0.659 (0.602, 0.716) - - -
2008-2012 1,853 447 0.784 (0.737, 0.832) - - -
2009-2013 1,921 385 0.797 (0.746, 0.847) - - -
2010-2014 1,933 274 0.852 (0.787, 0.917) - - -

Anti-cancer

2004-2008 1,278 134 0.688 (0.593, 0.783) 461 134 0.719 (0.630, 0.808)
2005-2009 1,442 146 0.639 (0.541, 0.738) 491 146 0.635 (0.527, 0.742)
2006-2010 1,634 151 0.684 (0.589, 0.779) 541 151 0.691 (0.595, 0.786)
2007-2011 1,790 156 0.671 (0.565, 0.777) 589 156 0.767 (0.675, 0.859)
2008-2012 1,853 154 0.756 (0.646, 0.867) 631 154 0.736 (0.629, 0.843)
2009-2013 1,921 136 0.801 (0.685, 0.917) 662 136 0.841 (0.736, 0.945)
2010-2014 1,933 119 0.898 (0.768, 1.000) 686 119 0.863 (0.703, 1.000)

Anti-infective

2004-2008 1,278 29 0.740 (0.495, 0.986) 88 29 0.461 (0.212, 0.710)
2005-2009 1,442 36 0.716 (0.531, 0.900) 102 36 0.572 (0.376, 0.768)
2006-2010 1,634 47 0.631 (0.470, 0.793) 118 47 0.576 (0.412, 0.741)
2007-2011 1,790 40 0.685 (0.518, 0.853) 135 40 0.442 (0.258, 0.627)
2008-2012 1,853 42 0.800 (0.664, 0.936) 142 42 0.634 (0.463, 0.806)
2009-2013 1,921 29 0.717 (0.526, 0.909) 149 29 0.545 (0.317, 0.773)
2010-2014 1,933 17 0.962 (0.874, 1.000) 153 17 0.808 (0.567, 1.000)
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Table 4.9: Comparison of the general and indication-group specific classifiers for

selected indication groups in P2APP. We use bootstrapping to determine the 95% CI
for AUC.

General Indication-group
Classifier Specific Classifiers

Train Test AUC Train Test AUC
Set Set (95% CI) Set Set (95% CI)

All

2004-2008 1,361 551 0.669 (0.614, 0.725) - - -
2005-2009 1,562 591 0.680 (0.625, 0.735) - - -
2006-2010 1,764 636 0.712 (0.668, 0.755) - - -
2007-2011 1,969 598 0.738 (0.698, 0.777) - - -
2008-2012 2,082 597 0.799 (0.760, 0.837) - - -
2009-2013 2,212 517 0.823 (0.779, 0.867) - - -
2010-2014 2,289 380 0.797 (0.718, 0.876) - - -

Anti-cancer

2004-2008 1,361 137 0.665 (0.528, 0.803) 456 137 0.683 (0.533, 0.833)
2005-2009 1,562 163 0.739 (0.618, 0.861) 494 163 0.635 (0.512, 0.758)
2006-2010 1,764 188 0.774 (0.702, 0.846) 546 188 0.726 (0.635, 0.816)
2007-2011 1,969 193 0.830 (0.773, 0.887) 618 193 0.746 (0.661, 0.831)
2008-2012 2,082 198 0.805 (0.717, 0.894) 682 198 0.760 (0.665, 0.855)
2009-2013 2,212 177 0.852 (0.783, 0.922) 736 177 0.786 (0.696, 0.876)
2010-2014 2,289 173 0.815 (0.691, 0.938) 791 173 0.803 (0.666, 0.940)

Musculoskeletal

2004-2008 1,361 35 0.765 (0.597, 0.933) 96 35 0.704 (0.512, 0.896)
2005-2009 1,562 38 0.716 (0.489, 0.944) 109 38 0.674 (0.472, 0.876)
2006-2010 1,764 35 0.634 (0.439, 0.830) 111 35 0.509 (0.276, 0.742)
2007-2011 1,969 37 0.737 (0.571, 0.903) 119 37 0.677 (0.493, 0.860)
2008-2012 2,082 36 0.884 (0.773, 0.995) 127 36 0.683 (0.462, 0.904)
2009-2013 2,212 26 0.792 (0.573, 1.000) 133 26 0.667 (0.429, 0.904)
2010-2014 2,289 19 0.882 (0.724, 1.000) 128 19 0.882 (0.706, 1.000)
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Table 4.10: Comparison of the general and indication-group specific classifiers for
selected indication groups in P3APP. We use bootstrapping to determine the 95% CI
for AUC.

General Indication-group
Classifier Specific Classifiers

Train Test AUC Train Test AUC
Set Set (95% CI) Set Set (95% CI)

All

2004-2008 472 196 0.769 (0.704, 0.834) - - -
2005-2009 559 177 0.724 (0.650, 0.798) - - -
2006-2010 604 211 0.738 (0.671, 0.805) - - -
2007-2011 664 174 0.806 (0.740, 0.871) - - -
2008-2012 677 197 0.827 (0.768, 0.886) - - -
2009-2013 740 153 0.868 (0.809, 0.927) - - -
2010-2014 734 110 0.876 (0.811, 0.941) - - -

Anti-cancer

2004-2008 472 34 0.773 (0.618, 0.928) 95 34 0.684 (0.495, 0.874)
2005-2009 559 28 0.740 (0.543, 0.936) 107 28 0.568 (0.345, 0.791)
2006-2010 604 50 0.754 (0.599, 0.910) 110 50 0.630 (0.452, 0.809)
2007-2011 664 24 0.587 (0.333, 0.842) 132 24 0.392 (0.132, 0.651)
2008-2012 677 40 0.793 (0.549, 1.000) 134 40 0.668 (0.457, 0.879)
2009-2013 740 29 0.800 (0.480, 1.000) 151 29 0.775 (0.528, 1.000)
2010-2014 734 26 0.943 (0.842, 1.000) 153 26 0.852 (0.558 ,1.000)

Rare Diseases

2004-2008 472 22 0.711 (0.465, 0.957) 54 22 0.620 (0.364, 0.876)
2005-2009 559 23 0.735 (0.517, 0.952) 60 23 0.606 (0.360, 0.852)
2006-2010 604 24 0.888 (0.747, 1.000) 66 24 0.825 (0.645, 1.000)
2007-2011 664 22 0.838 (0.652, 1.000) 72 22 0.735 (0.520, 0.950)
2008-2012 677 34 0.893 (0.780, 1.000) 76 34 0.700 (0.523, 0.877)
2009-2013 740 28 0.962 (0.899, 1.000) 94 28 0.932 (0.840, 1.000)
2010-2014 734 18 0.908 (0.766, 1.000) 109 18 0.985 (0.942, 1.000)
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candidates (highlighted in bold) have advanced beyond phase 2 testing since our

analysis, indicating predictive power of our models. Ultimately, such scores can be

used by portfolio managers to rank and evaluate the potential risks and rewards of

drug candidates.
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Table 4.11: Top five P2APP pipeline drug candidates with the highest scores in each
indication group as predicted by our model. We include only candidates that are
still outstanding at the time of writing (neither discontinued nor approved). Drug-
indication pairs in italics are those that have advanced beyond phase 2 testing since
our analysis.

Drug Indication Score Drug Indication Score

Anti-cancer

ontecizumab Cancer, colorectal 0.34
calmangafodipir Radio/chemotherapy- 0.31

induced injury, bone
marrow, neutropenia

tivantinib Cancer, sarcoma, soft 0.30
tissue

pidilizumab Cancer, colorectal 0.29
NK-012 Cancer, colorectal 0.28

Rare Diseases

surotomycin Infection, Clostridium 0.34
difficile

tivantinib Cancer, sarcoma, soft 0.30
tissue

VP-20621 Infection, Clostridium 0.30
difficile prophylaxis

KHK-7580 Secondary 0.29
hyperparathyroidism

nitric oxide, Hypertension, 0.29
inhaled pulmonary

Alimentary

dasotraline Attention deficit 0.35
hyperactivity disorder

idalopirdine Alzheimer's disease 0.35
GRC-17536 Neuropathy, diabetic 0.34
caprylic Alzheimer's disease 0.32
triglyceride
levodopa Parkinson's disease 0.31

Neurological

ibodutant Irritable bowel 0.37

GRC-17536

mesalazine +
N-acetylcysteine
apabetalone
(tablet)
phosphatidylcholine

syndrome,
diarrhoea-predominant

Neuropathy, diabetic

Colitis, ulcerative

Diabetes, Type 2

Colitis, ulcerative

Musculoskeletal

tofacitinib Arthritis, psoriatic 0.31
ixekizumab Arthritis, rheumatoid 0.31

anti-BLyS/APRIL Arthritis, rheumatoid 0.31
antibody fusion
protein
sirukumab Arthritis, rheumatoid 0.29
romosozumab Osteoporosis 0.28

Cardiovascular

K-134 Peripheral vascular 0.37
disease

nitric oxide, Hypertension, 0.29
inhaled pulmonary
TY-51924 Infarction, myocardial 0.28

s-amlodipine + Hypertension, 0.27
telmisartan unspecified
tirasemtiv Peripheral vascular 0.24

disease

Genitourinary

tofacitinib Arthritis, psoriatic 0.31

dimethyl fumarate Psoriasis 0.27
pefcalcitol Psoriasis 0.24
Benvitimod Psoriasis 0.22

calcipotriol Psoriasis 0.22
monohydrate +
betamethasone
dipropionate

Dermatological

etonogestrel + Contraceptive, female 0.30
estradiol (vaginal
ring), next
generation

0.34 drospirenone +
estradiol

0.31 finerenone

0.31 afacifenacin
fumarate

0.31 GKT-137831

Contraceptive, female

Nephropathy, diabetic

Overactive bladder

Nephropathy, diabetic

0.28

0.27

0.26

0.26
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Table 4.11 (continued): Top five P2APP pipeline drug candidates with the highest
scores in each indication group as predicted by our model. We include only candidates

that are still outstanding at the time of writing (neither discontinued nor approved).

Drug-indication pairs in italics are those that have advanced beyond phase 2 testing

since our analysis.

Drug Indication Score Drug Indication Score

Immunological

tofacitinib Arthritis, psoriatic 0.31

ixekizumab Arthritis, rheumatoid 0.31

anti-BLyS/APRIL Arthritis, rheumatoid 0.31
antibody fusion
protein
sirukumab Arthritis, rheumatoid 0.29

dimethyl fumarate Psoriasis 0.27

Anti-infective

delafloxacin Infection, skin and skin 0.39
structure, acute bacterial

surotomycin Infection, Clostridium 0.34
diflicile

delafloxacin Infection, pneumonia, 0.33
community-acquired

plazomicin Infection, urinary tract, 0.33
complicated

Ypeginterferon Infection, hepatitis-C 0.33
alpha-2b virus

Respiratory

fluticasone + Asthma 0.36
salmeterol
fluticasone furoate
+ umeclidinium
+ vilanterol
fluticasone furoate
+ umeclidinium
beclometasone +
formoterol
fluticasone
propionate DPI

Chronic obstructive
pulmonary disease

Chronic obstructive
pulmonary disease
Chronic obstructive
pulmonary disease
Asthma

Blood and Clotting

calmangafodipir Radio/chemotherapy- 0.31
induced injury, bone
marrow, neutropenia

balugrastim Radio/chemotherapy- 0.27
induced injury, bone
marrow, neutropenia

eflapegrastim Radio/chemotherapy- 0.25
induced injury, bone
marrow, neutropenia

pegfilgrastim Radio/chemotherapy- 0.22
induced injury, bone
marrow, neutropenia

lexaptepid pegol Radio/chemotherapy- 0.20
induced
anaemia

Sensory

AR-13324 + Glaucoma 0.27
latanoprost
S-646240 Macular degeneration, 0.27

age-related, wet
netarsudil Glaucoma 0.26

fenofibrate, Oedema, macular, 0.25
micronized-2 diabetic
LX-7101 Glaucoma 0.21

Hormonal

KHK-7580 Secondary 0.29

0.36 somatropin
prodrug, pegylated

0.36 2MD

0.35 velcalcetide

0.35 tesamorelin
acetate

hyperparathyroidism
Growth hormone
deficiency

Secondary
hyperparathyroidism
Secondary
hyperparathyroidism
Growth hormone
deficiency
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Chapter 5

Conclusion

Drug development is an extremely costly process, and the accurate evaluation of a

candidate drug's likelihood of approval is critical to the efficient allocation of capital.

Historical successes and failures contain valuable insights on the characteristics of

high-potential candidates. Unfortunately, such data is often incomplete due to partial

reporting by investigators and developers. Most analytic methods require complete

data, however, and prior studies on estimating approval rates and predicting approvals

are typically based on a small number of examples that have complete information

for just a few features.

In this paper, we extract three datasets, P2P3, P2APP and P3APP, from Informa

databases and apply 5NN imputation to make efficient use of all available data. We

apply machine-learning techniques to train and validate our RF predictive models

and achieve promising levels of predictive power for all three datasets. When applied

to pipeline drugs, we find that candidates with higher scores are indeed more likely

to advance to higher clinical phases, indicating that our 5NN-RF classifiers are able

to discriminate between high- and low-potential candidates.

A time-series analysis of all three datasets shows generally increasing trends in

performance over five-year rolling windows from 2004 to 2014. We find that the

classifiers' performances correlate well with the proportions of complete-cases in the

training sets: as completeness increases, the classifier learns better and achieves higher

AUCs. This highlights the importance of data quality in building more accurate
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predictive algorithms for drug development. Finally, we compute feature importance

in the predictive models and find that the most important features for predicting

success are trial outcomes, trial status, trial accrual rates, duration, prior approval

for another indication, and sponsor track records. Because the 5NN-RF classifiers

are non-linear, there is no simple interpretation of the incremental contribution of

each predictor to the forecast. However, the intuition behind some of these factors is

clear: drug-indication pairs with trials that achieve positive outcomes certainly have

a better chance of approval; candidates sponsored by companies with strong track

records and greater expertise in drug development should have higher likelihood of

success; approved drugs may have higher chances of approval for a second related

indication. Many of these factors contain useful signals about drug development

outcomes but have not been considered in prior studies.

These results are promising and raise the possibility of even more powerful drug

development prediction models with access to better quality data. Ultimately, such

predictive analytics can be used to make more informed data-driven decisions in risk

assessment and portfolio management of investigational drugs at different clinical

stages.
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Appendix A

Data Pre-processing

We construct our datasets from two Informa® databases: Pharmaprojects and Trn-

altrove, two separate relational databases organized by largely different ontologies. We

extract drug-specific features and drug-indication development status from Pharmapro-

jects, and clinical trial features from Trialtrove. We had to merge the databases

through keys provided separately by Informa®.

Pharmaprojects was created earlier than Trialtrove, and thus the disease coverage

for clinical trials is not as extensive. We start the merging process by first identifying

all drug-indication pairs in Pharmaprojects. Subsequently, we drop pairs that do

not have any trials recorded in Trialtrove. As highlighted in Section 2.2, profiles in

Pharmaprojects and Trialtrove are fraught with missingness. Therefore, we impose

several filters when constructing the datasets to ensure that all instances collected are

usable for analysis. Table A.1 summarizes the steps in the filter. We note that the

drug, indication, and trial relationships in the constructed datasets are surjective and

non-injective: different drugs may target the same indication, and some trials may

involve multiple drug-indication pairs. This is logical because it is common that drugs

treat multiple diseases, multiple drugs treat a specific disease, or trials involve two or

more related primary investigational drugs. To provide some intuition for the size of

these databases, we summarize, in Fig. A-1, Fig. A-2 and Fig. A-3 (for P2P3, P2APP

and P3APP respectively), how the number of drug-indication pairs and clinical trials

change as we perform the filters.
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Table A.1: Filters for creating datasets.

Rationale

Drug-indication Pairs in Pharmaprojects

Trials observed in Trialtrove (phase 2 for P2P3
and P2APP; phase 3 for P3APP)
Known approval date (for P2APP and P3APP,
if approved). Approval dates are not available
directly in Pharmaprojects. They are embedded
within text blocks. We had to mine these text
blocks (combination of heuristics and manual
extraction) to extract the dates.
Known phase 3 start date (for P2P3)

Known failure date (if failed)

We exclude pairs for which we do not observe
any trials in Trialtrove.
We define the approval date as the earliest date
a drug-indication pair was approved in any
market. We need these dates to create an
augmented set of variables capturing sponsors
and investigators experience, and also to
perform time-series analysis.
We define the phase 3 start date as the earliest
date a drug-indication pair enters phase 3
testing.
Failure dates are not directly available in
Pharmaprojects. We define failure date as one
year after the end-date of the last phase 2 or
phase 3 trial (if any), whichever is latest.

Clinical Trials in Trialtrove

Phase 2 for P2P3
P3APP
Known end date

and P2APP; phase 3 for

Known sponsors and disease types

We are interested in predicting approvals using
trial features.
We need these dates to perform time series
analysis. For approved drug-indication pairs in
P2APP and P3APP, we compare the trial end
date with the corresponding approval date to
filter out post-approval trials. These trials may
be for supplemental new drug applications (e.g.
modified dosage) that are irrelevant to our
analysis. Similarly, for successful
drug-indication pairs in P2P3, we compare the
phase 2 trial end date with the corresponding
phase 3 start date to filter out trials that end
post-transition.
Trials not tagged with sponsor/disease types
are typically out of Trialtrove commercial
coverage and are not maintained.
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Trialtrove
Concluded

phase 2 trials
65,713 trials

Known end date.
sponsors, disease type

55,014 trials

Merge Trialtrove and
Pharmaprojects

Pharmaprojects

All

101,507 drug-indication pairs
Progressed,
failed, pipeline

85,093 drug-indication pairs

I1,545 drug indication pairs
40,377 trials

5,288 drug indication pairs
8,839 trials

Figure A-1: P2P3 data filtering.

Trialtrove
Concluded --

phase 2 trials
65,713 trials

Known end date,
sponsors, disease type

55,014 trials

Pharmaprojects

101,507 drug-indication pairs

85,093 drug-indication pairs

All

Approved,
failed, pipeline

Merge Trialtrove and -
Pharmaprojects

Filter

II,545 drug indication pairs
40,377 trials

6,344 drug indication pairs
14,584 trials

Figure A-2: P2APP data filtering.
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Trialtrove Pharmaprojects
Concluded r l

phase 3 trials All
31,012 trials 101,507 drug-indication pairs

Known end date, Approved,
sponsors, disease type failed, pipeline

24,724 trials 85,093 drug-indication pairs

Merge Trialtrove and
Pharmaprojects

4,663 drug indication pairs
19,450 trials

Filter

1,870 drug indication pairs

4,552 trials

Figure A-3: P3APP data filtering.

We extract drug compound attributes and clinical trial characteristics from Pharm-

aprojects and Trialtrove, respectively (see Table 2.1 and Table A.2). In addition to

features readily available in the databases, we create an augmented set of variables

capturing sponsor track record and investigator experience. We quantify the track

record of sponsors of a specific trial by their success in developing other drugs, using

the number of prior approved and failed drug-indication developments; and in past

trials for phases 1, 2, and 3 separately, using the total number of trials sponsored, the

number of trials sponsored with positive and negative results, and the number of trials

sponsored to completion and termination. We use the end date of the last trial of the

drug-indication pair under consideration as the cutoff for considering prior experience.

This is because the last end date will be the time of prediction. We abstract investi-

gator experience in the same manner. Lastly, we construct a binary drug-indication

pair feature, whether the drug has been approved for another indication before. Sim-

ilarly, we use the end date of the last trial as cutoff for considering prior approval. In

total, our datasets have 31 drug-related features and 113 trial-related features.
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Table A.2: Examples of features extracted from Pharmaprojects and Trialtrove. After
transforming multi-label parent features into binary child features (1 or 0), there
were over 3,000 drug and trial categories in total. However, not all are useful for our
analysis. For instance, trials rarely take place in Nepal, so the corresponding location
feature rarely appears. Thus, this feature is unlikely to have meaningful associations
with success. We remove these near zero variance factors. Also, we standardize
continuous variables prior to all experiments.

Examples Categories

Drug Features

Route Inhaled; Injectable; Oral; Topical 4
Origin Biological, protein, antibody; Biological, protein, recombinant; Chemical, 3

synthetic
Medium Capsule, hard; Capsule, soft; Powder; Solution; Suspension; Tablet 6
Biological target family Cytokine/growth factor; Enzyme; Ion channel; Receptor; Transporter 5
Pharmacological target 5 Hydroxytryptamine receptor antagonist; Angiogenesis inhibitor; 11
family Apoptosis stimulant; Cell cycle inhibitor; DNA inhibitor; DNA synthesis

inhibitor; Growth factor receptor antagonist; Immunostimulant;
Immunosuppressant; Ion channel antagonist; Protein kinase inhibitor

Drug-indication True; false 2
development status
Prior approval of drug Approved; failed 2
for another indication

67



Table A.2 (continued): Examples of features extracted from Pharmaprojects and
Trialtrove. After transforming multi-label parent features into binary child features
(1 or 0), there were over 3,000 drug and trial categories in total. However, not all
are useful for our analysis. For instance, trials rarely take place in Nepal, so the
corresponding location feature rarely appears. Thus, this feature is unlikely to have

meaningful associations with success. We remove these near zero variance factors.
Also, we standardize continuous variables prior to all experiments.

Examples Categories

Trial Features

Duration Integer 1
Study design Active comparator; Cross over; Dose response; Double blind/blinded; 14

Efficacy; Multiple arm; Non-inferiority; Open label; Pharmacodynamics;
Pharmacokinetics; Placebo control; Randomized; Safety; Single arm

Sponsor type Academic; Cooperative Group; Government; Industry, all other pharma; 5
Industry, Top 20 Pharma

Therapeutic area Autoimmune/Inflammation; Cardiovascular; CNS; Infectious Disease; 6
Metabolic/Endocrinology; Oncology

Trial status Completed; terminated 2
Trial outcome Completed, negative outcome or primary endpoint(s) not met; 8

Completed, outcome indeterminate; Completed, positive outcome or
primary endpoint(s) met; Terminated, business decision-other;
Terminated, business decision-pipeline reprioritization; Terminated, lack
of efficacy; Terminated, poor enrollment; Terminated, safety or adverse
effects

Target accrual Integer 1
Actual accrual Integer 1
Locations Argentina; Australia; Austria; Belgium; Brazil; Bulgaria; Canada; Chile; 36

Czech Republic; Denmark; Europe; Finland; France; Germany; Hungary;
India; Israel; Italy; Japan; Mexico; Netherlands; New Zealand; Peru;
Poland; Romania; Russia; Slovakia; South Africa; South Korea; Spain;
Sweden; Switzerland; Taiwan; Ukraine; United Kingdom; United States

Number of identified Integer 1
sites
Biomarker involvement Biomarker/efficacy; Biomarker/toxicity; PGX-biomarker 5

identification/evaluation; PGX-pathogen; PGX-patient
preselection/stratification

Sponsor track record Number of prior approved drug-indication pairs; Number of prior failed 17
pairs; Total number of phase 1 trials sponsored; Number of phase 1 trials
with positive results; Number of phase 1 trials with negative results;
Number of completed phase 1 trials; Number of terminated phase 1
trials; Total number of phase 2 trials sponsored; Number of phase 2 trials
with positive results; Number of phase 2 trials with negative results;
Number of completed phase 2 trials; Number of terminated phase 2
trials; Total number of phase 3 trials sponsored; Number of phase 3 trials
with positive results; Number of phase 3 trials with negative results;
Number of completed phase 3 trials; Number of terminated phase 3 trials

Investigator experience Refer to sponsor track record 17
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Appendix B

Missing Data Definitions

Missing data may be generally classified into three categories [10]: missing completely

at random (MCAR), missing at random (MAR), and missing not at random (MNAR).

MCAR holds when data is missing for reasons entirely unrelated to the data (the

probability of missingness is the same for every data point). MAR applies when

data missingness can be fully accounted for by observed variables (the probability of

missingness is the same when conditioned on groups in the observed data). Finally,

MNAR comes in when neither MCAR nor MAR are appropriate (the probability of

missingness is dependent on the value of the unobserved variable/is unknown) [111.

For a more precise definition, let Y denote a n x p data matrix (with elements yij)

where the n rows represent samples and the p columns represent variables. We further

partition the observed part of Y as Yobs and the missing part as Ymis, so collectively

Y (Yobs, Ymis). Next, let R be a n x p response indicator matrix where elements

rij =0 if the corresponding element yij is missing, and rij = 1 if yij is observed. The

distribution of R, known as the missing data model/missingness mechanism, may be

written generally as P(RYobs, Ymis, ). R is related in some way to the data Y, and

is described by some unknown parameters . The missingness is said to be MCAR if:

P(RYos, Ymis, ) = P(Rj ) (B.1)

This means that the probability of missingness is totally unrelated to the data.
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The missingness is said to be MAR if:

P(RYobs, Ymis, )= P(RYobs, ) (B.2)

This means that the missingness does not depend on the values of the missing

data when conditioned on the observed data. Finally, the missingness is said to be

MNAR if:

P(RYobs, Ymis, ) = P(RYobs, Ymis, ) (B.3)

The expression cannot be simplified since the probability of missingness can de-

pend on the unobserved underlying values of the missing data and/or of other observed

variables.

Now, we let the distribution of Y, which is the data model we are interested in, be

described by some parameters 0. The missingness mechanism can be further described

as ignorable under two conditions [241: First, the missingness must be MAR. Second,

the parameters 0 and must be distinct'. In many situations, the second condition

is reasonable because knowing 0 will provide little information about and vice versa

[201. In general, the first MAR requirement is considered to be the more important

condition. When ignorability holds, Rubin [141 showed that:

P(YmisIYobs, R) = P(YmisIYobs) (B.4)

This implies that the distribution of the data is independent of the missing data

model, and is identical in both the observed and unobserved groups [11]:

P(YIYobs, R = 1) = P(Y|YObs, R = 0) (B.5)

In this case, we can model the conditional distribution P(YYobs, R = 1) from the

observed data, and use it to draw imputations for the missing data (the missing data

model R is ignored and not modeled). If the missingness is nonignorable, Eq. (B.5)

'0 and should be a priori independent where P(0, ) factors into P(0)P( ) [241.
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does not hold, and the distributions are not equivalent. When this happens, we need

to estimate the missingness mechanism, and incorporate it into the imputation model.
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Appendix C

Note on Multiple Imputation

Multiple imputation (MI) is a principled missing data method that can provide valid

statistical inferences when missingness is ignorable. It involves three steps: imputa-

tion, analysis and pooling (see Fig. C-1).

C.1 Imputation

Under MI, we draw multiple plausible values for each missing data point, thus creating

multiple imputed datasets from one incomplete dataset. There are different strategies

for multivariate multiple imputation. In this paper, we focus on Fully Conditional

Specification (FCS), specifically the Multivariate Imputation by Chained Equations

(MICE) algorithm' [251. In MICE, we first specify an imputation model for each

incomplete variable in the form of conditional distributions (missing data conditioned

on the observed data). The algorithm starts with simple random draws from the

observed data and imputes the incomplete data in an iterative variable-by-variable

fashion according to the specified variable models. Each iteration entails one cycle

through all the incomplete variables (see Algo. C-1). The number of iterations should

be set such that convergence is reached2 . In practice, a small number of iterations

'Implemented in R, MICE package [25j. Van Buuren provides a comprehensive guide to MICE
in [11].

2 Convergence is typically checked by monitoring the means of imputed values and/or the values
of regression coefficients and making sure they are stable over the iterations.
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Q
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Figure C-1: Multiple imputation.

appears to be sufficient, from 10 to 20. Multiple imputed datasets can be generated

by running MICE in parallel the desired number of times.

In this study, we specify linear regression models for incomplete continuous vari-

ables and logistic regression models for incomplete nominal variables. We monitor

convergence by computing the mean/mode of the imputed values and making sure

that they were stable over iterations. Twenty iterations appear to be sufficient.

C.2 Analysis

The analysis step after single imputation is straightforward: We apply any standard,

complete-data statistical methods and end up with one set of results. In MI, we have

multiple imputed compete datasets. After analyzing them individually using standard

statistical procedures, we end up with multiple sets of results. These results will differ

from each other since each dataset is imputed with different values. These differences

represent the uncertainty due to the missing data. The pooling step describes how

we can combine these sets of results into a single set.
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Algorithm C-1: Pseudo-code for Multivariate Imputation by Chained Equations

[11].
Define Y as a n x p matrix where rows represent samples and columns represent variables
Data: Incomplete dataset y= (yobs, Ymil)
Result: Imputed dataset YT = (yobS, ymisT) at iteration T

Define Y as the Jth feature column of Y where Y (Yobs Ymis)
forj - 1topdo

imputation model for incomplete variable Y <- P(Y 2IYj, Oj)
starting imputations Ymi" +- draws from Yjobs

Define Y = (Y t. .. ,Y Yt-, Yjh 1 ) where Y is the jth feature at iteration t

for t - 1 to T do
for j <- 1 to p do

O +- draw from posterior p( 0 jYobs, Y )

Ymis,t <- draws from posterior predictive P(Ym'sIYlj, Oj)

return yT

C.3 Pooling

In this step, we pool the estimates obtained from multiple individual analyses using

Rubin's rules [14] to yield a single estimate. Let Q be a column vector of the estimands

of interest, Q be its estimate', m be the number of imputed datasets, and Qi be the

estimate of the Ith repeated analysis. The combined estimate is given by:

Q_=- Q (C.1)
m =1

3Estimates that can be combined using Rubin's rules include means, regression coefficients and
probability predictions.
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Appendix D

Simulation of Listwise Deletion

Versus Imputation

We design an experiment to study the effects of imputation and verify that imputation

indeed offers an improvement over complete-cases analysis. First, we create a gold

standard dataset by taking complete-cases of the P2APP dataset1 (see Table D.1).

Next, we randomly split the gold standard dataset drug-indication pairs into a training

set (70%) and a testing set (30%).

To simulate missingness present in the original dataset, we introduce missing-

ness in the gold standard training and testing sets based on our MAR assumptions

and the missingness patterns observed in the P2APP dataset. When making MAR,

we ensure that the proportions of drugs and trials with fully observed features (i.e.

complete-cases) are consistent with those in the parent dataset (see Appendix D.1 for

description).

We must be cautious relying on the MAR testing set for model validation. Re-

sults may not accurately capture whether a classifier has learned the true underly-

ing relationship between the features and the outcome. To illustrate, suppose that

drug-indication pairs have only one binary feature ("0" or "1") that is unrelated to

approval/failure. Thus, no classifier can do better than random guessing (0.5 AUC).

1Recall that the P2APP dataset is meant for building models that can predict whether a drug-
indication pair that has concluded phase II testing will be approved eventually. We exclude pipeline
drug-indication pairs in this analysis because their outcomes are unknown.
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Table D.1: Sample size of the gold standard dataset (derived from complete-cases of

P2APP).

Counts

Drug-indication Phase 2 Unique Unique Unique Phase
Pairs Trials Drugs Indications 2 Trials

Success 166 341 152 83 337
Failure 812 1,672 503 158 1,549
Total 978 2,013 623 171 1,872

Now, assume that we have MAR in the dataset: failed pairs are more likely to have

missing values due to the data collection process, unrelated to the binary feature.

Suppose that we impute all the missing values with 1. Intuitively, we know that

this is a poor imputation method because it distorts the feature distribution of failed

pairs, and it reduces the variability in the data. However, this is seemingly a "good"

method because it allows the AUC of a classifier on this imputed dataset to exceed

0.5. That is, we can identify a disproportionate number of failures by guessing all

pairs with feature value 1 as failures. The classifier has learned a nonexistent rela-

tionship introduced by the imputations. By predicting all is as failures, the classifier

is implicitly exploiting its MAR-ness.

Some may argue that it is acceptable to use missingness as a signal. Unfortunately,

this is inappropriate in our case, because the MAR nature of the dataset on hand is

merely an artifact of data collection that would not be present during actual testing.

MAR was introduced to the data due to the backfilling of information over time2 . We

believe that missingness in current test cases, e.g., drug-indication pairs currently in

the pipeline, is more MCAR-like in nature because no backfilling has been performed.

For example, immediately after phase 2 testing, pairs that go on to be approved are

equally likely to have missing information as pairs that go on to be terminated.

Clearly, missingness will not be a useful predictive factor. A classifier that relies

heavily on the missingness in the dataset will fail miserably when put into production.

It is difficult to assess how good a classifier really is from the performance on a

2This occurs due to a combination of reasons-some drug characteristics (e.g. mechanism of
action) only become clear as the study progresses to higher phases; poor reporting practices.
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MAR testing set. Therefore, we create an additional testing set (the "MCAR testing

set") in which we introduce missingness based on patterns observed in pipeline drug-

indication pairs in the P2APP dataset (see Appendix D.1 for a description). Because

the drugs were still in development at the time of snapshot of the databases, they are

likely to be less affected by backfilling. Consequently, the AUC on the MCAR testing

set will be more reflective of a classifier's real performance. We also use the gold

standard testing sets for evaluation. These two testing sets serve as a control for the

backfilling artifact in the data collection process. They can help to identify non-ideal

imputation methods: Poor imputation methods tend to distort the data distribution

and undermine relationships between variables. This noise makes it more difficult

for classifiers to learn the true underlying patterns in the data. These classifiers will

perform poorly on the gold standard and MCAR testing sets3 . On the other hand,

applying imputation methods that are capable of preserving the data distribution

will make it easier for classifiers to capture useful relationships in the data. These

classifiers will perform well on the gold standard and MCAR testing sets.

We have two training sets (gold standard and MAR) and three testing sets (gold

standard, MAR, and MCAR) (see Fig. D-1). We use five different missing data ap-

proaches, as described in Section 3.1, to generate multiple complete training sets from

the MAR training set. Subsequently, we use each imputed training set to build four

different predictive models (PLR, RF, SVM, and C5.0) according to the method-

ology outlined in Section 3.2. We use ten-fold cross-validation to select the hyper-

parameters for each model. In addition to the imputed MAR training sets, we use the

gold standard training set to train gold standard classifiers: the models that would

have been built if the data was complete. We impute the MAR and MCAR testing

sets in a similar fashion as the training sets, and evaluate the AUC performance of all

classifiers on the imputed and gold standard testing sets. We repeat the entire proce-

dure of introducing MAR and MCAR in the dataset, imputing missingness, training

models and validating performance 100 times for robustness. In addition to the AUC,

3Returning to the above binary feature example, if we had tested the classifier on a gold standard
testing set, we would realize that it did not learn any useful patterns.
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Figure D-1: Datasets created in the experiment.

we compute the biasness of the imputed values in the imputed training and testing

sets with respect to their gold standard counterparts. This is a measure of accuracy

of each imputation method. Finally, we use the results from the gold standard, MAR

and MCAR testing sets as basis to select an imputation method and machine-learning

algorithm combination most suitable to the dataset on hand.

Table D.2 summarizes the results. Since the training and testing sets are fixed, us-

ing the same drug-indication pairs for all methods, direct comparison across different

missing data techniques and machine-learning algorithms is possible. Rows corre-

spond to different missing datan t e tasthe training and testing

sets in the experiments. Column groups correspond to different types of missingness

introduced in the testing sets. For all four machine-learning algorithms, we find that

gold standard classifiers consistently outperform their complete-cases analysis and

imputation counterparts. This is logical because useful information is invariably lost

when we intentionally introduce missingness in the datasets. In contrast, complete-

cases analysis often leads to inferior performance. The AUCs of classifiers trained

on complete-cases training sets are on average 0.04 less than those trained on im-

puted training sets. As expected, complete-cases are ill suited for MAR data. This

supports our conjecture that the use of imputation has allowed predictive models to

learn useful patterns that would otherwise be lost from discarding incomplete data.

When comparing across rows, we observe that the different imputation techniques

are not equally effective. In terms of imputation quality, MI and mean/mode give
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Table D.2: AUC of different classifiers under different missing data approaches. Ab-
breviations. Avg: average; Sd: standard deviation; 5%: 5th percentile; 50%: median;
95%: 95th percentile; m: number of imputations generated.

Testing Set AUC

MAR MCAR Gold Standard

Avg Sd 5% 50% 95% Avg Sd 5% 50% 95% Avg Sd 5% 50% 95%

PLR

Gold Standard - - - - - - - - - - 0.810 0.028 0.761 0.808 0.853
Complete-cases - - - - - - - - - - 0.755 0.040 0.683 0.764 0.813
Mean/mode 0.786 0.028 0.746 0.785 0.829 0.751 0.029 0.702 0.753 0.794 0.778 0.031 0.729 0.779 0.823
Median/mode 0.786 0.028 0.745 0.786 0.829 0.751 0.029 0.704 0.753 0.794 0.778 0.031 0.728 0.779 0.824
5NN 0.763 0.032 0.716 0.762 0.814 0.757 0.032 0.707 0.758 0.805 0.786 0.032 0.738 0.787 0.834
1ONN 0.774 0.030 0.730 0.773 0.821 0.757 0.032 0.695 0.756 0.802 0.787 0.032 0.739 0.791 0.835
MI (m=1) 0.746 0.035 0.688 0.747 0.804 0.758 0.035 0.705 0.755 0.818 0.781 0.036 0.722 0.777 0.843
MI (m=10) 0.755 0.030 0.705 0.757 0.801 0.766 0.032 0.719 0.764 0.815 0.782 0.031 0.729 0.782 0.831

RF

Gold Standard - - - - - - - - - - 0.837 0.027 0.793 0.837 0.876
Complete-cases - - - - - - - - - - 0.764 0.048 0.685 0.772 0.830
Mean/mode 0.794 0.027 0.753 0.794 0.836 0.761 0.030 0.712 0.761 0.809 0.775 0.031 0.726 0.771 0.822
Median/mode 0.793 0.027 0.756 0.793 0.831 0.759 0.030 0.709 0.762 0.808 0.774 0.031 0.723 0.774 0.827
5NN 0.782 0.031 0.735 0.783 0.830 0.780 0.030 0.734 0.783 0.828 0.805 0.033 0.755 0.805 0.857
1ONN 0.788 0.029 0.741 0.786 0.833 0.780 0.030 0.729 0.778 0.827 0.802 0.033 0.747 0.805 0.856
MI (m=1) 0.774 0.028 0.732 0.777 0.825 0.782 0.031 0.737 0.779 0.845 0.797 0.033 0.748 0.795 0.853
MI (m=10) 0.782 0.029 0.734 0.781 0.831 0.791 0.029 0.739 0.790 0.835 0.804 0.030 0.751 0.804 0.848

SVM

Gold Standard - - - - - - - - - - 0.785 0.030 0.730 0.786 0.831
Complete-cases - - - - - - - - - - 0.733 0.053 0.650 0.741 0.795
Mean/mode 0.772 0.032 0.724 0.773 0.820 0.741 0.032 0.686 0.748 0.788 0.766 0.036 0.707 0.771 0.818
Median/mode 0.771 0.029 0.729 0.768 0.817 0.740 0.031 0.683 0.745 0.780 0.764 0.035 0.711 0.771 0.818
5NN 0.751 0.031 0.699 0.748 0.803 0.745 0.034 0.697 0.746 0.800 0.771 0.034 0.722 0.770 0.827
1ONN 0.758 0.035 0.688 0.760 0.814 0.745 0.037 0.679 0.749 0.808 0.772 0.037 0.710 0.773 0.825
MI (m=1) 0.731 0.035 0.676 0.732 0.788 0.741 0.033 0.684 0.745 0.790 0.760 0.035 0.696 0.762 0.813
MI (m=10) 0.746 0.030 0.705 0.746 0.797 0.755 0.031 0.707 0.753 0.797 0.768 0.030 0.719 0.764 0.813

C5.0

Gold Standard - - - - - - - - - - 0.800 0.033 0.758 0.800 0.844
Complete-cases - - - - - - - - - - 0.710 0.063 0.585 0.713 0.802
Mean/mode 0.764 0.033 0.711 0.768 0.810 0.734 0.032 0.675 0.737 0.777 0.758 0.039 0.698 0.762 0.816
Median/mode 0.764 0.038 0.708 0.761 0.825 0.735 0.041 0.676 0.736 0.797 0.754 0.043 0.679 0.751 0.823
5NN 0.756 0.036 0.703 0.753 0.816 0.749 0.038 0.695 0.745 0.805 0.772 0.038 0.715 0.772 0.843
1ONN 0.759 0.035 0.696 0.762 0.807 0.747 0.037 0.687 0.749 0.799 0.770 0.035 0.710 0.771 0.822
MI (m=1) 0.733 0.038 0.672 0.731 0.795 0.741 0.036 0.680 0.740 0.800 0.758 0.037 0.701 0.754 0.819
MI (m=10) 0.786 0.030 0.738 0.786 0.836 0.793 0.031 0.738 0.797 0.842 0.807 0.031 0.756 0.808 0.857
MARt 0.759 0.037 0.699 0.759 0.811 0.744 0.037 0.685 0.741 0.801 0.761 0.037 0.705 0.757 0.812

t For MAR, we leave the missingness as it is and rely on the decision tree algorithm to handle them internally.
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Table D.3: Biasness of imputations with respect to gold standard. Abbreviations.
Abs: absolute.

MAR Training Set MAR Testing Set MCAR Testing Set

Biasa Wrongly Biasa Wrongly Biasa Wrongly
Imputedb Imputedb Imputedb

Mean/mode 234.6 23.0 236.2 23.3 274.2 22.2
Median/mode 115.5 23.0 116.1 23.3 128.7 22.2
5NN 95.4 22.7 94.9 22.0 96.2 21.8
1ONN 87.3 21.7 87.9 21.2 90.2 21.0
MI (m=1) 262.0 25.3 268.9 27.9 323.0 26.9
MI (m=10) 260.9 25.3 269.0 27.9 322.7 26.7

a Average percentage bias of imputed continuous variables. We first find the sum of the absolute
percentage difference between imputed values that are continuous and their corresponding gold
standard values (gold standard values as denominator), averaged over the total number of missing
values that are continuous. Next, we take the mean over 100 iterations.
b Percentage of nominal variables that were wrongly imputed. We first find the number of imputed
categorical values that differ form their corresponding gold standard values, averaged over the total
number of missing values that are categorical. Next, we take the mean over 100 iterations.

the most inaccurate imputations while nearest neighbors recovers data best for both

continuous and nominal variables (see Table D.3). To better visualize each imputa-

tion method, Fig. D-2 plots the distributions of the trial feature of actual accrual, a

continuous variable, in the gold standard, complete-cases and imputed MAR training

sets of one iteration. It is evident that mean and median imputations have distorted

the variable distribution, introducing previously absent peaks at the observed mean

and median respectively. In contrast, MI and nearest neighbors imputation man-

aged to preserve the general shape of the variable distribution without introducing

anomalous peaks.

We believe that the noise introduced by mean and median imputations have an

adverse impact on a classifier's learning process. These effects may not be obvious

from the AUC of the MAR testing sets. Indeed, for all four machine-learning algo-

rithms, we observe that mean and median imputations give the highest AUCs for the

MAR testing sets. However, the trend is reversed when we look at the gold standard

and MCAR testing sets. Classifiers trained on mean or median imputation performed

the worst of all imputation methods on these testing sets, implying that the noise
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Figure D-2: Gold standard, complete-cases, MAR and imputed distributions of actual

accrual in the training set of one of the iterations. The range of actual accrual goes

up to 3,000. However, only a small number of samples go beyond 600. Thus, we

truncated the histograms at 600 for better visualization. For MAR distribution, we

ignored all missing values.
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introduced by the distortions must have hindered the machine-learning algorithms

from fully capturing the underlying relationships in the data. It will therefore be

prudent to avoid this imputation approach.

Overall, we find kNN imputation to be most suitable to the dataset4 . It provides

the least biased imputations among all missing data methods. More importantly,

classifiers built on kNN-imputed training sets give the highest AUCs for the gold

standard testing set for all machine-learning models explored. By preserving the

original data distribution while filling in missing values, kNN imputation has allowed

classifiers to learn underlying patterns more effectively. In particular, the combination

of 5NN with RF gives the one of the highest gold standard (0.805) and MCAR (0.780)

testing set AUCs. This may be attributed to the fact that RF is a nonlinear model,

and thus it is able to better capture the complex interactions between the features and

regulatory approval than PLR, a linear model. We focus on the 5NN-RF combination

in our analyses, since it appears that this pair is most compatible with our datasets.

D.1 Making MAR and MCAR

We simulate missingness in gold standard training and testing sets (see Table D.1)

based on our assumption of MAR and the missingness patterns observed in the

P2APP dataset (see Table D.4 and Table D.5). For example, 36% of approved drugs

in the P2APP dataset have some incomplete drug features. Accordingly, we ran-

domly select 36% of approved drugs in the gold standard training set and introduce

missingness in drug features according to the observed proportions to form the MAR

training set, e.g. 6% of these drugs will have missing pharmacological target family

values, 76% will have missing biological target family values, and so on. We repeat

this process for failed drugs, completed trials, and terminated trials. At the end, we

4Note that the MI (m=10)-RF and MI (m=10)-C5.0 combinations yielded slightly better perfor-
mances than kNN-RF. However, we excluded MI (m=10) from consideration because the improve-
ment is only marginal while the imputation and analysis processes are much more time consuming,
since we have ten imputed datasets in MI (m=10). Furthermore, the imputation method does
not converge well (or at all) for smaller datasets. This poses an issue for the time series analysis
in Section 4.2. In contrast, kNN imputation is relatively straightforward to implement and more
stable.
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Table D.4: Breakdown of missingness in drug features in P2APP with respect to
unique drugs (see Fig. 2-2).

Missingnessi

Known Outcomes Pipeline

Success Failure Unconditional

COMPLETE-CASES 0.64 0.29 0.46

INCOMPLETE-CASES 0.36 0.71 0.54
Route 0.00 0.06 0.04
Pharmacological target family 0.06 0.10 0.17
Biological target family 0.76 0.45 0.63
Medium 0.43 0.86 0.69

t Feature missingness with respect to incomplete-cases, e.g. 36% of suc-
cess drugs have some incomplete drug features. 43% of these drugs have
missing medium values.

propagate the missing drug and trial features into the training set feature matrix,

so that drug-indication pairs for the same drug have the same drug features missing

in their feature vectors, and drug-indication pairs with the same trial have the same

trial features missing. Conversely, when making the sets MAR, we ensure that the

proportions of drugs and trials with fully observed features (i.e. complete-cases) are

consistent with that observed in the parent dataset, e.g. 64% of approved drugs in

the MAR training set have complete drug features. We repeat this procedure for the

gold standard testing set to form the MAR testing set.

We simulate MCAR in the gold standard testing set in a similar fashion to form

the MCAR testing set. However, here we use unconditional missingness patterns

observed in the pipeline dataset (see Table D.4 and Table D.5), instead of the known

outcomes set where backfilling has occurred.
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Table D.5: Breakdown of missingness in trial features in
unique trials (see Fig. 2-3).

P2APP with respect to

Missingness t

Known Outcomes Pipeline

Completion Termination Unconditional

COMPLETE-CASES 0.22 0.60 0.44

INCOMPLETE-CASES 0.78 0.40 0.56
Number of identified sites 0.13 0.24 0.21
Actual accrual 0.13 0.54 0.18
Duration 0.37 0.13 0.24
Target accrual 0.54 0.21 0.37
Locations 0.02 0.04 0.02
Study design keywords 0.31 0.24 0.13
Trial termination reasons 0.93 0.27 0.81

t Feature missingness with respect to incomplete-cases.
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Comparison of General and

Indication-Group Specific Classifiers
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Table E.1: Comparison of the general and indication-group specific classifiers for
selected indication groups in P2P3. We use bootstrapping to determine the 95% CI
for AUC. We exclude indication groups with too few samples.

General Indication-group
Classifier Specific Classifiers

Train Test AUC Train Test AUC
Set Set (95% CI) Set Set (95% CI)

All

2004-2008 1,278 420 0.708 (0.655, 0.761) - - -
2005-2009 1,442 455 0.678 (0.626, 0.730) - - -
2006-2010 1,634 467 0.688 (0.639, 0.737) - - -
2007-2011 1,790 433 0.659 (0.602, 0.716) - - -
2008-2012 1,853 447 0.784 (0.737, 0.832) - - -
2009-2013 1,921 385 0.797 (0.746, 0.847) - - -
2010-2014 1,933 274 0.852 (0.787, 0.917) - - -

Alimentary

2004-2008 1,278 49 0.650 (0.482, 0.818) 175 49 0.675 (0.520, 0.831)
2005-2009 1,442 63 0.637 (0.486, 0.788) 195 63 0.520 (0.360, 0.681)
2006-2010 1,634 52 0.775 (0.648, 0.902) 225 52 0.561 (0.402, 0.720)
2007-2011 1,790 46 0.824 (0.701, 0.946) 231 46 0.899 (0.812, 0.986)
2008-2012 1,853 51 0.894 (0.803, 0.986) 224 51 0.862 (0.757, 0.966)
2009-2013 1,921 43 0.679 (0.504, 0.855) 219 43 0.731 (0.561, 0.901)
2010-2014 1,933 28 0.842 (0.694, 0.991) 220 28 0.819 (0.638, 0.999)

Immunological

2004-2008 1,278 34 0.638 (0.445, 0.830) 117 34 0.371 (0.133, 0.608)
2005-2009 1,442 40 0.600 (0.412, 0.788) 124 40 0.528 (0.332, 0.724)
2006-2010 1,634 29 0.510 (0.291, 0.729) 132 29 0.447 (0.224, 0.670)
2007-2011 1,790 31 0.477 (0.241, 0.714) 141 31 0.486 (0.268, 0.705)
2008-2012 1,853 33 0.577 (0.371, 0.782) 144 33 0.650 (0.452, 0.848)
2009-2013 1,921 26 0.762 (0.581, 0.943) 141 26 0.981 (0.936, 1.000)
2010-2014 1,933 21 0.889 (0.739, 1.000) 141 21 0.889 (0.739, 1.000)

Anti-infective

2004-2008 1,278 29 0.740 (0.495, 0.986) 88 29 0.461 (0.212, 0.710)
2005-2009 1,442 36 0.716 (0.531, 0.900) 102 36 0.572 (0.376, 0.768)
2006-2010 1,634 47 0.631 (0.470, 0.793) 118 47 0.576 (0.412, 0.741)
2007-2011 1,790 40 0.685 (0.518, 0.853) 135 40 0.442 (0.258, 0.627)
2008-2012 1,853 42 0.800 (0.664, 0.936) 142 42 0.634 (0.463, 0.806)
2009-2013 1,921 29 0.717 (0.526, 0.909) 149 29 0.545 (0.317, 0.773)
2010-2014 1,933 17 0.962 (0.874, 1.000) 153 17 0.808 (0.567, 1.000)
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Table E.1 (continued): Comparison of the general and indication-group specific clas-
sifiers for selected indication groups in P2P3. We use bootstrapping to determine the
95% CI for AUC. We exclude indication groups with too few samples.

General Indication-group
Classifier Specific Classifiers

Train Test AUC Train Test AUC
Set Set (95% CI) Set Set (95% CI)

Anti-cancer

2004-2008 1,278 134 0.688 (0.593, 0.783) 461 134 0.719 (0.630, 0.808)
2005-2009 1,442 146 0.639 (0.541, 0.738) 491 146 0.635 (0.527, 0.742)
2006-2010 1,634 151 0.684 (0.589, 0.779) 541 151 0.691 (0.595, 0.786)
2007-2011 1,790 156 0.671 (0.565, 0.777) 589 156 0.767 (0.675, 0.859)
2008-2012 1,853 154 0.756 (0.646, 0.867) 631 154 0.736 (0.629, 0.843)
2009-2013 1,921 136 0.801 (0.685, 0.917) 662 136 0.841 (0.736, 0.945)
2010-2014 1,933 119 0.898 (0.768, 1.000) 686 119 0.863 (0.703, 1.000)

Musculoskeletal

2004-2008 1,278 29 0.681 (0.475, 0.888) 92 29 0.505 (0.260, 0.750)
2005-2009 1,442 34 0.561 (0.350, 0.772) 100 34 0.451 (0.216, 0.685)
2006-2010 1,634 28 0.646 (0.416, 0.877) 108 28 0.477 (0.246, 0.708)
2007-2011 1,790 27 0.465 (0.218, 0.712) 115 27 0.629 (0.382, 0.877)
2008-2012 1,853 29 0.695 (0.484, 0.906) 120 29 0.610 (0.384, 0.837)
2009-2013 1,921 17 0.635 (0.370, 0.899) 126 17 0.808 (0.594, 1.000)
2010-2014 1,933 12 0.800 (0.539, 1.000) 120 12 0.800 (0.539, 1.000)

Neurological

2004-2008 1,278 80 0.804 (0.704, 0.903) 190 80 0.772 (0.648, 0.895)
2005-2009 1,442 82 0.773 (0.666, 0.880) 238 82 0.698 (0.577, 0.819)
2006-2010 1,634 79 0.766 (0.657, 0.874) 285 79 0.737 (0.621, 0.853)
2007-2011 1,790 71 0.629 (0.450, 0.807) 321 71 0.610 (0.449, 0.771)
2008-2012 1,853 74 0.806 (0.675, 0.937) 322 74 0.773 (0.626, 0.920)
2009-2013 1,921 69 0.836 (0.727, 0.945) 336 69 0.848 (0.741, 0.955)
2010-2014 1,933 40 0.815 (0.666, 0.964) 325 40 0.743 (0.566, 0.920)

Rare Diseases

2004-2008 1,278 59 0.676 (0.538, 0.815) 208 59 0.621 (0.477, 0.766)
2005-2009 1,442 72 0.688 (0.563, 0.814) 220 72 0.558 (0.420, 0.697)
2006-2010 1,634 87 0.691 (0.568, 0.813) 250 87 0.689 (0.551, 0.827)
2007-2011 1,790 73 0.689 (0.561, 0.817) 285 73 0.746 (0.619, 0.873)
2008-2012 1,853 83 0.726 (0.596, 0.856) 309 83 0.757 (0.622, 0.892)
2009-2013 1,921 63 0.853 (0.759, 0.947) 327 63 0.789 (0.619, 0.960)
2010-2014 1,933 67 0.870 (0.733, 1.000) 342 67 0.816 (0.620, 1.000)
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Table E.2: Comparison of the general and indication-group specific classifiers for

selected indication groups in P2APP. We use bootstrapping to determine the 95% CI
for AUC. We exclude indication groups with too few samples.

General Indication-group
Classifier Specific Classifiers

Train Test AUC Train Test AUC
Set Set (95% CI) Set Set (95% CI)

All

2004-2008 1,361 551 0.669 (0.614, 0.725) - - -
2005-2009 1,562 591 0.680 (0.625, 0.735) - - -
2006-2010 1,764 636 0.712 (0.668, 0.755) - - -
2007-2011 1,969 598 0.738 (0.698, 0.777) - - -
2008-2012 2,082 597 0.799 (0.760, 0.837) - - -
2009-2013 2,212 517 0.823 (0.779, 0.867) - - -
2010-2014 2,289 380 0.797 (0.718, 0.876) - - -

Alimentary

2004-2008 1,361 86 0.494 (0.294, 0.694) 170 86 0.502 (0.310, 0.694)
2005-2009 1,562 93 0.613 (0.440, 0.785) 197 93 0.459 (0.287, 0.630)
2006-2010 1,764 80 0.589 (0.447, 0.731) 237 80 0.491 (0.321, 0.662)
2007-2011 1,969 77 0.707 (0.592, 0.821) 257 77 0.541 (0.396, 0.686)
2008-2012 2,082 67 0.802 (0.694, 0.909) 275 67 0.402 (0.252, 0.553)
2009-2013 2,212 58 0.834 (0.715, 0.954) 279 58 0.610 (0.441, 0.780)
2010-2014 2,289 39 0.670 (0.427, 0.913) 274 39 0.656 (0.414, 0.899)

Cardiovascular

2004-2008 1,361 39 0.515 (0.313, 0.717) 93 39 0.541 (0.310, 0.771)
2005-2009 1,562 38 0.307 (0.104, 0.509) 105 38 0.452 (0.230, 0.674)
2006-2010 1,764 46 0.613 (0.430, 0.795) 118 46 0.628 (0.449, 0.806)
2007-2011 1,969 37 0.634 (0.396, 0.872) 135 37 0.793 (0.644, 0.942)
2008-2012 2,082 42 0.640 (0.426, 0.853) 137 42 0.621 (0.425, 0.818)
2009-2013 2,212 35 0.360 (0.138, 0.582) 145 35 0.460 (0.272, 0.648)
2010-2014 2,289 19 0.529 (0.000, 1.000) 148 19 0.618 (0.000, 1.000)

Anti-infective

2004-2008 1,361 46 0.658 (0.502, 0.815) 124 46 0.645 (0.478, 0.812)
2005-2009 1,562 44 0.695 (0.525, 0.866) 146 44 0.707 (0.551, 0.863)
2006-2010 1,764 53 0.733 (0.568, 0.897) 161 53 0.708 (0.552, 0.864)
2007-2011 1,969 44 0.648 (0.479, 0.818) 171 44 0.592 (0.420, 0.763)
2008-2012 2,082 43 0.801 (0.666, 0.936) 165 43 0.815 (0.684, 0.945)
2009-2013 2,212 32 0.658 (0.454, 0.862) 169 32 0.649 (0.435, 0.864)
2010-2014 2,289 18 0.875 (0.708, 1.000) 167 18 0.750 (0.515, 0.985)
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Table E.2 (continued): Comparison of the general and indication-group specific clas-
sifiers for selected indication groups in P2APP. We use bootstrapping to determine
the 95% CI for AUC. We exclude indication groups with too few samples.

General Indication-group
Classifier Specific Classifiers

Train Test AUC Train Test AUC
Set Set (95% CI) Set Set (95% CI)

Anti-cancer

2004-2008 1,361 137 0.665 (0.528, 0.803) 456 137 0.683 (0.533, 0.833)
2005-2009 1,562 163 0.739 (0.618, 0.861) 494 163 0.635 (0.512, 0.758)
2006-2010 1,764 188 0.774 (0.702, 0.846) 546 188 0.726 (0.635, 0.816)
2007-2011 1,969 193 0.830 (0.773, 0.887) 618 193 0.746 (0.661, 0.831)
2008-2012 2,082 198 0.805 (0.717, 0.894) 682 198 0.760 (0.665, 0.855)
2009-2013 2,212 177 0.852 (0.783, 0.922) 736 177 0.786 (0.696, 0.876)
2010-2014 2,289 173 0.815 (0.691, 0.938) 791 173 0.803 (0.666, 0.940)

Musculoskeletal

2004-2008 1,361 35 0.765 (0.597, 0.933) 96 35 0.704 (0.512, 0.896)
2005-2009 1,562 38 0.716 (0.489, 0.944) 109 38 0.674 (0.472, 0.876)
2006-2010 1,764 35 0.634 (0.439, 0.830) 111 35 0.509 (0.276, 0.742)
2007-2011 1,969 37 0.737 (0.571, 0.903) 119 37 0.677 (0.493, 0.860)
2008-2012 2,082 36 0.884 (0.773, 0.995) 127 36 0.683 (0.462, 0.904)
2009-2013 2,212 26 0.792 (0.573, 1.000) 133 26 0.667 (0.429, 0.904)
2010-2014 2,289 19 0.882 (0.724, 1.000) 128 19 0.882 (0.706, 1.000)

Neurological

2004-2008 1,361 122 0.688 (0.572, 0.803) 211 122 0.768 (0.676, 0.859)
2005-2009 1,562 119 0.612 (0.471, 0.753) 271 119 0.625 (0.501, 0.748)
2006-2010 1,764 125 0.656 (0.532, 0.779) 334 125 0.673 (0.560, 0.787)
2007-2011 1,969 105 0.701 (0.580, 0.822) 375 105 0.649 (0.522, 0.776)
2008-2012 2,082 114 0.806 (0.707, 0.904) 382 114 0.695 (0.586, 0.804)
2009-2013 2,212 87 0.938 (0.857, 1.000) 417 87 0.718 (0.558, 0.879)
2010-2014 2,289 55 0.984 (0.952, 1.000) 408 55 0.860 (0.721, 0.999)

Respiratory

2004-2008 1,361 34 0.673 (0.418, 0.927) 89 34 0.833 (0.650, 1.000)
2005-2009 1,562 42 0.842 (0.722, 0.962) 104 42 0.825 (0.670, 0.979)
2006-2010 1,764 49 0.797 (0.663, 0.931) 125 49 0.801 (0.644, 0.959)
2007-2011 1,969 36 0.694 (0.513, 0.875) 143 36 0.519 (0.323, 0.715)
2008-2012 2,082 43 0.751 (0.604, 0.899) 149 43 0.692 (0.520, 0.865)
2009-2013 2,212 37 0.827 (0.694, 0.961) 154 37 0.876 (0.764, 0.987)
2010-2014 2,289 23 0.724 (0.365, 1.000) 160 23 0.842 (0.679, 1.000)
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Table E.2 (continued): Comparison of the general and indication-group specific clas-

sifiers for selected indication groups in P2APP. We use bootstrapping to determine

the 95% CI for AUC. We exclude indication groups with too few samples.

General Indication-group
Classifier Specific Classifiers

Train Test AUC Train Test AUC
Set Set (95% CI) Set Set (95% CI)

Rare Diseases

2004-2008 1,361 69 0.664 (0.517, 0.811) 212 69 0.521 (0.349, 0.693)
2005-2009 1,562 81 0.627 (0.471, 0.782) 231 81 0.528 (0.368, 0.687)
2006-2010 1,764 108 0.774 (0.666, 0.881) 257 108 0.691 (0.546, 0.836)
2007-2011 1,969 101 0.786 (0.698, 0.874) 303 101 0.680 (0.547, 0.812)
2008-2012 2,082 112 0.787 (0.696, 0.879) 329 112 0.600 (0.469, 0.731)
2009-2013 2,212 90 0.803 (0.702, 0.903) 358 90 0.730 (0.626, 0.834)
2010-2014 2,289 89 0.793 (0.621, 0.965) 391 89 0.779 (0.626, 0.932)
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Table E.3: Comparison of the general and indication-group specific classifiers for
selected indication groups in P3APP. We use bootstrapping to determine the 95% CI
for AUC. We exclude indication groups with too few samples.

General Indication-group
Classifier Specific Classifiers

Train Test AUC Train Test AUC
Set Set (95% CI) Set Set (95% CI)

All

2004-2008 472 196 0.769 (0.704, 0.834) - - -
2005-2009 559 177 0.724 (0.650, 0.798) - - -
2006-2010 604 211 0.738 (0.671, 0.805) - - -
2007-2011 664 174 0.806 (0.740, 0.871) - - -
2008-2012 677 197 0.827 (0.768, 0.886) - - -
2009-2013 740 153 0.868 (0.809, 0.927) - - -
2010-2014 734 110 0.876 (0.811, 0.941) - - -

Alimentary

2004-2008 472 65 0.826 (0.651, 1.000) 25 65 0.889 (0.756, 1.000)
2005-2009 559 75 0.683 (0.324, 1.000) 17 75 0.650 (0.331, 0.969)
2006-2010 604 80 0.672 (0.428, 0.915) 30 80 0.651 (0.429, 0.872)
2007-2011 664 91 0.911 (0.786, 1.000) 28 91 0.800 (0.630, 0.970)
2008-2012 677 97 0.786 (0.572, 1.000) 24 97 0.700 (0.469, 0.931)
2009-2013 740 107 0.607 (0.149, 1.000) 18 107 0.786 (0.570, 1.000)
2010-2014 734 99 0.944 (0.850, 1.000) 19 99 0.733 (0.492, 0.975)

Anti-cancer

2004-2008 472 95 0.773 (0.618, 0.928) 34 95 0.684 (0.495, 0.874)
2005-2009 559 107 0.740 (0.543, 0.936) 28 107 0.568 (0.345, 0.791)
2006-2010 604 110 0.754 (0.599, 0.910) 50 110 0.630 (0.452, 0.809)
2007-2011 664 132 0.587 (0.333, 0.842) 24 132 0.392 (0.132, 0.651)
2008-2012 677 134 0.793 (0.549, 1.000) 40 134 0.668 (0.457, 0.879)
2009-2013 740 151 0.800 (0.480, 1.000) 29 151 0.775 (0.528, 1.000)
2010-2014 734 153 0.943 (0.842, 1.000) 26 153 0.852 (0.558, 1.000)

Neurological

2004-2008 472 118 0.851 (0.753, 0.949) 59 118 0.837 (0.735, 0.939)
2005-2009 559 151 0.782 (0.646, 0.918) 45 151 0.784 (0.649, 0.919)
2006-2010 604 169 0.732 (0.593, 0.871) 52 169 0.759 (0.629, 0.890)
2007-2011 664 180 0.706 (0.532, 0.880) 40 180 0.698 (0.529, 0.867)
2008-2012 677 178 0.765 (0.604, 0.926) 41 178 0.743 (0.586, 0.900)
2009-2013 740 185 0.827 (0.681, 0.973) 31 185 0.805 (0.641, 0.968)
2010-2014 734 166 0.779 (0.567, 0.990) 27 166 0.900 (0.782, 1.000)
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Table E.3 (continued):Comparison of the general and indication-group specific clas-

sifiers for selected indication groups in P3APP. We use bootstrapping to determine

the 95% CI for AUC. We exclude indication groups with too few samples.

General Indication-group
Classifier Specific Classifiers

Train Test AUC Train Test AUC
Set Set (95% CI) Set Set (95% CI)

Rare Diseases

2004-2008 472 54 0.711 (0.465, 0.957) 22 54 0.620 (0.364, 0.876)
2005-2009 559 60 0.735 (0.517, 0.952) 23 60 0.606 (0.360, 0.852)
2006-2010 604 66 0.888 (0.747, 1.000) 24 66 0.825 (0.645, 1.000)
2007-2011 664 72 0.838 (0.652, 1.000) 22 72 0.735 (0.520, 0.950)
2008-2012 677 76 0.893 (0.780, 1.000) 34 76 0.700 (0.523, 0.877)
2009-2013 740 94 0.962 (0.899, 1.000) 28 94 0.932 (0.840, 1.000)
2010-2014 734 109 0.908 (0.766, 1.000) 18 109 0.985 (0.942, 1.000)
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Appendix F

Comparison with DiMasi et al.

The Approved New Drug Index (ANDI) algorithm was proposed by DiMasi et al.

[1] to predict regulatory approval for lead indications of cancer drugs after phase 2

testing. It is composed of a rubric of four factors to score anticancer agents (see

Appendix F.1). The factors are based on pivotal trial characteristics and disease

prevalence. Higher scores correspond to a higher probability of success. In this

analysis, we apply ANDI on the oncology samples in the P2APP dataset, analyze its

performance, and compare it with our 5NN-RF classifier in Appendix D.

First, we extract all cancer drugs from P2APP to form an oncology-only dataset.

Since ANDI requires complete-cases, we drop all examples with missing values in any

of the four ANDI factors (see Table F.1 for the resulting sample size). From this

dataset, we draw a training set of 62 drugs with the same composition as that used

by DiMasi et al. [1]: 40 failures and 22 successes. We set aside the remaining 319

drugs as a held-out testing set.

In replicating the ANDI experiment, we endeavored to follow the original proposed

rubric as closely as possible. Unfortunately, two factors in the rubric are not in our

dataset. We replace them with surrogate variables, and tune their cutoffs using the

training set put aside earlier. The modified rubric is given in Table F.2. In order to

apply ANDI, we have to identify the lead indication of each oncology drug and the

pivotal phase 2 trial for that drug-indication pair. However, DiMasi et al. [1] did

not provide clear instructions for identifying lead indications or pivotal trials. In this
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Table F.1: Sample size of the oncology-only dataset (derived from P2APP).

Drug-indication
Pairs

71
668
739

Phase 2
Trials

178
1,345
1,523

Counts

Unique
Drugs

61
347
381

Unique
Indications

28
40
40

Unique Phase
2 Trials

176
1,213
1,368

Table F.2: Modified ANDI rubric in this study.

Score

0 1 2

Trial outcomest Terminated, lack of Completed, outcome Terminated, early
efficacy; completed, indeterminate positive outcomes;

negative outcomes or completed, positive
primary endpoint(s) outcomes or primary

not met endpoint(s) met
Number of patients in < 37 38-49 > 50
pivotal phase 2 trial
US incidencet > 100,000 10,000-100,000 < 10,000
Phase 2 duration > 44 21-44 < 21

(months)

t Surrogate variable.

experiment, we apply heuristics which we felt were most logical. See Appendix F.1

for details on the proxy variables and heuristics used.

DiMasi et al. [11 reported an impressive 0.92 AUC for ANDI on a dataset of

62 drugs. However, this figure is based on in-sample/training-set testing, i.e. the

algorithm was tested on the dataset on which the scoring rubric itself was derived.

Such testing naturally yields excellent results because the four factors and their cutoffs

were optimized for the algorithm to do well on the dataset. However, it is nearly

impossible to judge whether an algorithm will generalize well without some form of

testing on held-out datasets. Unfortunately, such validation was not performed by

DiMasi et al. [1]. Furthermore, ANDI was derived from a small sample, making it

even more susceptible to overfitting.

For these reasons, it is very likely that the discriminative power of ANDI is actually

much lower than that implied by the reported AUC of 0.92. Knowing these issues,
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we augment the ANDI experiment by including an out-of-sample model validation

step, using the 319 drugs set aside as the testing set. This will allow us to determine

ANDI's real performance more accurately.

The receiver operating characteristic curves of the original ANDI algorithm as

reported in DiMasi et al. [11 and the modified ANDI on the oncology-only training

and testing sets are shown in Fig. F-1. Similar to the original ANDI, our modified

ANDI rubric demonstrates excellent performance on the training set with 0.94 AUC,

95% CI (0.89, 0.99). Unfortunately, this performance does not hold up on the testing

set. The modified ANDI managed only 0.69 AUC on new, unseen samples. The

large discrepancy between training and testing AUCs is indicative of overfitting. It

is apparent that the patterns learned from the small training sample (n=62) do not

generalize well, highlighting the importance of proper model validation. We believe

the same holds for the original ANDI.

For a direct comparison with our classifiers, we apply the modified ANDI on

oncology drugs in the gold standard testing sets in Appendix D. Fig. F-2 summarizes

the distributions of the results and compares 5NN-RF with the modified ANDI. On

this testing set subsample, we find that our classifier achieves significantly higher AUC

than the modified ANDI, an average improvement of 0.1 in AUC over 100 simulations.

We believe that this gain can be attributed to a larger training set with a wider range

of features, a nonlinear model that can capture the complex relationships in the data,

and proper model validation methodology.

Lastly, we note that DiMasi et al. [1] applied complete-cases analysis in their study

without any characterization of the missingness in their dataset. This is dangerous

because complete-cases are appropriate only under strict MCAR conditions. Violation

of these conditions will lead to biased estimates. Since data is rarely MCAR in reality,

it is unsurprising that the modified ANDI yields an inferior performance. In practice,

this limits the applicability of ANDI to only samples with complete information.

Given the scattershot nature of reporting in drug development, this makes ANDI less

useful.
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Figure F-1: Receiver operating characteristic curves of the original ANDI (as reported
in [1]) and the modified ANDI on the oncology-only training and testing sets. We use
bootstrapping to determine the 95% CI. We plot the receiver operating characteristic
curve of the original ANDI in [1] (red) by using the ANDI scores breakdown provided
in the paper. The slight difference in the lower bound of the 95% CI between what
we computed (0.84) and what DiMasi et al. [1] reported (0.81) may be accounted by
randomness in the bootstraps. Abbreviations. ROC: receiver operating characteristic
curve.
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Figure F-2: Distributions of AUC of 5NN-RF and the modified ANDI on oncology-
only gold standard testing sets from Appendix D.

F.1 Modified ANDI

In replicating the ANDI experiment [1], we endeavored to follow the original proposed

rubric as closely as possible (see Table F.3). Unfortunately, two factors in the rubric

are not in our dataset: worldwide prevalence and activity. We replace them with

surrogate variables, and tune their cutoffs using the training set placed aside earlier.

The modified rubric is given in Table F.2. First, we use US incidence as a proxy for

worldwide prevalence. This is because the latter figure is not known accurately for

many of the oncology indications in our dataset, while the US incidence is much better

documented and more accessible . We determine the cutoffs in a manner similar to

DiMasi et al. [1]: a larger incidence has lower scores while a smaller incidence has

higher scores. Second, we use the trial outcome (i.e., the results of the trial) as a

proxy for activity. We set the cutoffs similarly as in the original rubric: negative

results have lower scores, while positive results have higher scores.

In order to apply ANDI, we have to identify the lead indication of each oncology

drug and the pivotal phase 2 trial for that drug-indication pair. Unfortunately, DiMasi

et al. [11 did not provide clear instructions for identifying lead indications or pivotal

trials in the paper . A fair amount of subjectivity appears to have been involved;
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Table F.3: Oncology ANDI proposed by DiMasi et al. [1.

Score

0 1 2

Pivotal phase 2 trial < 3.0% or negative 3.0-13.8% > 13.8% or positive
activity randomized phase 2 randomized phase 2

trial trial
Number of patients in < 37 38-49 > 50
pivotal phase 2 trial
Number of patients > 302,000 50,000-302,000 < 50,000
treated worldwide
Phase 2 duration > 44 21-44 < 21

(months)

there was no mention of any concrete criteria in the paper. This makes it difficult to

replicate their study on other datasets. In this experiment, we apply heuristics which

we felt were most logical. For drugs with multiple indications, we take the indication

with the most phase 2 trials as the lead. We hypothesize that companies will invest in

more trials for the designated lead indication. For drug-indication pairs with multiple

phase 2 trials, we choose the trial with the largest accrual as the pivotal trial. This is

logical, since trials with larger sample size have greater statistical power. They should

hold greater weight in the decision of whether to proceed to phase 3 testing. In the

event of ties, with the same number of trials or an identical accrual, we randomly

select one of the candidates as the lead indication or pivotal trial.
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Appendix G

Simulation of Random Splitting

Versus Temporal Ordering

We design an experiment to study the effects of any look-ahead bias introduced by

splitting drug-indication pairs into training and testing sets randomly without consid-

ering the dates of development. First, we sample five-year rolling windows between

2004 and 2014 from the P2P3, P2APP and P3APP datasets. In Section 4.2, we

note that each window consists of a training set of drug-indication pairs whose out-

comes become finalized within the window, and an out-of-sample, out-of-time testing

set of drug-indication pairs that ended phase 2 or phase 3 testing, but are still in

the pipeline with undetermined outcomes within the window. Here we disregard the

temporal ordering-we aggregate the training and testing sets, and re-split them ran-

domly before applying our machine-learning framework. To allow direct comparison

with the time-series approach, we keep the new training and testing sample sizes same

as those in Table 4.8, Table 4.9 and Table 4.10. Table G.1 summarize the results.

We find that random splitting is indeed susceptible to overoptimistic performance

(e.g. first four windows in P2APP). This may be attributed to the presence of future

information in the training set, thus leading to look-ahead bias. However, we also

observe overpessimistic results in some cases (e.g. last three windows in P3APP). This

may occur when useful past information are set aside in the testing set. We believe

that historical successes and failures contain valuable insights on the characteristics of
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Table G.1: Comparison of classifiers trained on random splitting and temporal order-
ing. We use bootstrapping to determine the 95% CI for AUC.

Sample Size AUC (95% CI)

Train Set Test Set Random Splitting Temporal Ordering

P2P3

2004-2008 1,278 420 0.731 (0.679, 0.784) 0.708 (0.655, 0.761)
2005-2009 1,442 455 0.758 (0.711, 0.804) 0.678 (0.626, 0.730)
2006-2010 1,634 467 0.754 (0.708, 0.800) 0.688 (0.639, 0.737)
2007-2011 1,790 433 0.743 (0.695, 0.790) 0.659 (0.602, 0.716)
2008-2012 1,853 447 0.742 (0.690, 0.794) 0.784 (0.737, 0.832)
2009-2013 1,921 385 0.801 (0.751, 0.851) 0.797 (0.746, 0.847)
2010-2014 1,933 274 0.764 (0.696, 0.831) 0.852 (0.787, 0.917)

P2APP

2004-2008 1,361 551 0.750 (0.703, 0.797) 0.669 (0.614, 0.725)
2005-2009 1,562 591 0.764 (0.720, 0.808) 0.680 (0.625, 0.735)
2006-2010 1,764 636 0.748 (0.703, 0.794) 0.712 (0.668, 0.755)
2007-2011 1,969 598 0.768 (0.727, 0.809) 0.738 (0.698, 0.777)
2008-2012 2,082 597 0.750 (0.705, 0.795) 0.799 (0.760, 0.837)
2009-2013 2,212 517 0.781 (0.732, 0.829) 0.823 (0.779, 0.867)
2010-2014 2,289 380 0.795 (0.732, 0.858) 0.797 (0.718, 0.876)

P3APP

2004-2008 472 196 0.720 (0.650, 0.790) 0.769 (0.704, 0.834)
2005-2009 559 177 0.748 (0.675, 0.821) 0.724 (0.650, 0.798)
2006-2010 604 211 0.771 (0.707, 0.835) 0.738 (0.671, 0.805)
2007-2011 664 174 0.810 (0.743, 0.877) 0.806 (0.740, 0.871)
2008-2012 677 197 0.805 (0.744, 0.866) 0.827 (0.768, 0.886)
2009-2013 740 153 0.820 (0.754, 0.885) 0.868 (0.809, 0.927)
2010-2014 734 110 0.849 (0.772, 0.925) 0.876 (0.811, 0.941)
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high-potential candidates. Consider prediction for a phase 3 drug today. If we know

that a drug with similar mechanism of action has been approved before, we should

probably assign a higher chance of success to the pipeline drug under consideration.

Conversely, if we see termination of drugs with similar mechanism of action in the

past, we should lower our expectations for the pipeline drug as well. Under random

allocation, the pipeline drug may be set aside in the testing set together with its

historical counterpart. This prevents the model from learning from past experiences,

which leads to overpessimistic performance.

The use of random splitting may be less than ideal due to the reasons noted above.

It is prudent to adhere to the temporal ordering in the dataset when constructing

training and testing sets in order to obtain more realistic inferences.
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