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Abstract

This thesis demonstrates a new technology that can infer a person’s emotions from RF
signals reflected off his body. EQ-Radio transmits an RF signal and analyzes its reflections
off a person’s body to recognize his emotional state (happy, sad, etc.). The key enabler
underlying EQ-Radio is a new algorithm for extracting the individual heartbeats from the
wireless signal at an accuracy comparable to on-body ECG monitors. The resulting beats
are then used to compute emotion-dependent features which feed a machine-learning emo-
tion classifier. We describe the design and implementation of EQ-Radio, and demonstrate
through a user study that its emotion recognition accuracy is on par with state-of-the-art
emotion recognition systems that require a person to be hooked to an ECG monitor.
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Chapter 1

Introduction

Emotion recognition is an emerging field that has attracted much interest from both the
industry and the research community [1, 2, 3, 4, 5]. It is motivated by a simple vision: Can
we build machines that sense our emotions? If we can, such machines would enable smart
homes that react to our moods and adjust the lighting or music accordingly. Movie makers
would have better tools to evaluate user experience. Advertisers would learn customer reac-
tion immediately. Computers would automatically detect symptoms of depression, anxiety,
and bipolar disorder, allowing early response to such conditions. More broadly, machines
would no longer be limited to explicit commands, and could interact with people in a manner

more similar to how we interact with each other.

Existing approaches for inferring a person’s emotions either rely on audiovisual cues,
such as images and audio clips [6, 3, 7], or require the person to wear physiological sensors
like an ECG monitor [8, 9, 10, 11]. Both approaches have their limitations. Audiovisual
techniques leverage the outward expression of emotions, but cannot measure inner feel-
ings [12, 9, 13]. For example, a person may be happy even if she is not smiling, or smiling
even if she is not happy. Also, people differ widely in how expressive they are in showing
their inner emotions, which further complicates this problem [14]. The second approach
recognizes emotions by monitoring the physiological signals that change with our emotional
state, e.g., our heartbeats. It uses on-body sensors — e.g., ECG monitors — to measure these
signals and correlate their changes with joy, anger, etc. This approach is more correlated
with the person’s inner feelings since it taps into the interaction between the autonomic
nervous system and the heart rhythm [15, 16]. However, the use of body sensors is cumber-
some and can interfere with user activity and emotions, making this approach unsuitable

for regular usage.
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Figure 1-1: Comparison of RF signal with ECG signal. The top graph plots the RF signal
reflected off a person’s body. The envelop of the RF signal follows the inhale-exhale motion. The
small dents in the signal are due to heartbeats. The bottom graph plots the ECG of the subject
measured concurrently with the RF signal. Individual beats are marked by grey and white shades.
The numbers report the beat-length in seconds. Note the small variations in consecutive beat
lengths.

In this thesis, we introduce a new method for emotion recognition that achieves the
best of both worlds —i.e., it directly measures the interaction of emotions and physiological
signals, but does not require the user to carry sensors on his body.

Our design uses RF signals to sense emotions. Specifically, RF signals reflect off the
human body and get modulated with bodily movements. Recent research has shown that
such RF reflections can be used to measure a person’s breathing and average heart rate
without body contact [17, 18, 19, 20, 21]. However, the periodicity of the heart signal (i.e.,
its running average) is of little relevance to emotion recognition. Specifically, to recognize
emotions, we need to measure the minute variations in each individual beat length [15, 22, 12].

Yet, extracting individual heartbeats from RF signals incurs multiple challenges, which
can be seen in Fig. 1-1. First, RF signals reflected off a person’s body are modulated by both
breathing and heartbeats. The impact of breathing is typically orders of magnitude larger
than that of heartbeats, and tends to mask the individual beats (see the top graph in Fig. 1-
1); to separate breathing from heart rate, past systems operate over multiple seconds (e.g.,
30 seconds in [17]) in the frequency domain, forgoing the ability to measure the beat-to-beat
variability. Second, heartbeats in the RF signal lack the sharp peaks which characterize the
ECG signal, making it harder to accurately identify beat boundaries. Third, the difference
in inter-beat-intervals (IBI) is only a few tens of milliseconds. Thus, individual beats have to
be segmented to within a few milliseconds. Obtaining such accuracy is particularly difficult
in the absence of sharp features that identify the beginning or end of a heartbeat. Our goal
is to address these challenges to enable RF-based emotion recognition.

We present EQ-Radio, a wireless system that performs emotion recognition using RF

reflections off a person’s body. EQ-Radio’s key enabler is a new algorithm for extracting
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individual heartbeats and their differences from RF signals. Our algorithm first mitigates
the impact of breathing. The intuition underlying our mitigation mechanism is as follows:
while chest displacement due to the inhale-exhale process is orders of magnitude larger than
minute vibrations due to heartbeats, the acceleration of breathing is smaller than that of
heartbeats. This is because breathing is usually slow and steady while a heartbeat involves
rapid contraction of the muscles (which happen at localized instances in time). Hence,
EQ-Radio operates on the acceleration of RF signals to dampen the breathing signal and

emphasize the heartbeats.

Next, EQ-Radio needs to segment the RF reflection into individual heartbeats. In
contrast to the ECG signal which has a known expected shape (see the bottom graph in
Fig. 1-1), the shape of a heartbeat in RF reflections is unknown and varies depending on
the person’s body and exact posture with respect to the device. Thus, we cannot simply
look for a known shape as we segment the signal; we need to learn the beat shape as we
perform the segmentation. We formulate the problem as a joint optimization, where we
iterate between two sub-problems: the first sub-problem learns a template of the heartbeat
given a particular segmentation, while the second finds the segmentation that maximizes
resemblance to the learned template. We keep iterating between the two sub-problems
until we converge to the best beat template and the optimal segmentation that maximizes
resemblance to the template. Finally, we note that our segmentation takes into account that
beats can shrink and expand and hence vary in beat length. Thus, the algorithm finds the
beat segmentation that maximizes the similarity in the morphology of a heartbeat signal
across consecutive beats while allowing for flexible warping (shrinking or expansion) of the

beat signal.

We have built EQ-Radio into a full-fledged emotion recognition system. EQ-Radio’s
system architecture has three components: The first component is an FMCW radio that
transmits RF signals and receives their reflections. The radio leverages the approach in [17]
to zoom in on human reflections and ignore reflections from other objects in the scene. Next,
the resulting RF signal is passed to the beat extraction algorithm described above. The
algorithm returns a series of signal segments that correspond to the individual heartbeats.
Finally, the heartbeats — along with the captured breathing patterns from RF reflections —
are passed to an emotion classification sub-system as if they were extracted from an ECG
monitor. The emotion classification sub-system computes heartbeat-based and respiration-
based features recommended in the literature [10, 12, 9] and uses an SVM classifier to

differentiate among various emotional states.
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We evaluate EQ-Radio by conducting user experiments with 30 subjects. We design
our experiments in accordance with the literature in the field [10, 12, 9]. Specifically, the
subject is asked to evoke a particular emotion by recalling a corresponding memory (e.g.,
sad or happy memories). She/he may use music or photos to help evoking the appropriate
memory. In each experiment, the subject reports the emotion she/he felt, and the period
during which she/he felt that emotion. During the experiment, the subject is monitored
using both EQ-Radio and a commercial ECG monitor. Further, a video is taken of the
subject then passed to the Microsoft image-based emotion recognition system [23].

Our experiments show that EQ-Radio’s emotion recognition is on par with state-of-
the-art ECG-based systems, which require on-body sensors [8]. Specifically, if the system is
trained on each subject separately, the accuracy of emotion classification is 87% in EQ-Radio
and 88.2% in the ECG-based system. If one classifier is used for all subjects, the accuracy
is 72.3% in EQ-Radio and 73.2% in the ECG-based system.! For the same experiments,
the accuracy of the image-based system is 39.5%; this is because the image-based system
performed poorly when the emotion was not visible on the subject’s face.

Our results also show that EQ-Radio’s performance is due to its ability to accurately
extract heartbeats from RF signals. Specifically, even errors of 40-50 milliseconds in esti-
mating heartbeat intervals would reduce the emotion recognition accuracy to 44% (as we
show in Fig. 7-8 in §7.3). In contrast, our algorithm achieves an average error in inter-beat-

intervals (IBI) of 3.2 milliseconds, which is less than 0.4% of the average beat length.

1.1 Contributions

This thesis makes three contributions:

e To our knowledge, this is the first work that demonstrates the feasibility of emotion
recognition using RF reflections off one’s body. As such, this work both expands the
scope of wireless systems and advances the field of emotion recognition.

e This work introduces a new algorithm for extracting individual heartbeats from RF re-
flections off the human body. The algorithm presents a new mathematical formulation of
the problem, and is shown to perform well in practice.

e This work also presents a user study of the accuracy of emotion recognition using RF
reflections, and an empirical comparison with both ECG-based and image-based emotion

recognition systems.

!The ECG-based system and EQ-Radio use exactly the same classification features but differ in how they
obtain the heartbeat series. In all experiments, training and testing are done on different data.
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Chapter 2

Background & Related Work

Emotion Recognition: Recent years have witnessed a growing interest in systems capa-
ble of inferring user emotions and reacting to them [24, 25]. Such systems can be used for
designing and testing games, movies, advertisement, online content, and human-computer
interfaces [26, 27]. These systems operate in two stages: first, they extract emotion-related
signals (e.g., audio-visual cues or physiological signals); second, they feed these signals into
a classifier in order to recognize emotions. Below, we describe prior art for each of these

stages.

Existing approaches for extracting emotion-related signals fall under two categories:
audiovisual techniques and physiological techniques. Audiovisual techniques rely on facial
expressions, speech, and gestures [6, 28]. The advantage of these approaches is that they
do not require users to wear any sensors on their bodies. However, because they rely on
outwardly expressed states, they tend to miss subtle emotions and can be easily controlled
or suppressed [10]. Moreover, vision-based techniques require the user to face a camera
in order for them to operate correctly. On the other hand, physiological measurements,
such as ECG and EEG signals, are more robust because they are controlled by involuntary
activations of the autonomic nervous system (ANS) [29]. However, existing sensors that
can extract these signals require physical contact with a person’s body, and hence interfere
with the user experience and affect her emotional state. In contrast, EQ-Radio can capture
physiological signals without requiring the user to wear any sensors by relying purely on

wireless signals reflected off her/his body.

The second stage in emotion recognition systems involves extracting emotion-related
features from the measured signals and feeding these features into a classifier to identify a

user’s emotional state. There is a large literature on extracting such features from both au-
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diovisual and physiological measurements [30, 31, 32]. Beyond feature extraction, existing
classification approaches fall under two categories. The first approach gives each emotion
a discrete label: e.g., pleasure, sadness, or anger. The second approach uses a multidimen-
sional model that expresses emotions in a 2D-plane spanned by wvalence (i.e., positive vs.
negative feeling) and arousal (i.e., calm vs. charged up) axes [33, 10]. For example, anger
and sadness are both negative feelings, but anger involves more arousal. Similarly, joy and
pleasure are both positive feelings, but the former is associated with excitement whereas
the latter refers to a state of contentment. EQ-Radio adopts the valence-arousal model and
builds on past foundations to enable emotion recognition using RF signals.

Finally, another class of emotion recognition techniques relies on smartphone usage pat-
terns (calling, application usage, etc.) to infer user daily mood or personality [34, 35]; how-
ever, these techniques operate at much large time scales (days or months) than EQ-Radio,

which recognizes emotions at minute-scale intervals.

RF-based Sensing: RF signals reflect off the human body and are modulated by body
motion. Past work leverages this phenomenon to sense human motion: it transmits an RF
signal and analyzes its reflections to track user locations [36], gestures [37, 38, 39, 40, 41, 42],
activities [43, 44|, and vital signs [17, 18, 45]. Past proposals also differ in the transmitted RF
signals: Doppler radar (18, 45], FMCW (36, 17], and WiFi [37, 38]. Among these techniques,
FMCW has the advantage of separating different sources of motion in the environment.
Thus, FMCW is more robust for extracting vital signs and enables monitoring multiple
users simultaneously; hence, EQ-Radio uses FMCW signals for capturing human reflections.

Our work is closest to prior art that uses RF signals to extract a person’s breathing
rate and average heart rate [18, 45, 19, 20, 21, 18, 45, 19, 20, 21, 46, 47, 17]. In contrast to
this past work, which recovers the average period of a heartbeat (which is of the order of a
second), emotion recognition requires extracting the individual heartbeats and measuring
small variations in the beat-to-beat intervals with millisecond-scale accuracy. Unfortunately,
prior research that aims to segment RF reflections into individual beats either cannot achieve
sufficient accuracy for emotion recognition [48, 49, 50] or requires the monitored subjects
to hold their breath [51]. In particular, past work that does not require users to hold
their breath has an average error of 30-50 milliseconds [50, 48, 49], which is of the same
order or larger than the variations in the beat-to-beat intervals themselves, precluding
emotion recognition (as we show empirically in §7.3). EQ-Radio’s heartbeat segmentation
algorithm builds on this past literature yet recovers heartbeats with a mean accuracy of

3.2 milliseconds, hence achieving an order of magnitude reduction in errors in comparison
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to past techniques. This high accuracy is what enables us to deliver the first emotion

recognition system that relies purely on wireless signals.
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Chapter 3

EQ-Radio Overview
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Figure 3-1: EQ-Radio Architecture. EQ-Radio has three components: a radio for capturing RF
reflections (§4), a heartbeat extraction algorithm (§5), and a classification subsystem that maps the
learned physiological signals to emotional states (§6).

EQ-Radio is an emotion recognition system that relies purely on wireless signals. It
operates by transmitting an RF signal and capturing its reflections off a person’s body.
It then analyzes these reflections to infer the person’s emotional state. It classifies the
person’s emotional state according to the known arousal-valence model into one of four
basic emotions [33, 10]: anger, sadness, joy, and pleasure (i.e., contentment).

EQ-Radio’s system architecture consists of three components that operate in a pipelined

manner, as shown in Fig. 3-1:

e An FMCW radio, which transmits RF signals and captures their reflections off a person’s
body.

e A beat extraction algorithm, which takes the captured reflections as input and returns a
series of signal segments that correspond to the person’s individual heartbeats.

o An emotion-classification subsystem, which computes
emotion-relevant features from the captured physiological signals — i.e., the person’s

breathing pattern and heartbeats — and uses these features to recognize the person’s
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emotional state.

In the following sections, we describe each of these components in detail.
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Chapter 4

Capturing the RF Signal

EQ-Radio operates on RF reflections off the human body. To capture such reflections,
EQ-Radio uses a radar technique called Frequency Modulated Carrier Waves (FMCW) [36].
There is a significant literature on FMCW radios and their use for obtaining an RF signal
that is modulated by breathing and heartbeats [17, 52, 53]. We refer the reader to [17] for a
detailed description of such methods, and summarize below the basic information relevant
to this thesis.

The radio transmits a low power signal and measures its reflection time. It separates
RF reflections from different objects/bodies into buckets based on their reflection time. It
then eliminates reflections from static objects which do not change across time and zooms
in on human reflections. It focuses on time periods when the person is quasi-static. It then
looks at the phase of the RF wave which is related to the traveled distance as follows [54]:

d(t)

¢(t) = 27TT,

where ¢(t) is the phase of the signal, A is the wavelength, d(t) is the traveled distance, and ¢
is the time variable. The variations in the phase correspond to the compound displacement
caused by chest expansion and contraction due to breathing, and body vibration due to
heartbeats.!

The phase of the RF signal is illustrated in the top graph in Fig. 1-1. The envelop shows
the chest displacements as the inhale-exhale process. The small dents are due to minute

skin vibrations associated with blood pulsing. EQ-Radio operates on this phase signal.

1When blood is ejected from the heart, it exercises a force on the rest of the body causing small jitters
in the head and skin, which are picked up by the RF signal [17].
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Chapter 5

Beat Extraction Algorithm

Recall that a person’s emotions are correlated with small variations in her/his heartbeat
intervals; hence, to recognize emotions, EQ-Radio needs to extract these intervals from the

RF phase signal described above.

The main challenge in extracting heartbeat intervals is that the morphology of heart-
beats in the reflected RF signals is unknown. Said differently, EQ-Radio does not know how
these beats look like in the reflected RF signals. Specifically, these beats result in distance
variations in the reflected signals, but the measured displacement depends on numerous
factors including the person’s body and her exact posture with respect to EQ-Radio’s an-
tennas. This is in contrast to ECG signals where the morphology of heartbeats has a known
expected shape, and simple peak detection algorithms can extract the beat-to-beat inter-
vals. However, because we do not know the morphology of these heartbeats in RF a priori,
we cannot determine when a heartbeat starts and when it ends, and hence we cannot ob-
tain the intervals of each beat. In essence, this becomes a chicken-and-egg problem: if we
know the morphology of the heartbeat, that would help us in segmenting the signal; on the
other hand, if we have a segmentation of the reflected signal, we can use it to recover the
morphology of the human heartbeat.

This problem is exacerbated by two additional factors. First, the reflected signal is
noisy; second, the chest displacement due to breathing is orders of magnitude higher than
the heartbeat displacements. In other words, we are operating in a low SINR (signal-to-
interference-and-noise) regime, where “interference” results from the chest displacement due
to breathing.

To address these challenges, EQ-Radio first processes the RF signal to mitigate the

interference from breathing. It then formulates and solves an optimization problem to
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recover the beat-to-beat intervals. The optimization formulation neither assumes nor relies
on perfect separation of the respiration effect. In what follows, we describe both of these

steps.

5.1 Mitigating the Impact of Breathing

The goal of the preprocessing step is to dampen the breathing signal and improve the
signal-to-interference-and-noise ratio (SINR) of the heartbeat signal. Recall that the phase
of the RF signal is proportional to the composite displacement due to the inhale-exhale
process and the pulsing effect. Since displacements due to the inhale-exhale process are
orders of magnitude larger than minute vibrations due to heartbeats, the RF phase signal
is dominated by breathing. However, the acceleration of breathing is smaller than that of
heartbeats. This is because breathing is usually slow and steady while a heartbeat involves
rapid contraction of the muscles. Thus, we can dampen breathing and emphasize the
heartbeats by operating on a signal proportional to acceleration as opposed to displacement.

By definition, acceleration is the second derivative of displacement. Thus, we can simply
operate on the second derivative of the RF phase signal. Since we do not have an analytic
expression of the RF signal, we have to use a numerical method to compute the second
derivative. There are multiple such numerical methods which differ in their properties. We

use the following second order differentiator because it is robust to noise [55]:

n_ Ao+ (1 + f-1) —2(fa+ f-2) — (f3+ f-3)

0 16h2 (5-1)

where f} refers to the second derivative at a particular sample, f; refers to the value of the
time series i samples away, and h is the time interval between consecutive samples.

In Fig. 5-1, we show an example RF phase signal with the corresponding acceleration
signal. The figure shows that in the RF phase, breathing is more pronounced than heart-
beats. In contrast, in the acceleration signal, there is a periodic pattern corresponding to

each heartbeat cycle, and the breathing effect is negligible.

5.2 Heartbeat Segmentation

Next, EQ-Radio needs to segment the acceleration signal into individual heartbeats. Recall
that the key challenge is that we do not know the morphology of the heartbeat to bootstrap

this segmentation process. To address this challenge, we formulate an optimization problem
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Figure 5-1: RF Signal and Estimated Acceleration. The figure shows the RF signal (top) and
the acceleration of that signal (bottom). In the RF acceleration signal, the breathing motion is
dampened and the heartbeat motion is emphasized. Note that while we can observe the periodicity
of the heartbeat signal in the acceleration, delineating beat boundaries remains difficult because the
signal is noisy and lacks sharp features.

that jointly recovers the morphology of the heartbeats and the segmentation.

The intuition underlying this optimization is that successive human heartbeats should
have the same morphology; hence, while they may stretch or compress due to different
beat lengths, they should have the same overall shape. This means that we need to find
a segmentation that minimizes the differences in shape between the resulting beats, while
accounting for the fact that we do not know a priori the shape of a beat and that the beats
may compress or stretch. Further, rather than seeking locally optimal choices using a greedy
algorithm, our formulation is an optimization problem over all possible segmentations, as
described below.

Let & = (x1, 3, ..., T,) denote the sequence of length n. A segmentation & = {s1, s2,...}
of & is a partition of it into non-overlapping contiguous subsequences (segments), where
each segment s; consists of |s;| points.

In order to identify each heartbeat cycle, our idea is to find a segmentation with segments
most similar to each other —i.e., to minimize the variation across segments. Since statistical
variance is only defined for scalars or vectors with the same dimension, we extend the

definition for vectors with different lengths as follows.

Definition 5.2.1. Variance of segments S = {s1, 82, ...} is

Var(8) =min 3 |ls; = w(u, lsi))I% (52)

8;€S
where w(p, |s;|) is linear warping' of p into length |s;|.

- Note that the above definition is exactly the same as statistical variance when all the

' Linear warping is realized through a cubic spline interpolation [56].
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segments have the same length. p in the definition above represents the central tendency
of all the segments —i.e., a template for the beat shape (or morphology).
The goal of our algorithm is to find the optimal segmentation &* that minimizes the

variance of segments, which can be formally stated as follows:
S* =arg msinVar(S). (5.3)
We can rewrite it as the following optimization problem:

minimize 3 [lsi = w(s |sif) %
’ S$,ES (54)
subject to  bmin < [8;| < bmax, 8i € S,

where by and bmae are constraints on the length of each heartbeat cycle.? It is trying
to find the optimal segmentation S and template (i.e., morphology) g that minimize the
sum of the square differences between segments and template. This optimization problem
is difficult as it involves both combinatorial optimization over S and numerical optimization

over . Exhaustively searching all possible segmentations has exponential complexity.

5.3 Algorithm

Instead of estimating the segmentation S and the template p simultaneously, our algorithm
alternates between updating the segmentation and template, while fixing the other. During
each iteration, our algorithm updates the segmentation given the current template, then
updates the template given the new segmentation. For each of these two sub-problems, our

algorithms can obtain the global optimal with linear time complexity.

Update segmentation S. In the [-th iteration, segmentation SH*1 is updated given

template p! as follows:

S = argmin ) [lsi — w(ps!, Jsi))[I* (5.5)

8 €S
Though the number of possible segmentations grows exponentially with the length of x,
the above optimization problem can be solved efficiently using dynamic programming. The

recursive relationship for the dynamic program is as follows: if D; denotes the minimal cost

2Bmin and bmas capture the fact that human heartbeats cannot be indefinitely short or long. The default
setting of bmin and bmas is 0.5s and 1.2s respectively.
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Figure 5-2: Segmentation Result Compared to ECG. The figure shows that the length of our
segmented beats in RF (top) is very similar to the length of the segmented beats in ECG (bottom).
There is a small delay since the ECG measures the electric signal of the heart, whereas the RF signal
captures the heart’s mechanical motion as it reacts to the electric signal.

of segmenting sequence xj.;, then:

Dy = min {D; + ||@r41: — w(ps, t — 7)[|%}, (5.6)

TETL,B

where 7, g specifies possible choices of 7 based on segment length constraints. The time
complexity of the dynamic program based on Eqn. 5.6 is O(n) and the global optimum is

guaranteed.

Update template p. In the [-th iteration, template pu!*! is updated given segmentation

S as follows:
ptt =argmin Y [lsi - w(p |si)]?
€SI+
8€ (57)
—argmin s - [l — w(si, m)[)?
m
s; €S
where m is the required length of template. The above optimization problem is a weighted

least squares with the following closed-form solution:

3 cqitt |silw(si,m) 1
ptl = L : _z = — Z |silw(si, m) (5.8)
ZS,'ES‘+1 [SII L 31‘E51+"

Fig. 5-2 shows the final beat segmentation for the data in Fig. 5-1. The figure also
shows the ECG data of the subject. The segmented beat length matches the ECG of the
subject to within a few milliseconds. There is a small delay since the ECG measures the
electric signal of the heart, whereas the RF signal captures the heart’s mechanical motion

as it reacts to the electric signal [57].

Initialization. Initialization is typically important for optimization algorithms; however,

we found that our algorithm does not require sophisticated initialization. Our algorithm
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Algorithm 1 Heartbeat Segmentation Algorithm

Input: Sequence x of n points, heart rate range B.
Output: Segments S, template p of length m.

1: Initialize u® as zero vector

2: 10 > number of iterations
3: repeat

4: 8"« UPDATESEGMENTATION(z, i)

5. u!t! « UPDATETEMPLATE(z, S'*1)

6: l<1l+1

7: until convergence

8 return S’ and !

9

: procedure UPDATESEGMENTATION(Z, pt)
10: So 0
11: DO «~0
12: for t «+ 1 ton do

13: T < argmin,er, o {Dsr + |®r41:0 — W, t — 7)1}
14: Dt — D‘,w + H.’B‘,—*+1;t - W(N,t - T)”2

15: S S, U {.’It-r-+1;t}

16: return S,

17: procedure UPDATETEMPLATE(z, S)

18 p =3, cslsilw(sim)
19: return p

can converge quickly with both random initialization and zero initialization. We choose to

initialize the template u® as the zero vector.

Running time analysis. The pseudocode of our algorithm is presented in 1. The com-
plexity of this algorithm is O(kn), where k is the number of iterations the algorithm takes
before it converges. The algorithm is guaranteed to converge because the number of possible
segmentations is finite and the cost function monotonically decreases with each iteration
before it converges. In practice, this algorithm converges very quickly: for the evaluation
experiments reported in §7, the number of iteration £ is on average 8 and at most 16.
Finally, we note that the overall algorithm is not guaranteed to achieve a global optimum,
but each of the subproblems achieves its global optimum. In particular, as detailed above,
the first subproblem has a closed form optimal solution, and the second subproblem can be
solved optimally with a dynamic program. As a result, the algorithm converges to a local

optimum that works very well in practice as we show in §7.2.
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Chapter 6

Emotion Classification

After EQ-Radio recovers individual heartbeats from RF reflections, it uses the heartbeat
sequence along with the breathing signal to recognize the person’s emotions. Below, we
describe the emotion model which EQ-Radio adopts, and we elaborate on its approach for

feature extraction and classification.

(a) 2D Emotion Model: EQ-Radio adopts a 2D emotion model whose axes are va-
lence and arousal; this model serves as the most common approach for categorizing human
emotions in past literature [33, 10]. The model classifies between four basic emotional
states: Sadness (negative valence and negative arousal), Anger (negative valence and pos-
itive arousal), Pleasure (positive valence and negative arousal), and Joy (positive valence

and positive arousal).

(b) Feature Extraction: EQ-Radio extracts features from both the heartbeat sequence
and the respiration signal. There is a large literature on extracting emotion-dependent
features from human heartbeats [10, 9, 58], where past techniques use on-body sensors.
These features can be divided into time-domain analysis, frequency-domain analysis, time-
frequency analysis, Poincaré plot [59], Sample Entropy [60], and Detrend Fluctuation Anal-
ysis [61]. EQ-Radio extracts 27 features from IBI sequences as listed in Table 6.1. These
particular features were chosen in accordance with the results in [10]. We refer the reader

to [10, 58] for a detailed explanation of these features.

EQ-Radio also employs respiration features. To extract the irregularity of breathing,
EQ-Radio first identifies each breathing cycle by peak detection after low pass filtering.
Since past work that studies breathing features recommends time-domain features [9],

EQ-Radio extracts the time-domain features in the first row of Table 6.1.

31



(c) Handling Dependence: Physiological features differ from one subject to another for
the same emotional state. Further, those features could be different for the same subject
on different days. This is caused by multiple factors, including caffeine intake, sleep, and
baseline mood of the day.

In order to extract better features that are user-independent and day-independent,
EQ-Radio incorporates a baseline emotional state: neutral. The idea is to leverage changes
of physiological features instead of absolute values. Thus, EQ-Radio calibrates the com-
puted features by subtracting for each feature its corresponding values calculated at the

neutral state for a given person on a given day.

(d) Feature Selection and Classification: As mentioned earlier, the literature has
many features that relate IBI to emotions. Using all of those features with a limited amount
of training data can lead to over-fitting. Selecting a set of features that is most relevant
to emotions not only reduces the amount of data needed for training but also improves the
classification accuracy on the test data.

Previous work on feature selection [9, 10] uses wrapper methods which treat the feature
selection problem as a search problem. However, since the number of choices is exponentially
large, wrapper methods have to use heuristics to search among all possible subsets of relevant
features. Instead, EQ-Radio uses another class of feature selection mechanisms, namely
embedded methods [62]; this approach allows us to learn which features best contribute to
the accuracy of the model while training the model. To do this, EQ-Radio uses 1;-SVM [63]
which selects a subset of relevant features while training an SVM classifier. Table 6.1 shows
the selected IBI and respiration features in bold and italic respectively. The performance

of the resulting classifier is evaluated in §7.3.

Domain Name

Mean, Median, SDNN,pNN50, RMSSD,
SDNNi, meanRate, sdRate, HRVTi, TINN.

Welch PSD: LF /HF, peakLF, peakHF.
Frequency Burg PSD: LF/HF, peakLF, peakHF.
Lomb-Scargle PSD: LF /HF, peakLF, peakHF.

Poincaré  SDi, SDy, SD3/SD;.
Nonlinear SampEn;, SampEny, DFA;, DFA;, DFA,.

selected IBI features in bold;
selected respiration features in italic.

Time

Table 6.1: Features used in EQ-Radio.
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Chapter 7

Evaluation

In this section, we describe our implementation of EQ-Radio and its empirical performance
with respect to extracting individual heartbeats and recognizing human emotional states.

All experiments were approved by our IRB.

7.1 Implementation

We reproduced a state-of-the-art FMCW radio designed by past work on wireless vital sign
monitoring [17]. The device generates a signal that sweeps from 5.46 GHz to 7.25 GHz every
4 milliseconds, transmitting sub-mW power. The parameters were chosen as in [17] such
that the transmission system is compliant with FCC regulations for consumer electronics.
The FMCW radio connects to a computer over Ethernet. The received signal is sampled
(digitized) and transmitted over the Ethernet to the computer. EQ-Radio’s algorithms are
implemented on an Ubuntu 14.04 computer with an i7 processor and 32 GB of RAM.

7.2 Evaluation of Heartbeat Extraction

First, we would like to assess the accuracy of EQ-Radio’s segmentation algorithm in ex-

tracting heartbeats from RF signals reflected off a subject’s body.
Experimental Setup

Participants: We recruited 30 participants (10 females). Our subjects are between 19~77

years old. During the experiments, the subjects wore their daily attire with different fabrics.

Ezxperimental Environment: We perform our experiments in 5 different rooms in a standard

office building. The evaluation environment contains office furniture including desks, chairs,
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Figure 7-1: Comparison of IBI Estimates Using EQ-Radio and a Commercial ECG Mon-
itor. The figure shows various metrics for evaluating EQ-Radio’s heartbeat segmentation accuracy
in comparison with an FDA-approved ECG monitor. Note that the CDF in (b) jumps at 4 ms
intervals because the RF signal was sampled every 4 ms.

couches, and computers. The experiments are performed while other users are present in
the room. The change in the experimental environment and the presence of other users
had a negligible impact on the results because the FMCW radio described in §4 elimi-
nates reflections from static objects (e.g., furniture) and isolates reflections from different

humans [17].

Metrics: To evaluate EQ-Radio’s heartbeat extraction algorithm, we use metrics that are

common in emotion recognition:

e [nter-Beat-Interval (IBI): The IBI measures the accuracy in identifying the boundaries
of each individual beat.
e Root Mean Square of Successive Differences (RMSSD): This metric focuses on differences

between successive beats. It is computed as RMSSD = /1/n)_ (IBl;y1 — IBI;)?,

where n is the number of beats in the sum and i is a beat index. RMSSD is typically

used as a measure of the parasympathetic nervous activity that controls the heart [64].
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We calculate RMSSD for IBI sequences in a window of 2 minutes.
o Standard Deviation of NN Intervals (SDNN): The term NN-interval refers to the inter-
beat-interval (IBI). Thus, SDNN measures the standard deviation of the beat length over

a window of time. We use a window of 2 minutes.

Baseline: We obtain the ground truth for the above metrics using a commercial ECG
monitor. We use the AD8232 evaluation board with a 3-lead ECG monitor to get the ECG
signal. The synchronization between the FMCW signal and the ECG signal is accomplished

by connecting both devices to a shared clock.

Accuracy in comparison to ECG

We run experiments with 30 participants, collecting over 130,000 heart beats. Each
subject is simultaneously monitored with EQ-Radio and the ECG device. We process the
data to extract the above three metrics.

We first compare the IBIs estimated by EQ-Radio to the IBIs obtained from the ECG
monitor. Fig. 7-1(a) shows a scatter plot where the z and y coordinates are the IBIs derived
from EQ-Radio and the ECG respectively. The color indicates the density of points in a
specific region. Points on the diagonal have identical IBIs in EQ-Radio and ECG, while the
distance to the diagonal is proportional to the error. It can be visually observed that all
points are clustered around the diagonal, and hence EQ-Radio can estimate IBIs accurately
irrespective of the their lengths.

We quantitatively evaluate the errors in Fig. 7-1(b), which shows a cumulative distribu-
tion function (CDF) of the difference between EQ-Radio’s IBI estimate and the ECG-based
IBI estimate for each beat. The CDF has jumps at 4ms intervals because the RF signal
was sampled every 4ms.! The CDF shows that the 97" percentile error is 8ms. Our results
further show that EQ-Radio’s mean IBI estimation error is 3.2 ms. Since the average IBI in
our experiments is 740 ms, on average, EQ-Radio estimates a beat length to within 0.43%
of its correct value.

In Fig. 7-1(c), we report results for beat variation metrics that are typically used in
emotion recognition. The figure shows the CDF of errors in recovering the SDNN and
RMSSD from RF reflections in comparison to contact-based ECG sensors. The plots show
that the median error for each of these metrics is less than 2% and that even the 90
percentile error is less than 8%. The high accuracy of these emotion-related metrics suggests

that EQ-Radio’s emotion recognition accuracy will be on par with contact-based techniques,

1The actual sampling rate of our receiver is 1MHz. However, because each FMCW sweep takes 4ms, we
obtain one phase measurement every 4ms. For a detailed explanation, please refer to [17].
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Figure 7-2: Error in IBI with Different Orientations and Distances. (a) plots the error in
IBI as a function of the user’s orientation with respect to the device. (b) plots the error in IBI as a
function of the distance between the user and the device.

as we indeed show in §7.3.

Accuracy for different orientations & distances

In the above experiments, the subject sat relatively close to EQ-Radio, at a distance of
3 to 4 feet, and was facing the device. It is desirable, however, to allow emotion recognition
even when the subject is further away or is not facing the device.

Thus, we evaluate EQ-Radio’s beat segmentation accuracy as a function of orientation
and distance. First, we fix the distance to 3 feet and repeat the above experiments for
four different orientations: subject faces the device, subject has his back to the device, and
the subject is facing left or right (perpendicular) to the device. We plot the median and
standard deviation of EQ-Radio’s IBI estimate for these four orientations in Fig. 7-2(a).
The figure shows that, across all orientations, the median error remains below 8ms (i.e., 1%
of the beat length). As expected, however, the accuracy is highest when the user directly
faces the device.

Next, we test EQ-Radio’s beat segmentation accuracy as a function of its distance to
the subject. We run experiments where the subject sits on a chair at different distances
from the device. Fig. 7-2(b) shows the median and standard deviation error in IBI estimate
as a function of distance. Even at 10 feet, the median error is less than 8 ms (i.e., 1% of

the beat length).

7.3 Evaluation of Emotion Recognition

In this section, we investigate whether EQ-Radio can accurately classify a person’s emotions

based on RF reflections off her/his body. We also compare EQ-Radio’s performance with
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more traditional emotion classification methods that rely on ECG signals or images.
Experimental Setup

Participants: We recruited 12 participants (6 females). Among them, 6 participants (3
females) have acting experience of 3~7 years. People with acting experience are more
skilled in emotion management, which helps in gathering high-quality emotion data and
providing a reference group [9]. All subjects were compensated for their participation, and

all experiments were approved by our IRB.

Experiment design: Obtaining high-quality data for emotion analysis is difficult, especially
in terms of identifying the ground truth emotion [9]. Thus, it is crucial to design experiments
carefully. We designed our experiments in accordance with previous work on emotion recog-
nition using physiological signals [10, 9]. Specifically, before the experiment, the subjects
individually prepare stimuli (e.g., personal memories, music, photos, and videos); during
the experiment, the subject sits alone in one out of the 5 conference rooms and elicits a
certain emotional state using the prepared stimuli. Some of these emotions are associated
with small movements like laughing, crying, smiling, etc.2 After the experiment, the subject
reports the period during which she/he felt that type of emotion. Data collected during the
corresponding period are labeled with the subject’s reported emotion.
Throughout these experiments, each subject is monitored using three systems: 1) EQ-Radio,

2) the AD8232 ECG monitor, and 3) a video camera focused on the subject’s face.

Ground Truth: As described above, subjects are instructed to evoke a particular emotion
and report the period during which they felt that emotion. The subject’s reported emotion
is used to label the data from the corresponding period. These labels provide the ground

truth for classification.

Baselines: We compare EQ-Radio’s emotion classification to more traditional emotion
recognition approaches based on ECG signals and image analysis. We describe the de-

tails of these systems in the corresponding sub-sections.

Metrics & Visualization: When tested on a particular data point, the classifier outputs a
score for each of the considered emotional states. The data point is assigned the emotion
that corresponds to the highest score. We measure classification accuracy as the percent of

test data that is assigned the correct emotion.

2We note that the differentiation filter described in §5.1 mitigates such small movements. However, it
cannot deal with larger body movements like walking. Though the FMCW radio we used can isolate signals
from different users, as we show in §7.2, for better elicitation of emotional state, there is no other user in
the room during this experiment.
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We visualize the output of the classification as follows: Recall that the four emotions
in our system can be represented in a 2D plane whose axes are valence and arousal.
Each emotion occupies one of the four quadrants: Sadness (negative valence and nega-
tive arousal), Anger (negative valence and positive arousal), Pleasure (positive valence and
negative arousal), and Joy (positive valence and positive arousal). Thus, we can visualize
the classification result for a particular test data by showing it in the 2D valence-arousal
space. If the point is classified correctly, it would fall in the correct quadrant.

For any data point, we can calculate the valence and arousal scores as: Svalence =
max (Sjoy, Spleasure) —

max(Ssadness, Sanger) and Sarousal = Max(Sjoy; Sanger) — MaxX(Spleasures Ssadness), Where
Sioy, Spleasures; Ssadness; and Sanger are the classification score output by the classifier for
the four emotions. For example, consider a data point with the following scores Sjoy = 1,
Spleasure = 0, Ssadness = 0, and Sanger = 0 —i.€., this data point is one unit of pure joy. Such
data point falls on the diagonal in the upper right quadrant. A data point that has a high
joy score but small scores for other emotions would still fall in the joy quadrant, but not

exactly on the diagonal. (Check Fig. 7-4 for an example.)

EQ-Radio’s emotion recognition accuracy

To evaluate EQ-Radio’s emotion classification accuracy, we collect 400 two-minute signal
sequences from 12 subjects, 100 sequences for each emotion. We train two types of emotion
classifiers: a person-dependent classifier, and a person-independent classifier. Each person-
dependent classifier is trained and tested on data from a particular subject. Training and
testing are done on mutually-exclusive data points using leave-one-out cross validation [65].
As for the person-independent classifier, it is trained on 11 subjects and tested on the
remaining subject, and the process is repeated for different test subjects.

We first report the person-dependent classification results. Using the valence and arousal
scores as coordinates, we visualize the results of person-dependent classification in Fig. 7-
3. Different types of points indicate the label of the data. We observe that emotions are
well clustered and segregated, suggesting that these emotions are distinctly encoded in
valence and arousal, and can be decoded from features captured by EQ-Radio. We also
observe that the points tend to cluster along the diagonal and anti-diagonal, showing that
our classifiers have high confidence in the predictions. Finally, the accuracy of person-
dependent classification for each subject is also shown in the figure with an overall average
accuracy of 87.0%.

The results of person-independent emotion classification are visualized in Fig. 7-4.
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Figure 7-3: Visualization of EQ-Radio’s Person-dependent Classification Results. The
figure shows the person-dependent emotion-classification results for each of our 12 subjects. The
x-axis in each of the scatter plots corresponds to the valence, and the y-axis corresponds to the
arousal. For each data point, the label is our ground truth, and the coordinate is the classification
result. At the bottom of each sub-figure, we show the classification accuracy for the corresponding
subject.

EQ-Radio is capable of recognizing a subject’s emotion with an average accuracy of 72.3%
purely based on data from other subjects, meaning that EQ-Radio succeeds in learning

person-independent features for emotion recognition.

As expected, the accuracy of person-independent classification is lower than the accuracy
of person-dependent classification. This is because person-independent emotion recognition
is intrinsically more challenging since an emotional state is a rather subjective conscious
experience that could be very different among different subjects. We note, however, that our
accuracy results are consistent with the literature both for the case of person-dependent

and person-independent emotion classifications [8]. Further, our results present the first
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Figure 7-4: Visualization of EQ-Radio’s Person-independent Classification Results. The
figure shows the results of person-independent emotion-classification. The x-axis corresponds to
valence, and the y-axis corresponds to arousal.
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(a) Person-dependent (b) Person-independent
Figure 7-5: Confusion Matrix of Person-dependent and Person-independent Classifica-

tion Results. The diagonal of each of these matrices shows the classification accuracy and the
off-diagonal grid points show the confusion error.

demonstration of RF-based emotion classification.

To better understand the classification errors, we show the confusion matrix of both
person-dependent and person-independent classification results in Fig. 7-5. We find that
EQ-Radio achieves comparable accuracy in recognizing the four types of emotions. We also
observe that EQ-Radio typically makes fewer errors between emotion pairs that are different

in both valence and arousal (i.e., joy vs. sadness and pleasure vs. anger).

Emotion recognition accuracy versus data source

It is widely known that gathering data that genuinely corresponds to a particular emo-
tional state is crucial to recognizing emotions and that people with acting experience are
better at emotion management. We would like to test whether there is a difference in the
performance of EQ-Radio’s algorithms in classifying the emotions of actors vs. non-actors,

as well as in classifying the emotions of males vs. females. We evaluate the performance of
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Figure 7-6: Visualization of EQ-Radio’s Group-dependent Classification Results. The
figure shows the results of EQ-Radio’s classification within 4 different groups, defined by gender and
acting experience. The x-axis corresponds to valence and the y-axis corresponds to arousal.

a specific group of subjects in terms of mutual predictability /consistency, i.e., we predict
the emotion label of a data point by training on data obtained from within the same group
only. Fig. 7-6 shows our results. These results show that our emotion recognition algorithm
works for both actors and non-actors, and for both genders. However, the accuracy of
this algorithm is higher for actors than non-actors and for females than males. This could
suggest that actors/females have better emotion management skills or that they are indeed

more emotional.

EQ-Radio versus ECG-based emotion recognition

In this section, we compare EQ-Radio’s emotion classification accuracy with that of an
ECG-based classifier. Note that both classifiers use the same set of features and decision
making process. However, the ECG-based classifier uses heartbeat information directly
extracted from the ECG monitor. In addition, we allow the ECG monitor to access the
breathing signal from EQ-Radio and use EQ-Radio’s breathing features. This mirrors to-
day’s emotion monitors which also use breathing data but require the subject to wear a
chest band in order to extract that signal.

The results in Table 7.1 show that EQ-Radio achieves comparable accuracy to emo-
tion recognition systems that use on-body sensors. Thus, by using EQ-Radio, one can
eliminate body sensors without jeopardizing the accuracy of emotion recognition based on

physiological signals.
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Method Person-dependent Person-independent

EQ-Radio 87% 72.3%
ECG-based 88.2% 73.2%

Table 7.1: Comparison with the ECG-based Method. The table compares the accuracy of EQ-Radio’s
person-dependent, and person-independent emotion classification accuracy with the emotion classification
accuracy achieved using the ECG signals (combined with the extracted respiration features).

EQ-Radio versus vision-based emotion recognition

In order to compare the accuracy of EQ-Radio with vision-based emotion recognition
systems, we use the Microsoft Project Oxford Emotion API to process the images of the
subjects collected during the experiments, and analyze their emotions based on facial ex-
pressions. Since the Microsoft Emotion API and EQ-Radio use different emotion models, we
use the following four emotions that both systems share for our comparison: joy /pleasure,
sadness, anger, and neutral. For each data point, the Microsoft Emotion API outputs scores
for eight emotions. We consider their scores for the above four shared emotions and use the

label with highest score as their output.

Fig. 7-7 compares the accuracy of EQ-Radio (both person-dependent and person-independent)
with the Microsoft Emotion API. The figure shows that that the Microsoft Emotion API
does not achieve high accuracy for the first three categories of emotions, but achieves very
high accuracy for neutral state. This is because vision-based methods can recognize an
emotion only when the person explicitly expresses it on her face, and fail to recognize the
innermost emotions and hence they report such emotions as neutral. We also note that
the Microsoft Emotion API has higher accuracy for positive emotions than negative ones.
This is because positive emotions typically have more visible features (e.g., smiling), while

negative emotions are visually closer to a neutral state.

Emotion recognition versus accurate beat segmentation

Finally, we would like to understand how tolerant emotion recognition is to errors in
beat segmentation. We take the ground truth beats derived from the ECG monitor and add
to them different levels of Gaussian noise. The Gaussian distribution has zero mean and its
standard deviation varies between 0 and 60 milliseconds. We re-run the person-dependent
emotion recognition classifier using these noisy beats. Fig. 7-8 shows that small errors
in estimating the beat lengths can lead to a large degradation in classification accuracy.
In particular, an error of 30 milliseconds in inter-beat-interval can reduce the accuracy of

emotion recognition by over 35%. This result emphasizes the importance of extracting the
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Figure 7-7: Comparison of EQ-Radio with Image-based Emotion Recognition. The figure
shows the accuracies (on the y-axis) of EQ-Radio and Microsoft’s Emotion API in differentiating
among the four emotions (on the x-axis).
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Figure 7-8: Impact of Millisecond Errors in IBI on Emotion Recognition. The figure shows

that adding small errors to the IBI values (x-axis) significantly reduces the classification accuracy
(y-axis). Given that we have four classes, a random guess would have 25% accuracy.

individual beats and delineating their boundaries at an accuracy of a few milliseconds.?

3Note that given that we have four classes, a random guess would have 25% accuracy. Adding small
errors to the IBI values significantly reduces the classification accuracy. The accuracy converges to about
40% instead of 25% because the respiration features are left intact.
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Chapter 8

Conclusion

This thesis presents a technology capable of recognizing a person’s emotions by relying on
wireless signals reflected off her/his body. We believe this marks an important step in the
nascent field of emotion recognition. It also builds on a growing interest in the wireless
systems’ community in using RF signals for sensing, and as such, the work expands the
scope of RF sensing to the domain of emotion recognition. Further, while this work has laid
foundations for wireless emotion recognition, we envision that the accuracy of such systems
will improve as wireless sensing technologies evolve and as the community incorporates more
advanced machine learning mechanisms in the sensing process.

We also believe that the implications of this work extend beyond emotion recognition.
Specifically, while we used the heartbeat extraction algorithm for determining the beat-to-
beat intervals and exploited these intervals for emotion recognition, our algorithm recovers
the entire human heartbeat from RF, and the heartbeat displays a very rich morphology. We
envision that this result paves way for exciting research on understanding the morphology
of the heartbeat both in the context of emotion-recognition as well as in the context of

non-invasive health monitoring and diagnosis.
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