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Abstract

End-stage liver disease is one of the leading causes of death in the United States, and
the only viable treatment is liver transplantation. Since the quality of a donor liver
decreases with transportation time, United States organ policy prioritizes transplants
within geographic regions. However, the boundaries of these regions were defined
mostly by informal relationships between transplant centers many decades ago, which
has created local imbalances in supply and demand. As a result, candidates on the
waiting list for donor livers face drastically different odds of receiving a transplant.
Policy makers have noticed this geographic inequity and are considering proposals for
alternative liver allocation approaches.

This thesis uses mathematical optimization to redesign liver allocation regions by
modeling and including several key elements of the allocation process directly in the
optimization formulation. Specifically, we use a fluid approximation to model the
dynamics of the waitlist progression and liver allocation. The model is fit using his-
torical data of waitlist candidates and donors. Then, we propose two optimization
formulations to reduce geographic inequality. The first directly minimizes the vari-
ation in median level of illness at the time of transplant across geographical areas,
which is a key metric used by policy makers in addressing geographic inequality. The
second approach minimizes the liver transport distance, subject to a certain allowable
level of geographic variation. We discuss how these models can flexibly incorporate
additional policy constraints to create more realistic models to reduce geographic
variation. The region configurations are evaluated on key metrics relating to fairness
and system efficiency using a standardized, validated, simulation approach widely ac-
cepted by policymakers. Finally, we propose a region design that significantly reduces
geographic inequality without any substantial impact on the system's efficiency.

Thesis Supervisor: J6nas Oddur J6nasson
Title: Assistant Professor of Operations Management

Thesis Supervisor: Nikolaos Trichakis
Title: Zenon Zannetos (1955) Career Development Professor and Assistant Professor
of Operations Management
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Chapter 1

Introduction

End-stage liver disease is the 12th leading cause of death in the United States, with

over 40,000 deaths reported in 2015 [271. The only treatment for end-stage liver

disease is liver transplantation. In the United States, all potential candidates are re-

quired to a join a waitlist. Livers are then allocated to candidates based primarily on

medical urgency and geographic distance from the donor. Since the quality of the liver

deteriorates with transportation time, it is preferable to allocate the organ to nearby

patients, all else equal. To prioritize nearby patients, the liver allocation system is

divided into geographical regions. When a liver is recovered from a deceased donor in

a region, patients residing within the region are prioritized over others. However, the

formation of the region boundaries was based on informal relationships between trans-

plant hospitals, not a concerted effort to create an efficient or fair system. Therefore,

these regions contribute to drastic imbalances in supply and demand. As a result,

patients often face very unequal prospects of receiving a donor-liver based on where

they reside. Policy makers have noticed this geographic inequity and passed an aspi-

rational guideline, called the Final Rule, which states that the place of listing shall

not be a major determinant in liver allocation. This proclamation resulted in several

adjustments to the allocation policy, but the geographic inequity persists today.

In this thesis, we use mathematical optimization to redesign the liver allocation

regions to reduce geographic inequity. We incorporate several key facets of the allo-

cation system directly into the optimization framework. Specifically, we approximate
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the dynamics of the wait list and allocation system using a fluid model. Based on

this framework, we present two optimization models aimed at reducing geographic

variation. Simulation results indicate that the optimized regions result in far less

geographic inequity without a significant decrease in system efficiency. Based on this

analysis, we propose a new region design and compare it with the existing regions, as

well as other proposals.

The organization of the thesis is as follows: the remainder of this chapter will de-

scribe the allocation process and discuss the problem of geographic inequity. Chapter

2 provides a review of previous research on redesigning liver regions through optimiza-

tion. Chapter 3 presents a concrete redistricting strategy that reduces geographic

variation, while maintaining the efficiency of the system. Chapter 4 introduces a

fluid model approximation to the liver waiting list and allocation system. Chapter

5 describes the estimation of the parameters used in the optimization, such as the

disease progression matrix. Chapter 6 proposes an optimization formulation that in-

corporates the fluid model to directly minimize a key metric of geographic variation.

Chapter 7 proposes an optimization formulation that minimizes the total transport

time of the organs within some allowable regional variation. Chapter 8 discusses

the limitations of our approach and potential extensions, and chapter 9 provides a

conclusion.

1.1 Liver Allocation System

Donor livers are a scarce resource; there are many more individuals entering the wait-

list than there are donors available for transplantation. As a result of this drastically

insufficient organ supply, 1,478 people died in 2015 while waiting for a liver, and

another 1,510 were removed because they were too sick to undergo surgery for trans-

plantation. Therefore, the challenge in the liver allocation system is to develop a set

of guidelines that allocates the scarce resource to candidates.

16



Figure 1-1: Donor Service Areas

1.1.1 Organizations and Geographical Areas

In the United States, the United Network for Organ Sharing (UNOS) is the organiza-

tion that administers the Organ Procurement and Transplantation Network (OPTN),

which determines the allocation policy. This responsibility includes keeping detailed

records for each wait list candidate, which are used in the matching process when a

liver becomes available. Furthermore, UNOS is also charged with overseeing 58 local

organ procurement organizations (OPOs). Each OPO is responsible for enforcing the

allocation system for a fixed geographic region, including registering patients to the

liver waitlist, coordinating organs from donor hospitals, matching donor organs to

recipients, and arranging the transportation of the recovered organ to the matched

candidate. The geographic area that each OPO presides over is called the donor ser-

vice area (DSA), which can range from a metropolitan area to several states. The

map of the OPOs and corresponding DSAs is shown in Figure 1-1. DSAs are further

grouped into 11 larger geographic areas called regions, as shown in Figure 1-2.

1.2 Role of Geographical Areas in Allocation

Geographic areas are critical to the liver allocation process because the quality of the

liver decreases with the time required to transport the liver from the donor to recipi-
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Figure 1-2: Existing 11 Regions

86 7
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ent. Specifically, the cold ischemia time (CIT), the amount of time that a liver needs

to be chilled between recovery from the donor and transplantation, negatively effects

the outcomes of the liver transplant [231. Therefore, all else equal, transplantations

that require a shorter transport time are preferable, since they result in better post-

transplant outcomes. Hence, geographic areas (DSA and regions) are intended to

prioritize transplants to candidates that are geographically near the deceased donor.

However, livers also need to be prioritized to the patients that most need them.

For instance, it is easy to imagine a liver recovered in California, but the most urgent

candidate resides in Massachusetts. While always providing the liver to the most

medically urgent patient may be fair in some sense, it also reduces the efficiency by

allowing large liver transport times. Therefore, the liver allocation system is designed

to prioritize the most sick patients, while preserving the overall efficiency of the system

by prioritizing patients within geographical areas.

1.2.1 Allocation of Livers

In general, the allocation follows a three tier system. First, the liver is offered within

the local DSA. If the liver is declined or no such candidate exists, it is then offered to

the region level. Finally, if there is no match at the region level, it is then offered to

18



the national level. Within this geographical hierarchy, patients are prioritized based

on medical urgency and blood compatibility.

In order to quantify medical urgency, UNOS has established a metric called a

MELD score, which reflects the estimated 3-month waiting list mortality [10]. MELD

scores range from 6 (least sick) to 40 (most sick). Therefore, livers are allocated to

patients based on descending MELD score, all else equal. MELD scores have shown

to be an accurate metric to determine disease severity [16]. However, for a subset of

candidates with certain disease types, a MELD score does not accurately reflect their

mortality risk. Therefore, exception points were introduced to handle these cases.

Together with exception points, MELD scores allow candidates to be ranked on their

relative urgency for a liver transplants. Furthermore, patients with fulfillment liver

failure and have a life expectancy of less than 7 days are designated as Status 1,

which is prioritized over all MELD scores. In addition to medical urgency, blood

compatibility also factors into the allocation process. Because donor livers and trans-

plant candidates need to be medically compatible to allow for a successful transplant,

patients with a blood type compatible with the donor liver are prioritized over those

with incompatible or less compatible blood types. [21] provides a thorough summary

of the effect of blood type compatibility on liver transplantation. Furthermore, age

of donor, age of candidate, and the amount of time the candidate has been waiting

also factor into the allocation process.

Therefore, the allocation policy combines the geographical hierarchy with priority

given to compatible individuals with higher medical urgency. The allocation rules

for adult donors are shown in Table A.2. The allocation rules vary slightly by the

categorization of the donor. For a full set of rules, refer to OPTN [19]. However, the

allocation for adult donors constitute the vast majority of all transplants and reflect

the key elements of the allocation process.

Since 2010, there have been changes to the liver allocation process, described

in section 1.3.1. However, the prioritization of candidates in the local DSA and

larger region remains. Therefore, the boundaries of these geographical regions have

a profound effect on both the fairness and efficiency on the allocation. While the
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boundaries of the DSAs are fairly rigid due to operational and administrative con-

straints, the boundaries of the regions can be changed more easily. Therefore, this

thesis aims to find new region boundaries that not only reduce geographic inequity,

but also minimize the travel-time of livers and thereby improve the efficiency of the

system.

1.3 Problem of Geographic Inequity

Despite efforts in the past 10 years to reduce variation in access to livers, severe

geographic disparities remain. The existing regions were created based on regional

relationships between transplant centers several decades ago [13]. As a result, some

regions now have drastically different supply and demand for livers than others. The

worsening donor liver shortage has exacerbated the regional disparities. This funda-

mental disparity is reflected in many facets of the allocation system. For instance, a

candidate with a MELD of 38 might face an 18% chance of transplant within 90 days

in one DSA, versus 86% in another [20]. Similarly, the death rates for OPOs can vary

by as much as a factor of 4 [18]. The geographic disparity can be seen more generally

in the drastic difference between the actual supply in each DSA and the number of

transplants that would occur without any geographic constraints on the allocation

process. The map, shown in Figure 1-3, reveals that some regions have demand over

3 times greater than the supply of livers. However, the geographic disparity is per-

haps best demonstrated by the variation in median MELD across geographic areas.

In the absence of geographic disparity, the MELD scores at which patients receive

transplants would be consistent across regions, since allocation is largely dictated by

MELD within a given region. However, as recently as 2013, the average transplant

MELD varied by as much as 7 points across regions.

1.3.1 Policies Enacted by OPTN

Over the past several years, OPTN has revised several aspects of the liver allocation

process. This section provides a chronological description of key developments, in
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Figure 1-3: Percent Difference in Ideal Demand and Actual Supply, by DSA

tY

order to provide context to our efforts to reduce geographic variation.

Because of the geographic inequality in liver transplantation, the US Department

of Health and Human Services enacted an aspirational guideline called the Final Rule,

which stated that place of residence or listing shall not be a major determinant of

organ allocation [8]. This declaration prompted the subsequent policy changes.

In 2005, OPTN implemented a new allocation policy, called the Regional Share

15 rule. This policy offered organs to patients with a MELD greater than 15 on a

local and region scale before offering to a local candidate with MELD below 15. This

change was prompted by medical evidence that suggested there was a positive average

survival benefit for candidates with a MELD score above 15, but a negative survival

benefit for those below 15. Analysis showed that the variations in median MELD at

transplant actually increased among DSAs [9]. The Liver Committee distributed a

request for feedback on the current liver allocation from the transplant community

and academia in December of 2009 and then hosted a public forum in April of 2010

to explore various approaches to reduce geographic disparity [15].

As a result of the request for information and public forum, the Regional Share 35
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Rule was approved in June 2012 and implemented in 2013 [15]. This policy made two

major changes to the existing allocation rules. First, the policy mandated that organs

be offered to candidates with a MELD higher than 35 in the region before offering to

any candidate with a MELD lower than 35. Therefore, this change resulted in very ill

patients getting more liver offers, potentially at the expense of local liver candidates.

Second, the policy mandated that the the organ be offered to national candidates

with a MELD higher than 15 before offering to local (or regional) candidates with a

MELD score below 15. Based on a two year post-implementation study of Share 35,

the policy increased the percentage of transplants 19% to 27% and increased regional

sharing from 19% to 50%. Furthermore, there was no substantial evidence that Share

35 had negative effects on other key metrics, such as number of waiting list deaths or

survival after transplant. Liver transport times did increase as a result of increased

regional sharing, but preservation times did not increase overall. However, the policy

did not do much to remove the geographic disparity in severity of disease among the

regions 115].

One conclusion from this exercise was that broader sharing has been constrained

by the current geographic borders. So, in order to solve the geographic disparity, it

is necessary redefine the regions. In November 2012, OPTN/UNOS Board officially

declared that the existing geographic disparity was unacceptably high. As a result,

OPTN requested that the liver committee investigate alternatives to DSA boundaries

and consider optimization as an method.

In June 2014, OPTN released a concept paper highlighting the potential of redis-

tricting as a method to minimize geographic disparity in liver allocation [181. The

concept paper provided strict guidelines that any redistricting proposal would have

to meet. Specifically, a) the number of districts should be at least 4 and no more than

8; b) the minimum number of transplant centers per district is 6; c) the maximum

median travel time between DSAs in the same district is 3 hours; d) the number of

waitlist deaths under redistricting must not be statistically significantly higher than

the current system; ) the districts should be contiguous. As a result of feedback from

the redistricting concept paper, OPTN proposed an 8 region redistricting proposal
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Figure 1-4: OPTN Proposed 8 Regions [19]

AA4

4~1A~406

based on mathematical optimization and opened up the proposal for public comment

[19]. The proposed regions are shown in Figure 1-4. The proposal also modified the

ranking of candidates for a given liver. The full allocation rule is shown in A.3. The

new allocation uses a regional sharing cutoff of 29 and a national sharing cutoff of 15.

This proposal, as well the underlying optimization formulation developed by Gentry

et al., will be a key baseline for our research. In Chapters 3, 6 and 7 we compare the

results of our models with this proposal.

1.4 Thesis Contributions

We propose three key contributions to region design optimization methods. First, we

propose a fluid model approximation to the liver allocation system. This approach,

described in Chapter 4, approximates the steady state number of wait listed indi-

viduals and the number of transplants at each MELD state. Using an estimated

MELD-state transition matrix, the approximation captures the key aspects of the

waiting list and allocation system. This approximation is directly embedded in the
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optimization models to reduce geographic variation.

Second, we use this approximation of the waiting list and allocation process to

model the number of livers that are recovered from one geographic area and trans-

planted to another. Since the quality of the liver (and the viability of the transplant)

decreases with transport distance, modeling these organ 'flows' directly allows us to

minimize the distance and achieve more efficient allocation systems.

Third, we directly model the variation in median transplant MELD across regions,

which is the key metric identified by UNOS. Instead of using some approximate

measure of geographic variation, we are able to directly minimize the variation in

median MELD.

Using these three contributions, we propose two distinct, but related, models

to reduce geographic variation. The first model, discussed in Chapter 6, directly

minimizes the median MELD across regions, subject to a constraint on geographical

region size. The second model, discussed in Chapter 7, minimizes the total liver travel

time in the allocation system, subject to some degree of geographic variation.

For each year between 2010 and 2015, we estimate the input parameters, and

then formulate and solve the optimization problem. The parameters are estimated

from historical liver waitlist and transplant obtained from the Scientific Registry

of Transplant Recipients The data contains historical records of candidates on the

waitlist, including registration, status updates, removals, transplants, and death in

the United States. Furthermore, the data also contains detailed information about the

donors, the transplant process, and post-transplant records. The input parameters,

described in 5, are estimated from the SRTR data. Then, we test the performance of

the optimized regions by simulating, as described below.

1.5 Proposal Evaluation Methodology

The optimized regions are evaluated using a validated simulation approach called

Liver Simulated Allocation Model (LSAM). LSAM captures the key events in the

allocation process, including patient arrivals, liver arrivals, liver offers to candidates,
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candidates' acceptance decision, MELD transitions, removal from the waitlist, and

post-transplant outcomes. Using the simulated results, we are able to analyze the

effect of a proposed policy on key metrics, such as geographic variation in MELD

at transplant, distance traveled, number of waitlist deaths, and median wait time

before receiving a liver. Furthermore, the simulation output allows us to analyze

how a proposed policy affects certain subpopulations based on age, income, or race.

LSAM is a widely used by policymakers to determine the effect of an allocation policy

change. Therefore, the results are easily interpretable and comparable against other

models and policy analysis.

Since this research is focused on designing optimal regions and not modifying the

allocation rule, we treat the allocation rules as fixed. Specifically, we use the current

allocation scheme (Share 35) as shown in Table A.2. Although the allocation rule

will affect the overall system, we fix the allocation rule and test the effect of region

design. We simulate the allocation system from January 1, 2010 to December 31st,

2010.
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Chapter 2

Literature Review

Many researchers have applied mathematical modeling and optimization to solve

problems related to organ allocation. Previous work on liver allocation can be broadly

categorized into three groups: 1) determining optimal decisions in liver allocation; 2)

evaluating of allocation policies; and 3) and redesigning liver regions through opti-

mization. While the first two areas of research are related to this thesis, the third

section is the most directly relevant. Therefore, this section will describe the previ-

ous work on mathematical optimization approaches to redesign the liver allocation

regions. We refer to [4] for a more complete literature review on the first two areas

of research.

Stahl et al. first applied optimization methods to liver allocation design in 2005,

when they developed a methodological framework to determine region configurations

that maximize transplant allocation efficiency and geographic equality [24]. This

research used an integer programming formulation to maximize a weighted combi-

nation of two objectives - the number of intraregional transplants and the lowest

intraregional transplant rate across all regions. The framework incorporated esti-

mated function between travel time and liver viability. Specifically, they made the

simplifying assumption that the probability of rejecting a liver was solely dependent

on CIT. Furthermore, the number of OPOs in any region was limited to 9 due to

computational constraints. The authors conclude that the optimized regions resulted

in up to 17 additional transplants, thereby increasing the efficiency of the system. Fi-
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nally, they highlight the tradeoff between system efficiency and geographic variation

by varying the model parameter governing the tradeoff in the objective function.

Kong et al. also developed optimization formulations to redistrict the liver regions

in the United States. This work aimed to maximize the efficiency of the intraregional

transplants, without considering geographic variation. To do this, they defined an

estimate of viability-adjusted transplants to capture the trade offs between large

and small regions. Larger regions resulted in better matching but greater transport

distance compared to smaller regions. Therefore, the estimate of viability-adjusted

transplants captured these competing forces of region size. The model made the

simplifying assumption that the transplant benefit depends only on liver transport

distance. Therefore, the transplant benefit is identical for donors with different clin-

ical and demographic characteristics, which greatly simplifies the dynamics of liver

allocation described in Chapter 1. The optimization was solved with a branch and

price algorithm, with a geographic decomposition using geographic covers to generate

promising columns quickly in the pricing problem. Although they concluded that the

quality of the solution depended on the geographic covers, they estimated that the

optimized regions might result in an increase of 90 transplants per year.

Demirici et al [71 extended this framework to account for the trade-off between

efficiency and geographic equity in the liver allocation process [7]. Using an exact

branch-and-price approach, Demirici et al. were able to approximate the frontier of

Pareto-efficient solutions with respect to the objectives of efficiency and geographic

equity. Using this framework, they considered many districts that Stahl et al. ex-

cluded. Testing the framework on observed data, they concluded that there exist

regions that significantly dominate the current configuration with regards to both

efficiency and geographic equity, suggesting that the liver allocation process can be

improved through reorganizing the existing regions. In both of these frameworks,

the geographic equity metric is modeled as the maximum of the minimum in-district

viability-adjusted transplant rates. Critics argue that this metric is not suitable for

geographic disparity, since the transplant rates per candidate are sensitive to differ-

ences in waitlisting patterns across DSAs, which can distort the number of waitlisting
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list candidates [14].

Finally, Gentry et al. proposed a framework that forgoes modeling efficiency

and instead only models geographic disparity. The framework minimized the sum

of absolute differences between the supply of donor livers in a region and the ideal

number of livers that would be offered in each region if each liver was allocated

based entirely on medical urgency. The model included constraints imposed by policy

makers, including requiring the regions to be compact, contiguous, and bounded by

some allowable size.

This model abstracts away from key dynamics, such as liver quality, and instead

models rates of supply and demand. Therefore, this model is drastically simpler than

the previous approaches discussed here and can be solved to optimality using off-the-

shelf solvers in less than an hour. Despite the model's simplicity, the resulting regions

are able to substantially reduce the geographic variation. Using simulation to test the

regions, Gentry et al. showed that the resulting regions reduced the geographic vari-

ation by between 30-70%, depending on the number of regions use. Although Gentry

et al.'s formulation minimized the number of misdirected livers, UNOS has focused

on the standard deviation in the median transplant MELD score across regions as

the key metric to evaluate geographic disparity. Compared to a standard deviation

of 3.0 under local (DSA) allocation, the optimized 8 region with a 4 hour travel time

limit resulted in a standard deviation of approximately 2. The optimized 8 regions

would result in slightly higher median travel time and distance, percent flying, and

cost of transporting the livers compared to local allocation. However, Gentry et al.

estimated that the total cost of the new regions would be less than local allocation

due to cost savings elsewhere. This model forms the foundation for the OPTN's 8

region reformulation proposal currently out for public comment. Therefore, we will

often treat this model as a baseline to compare our approach.

The previous approaches either aims to improve system efficiency [17], geographic

fairness [14], or both [7, 24]. Furthermore, previous work varies substantially in

how they choose to model the allocation process. Simple models, such as [14], only

consider rates of supply and demand, while others [7, 241 directly model aspects of
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the allocation system in the optimization.

This thesis aims to reduce geographic variation while minimally impacting effi-

ciency. To do so, we propose an approximation of the dynamics of the waitlist and

the allocation process. Therefore, unlike all previous work, we are directly including

a model of the dynamics of the allocation process directly in the model. Further-

more, previous research uses rough estimates of geographic fairness. For instance,

[24] used the lowest intraregional transplant rate across all OPOs as a measure of

geographic equity. Similarly, [14] used the sum of absolute difference in rates of sup-

ply and demand. Although both metrics reflect overall geographic variation, they do

not necessarily reflect the metrics used by policy makers. Therefore, we use a more

precise measure of geographic variation, as determined by policymakers. Specifically,

we model geographic inequity as the variation in the median transplant MELD across

regions.

Lastly, unlike most other approaches ([24, 17, 7]), our model reflects the policy

guidelines established by OPTN. We follow the precedent of Gentry et al. and use

validated simulation approach to evaluate region design. Therefore, our results and

insights can be more directly applied by policy makers and potentially affect the

region design.
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Chapter 3

A Redistricting Proposal

In this chapter, we present a new region design for liver allocation based on the

subsequent analysis in Chapters 4 through 8. The region configuration was optimized

to minimize geographic inequity without impacting efficiency. The proposed regions

are shown in Figure 3-11. Using simulation results, we compare this proposed region

configuration to both the current regional configuration and the 2016 OPTN proposal.

We compare the proposals based on geographical variation, liver transport distance,

number of transplants, and the number of deaths. We conclude that our proposal

results in a 10% reduction in standard deviation of median transplant MELD, while

only increasing median transport time by 1%. Full results are shown in Table 3.1.

3.1 Geographic Variation

In our proposal, the median MELD ranges from 24 to 29 across the regions. The

standard deviation of the regional median MELD would be 1.5. Figure 3-2a shows

the regional variation in median MELD. The west coast exhibits higher median MELD

at transplant due to high demand for livers relative to supply. However, the remainder

of the country exhibits relatively uniform median transplant MELD, ranging between

24 to 26.

Figure 3-2b shows the geographic variation under the current 11 region configu-

1DSA in Hawaii belongs to region 2; DSA in Puerto Rico belongs to region 3
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ration, which has a standard deviation of regional median transplant MELD of 2.95 -

almost twice as large as our proposal. Similarly, Figure 3-2c shows the simulated ge-

ographic variation under the 2016 OPTN redistricting proposal. While the proposal

results in lower variation than the existing regions, there is still considerable regional

variation. The range in median transplant MELD is 23 to 29, and the standard de-

viation is 1.77. Our proposal results in significantly lower geographic variation than

both the current configuration and the 2016 proposal. Furthermore, in all three con-

figurations, the west coast exhibits the highest median MELD. This suggests there

is a certain level of unavoidable variation, since there are not sufficient low demand

regions nearby to balance the high demand of the west coast.

Figures 3-3a, 3-3b, and 3-3c show a box-plot graph of geographic variation for

our region proposal, the current system, and the 2016 OPTN proposal respectively.

In addition to reducing variation in median MELD across the regions, our proposal

also results in less variation within the regions, compared to the current system. Our

proposal results in similar within-region variation compared to the 2016 proposal.

Figure 3-1: Proposed Regions

__ _ _8 ~ 5 ~ ~ .

*7 ~v
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Figure 3-2: Median MELD by Region

2 lo 4.
(a) Our Proposal (b) Current 11 Regions

(c) 2016 OPTN Proposal

3.2 Key Metrics

However, geographic variation is not the only consideration when evaluating an al-

location process. Table 3.1 shows additional key allocation metrics based on the

simulation results. Compared to the 2016 proposal, the median travel time slightly

increases by 1.2% under our proposal. Similarly, median distance increases by 2.3%.

However, the percent of organs flown does not increase at 53%.

Furthermore, our proposal results in fewer waitlist deaths than the 2016 proposal,

but roughly the same number of total deaths. Under all three region designs, the

median post-graft life years is 5. In addition, our proposal results in a smaller number

of national transplants, which reflects positively on the efficiency of the system.

Based on these simulation results, our proposal significantly reduces geographic

variation with only a very slight decrease in allocation efficiency as measured by

transport distance and number of deaths. However, a more complete analysis would
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Figure 3-3: Box Plot of Transplant MELD, by Region
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need to be performed before definitively stating one region design is superior to an-

other. For instance, one would need to ensure that certain sub-populations are not

disproportionately affected by the redistricting. A comprehensive cost analysis would

also need to be performed in order to weigh financial considerations with qualitative

judgments, such as fairness. With those qualifications in mind, we present this region

design as a promising option that could improve the allocation system. In the fol-

lowing chapters, we will develop the methodology and models used to arrive at these

optimized regions.
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Region Design Scheme
2016 Public

8 Region Current 11 Comment
Allocation Metric Proposal Regions Comment

Propoal ReionsRegions

SD of Regional 1.59 2.95 1.77
Median MELD

Median Travel Time 1.68 1.63 1.66
Median Distance 120.9 105.9 118.1

Percent Organs Flown 53 51 53
Transplants 6096 6088 6130

National Transplants 247 415 282
Discarded Organs 602 610 568
Waitlist Deaths 1394 1416 1406

Total Deaths 2776 2821 2774
Median Post-Graft 5 5 5

Life Years

Table 3.1: Key Simulation Results
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Chapter 4

Fluid Approximation of the Liver

Allocation System

The liver allocation system is a dynamic process in which patients can enter the

waitlist, change MELD states, and leave the waitlist through transplant, illness, or

death. In this section, we describe a fluid model that approximates the steady state

waitlist given the number of arriving patients and a MELD transition matrix. Then,

we model a simplified liver allocation rule by developing a notion of 'waterfilling', in

which the supply of livers is used to deplete the steady state waitlist by descending

MELD score until the liver supply is exhausted. The approximation is determined

to be sufficiently accurate based on a comparison with a simulation of the stochastic

process.

4.1 Fluid Approximation of Candidate Waitlist

The liver allocation process is stochastic process, with randomness stemming from

liver and patient arrivals, MELD progression, and the candidate's liver acceptance

decision. Due its complexity, it is very difficult to tractably model the allocation

process as a steady state stochastic process. Akan et al. model the liver transplant

waiting list as a multiclass fluid model of overloaded queues, which captures the pa-

tients' ability to change MELD scores over time by switching classes [2]. In their
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model, there are multiple classes of livers, which represent the organ's quality. Pa-

tients reject a liver based on an estimated function of static patient characteristics,

which notably do not include distance to liver. Using this fluid model, the authors

derive optimal policies using optimal control theory.

We adopt a simpler approach motivated by the same fluid approximation. Specifi-

cally, we produce a set of equations that dictate that the incoming flow to any MELD

state is equal to the outgoing 'flow' in steady state. Let T be a 36x36 square matrix

in which Tk equals the probability that an individual transitions from MELD state

j to k, for each of the 35 MELD states. T4O represents the probability that a patient

exits the waitlist from MELD j, either due to death or illness. Next, let A2 equal the

number of patients arriving into the waitlist at MELD i in one week. Let xi represent

the number of individuals in the waitlist at MELD i. For now, assume there are

no livers arriving to the system and therefore no transplants. Thus, the only way

in which individuals leave the system is through death or illness. Then, the fluid

approximation imposes the following structure on the system:

40

S Tij xi + Aj = xj (1 - Tjj), for all MELDj (4.1)
i=6,ifj

Xi > 0 (4.2)

The left hand side of Equation1 4.1 represents the number of individuals entering

MELD state j, and the right hand side represents the number of individuals existing.

In steady state, these two flows we be equal, and the xi will represent the numbers

of individuals on the waitlist in MELD state i. Note, xj is not indexed by a time

component since this equation applies in steady state.

4.1.1 Steady State Waitlist: Simulation

This fluid model approximation removes the stochasticity from the process and in-

stead relies on averages. Therefore, to test the approximation, we compare the results

'In this thesis, we use 'Equation' loosely to refer to inequalities
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from the fluid model with a simulation of the stochastic system.

We define the unit of time of each event to be one week. Patients are modeled

as arriving to the system at a given MELD during a period of time as a Poisson

random variable with parameter Aj. The transition between MELD i and MELD

j is modeled as a multinomial random variable. The parameters for these random

variables are estimated from data, as described in Chapter 5. After running the

simulation for 10,000 weeks to ensure the process is in steady state, we record the

number of patients at each MELD. Then, we compare the simulated distribution of

individuals on the waitlist with the outcome of the fluid approximation model.

Figure 4-1: Steady State Waitlist: Fluid Appoximation (Red) vs. Simulation (Blue)
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Figure 4-1 shows the comparison between the fluid approximation and the simu-

lation. The black bar represents the range of results over 10 iterations of the simu-

lation. The arrival parameters, A, were estimated from the national waitlist data for

year 2015. The number of patients in the waitlist never differ by more than 3% be-

tween the simulation and the fluid model. Furthermore, the key metric used by policy

makers - the median MELD - is the same for both approaches. The results were also
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robust to the arrival parameter, A, and the transition matrix, T. This comparison

suggests that the fluid model accurately characterizes the steady state waitlist of the

liver allocation system.

4.2 Waterfilling as an Allocation Mechanism

Next, we propose a simplified model of liver allocation that can be incorporated in the

fluid model. Although the allocation process depends on many factors such as blood

compatibility, waiting time, and exception points, the predominant force is MELD.

Therefore we propose a simplified model of allocation that depends only on MELD,

within a given region. We dictate that the supply of livers depletes the steady state

waitlist at the highest MELD score, then proceeds to the next highest MELD, until

the supply of livers is exhausted. To incorporate this waterfilling allocation rule to

the fluid approximation model, we introduce the following notation. Let ui be the

number of transplants occurring at MELD i in steady state. Next, let y be a binary

variable equal to 1 if the steady state of waitlist at MELD i is depleted. In other

words,

yi = 1Xi = 0 (4.3)
0 i > 0

Next, we introduce three constraints that enforce the waterfilling dynamics. Equa-

tion 4.4 constrains the number of transplants to be no greater than the supply of liver

into the system, where U is the rate of incoming livers. Equation 4.5 enforces that

yj = 1 if and only if xi = 0. Finally, equations 4.6 and 4.7 constrain the number of

transplants at MELD i to be 0 unless the waiting list is depleted at MELD i + 1.

40

ui < U (4.4)
i=6

Xi < (1 - yi) (4.5)

Ui Uyi+1 (4.6)

yi+1 > Yi (4.7)
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Finally, we adapt Equation 4.1 to incorporate the addition of livers and transplants

into the fluid model.

40

T,jx i + A = xj (1 - Tj) + ui, for all MELDj (4.8)
i=6,ifj

Like equation 4.1, the left hand of equation 4.8 represents the flow into a given

state and the right hand side the flow out. But in this case, the flow out of a MELD

state also includes transplants. Equations 4.5, 4.4, and 4.7 enforce the waterfilling

dynamic. The supply of livers, U, is first allocated to the highest MELD and only

allocated to a lower MELD if the steady state waitlist at the higher MELD is depleted.

We note that there is a unique allocation of livers given a transition matrix and

incoming rates.

4.2.1 Steady State Transplants: Comparison with Simulation

We extend the simulation approach from Section 4.1.1 to include the arrival of livers.

Specifically, we model livers arriving to the system during a period of time as a

Poisson random variable. Then, we let the simulation reach steady state by running

for 10,000 weeks. We then compare the simulated steady state waitlist and the steady

state transplantations with the result of the fluid approximation model.

Figure 4-2 shows the comparison of the transplants (on the left) and the waitlist

(on the right). As before, the blue represents the simulation and the red the fluid

model results. Each row represents a different rate of incoming livers. For instance,

the first row represents 5 livers arriving per week. As the rate of liver arrivals increases,

the steady state waitlist is depleted from the highest MELD states. As before, the

simulation and the fluid model are reasonably similar. The approximation is within

4% of the simulated number of patients waiting at each state. There are noticeable

differences between the two approaches among the transplants at the lower MELD

scores. These differences can be as large as 25%, although on average the difference

is less than 5%. Furthermore, the median MELD at transplant is the same for both
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approaches. Therefore, the fluid model approximation is suitably accurate for our

purposes.

Figure 4-2: Left: Steady State Transplant States; Right: Steady State Waitlist
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4.3 Applications

In this chapter, we proposed a fluid model of the liver allocation system that accu-

rately approximates the true dynamics. This approach is very tractable, especially

compared to any exact queuing model. The fluid model approximation and water-

filling approach will be embedded directly in the optimization models, presented in

Chapters 6 and 7. Although we model patients and livers as homogeneous, it is

straightforward to extend the model to include multiple types of patients and livers.

Beyond the application to liver allocation, this fluid model approximation might also

be relevant in other domains with multi-class queues with class-switching.
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Chapter 5

Parameter Estimation

In this chapter, we discuss the parameters used in the optimization formulations in

Chapters 6 and 7 and the methodology used to estimate them.

This study used data from the Scientific Registry of Transplant Recipients (SRTR).

The SRTR data system includes data on all donor, wait-listed candidates, and trans-

plant recipients in the US, submitted to the members of the Organ Procurement and

Transplantation Network (OPTN). The Health Resources and Services Administra-

tion (HRSA), U.S. Department of Health and Human Services provides oversight to

activities of OPTN and SRTR contractors.

5.1 Disease Progression

An accurate estimate of the MELD transition matrix is crucial to any model of the

allocation system. Previous research has used cubic splines to interpolate between

observed laboratory values to develop a model that can predict individual changes in

MELD [3]. However, the analysis used a database of laboratory values that is not

publicly available. Instead, we estimate the progression of MELD scores based on

simulation results. Unlike Alagoz et al., we do not attempt to infer the trajectory

of the MELD score between recorded observations. Instead, we aim to estimate the

transition of recorded MELD scores for a representative patient, since the allocation

system only depends on the most recently recorded MELD score.
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Specifically, we are interested in the progression of MELD scores in the absence

of any liver allocations. Therefore, we take advantage of the existing liver simulator,

LSAM, to model this behavior. We modify the simulator to restrict all donor organs.

Then, we simulate the MELD score updates between January 1st 2010 and December

31st 2010, resulting in a total of 250,000 MELD updates for over 28,000 individuals.

Using this large sample of simulated results, we calculate the frequency of transitions

from one MELD state to another during the span of 7 days. The resulting transition

table is presented in Table A.4. Since MELD score is defined and calibrated as a

mortality rate, we can compare our estimated transition matrix with the established

mortality rates associated with each MELD [26]. Since the MELD scores are cali-

brated to 90 day mortality rates, we convert our transition matrix to the same time

period by raising it to the power of 90/7 - 12.6. The estimated and published 90-day

mortality rates are shown in Table 5.1. Although there are minor differences between

the the estimated and the calibrated mortality risks, the estimated matrix is suitably

close for our purposes.

Table 5.1: Comparison of Transition with Established MELD Mortality Probabilities

MELD Transition 90 Day Mortality Stated 90 Day Mortality

0-9 4.3 1.9
10-19 5.5 6.0
20-29 14.1 19.6
30-39 33.0 52.6
> 40 50.9 79.3

We estimate one transition matrix using all available patient data and apply that

estimated matrix to all patients in the optimization models. We note that the actual

transition matrix may differ for different subgroups of patients. For instance, patients

with hepatocellular carcinoma (HCC) are known to follow a different health trajectory

than non-cancer patients. Future work may estimate different transition matrix for

HCC vs non-HCC patients.
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5.2 Distance and Travel Time Matrix

The liver transport time and distance are key metrics of efficiency in the allocation

system. Therefore, we need to include accurate estimates of travel distance and time

between DSAs in the optimization formulation. Since DSAs are geographic areas and

not single points, we need to estimate the distance and travel times between each pair.

Livers are recovered from deceased donors at donor hospitals and then transported

to the transplant center that performs the transplant operation. Each DSA contains

between 0 and 6 transplant centers. Therefore, to estimate the distance between DSA

j and DSA k, we calculate the mean pairwise distance between donor hospitals in

DSA j and the transplant hospitals in DSA k, weighted by the number of transplants

at each center in DSA k. Specifically, the transplant weighted distance between the

DSA j and DSA k, Tk, is as follows:

Djk = E (F)dTH+ >j dTH (5.1)
(T,H)EPjk (T,H)CPkj

where Pk is the set of transplant centers (T) in DSA j and donor hospitals (H) in

DSA k, tT is the number of transplants in transplant center T, tk is the total number

of transplants in DSA k, and dTH is the distance between transplant hospital T and

donor hospital H.

Using a similar approach, we estimate the travel time between each pair of DSAs.

T Tjk (h') TT H z ()TTH (5.2)
(T,H)EPjk (T,H)EPkj

where TTH is the estimated travel time between transplant hospital T and donor

hospital H. The estimates for TTH were provided by the Liver Simulation Allocation

Model and were developed by Gentry et. al [11]. The estimates are based on a model

with three transport modes - car, helicopter, and plane - that incorporate distances

to the nearest airport and estimated flight time.
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5.3 Contiguity Constraints

OPTN requires that all regions be contiguous. Since the success of the transplant

is inversely related to the time the organ must travel before transplantation, non-

contiguous regions would likely result in an inefficient system since travel times would

increase. Furthermore, non-contiguous would pose operational problems for the or-

ganizations responsible for allocating livers. Therefore, we impose constraints on the

optimization model that ensure contiguous regions.

There are multiple ways to formulate contiguity constraints. First, one could use a

location-allocation formulation, which finds a set of reference nodes (region centers),

such that when each DSA is assigned to the nearest reference node, some objective

is achieved. By enforcing that each DSA be assigned to the closest region center, the

resulting regions are almost always contiguous [6]. However, this formulation also

eliminates many contiguous regions. This formulation is used in the work of Gentry

et al. that contributed to the 2016 OPTN redistricting proposal [14].

Shirabe, on the other hand, introduced a clever formulation of exact contiguity

that needs only a linear number of constraints [22]. In this formulation, each node

receives one unit of flow. A region is contiguous if and only if there exists one DSA

that acts as a sink and receives one unit of flow from all other DSAs in the region,

where flow can only travel between adjacent DSAs.

A simpler approach requires that each region is a a subtree of a shortest path

subtree rooted at the regions center [1]. For each DSA k of region r, at least one of

the adjacent DSAs j E N(k) that immediately precedes k on some shortest path to

the center of the region also has to be included in region r. If we define Sk - {j E
N(k)lj immediately precedes k on some shortest path to ck}, then we can write the

contiguity constraints as follows:

Wkr < 1 Wjr for all DSA k and region r (5.3)
jES(k)

where Wkr is a binary decision variable equal to one if DSA k is assigned to region r

[1]. This formulation does exclude some regions, but those regions tend to have odd
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shapes, such as large protrusions or extensions. Unlike the location-allocation con-

straint, the center of a region does not have the same interpretation as the geographi-

cal center, allowing greater flexibility. This formulation has significant computational

advantages. Therefore, we use this approach to model contiguity constraints in our

optimization formulation.

To implement this formulation, we construct the adjacency matrix based on the

DSAs. With this adjacency matrix established, it is straightforward to calculate

the shortest path between each pair of DSAs, which will be used in the contiguity

constraints. In this case, the link costs were the estimated travel time between each

pair of DSAs.

With this adjacency matrix established, it is straightforward to calculate the short-

est path between each pair of DSAs, which will be used in the contiguity constraints.

In this case, the link costs were the estimated travel time between each pair of DSAs.

5.4 Initial Regions

Due to computational restrictions, we impose a heuristic on the region design. We

predesignate 8 DSAs to each serve as a reference node for one of the 8 regions. In any

region configuration, each DSA must have a contiguous path to the region's reference

node. Therefore, by assigning these reference nodes, we are restricting that two

reference nodes can never be in the same region. Therefore, we select the 8 reference

nodes that are maximally far apart. Specifically, we solve the following optimization

problem that maximizes the minimum distance between any two DSAs. The resulting

starting regions are shown in Figure 5-1.

5.4.1 Initial Region Optimization Formulation

Let Ck be the binary variable equal to 1 if DSA k serves as a reference node for one

of the eight regions. Let d correspond to the minimum distance between any two

reference nodes. Equation 5.8 requires d to be greater than the distance between

any two reference nodes and equation 5.7 dictates that there are exactly 8 reference
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nodes. Then, the objective function is simply to maximize d, the minimum distance

between reference nodes.

Decision Variables

Ck 1 DSA k is a reference node
0 otherwise

d = Minimum distance between two reference nodes

(5.4)

(5.5)

(5.6)

Data

Djk = Distance between DSA j and k

Constraints

Objective

ZCk = 8
k

d < Djk + M(2 - ck - c3 ) for all DSA j and k

max d

EATiLE
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Figure 5-1: Starting Regions
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This heuristic provides substantial computational improvement, allowing us to

include other important aspects of the allocation process in the optimization for-

mulation. Furthermore, the heuristic does not seem to significantly affect optimal
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Year Baseline Starting Heuristic
Objective Run Time (s) Objective Run Time (s)

2010 454 1473 492 59
2011 212 841 264 97
2012 160 1473 114 129
2013 128 1412 90 144
2014 106 718 180 71
2015 112 1473 112 80

Table 5.2: Effect of Starting Region Heuristic on Run Time and Optimality: 3 Hour
Travel Time Max

solutions. To gauge the effect of this heuristic on both computational run time and

optimal results, we run an optimization formulation with and without the heuris-

tic. Specifically, we consider the formulation that minimizes the absolute sum of

regional differences in rates of supply and demand, described in Chapter 1. This for-

mulation, which was the foundation of the 2016 OPTN redistricting proposal, uses a

location-allocation formulation, which simultaneously selects the centers and the re-

gions. Table 5.2 compares both the objective value and the run time for the baseline

formulation and our heuristic.

This test case indicates that the performance of our heuristic is comparable to

location-allocation approach. In some cases, our approach actually achieves a lower

objective value, corresponding to a smaller absolute difference in supply and demand

across regions. Although the baseline model allows the centers of regions to to be

defined more flexibly, it excludes many contiguous regions. Our heuristic, even though

it has some imposed spatial structure, only requires regions be contiguous, thereby

resulting in a greater set of feasible regions. The heuristic provides optimal solutions

significantly faster than the location-allocation formulation. In some instances, the

difference in computation time is ten-fold.

5.5 Liver and Patient Arrivals

Lastly, we estimate the number of liver arrivals and patient arrivals at each OPO.

For each year between 2011 and 2015, we estimate yearly liver arrival rates from the
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SRTR data. Similarly, we calculate the number of individuals joining the waitlist

at each MELD in each DSA. Due to difference in listing low-MELD patients, there

are significant differences in the distribution of MELD score for patients entering

the waitlist across DSAs. Table A.1 shows that the median MELD at the time of

registration can vary significantly. Therefore, by modeling arrivals into each MELD

state we capture a more precise measure of demand.
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Chapter 6

Model 1: Minimization of Variation

in Median MELD

In this chapter, we incorporate the fluid approximation of the allocation system and

the estimated parameters to formulate the first of two models aimed at reducing

geographic inequity. Due to computational limits, it was not possible to include all the

desired modeling choices in a single model. Therefore, we propose two complementary

models that approach reducing geographic variation from slightly different angles.

Both formulations focus on the case with 8 regions, as the 2016 proposal uses 8

regions. However, the formulations and methodology can be trivially extended to

any number of regions.

Recall from Chapter 1 that the liver allocation system has two, often competing,

objectives. The livers should be allocated to those with the greatest need, but the

efficiency of the overall system should be maintained by reducing the liver trans-

portation distances. Therefore, this chapter proposes a model that directly models

and minimizes the variation in the median transplant MELD across the regions, which

is the key metric of geographic variation identified by OPTN [18]. Then, to constrain

the degree to which livers are transported long distances, we impose a limit on the

maximum travel time within each region. We show that although the model effec-

tively reduces the geographic variation, it results in increased median liver transport

times and distances. The simulation results are used to motivate the second model,
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presented in Chapter 7, which directly minimizes the total liver distance and travel

time instead of simply imposing a constraint on region size.

6.1 Formulation

This section defines the input data, decision variables, and constraints used in the

model.

Data

The model has several parameters estimated from the waiting list and transplant

data, as described in 5. Equations 6.1 through 6.6 introduce the MELD transition

matrix, incoming patients, incoming livers, travel time matrix, and the number of

hospitals in each DSA. Aj(c) represents the shortest path from DSA j to center c, as

introduced in Equation 6.7.

Ti = probability of transitioning from MELD i to j in 1 week

Aki = Number of patient arrivals to DSA k at MELD i in 1 week

Uk = Number of livers arriving at DSA k in 1 week

TTjk = Travel time (hours) between DSAs j and k

Hj = Number of transplant hospitals in service area of OPO j

C, = Reference node of region r

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)
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A3 (c) = The set of DSAs directly preceding j on the shortest path from j to c

(6.7)

Decision Variables

This model is akin to a districting problem in which we group geographical units

together to achieve a certain objective. In this case, equation 6.8 introduces the key

decision variable, wjr, which assigns each DSA jto a region r. Equations 6.9, 6.10, and

6.11 introduce the decision variables corresponding to the waiting list, transplants,

and depletion state indicator as described in 5. Equations 6.12 and 6.13 introduce

decision variables used to model the median MELD at transplant within each region.

1 DSA j is in region r(6.8)

0 otherwise

Xjr = Number of patients waiting at MELD j in region r (6.9)

Uir Number of transplants at MELD i in region r (6.10)

yi 1 Xjk (6.11)
0 Xik > 0

hir =(1 MELD i is greater than the median MELD in region r (6.12)
0 Otherwise

mn = Median MELD score at transplant for region r (6.13)
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Constraints

Median Constraint

Next, we introduce constraints to model median MELD. First, equations 6.14, 6.15,

and 6.16 require that h is an increasing binary sequence according to MELD scores

for each region. Next, we note that the median for a given region, mr corresponds

to the MELD, m, such that the absolute difference between the sum of transplants

at MELD less than m and the sum of transplants greater than m is less than the

number of transplants at MELD m. Eqn 6.17 imposes this median constraint for

each MELD. However, the right hand side of the constraint also includes a term

that effectively removes this constraint for all MELD i that are not chosen to be

the median. Therefore, the median constraint will only apply when hi, = 0 and

hi+,,r = 1. Then, we can model the median MELD for each region r using 6.18. This

formulation is motivated by the Bertsimas-Stock model, which has shown to be much

computationally tractable than alternative formulations [5].

h6k = 0 (6.14)

h40k = 1 (6.15)

hi+,r > hir (6.16)

i-1 40

ZUJr - E u, < ui, + M( - hi+,r + hr) (6.17)
j=6 j=i+1

40

mr = S i(hi+i,r - hir) for every region r (6.18)
i=6
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Policy Constraint

Next, we impose constraints dictated by OPTN policy guidelines. Equation 6.19

requires any region to have at least 6 transplant centers, which effectively puts a

lower bound on the allowable size of any region. Equation 6.20 puts an upper bound

on the region size, by constraining any DSA to be within a certain travel time from

the region's reference node. The allowable travel time, r, is a model parameter.

58

ZWirHj < 6 for every region r (6.19)
j=1

wjTTj,cr <= T for every DSA j and region r (6.20)

58

Wjr = 1, for all DSAj (6.21)
r=1

Fluid Approximation Constraints

Next, we impose the fluid model and waterfilling constraints that approximate the dy-

namics of the allocation process. Equation 6.22 constrains the number of a transplants

in a region to be equal to the number of livers arriving into the system. Therefore, in

this model, no livers are transplanted outside of the region. In 2015, approximately

7% of livers were transplanted outside of the region in which they were recovered.

Therefore, although this is a simplification of the system, restricting livers to be

transplanted within a region still captures the majority of the transplants.

Equation 6.23 dictates the flow of patients into a given MELD state to be equal to

the flow out, and equations 6.24, 6.25, 6.26 enforce the 'waterfilling' liver allocation

approximation. As described in Chapter 4, the waterfilling approach assumes that

the liver is always allocated to the candidate with the highest MELD. We implicitly

assume that every candidate accepts the liver when offered. However, in reality,

candidates often reject a liver due to many factors, including the quality of the liver

and the distance it has to travel. By assuming that candidates always accept a liver,
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we are significantly simplifying the allocation system.

58 58

UStir = WjrUj for every region r
i=1 j= 1

(6.22)

58

Z Ad,jWd,k = Uj,r - Xjk(1 - Tsj) for all region r and MELD j (6.23)
d=1

Xir <_ M(1 - Yir) for all MELD i and region r

Uir MYi+1,r for all MELD i and region r

Yi+i,r > Yir for all MELD i and region r

(6.24)

(6.25)

(6.26)

Contiguity Constraints

Equation 6.27 enforces the regions be contiguous, as described in Chapter 5.

Wkr Wjr (6.27)
jEAk(Cr)

Objective

Finally, the objective minimizes the variation in median MELD at the time of trans-

plant across the regions. Specifically, equation 6.28 minimizes the sum of absolute

differences between the median at region r and the mean median MELD.

58

min E rn
k=1

58

58

Ti,jzi,k +

8
(6.28)



6.2 Results

Next, we present the simulation results for the optimized regions when the travel time

limit, T is 3 and 4 hours. Furthermore, as a robustness check, we present the results

based on input data for each year from 2011-2015. The simulation results are all

based on 2010. Tables 6.1a and 6.1b summarizes the key metrics for the model with 3

and 4 hour travel times, respectively. Furthermore, we present a baseline model that

minimizes the sum of absolute regional differences in rates of supply and demand, as

described in Chapter 1. We present the results of the baseline with both a 3 hour and

4 hour constraint on travel time to the region center. Tables 6.2a and 6.2b present

the results of this baseline approach. Lastly, we recall the results of the current region

configuration and the 2016 OPTN proposal presented in 3.1.

6.3 Discussion

For the 3 hour travel time case, the standard deviation of median MELD ranges from

2.20 to 3.04, depending on the year of input data. Similarly, the 4 hour travel time

produces values in the range of 2.19 and 2.87. Compared to the current system,

which has a standard deviation in median MELD of nearly 3, our approach reduces

geographic variation in almost all cases. However, since the current approach has

11 regions and our approach considers 8 regions, the median transport distance and

time increase substantially under approach. However, as a result of the reducing the

geographic variation, some other key metrics of efficiency have improved, such as

number of transplants, discarded organs, and total deaths. Therefore, the optimized

regions generally outperform the current region configuration, except for transport

time and distance.

However, compared to the 2016 OPTN proposal, the results are not quite as

favorable. Our model often results in geographic variation greater than that of the

proposal. Furthermore, our model also often results in greater transport times and

distances. With regard to other key efficiency metrics, the results are quite similar.
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Table 6.1: Simulation Results: Minimization Variation MELD Model

Data Input Year
Metric 2011 2012 2013 2014 2015
SD of Median Regional Transplant MELD 2.20 2.67 2.88 3.04 2.51
Median Travel Time (Hours) 1.72 1.70 1.74 1.72 1.72
Median Distance (Miles) 141.06 128.72 143.50 137.40 137.18
Percent Organs Flown 55% 54% 56% 55% 55%
Discarded Organs 582 577 573 556 555
Median Wait for Graft (Days) 89.9 87.2 88 89.7 92
Transplanted Organs 6116 6121 6125 6142 6143
Local Transplants 3,545 3,538 3,478 3,523 3,549
Regional Transplants 2,286 2,275 2,290 2,315 2,328
National Transplants 285 308 357 304 266
Total Deaths 2,782 2,762 2,765 2,776 2,761
Waitlist Deaths 1,396 1,383 1,392 1,395 1,365
Post-Graft Surviving 5,317 5,317 5,299 5,337 5,338

(a) 3 Hour Travel Time Constraint

Data Input Year
Metric 2011 2012 2013 2014 2015
SD of Median Regional Transplant MELD 2.87 2.19 2.45 2.90 2.15
Median Travel Time (Hours) 1.73 1.71 1.70 1.69 1.70
Median Distance (Miles) 138.4 135.7 123.6 127.6 121.4
Percent Organs Flown 55% 55% 54% 54% 53%
Discarded Organs 616 585 585 573 592
Median Wait for Graft (Days) 85 91 91.8 88.8 92.3
Transplanted Organs 6082 6113 6113 6125 6106
Local Transplants 3,449 3,577 3,580 3,573 3,557
Regional Transplants 2,348 2,271 2,247 2,204 2,280
National Transplants 285 265 286 348 269
Total Deaths 2,776 2,800 2,812 2,800 2,727
Waitlist Deaths 1,376 1,399 1,428 1,404 1,379
Post-Graft Surviving 5,263 5,286 5,311 5,301 5,365

(b) 4 Hour Travel Time Constraint

The number of deaths, transplants, and median-days awaiting transplantation are all

comparable between the two models. Therefore, the 2016 proposal seems to dominate

our model in regard to geographic variation and median transport distance.

Lastly, we note that our model produces comparable results to the baseline. Both

models produce similar metrics of geographic variation, distance, and efficiency. Fur-

thermore, we both models are sensitive the the year of input data, as indicated by
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Table 6.2: Simulation Results: Baseline Model

Metric
SD of Regional Median Transplant MELD
Median Time (Hours)
Median Distance (Miles)
Percent Organs Flown
Discarded Organs
Median Days Wait For Graft
Transplanted Organs
Local Transplants
Regional Transplants
National Transplants
Total Deaths
Waitlist Deaths
Median Post-Graft Life-Years

Input Year
2011 2012 2013 2014 2015
2.47 2.59 2.25 2.98 2.83
1.70 1.70 1.70 1.70 1.67

131.2 133.8 134.3 123.6 116.7
55 55 55 54 52

620 601 632 583 632
86.2 91 84 88.7 83.9

6,078 6,097 6,066 6,115 6,066
3,530 3,472 3,419 3,559 3,577
2,240 2,276 2,322 2,304 2,207

308 349 325 252 282
2,743 2,750 2,789 2,790 2,757
1,395 1,379 1,404 1,398 1,384

5 5 5 5 5
(a) 3 Hour Travel Time Max

Input Year

Metric 2011 2012 2013 2014 2015

SD of Regional Median Transplant MELD 1.92 1.98 2.23 2.47 2.19
Median Time (Hours) 1.69 1.71 1.70 1.68 1.70
Median Distance (Miles) 122.8 134.9 137.0 118.1 131.2
Percent Organs Flown 54 55 55 53 54

Discarded Organs 591 590 583 614 588
Median Days Wait For Graft 89.2 84 90 85.1 85.9
Transplanted Organs 6,107 6,108 6,115 6,084 6,110
Local Transplants 3,591 3,494 3,478 3,525 3,502
Regional Transplants 2,221 2,300 2,304 2,276 2,259
National Transplants 295 314 333 283 349
Total Deaths 2,809 2,804 2,775 2,814 2,785
Waitlist Deaths 1,426 1,415 1,388 1,402 1374
Median Post-Graft Life-Years 5 5 5 5 5

(b) 4 Hour Travel Time Max

the large ranges in key metrics across the years.

Based on these results, our model seems to be inadequately constraining the region

size. Interestingly, increasing the limit on within-region travel time in the optimiza-

tion did not necessarily produce regions that resulted in larger median transport

times or times. In fact, in many instances, the regions actually had a significantly

lower median transport time. Other metrics of liver allocation efficiency, such as total
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deaths and number of transplants, are relatively similar for our approach and the 2016

proposal. Therefore, it seems that constraints on the region size are not an effective

modeling approach to limit the distances the livers travel. One possible explanation

for this phenomenon is that even though we constraint the region size, we are not

considering how livers being geographically allocated within a region. In the next

chapter, we address this issue by formulating a model that captures the flows of livers

between any two OPOs, and therefore allows us to minimize the total distance.
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Chapter 7

Model 2: Minimization of Total Liver

Transport Time

The previous model directly minimized the variation in median MELD at transplant

across regions, but did not explicitly capture the flows of organs from one geographic

area to another. However, as discussed in Chapter 1, the efficiency of the liver alloca-

tion system depends on livers traveling short distances between donors and recipients.

The simulation results indicate that the median distance traveled was significantly

higher than both the existing allocation scheme and alternative proposals, indicating

a relatively inefficient allocation system. Therefore, in this section, we formulate a

model which minimizes the total amount of time it takes to ship the livers, given

some acceptable level of geographic variation.

7.1 Model Motivation

In this model, we aim to find regions that minimize the liver transport time between

donor hospitals and transplant hospitals, subject to a certain allowable geographic

variation. To motivate this approach, consider a hypothetical region with 5 OPOs in

Figure 7-1. Let TTjk be the time it takes to transport an organ from within DSA j
to DSA k. In the optimization model, the waitlist dynamic and allocation process is

approximated by the fluid model described in Chapter 4. Therefore, let Skj be the
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number of livers that are recovered in DSA k and transplanted in DSA j (in a given

time period) that are consistent with the modeled allocation process. Figure 7-la

presents a hypothetical example, where livers 'flow' from OPO 1 to 2, 3 to 2, and 5 to

4. In the figure, these flows are represented as arrows from the corresponding OPOs.

Therefore, the model assumes that there are no organ shipments between the OPOs

without an arrow. The goal in this formulation is to find regions that minimize the

volume-weighted travel time of the livers. For this one-region hypothetical example,

the objective would be to minimize Ek sjkTTjk = s 12TT12 + s2 3TT + s5 4TT 4 .

However, the fluid approximation of the allocation system ignores the stochasticity,

and instead balances the incoming and outgoing flows of patients and organs. While

this provides a good approximation of the steady state waitlist and transplants, it

ignores the randomness involved in patient and liver arrivals that affects the allocation

system. For instance, even if each OPO in Figure 7-1 had the same mean number of

livers and patient arrivals per period of time, there would still be transplants recovered

in one DSA and transplanted in another due to the stochasticity of arrival of livers

and patients. In our hypothetical example in Figure 7-1, the flows between OPOs

would be non-zero for all pairs. However, our model ignores stochasticity and does

not capture flows between those OPOs, therefore underestimating the degree to which

livers are shipped from one DSA to another.

To remedy the underestimate of organ flows, we augment our optimization prob-

lem to take into account the region size. We note that since there will be non-zero

flow of livers between any two OPOs in a region due to stochasticity, larger regions

will tend to have larger distances and travel times. Therefore, in the absence of a

model that captures these flows, we impose a penalty on the overall region size. We

formulate the region-size penalty as the sum of the travel time between each pair of

links, as shown in Figure 7-1b. Therefore, the region size penalty will increase due to

more OPOs being in a region, as well as OPOs being geographically far apart within

a region. The penalty on the region size will be governed by a model parameter that

trades off the region size with the volume-weighted liver travel time. In the following

section, we formalize this idea in an optimization formulation.
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7.2 Computational Considerations

As described in Chapter 6, the variation in regional median transplant MELD is a

particularly relevant metric of geographic inequality. However, it was not computa-

tionally possible to model the flows of livers from one DSA to another together with

the median constraints, due to the large number of variables needed to model the

median. Therefore, we use a substantially simpler metric of geographic variation,

which captures the supply and demand differentials that drive geographic inequity.

Specifically, we model geographic disparity as the difference between actual supply

and the ideal supply if there were no geographic constraints in the allocation process,

as introduced by Gentry et al. [14].

Furthermore, we use aggregated MELD states in order to ease the computational

burden. We aggregate all MELD states below 15, MELD scores between 16 and 20,

and then each pair of MELD scores over 20. Candidates with MELD below 15 are

fairly healthy and generally would not receive any benefit from a liver transplant even

if an organ were offered [14]. Moreover, due to the fact that there is an imbalance

between liver supply and demand, it is very improbable that a an organ would be

offered to such a low MELD state under any reasonable allocation scheme. MELDs

between 15 and 20 are aggregated into one state due to their relatively low occurrences

of transplant. Finally, since adjacent MELD states face similar mortality risk, MELD

states above 20 are aggregated into pairs of two in order to capture the key elements

of disease progression, while reducing the number of variables and constraints in the

model. The aggregated 13 by 13 transition matrix, T, is shown in A.5, where the

T,13 is the transition from state i to death or waitlist removal.

7.3 Formulation

Data

The transition matrix, liver arrivals, and patient arrivals are the same as in the

previous model. We introduce two new data inputs, OPO liver supply (Eqn 7.5) and
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Figure 7-1: Organ Flow Schematic
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OPO ideal demand (Eqn 6.3).

The ideal demand, Ik, was introduced by Gentry et al. as an estimate of the

number of livers that would have been transplanted in DSA k if livers were allocated

entirely on MELD (without any geographic boundaries) [141. To calculate this es-

timate, you consider all patients who registered on a waitlist in a given year and

record the highest MELD over that time period. Then after ranking all the patients

by descending MELD, the total (national) supply of livers is allocated to candidates

based on their highest MELD, regardless of geographical location. Ik is the number

of transplants that occurred in DSA k in this process. Since the wait list and liver

arrivals are inherently dynamic, this is just an approximation of an ideal demand.

However, this estimate for demand might be more preferable to other metrics, such

as number of patients entering the wait list in a given time period, since it is less

sensitive to differences in patient registration processes across DSAs.

Tj = probability of transitioning from MELD i to j in 1 week (7.1)

Ik = Number of ideal livers in DSA k in a year (7.2)

Sk = Number of transplanted livers in DSA k in a year (7.3)

66



Ak,i = Number of patient arrivals at DSA k at MELD i in 1 week

Uk = Number of livers arriving at DSA k in 1 week (7.5)

TTk = Travel time (hours) between DSA j and DSA k

Hj = Number of transplant hospitals in service area of OPO j

(7.6)

(7.7)

A3 (c) = The set of DSAs directly preceding j on the shortest path from j to c

(7.8)

Parameters

In this model, we introduce two model parameters. First, we let K be the allowable

geographic variation defined by the absolute difference between liver supply and the

number of transplants in the absence of geographical constraints. Therefore, unlike

the previous model, we are not directly minimizing the geographic variation, but

constraining to be below some level, K. Furthermore, we define a parameter V,

which governs the tradeoff between the two components of the objective function, the

volume-weighted travel time and the metric of total region size.

K = Maximum allowable number of misdirected livers

V = Penalty parameter on total region size

(7.9)

(7.10)
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Decision Variables

As in the previous model, we let wj, be a binary variable that equals 1 if DSA j
is assigned to region r. Equation 7.12 defines a decision variable corresponding to

the number of livers that are recovered in one DSA and transplanted in another. As

before, we define variables to model the number of patients in each waitlist (Eqn.

7.13, transplants (Eqn. 7.15), and whether the waitlist is depleted (Eqn. 7.14).

Furthermore, Equation 7.16 defines srjkr to be a binary variable equal to 1 if both

DSA j and k are assigned to the region r.

JI DSA j is in region r 7.11)
0 otherwise

Ski = Number of livers recovered in DSA k and transplanted in DSA j (7.12)

Xik = Number of patients waiting at MELD i in DSA k (7.13)

1 xij = 0 for every DSA j in region r 7.14)
0 Yi > 0 for some DSA j in region r

Uikr = Number of transplants at MELD i in DSA k in region r (7.15)

srjkr =I1 DSA j and k are in region r (7.16)
0 otherwise
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Constraints

Policy Constraints

As in the previous model, we require that each region contain 6 transplant centers.

R

:WjrHj > 6 for every region r (7.17)
j=1

R

wj, = 1, V OPOJ (7.18)

r=1

Fluid Model and Waterfilling Constraints

In this section, we extend the fluid model and waterfilling constraints. Equations

7.19 and 7.20 simply enforce the relationship defined in Equation 7.16. Equations

7.21, 7.22, 7.23, 7.24 require that livers can only be transplanted within the region

and that there cannot be more transplants than available livers. Equation 7.25 en-

forces the balance relationship that incoming patients must equal outgoing patients

at each MELD state for each OPO. Lastly, equations 7.26, 7.27, and 7.28 enforce the

waterfilling constraints which approximate the allocation of livers.

Srjk, Wkr for all DSA j, k and region r (7.19)

srjkr < wj, for all DSA j, k and region r (7.20)

Uikr MWkr for all MELD i, DSA j and k (7.21)

Sjk M 1: srjkr for all DSA j and k (7.22)
r

ZSkj Uk for all DSA k (7.23)
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Z ttzkr Sk for all DSA k

40 8

E Ti,jX ik + Akj = Ujkr + Xjk(1 - Tjj), for all region r and MELD j
r=1

Xik < M(2 - Yir - Wkr) for all MELD i and DSA k

Yi+i,r > Yir for all MELD i and region r

Uikr Myi+l,r for all MELD i, DSA k, and region r

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

Geographic Variation Constraint

Equation 7.29 constrains the variation in difference between supply and demand to

be within some allowable range, governed by parameter K.

8 58

ES Wkr(Ik - Sk) < K
r=1 k=1

(7.29)

Contiguity Constraints

As in the previous model, we enforce the regions be contiguous, as described in

Chapter 5.

Wkr 5
jEAk(Cr)

Wjr (7.30)

Objective

Lastly, we define the objective to be the minimization of the sum of the volume-

weighted travel time of all livers and the total region size. Model parameter V governs
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the tradeoff between the two components of the objective. When V = 0, the penalty

for region size disappears and the objective is simply the minimization of volume-

weighted distance.

min Z Skdjk + V 1 srjkrTTjk (7.31)
k,j,r

7.4 Results

This formulation has two model parameters: K, the degree of allowable geographic

variation, and V, the penalty on region size. In this section, we report the optimiza-

tion and simulation results for various values of K and V. The values for K were

chosen to allow for different levels of allowable geographic variation. Recall from Table

5.2, the minimum level of geographic variation, as measured as the absolute sum of

differences in supply and demand across regions, ranges between 90 and 500 across the

different input years. Therefore, we include values of K to allow for geographic varia-

tion above that minimum amount. Similarly, a wide range of values of V were chosen

such that the problem varies between minimizing total liver transport time (V = 0)

and minimizing total region size (V = 100). Table A.6 reports the full results of the

optimization and simulation for K E {400, 500, 600} and V E {0, 1, 3, 5, 7,10, 100} for

input years 2010 through 2015. Due to the large number of optimization problems

required to solve, we set the optimality gap at 2%.

7.4.1 Relationships between Model Parameters

Effect of Region Size Penalty (V)

As expected, when the region size parameter, V, is zero, the overall region size can be

quite large. With no region size penalty, the mean of the median distances is equal

to 128, and in some cases it is as high as 135. These results are considerably higher

than the median distance of 106 for the current region configuration and 118 for the

2016 OPTN proposal. We attribute the high transport distance to the fact that our

allocation model underestimates the number of livers that are transported between
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OPOs.

However, by imposing a small penalty on the region size, the median distance is

reduced substantially. This relationship is demonstrated in Figure 7-3, which plots the

tradeoff between V and the two region size metrics - the simulated median distance

and the pairwise travel time metric used in the optimization. A small increase in V

results in a drastic decrease in median distance, but after some point, increasing V

tends to increase the median distance. These results indicate that without the region

penalty, the model is minimizing an imperfect measure of organ flow, and therefore

sometimes produces regions that are inefficient. By imposing a small penalty on

region size, which serves as a proxy for underreported organ shipments, the median

distance and time is greatly reduced. However, if V is increased too much, the effect

of region size dominates at the expense of reducing within region transport time.

The effect of V can also be seen directly on the region design. Figure 7-4 shows

the resulting region design for increasing values of the region penalty for the case

when K 600 and the input year is 2015. As expected, regions tend to be large

when V = 0. But as V is increased, the regions are forced to be smaller.

Figure 7-2: Scatter Plot of MELD Variation and Region Size Penalty

3.5

x
0 +

-J 3

o K>oo

.o2.5x +

215

> K>

(2 0 2011

A OA K2013

+ 0010
+ 20151.5 10

0 2 4 6 8 10

Region Parameter, V

Furthermore, Figure 7-2 shows that the region size penalty has very minimal
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systematic impact on the standard deviation of median MELD.
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Figure 7-3: Effect of Region Size Penalty (V) on Median Distance

Figure 7-4: Effect of Region Size Penalty (V) on Regions
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Relationship between Geographic Variation and Region Size

The relationship between the region size and the geographic variation is much less

clear. Figure 7-5 plots the standard deviation in regional median MELD versus the

median transport distance for each input year 2011-2015, revealing a line of best fit

with a coefficient close to 0. This result, at first glance, may appear to be counterin-

tuitive. Larger regions might be able to better balance supply and demand to create

more equal geographical outcomes. However, these results indicate that is not the

case in the liver allocation system.

Furthermore, there is no evident pattern between the parameter for allowable

geographic variation and the key metrics of the system. In Figure 7-5, the allowable

geographic is coded by color. Based on this sample, visual inspection reveals no

systematic pattern.

Figure 7-5: Scatter Plot of MELD Variation and Liver Transport Time
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7.5 Selecting Best Model

Table A.6 and Figure 7-5 both demonstrate significant variation in key results depend-

ing on the parameters. However, to offer a concrete proposal to alleviate geographic
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variation, we need to choose one model. There are several configurations of model

parameters that result in reduced geographic variation and low median transport

distance.

In addition to the geographic variation and distance metrics, we also consider the

configuration's robustness to different years of data, as well as how well the model

aligns with our intuition and understanding of the model. Based on those criteria,

we select the regions produced by the model with K = 400 and V = 1 for year 2011.

This region configuration has a standard deviation of median MELD of 1.59 and a

median distance of 120.9 in the simulation.

We note that other parameter configurations result in lower geographic variation.

When V = 0 and K = 400, the standard deviation of median MELD is 1.51. However,

this model results in slightly higher median distance (1.23) Furthermore, we have

noted in this chapter that the optimization without a penalty on region size often

produces regions with unacceptably high median distances. Therefore, based on our

understanding of the model, these results may be an anomaly.

7.6 Sensitivity Analysis

Next, we consider how robust our model is to the varying input years of data. Table

7.1 reports the results for each parameter setting averaged over the 5 years of input.

The selected model used in the redistricting proposal in Chapter 3 is noted with

asterisks. For most cases, the parameter settings are fairly robust to the year of input

data. For instance, for the model with V = 1 and K = 500, the resulting geographic

variation ranges between 1.5 and 2.5.

However, we note that the results are most sensitive to the input data when there

is no region penalty. When V = 0, the model produced both the lowest geographical

variation (1.51) and the highest (3.13) for different years of input data and values of

K. The average values of geographical variation are also the highest when V = 0,

as shown in Table 7.1. Therefore, even though the model with no region penalty

produced favorable results in a few cases, these results may be outliers.
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Table 7.1: Summary of Results Averaged over Input Years 2011-2015

7.7 Comparison with Baseline

In Chapter 3, we compare the best model with the current 11 region configuration and

2016 OPTN redistricting proposal, and show that our proposal reduces geographic

variation with minimal impact on efficiency.

In this section, we compare our approach against a baseline approach which min-

imizes the sum of absolute differences in rates of supply and demand across regions.

The full results for the baseline approach are shown in Table 6.2, and the average

over the 5 years is shown in Table 7.2.

Our model consistently produces comparable or superior results than the baseline.

Compared to the baseline with a 3 hour travel time constraint, our model consistently

results in lower geographic variation and lower median transport time. Compared to

the baseline with a 4 hour travel time constraint, the geographic variation is slightly

76

Average of 2011-2015
Standard

K V Deviation of Distance Median Tire
Median MELD

0 2.31 128.12 1.70
1* 2.29* 122.11* 1.68*
3 2.31 121.94 1.68

400 5 2.25 120.09 1.68
7 2.18 122.98 1.69

10 2.10 122.85 1.69
100 2.30 125.00 1.69
0 2.57 128.41 1.70
1 2.35 120.90 1.68
3 2.10 122.24 1.69

500 5 2.14 122.13 1.69
7 2.28 122.62 1.68
10 2.39 121.38 1.68
100 2.26 123.10 1.68
0 3.01 128.54 1.70
1 2.18 122.32 1.69
3 2.27 119.63 1.68

600 5 2.27 122.26 1.68
7 2.21 124.40 1.69
10 2.30 122.35 1.69

100 2.34 121.85 1.68



Table 7.2: Baseline Results: Average of Input Years 2011-2015

Metric 3 Hour Travel Time Max 4 Hour Travel Time Max
S.D. of Median MELD 2.62 2.158

Median Transport Distance (Miles) 1.69 1.69
Median Transport Time (Hours) 127.91 128.82

higher, but our model results in lower transport distance. However, the results for

the baseline model are slightly more consistent across input years, suggesting that

the baseline model may be more robust.
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Chapter 8

Limitations and Extensions

In this section, we describe the limitations of our current approach and ways to extend

the methodology.

8.1 Limitations

8.1.1 Simulation

The validated simulation approach allows us to evaluate many aspects of an allocation

policy. However, due to limits on LSAM, results were only simulated for one year.

A longer period of simulation would have resulted in a better understanding of the

performance of a given allocation rule. In addition, a longer simulation period could

assist in selecting model parameters, especially in Model 2. By reserving a subset of

the simulation period, the model parameters could be chosen out of sample.

Furthermore, due to time constraints, we were limited to simulating each pa-

rameter configuration just once in Model 2. However, to reduce the variance in the

simulation results, it would have been preferable to run the simulation for multiple

resampled input files.

Lastly, we note limitations of this simulation approach in general. LSAM uses

logistic regression to model the acceptance decision, which is estimated based on

historical data. Therefore, the simulator does not attempt to model how changes
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in allocation rules will affect the candidates' acceptance decision. Therefore, when

considering a change in allocation, policy makers also need to consider how agents

(donors and candidates) will change their behavior. Currently, this behavior response

is beyond the state of the art in allocation modeling.

8.1.2 Computational Limits

Redesigning liver allocation regions is a challenging task, and computational consid-

erations played a key role in this thesis. To overcome computational hurdles, we used

an initial region heuristic and aggregated state space. While we argue that these

modeling choices do not significantly affect the results, computational considerations

did constrain other modeling choices as well. In the absence of computational limits,

the two models presented here could be merged into a single model, instead of being

solved as complementary problems.

Some previous attempts to redesign liver allocation regions used a very simpli-

fied model that abstracts away from many key processes of the allocation system

[14]. Others used advanced optimization approaches, together with heuristics, to

solve liver redesign optimization systems that modeled key elements of the allocation

system. Specifically, branch-and-price, together with a Ryan-Foster branching rule,

were shown to be particularly effective for this problem [17]. Although not considered

in this thesis, branch-and-price could overcome some of the computational problems

so that the model could incorporate other modeling choices.

8.2 Extensions

Both models presented in this thesis contain key processes of the allocation system,

such as the waitlist dynamics and allocation rule. As a result, the models are very

flexible and allow for the inclusion of policy constraints and alternative modeling

choices. In this section, we discuss four extensions of our framework.
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8.2.1 Modeling: Acceptance Decision

In the fluid approximation and waterfilling approach, livers were allocated to the

highest MELD within each region, and all livers were accepted. In reality, that is not

always the case. Candidates reject livers based on a multitude of factors, but the most

prominent are high transport distance and quality of the liver (e.g. donor was in poor

health). Because we were assuming that all livers were accepted, we had to constrain

the degree to which livers were transported long distances. In Model 1, we used

constraints on the geographical size of the region, and in Model 2, we minimized the

total transport time with a region size penalty. However, if our model incorporated

the acceptance decision, the reliance on these geographic measures would not be as

necessary, since the acceptance decision would rely on the distance.

Furthermore, the region size used in the objective function of Model 2 served to

offset the underestimate of livers being shipped between geographic areas. With an

accurate model of liver acceptance, we would see more realistic flows between OPOs.

Therefore, incorporating acceptance decision into the model might obviate the need

for the region penalty, which primarily served to correct for the underestimation

of organ flows. However, incorporating the acceptance decision in an optimization

formulation of region design is difficult. Stahl et al. make the assumption that the

acceptance decision is only affected by travel time. In reality, the acceptance decision

is much more complicated. Therefore, it is not clear that including a greatly simplified

model of acceptance would produce better results evaluated on a validated simulation

approach, such as LSAM.

8.2.2 Modeling: Financial Cost

One key contribution of the models presented in this thesis is the modeling of flows

of livers between geographic areas. Not only does increased transport time reduce

the quality of the liver, but it also increases costs. Therefore, minimizing the overall

transport distance generally improves the system in more than one way. However, the

allocation system also has costs associated with pre- and post-transplant care. Gentry
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et al. provided an estimate of the costs of transportation and care [12]. They estimate

that under the Share 34 rule, transportation costs constitute $270 million of the $8003

million in total transplantation costs. By including the costs of transportation and

care in the optimization model, we could estimate frontier curves that reflect all the

different allocation systems are possible for a given system cost.

8.2.3 Modeling: Geographic Variation

This thesis uses two metrics for geographic variation: the variation in median MELD

across regions and the absolute sum of differences in rate of supply and demand. Al-

though the variation in median MELD is a key metric used by policy makers to mea-

sure geographic variation, it doesn't capture the distribution in MELD at transplant.

However, the median MELD formulation presented in Chapter 6 can be extended to

model an arbitrary distribution percentile. Therefore, the geographic variation could

be captured by a combination of the variation in the median and other key percentiles.

By using a more complete metric for geographic variation in the optimization, it might

be possible to produce even more equitable region configurations.

8.2.4 Modeling: Impact on Individual OPOs

Liver transplantation is a highly profitable and prestigious business. As a result, there

is intense competition over access to donor livers [25]. Mathematical optimization has

helped cut through the political landscape, as evidenced by Gentry's work in garnering

support for the 2016 OPTN proposal 114]. However, since any redistricting proposal

will necessarily have winners and losers, there will always be at least some OPOs that

oppose a plan.

Therefore, to make the mathematical optimization approach to redistricting more

palatable to stakeholders, one could impose constraints in the formulation that pre-

vent any OPO from losing a significant amount of transplantations. While this might

restrict the degree to which geographic variation could be reduced, it also might in-

crease the likelihood of actually implementing a proposal by eliminating any strong
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opponents to the plan.
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Chapter 9

Conclusion

In this thesis, we present a new approach to optimizing liver allocation regions to

reduce geographic variation. We propose a fluid model to approximate the liver

waitlist and allocation process. Then, we formulate two optimization models. Model

1 directly minimizes the variation in median MELD, which is a key metric used

by policy makers to measure geographic variation. Then, Model 2 minimizes the

total liver transport time subject to some allowable level of geographic variation.

We show that Model 2 produces superior results compared to a baseline approach

that minimizes the absolute difference in rates of supply and demand. Based on

this analysis, we propose a redistricting proposal that reduces geographic variation

with very minimal impact on efficiency. Last, we discuss how our flexible modeling

approach can be extended to create additional useful models.
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Appendix A

Tables and Figures
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Data Disclaimer

The data reported here have been supplied by the Minneapolis Medical Research

Foundation (MMRF) as the contractor for the Scientific Registry of Transplant Re-

cipients (SRTR). The interpretation and reporting of these data are the responsibility

of the author(s) and in no way should be seen as an official policy of or interpretation

by the SRTR or the U.S. Government
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Table A.1: Waitlist Candidate Arrivals by DSA: 2015

Center
Birmingham, AL
Little Rock, AR
Phoenix, AZ
San Ramon, CA
Los Angeles, CA
San Diego, CA
Denver, CO
Annandale, VA
Winter Park, FL
Miami, FL
Gainesville, FL
Tampa, FL
Norcross, GA
Honolulu, HI
North Liberty, IA
Itasca, IL
Indianapolis, IN
Louisville, KY
Metairie, LA
Waltham, MA
Baltimore, MD
Ann Arbor, MI
Minneapolis, MN
St Louis, MO
Flowood, MS
Westwood, KS
Charlotte, NC
Greenville, NC
Omaha, NE
New Providence, NJ
Rochester, NY
New York, NY
Cleveland, OH
Columbus, OH
Cincinnati, OH
Oklahoma City, OK
Portland, OR
Philadelphia, PA
Pittsburgh, PA
Guaynabo, PR
Charleston, SC
Nashville, TN
Cordova, TN
Houston, TX
San Antonio, TX
Dallas, TX
Salt Lake City, UT
Virginia Beach, VA
Bellevue, WA
Madison, WI
Bloomfield, CT
Milwaukee, WI

DSA ID
5

10
19
34
52
61
88

106
115
124
134
138
143
157
169
176
200
207
222
302
309
330
346
360
369
374
378
390
399
411
440
450
470
472
480
494
505
516
530
589
596
604
612
637
660
661
692
706
730
747
766
832

Arrivals
149
59

201
607
746
137
241
110
70

243
263
96

378
31
29

356
182
145
347
513
447
272
285
172
35

139
94

129
135
76
57

646
234
53

151
97

103
537
222
60
81

182
163
620
271
295
152
142
206
165
43

141

MELD Percentile
10 25 50 75 90
9 12 17 25 35
9 13 18 23 35
8 11 16 26 36
7 10 15 22 32
8 12 18 31 39
7 9 15 23 33
7 10 14 19 29
8 11 14 22 31
8 12 19 27 37
8 12 17 24 34
9 11 17 24 38
7 12 18 23 32
9 12 17 25 34
7 10 14 19 28
9 15 17 25 35
9 12 17 26 34
9 12 16 22 30
9 12 17 22 32
8 12 17 24 30
7 10 14 20 30
7 10 14 23 35
9 11 15 21 29
8 11 15 23 33
8 11 16 22 29
9 13 17 30 40
9 11 16 22 27
9 13 18 25 38
8 12 17 22 30
7 12 16 24 32
8 11 18 26 36
7 10 21 33 39
7 10 14 21 34
7 11 16 23 33
9 13 19 26 37
8 11 14 21 30
8 10 14 20 31
8 10 15 21 31
8 11 16 23 34
8 11 16 23 38
8 12 17 23 27
8 14 20 24 33
9 14 18 24 30
9 14 18 24 36
8 11 17 27 35
8 11 17 24 33
8 11 16 27 33
8 12 16 22 33
9 12 17 24 33
8 12 17 26 36
8 13 18 28 37
11 13 19 25 36
7 10 16 26 35

89

Excludes 8 DSAs that do not have a transplant center
2 Includes all adults



Table A.2: Allocation Method for Adult Donors

Order Candidates within: And are:
1 OPO's region Adult or pediatric status 1A
2 OPO's region Pediatric Status 1B
3 OPO's DSA MELD/PELD 40
4 OPO's region MELD/PELD 40
5 OPO's DSA MELD/PELD 39
6 OPO's region MELD/PELD 39
7 OPO's DSA MELD/PELD 38
8 OPO's region MELD/PELD 38
9 OPO's DSA MELD/PELD 37

10 OPO's region MELD/PELD 37
11 OPO's DSA MELD/PELD 36
12 OPO's region MELD/PELD 36
13 OPO's DSA MELD/PELD 35
14 OPO's region MELD/PELD 35
15 OPO's DSA MELD/PELD at least 15
16 OPO's region MELD/PELD at least 15
17 OPO's Nation Adult or pediatric status 1A
18 OPO's Nation Pediatric Status 1B
19 OPO's Nation MELD/PELD at least 15
20 OPO's DSA MELD/PELD less than 15
21 OPO's region MELD/PELD less than 15
22 OPO's nation MELD/PELD less than 15

The chart above shows the allocation for candidates that have identical blood type
as the donor. If there is no candidate with identical blood type, the allocation begins
from order 1 with candidates that have compatible, but not identical blood type.
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Table A.3: 2016 Proposed Allocation Rule for Adult Donors

Order Candidates within: And are:
1 OPO's region Adult or pediatric status 1A
2 OPO's region Pediatric Status 1B
3 OPO's region MELD/PELD > 29
4 OPO's DSA MELD/PELD > 15
5 OPO's region MELD/PELD > 15
6 Nation Adult or pediatric status 1A
7 Nation Pediatric Status 1B
8 Nation MELD/PELD > 15
9 OPO's DSA MELD/PELD > 15
10 OPO's region MELD/PELD > 15
11 Nation MELD/PELD ; 15

The chart above shows the allocation for candidates that have identical blood type
as the donor. If there is no candidate with identical blood type, the allocation begins
from order 1 with candidates that have compatible, but not identical blood type.
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Table A.5: Aggregated MELD Transition Matrix

15-20 21-22 23-24 25-26 27-28 29-30 31-32 33-34 35-36 37-38 39-40 Death
0.8 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

15-20 2.9 93.8 1.6 0.5 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0
21-22 1.1 1.7 92.2 1.2 2.3 0.2 0.1 0.1
23-24 1.5 1.6 2.2 88.0 2.7 1.2 0.6 0.3
25-26 0.6 0.4 0.8 1.9 90.4 3.7 0.5 0.2
27-28 0.6 0.3 0.5 1.0 1.6 90.5 3.2 0.5
29-30 0.5 0.2 0.2 0.4 0.7 1.5 91.0 2.3
31-32 0.4 0.1 0.2 0.3 0.5 0.9 1.6 89.4 2.1
33-34 0.3
35-36 0.3
37-38 0.2
39-40 0.2
Death 0.0

0.1 0.0 0.0 0.0
0.1 0.1 0.1

0.3
0.6
0.9

0.2 1.5
0.1 0.1 0.1 0.1 1.1
0.3 0.2 0.1 0.2 1.2
0.6 0.3 0.2 0.4 1.7

0.1 0.3 0.2 0.4 0.5 1.0 1.5 88.0 2.0
0.7 0.4 0.8 2.3

0.9 1.6 3.2
0.1 0.1 0.2 0.1 0.3 0.6 0.6 1.3 88.2 1.8 2.8 3.8
0.1 0.1 0.1 0.1 0.2 0.2 0.4 0.6 1.2 87.9 4.7 4.3
0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.4 92.9 5.8
0.0 0.0 0.0 Oa.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0

Table A.6: Full Results for Varying K, V

Parameters Optimization Results Simulation Results
Absolute

K Region Size Difference in Total Time of Total Region SD of Median Median Ravel Median
Parameter Regional Supply Liver ransport Size Metric MELD Time Distance

and Demand
400 0 388 29.8 1440.2 1.51 123.05 1.69
400 1 368 30.0 1003.5 1.59 120.98 1.68
400 3 368 30.5 1013.1 1.93 120.97 1.68
400 5 368 30.5 1013.1 1.93 120.97 1.68
400 7 368 30.7 1009.2 1.69 123.05 1.69
400 10 394 33.2 975.6 1.69 123.05 1.69
400 100 392 36.0 962.1 2.07 126.83 1.69
500 0 490 29.0 2197.7 2.36 125.06 1.70
500 1 484 29.6 1043.6 2.56 117.94 1.67
500 3 492 30.9 984.3 1.64 118.83 1.68
500 5 496 31.5 99.4 1.64 118.83 1.68
500 7 496 32.0 962.0 2.36 121.30 1.67
500 10 494 33.1 946.7 2.36 121.30 1.67
500 100 494 34.7 931.9 2.45 122.97 1.68
600 0 574 28.2 2217.2 2.83 135.00 1.71
600 1 562 29.6 1020.6 2.51 118.00 1.68
600 3 542 30.3 966.8 1.92 120.00 1.69
600 5 542 30.3 966.8 2.23 127.64 1.69
600 7 598 31.7 943.9 2.23 127.64 1.69
600 10 598 31.7 943.9 2.23 127.64 1.69
600 100 590 35.7 920.6 2.31 117.93 1.68

(a) 2011

Parameters Optimization Results Simulation Results
Absolute

K Region Size Difference in Total Time of Total Region SD of Median Median Ravel Median
Parameter Regional Supply Liver Transport Size Metric MELD Time Distance

and Demand
400 0 396 28.2 1947.6 2.42 135.86 1.70
400 1 386 28.7 1096.9 2.16 120.09 1.68
400 3 386 28.7 1096.9 2.16 120.09 1.68
400 5 396 33.3 966.5 2.26 119.30 1.68
400 7 396 33.0 969.0 2.20 127.58 1.70
400 10 396 33.0 969.0 2.20 127.58 1.70
400 100 394 39.2 932.2 2.00 121.11 1.69
500 0 498 26.3 1726.6 2.49 133.53 1.71
500 1 488 27.8 1083.2 2.50 121.24 1.69
500 3 498 29.1 1022.3 1.85 122.81 1.69
500 5 490 32.8 930.9 2.26 121.53 1.69
500 7 490 32.8 930.9 2.26 121.53 1.69
500 10 490 32.8 930.9 2.26 121.53 1.69
500 100 436 39.2 921.4 1.79 116.99 1.68
600 0 570 25.0 1612.2 3.13 122.97 1.69
600 1 588 28.3 1002.0 2.56 121.81 1.68
600 3 588 28.8 1002.0 2.88 116.66 1.67
600 5 586 30.6 947.5 2.51 122.97 1.69
600 7 598 33.2 904.4 2.23 128.58 1.70
600 10 598 33.2 904.4 2.09 120.97 1.69
600 100 598 34.0 908.9 2.42 138.35 1.71

(b) 2012
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Parameters Optimization Results Simulation Results
Absolute

K Region Size Difference in Total Time of Total Region SD of Median Median Travel Median
Parameter Regional Supply Liver Transport Size Metric MELD Time Distance

and Demand
400 0 394 26.7 2277.3 2.60 127.64 1.70
400 1 394 29.5 962.5 2.14 119.86 1.69
400 3 394 29.9 942.9 2.26 120.73 1.68
400 5 394 29.9 942.9 2.26 120.73 1.68
400 7 394 29.9 942.9 2.26 120.73 1.68
400 10 394 29.9 942.9 2.26 120.73 1.68
400 100 394 29.9 942.9 2.26 120.73 1.68
500 1 498 27.7 1003.2 2.49 120.80 1.68
500 3 492 29.3 922.1 2.90 120.97 1.68
500 5 492 29.3 922.1 2.90 120.97 1.68
.500 7 492 29.3 922.1 2.90 120.97 1.68
500 10 492 29.3 922.1 2.90 120.97 1.68
500 100 492 29.8 924.9 2.90 122.97 1.69
600 0 574 25.6 2842.6 2.34 127.42 1.69
600 1 598 26.7 1009.5 2.35 127.42 1.69
600 3 592 28.8 913.4 2.62 117.34 1.68
600 5 592 28.8 913.4 2.62 117.34 1.68
600 7 592 28.8 913.4 2.62 117.34 1.68
600 10 592 28.8 913.4 2.62 117.34 1.68
600 100 534 32.6 908.2 2.03 130.63 1.70

(c) 2013
Parameters Optimization Results Simulation Results

Absolute

K Region Size Difference in Total Time of Total Region SD of Median Median ravel Median
Parameter Regional Supply Liver Transport Size Metric MELD Time Distance

and Demand
400 0 396 33.0 1636.8 2.36 130.43 1.70
400 1 390 34.6 1017.3 2.71 123.05 1.68
400 3 390 34.8 1001.4 2.70 121.30 1.68
400 5 386 36.6 942.9 2.32 116.66 1.67
400 7 386 36.6 942.9 2.26 120.73 1.68
400 10 386 36.6 942.9 2.26 120.73 1.68
400 100 386 37.0 948.7 2.33 122.64 1.70
500 0 496 32.2 1928.2 2.24 137.55 1.72
500 1 474 33.9 1009.4 1.69 121.55 1.69
500 3 474 34.4 968.0 2.03 121.39 1.69
500 5 420 34.9 954.1 1.81 122.12 1.69
500 7 420 34.9 954.1 1.81 122.12 1.69
500 10 420 34.9 954.1 1.81 122.12 1.69
500 100 456 37.2 943.4 2.07 120.79 1.68
600 0 580 31.6 2576.7 1.69 136.55 1.69
600 1 474 33.9 1009.4 1.69 121.55 1.69
600 3 474 34.4 968.0 2.03 121.39 1.69
600 5 420 34.9 954.1 1.81 122.12 1.69
600 7 420 34.9 954.1 1.66 121.11 1.69
600 10 564 35.0 952.9 1.91 122.97 1.70
600 100 572 41.8 924.3 2.39 124.65 1.69

(d) 2014

Parameters Optimization Results Simulation Results
Absolute

K Region Size Difference in Total Time of Total Region SD of Median Median Travel Median
Parameter Regional Supply Liver Transport Size Metric MELD Time Distance

and Demand
400 0 400 33.2 1504.9 2.69 123.62 1.69
400 1 372 35.0 1001.4 2.51 126.60 1.69
400 3 372 35.0 1001.4 2.51 126.60 1.69
400 5 372 35.0 1001.4 2.47 122.81 1.68
400 7 388 38.2 956.0 2.47 122.81 1.68
400 10 388 38.2 956.0 2.07 122.18 1.68
400 100 386 39.9 956.1 2.50 125.54 1.69
500 0 484 32.5 3608.9 2.86 126.63 1.70
500 1 498 33.6 1047.1 2.50 122.98 1.68
500 3 498 34.6 971.8 2.10 127.19 1.70
500 5 498 34.6 971.8 2.10 127.19 1.70
500 7 498 34.6 971.8 2.10 127.19 1.70
500 10 462 36.4 949.6 2.64 120.97 1.68
500 100 468 38.2 935.2 2.26 125.54 1.69
600 0 574 32.1 1922.8 3.06 127.64 1.70
600 3 594 34.1 964.8 1.93 122.73 1.68
600 5 598 35.1 941.2 2.17 121.24 1.67
600 7 594 35.2 939.6 2.30 127.31 1.69
600 10 598 36.8 921.8 2.64 122.81 1.68
600 100 598 36.8 921.8 2.33 122.97 1.68

(e) 2015
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