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Abstract

Measurements of radial velocity variations from the spectroscopic monitoring of stars and their companions are
essential for a broad swath of astrophysics; these measurements provide access to the fundamental physical
properties that dictate all phases of stellar evolution and facilitate the quantitative study of planetary systems. The
conversion of those measurements into both constraints on the orbital architecture and individual component
spectra can be a serious challenge, however, especially for extreme flux ratio systems and observations with
relatively low sensitivity. Gaussian processes define sampling distributions of flexible, continuous functions that
are well-motivated for modeling stellar spectra, enabling proficient searches for companion lines in time-series
spectra. We introduce a new technique for spectral disentangling, where the posterior distributions of the orbital
parameters and intrinsic, rest-frame stellar spectra are explored simultaneously without needing to invoke cross-
correlation templates. To demonstrate its potential, this technique is deployed on red-optical time-series spectra of
the mid-M-dwarf binary LP661-13. We report orbital parameters with improved precision compared to traditional
radial velocity analysis and successfully reconstruct the primary and secondary spectra. We discuss potential
applications for other stellar and exoplanet radial velocity techniques and extensions to time-variable spectra. The
code used in this analysis is freely available as an open-source Python package.

Key words: binaries: spectroscopic – celestial mechanics – stars: fundamental parameters – stars: individual
(LP661-13) – techniques: radial velocities – techniques: spectroscopic

1. Introduction

Close binary pairs are the foundation of stellar astrophysics.
Measurements of the orbital dynamics in these systems can
constrain masses, the fundamental physical parameter in stellar
evolution. That information is vital for our understanding of
everything from star formation to star death, with wide-
reaching implications for issues ranging from molecular cloud
collapse and fragmentation, to exoplanets, to cosmology with
Type Ia supernovae (Torres et al. 2010). A common means of
measuring binary orbital dynamics is through high-resolution
spectroscopic radial velocity monitoring. Traditionally, radial
velocities for each stellar component are measured by cross-
correlating an observed composite spectrum with various
Doppler-shifted stellar templates (e.g., TODCOR; Zucker &
Mazeh 1994). The velocity for each component corresponds to
the Doppler shift, which delivers the maximum cross-correla-
tion signal. While cross-correlation is commonly employed as a
workhorse technique, there are several shortcomings to this
limited statistical framework. First, in the case of low-signal-to-
noise (S/N) data, there can be considerable uncertainty about
how well the chosen templates match the true spectra of the
stars. Second, in its most straightforward form, cross-correla-
tion is unable to meaningfully account for variable spectral
lines or uncertain calibration parameters in a principled

probabilistic framework, nuisances which can systematically
bias a radial velocity measurement. Lastly, at no point does the
cross-correlation framework reconstruct either of the comp-
onent spectra, preventing a check of the suitability of the
chosen template as well as any detailed photospheric analysis
of the stars themselves.
Because the composite spectra of spectroscopic binaries are

modulated by a deterministic Doppler shift, it is possible to
“disentangle” the intrinsic spectra from multiple observations at
different orbital phases. One of the first successful attempts was
by Bagnuolo & Gies (1991): by viewing the composite spectra
of the double-lined O star AO Cas as various projections of the
intrinsic component spectra, they were able to apply iterative
tomographic reconstruction techniques and recover the comp-
onent spectra. Soon after, Simon & Sturm (1994) developed a
sparse matrix formalism to decompose composite spectra into
their components while also optimizing the orbital elements of
the binary star. In contrast to traditional radial velocity
techniques, spectral disentangling techniques can determine
the intrinsic spectra and velocities simultaneously, simplifying
the coherent propagation of uncertainties and often resulting in
more precise constraints on the orbital parameters (Pavlovski &
Hensberge 2010). Spectral decomposition can provide precise
radial velocities even at orbital phases where the lines from
both stars overlap, an area of difficulty for cross-correlation
techniques. Once disentangled, the component spectra can be
further analyzed with conventional spectroscopic techniques to
determine the fundamental stellar properties. For example,
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Rawls et al. (2016) disentangled the spectra of the double red
giant eclipsing binary KIC9246715 and then used the radiative
transfer code MOOG (Sneden 1973) to estimate the effective
temperature, surface gravity, and metallicity for each star.

A major advance in spectral disentangling was the realiza-
tion that the reconstruction could be performed quickly in the
Fourier domain, thanks to the efficiency of the Fast Fourier
Transform (FFT; e.g., KOREL; Hadrava 1995). However, the
FFT introduces some potentially undesirable side effects.
Because the FFT treats the spectrum as a continuous, periodic
function, it is important to carefully choose “chunks” of the
spectrum such that the edges are at the same continuum level,
otherwise spectral lines will redshift and blueshift off the edge
of the chunk and distort the reconstruction (Ilijic 2004). This
problem can be particularly acute when dealing with a late
spectral type star with a high density of spectral lines. While
Fourier techniques provide the ability to filter out high-
frequency noise (de-noising), they may also have difficulty
constraining low-order “continuum”-like features of the
spectra, making reconstructed spectra appear wavy
(Hadrava 1995). Lastly, the FFT requires that input spectra
be interpolated to a log-λ spaced wavelength grid (a process
that introduces correlated noise) and treats the measurement
errors as homoscedastic. This means that if the S/N of the
spectrum is wavelength-dependent or there happens to be a
cosmic-ray hit on a certain region of the detector, there is no
straightforward way to adjust the weighting of specific portions
of the spectrum.

The flexible probabilistic framework offered by Gaussian
processes potentially provides a means to address many of the
limitations of traditional orbit measurement and spectral
disentangling techniques. In truth, stellar spectra are not
actually physically generated from Gaussian processes but are
rather the result of nonlinear radiative transfer through complex
stellar atmospheres with specific wavelength-dependent ele-
mental and molecular opacities. However, for the purposes of
inferring intrinsic spectra and stellar radial velocities, simple
Gaussian processes offer an attractive framework to model
stellar spectra in a purely data-driven manner. Gaussian
processes have been used successfully for other time-series
applications in astronomy such as, for example, modeling
lensed quasar time delays (Hojjati et al. 2013; Tak et al. 2016),
inferring stellar rotation periods (Angus et al. 2015), and
modeling correlated noise in photometric observations of
planet transits and eclipses (Evans et al. 2015; Montet
et al. 2016).

The content of this paper is as follows. In Section 2, we
introduce Gaussian processes and demonstrate how they may
be used to model a stellar spectrum. Then, we model a mock
double-lined spectroscopic binary—where spectral lines from
both components are seen in the composite spectrum—and
demonstrate how to simultaneously infer the orbital parameters
and the intrinsic spectra of both stars. We also show how the
precision of the orbital posteriors and quality of the
reconstructed spectra respond to changes in the binary flux
ratio and S/N of the data set. In Section 3 we apply our
technique to the mid-M binary system LP661-13, recently
studied by Dittmann et al. (2017). We demonstrate precise
inference of the orbital parameters and reconstruct the spectra
of A and B, which are an excellent match to other mid-M
spectral templates. In Section 4, we discuss potential extensions
of the Gaussian process framework to variable stellar spectra,

telluric line modeling, and precision radial velocity measure-
ment for exoplanet detection, and in Section 5 we conclude the
paper.

2. Gaussian Process Spectral Models

In this section, we describe a framework for modeling a
stellar spectrum, and sums of stellar spectra, as Gaussian
processes. First, we review common notation and theorems for
multi-dimensional Gaussian random variables. Second, we
explain how a Gaussian process can be used to model a
spectrum of a single star that is stationary in time and shows no
orbital motion due to the presence of a companion. Third,
we introduce a Keplerian orbital model and extend the
Gaussian process framework to model the spectral time-series
of a double-lined spectroscopic binary. Throughout this section
we use archival observations of a single star to simulate
observations and demonstrate the development of the
framework.
We adopt the notation that

x , 1x xx m S~ ( ) ( )

signifies that the vector x is drawn from a multi-dimensional
Gaussian distribution with a mean vector m and covariance
matrix xxS . The elements of xxS are the covariances between
pairwise elements within x and can be specified directly or via
a functional prescription. By definition, the likelihood function
associated with x is the multi-dimensional Gaussian
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where N is the length of x. For computational reasons, the
natural logarithm of the likelihood is frequently used:
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Following Rasmussen & Williams (2005, Equation (A.5)), we
let x and y be jointly Gaussian random vectors drawn from
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where xm and ym are the vector means. The sub-matrices xxS
and yyS are the covariance matrices corresponding to the
elements within x and y, and xyS encapsulates the covariances

between the elements in x and y; yx xy
TS S= . If and only if x

and y are independent will 0xyS = . The conditional distribu-
tion of x given y is also a Gaussian distribution:

x y y , . 5x xy yy y xx xy yy yx
1 1 m mS S S S S S~ + - -- -∣ ( ( ) ) ( )

These equations are the foundation for constructing the
Gaussian process spectra model that follows.

2.1. A Model for Observations of a Single Star

For our spectroscopic application, the input vector is the
sampled wavelengths of the detector i i

w
1l ={ } and the data vector
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where each pixel is indexed by i from 1 to w, the number of
pixels in the region of the spectrum under consideration. To
illustrate the development of our framework, we use synthetic
“mock” data sets generated by the following recipe. First, we
create a template by stacking many archival high-resolution
observations of the K5 star LkCa14 and smoothing the result
with a Gaussian kernel. Then, we sample the spectrum atl and
add a known amount of white noise to the data set.

We will model the continuous, intrinsic stellar spectrum as a
Gaussian process. A function f l( ), where 0l > , is said to
have a Gaussian process with mean function m l( ) and
covariance kernel k ,l l¢( ) if for any finite collection of inputs
0 w1 2l l l< < < ¼ < the vector f f f, , , w1 2l l l¼{ ( ) ( ) ( )}
has a multivariate Gaussian distribution with mean vector

, , , w1 2m l m l m l¼{ ( ) ( ) ( )} and w×w covariance matrix with
elements k ,i jl l( ), where i j w, 1, 2, ,= ¼ , and k is a positive
definite kernel function. A single function generated from a
Gaussian process is called a realization of the Gaussian process.
We consider the continuous, intrinsic stellar spectrum f to be a
function generated from the Gaussian process

f kGP , , . 7l m l l l~ ¢( ) ( ( ) ( )) ( )

For the purposes of this paper, we will always work with finite-
length samplings of the Gaussian process f , either at the
detector wavelengths l or finely spaced vectors of our own
design. To model a single epoch of a single star, we treat the
data d as the sum of a realization f of the Gaussian process
with a realization of the noise process N ,

d f N, 8= + ( )

d , 0, , 9f f N m S S~ +( ) ( ) ( )

d , , 10f f N m S S~ +( ) ( )

where NS is a covariance matrix describing the noise of the
data set. For most spectroscopic observations, this will simply
be a diagonal matrix with the Poisson uncertainty for each
pixel, unless a particular telescope reduction pipeline provides
additional information about inter-pixel covariances. It is
assumed that the spectrum has been rectified to have a mean
flux of 1, so by design we choose the Gaussian process to have

1fm = . In theory, we could allow the mean to vary but in
practice it has little effect on the result as long as a reasonable
number (or function of λ) is chosen to be ∼1. The covariance
matrix fS is populated by evaluating a kernel function between
pairs of input values in l. The choice of the kernel function
determines the smoothness of the functions drawn from the
Gaussian process. As a distance metric, we compute the
velocity distance between two pairs of wavelengths i and j as
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+
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where c is the speed of light and rij has units of km s 1- . A
popular kernel is the squared exponential kernel, which we
choose to model our spectra. This kernel specifies the
covariance between two pixels il and jl as

k r a l a
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where a sets the amplitude of the Gaussian process and has the
same units as the rectified flux, and l sets the length scale of the
Gaussian process and has units of km s 1- . In this paper, we
refer to a and l as Gaussian process hyperparameters, and
commonly denote these using a.
Now we have fully specified the components of the sampling

distribution for the Gaussian process f (Equation (1)), which
can be thought of as a distribution over functions. We use the *
subscript to denote realizations of a vector, which is a draw
from this distribution:

f 1, . 13f N*
 S S~ +( ) ( )

Figure 1. Top two panels: multivariate draws from the prior distribution of
functions, given by Equation (13) using a mean of 1 (black line) and the
Gaussian process hyperparameters a and l specified in the figure. Completely
unconstrained by data, the possible realizations of the Gaussian process span a
large range of flux space. As the length scale l is decreased, the correlation
length of the realizations also shortens. Third panel: draws of the Gaussian
process conditioned on the observed data from a single spectroscopic
observation, with the maximum likelihood estimates. Multiple draws from
the posterior predictive distribution are shown, with the mean prediction in
black and the residuals at the bottom, showing that a Gaussian process can be
used to accurately model spectra. Bottom panel: multiple observations of the
same star, taken over a series of nights. The sampling density increases
dramatically due to the shifting of the barycentric frame.
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Several realizations of f
*

are shown in the top panels of
Figure 1, for two different choices of the Gaussian process
hyperparameters a and l. While the Gaussian process has a
mean of 1, actual realizations of the Gaussian process scatter
about the mean. As l decreases, the covariance between distant
elements decreases and f

*
oscillates more rapidly. How does

one choose the best values of a and l? Fortunately, the
Gaussian process framework provides a natural mechanism to
determine the most probable values through the Gaussian
process likelihood, given by Equation (2).10 In the presence of
data (x d= , the vector of fluxes), a choice of mean vector
( 1xm = ), a covariance matrix ( xx f NS S S= + ), and priors on
a and l, the posterior probability distribution is directly
specified by the marginal likelihood, Equation (2), which we
can maximize with respect to a and l. Throughout this work we
assume flat prior probability distributions for a and l and
enforce positivity

p a l1 , 0
0 else.

14a = >{( ) ( )

For some applications it may be worthwhile to explore more
sophisticated prior distributions.

With the hyperparameters optimized, we can now make
realizations of the Gaussian process conditioned on the data by
taking random draws from the posterior predictive distribution
(Equation (5)). These draws represent realizations of the
inferred intrinsic stellar spectrum while the scatter in the draws
serves to illustrate the uncertainty in our inference and the
width of the Gaussian probability distributions at each
wavelength. In this application of Equation (5), x f ;

*
=

y d;= xxS is filled out by the kernel evaluated over the
prediction wavelengths *l corresponding to f ;

*
yy f NS S S= + , where fS is filled out by the kernel evaluated

over the wavelengths l corresponding to d; and xyS is filled
out by the kernel evaluated over pairs of wavelengths
corresponding to both *l and l. Random draws of the
Gaussian process “snap” to the data (Figure 1, third panel),
providing a very flexible mechanism for modeling the
continuous stellar spectrum.

Although the Gaussian process achieves promising success
in this single-observation application, its real benefit accrues
when there are multiple observations of the same star in a time-
series. Throughout this paper, we assume that all spectroscopic
observations of a target star are acquired by the same telescope,
and that the instrument line spread function (LSF) is stable
across epochs. For the applications discussed in this paper,
these criteria are satisfied by most high-resolution spectro-
graphs, such as echelle spectrographs used for radial velocity
planet searches. Because convolution is a linear operation, it is
reasonable to ignore the effects of the LSF and assume that the
intrinsic stellar spectrum we are modeling has already been
convolved. For very precise applications (e.g., radial velocity
searches for earth-mass planets), variations in the LSF may
need to be considered; we discuss this further in Section 4.1.

Even though spectrographs may be very stable, such that
from epoch to epoch nearly the same wavelengths are sampled
by the detector in the topocentric frame, this is not the case in
the barycentric frame. Due to the rotation of the earth and its

orbital motion around the Sun, observations of a source that are
taken on different days will likely have different relative
velocities between the topocentric frame and the barycentric
frame, the so-called barycentric correction. This means that at
each epoch, the pixels of the detector are sampling slightly
different wavelengths of the intrinsic stellar spectrum (broa-
dened by the LSF). This barycentric correction can be
computed to high accuracy (e.g., Wright & Eastman 2014),
and when all spectra in a time-series are corrected to the
barycentric frame we have a very dense (albeit noisy) sampling
of the convolved stellar spectrum (see Figure 1, bottom panel).
We concatenate the W epochs of data and denote new variables
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and

D F N. 16= + ( )

The aforementioned covariance matrices are generated from the
same kernel as before, with the major difference being that it is
now applied to all of the input wavelengths in all epochs, which
creates the covariance matrix structure seen in Figure 2.
Posterior predictive draws for the multi-epoch Gaussian
process are shown in the bottom panel of Figure 1.

2.2. A Model for Observations of a Spectroscopic Binary

Now, we extend the Gaussian process model to include
multiple time-series observations of a spectroscopic binary star
system. Typically, labeling a system a spectroscopic binary
implies that spectral lines from both stars are seen in the
composite spectra; however, we will later show that a
simplified version of this framework can also be used to model
single-lined spectroscopic binary systems (e.g., stars hosting
exoplanets). The orbital motion of each star induces a Doppler
shift of the rest-frame stellar spectra, which are then
simultaneously observed in composite. If a star is moving
with a radial velocity v relative to the barycentric frame, the
rest-frame wavelengths 0l of the spectrum are shifted to

v
c v

c v
, 170l l=

+
-

( ) ( )

where a positive v denotes a redshift, or increase in the values
of the rest-frame wavelengths. The radial velocities of binary
stars as a function of time can be fully described by seven
parameters qq = , KA, e, ω, P, T0, γ}, the mass ratio
q M M K KB A A B= = , the velocity semi-amplitude of the
primary star, the eccentricity, argument of periastron, orbital
period, epoch of periastron, and systemic velocity, respectively
(Murray & Correia 2010). The mean anomaly M is given by
Kepler’s equation,

M t E t e E t
t T

P
sin

2
, 180p

= - =
-( ) ( ) ( ) ( )

which must be solved to find the eccentric anomaly E. The true
anomaly f is given by

f t
E t e

e E t
cos

cos

1 cos
. 19=

-
-

( ) ( )
( )

( )10 We will use Equations (2), (4),and (5) throughout this paper and the values
of xxS , yyS , and xyS will change depending on the context.

4

The Astrophysical Journal, 840:49 (19pp), 2017 May 1 Czekala et al.



Then, the velocity of the primary star as a function of time is

v K f t ecos cos 20A A w w g= + + +( ( ( )) ) ( )

and the secondary velocity is

v
K

q
f t ecos cos . 21B

A w w g= - + + +( ( ( )) ) ( )

The resulting spectroscopic binary data set has the same
dimensionality as the single star data set, but we now assume
that it is produced from the sum of the spectrum of the primary
star, denoted by a realization f of a Gaussian process, and the
spectrum of the secondary star, denoted by a realization g of an
(independent) Gaussian process. The secondary spectrum is
produced from a Gaussian process similar to f (e.g.,
Equation (7)) with the same form of covariance kernel
(Equation (12)). We denote the various components of the
spectroscopic binary data set as
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This spectroscopic binary application can be thought of as
modeling the rest-frame spectrum of the primary star (star A),
and separately modeling that of the secondary star (star B),
while only having access to data sets that represent the sum of
the spectra at different orbital phases, all in the presence of
noise. We are assuming that the two Gaussian processes are
independent from each other and that the Doppler shifts from
the orbital motion will allow us to disentangle them. For
demonstration purposes, we assume that the orbital parameters
q are known, and therefore we can calculate the radial
velocities of the primary and secondary at all epochs. To fill
out the covariance matrix, we must first create new input

vectors corresponding to f and g that relate the observed flux at
each epoch to shifted versions of the rest-frame spectra of A
and B,

, . 24F
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To produce these vectors, the original sub-components ofL are
shifted by the predicted radial velocity for each star at each
epoch according to Equation (17), such that FL and GL should
correspond to the wavelengths of stars A and B in their
respective rest-frames. To be explicit with notation, these input
vectors are actually a function of the orbital parameters, F qL ( )
and G qL ( ).
The likelihood function for the sum of f and g is still given

by Equation (2), however, the covariance matrix is now a
composite of two covariance matrices plus the noise matrix,

, 25xx F G NS S S S= + + ( )

where FS is evaluated using FL and GS is evaluated using GL
with the kernel specified in Equation (12). We show how xxS is
constructed in Figure 3. The off-diagonal sub-matrices of FS
and GS denote the cross-epoch covariances of each Gaussian
process. Now that we have completely specified the likelihood
function for disentangling the component spectra of a spectro-
scopic binary, we relax the assumption that q is fixed. For
appropriate values of a and l, the likelihood function will be
maximized when q is chosen such that the Keplerian orbit
delivers velocity shifts for each epoch that make the cross-
matrices consistently describe the rest-frame spectrum of
each star.
With the addition of reasonable priors, we can also explore

the full posterior distribution of the orbital parameters q and the
Gaussian process hyperparameters. Now, we allow separate
values of a, l for each spectrum (i.e., a l a l, , ,f f g ga = { }),

Figure 2. The covariance matrix xx F NS S S= + for multiple epoch observations of the same star. Off-diagonal sub-matrices ( ,k ll l{ }, k l¹ ) signify the
covariances between nearby wavelengths that are separated in time across epochs. The bands of covariances in the off-diagonal blocks are not exactly centered along
the block diagonals because the different barycentric corrections for each epoch mean that the wavelength samplings are different for each epoch. In this
representation, NS has been multiplied by 50 to better illustrate the structure of the matrix. The elements of xxS have units of flux squared (rectified to 1).
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since the amplitude and morphology of the spectra of A and B
could be significantly different (e.g., an A-type star coupled
with an M-type star, or a rapidly rotating primary coupled with
a slowly rotating secondary). We can also relax the assumption
that the Gaussian process hyperparameters are the same at all
wavelengths, for example, to adapt to a star where the spectral
line density changes significantly across the observed wave-
length range, which we discuss further in 4.

Next, we focus on the formalism necessary to reconstruct the
rest-frame spectra of A and B at a vector of rest-frame
wavelengths *l . The joint probability distribution of the
(independent) latent Gaussian processes and the data set is
given by
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where fS and gS are evaluated over pairs of wavelengths in ;*l
FS and GS are evaluated over pairs of wavelengths in FL and
GL , respectively; and fFS and gGS are evaluated over cross-

pairs of wavelengths in ( *l , FL ) and ( *l , GL ), respectively.
The joint posterior predictive distribution is given by
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While we will soon demonstrate the many advantages of this
Gaussian process formalism for disentangling spectra, it also
inherits a few of the limitations common to most disentangling

techniques. First, there is the somewhat obvious limitation that
one needs to observe the binary system at multiple orbital
phases to obtain different morphologies of composite spectra. If
the orbital period of the system is very long, or by chance all
observations were obtained at or near the same orbital phase,
we would not be able to separate the composite spectra into
individual components. Second, because the intrinsic spectra
are modeled nonparametrically, without reference to physical
models of spectra, reconstruction techniques are unable to say
anything about the stellar velocities in an absolute sense. This
means that from spectroscopic reconstruction alone we are
unable to constrain the systemic velocity of the system, γ, so
this parameter remains fixed to zero in our analysis. Once the
spectra are reconstructed, however, γ can be easily recovered
by cross-correlation with physical spectral templates. Of related
consequence is that the reconstruction technique is only able to
constrain the relative velocities of each star from epoch to
epoch; it is not possible to measure the velocity of star B
relative to star A at any epoch with the reconstruction technique
alone. However, this can be later measured easily by
correlation with physical spectra models, or if the two stars
in question are bound, inferred through their Keplerian orbits.

2.3. Application to Mock Data

To explore the performance of the Gaussian process spectral
model, we generate mock spectroscopic binary data sets from a
fiducial orbit and assess the accuracy of the recovered stellar
spectra and orbital parameters. To generate the data sets, we use
segments of real data of the K5 star LkCa14 observed with the
CfA/TRES spectrograph on Mt. Hopkins (obtained for a separate
purpose under a program with P.I. I. Czekala). Multiple epochs
of data were combined and smoothed to create a high S/N
template spectrum. We chose two separate regions of this
template with an average spectral line density (5235–5285Å for
the primary and 6420–6480Å for the secondary) to mimic
spectra from two different stars, and then assigned the secondary
fluxes to the same wavelength range as the primary. We

Figure 3. For multiple observations of a spectroscopic binary, the structure of xxS changes to include the addition of GS . Now, there are separate input wavelength
vectors for each matrix, created by Doppler-shifting the original wavelength vectors to the rest-frame velocities of each star at that epoch. In this figure, the covariance
kernel for the B star is arbitrarily chosen to be 75% of the amplitude and length scale for that of A (i.e., a a0.75g f= , l l0.75g f= ).
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assume a fiducial binary orbit with K 5.0 km sA
1q = = -{ ,

q=0.2, e=0.2, ω=10°.0, P=10.0 days, T 0.0 JD0 = , g =
5.0 km s 1- }, sampled at 10 epochs over the course of a ∼25 day
period (see Figure 4, left panel). To generate a composite
spectrum for a single epoch, we first Doppler shift each template
by its calculated radial velocity, interpolate the secondary
spectrum to the same wavelength vector as the primary,
multiply each component spectrum by its chosen fractional flux
contribution, truncate each template to the range 5265–5275Å,
sum the spectra, and then add random Gaussian noise according
to a chosen S/N ratio. This process is illustrated for the first
three epochs in the left panel of Figure 5. While this mock data
set is a small fraction ( 1 500< ) of the temporal and wavelength
coverage of a typical radial velocity data set, it will serve to
illustrate the salient characteristics of our technique in a compact
and expedient manner.

We first assess the performance of the technique on a mock
data set constructed with moderate flux ratio components and
medium-high S/N “observations” ( f f 0.2B A = , S/N=60 per
resolution element; line spread function FWHM=2.5 pixels),
and then explore the robustness of the technique as these
quantities are varied to more extreme values. The posterior
distribution of the orbital parameters and Gaussian process
hyperparameters is

D Dp p p, , , , 29q a q a q aµ( ∣ ) ( ∣ ) ( ) ( )

where Dp ,q a( ∣ ) is given by Equation (2) and the prior

p p p, 30q a a q=( ) ( ) ( ) ( )

is the product of Equation (14) and the prior on the orbital
parameters p q( ), which is also flat. The posterior is explored
using a simple implementation of Metropolis–Hastings Markov
Chain Monte Carlo (MCMC). The inferred family of orbits is
shown in the right panel of Figure 4, and these demonstrate
good agreement with the input radial velocities. Several draws
of reconstructed component spectra and the predicted compo-
site spectrum are shown in the right panel of Figure 5. To
explore the full distribution of inferred component spectra, we
sample from the posterior predictive distribution of the spectra,
marginalized over the orbital parameters and Gaussian process

hyperparameters,

f g D f g Dp p p d d, , , , , , 31
* * * *ò q a q a q a=( ∣ ) ( ∣ ) ( ) ( )

where the integration has been performed numerically by the
MCMC algorithm. To generate a sample of the reconstructed
spectra, we first randomly draw orbital parameters and
Gaussian process hyperparameters from the posterior distribu-
tion, then draw a sample from the Gaussian process posterior
predictive distribution (Equation (27)).
A common limitation of most spectral disentangling

techniques is the inability to constrain the continuum level of
each star without comparison to a physical model, which our
technique suffers from as well. This means that while the
relative amplitudes of the variation in each spectrum are well-
constrained, there is no knowledge about which star is brighter,
i.e., there is a degeneracy between a very luminous companion
star with shallow lines and a very faint companion with very
deep spectral lines (Bagnuolo et al. 1992). As with the γ
degeneracy, the flux ratio degeneracy can be easily broken by
later comparison with a flux-calibrated, physical stellar model
(Pavlovski & Hensberge 2010). In the right columns of
Figure 5, we have vertically offset each recovered spectrum by
an arbitrary constant to look similar to the left panels, which
has the potential to be misleading. Therefore, in the bottom
panel of Figure 5, we show the draws of the reconstructed
spectra from mean zero Gaussian processes ( 0f gm m= = ) to
emphasize that they contain no information about the
continuum level. Rather, the input spectra have been subtracted
by an arbitrary constant to match the level of the reconstructed
spectra. The reconstructed spectra do an excellent job of
reproducing the shape of the input spectra to a precision that far
surpasses the average pixel noise of the mock data set.
Interestingly, there is a somewhat appreciable scatter in the
vertical offset level of the Gaussian process draws. This is
because f

*
and g

*
are drawn from a joint posterior predictive

distribution, while only their sum is constrained by the data,
allowing the mean levels to trade off somewhat (i.e., if a
primary draw is slightly higher, then the secondary draw is
slightly lower).

Figure 4. Left: the fiducial orbit for a mock double-lined spectroscopic binary (blue=primary, red=secondary), showing the 10 epochs at which the orbit is
sampled. Right: the recovered orbits for the primary and secondary stars using the f f 0.2B A = , S/N=60 mock data set. Because the spectral disentangling routines
are unable to constrain γ, the recovered orbits are plotted relative to the velocity of that star at the first observational epoch.
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Next, we pursue a grid of tests to explore the performance of
the Gaussian process model on mock data with a range of flux
ratios f f 0.05, 0.2, 0.5B A = { } and S/N ={20, 60, 120}. The
results of the reconstruction are shown in Figure 6, and a visual
representation of the one-dimensional marginal posterior
distributions is shown in Figure 7. Because of the aforemen-
tioned flux ratio ambiguity, we additionally describe our suite
of mock data by the standard deviation of the flux of each

spectrum ( As and Bs ), which is an invariant quantity as
concerns the performance of the technique.
For some binary systems (e.g., eclipsing systems), it may be

possible to precisely constrain the orbital parameters via
alternate means (e.g., photometric eclipses) to a higher
precision than is otherwise possible with a noisy and/or
extreme flux ratio spectroscopic data set alone. Therefore in
Figure 6 we show draws of the inferred spectra marginalized

Figure 5. Left column: to generate a mock observation, the primary (blue) and secondary (red) spectra are Doppler-shifted according to the radial velocities calculated
from the fiducial orbit, summed to generate the composite spectra (black), and then noise is added. The resulting data set is shown vertically offset for clarity (black
points with error bars). The full mock data set consists of 10 observations of a f f 0.2B A = binary with S/N=60. Right column: the distribution of the inferred
spectra, sampled from the posterior predictive distributions marginalized over the orbital parameters and Gaussian process hyperparameters (Equation (31)). The
primary and secondary component spectra have been offset by arbitrary flux constants, chosen to correspond to the input flux levels for aesthetic purposes. Bottom: the
input spectra (black) compared against the draws of reconstructed spectra. In this panel, the reconstructed spectra are drawn from a mean zero Gaussian process
( 0f gm m= = ) to emphasize that our technique cannot constrain the relative flux level of the components, and so the input spectra have been shifted vertically to
match the level of the reconstructed spectra. Because the reconstruction inference uses multiple epochs of data, we recover the spectra to a significantly higher
precision than the average noise in the composite data set.
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over the full orbital and Gaussian process hyperparameters
(pale gray lines, background) as well as the inferred spectra
extracted at the fiducial orbital values but varied over the
hyperparameters (hued lines, foreground). The input spectra are
shown in black, vertically offset by an arbitrary constant to
match the Gaussian process draws as before. To reduce the
aforementioned vertical scatter of random draws in this plot, we
pin the flux level of primary spectrum to be zero at

5268l = Å. The average noise per pixel in the data set is
shown by an error bar in the right of each panel.

Unsurprisingly, the reconstruction technique performs best for
high S/N data sets with moderate (near-equal) flux ratios. The
primary spectrum is always accurately inferred across our grid of
tests. More importantly, the technique can infer secondary
spectra for moderately high flux ratios with very noisy data
( f f 0.2B A = , S/N=20) and extreme flux ratios with moderate
quality data ( f f 0.05B A = , S/N=60), albeit with substantial
uncertainty. The inferred values of af and ag approximate the
values of As and Bs , while lf and lg are a crude measure of the
average width of the spectroscopic lines. For the noisiest, most
extreme flux ratio test ( f f 0.05B A = , S/N=20), the secondary
Gaussian process is unable to constrain the shape of the

secondary other than showing that the amplitude of its variations
must be below a certain level (see Figure 7). In this situation,
there also emerges a degenerate solution with large ag and lg: the
data spectrum is dominated by the primary star modulo the
addition of an approximately flat continuum. This degenerate
solution could be avoided by the addition of a prior that favors
smaller lg at the expected width of the secondary lines. Overall,
the results from this grid of tests are extremely encouraging and
demonstrate that the Gaussian process framework is able to
accurately infer composite spectra to a precision far exceeding
the average noise per pixel in a spectroscopic data set. It is
important to emphasize that in these tests we have only been
using a single 10 Å chunk of the spectrum; any analyses
incorporating a wider swath of spectrum will potentially be
much more sensitive.

2.4. Single-lined Spectroscopic Binaries and Exoplanet Search

In the limiting case that the flux of the secondary becomes
negligible, the system reverts to a single-lined spectroscopic
binary and any constraint on the mass ratio (q) vanishes,
leaving only five orbital parameters. If there is a strong belief
that light from the primary component dominates the composite

Figure 6. Inferred spectra for mock spectroscopic binaries over a grid of S/N and flux ratios, where the average noise per pixel is marked on the right of each panel.
Note that the vertical scale is different in each row. In each panel, gray lines (background; wider scatter) represent realizations of spectra marginalized over the full
orbital posterior. Hued lines (foreground; tighter scatter) represent realizations of spectra generated with the orbital parameters fixed to the fiducial values (if they were
known from external orbital constraints).
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Figure 7. Marginal posteriors for the orbital parameters and hyperparameters corresponding to the mock data sets within the test grid. The horizontal blue lines mark
the fiducial parameter values, and the violin-shaped plots denote the one-dimensional marginalized posteriors. The width of the posterior represents the probability
density (the widest location of the posterior denotes the most probable parameter value), and posteriors that extend off the range of the plot are generally unconstrained
over allowable parameter space.
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spectrum, then one could save computational time and explore
a lower-dimensional parameter space with 0GS = .11 How-
ever, if there are indeed unrecognized signatures of the
secondary in the composite data set, a constrained single-lined
spectroscopic model will deliver biased orbital parameters.
When using the full complement of binary orbital parameters,
the Gaussian process framework provides the ability to place
constraints on the relative flux ratio of an unknown companion
in a probabilistic setting. While other search techniques rely
upon the cross-correlation and subtraction of a presumed
template (e.g., Gullikson et al. 2015), the Gaussian process
framework provides a sensitive, model-free mechanism to
detect or place limits on faint spectroscopic lines from a
companion star. Of course, secondary contamination is much
less an issue in the case of radial velocity measurements of
exoplanetary systems around single stars. While any constraints
on the nature of the secondary spectrum might be meaningless,
such a Gaussian process technique could be used to infer
precision radial velocities for planet searches. If a statistically
significant non-zero semi-amplitude (KA) and orbital period (P)
were found for the primary star, this would signal the existence
of an orbiting exoplanet. The framework could be used to
simply infer a high-fidelity template of the primary star, which
could be used for analysis of fundamental stellar parameters
(i.e., effective temperature, surface gravity, and metallicity) or
as a template for traditional cross-correlation radial velocity
measurements.

In the development of this framework, we have assumed that
the intrinsic spectrum of the star is constant with time, an
assumption also made by planet search pipelines using the
standard cross-correlation technique. However, subtle changes
in the spectrum due to starspots can bias the inferred radial
velocity at the level of v 10 m s 1D ~ - (Dumusque et al. 2011),
dwarfing the operating precision of state of the art spectro-
graphs ( v 1 m s ;1D » - Fischer et al. 2016). In the Gaussian
process framework, the effects of starspots could be minimized
by incorporating an additional time-covariance that allows for
flexibility in the exact shape of the spectrum. Such an extension
would be especially useful when simultaneous time-series
photometric observations bracket the spectroscopic observa-
tions. Measurements of starspot modulation could be used to
predict the changes in the spectral line profiles, as is currently
done in advanced radial velocity analyses (e.g., Haywood
et al. 2014). We further explore the consequences of time
variability in Section 4.2.

3. Results: Application to the Mid-M-Dwarf Binary
LP661-13

3.1. The LP661-13 Data Set and Traditional Orbit Analysis

As part of the MEarth-South survey (Irwin et al. 2015),
Dittmann et al. (2017) recently discovered the mid-M-dwarf
LP661-13 to be a short-period eclipsing binary. Subsequent
photometric and radial velocity follow-up over two
observing seasons constrained the system period to be
P 4.7043512 days0.0000010

0.0000013= -
+ , the primary component mass

and radius to be M M0.30795 0.00084A =   and
R R0.3226 0.0033A =  , the secondary component mass

and radius to be M M0.19400 0.00034B =   and
R R0.2174 0.0023B =  , and the distance to be
24.9 1.3 pc . Given the lack of strong X-ray emission and
the absence of lithium in the spectra, LP661-13 is likely a field-
age system. At these masses, both stars are fully convective
(M M0.35 ;<  Chabrier & Baraffe 1997). Such a system
provides an interesting application for our spectroscopic
disentangling technique because the orbital parameters are
known to high accuracy due to the eclipsing nature of the
system. Moreover, in contrast to solar-type stars, M-dwarfs
currently lack high-accuracy synthetic spectral models (e.g.,
Mann et al. 2013), making the nonparametric, data-driven
Gaussian process approach particularly appealing. For the
purposes of demonstrating the disentangling framework, we
ignore any eclipse constraints and utilize only the spectroscopic
data set in Dittmann et al. (2017). Later, we utilize the
additional constraints from the eclipses to discuss the
fundamental properties of LP661-13 A and B, in particular
the stellar radii.
The spectroscopic data set consists of 14 epochs (1 hr

integration each, except for one 40 minute epoch) taken over
the course of 2014 February to 2015 January with the
Tillinghast Reflector Echelle Spectrograph (TRES;
R 44,000l l= D = ) on the 1.5 m Tillinghast reflector at
the Fred Lawrence Whipple Observatory on Mt. Hopkins, in
Arizona. The data were reduced by the standard TRES pipeline
(Buchhave et al. 2010), and placed in the solar system
barycentric frame. At red wavelengths, the S/N of the spectra
ranges from 20 to 60 per resolution element, with a median
value of 43. To determine radial velocities with TODCOR
(Zucker & Mazeh 1994), Dittmann et al. (2017) also obtained
high S/N observations of the following mid-M template stars
from Kirkpatrick et al. (1991): Gl273 (M3.5), Gl699
(Barnard’s star; M4), Gl83.1 (M4.5), and Gl406 (M6), which
we later use for comparison with the disentangled spectra of
LP661-13A and B. Dittmann et al. (2017) found the strongest
cross-correlation signal for the LP661-13 wavelengths
7060–7200Å, which contain strong molecular features when
using the Gl699 template for both the A and B components in
a light-ratio of L L 0.434 0.025B A =  . Because one or both
stars may be spotted and the fraction of eclipsed spots is
unknown, Dittmann et al. (2017) did not quote a light-ratio
measurement from the eclipse measurements. If one relies upon
the derived physical parameters for the system, the temperature
scale of Mann et al. (2015), and the Allard et al. (2001) models,
the predicted light-ratio would be L L 0.406B A = . Dittmann
et al. (2017) omitted the observation on HJD2456743 from
their orbital fit because they were unable to separate the
primary and secondary peaks of the CCF, meaning that at this
epoch each component had a similar radial velocity. Assuming
equal measurement uncertainty for the primary and secondary
radial velocities, they calculated a best-fit binary orbit with the
13 epochs of measurements and found the average residuals of
the primary and secondary velocities to be 0.05 km s 1- and
0.20 km s 1- , respectively.
In order to make a direct comparison with the Gaussian

process framework, we re-fit the 13 radial velocities in Dittmann
et al. (2017) using the orbital parameterization described in
Section 2.2. We adopt 0.05 and 0.20 km s 1- as the uncertainty
on each radial velocity measurement for the primary and
secondary, respectively, and employ a simple 2c likelihood
function with flat prior distributions on the orbital parameters.

11 Conversely, this framework could also be used to model single- or double-
lined spectroscopic triple systems (via an extension to the orbital model) or
even triple-lined spectroscopic triple systems (via an extension to the orbital
model and the addition of another Gaussian process component, h).
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We explore the seven-dimensional posterior with the emcee
implementation (Foreman-Mackey et al. 2013) of the Affine
Invariant Ensemble Sampler (Goodman & Weare 2010). To
assess convergence, we run multiple ensembles of 28 walkers for
10,000 iterations each, starting from different locations in
parameter space and burning 5000 iterations worth of samples.
We assess convergence by computing the Gelman–Rubin
statistic R̂ (Gelman et al. 2013) for the ensemble of walkers
and ensure that R 1.1<ˆ . The posteriors are shown in Figure 8
(purple contours) and are in excellent agreement with Dittmann
et al. (2017), except for our determination of 0.025g = 
0.011 km s 1- , which is discrepant with the value reported by
Dittmann et al. (2017) ( 0.009 0.014 km s 1-  - ) at the 2s level.
We suspect this may be due to differences in how the radial
velocity uncertainties were incorporated in the fitting process. As
noted in Dittmann et al. (2017), the orbit is extremely circular,
which leads to the common T0w - degeneracy. Therefore, we

also report the summary statistics e sin 1 383w = -  ´( )
10 6- and e cos 0 384 10 6w =  ´ -( ) .

In addition to the standard spectral reduction performed by
Dittmann et al. (2017), we perform additional processing of the
spectra to facilitate a uniform comparison between objects.
Along with the observations of LP661-13 and the 4 aforemen-
tioned M-dwarf template stars, we also download an observa-
tion of Vega taken on HJD2456740 from the TRES archive
(P.I. D. Latham) to use as a reference for telluric line
contamination. As part of a typical TRES observational
sequence, observations of a continuum source are taken to
characterize the echelle blaze function, which has been shown
to be very stable with time for most echelle orders. We divide
each spectrum by its associated blaze measurement to produce
approximately flat spectra. This process does not directly lead
to flux-calibrated spectra, however, since the absolute bright-
ness of the source is not known. Nor does this process
necessarily lead to spectra that match the same shape as flux-

Figure 8. The posteriors from the traditional RV analysis (purple, background) and the Gaussian process framework (black, foreground). Contours denote the 1σ and
2σ confidence levels. The γ posterior from the traditional analysis is not shown ( 0.025 0.011 km s 1g =  - ), and the period P is shown relative to the joint
photometric and spectroscopic value reported in Dittmann et al. (2017), P 4.7043512 days= . Posteriors from the Gaussian process framework are continued in
Figure 9.
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calibrated spectra, since the spectrum of the continuum source
may be significantly different from that of a source originating
from above the atmosphere. A TRES calibration program
(P.I. I. Czekala) repeatedly observed several spectrophoto-
metric standard stars over several months and demonstrated
that the TRES intra-order throughput shape is very stable with
time. Since the bandpass sensitivity in each order is well-
described by a 4th-order Chebyshev polynomial, this means
that from night to night the linear and higher-order coefficients
varied less than 4%. The inter-order sensitivity is less stable,
with nightly scatter typically 10% .

Large-scale, sloping features of M-dwarf spectra are
important for spectral typing and characterization. Although
we do not have observations of spectrophotometric standards
contemporaneous with the LP661-13 observations, because the
intra-order TRES throughput is stable we can approximate flux-
calibrated LP661-13 spectra by applying the sensitivity
functions derived from the calibration program, which were
measured from a series of observations of the O2 spectro-
photometric standard star BD+284211 in 2013 November.
Because the edges of the red ( 6800l > Å) echelle orders do
not have any overlap in wavelength and inter-order flux
calibrations are not as stable as intra-order calibrations, we
further rectify the spectra so that the median flux of each order
is 1. We also apply a similar transformation to the observa-
tional flux uncertainties, which will be used as an input to the
Gaussian process model. The result of this process is spectra
whose intra-order shape calibration should be comparable to a
bona fide flux-calibration within 4%, but whose inter-order
calibration will not be correct. It should be noted that if same-
night spectrophotometric flux observations existed, the proper
shape of the entire spectrum could be recovered.

3.2. Gaussian Process Inference of Orbital Parameters and the
Disentangled Spectra of A and B

We apply our spectroscopic binary Gaussian process frame-
work to the pseudo-flux-calibrated data set of LP661-13 in a
similar manner as in Section 2.3. For computational efficiency,
we focus on two high-S/N regions of the spectrum uncontami-
nated by telluric lines, 6650–6770Å and 7060–7140Å. Unlike
with traditional cross-correlation radial velocity analysis,
composite spectra with near-equal component radial velocities
still provide useful information in our Gaussian process
framework and help constrain the underlying intrinsic comp-
onent spectra. Therefore we use all 14 epochs of spectroscopy in
our analysis, including the epoch omitted by Dittmann et al.
(2017). We divide the data set into 20 chunks of 10 Å each so
that the evaluation of the posterior function can be parallelized
across a computer cluster as follows. For each 10 Å chunk, the
likelihood function (Equation (2)) is evaluated on an individual
core. A primary process gathers these likelihood evaluations and
multiplies them together to form a complete evaluation of the
likelihood function. This complete likelihood is multiplied by an
evaluation of the prior function (flat with all parameters in this
analysis) to yield the posterior evaluation for the full spectral
range under consideration. The posterior probability distribution
is explored using a simple Metropolis–Hastings MCMC,12

whose jump covariances have been tuned to the structure of the
posterior for efficient exploration of the parameter space. We run
multiple chains from different starting locations for 40,000

iterations each and assess their convergence with the Gelman–
Rubin statistic R̂ (Gelman et al. 2013), ensuring that R 1.1<ˆ .
This computation requires about one day on a small computer
cluster. The posteriors are shown in Figures 8and 9 (black
contours). We recover similar posteriors as the traditional cross-
correlation analysis, and notably several parameters are obtained
with higher precision (e.g., q, KA, e, and P). With more
computational resources, a larger spectral range could be
included in the analysis and potentially tighten the parameter
constraints even further. In Figure 10 we further illustrate the
increased precision of the Gaussian process based technique by
demonstrating that it delivers a smaller radial velocity scatter at
each observational epoch compared to the traditional cross-
correlation based technique.
An example of the analysis for a single chunk of the LP661-

13 spectrum is shown in Figure 11, focusing on a particularly
dramatic bandhead for emphasis. The composite data set for
each epoch is shown in black, with the corresponding orbital
phase labeled in the upper right. Draws of the Gaussian process
are generated while varying over random draws of the orbital
parameters and hyperparameters from the posterior probability
distribution, showing that the distribution of reconstructed
component spectra fit well within the noise. As noted in
Section 2.3, there is the additional question of choosing the
normalization level for each reconstructed spectrum. Thus, in
Figure 11, we arbitrarily choose 0.65fm = and 0.35gm = to
display these spectra (denoted by horizontal dashed lines). We
also show the residuals computed from the mean prediction of
the composite spectrum at each epoch.
While the exploration of the posterior is performed in

10Å chunks and uses only a subset of the full spectral range,
by assuming the inferred orbital parameters and Gaussian
process hyperparameters are valid outside of this range one can
reconstruct a wide range of component spectra. In Figures 12

Figure 9. Posteriors for the Gaussian process hyperparameters, continued from
Figure 8. These parameters were inferred simultaneously with the orbital
parameters displayed in Figure 8 but show no significant correlations with any
of them. They are displayed here separately for space reasons.

12 Included in the emcee package.
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and 13 we show the reconstructed spectra over the full
wavelength range 6800–8040Å, which includes many of the
notable spectral regions used for classifying M-dwarfs. We also
overplot an observation of Vega, a fast rotating A0 star with a
near-featureless continuum, in order to highlight regions
affected by telluric lines. Any spectral features intrinsic to
Vega (e.g., O I λλλ7771) will be broadened by its fast
rotational velocity (v isin 21.9 km s 1= - ; Hill et al. 2004) in
contrast with the narrower telluric lines. In contrast to the
carefully chosen narrow range we used for the orbital
parameter inference, this expanded region includes numerous
telluric absorption lines and night sky emission lines. Because
these features are not consistent with the rest-frame of either
star A or B, they act to distort the reconstruction process by
acting as outlier flux points that cannot be reproduced by the
model. In principle, it should be possible to model the effects of
telluric lines as an additional Gaussian process since their
location is known precisely, although their absorption depth
changes from epoch to epoch with airmass and atmospheric
conditions. Simultaneous modeling of the telluric features
would allow us to access spectral information of the stars in
regions that are currently contaminated. We note that other
spectral disentangling methods have successfully modeled
telluric lines (Hadrava 2006), but we leave a detailed
implementation of these concepts for future work.

Typically, night sky emission lines are subtracted by the
TRES reduction pipeline, although in some instances the
subtraction is sub-optimal and leaves residual flux. We denote
regions affected by poor-night sky line subtraction (Osterbrock
et al. 1996) with a ◦ symbol and mask these features in the data
set on an epoch-to-epoch basis. Fortunately, because the orbital
motion of the binary Doppler shifts the underlying spectra
relative to the contaminating night sky line, we are still able to
reconstruct the underlying spectrum without significant loss of
information.

To properly plot the reconstructed LP661-13A and B
spectra (i.e., draws of the mean 0 Gaussian processes
conditional on the composite data) in a format suitable for
comparison with other rectified observations of mid-M

template stars, we must first renormalize the spectra. Renor-
malization refers to the process whereby the spectra are brought
to their correct continuum level in the frame of the data with the
addition of a constant, and then rectified to a mean of 1 by
dividing by that same constant
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For LP661-13A and B, we assume that the mean vectors are
simply flat with wavelength, but in principle their relative
amplitude could be guided by beliefs about how the flux ratio
changes with wavelength, (i.e., fm l( ), and gm l( )). An
incorrect renormalization will distort the continuum level and
the depth of the spectral lines. Because the secondary spectra
are intrinsically fainter, they must be scaled by a larger constant
to be rectified, which has the effect of making the rectified
spectrum appear noisier. We experiment with varying the flux
ratio until we find renormalizations of LP661-13A and B that
match the amplitude and slope of the nearby mid-M templates.
We find that a value of 0.33g fm m = yields a renormalization
that has the spectra of LP661-13A and B closely matching the
mid-M templates over the full wavelength range. We note that
flux ratios as high as 0.434 (Dittmann et al. 2017) yield
acceptable results over much of the spectral range, however,
the contrast of the bandhead at 7090 Å appears too shallow in
the secondary spectrum. Frémat et al. (2005) discuss an
alternate renormalization strategy suitable for stars with very
deep absorption lines, which must remain positive even in their
deep cores, so they set a lower limit on the continuum level of
the spectrum. Unfortunately, no such lines exist in the LP661-
13 spectra.

3.3. LP661-13A and B in the Mid-M-dwarf Context

With the disentangled spectra of LP661-13A and B now
known (up to a modest uncertainty in the renormalization
factor), we can examine the stars in the context of the other mid-

Figure 10. Relative radial velocity precision of the Gaussian-process-based orbit (GP, left, black points) compared to the traditional cross-correlation-based orbit
(CCF, right, purple points) on an epoch-to-epoch basis. For each technique, 50 sets of orbital parameters are drawn from the posterior probability distribution
(Figure 8), radial velocities are computed for each observational epoch, and then are plotted relative to the mean radial velocity at that epoch. The CCF radial velocity
uncertainty measured by Dittmann et al. (2017) is shown by the error bar in the right of each panel. The Gaussian process technique delivers a per-epoch radial
velocity scatter that is 50%~ of that of the traditional CCF technique.
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M spectral templates. We have assumed that the flux ratio
between A and B is constant across the full wavelength range—
given that both stars are evidently very close in spectral type this
appears to have been a reasonable decision. Next to LP661-13A
and B, we also plot TRES observations of mid-M standard stars
(Kirkpatrick et al. 1991) and highlight several spectral regions

commonly used in classification, which generally include
molecular features. With low to moderate resolution spectra,
the flux within these bands measured relative to a nearby
pseudo-continuum region serves as an index for objective
spectral typing. Some of the most widely used indices are
summarized by Lépine et al. (2013): CaH2, CaH3, and TiO5

Figure 11. Thirteen epochs of composite spectra are shown for a highlighted 10 Å chunk. A 14th epoch at phase 0.03f = was omitted from this figure for space
reasons, since it is the same phase as the first plot but has a lower S/N. Ten realizations of the primary and secondary are drawn from the posterior predictive
distribution (blue and red, respectively), and residuals are computed from the mean prediction.
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(Reid et al. 1995); VO1 (Hawley et al. 2002); and TiO6 and
VO2 (Lépine et al. 2003). Those most sensitive (i.e., changing
most rapidly) for M3–M6 stars are the TiO5, TiO6, and VO2
indices (Lépine et al. 2013).

We would like to directly measure the indices for the
disentangled spectra of LP661-13A and B and report an index-
based spectral type for these stars. Unfortunately, the format of
the TRES echelle spectra complicates a straightforward
measurement of these indices, which are measured as the ratio
of the average flux in a “numerator” region (marked in
Figures 12 and 13) to that of a “denominator” region (not

marked). Unfortunately, for all but one of the indices the
numerator and denominator regions fall in different echelle
orders, rendering the inadequacies of our pseudo-flux-calibra-
tion as a dominant source of systematic error. For the one index
(CaH3) that falls entirely within a single order, our measure-
ments of the template stars followed the general trend with
spectral type but were uniformly 15% larger than those
reported in Lépine et al. (2013). We suspect that this
discrepancy is either a remnant of the pseudo-flux calibration
process or due to the significantly higher resolution of our
instrument, which Lépine et al. (2013) note can bias an index

Figure 12. Reconstruction of LP661-13A and B, showing 10 realizations of the spectra (thin, faint lines) overplotted with the mean prediction (thick, hued lines),
compared to 4 mid-M spectral templates in black: Gl273 (M3.5), Gl699 (Barnard’s star; M4), Gl83.1 (M4.5), and Gl406 (M6). Common spectral indices used to
type M-dwarfs are marked: CaH2, CaH3, TiO-α, and TiO5. A spectrum of Vega is shown on top to highlight areas contaminated by telluric lines. Severely disrupted
regions are marked with a gray background.
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measurement. Therefore, instead of comparing indices, we
directly compare the morphology of the spectra by eye within
the noted index regions. We find that LP661-13A and B
naturally fall in a sequence of mid-M standards near Gl699
(M4) and Gl83.1 (M4.5), which agrees well with the previously
determined composite spectral types of M3.5 (optical; Reid
et al. 2004) and M4.27 (NIR; Terrien et al. 2012).

We emphasize that other than the procedure performed in
Equation (32) for LP661-13A and B, no post-processing (e.g.,
continuum or pseudo-continuum normalization) has been
applied to any of the spectra presented in Figures 12 and 13.
If a proper flux-calibration of the data were performed on the
raw data and the flux ratio correctly specified, then the inferred
shape of the reconstructed spectra would be correct. The ability

of the Gaussian process technique to constrain the low-order
shape of inferred spectra avoids a potential downside of Fourier
disentangling techniques.
The Gaussian process technique can also disentangle emission

lines, and we find that both LP661-13A and B show strong
Balmer series emission—in fact, the radial velocity semi-amplitude
is large enough such that the emission lines from A and B are
completely separated at quadrature. The strong Balmer emission
indicates that both stars are magnetically and chromospherically
active (Hawley et al. 1996; West et al. 2011; Lépine et al. 2013),
possibly as a result of rapid, synchronous rotation due to tidal
locking (Dittmann et al. 2017; Newton et al. 2017). Because
magnetic activity serves to trap flux and inflate stellar radii while
decreasing effective temperature (Morales et al. 2009, 2010), it

Figure 13. A continuation of Figure 12. Regions that were masked due to poor subtraction of night sky emission lines are marked with a ◦ symbol. Because these
regions are relatively unconstrained by data, the reconstructed spectra revert to draws from the Gaussian process prior.

17

The Astrophysical Journal, 840:49 (19pp), 2017 May 1 Czekala et al.



may provide an explanation for the inflated radii of LP661-13A
and B measured by Dittmann et al. (2017).

4. Discussion

4.1. Hierarchical Inference of Spectral Chunks

In our spectroscopic binary Gaussian process framework, we
made the assumption that the Gaussian process kernels were
the same functional form for each spectrum, and that each
10 Å chunk of spectrum used the same Gaussian process
hyperparameters. If the flux ratios of the spectra are
approximately constant over the chosen wavelength range,
and the relative amplitudes of the spectral line variations are
similar, as in LP661-13, then this approach is adequate.
However, if we are inferring a large region of the spectrum,
which might contain spectral features of very different
morphologies, then a more accurate spectral extraction might
be obtained by modeling the Gaussian process hierarchically,
where the amplitude and length scale for an individual chunk
are drawn from a general hyperparameter distribution. For
example, the amplitude ratio could be guided by the ratio of
fluxes expected from the hypothesized effective temperatures,
with the amplitude of each individual chunk allowed to vary
somewhat around this mean value. Recently, high-contrast
observational techniques have shown great promise to detect
the signatures of exoplanet atmosphere spectra via cross-
correlation with templates (e.g., Snellen et al. 2014; Birkby
et al. 2017)—with increasing telescope sensitivity and an
appropriately flexible Gaussian process model it may become
possible to reconstruct the exoplanet spectra directly.

Although we have only dealt with a single data set acquired
by the same instrument in an identical setup, in principle, data
from multiple instruments covering different wavelength
ranges (e.g., optical and infrared spectra) could be inferred
simultaneously if the Gaussian process hyperparameters were
allowed to vary individually for each instrument, tracking
changes in the LSF. Moreover, since the convolution of a
Gaussian process with an LSF is also a Gaussian process, it
may even be possible to simultaneously model data taken with
different instrumental setups but covering the same wavelength
range if the latent spectrum is modeled at high resolution and
convolved down to the resolution of each observation.

4.2. Extensions to Time-variable Spectra

Thus far, we have only discussed covariances with a
λ-dependence. If one or more of the components is believed
to be time-variable, due to, for example, chromospheric
activity, then we could introduce an additional t-dependence
to the covariance kernel as well. Until now, we have essentially
enforced that the Gaussian process has an infinite covariance
with time: pixels with nearby wavelengths contribute equally to
constraining the stellar flux, regardless of measurement epoch.
If we had an additional time-variable component, then we
could allow subsequent epochs to vary such that only flux
measurements that were close in wavelength and close in time
would constrain the inferred spectrum. This also means that we
would be able to make predictions (realizations) of the stellar
spectrum not only as a function of wavelength, but also as a
function of time. Such a mechanism could provide radial
velocity measurements for the noisiest stars, where stellar
activity has hampered analysis techniques more profitably
applied to quiet stars. In particular, probing the youngest

exoplanet population has been hindered by stellar activity,
requiring extensive analysis to prove that a planetary signal is
not simply unexplained variability (e.g., Johns-Krull
et al. 2016). For more mainstream exoplanet radial velocity
analysis, a time-variable, λ-specific kernel could provide a
natural way to identify or downweight spectral regions that bias
a traditional radial velocity signal. It may also be possible to
adapt the Gaussian process framework to model the iodine
absorption lines commonly imprinted on a stellar spectrum for
use in precision radial velocity analysis.
While we have focused on inferring stellar photospheres, the

spectrum to be inferred need not necessarily be stellar in origin.
A potentially exciting application is to use a Gaussian process
to infer active signs of accretion in young TTauri stars. While
the choice of squared exponential kernel has worked well for
modeling the intrinsic stellar spectrum of LP661-13, for other
types of stars or variable phenomena, different kernels might be
more effective. For example, using the Matérn kernel for the
t-correlation might provide a Gaussian process that more
closely reflects the stochastic accretion process. Such a
modeling approach could also be combined with a mean
function fm l( ) specified by flexible physics-based models
(e.g., Czekala et al. 2015; Gully-Santiago et al. 2017) in order
to simultaneously determine the fundamental properties of the
veiled star, a traditionally difficult process (Herczeg &
Hillenbrand 2014).

5. Summary

We have demonstrated the successful application of
Gaussian processes for inferring component spectra of single-
lined and double-lined spectroscopic binaries, while simulta-
neously exploring the posteriors of the orbital parameters and
the spectra themselves. We evaluated the performance of the
technique by using mock data constructed over a range of flux
and S/N ratios, and demonstrated that the technique has
desirable characteristics for a wide range of data qualities,
returning unbiased posterior estimates. In contrast to Fourier
domain methods, our technique excels at reconstructing the
low-order shape of the component spectra and provides a
natural and well-motivated probabilistic formalism to model
the data in its natural pixel space. While other λ-based
techniques do exist (e.g., Simon & Sturm 1994), our Gaussian
process formalism can account for the natural λ-covariances in
each spectrum, providing a natural “de-noising” of the spectra
typically offered by Fourier techniques.
We applied our framework to the mid-M eclipsing binary

LP661-13. Using only a limited number of observations with
modest S/N, we simultaneously recovered both the A and B
components and inferred the orbital parameters with a precision
exceeding that of standard cross-correlation techniques. For the
first time, we independently analyzed each component of
LP661-13 in the context of a mid-M spectral sequence, and
determined that both components are M4 systems, with A
appearing slightly earlier than B. We discussed potential
applications of Gaussian processes for spectral modeling,
including precision exoplanet radial velocity work around
active young stars. The code used in our analysis is available as
a freely available open-source package.13

13 Precision Spectroscopic Orbits A-Parametrically (PSOAP) available at
https://github.com/iancze/PSOAP.
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