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ABSTRACT: This paper presents some experimental results that indicate
the plausibility of using non-convex variational principles to reconstruct
piecewise smooth surfaces from sparse and noisy data. This method
uses prior generic knowledge about the geometry of the discontinuities to
prevent tile blurring of the boundaries between continuous subregions.

We include examples of the application of this approach to the reconstruc-
tion of synthetic surfaces, and to the interpolation of disparity data from
the stereo processing of real images.
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1. Introduction.

In the processing of two-dimensional signals, often one has the problem of
reconstructing a piecewise smooth surface from noisy observations taken at sparse
locations. In this recontstruction, it is important not only to interpolate smooth
patches over uniform regions, but to locate and preserve the discontinuities that
bound these regions, since very often they are the most important parts of the
surface. They may represent object boundaries in vision problems (such as image
segmentation; depth firom stereo; shape from shading; structure from motion,
etc.); geological faults in geophysical information processing, etc.

The most successftul approaches to this problem [T2] consist of, first, inter-
polating an everywhere smooth surface over the whole domain; then, applying
some kind of discontinuity detector (followed by a thresholding operation) to try
to find the significant boundaries, and finally, to re-interpolate smooth patches
over the continuous subregions.

The results that have been obtained with this technique, however, are not
completely satisfactory. The main problem is that the task of the discontinuity
detector is hindered by the previous smooth interpolation operation. This becomes
critical when the observations are sparsely located, since in this case, the discon-
tinuities may be smeared in the interpolation phase to such a degree that it may
become impossible to recover them in the detection phase.

One way around this difficulty is to perform the boundary detection and
interpolation tasks at the same time. In the method we will present, this is done
by generating a variational principle that includes our prior knowledge about the
smoothness of the surface and about the geometry of the discontinuities, as well
as the information provided by the observations. The global minimum of this
(non-convex) "energy" functional is then found by a stochastic approximation
scheme.

This approach is based on the work of the Geman brothers [G1]. Before
describing it, let us formulate the problem in a more precise way.

Imagine a region Q1 of the plane which is formed by a number of subregions
separated by boundaries which are known to be piecewise smooth curves. Suppose
that within each of these subregions, some property f (in what -Follows, we will refer
to f as "depth") varies in a smooth fashion, presenting, at -the same time, abrupt
jumps across most of the boundt-ries. Suppose also that we have measurements
for the values of f at some discrete set of sites S; these measurements will, in
general, be corrupted by some form of noise.

Our problem is then to estimate the values of f on some finite lattice of
points L C Qf, and to find the position of the boutldarics, using all the available
informnation in an optimal way.
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2. Geman's Work on Bayesian Image Restoration.

2.1 Images as Markov Random Fields.

The first idea on which this approach is based, is that an image formed
by regions of constant intensity separated by piecewise smooth boundaries can
be modeled as a sample function of a stochastic process based on the Gibbs
distribution, that is, as a Markov Random Field (MRF) (sample functions of
actual MRF's can be found in his paper. See also [C1] and [G2]). This means
that the conditional probability of a given pixel j having a particular value fi,
given the values of f in all the remaining sites of the lattice, is identical to the
conditional probability given the values of f in a small set of sites which we will
call the neighborhood of j.

Given a system of neighborhoods on a lattice, we define a "clique" C as a
set of sites such that all the sites that belong to C are neighbours of each other.
For example, on a 4-connected lattice (Fig. 1-a), the sites 1, 2, 3 and 4 form the
neighborhood of site j, and the cliques are sets consisting either of single sites, or
of two (vertically or horizontally) adjacent sites (nearest neighbours; see fig. l-b).

It can be shown [P1], that if f is a MRF with a given system of neighborhoods,
the probability density of the images generated hb this process is of the. forn:

1 -'U(f)Pf() = -(W = f) = e e

where Z is a normalizing constant, P is a parameter, and the "Energy function"
U(f) is of the form:

U(f) = E Vc(f)

where the potentials Vc(f) are functions supported on the cliques associated to
the given neighborhood system. Thus, in our example of a 4-connected lattice, U
would be:

U(f) = E V(fj) + E V2(fi, fj)
j i,jENN

where i, j C NN means that i and j are nearest neighbours, and V1 and V2 are
some functions.

In particular, if we want a Markov random process that generates piecewise
constant surfaces, we may use potentials:

V 1(f) = 0

V2.(h, fj) - if fi = f(1)
otherwise
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Fig. 1-a. Sites 1, 2, 3 and 4 are the neighborhood of site j.
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Fig. 1-b. Cliques for the 4-connected lattice of Fig. 1-a.



The parameter ,3 can be interpreted as the natural temperature of the system,
and controls the expected size of the regions formed by the process, larger regions
being formed at low temperatures.

2.2 Bayesian Estimation of Markov Random Fields.

Now, suppose that we have observations g that can be modeled as:

gj = I'(Ij(f), nj) j E S (2)

where nj is a white noise process uncorrelated with f; S is some set of sites; Hj
is an operator with local support (representing blurring, for example), and g is
invertible with respect to nj. (' may represent, for example, noise addition or
multiplication followed by a memoryless trans formation).

The conditional probability P(g I f) is given by:

P(g f)- = II Pn(q-l(gj - Ilj(f))
jES

where P, is the probability density function of the noise.

Thie posteiiori distLribution iS fullid by Bayes rule:

P(f I 9) = Pf(f) P(g f)
F(g)

Replacing the expressions for Pff(f) and P( If), taking logarithms, and
remembering that P(g) is a constant for a given set of observations, we get that
the Maximum a Posteriori (MAP) estimate for f is found by minimizing:

E(f) = U(f) - E ln[P,(q'_(gj - Iij(f))] (3)
la jES

In particular, if n is a zero-mean Gaussian white noise stationary process with
power spectral density a 2 , and

gj =Hj(f)+ n=fj + nj

then,
~1 1 g f

-P(g I f) - e/xp[- 2 2 (gj fj)2]
V'r2o 0 jES

For our example of piecewise constant surfaces, with potentials given by (1),
the MAP estimate will be obtained by minimizing:

E(f)= Z V2(fi, fi) + 2- E(f - gj)2 (4)
i,jENN a jES



As we can see, this expression has two terms: One that measures the
agreement of the estimate with the observations, and another that corresponds to
the constraints imposed by our prior knowledge about the nature of the solution.
The tradeoff between them is controlled >y- the p.arameter

2a 2

which corresponds to the signal to noise ratio.

It is interesting to note that the general form of this expression is similar to
the variational principles obtained by regularization methods for solving ill-posed
problems, ax playing the role of the regularization parameter. In the standard
regularization methods, however, the functional is convex (because of the choices
of norms and stabilizing flunctionals, see [P2,T1]), whereas in the case of equation
(4), the high non-linearity of V2 makes E(f) non-convex. For this reason, its
minimization becomes computationally much more expensive.

2.3 Simulated Annealing and the Minimization of E(f).

In a recent paper, Kirkpatrick, et. al. [Ki] proposed a stochastic approximation
method for solving combinatorial optimization problems, which can be used for
our minimization problemrn. It is based on an algorithm invented by Metropolis
[NIl] that simulates the behaviour of many-particle systems in thermal equilibrium:

Consider a system with N particles, each of which may be in any one of
a discrete number of allowable states. Let fj denote the current state of the
jth particle; T, the temperature, and let E(f) be the total energy of the system.
Suppose that we visit the particles of the system in some random sequential order.
When a particle j is visited, we update its state as follows:

(i) Choose a new state -j' randomly from the set of allowable states (excluding
the current state fi), using a uniformly distributed random number.

(ii) Compute the increment in energy AEj. that results from moving the state
of the jth particle from fj to fj.

(iii) If AE j < 0, make the move, i.e., set fi = fj.

If AEj > 0, generate a new random number r, uniformly distributed
between 0 and 1.

If r < e - Al /T, set fi =- j.

If r > eA--ae/T, leave fj unchanged.

It can be shown [M1,K2] that if every particle is visited infinitely often,
this procedure will generate global states for f distributed according to Gibbs
distribution, i.e., as the numllber of iterations goes to infinity, we will have:

P(- = f)- - ae s
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As T goes to 0, this distribution will tend to an impulse (or set of impulses)
corresponding to the state (or states) of minimum energy, that is, to the value of
f that minimizes E(f) globally.

One serious difficulty, however, is that attaining thermal equilibrium might
take a very long time at low temperatures. Kirkpatrick's idea was to start at
a relatively high temperature (where thermal equilibrium is reached very fast),
and then, to slowly cool the system, until "freezing" occurs and the state stops
changing.

Geman & Geman were able to show that if the temperature is lowered at the
rate:

T- = C (5)
log(n + 1)

where n is the number of iterations, and C is a constant, this algorithm will in
fact converge (in probability) to the set of states of minimal energy (see also [G3]).
Also, they proved that the non-homogeneous Markov chain that corresponds to
the annealing procedure is (asymptotically) stationary and ergodic, so that we may
use time statistics to estimate the final state. We will return to this in the next
section.

Unfortunately, the value of the constant C necessary to guarantee convergence
i jIf gj,,na vera y high (so tha . l hcIIl'vsI cc .tinic b'cCoIiS ,ipractcically SlOw),

but it has been found experimentally that a value of C = 3,3 log 2 (where , is the
natural temperature of the system) normally produces a reasonable convergence
behaviour (of the order of 1000 iterations).

The computational efficiency of Kirkcpatrick's algorithm depends on whether
the increment in energy A E. associated to a change in the state of the jth variable
is easy to compute. Fortunately, the Markov property of f, and the localization
condition on the support of the operator Hj (equation (2)) guarantee that, for our
problem, this will be the case, so that simulated annealing is a practical, although
expensive way of finding the minimum of (3).

2.4 The Line Process.

Another powerful idea in the Geman's work is the introduction of an
unobservable line process I into the image model. The variables associated with
this process are located at the sites of the dual lattice of lines that connect the
sites of the original (pixel) lattice (see Fig. 2-a). These variables may be binary
(indicating the presence or absence of a boundary between two pixels), or may
take more values to indicate the orientation of the boundary as well. In both
cases, their function is to decouple adjacent pixels, reducing the total energy if the
intensities of these pixels are different.
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Fig. 2-a. Dual Lattice of Line elements (sites denoted by x).
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Fig 2-b. Cliques for the line process.
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Fig. 3. Potentials for the different configurations of a binary
line process.



The introduction of this process is particularly important for the
discontinuity-preserving reconstruction of surfaces from sparse observa-
tions, since it allows us to include into the estimation problem our prior
knowledge about the geometry of the boundaries between regions in an
explicit way. This is done by modifying the energy function; the new
expression is:

E(f) = V(fi, fj, li)+ Vc,(l) - 2 (fi- i) 2 (6)
i,jENN C1 jES

where

VII , ~ if lij is "on"
V2 (fi, fj), otherwise

V2 is defined in eq. (1); lij is the line element between sites i and j,
and the line potentials Vc, have as supports cliques of size 4, such as the
one shown in Fig. 2-b. Every line element (except at the boundaries
of the lattice) belongs to 2 such cliques. The values of the potentials
associated with each possible configuration of lines within a clique must
be specified. Thus, for example, if we know that straight horizontal and
vertical boundaries are likely to be present, we may use a binary process,
and potential values as those of Fig. 3 (rotational invariance is assumed).
If we want to handle more general situations (such as piecewise smooth
boundaries), it is necessary to allow more states for the line elements,
corresponding to different orientations, augmenting consequently the table
of values for the potentials.

3. Extension to the Boundary Preserving Interpolation of Piecewise
Smooth Surfaces.

3.1 Continuous Intensity Values.

Geman & Geman successtfilly applied their method to the restoration
of piecewise constant images corrupted by additive white Gaussian noise,
assuming that the grey levels corresponding to the constant subregions
were either known in advance, or easily obtainable from the data (as
peaks of a histogram, for example). However, if we want to apply this
construction to more practical cases, we. must relax the piecewise constant
condition, so as to include tilted planes, smooth gradients, and in general,
piecewise smooth surfaces.

To do this, we must allow the depth variables fj to take any real
value. However, this would require, in general, to replace Metropolis
algorithm by a process capable of handling continuous variables (such
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as a diffusion. See [G2]), and in this case, the convergence of the
annealing process is uncertain (rigorous convergence results have not
been established yet).

One way around this difficulty, is to define a "mixed" annealing
strategy, by replacing the depth potential Vf in eq. (6) by one that
guarantees that, for any given state of the line process, the resulting
conditional energy function E(f I 1) is convex, so that the use of a
deterministic gradient descent iteration for updating the state of the depth
process is justified in some sense (this is not a rigorous argument; we
present it only to provide some motivation for the definition of this
strategy which, at this point, is justified only by our experimental results).

This can be achieved by using a quadratic potential:

if lij is "on"
Vf (fi, i) i- fj) 2 , otherwise ()

Since the resulting conditional energy function is of the form:

E(f I t) = (f -fj)2 + 2 (fj _ gj)2 + K (8)
jES

for some positive constant K, we have that E(f I ) > 0 for any
f 74 0, and by aln appropriate change of coordinates, it can be put in the

E(f I 1) = uTAu

with u E RII, and A a non-negative definite matrix.

Now, for any t E (0, 1), and any u 74 v, we have,

tE(u I1) + (1 - t)E(v I) - E(tu + (1 - t)v It) -

= t(1 - t)(u - v)T A(u - v) > 0

so that E(f I 1) is a convex function of f, and an iteration of a gradient
descent algorithm will move towards a global minimum of this function.
Note however, that there may be degenerate cases in which some region
Q within which there are no observations is isolated from the rest of the
lattice by the line process. In this case, any solution for which

fj = constant, j E Q

will be a fixed point of the gradient descent algorithm, and although all
these solutions have the same energy, some of them are obviously more
desirable than others. Experimentally, we have fbund that a good strategy
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to prevent the formation of undesirable "islands", is to use the global
minimum of E(f I I = 0) (which is the unique fixed point of the gradient
descent algorithm) as the starting configuration for the mixed annealing
process. This configuration can be interpreted physically as a membrane
that is coupled to the data points (observations) by means of springs with
constants equal to 2, and is in a position that minimizes the total energy
stored in itself, and in the springs (see [r2]).

3.2 The Mixed Annealing Process.

The scheme we are proposing is as follows:
Every global iteration (that is, for every fixed temperature), all the line

and intensity sites are visited sequentially. When a line site is visited, its
state is updated using Metropolis algorithm. The corresponding increment
in energy AE1 is computed as follows:

Let C 1 and C 2 be the two cliques to which the line element belongs.
Let lij be its current state, and iij be the candidate state (if I is a binary
process, ij = 1 -lj; otherwise, it is chosen at random from the set
of allowable states different from lij). Let I be the current global line
comfigl"rltion, and 2 he obtained firom 1 by re,!lcin, lij by W \,e " ,"

AEl = Vc, ()-Vc(l) -F VC 2()- v (1) +

+sgn(lij - ij)(fi - fj) 2 (9)

where
19, if x > 0

sgn(x) -1, if x < O
, if x = 0

When an intensity site j is visited, its new state f'j is obtained
deterministically by the formula:

f" = >li:ijjlEC(O,j(1 - sgn(lii))fi + aoqjgi (10)
Ei:jijlG(O,l(1 - sgn(l/i)) + aqj

where ca- -X, and qj = 0, unless there is an observation at site j,
in which case, qj = 1.

The temperature is lowered using (5).

3.3 Parameter Values.

Unfortunately, we do not have, at this point, a clean way for selecting
the values for the parameters of the system, other than a trial and error
procedure. A few considerations about their meaning are in order:
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The parameter a controls the degree of smoothing that one applies
to the data, and must be related to the quality of the observations. Large
values of a (~ 10) will force the interpolated surface to pass through
the observations, while small values (S 1) will smooth away all but the
largest fluctuations.

The parameters associated with the line potentials control both the
shape and the number of boundaries that the algorithm will detect. For
example, for the binary line process of Fig. 3, if h is the height of the
smallest jump that we want to consider as a boundary, and d is the largest
gradient in the smooth regions, we must have for VI (the potential of a
straight boundary)

d2 < VI < h2 (11

The ratio of V1 to the potentials for the rest of the configurations,
represents our prior knowledge about the relative likelihood of corners,
"T" junctions, etc.

4. Experiments

We now present some experimental results that support the use of
this approach for s;tirftCc rcoiistriLctiLo arind imnage seglmientation tasks. in
these examples, we assume that we have the following prior knowledge
about the nature of the surfaces we are trying to reconstruct:

(i) The region under consideration can be segmented into a small
number of subregions.

(ii) Within each subregion the surface is smooth (the gradient is less
than 0.5).

(iii) The boundaries between regions are piecewise horizontal or
vertical. There are relatively few corners.

(iv) The average height of the discontinuities across boundaries is
greater than 0.8.

(v) The observations are corrupted by an additive white Gaussian
noise process, and we have some estimate of its intensity.

This knowledge is embodied in the model for the line process, and
in the numerical value of the parameters. For our experiments, we have
used the binary model of Fig. 3, with the values for the potentials for
the different configurations indicated there.

4.1 Experimental Results.

In the first set of experiments, we generated sparse observation points
at 200 random locations of a 30 X 30 rectangular grid. Figures 4, 5, 6
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and 7 show (with height coded by grey level) the observations (a); the
boundaries found by the algorithm (b); the configuration obtained by
interpolation with no boundaries (c), and the final reconstructed surface
(d), for:

(i) A square at height 2.0 over a background at constant height =
1.0 (Fig. 4).

(ii) A triangle, with the same characteristics (Fig. 5).

(iii) A tilted square plane (slope = 0.1) over a constant height
background with white Gaussian added noise (a = 0.1)(Fig. 6).

(iv) Three rectangles at different (constant) heights over a uniform
background (Fig. 7).

14
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Fig. 4. (a) Observations of a square at height 2.0 over a back-
ground at height .].0. (b) Boundaries found by the Algorithm.
(c) Interpolation with no boundaries. (d) Reconstructed surface.
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Fig. 5. (a) Observations of a triangle at height 2.0 over a back-
ground at height 1.0.. (b) Boundaries Found by ,he Algorithm.
(c) Intcrpolation with no boundaries (d) Reconstructed surface.
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Fig. 7. (a) Observations of 3 rectangles at heights 2.0, 2.0
and 3.0 over a background at hcight 1.0. (b) Boundaries found
by the Algorithm. (c) laterpolation with no boundaries. (d)
Reconstructed surface.
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In the second set of experiments, the same algorithm was used for
a boundary detection / image segmentation task. In this case, we have
observations (corrupted by white Gaussian noise) at almost every point
in the lattice. The original figure is a 10 X 10 tilted square plane of slope
0.2 located at the center of the lattice (Fig. 8). Note that in this case, the
tilted plane cuts across the unifonrm background, so that the vertical steps
at both sides have opposite signs, while the horizontal steps change sign
at the center of the figure, where, in fact, there is no discontinuity. As in
the.previous experiments, the results speak for themselves.

Finally, we present an example of the application of this algorithm
to the processing of real images. We use it to interpolate disparity data,
obtained along the zero-crossing contours of the convolution of a stereo
pair of aerial photographs with a "Difference of Gaussians" operator, by
Grimson's implementation of the Marr-Poggio stereo algorithm [G4,M2]
(the data array was rotated, so that assumption (iii) held). The results are
shown in figure 9. We believe that they will improve when we implement
the extensions to this method outlined in section 5.2.

4.2 Convergence of the Annealing Process.

Although the mixed annealing algorithm, with annealing schedule
given by (5), eventually converges to a low energy solution, we have
found that convergence can be greatly improved if we periodically set
the state of the line process using an estimate of the final (lowest energy)
state.

To get this estimate, we use the ergodicity of the process ([G1],
theorem C), and compute time statistics about its evolution. Specifically,
we estimate the marginal distributions of the states of every "line" cell by
computing, within a time window, the percentage of the time for which
this cell is "on". If it is more than half of the time, the state of this cell
in the annealing network is forced to 1; otherwise, it is forced to 0. As
the temperature decreases, the probability distribution of the global states
becomes peaked, and the maximum probability estimate obtained from
the marginals gets closer to the trule final state.

The results discussed in the previous section were obtained as steady
states of this modified process, using a time window of 10 iterations (for
the experiment of Fig. 8, an additional window of 100 iterations was
used). In all cases, the steady state was obtained after approximately 450
iterations. Fig. 10 shows snapshots, taken every 50 iterations, of the state
of the line process for the surface reconstruction problem on a 100 X
100 lattice, with 2000 observations, portraying a central square figure at
constant height over a unifo-rm background.
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Fig. 8. (a) Observations of a tilted square (slope 0.2) over a
background at height 1.0 with added white GaLlussian noise (o =
0.1). White pixels denote missing observations. (b) Boundaries
fLIund by the Alg:.rithm. (c) Interpolation with no boundaries.
(d) Reconstructed surfcace.

20
s- E



(a)

Fig. 9. (a) Disparity data tbr a stereo pair of aerial photographs.(b)
Interpolation with rlo boun claries. (c) Boundaries found by tile
Algoithm (d) Reconstrl-ctcd sulrftce.
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Fig. 10. Snapshots of the Annealing process.
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5. Discussion.

The results we have presented indicate the plausibility of using varia-
tional principles that include our prior knowledge about the geometry of
the discontinuities of a piecewise smooth surface, to reconstruct it from
sparse and noisy data, preserving the boundaries between continuous
subregions. This method may also have a more general significance, since
most problems in early vision are ill-posed and must be regularized [P2].
The regularization methods used so far are based on smoothness assump-
tions, and for this reason, all have problems when dealing with filnctions
that are only piecewise continuous. In this sense, the approach we have
presented may be regarded as an extension of standard regularization
methods for handling discontinuities (see [P2]). The algorithms presented
are admittedly slow. Their computational efficiency, however, can be
greatly improved by the use of parallel hardware, particularly in view of
the local nature of the support for the state updating operations (equations
(9) and (10)). It would be interesting to investigate the implementation of
this algorithm on the "Connection Machine", currently under construction
at the A.I. laboratory [HI] (see also [Fl]).

5.1 Relation to other Boundlary Preserving Surface Reconstruction Techniques.

The use of MRF models is closely related to the use of physical
models for the surfaces that one wants to reconstruct. Thus, for example,
Terzoupulos [F2] proposes the use of a thin plate model to embody the
knowledge about the smoothness of the surface. A threshold on the
bending moment of this plate is then used to locate the discontinuities,
and the plate is allowed to break at these points. This technique is
computationally more efficient, since the energy functionals involved are
convex; however the use of the method we are proposing seem to have
some definite advantages:

(i) From a conceptual viewpoint, it is better to perform the inter-
polation and boundary detection tasks at the same time, rather
than approximating an everywhere smooth surface first, since
this operation hides the discontinuities that one then tries to
find in the second phase.

(ii) In our method, the values of the parameters depend only on
the average height of the jumps that one wants to consider
as boundaries in the reconstructed surface, and thus, they are
independent of the location of the observations. If these are
sparsely located, the bending moment of the thin plate may
be low, even when the discontinuity is relatively large, anld the
threshold method may fail.
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(iii) A priori knowledge about the shape, orientation and position of
the discontinuities can be easily incorporated by choice of the
potentials of the line process.

(iv) The same algorithm can be used for surface interpolation, noise
elimination (smoothing) and boundary detection.

5.2 Extensions and Open Problems.

This method can be easily extended to the case of piecewise smooth
(not necessarily straight) boundaries by using a 4-valued line process
to include edge orientation (see [G1]). This extension will increase its
practical value, and permit its use in a variety of Computer Vision tasks
(processing of depth, motion and brightness data) as well as in other fields
(geophysics, medicine, etc.)

Another interesting extension is the use of the knowledge about the
position of the boundaries provided by some process (for example, the
output of a conventional edge detector operating on the components of a
stereo pair) to influence the reconstruction of a different related surface
(such as the disparity surface obtained from a stereo matcher). This can
be easily accomplished, in principle, by modifying the potentials of the
line process, so that the presence of a related edge at a line location
lowers the energy of the corresponding configurations. We are currently
working on these developments.

An important problem that has to be addressed to make this tech-
nique more practical, is the improvement of its computational efficiency.
One needs to accelerate the convergence of the annealing scheme, and
also, see if it is possible to exploit the structure of the energy functional of
this particular problem, to develop more efficient (possibly deterministic)
algorithms to find its global minimum.

Another open question is the determination of the optimal values for
the parameters of the energy functionals. It will be interesting to explore
in this connection the use of statistical methods [B1,K3], regularization
techniques [P2,T1,W1], and learning algorithms [H2].
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