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Abstract 

We present a high-heat-flux cooling device for advanced thermal management of electronics. The 

device incorporates nanoporous membranes supported on microchannels to enable thin film 

evaporation. The underlying concept takes advantage of the capillary pressure generated by small 

pores in the membrane, and minimizes the viscous loss by reducing the membrane thickness. The 

heat transfer and fluid flow in the device were modeled to determine the effect of different 

geometric parameters. With the optimization of various parameters, the device can achieve a heat 

transfer coefficient in excess of 0.05 kW/cm2-K while dissipating a heat flux of 1 kW/cm2. When 

applied to power electronics, such as GaN high electron mobility transistors, this membrane-based 

evaporative cooling device can lower the near junction temperature by more than 40 K compared 

to contemporary single-phase microchannel coolers. 



 

 

Introduction 

Thermal management has become a critical issue in the semiconductor industry due to the 

increasing power density of microprocessors, laser diodes and power amplifiers [1-3]. One of the 

most pressing challenges in current and next-generation electronics is heat removal of wide band 

gap semiconductors based on gallium nitride (GaN) and silicon carbide (SiC), for high-power 

radiofrequency (RF) applications [4]. For example, monolithic microwave integrated circuits 

(MMICs) based on GaN high electron mobility transistor (HEMT) technology are devices of 

particular importance for microwave applications. With a standard layout [5] (Figure 1(a) and (b)), 

and a modest power density of 5 W/mm, the heat flux generated over the gate area in the RF MMIC 

highlighted by the red stripes in Figure 1(a) (0.5 μm × 150 μm each), can be as high as 1000 

kW/cm2 [6].  Even on the backside of the die, the heat flux can still be > 1 kW/cm2 [6]. Such high 

fluxes are likely to induce high temperatures in the gate area, which can reduce the lifetime and 

the reliability of the GaN HEMT devices [4]. To lower the near junction temperature and handle 

the high heat loads, new cooling methods are needed.  

Many approaches have been pursued, including single-phase forced convection, pool-boiling and 

flow-boiling. Single-phase cooling has been experimentally demonstrated up to 1.25 kW/cm2 in 

microchannels [7], but it requires a large temperature difference and high pumping power [8]. 

Meanwhile, phase change cooling can be more effective, taking advantage of the enthalpy of 

vaporization and lowering the pumping power requirement. However, phase-change cooling 

mechanisms, such as pool-boiling, are fundamentally limited by the critical heat flux (CHF), where 

~ 400 W/cm2 has been demonstrated [9, 10]. On the other hand, while flow boiling is promising 

for reducing the pumping power, and achieving a higher HTC and heat flux, flow instabilities [7], 

temperature and pressure fluctuations [8] are still major concerns.  



 

 

To address these issues in flow boiling, previous studies have investigated into techniques such as 

dynamic active flow control [11], integrating microstructures [12], flow re-entrance [13], inlet 

restriction [14] and phase separation [15-17]. Particularly, in phase separation approaches, liquid 

is actively pumped into microchannels covered by a hydrophobic nanoporous membrane and vapor 

is vented through the pores. In these cases, we note that the phase change occurs underneath the 

membrane, which can create an additional thermal resistance since the transmission probability 

for vapor molecules to escape the nanopores can be considerably less than 1 [18]. 

Another approach that makes use of the enthalpy of vaporization and naturally separates the two 

phases is the implementation of thin film evaporation [19, 20]. In this case, the thermal resistance 

across the evaporating liquid is minimized by maintaining a thin liquid film across which the 

overall thermal transport is significantly enhanced. However, active pumping of liquid into the 

evaporating thin film (< 1 μm thick [21]) over large regions can be impractical due to high pressure 

drops, requiring significant pumping powers. Consequently, to facilitate passive liquid flow, 

nano/micro wicks have been utilized to generate capillary pressure to draw liquid into the 

evaporating thin film region. For example, evaporation from titanium pillar arrays [22] and 

alumina nanoporous membranes [20, 23] has been studied in previous work. 

However, as the characteristic wicking size is made smaller, the capillary pressure and the viscous 

loss both increase. As a result, in typical microfluidic implementations of thin film evaporation, 

these two parameters are strongly coupled, limiting the overall performance if the cooling device 

is not designed appropriately. 

To decouple the viscous stress and the capillary pressure, we propose a membrane-based cooling 

device that leverages evaporation in a thin (thickness < 1 μm) nanoporous membrane (pore 

diameter ~ 100 nm) supported by microchannels (characteristic dimension < 10 μm), as shown in 



 

 

Figure 1(c). During operation, the liquid is drawn across the microchannels as it is wicked into the 

nanopores of the membrane, where it absorbs heat, evaporates into a pure vapor ambient and 

eventually condenses at a condenser and is circulated back to the inlet of the cooling device (Figure 

1(c) and (d)). The heat supplied for evaporation conducts across the substrate to the microchannel 

walls, then through the membrane to the liquid-vapor interface, where evaporation takes place 

(Figure 1(c)). The device relies on the capillary pressure supplied by the nanopores to drive the 

flow, and takes advantage of phase change to dissipate significant amounts of heat. This is done 

while minimizing the viscous losses for the flow across the microchannels and the membrane, and 

the overall thermal resistance across the liquid. Consequently, the device can potentially deliver 

high heat fluxes for cooling, with low overall temperature differences as well as minimal pumping 

power requirements. The reliance on the capillary pressure within the pores to drive the flow also 

results in a self-regulating device, which may be able to better address challenges associated with 

spatially-varying heat fluxes. This is particularly challenging in flow-boiling based approaches, 

due to pressure instabilities and flow mal-distribution, which is difficult to mitigate at the 

microscale. 

In fact, designing such membrane-base evaporative cooling devices relies heavily on fundamental 

understanding of interfacial transport at the small scale. In this study, we carried out a detailed 

computational analysis to design the proposed cooling device, and investigated the overall heat 

and mass transfer during evaporation, where we carefully account for the sub-continuum and non-

equilibrium effects of the vapor transport as opposed to using a constant temperature at the 

interface [16] or the traditional Schrage’s approach [24]. Using this analysis, we also identified the 

criteria for the selection of the most appropriate working fluid to deliver the highest performance. 

We then determined the thermal and hydraulic performance of the cooling device as a function of 



 

 

different geometric parameters for design optimization. Subsequently, we demonstrated the use of 

this device for the thermal management of GaN HEMTs [2] (Figure 1(a) and (b)), to show 

significantly reduced near junction temperatures compared to the baseline performance using a 

contemporary cooling mechanism.  

Baseline Performance using Single Phase Cooling 

A common technique to cool GaN HEMTs is to use a single-phase microchannel cooler. For 

example, Calame et al. demonstrated that die-level heat transfer coefficients (HTCs) of 0.021 

kW/cm2-K can be achieved with 1.9 L/min water flowing through copper microchannels [4]. With 

such microchannel coolers rejecting heat to a reservoir maintained at 25 °C, we simulated the heat 

conduction in the device to determine temperature and the heat flux distribution in the GaN HEMT 

(Figure 1(a) and (b)) using the finite element method in COMSOL Multiphysics [25], where the 

total number of elements was 4383224 and the relative tolerance for convergence was set as 10-6. 

The thermal conductivities of GaN and SiC (kGaN and kSiC) and the thermal boundary resistance 

(RB) between these layers, as a function of temperature, were taken into account as [26]: 
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Using the typical heat fluxes encountered in GaN HEMT (1000 kW/cm2 over the gate area) and 

the HTC achievable using single-phase microchannel cooling, the temperature profile for a quarter 



 

 

of the die is shown in Figure 1(e), where the peak HEMT device temperature is found to be as high 

as 218 °C. Additionally, cooling heat fluxes > 1 kW/cm2 are necessary for thermal management 

of GaN devices, as shown in Figure 1(f). 

Interfacial Transport and Coolant Selection 

To properly model the performance of our proposed cooling device, we analyzed transport across 

the liquid-vapor interface to determine the appropriate boundary condition at the evaporative 

surface of the cooling device. Traditionally, the interfacial heat transfer coefficient, hin is calculated 

using the Schrage equation [24]: 
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where ̅σ is the accommodation coefficient [27], hfg is the heat of vaporization, R is the specific gas 

constant, Peq is the vapor pressure in equilibrium with the liquid, Tin is the temperature at the 

interface, and P∞ and T∞ are the pressure and temperature of the vapor in the far field, respectively.  

However, it has been shown recently that the traditional approach does not account for momentum 

and energy conservation [28], which is crucial for the analysis of high flux evaporation. 

To predict evaporation more accurately, Labuntsov and Kryukov developed the moment method 

to solve the Boltzmann transport equation governing the interfacial heat and mass transfer process 

[29], conserving mass, momentum and energy. In our recent study [18], we utilized this method to 

analyze evaporation from nanoporous structures. Our investigation of evaporation from nanopores 

takes into account the non-equilibrium effects and the deviation from classical kinetic theory. In 

addition, by considering the non-local effects arising from phase-change in nanoporous geometries, 

and the self-regulation of the shape and position of the liquid-vapor interface in response to 



 

 

different operating conditions, we quantified the effects of various parameters and determine 

conditions suitable for evaporation. We found that the interfacial heat transfer is most efficient 

when the meniscus is pinned at the top of the pore with total accommodation ( ̅σ = 1 which is more 

likely for non-polar working fluids [30-33]). For ̅σ = 1, the interfacial transport in nanopores did 

not depend significantly on the interface shape or the liquid pressure at the interface [34]. Instead, 

the interfacial HTC hin, normalized over the pore cross-sectional area, varied only as a function of 

Tin and T∞ as well as the porosity ϕ for pore diameter ~100 nm. We present the analysis for this 

particular case (pinning regime with total accommodation) as follows. (Discussion on more 

general cases can be found in Ref. [18].)  For one unit cell, a cylindrical coordinate (r, z) system 

is defined in Figure 2(a). We set z = 0 at the pore outlet and the far field vapor at z → ∞. We denote 

ξ as the velocity distribution function to yield the mass of molecules dm in a unit volume at a 

certain velocity u, so that dm = ξ d3u. The distribution of molecules emitted out of the nanopore is 

given by the half Maxwellian [18, 29, 35]: 
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where ρsat is the saturated vapor density at Tin. Since the evaporation in reality is a dynamic process, 

there is also a backflow of vapor molecules whose distribution at z = 0 is assumed to take the form 

[29]: 
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where ẑ is the unit vector in the z-direction, u∞ is the bulk vapor velocity in the far field and ρc (yet 

to be calculated) denotes the effective density of vapor directed back to the pore outlet. The 

pressure on the top surface of the pore wall Pw can be determined as [18]: 
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where r̂ is the unit vector in the r-direction. In the far field (z → ∞), where thermodynamic 

equilibrium is again realized,  
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where ρ∞ is the vapor density in the far field. By conserving mass, momentum and energy (ṁ, Fz 

and Ė) between the pore outlet and the far field within the unit cell, we have: 
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Eqn. (9), (10) and (11) contain three unknowns (u∞, ρc, ρ∞). After non-dimensionalization, we can 

represent the solutions as [29]: 
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where f1, f2 and f3 are all non-negative functions that come from solving Eqn. (9), (10) and (11). 

The interfacial heat transfer coefficient out of the pore is then given as: 
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where hfg is the enthalpy of vaporization. This result is plotted in Figure 2(b) for various fluids 

(water, methanol, pentane, R245fa and R134a) as a function of superheat (Tin – T∞), assuming T∞ 

= 25 °C and ϕ = 0.2. We also show the effect of ϕ on hin normalized over the pore cross-sectional 

area, for a select working fluid (R134a) with different wall superheats in Figure 2(c). 

Following this analysis, the interfacial heat flux is determined exclusively by the temperatures Tin 

and T∞, and ϕ for different nanoporous geometries, when divided by the product hfgρsatR
1/2. We 

evaluate this product at 25 °C and define it as the interfacial heat transfer factor. In order to 

compare different working fluids, we normalize hfgρsatR
1/2 to the value for water and denote this 

ratio as: 
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A larger Π1 indicates better interfacial heat transfer, which favors working fluids not only with a 

high hfg, but a high ρsat as well. On the other hand, since we rely on the capillary pressure to 

overcome the viscous loss, we define the liquid transport factor Π2 as done in heat pipes [36]:  
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where σ is the surface tension, ρl is the liquid density and μl is the liquid viscosity. As shown in 

Eqn. (17), Π2 was obtained by normalizing with σρlhfg/μ evaluated for water at 25 °C. The rationale 

behind using this figure of merit is that the capillary budget scales with σ and the viscous loss 

scales with μl(ρlhfg)
-1 given a heat removal rate. For the same rate of heat removal, a larger Π2 

indicates that the device is less prone to dry out. Table 1 shows these two figures of merit (Π1 and 

Π2) for select working fluids. Compared to other working fluids, R134a has a much higher Π1. 

While Π2 for R134a, R245fa, pentane, and methanol is comparable, it is significantly higher for 

water. We chose R134a to carry out device performance analysis, despite its higher risk of dry-

out, due to its exceptionally high cooling potential. However, it should be noted that the same 

computational methodology is indeed applicable for any other working fluid, and can be utilized 

to determine device performance following a similar procedure. One other concern about R134a 

is related to its high saturated vapor pressure (665.8 kPa at 25 °C), which will place the interior of 

the device at a positive pressure relative to the exterior ambient. We anticipate that such a high 

operating pressure can be handled by a combination of package-level design coupled with die-

level fusion bonding with heat treatment [37].  

Table 1 Figures of merit for different working fluids: interfacial transport factor Π1 and liquid transport 

factor Π2  (both normalized to the properties of water). 

Fluids Water Methanol Pentane R245fa R134a 

Π1 1 3.416 6.748 10.56 42.95 

Π2 1 0.1909 0.09320 0.04345 0.04504 



 

 

Device-Level Model Description 

We modeled the pressure drop and heat transfer for the entire cooling device, after choosing R134a 

as the coolant and determining the pore-averaged evaporative boundary condition hin as a function 

of Tin, T∞ and ϕ. The pressure drop in the microchannels is determined as: 
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where Pl is the pressure in the liquid phase, x is the flow length, Dh is the hydraulic diameter [38], 

f Re is the Poiseuille number which is depends on the channel aspect ratio (width: depth) AR [39] 

and Vl is the bulk liquid velocity in the channel. By mass conservation, we have: 
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where hch is the channel height and Vp is the bulk liquid velocity in the pore, which is also 

determined by the heat flux being dissipated ̇q″: 
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Here, SF is the channel wall solid fraction tw: (w + tw), where w is the microchannel width and tw 

is the channel wall thickness (Figure 1(c)). The pressure drop in the pore is given by: 
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where dp is the pore diameter. The largest pressure drop in the cooling device is then: 
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where lch is the microchannel length and t is the membrane thickness. Assuming that R134a 

perfectly wets the pore due to its low surface tension, the capillary pressure is: 
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We define a dimensionless pressure budget PB
* as the difference between the capillary pressure 

and the total pressure drop normalized over the capillary pressure: 
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For operating conditions with PB
* < 0, the cooling device will dry out due to insufficient liquid 

supply to the evaporating region.  

The heat transfer in the proposed device can be analyzed as a two-dimensional problem, due to the 

periodic geometry of the cooling device (Figure 1(c)). Figure 3(a) depicts the boundary conditions 

for a unit cell, marked by the dotted box in Figure 1(c). The governing equation for the steady-

state heat conduction across the cooling device is: 

 ( ) 0ik T     (25) 

where T is the temperature across the unit cells, i = 1, 2, 3, 4. k1, k2, k3 and k4 denote the thermal 

conductivity of the substrate, the channel wall, the porous membrane and the working fluid, 

respectively. The cooling device was designed in silicon to take advantage of the wide range of 

microfabrication techniques available for silicon substrates. However, the modeling done in this 

work can be readily translated to other substrate materials. The temperature dependence of thermal 

conductivities of silicon and R134a is taken into account as described in Ref. [26] and [40]. The 

thermal conductivity of the microchannel walls and the nanoporous membrane (k2 and k3) also 



 

 

depends on the limiting dimension of these structures [41]. Therefore, in this study, the size 

dependence of k2 and k3 was interpolated from the analyses carried out in Ref. [41].  

In Figure 3(a), a uniform heat flux ̇q″ is applied at the bottom of the unit cell, while a pore-averaged 

evaporative heat transfer coefficient hin is applied on top of the membrane considering the 

membrane porosity ϕ. All other boundaries are assumed to be adiabatic and T∞ is set at 25 °C. Note 

that a portion of the silicon substrate (1 μm) is also included in the heat transfer model to account 

for the constriction resistance from the silicon substrate to the channel walls. Eqn. (25) was solved 

iteratively using finite element method in COMSOL Multiphysics due to the nonlinearity arising 

from the temperature dependence of ki (i = 1, 2, 3, 4) and hin. The total number of elements in 

COMSOL was 13259 in this case and the relative tolerance was set to be 10-6. 

Note that heat convection in the liquid phase is neglected in this study. To justify this assumption, 

we define a modified Péclet number: 
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Here, cp is the specific heat capacity of the liquid. The denominator is derived from the combined 

thermal conductance of the liquid and the channel wall and the numerator corresponds to the 

energy carried by the liquid flow in the direction perpendicular to the substrate. This Péclet number 

compares the heat transfer from the substrate to the membrane due to convection and conduction. 

As long as Pe ≪ 1, the heat convection in the liquid phase can be neglected. Furthermore, 

neglecting heat convection only underestimates the device cooling performance, which adds to the 

safety factor of the proposed design. 



 

 

Results and Discussion 

For the GaN HEMT device shown in Figure 1(a), lch = 700 μm (Figure 1(d)). To calculate the 

pressure budget, we first set ̇q″ = 1 kW/cm2, ϕ = 0.25, dp = 100 nm, the membrane thickness t = 

300 nm, w = 5 μm, AR = 1, SF = 0.2. PB
*

 was then found to be 0.3423 using Eqn. (18), Eqn. (23) 

and Eqn. (24), which indicates that dry-out will not occur for these operating conditions. The 

temperature profile in the cooling device is plotted in Figure 3(b), which allows evaluation of the 

overall HTC of the cooling device: 

   (27) 

where Tb is the average temperature at the base of the unit cell (Figure 3 (a)). In this reference case, 

hd = 0.0441 kW/cm2-K. Also, we verified that Pe = 0.034 with all properties evaluated at 40 °C, 

which suggests that convection can be neglected.  For comparison with the results obtained for 

R134a, we also simulated the device performance with water as the working fluid with total 

accommodation, which gives hd = 0.0155 kW/cm2-K, supporting our rationale for this coolant 

selection. Even though water has a very large enthalpy of vaporization, its low vapor density limits 

the interfacial heat transfer. 

Apart from the reference case study, a parametric sweep of various device geometries was also 

conducted, where each geometric parameter, namely ϕ, dp, t, w, AR and SF were varied 

independently from the reference case described above, and the corresponding effects on the heat 

transfer and pressure drop are shown in Figure 4(a) – (f). 

In Figure 4(a), as the membrane becomes more porous by maintaining a constant pore diameter 

and increasing the number of pores per unit area, hd first increases due to a larger available 



 

 

evaporation area. Then, it decreases due to a decrease in the effective thermal conductivity of the 

membrane. Furthermore, PB
* increases with ϕ, since the mass flux in a single pore decreases with 

an increase in ϕ.  

In Figure 4(b), for all the pore diameters considered, the thermal resistance across the liquid 

confined within the pore is negligible. However, for a fixed porosity, a larger dp results in a larger 

pore spacing, which leads to a higher effective membrane thermal conductivity due to more 

diffusive thermal transport within the membrane [41]. This results in enhancing the overall heat 

transfer. On the other hand, since the viscous loss inside the pore scales with 1/dp
2 and the capillary 

pressure scales with 1/dp, PB
*

 initially increases as dp increases since the decrease in the viscous 

loss has a greater effect than the loss in capillary pressure. However, for larger dp, the viscous loss 

in the pore is much lower than the loss in the microchannel, and therefore does not affect the total 

pressure drop significantly. Consequently, a continued decrease in the capillary pressure due to a 

larger dp causes a decrease in PB
*.  

Figure 4(c) shows that as the membrane becomes thicker, the spreading resistance within the 

membrane becomes smaller, which facilitates improvement in the overall heat transfer. However, 

this effect plateaus as the spreading resistance contributes less to the total thermal resistance while 

t increases. PB
* decreases rapidly for thicker membranes due to larger viscous losses for flow 

through the nanopores.  

In Figure 4(d), with increasing channel width, w, the spreading resistance in the membrane 

increases, which results in performance degradation. Meanwhile, the pressure drop in the 

microchannels becomes smaller, which enhances PB
*. However, PB

* becomes insensitive to 

variation in w once the pressure-drop is mostly due to the flow across the membrane.  



 

 

A larger AR corresponds to a larger channel height, which results in larger thermal resistance and 

consequently reduces hd, shown in Figure 4(e). With a decrease in the flux in the microchannels 

due to larger flow cross-section area of the channel, PB increases rapidly until the viscous loss 

across the membrane dominates.  

In Figure 4(f), as SF increases, the membrane area available to wick liquid decreases. Therefore, 

the flux in a single pore becomes larger, resulting in a larger pressure drop across the membrane, 

decreasing PB
*. An increasing SF also decreases the thermal resistance through the channel wall 

and within the membrane, so hd is initially enhanced. However, because the net evaporation area 

becomes smaller, hd decreases when SF is relatively large. 

After understanding the effect of each geometric parameter, a global optimization was performed 

in the design space (containing all of the geometric parameters), evaluating the heat transfer and 

pressure drop of each design with ̇q″ = 1 kW/cm2 (Figure 5). The criteria for the optimization is 

determined based on the application of this technology. For this current study, among parametric 

combinations satisfying PB
* > 0.6, we selected a design which provides the highest hd. With PB

* > 

0.6, we aim to mitigate the risk of dry-out caused by fabrication uncertainties, such as merging of 

nanopores and variation of channel sizes, and non-uniform heat fluxes at the backside of the die 

(up to ~ 2 kW/cm2). The optimum design parameters are given as ϕ = 0.4, dp = 120 nm, t = 450 

nm, w = 4 μm, AR = 2.5, SF = 0.25, which results in hd = 0.0541 kW/cm2-K. Note that this hd was 

obtained only for a constant and uniform heat flux (̇q″ = 1 kW/cm2) dissipated by the evaporative 

cooling mechanism. Due to the temperature dependence of material properties (ki, i = 1, 2, 3, 4) 

and interfacial transport (hin), hd also varies as a function of ̇q″ for the chosen geometric design 

(inset of Figure 5). Consequently, hd can serve as a non-linear boundary condition when modeling 

evaporative cooling for the entire GaN HEMT die. 



 

 

Evaporative Cooling of GaN HEMT 

To demonstrate the feasibility of this proposed device, we model the overall heat transfer by 

interfacing the GaN HEMT (Figures 1(a) and (b)) with the optimized evaporative cooling device 

via gold eutectic bonding. To account for the additional thermal resistance due to the gold eutectic 

bond, we included a 10 μm Au and 100 μm silicon layer between the cooling device and the 

backside of the SiC substrate of the GaN HEMT device. For this configuration, the net heat transfer 

was again evaluated using the finite element method in COMSOL Multiphysics, where the total 

number of elements was 4598448 and the relative tolerance for convergence was set as 10-6. The 

resulting steady state temperature profile across the GaN HEMT device is shown in Figure 6 (a). 

When compared with Figure 1(e), the benefit of implementation of an evaporative cooling device 

is clear. While the heat flux distribution at the backside of the die (Figure 6(b)) is similar to the 

case with microchannel cooler (Figure 1(f)), the near-junction temperature is reduced by 46 K for 

the chosen GaN HEMT device by implementing the evaporative cooling device. 

Although the proposed design shows promise in high flux heat dissipation, its cooling performance 

largely depends on the accommodation coefficient ̅σ of the liquid-vapor interface and may be 

subject to non-idealities of the working fluids (e.g., ̅σ is reported to be considerably less than 1 for 

water in literature [27]). In addition, for practical implementation, non-evaporative contamination 

in the system can also decrease the effective ̅σ and may eventually clog the device, which is a 

concern for every evaporation-based system. In our proposed design (Figure 1(d)), there is a 

constant liquid flow along the channel underneath the pores, which allows the contaminants to 

diffuse from the liquid-vapor interface back to the bulk fluid and be convected away. The diffusion 

process is facilitated by the thinness of the membrane, which mitigates the clogging risk. 



 

 

Conclusions 

We propose a membrane-based evaporative cooling device for thermal management of high flux 

electronics. In order to determine an application-specific design and quantify the overall 

performance, we carried out a detailed thermal analysis. The analysis incorporates the non-

equilibrium effects and the deviation from classical kinetic theory for the interfacial transport. 

Through the analysis, we identified two non-dimensional quantities, namely the interfacial heat 

transfer factor and the liquid transport factor, as important criteria for coolant selection. We 

modeled the overall thermal resistance across the liquid-vapor interface, membrane and the 

supporting microchannel structure, and the pressure drop associated with coolant supply through 

the micro/nanofluidic network. 

A parametric sweep of critical geometries demonstrates the effect of each parameter on the device 

performance and a global optimization of device design results in a HTC of 0.0541 kW/cm2-K to 

dissipate a heat flux of 1 kW/cm2. A non-dimensional analysis also demonstrates that for most 

state-of-the-art cooling techniques based on micro/nano-wicking structures, there is a qualitative 

trade-off between thermal performance and risk of dry-out. However, by applying detailed 

computational analysis and optimization for a particular fluid, one can design a device that meets 

both performance and reliability metrics successfully over a wide range of operating conditions. 

The proposed cooling device decouples these two factors by utilizing a thin nanoporous membrane 

supported on relatively thick and thermally conducting fluidic network. This work can potentially 

have an impact on thermal management of high flux power electronics, such as GaN HEMTs, by 

significantly reducing the near junction temperature (by > 40 K) compared to traditional single-

phase microchannel cooling, due to a two-fold increase in the die-level heat transfer coefficient.  
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Figure 1 (a) Standard lay-out of the reference GaN HEMT described in Ref. [5] (b) 

Schematic of the cross-section and boundary conditions for GaN HEMT with a silicon 

microchannel cooler. The temperature dependence is taken into account for thermal conductivities 

of GaN and SiC and the thermal boundary resistance between them [26]. The inward heat flux and 

the heat transfer coefficient for silicon microchannel cooler are adapted from Ref. [4] (c) Cross-

section and (d) bottom view schematic of proposed cooling device attached to the GaN HEMT die: 

liquid is routed into microchannels and wicks into nanopores of a membrane supported by channel 

walls; heat is conducted across the substrate, via the channel walls, within the membrane and to 

the liquid-vapor interface where evaporation occurs. The evaporated working fluid condenses at a 

condenser and is then circulated back to the inlet of the cooling device. (e) Temperature profile in 

the GaN HEMT including both the GaN die and the SiC substrate and (f) heat flux distribution at 

the backside of the SiC substrate when it is attached to a copper microchannel cooler with a heat 

transfer coefficient of 0.021 kW/cm2-K  [4] rejecting heat to a 25 °C reservoir  

  



 

 

 

Figure 2 (a) Schematic of interfacial transport across a nanopore in a unit cell. (b) Interfacial 

heat transfer coefficient from nanoporous membrane normalized over pore cross-section area as a 

function of temperature difference between evaporating surface and far field vapor (T∞ = 25 °C) 

with   = 1 and ϕ = 0.2 for different working fluids. (c) Effect of ϕ on hin normalized over pore 

cross-section area for R134a at select superheats with T∞ = 25 °C. 

  



 

 

 

Figure 3 (a) Boundary conditions for a device unit cell (the yellow dash box in Figure 1(e)): 

a uniform heat flux ̇q″ is applied to the bottom of the unit cell while an evaporative heat transfer 

coefficient is assigned on top of the membrane where liquid can wick in. All other boundaries are 

assumed to be adiabatic. Both the working fluid and the solid material were assigned temperature-

dependent thermal conductivities and the thermal transport in the channel wall and the membrane 

was considered as size-dependent. (b) Temperature profile in the unit cell for a reference design 

with ϕ = 0.2, dp = 100 nm, t = 300 nm, w = 5 μm, AR = 1 and SF = 0.2 

 

  



 

 

 

Figure 4 Parametric study of hd (blue dash line) and PB
* (orange solid line) as functions of 

(a) porosity ϕ, (b) pore diameter dp, (c) membrane thickness t, (d) microchannel width w, (e) 

channel aspect ratio AR and (f) channel wall solid fraction SF. 

  



 

 

 

Figure 5 Global optimization of device geometric design at ̇q″ = 1 kW/cm2: to maximize hd 

while maintaining PB
* > 0.6, the geometric parameters are designed as: ϕ = 0.4, dp = 120 nm, t = 

450 nm, w = 4 μm, AR = 2.5 and SF = 0.25. For this optimum design, hd varies as a function of ̇q″ 

(inset). 

  



 

 

 

Figure 6 (a) Temperature profile in the GaN HEMT die and (b) heat flux distribution at the 

backside of the cooler with implementation of the proposed cooling device 
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