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ABSTRACT

Total elimination of friction and the active control nature make magnetic bearings
more attractive than conventional bearings in applications such as turbomachinery
and machine-tool spindles. In these applications, machines go through significant
dynamic changes due to gvroscopic effects and disturbances resulting from rotor un-
balances or machining forces. These dynamic characteristics, together with the fact
that magnetic bearings are inherently nonlinear and unstable due to the nonlinearities
of electromagnetic fields. have created challenging problems in modeling, analysis and
control. To address and solve these problems. this thesis contains three main themes.
namely, investigating achievable performance. obtaining a simple but accurate model
and developing an adaptive controller that is robust to nonlinearities and changing
svstem dynamics.

First, a Loop-Transfer-Recovery (LTR) based approach is presented to identify
the achievable system performance. A simple finite dimensional model for a mag-
netically levitated machine is constructed and limitations from hardware components
are examined. Using LTR’s asymptotic properties and the small gain theorem. the
relations among the system bandwidth. the disturbance-rejection capabilities and the
flexibility effects are revealed. Second. a model refining procedure is proposed. With
the help of the lumped-parameter assumptions and Thevenin’s theorem, the refined
model not only explains non-ideal effects such as flux leakage, fringing fluxes and the
eddy current loss. but also makes a good connection between the physics and the
feasible experimental data. Third. in order to directly incorporate the nonlinearities
and changing dynamics as part of the control system design. a new adaptive con-
trol scheme is developed. The scheme uses local function estimation to cancel the
nonlinear and uncertain dynamics present in the svstem and introduce some desired
dynamics. With a properly designed sampling rule. the neighborhood of approxima-
tion can be moved from time to time in order to capture the changing dynamics.
Stability proofs and practical implementation issues are given. The resultant con-
troller is applicable to SISO systems as well as certain classes of MIMO systems.

The concepts and procedures introduced have been validated either numerically
or experimentally on a five-axis magnetically levitated turbo pump. Particularly, the
adaptive controller was digitally implemented on a high speed Digital Signal Pro-
cessor. The sampling frequency employved was 15K H=. Disturbance rejection tests
were conducted for spinning and non-spinning conditions. Results indicate that. at
low frequencies. the adaptive control system has much better stiffness properties over
a highly complicated analog linear compensator. The controller also maintains the
same disturbance rejection properties over a range of rotor speeds.

Thesis Supervisor: Dr. Kamal Youcef-Toumi

Title: Associate Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation

The use of active magnetic bearings to levitate rotating machines has attracted con-
siderable attention in the last forty years. One of the reasons is that magnetic bearings
make no physical contact with the spinning rotors, thus eliminating the friction which
usually exists in conventional bearings. The absence of friction not only contributes
to longer bearing life but also to the elimination of the need for lubrication. Because
lubrication often poses problems in vacuum and other hostile environments, mag-
netic bearings have a wider applicability in comparison with conventional bearings.
For example, properly designed magnetic bearings can be operated in a wide range of
temperatures ranging from —250°C to 450°C. Finally, magnetic bearings’ active con-
trol nature provides on-line adjustment of system stiffness and damping [57], which
often leads to a reduction in vibrations.

The idea of suspending a rotating body by means of magnetic forces was intro-
duced as early as 1842 by Earnshaw. He proved that a stable three-axis magnetic
suspension system can not be achieved using only passive permanent magnets. Ac-
cording to Earnshaw’s theorem, to ensure stability, at least one axis must be actively
controlled [16]. After World War II, the development of magnetic levated systems was
greatly encouraged by the advances of electrical technologies. In 1957, La Recherche
Aeronautique carried the first complete description for totally active magnetic sus-

pension. Then a French patent on a fully active magnetic suspension system was



issued and assigned to Hispano-Sulza Company [20]. Subsequently, several research
teams were involved in developing actively controlled magnetic suspension systems for
various applications such as neutron chopper, high-speed centrifuges, vacuum pumps,
and momentum wheels for spacecrafts. For instance, a radially passive gyros and fly-
wheels with eddy current dampers was designed by the Cambridge Thermionic Corp.
for the National Aeronautics and Space Administration’s Doddard Space Flight Cen-
ter. Due to the enormous progress achieved in electronics, the number of industrial
applications of active magnetic bearings technology has considerably increased in
the last 15 years. The applications include high-speed centrifuges, vacuum pumps,
machine tool spindles, medical devices, rototics. contactless acturtors and vibration.
These and other applications are described in [43, 15]. A brief historical review of
magnetic bearings can be found in [36].

This thesis particularly focuses on modeling. analysis and control of magnetically
levitated rotating machines such as turbomachinery and machine tools spindles. Re-
gardless of their advantages, magnetic bearings are inherently nonlinear and unstable
due to the nonlinearities of electromagnetic fields. Moreover, in the rotating machine
applications, systems go through significant dynamic changes due to gyroscopic effects
and disturbances are present because of unbalances in the rotors or the machining
force. These characteristics certainly introduce complexities to the system dynamics
and control. As a result, to increase the system performance, several issues associated
with system dynamics and control need to be addressed

The first key issue in dynamics and control of the magnetically levitated rotating
machines is identifying the overall achievable performance given the specific character-
istics of individual hardware components. Acquiring knowledge about the achievable
performance would provide a system engineer a better understanding of the capabil-

ity of the system so that a proper controller can be designed according to the system
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dynamics. At the same time. a design engineer can also apply the knowledge about
the achievable performance to determine the appropriate hardware parameters. Nev-
ertheless, the task is not easy. particularly when one deals with the magnetic bearings
whose lack of absolute stability makes the integration of control system design nec-
essary. Moreover, the fact that “components™ from various energy domains interact
and impose constraints on each other and have their individual behaviors combined
in a nonobvious way adds more difficulty to the task.

Second, in the process of acquiring the knowledge on the achievable performance.
one also needs to acquire a simple model to characterize the critical features and to
account for the energy transduction among different domains in the magnetic bearing
system. Such a model also has to be accurate enough so that it can be further used
in extensive simulations to facilitate the control system design. However, because
magnetic bearings are inherently nonlinear and unstable, assumptions which most
conventional identification techniques are based on are violated in this case. Obtaining
a good magnetic bearing model thus presents challenging work for system engineers.

Finally. even though a satisfactory model can be obtained. the control of multi-
axis magnetic bearing systems is another issue. Not only the nonlinear nature of the
actuators. but also the force coupling among various axis makes the control system de-
sign a challanging task. Furthermore. in order to achieve desired performance accross
the entire operating range. the controller has to be robust against gyroscopic effects.
model uncertainties resulting from changes of the rotor speed and the unpredictable
disturbances due to unbalances of the rotor. Consequently, the usual fixed-gain linear
controller may not be adequate and controllers which can deal with both nonlinear-
ity and uncertainty is therefore strongly favored for magnetically levitated rotating
machines.

Motivated by the issues discussed above. this thesis work is devoted to investigat-



ing the achievable performance, developing a model refining procedure to facilitate
the controller design, and proposing an control scheme which deals with nonlinearity

and uncertainty The research background of this three topics is first given below.

1.2 Background

Although identifying the achievable performance is crucial for the design and control
of magnetically levitated machines, not much effort has been contributed. Bornstein
and Rao [8, 34] looked into the connection between the maximum load capacity and
bearing stiffness in the dynamic range. A similar problem was also addressed by
Maslen [27] where a certain iterative scheme was used to obtain the required load ca-
pacity of the magnetic bearing by searching for the worst case sinusoidal disturbance.
but the procedure is tedious and not guaranteed to produce a convergent solution.
Furthermore. in [13] Dhar and Barrett attempted to calculate the individual bearing
stiffness and damping coefficient to achieve the desired modal response. Basically.
all these approaches lack a systematic procedure to integrate all the important issues
including system dynamics. control algorithm and hardware characteristics. Morever.
discussions are mainly focused on Single-Input-Single-Output systems. Multi-Input-
Multi-Output cases are seldom addressed.

In the research literature. modeling of the magnetic bearing system is typically
achieved using the magnetic circuit theory [41. 49]. In this case, non-ideal effects such
as the eddy current loss. the flux leakage. and the fringing flux, which are difficult
to quantify. are assumed to be negligible. By the use of related electromagnetic
principles, the resulting magnetic force turns out to be proportional to the square
of input current and inversely proportional to the air gap distance squared and the
proportional constant is a function of the pole face area, number of the turns of

the coil and the air permeability. Nevertheless. due to the restrictive assumptions
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made, there always exist significant discrepancies between the real system and this
theoretical model. In [17], Fabien proposed a nonlinear model to account for the
non-ideal effects, in which the flux leakage is modeled as the reluctance in parrel with
the magnetomotive force and the core reluctance is in series with air relucatace. In
this model, an effective area is also used to represent the fringing flux effect. In such
a model, the detailed system behavior is not carefully examined. Thus the magnetic
fluxes assumed is not physically justified.

Because of the abundent research in the linear control theory, linear models of
the magnetic bearings are also frequently employed. These models are based on
linearization of the dynamic equations ahout the equilibrium point[56]. Linear control
system design using these linear models has been discussed extensively. For example.
Matusmara and Yoshimoto [28] used an integral type servo controller to control a
horizontal rotor-magnetic bearing system. Lee and Kim [25] performed model testing
and suboptimal vibration control offlexible rotor bearing system by using a magnetic
bearing. Hubbard and McDonald [23] used linear-quadratic approach to design a full-
state feedback controller for a pendulous supported flywheel. Additional references
on linear control system design can be found in [43. 19. 1].

Linear controllers are based on linearized models. They may not be appropriate
for magnetic bearings because the systems are characterized by high speed. high
precision, and rapidly changing dynamics. These properties may lead to a significant
increase in the nonlinear effects. Moreover. either because precise descriptions of
the nonlinear effects are hardly available are the rotor speed changes rapidly. model
uncertainties often exist and can not be neglected. Consequently, any practical control
design for high performance magentically levitated rotating machines must address
both the nonlinearities and the uncertainties issues.

Two approaches have been proposed to control systems with nonlinearities and



uncertainties. One is the adaptive approach, and the other is the robust approach.
Fig.1.1 shows a general structure for these two types of control systems. For the
adaptive type controllers, based on the prior information about the plant, reference
inputs and disturbances, a set of proper basis funtions is assumed to span the system
function space, and then an estimation scheme is used to identify the individual
weighting factors (or coordinates of the basis functions) in real-time. By forming
a linear combination of the basis functions, a compensating signal is generated to
cancel the system function. Depending on the nonlinearities encountered and the
system performance sought, basis functions can consist of, for example, gaussian
radial basis functions[38], neurons{33], convolution kernels[22]. Furthermore, if the
system behaves in a way that the inherent physics can be applied to obtain the
basis functions, not only the control structure is drastically simplified but also higher
performance is achieved. Such a concept has enjoyed a great sucess in the control of
robot manipulators, spacecrafts and underwater vehicles[39].

For the robust control of nonlinear, uncertain systems, sliding control methodology
has been investigated frequently[47]. This methodology constructs the compensating
signal bases on the bounds on the nonlinearities and/or uncertainties rather than
approximating and estimating the nonlinearities directly. The control system is char-
acterized by a discontinuous function with high frequency chattering, which forces
the system to follow the reference signal quickly. This infinite frequency chattering.
however, is undesirable in practice, since it involves high control activity and may
futher excite high-frequency unmodeled dvnamics. The use of boundary layer was
adopted in [40] to smooth out the control discontinuity and eliminate the chattering
problem.

Some control methods discussed above have been reported for magnetic bearing

applications. For example, design of sliding mode controllers have been applied for
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magnetic suspensions [31] and rotor-magnetic bearing systems [37]. However, None
of the references report any experimental results. In practical applications, one often
faces situations that the prior knowledge about the basis functions, the bounds of
the uncertainties, and the nonlinear system characteristics are not available. On
the other hand, the number of the basis functions may be too large so that on-
line computation is practically impossible with today’s technologies. In such cases,
these controllers may fail and one needs to find some other procedures to design the
controller. Motivated by this practical issues, Youcef-Toumi has proposed Time Delay

Control (TDC) [53, 54, 55].



Unlike the control strategies described before, TDC does not depend on estima-
tion of specific parameters or repetitive actions, and does not require switching action.
Rather, it directly estimates uncertain yet nonlinear system functions, which is ac-
complished using time delay. The gathered information is used to cancel the unknown
dynamics and the unexpected disturbances simultaneously. Then the controller im-
poses desired dynamics into the plant. Previously, TDC has been applied to servo
systems, robot manipulators and magnetic bearing system and has shown impressive
performance in face of unpredictable disturbances and uncertain, nonlinear system
dynamics [53, 54, 56]. One main purpose of this thesis is to employ the local function
estimation idea used in TDC to develop an alternative controller for a magnetically

levitated rotating machine.

1.3 Scope and Contents of the Thesis

This thesis contains three main themes, namely, investigating achievable performance,
obtaining a simple but accurate model and developing a robust controller using local
function estimation for magnetically levitated rotating machines. An Loop-Transfer-
Recovery (LTR) based procedure is first proposed to initiate the integration of design
and control and solve the achievable performance problem for magnetically levitated
rotating machines. Limitations from hardware components constraint the system
behavior in various manners. Combining LTR’s asymptotic properties and these
performance constraints, it is possible to investigate the relation between the system
bandwidth and the achievable performance more closely.

For the modeling part, a finite dimensional model for a magnetically levitated
machine is presented. The rigid rotor dynamics as well as the actuator dynamics are
described. In order to further refine the model, more detailed system behavior such

as flux leakages, fringing fluxes and the eddy current loss are also considered and
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Thevenin’s theorem is used to obtain a simple equivalent model.

As far as the controller design is concerned, an adaptive control scheme based on
the local function estimation concept is applied to cancel the nonlinear and uncertain
dynamics present in magnetically levitated machines. Instead of approximating the
nonlinear, uncertain system function globally as it is suggested in the adaptive control
literature, the control scheme developed uses a local function estimation concept.
Because the approximation and the estimation of the system function are localized,
a less number of basis functions is needed. This, together with the property that the
neighborhood of approximation is constantly updated, could give the control system
fast adaptation capability and robust performance.

The thesis is organized as follows: First, modeling of magnetically levitated ma-
chines is given in Chapter 2. Two current control schemes and the associated perfor-
mane constraints are also examined in detail. In Chapter 3, an LTR based approach
is used to investigate the relation between the system bandwidth and the disturbance-
rejection capabilities. Chapter 4 contains experimental results on system idenfication.
as well as a modeling refining procedure to connect the physics and the experimental
data. To effectively deal with the nonlinarities and uncertainities existing in mag-
netically levitated rotating machines, an adaptive controller is proposed in Chapter
5. Chapter 6 presents the practical implementation issues and simulations of the
adaptative controller. The adaptive control of the magnetically levitated turbo pump
together with the experimental evaluation is presented in Chapter 7. Finally, con-

cluding remarks are given in Chapter 8.



Chapter 2

Analysis of Magnetically Levitated
Rotating Machines

2.1 Introduction

The system of interests is a magnetically levitated turbo pump used in the semi-
conductor industry for creating vacuum environments. The sectional view of this
machine is shown in Figure 2.1. In this machine, the rotor is spun by an induction
motor. There are two circular-shaped radial bearings to keep the rotor centered and
one thrust bearing to support the weight of the rotor. In addition, the positions of the
rotor are measured by inductive sensors. These sensors have similar configurations as
the magnetic bearings.

The purpose of this chapter is to analyze the dynamics of such magnetically lev-
itated rotating machines. A model which consists of the the rotor dynamics and
actuator dynamics is given first. Then different current control schemes and asso-
ciated performance limitations are discussed. The knowledge acquired here will be
used extensively in later chapters to investigate the achievable performance, to per-

form model refinement and to design the control system.

2.2 System Dynamics

Simplified schematic diagrams for the rotor-bearing assembly are shown in Figure 2.2.
As shown in Figure 2.2.a, each of the two radial bearings actuates forces in the two

radial directions (.X; and Y] or X; and Y,) with an eight pole electromagnet. The
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Figure 2.1: Schematics of a magnetically levitated turbo pump

radial bearings together control two rotational and two translational degrees of free-
dom. In Figure 2.2.b, the displacement in the axial direction is controlled by a thrust
bearing with two annular electromagnets. In order to obtain the overall dynamic

equations, we first examine the dynamics of the rigid rotor and the electromagnetic

actuator separately.
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Figure 2.2: Schematics of a magnetically levitated rotating machine

2.2.1 Rigid Rotor Dynamics

A free body diagram of the rigid rotor is shown in Figure 2.3. The forces F,,, F,;, Fi.
F,2 are provided by the two radial bearings. which are at distances a; and a, from the
rotor center of mass respectively. The thrust bearing generates a force F, to support

the weight of the rotor. A exogenous disturbance force Fj;, which consists of F;, and
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A

Figure 2.3: The freebody diagram of a magnetically levitated rotating machine

Fy,, is applied at a distance ¢ from the center of mass. O — XY Z is the inertial
frame fixed in the space. z.. y., and z. are the displacements of the center of mass
along the X, Y and Z directions. z;, y;, z2. and y, are displacements of the rotor
near radial bearing locations. All of these displacements are given with respect to the
inertial frame. It is also assumed in this analysis that the radial measurements and

bearing forces are in the same radial plane of the rotor: the effects of non-collocation

13



are ignored. @ and ¢ are (yaw and pitch) angles of rotation about the X and the ¥
axis, respectively. These angles are assumed to be small. Furthermore, in practice,
the center of mass of the rotor may not coincide with the geometric center, and the
axis of rotation may not be perfectly aligned with the rotor’s major principle axis.
Therefore, both the static unbalance and the dynamic balance are usually present
in rotating shafts. In Figure 2.4, the static unbalance ¢ is the distance between the
rotor’s geometric center O and its center of mass O, and the dynamic unbalance 7
is the angle between the major principle axis O;Zb and the axis of rotation. Also in
this figure, 6; and é, are the phase angles associated with the unbalances.

The resulting dynamic equations, in terms of z., y.., z., ¢ and 8, are given by [9],

m&, = F, + F., + Fyz + meQ? cos( + 6,)
my. = F, + F, + Fj +meQ?sin(Q + &)
mz, = F.—mg
LI+ 1,00 = —a\F, +aF, + (Fy + (I, — 1,)79? cos( + 6,)

Lé—LO = aF,, —ayF,, — (Fp + (I, — L)% sin( + &), (2.1)

where m is the mass of the rotor, I, and I, are the axial and transverse mass moment
of inertias. Notice that the gyroscopic coupling effect appears as 1,96, 1,92 terms in
these equations because of the rotation speed Q. Assuming the static unbalance ¢ is

small compared to «; and a,, the following relations can be obtained from geometry.

I = r.tap
Ta = T— Ay
No= Ye— b
Y2 = Yo+ @b

— -~ ¢
= oS

o
o

(83
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Y

Figure 2.4: The unbalances of the rotor

The dynamic equations of (2.1) can now be written in terms of x,, x5, y1, ¥2, and =

as:

7 + alﬂ I(
1 a +apl, Y1 —
- a2Q Ia(
m — —_—
2 a1+a21 1=

Y2)

— ¥2)

a I}

= —rIg+— F,:z'2""gl
m

Fd:c+

02 [s cos(Ut + &) +

3
= /—.z'l+ F12+
m

L ; Iaalr sin(Qt + 62)]

C2 Fdz:
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02 [5 cos(t + 6;) — = ; L a,Tsin(Qt + 62)]
. a I, a B ¢
yl—aljt—azl(ml_m) = ;Fyl'*‘ Fy2+ 1de+
02 [5 sin(QUt + 6;) — — ; Iaalr cos(Qt + 62)]
. a1, 3 ¢
2+alia21(n—zz) = —Fn+- Fyz+ dey
0?2 [5 sin(Qt + 61) + — Iaagr cos(Qt + 62)]
F.
I = ——gq, (2.3)

_ Ir+ma? _ I,—maja _ I;+ma3 . — I,—mayf ~ _ L4magl
where o = =574, g = b=mtita oy = ZTOR% () = Loald and (, = e

2.2.2 Actuator Dynamics

Because the magnetic bearings under consideration generate the actuation forces using
the same energy-transduction principles, it suffices to study the radial bearings to
understand the acturator dynamics. As shown in Figure 2.2, each eight pole radial
bearing induces coupled magnetic forces along the X and Y axes. Coil currents
along the X-axis induce forces along the Y-axis and vice versa. The modeling of the
coupling among axes due to actuator dynamics is discussed in detail in [52]. If this
effect is ignored, the magnetic force produced by the electromagnet along each radial
axis can be modeled independently of the displacement and current along the other
axes. Figure 2.5 shows the schematic diagram and the bond graph model of the z,
bearing. In the model, the two electromagnets are assumed to be the same. Other
modeling assumptions include: 1) the flux leakage and fringing fluxes of the magnetic
field are neglected, 2) the core material is highly permeable and is laminated so that

the eddy current loss is small.
In the bond graph model, the current driver of each electromagnet is modeled

by an ideal flow source SF. The gyrators, with moduli n equal to the number

16



xm B=22.5 degrees

cos(B)
n .
: M Fm :
SF——> Gy ——-NC:Ca—— > TF
l] ¢l xml \ //—\\
Fa./ 1
1—  Fela |
x. A /
F / ! \\ //
m —_
SFF——— Gy — 12 C: Ca — TF
i, . ¢2 xm, .
" -cos(B)

b. The bond graph model of the x1 magnetic bearing set

Figure 2.5: The schematic of the x; magnetic bearing and its bond graph model

of turns in each electromagnet, transduce the energy from the electrical domain to
the magnetic domain. The magnetic energies are then delivered to the mechanical
domain through C fields, which model the energy-storage behavior of bearing gaps.
Because the magnetic forces Fy,, and F5,, are not aligned with the z; direction, two
tranformers, with moduli equal to & and —& (& = cos(22.5°)), are used to transmit the
powers. Notice that the minus sign in the transformer modulus is to reflect that the

net actuator force is an algebraic sum to the two magnetic forces acting in opposite
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directions. Consequently, the magnetic forces are summed by the one junction and
the net force is applied to the I-C field, which represents the rotor dynamics in (2.3).

The magnetomotive force M) (or MMF) and the magnetic flux rate q;(,) in the
magnetic domain represent respectively the effort variable and the flow variable of
the associated electromagnet. Furthermore, the magnetic energy &) stored in the air
gap is -2;252;(’—) C,() denotes the generalized capacitance for each of the bearing gap

and is equal to 5 Here ho is the nominal bearing gap, T, () = Tm1 OF T is

poA
2(ho—Tpmy.
the displacement of the rotor with respect to the pole faces of each electromagnet, jq
is the air permeability, A is the pole face area, and the existence of two air gaps in
the electromagnet results in the factor 2 in the denominator. Based on the magnetic

energy obtained, the constitutive relation for the C field in the bond graph can be

derived as [24]:

2
—_ % _ 70 9
Fm(.) - B.Tm( ) - l[0‘4 (~~4)
. 2 he —
_ogy _ 2(ho = Tm))91y )
My = B0, oA ’ (2.5)

where F,(, is the attractive force generated and ¢ is the magnetic flux in each
electromagnet. Consequently, the total force created by the x; magnetic bearing is

given by:

Y - S 5
Fxl =K (/,LOA poA . (...6)

Moreover, because M) equals to ni(, due to the gyration action, using (2.5), one can

express ¢ as:

npg Az,
STy a——

—_—
5]
-~1

hO - 17111(.)).
Thus far, the analysis has been based on the fact that the magnetic core is not

saturated. Because of saturation, the magnetic flux can never exceed B,,;A, where
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B,q: is the saturation flux density of the core. Therefore, Eq.(2.7) will be assumed
when

npoAi(,

2Aro — Tm(y)

| | < BooeA (2.8)

and ¢() = B,,:A otherwise. If both electromagnets are not saturated, one can rewrite

the magnetic force equation as:

2 2 2 - .
F,= n poAzlrj - n quzf_,f‘m 2) ' (2.9)
4(ho — 71K) 4(ho + 11%)

This indicates that the actuator force is highly nonlinear in the displacement and coil
currents. Notice that in obtaining the above equation. z,,; and z,,; were substituted
by z;x and —z,k respectively using the corresponding transformer moduli.

Since the radial bearings are the same, magnetic force equations similar to (2.9)
can be derived for the y;, ¥, and y, bearings as well. Moreover, same expressions
also apply to the thrust bearing to account for the magnetic force along the Z axis,
although the parameter x equals 1 instead. In this case, the magnetic force for the

thrust bearing has the following expression:

n?pgAi?, npoAi?,
4(’10 - 3)2 4(}l0 + 2)2

F. =

(2.10)

where 7., and i, are the coil currents of the upper and lower annular electromagnets
respectively. Notice that because the magnetic force is now aligned with the relative
movement between the rotor and the bearing pole faces, transformers are not needed

and the parameter « equals 1.

2.2.3 Overall System Dynamics

Since the radial bearings are the same, magnetic force equations similar to Eq.(2.9)

can be derived for the y;, z;, and y, bearings as well. These equations, together with
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the rotor dynamics in Eq.(2.3), compose the overall system dynamics. Obviously,
by regulating the coil currents properly, the magnetic bearings can provide forces to
control the rotor and achieve good disturbance rejection. Therefore, the success of
using magnetic bearings lies in how the control system is designed. Assuming the coil
current of each electromagnet is accessible and the relative displacements 2. y;. 5.
y2 and z are measurable, the overall system contains ten inputs and five outputs’.
Because the major nonlinearites in the resulting dynamic equations arise from the
actuator dynamics, linearization schemes are usually performed first to reduce the
nonlinearities in the actuator dynamics and facilitate the control system design. In
the following section, two linearization schemes and the associated performance con-

straints are investigated.

2.3 Current Control Schemes and Performance
Constraints

Typically, two linearization schemes are employved for magnetic bearings. One is the
input-state linearization, the other is the bias current linearization. Before discussing
these schemes and the associated performance constraints in detail, we begin with
introducing the following dimensionless variables: Among the variables, 75 is a ref-
erence current which will be selected as the bias current later, w, = \/%ﬁ% is a
reference frequency. and P,,., v, are respectively the maximum power output and
the DC supply voltage of the current drivers?. With the help of these dimensionless
variables, the dependence of the system characteristics on the physical parameters

can be easily revealed. Particularly. the selection of w,. P}, and v} allows one to

IThe dynamics of the spinning motion is not considered here: hence, the rotation speed € is not
a state variable and is assumed to be measurable.

2Parameters such as ig. A, ho , Pnar and v, for the thrust bearing may be different from those
of the radial bearings.
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Normalized Force

Normalized Current

Normalized Displacement
Normalized Flux Density
Normalized Time

Normalized Static Unbalance
Normalized Dynamic Unbalance
Normalized Power

Normalized DC Supply Voltage
Normalized Rotation Speed
Normalized Gravity

Table 2.1: Dimensionless variables

concisely present the subsequent analysis on performance constraints.

2.3.1 Input-State Linearization Scheme

As the title suggests, this linearization scheme is achieved by a combination of a state

transformation and an input transformation, so that the nonlinear system dynamics

can be transformed into a linear one [45, 46]. Taking the z; bearing as an example,

the transformations are:
if Fiq
i
i3
if Fiy
i

12

v

0

\/4Frl(h0 — 11K)?
n?pgAx

0

0
0
—-LFIl(ho —_ fl,'lh‘)2 5
\/ n2po Ak ' (2.11)

One can now directly use the linear system in Eq.(2.1) for controller design by treating

F()’s as the control inputs. However. in practice, the hardware components are far
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from ideal and they will impose performance constraints on the system.
First, emergency touchdown bearings are usually placed to prevent the rotor from
colliding into the magnetic bearing pole faces. In the ensuing discussion, it is assumed

that the touchdown bearings would limit the displacements of the rotor so that

h
|21, 22, 41,92, 2| < - (2.12)

Second, due to the saturation of the magnetic flux, the magnitude of magnetic forces
can never exceed ﬁg%:i. Such a constraint is referred as the fixed load capacity in
the literature. Finally, the rate of change of magnetic forces is limited. The resulting
effect is known as the fixed force slew rate limit. To view this, one can use the
constitutive relation of the C field. For the z, bearing, the derivative of F,, with

respect to time ¢ can be written as:

dFny 206 Mo
dt  poA  ho— ()

(2.13)

where the first equality follows from Eq.(2.4) and the second equality makes use of
Eq.(2.5). Because power is assumed to be conserved in gyrators, the output power
M ¢ equals the input power v(.)i(.)» which is always less than the maximum power of

the driver. Then the limit of the force slew rate can be given by:

dF.rl

(L) g2
dt '

()I .""Pma.r
= ho(2 - k)

(2.14)

The above inequality uses facts that only one electromagnet is turned on and |hy —
Tm()| = ho(1 — §) due to the existence of the touchdown bearings.
Now, one can express the overall system dynamics and the performance constraints

in terms of the dimensionless variables. They are given by:

B+ —y3) = afL +BFL + GFj +
Q72 [e™ cos(Qt™ + 6,) + £77 sin(Qt* + 6,)]
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=y —5z) = BFL +vFL + GFL +
Q"2 [” cos(Qt™ + 6;) — Evr™sin(Q ™ + 82)]
yp — (a1 —23) = aF; + BE, + G Fy, +
02 [ sin(Q7t" + 6,) — 7" cos(Vt* + 6,))]
Yy + QT (zy —13) = BFL ++FL+ GeFy, +
Q2 [™sin(Qt" + 6,) + v cos(Vt™ + 6,)]

= Frog, (2.15)

s

and

leils lezls lyrls lyal 1=l <3 (2.16)
'F;II?IF;2|’F;1 ’|F;2 <K
IFZl <1 (2.17)
dFz | |dFs| |dFy| |dFy| |dF:
I . X . z < * 2 o
ldt= Ve |\ | | @ | S e (2.13)

— _a [ — -1
where n = 41—4a, and £ = =35,

2.3.2 Bias Current Linearization Scheme

Instead of directly dealing with the actuator nonlinearites, this scheme is based on the
conventional Jacobian linearization for small range operation. Still illustrating the

idea using the x; bearing, we apply the following transformation to the coil currents:

g

il = ig + i.t1~ 2'2 = io - ixla (219)

where iy is the bias current and 7,; is the control current. Subsituting the above
relations into Eq.(2.9) and performing linearization at z; = 0 and i;; = 0, the

magnetic force now becomes

n2poAki? (i, x
F:r:l = _giz___o (——l’ + Ii_l') + F.rl.h.a.t.- (2.20)
T [ 2] Ig
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Rewritting the above equation using the dimensionless variables, we have
Fr = 46B 5 + 4R B 0T 4+ Fo o (2.21)

Regarding the performance constraints issues. Eq.(2.12) is still applicable for the
purpose of limiting the rotor displacements. Furthermore, Eq.(2.21) is valid only
when both electromagnets are not saturated. namely. the conditions in Eq.(2.8) are
true. Again, expressing Eq.(2.8) in terms of dimensionless variables. we have
1 +i7, 1

|< & (2.2

| 1Fra; — B~

(8]
8
]
S

However, in order to simplify the analysis afterwards. rather than using the above

equation, we impose a more restrictive constraint:

L4 _ 1 -m . . 5 o
1— h'l.l‘l’i'l < B or B™|iz,| + &|z]| <1 - B, (2.23)

14:3, 142, |
1:Fru'?| < 1-xjr}]”

by the use of the inequality | Eq.(2.23) can somehow guarantee
that the range of operation is small, so the high order terms in the magnetic forces
are negligible. For other constraints, first notice that typically in systems driven by
current sources, voltage drops across the terminals of current drivers can never exceed

the DC supply voltage [10, 27). In addition. £(n@), which is known as the flux linkage

rate. equals this voltage drop. Consequently. the flux rate ¢ is limited by

: v
lo] < —n~ (2.24)

Substitution of ¢ by the expression in Eq. (2.7) and the current transformations in
Eq. (2.19) yields

v
< - (2.2

- n

o
o
Ot
~

noA di N K(ig £ 141) day
2(xo F rxy) \ dit ro F rr; dit

Assuming a the small range of operation and using the dimensionless variables. the

above inequality can be written as:
[4B*%i7, + 4B k]| < o). (2.26)
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Such a constraint is similar to the force slew rate limit discussed previously because
of the first order force terms in Eq. (2.21).

All of the constraints obtained thus far strongly depend on the normalized flux
density B~. It has been reported in the literature [27, 50] that, when the displacement
is small, choice of B> = 0.5. or having the nonminal flux density equal to half of
the saturation flux density, can maximize the range of the linear force. Therefore,
B* = 0.5 will be assumed through the subsequent investigations. Ignoring the high
order terms in the magnetic forces, the dimensionless linear dynamic equations and

performance constraints are given by:

&+ (Y] — v3) — K*(ax] + Ba3) K(ais, + Bi%) + G F;,

+ Q%[ cos(Qt" 4 6;) + 77 sin(Q7t + 6)]

— (47 — §3) — K*( 8] + y23) R(B1 + 7ie) + G Fy,
+ Q[ cos(Qt* + &) + EvT™sin(Qt* + 6,)]

K(aiy, + Biy) + G Fy,

i — 1Y (61 — #5) — K2(ay; + By
+ Q2 [e*sin(Qt™ + 8;) + €77 cos(Qt* + 63)]
i + (3] - 35) — 2Byl + ) = w(Bi +7850) + G F,
+ Q2 [ sin(Qt" 4 8;) + EvT™ cos(Q7t™ + 6,)]

o= gt (2.27)

and

IN
o=
—_
[S]
o
03]
~

|3l 123] s lvils lwsl s =]
|751] + 28127 |5 2] 4 26]ag]- g, + 26195, [55,] + 26z <1

ifl+22"] <1 (2.29)
(B, 0
at~ Vs

diy, d.rl
dt* dt"'

di;2 drz
at~ Ve

| i
at~ N ar

<v

»*
s

25



diz | d=-
dt~  dt*

< ;. (2.30)

From now on, all *s will be ommitted for the purpose of simplicity, but one still has

to keep in mind that only the dimensionless variables are to be dealt with.

2.4 Summary and Remarks

This chapter has presented a finite dimensional model for magnetically levitated ro-
tating macnines. The plant dynamics including the actuator dyanmics, rigid rotor
dynamics were described. The complexity and nonlinearities in the system char-
acteristics were illustrated through this dynamic analysis. In order to simplify the
controller design, two different current control schemes were introduced. The ma-
jor difference between these two current control schemes lies in the induced system
dynamics. Taking the radial bearing system consisting of z;, y;, x; and y, axes for
example, if the rotor is not spinning, according to Eq.(2.15)the open-loop system for
the input-state linearization scheme has all of its poles located at the origin, while the
poles introduced by Eq.(2.27, the open loop dynamics of the bias current schemes,

are the roots of the following characteristic equation:

[s* = 46%(a + 9)s* + 165" (ay - 7)) = 0. (2.31)
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Chapter 3

Achievable System Performance

3.1 Introduction

Because the induced open-loop dynamics of either current control scheme is not
strictly stable!, a stabilizing controller is absolutely required. This chapter intro-
duces an LTR ( Loop Transfer Recovery ) based procedure to initiate the integration
of design and control and solve the achievable performance problem for magnetically
levitated rotating machines. Combining LTR’s asymptotic properties and the perfor-
mance constraints from hardware components, it is possible to investigate the relation
between the system bandwidth and the achievable performance more closely.

In rotating machine applications, one of the crucial factors that determines the
system performance is the disturbance rejection capability. Consequently, the dis-
cussion is particularly focused on the disturbance-rejection related issues, namely,
system stiffness (or equivalently, compliance) properties and allowable unbalances.
for the radial bearing system. Such an investigation will be demonstrated using the
existing magnetically levitated turbo pump. Comparisons between the two current
control schemes on the achievable performance will also be given. First of all, a brief

review of the LTR methodology is provided below.

1t is not difficult to show that Eq. (2.31) has four roots in the right half plane.

o
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3.2 LTR Controllers

LTR is a linear quadratic Gaussian (or LQG) optimal control based methodology.
With the stability guaranteed, it offers engineers a relatively simple technique to
perform frequency shaping in multivariable systems. There are two major ways to
design LTR conircllers, recovering the loop transer function at the control input or
at the plant output. In this paper, the latter approach will be adopted.

Consider a linear, time invariant, minimum-phase system described by:

x = Ax+Bu

y = Cx. (3.1)

where x is the state vector, u is the control input, and y is the output. If one applies
LQG control, which is a combination of LQ and Kalman filter designs, to the system,

the resulting loop transfer function has the following asymptotical behavior [26, 42]:
lim ®(s)Kroc(s) = Grr = C(sI - A)'H, (3.2)
o

where ®(s) = C(sI — A)™'B is the open-loop tranfer function, Kroc(s) is the LQG
controller, Gy F is the loop transfer fucntion of the Kalman filter, H is the Kalman
filter gain matrix corresponding to a fictitious output noise intensity u, and p is the
control weighting parameter of LQ. As implied in Eq. (3.2), by implementing the
cheap control LQ problem in LQG, one can have the system loop tranfer function ap-
proximate the Kalman filter loop transfer function. Consequently, if G is selected
properly, the frequency shaping of the loop transfer funtion can also be performed
accordingly.

Usually, the selection of Gxr makes use of the Kalman filter equality,

o:[1+ Grr(jw)] = \/ 1+ ,l,"? [Cliw1-A)7L], (33)
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where L is the process noise influencing matrix in the Kalman filter problem and
the notation o;[.] represents the singular value of the quantity between brackets.
This equality is particularly useful when an integrator is added to each control input
channel. In such LTR with integral control problems, it is shown in the Appendix A
that L can be suitably selected so that C(jwI — A)™'L approximately equals }{;I at
the high frequencies. Substituting this result into Eq. (3.3), the following estimation

for Gi F(jw) in high frequencies can be easily obtained:

1

w1t

0i [Grr(jw)] = (3.4)

Due to the loop recovery action of Eq. (3.2), one can immediately conciude that

. . 1
P(jw)Kigeljw) = ‘-‘717 (3.5)

Because the cross-over frequency now becomes %, adjusting the system bandwidth w;

can be easily accomplished by the formula:
1
)
3.3 Performance of Rotating Machines

In order to apply the LTR method to the radial bearing substem of the magneti-
cally levitated rotating machine, the dynamic equations have to be expressed in the
following state-space form:

).(p = Apo + B,,u,, + def + Ludu

y = Cux,. (3.7)

where x, = [r1,22,¥1,¥2. 1, %2.91,Y2)" is the state vector, y = [z1,%2,y1,y2)7 is

the output vector, u, is the control input which equals [Fy, Fyo, Fy1, Fy2)? for the
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input-state linearization scheme and equals [irl,ixz,iyl,iyz]T for the bias current
scheme, d; = [Fy,, Fy,)7 is the external disturbance vector, and d, = Q2[e cos(Qt +
1), 7sin(Qt + 6;), esin(Qt + 6;), 7 cos( + 6,)]7 denotes the unbalance vector. Ac-
cording to Eq.(2.15) and Eq.(2.27), the matrices in Eq. (3.7) have the following
forms:

Oux4 Lix4
0 0 -0 39
A, = 0 0 nQ -
Oxs 00 0 0 0
- w0 0

for the input-state linearization scheme.

O4x4 Lixa
k%a k23 0 O 0 0 —Q 90
A, =| &8 k% 0 0 0 0 2 —mQ
0 0 ~2a K23 N - 0 0
0 0 w23 KZ%y  —Q Q0 0
O4x4 O4x2
a 8 0 0 ¢Gi 0
for the bias current linearization scheme,and B, =| 3 v 0 0 |,Ly=| ¢ 0
0 0 a 8 0 G
0 0 3 ~» 0 G
04x4
1 &£ 0 0
L. = 1 v¢6 0 0O ,C,,:[L,H 0,4y 4 ] for both current control schemes.
0 0 1 ¢
0 0 1 ut

Figure 3.1 shows the block diagram of the closed-loop system under the LTR

integral control. In this diagram, according to [6, 4],
Kige(s) =G[sI- A+ BK + HC] 'H, (3.8)
in which G = %B'P and H = ﬁQC'wiihPandQ satisfying the Riccati equations,

PA+AP+C'C- %PBB'P =0 (3.9)
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Figure 3.1: The block diagram of the closed-loop system under LTR integral control

and
AQ+ QA +1I- %QC'CQ = 0. (3.10)

Notice that the definitions of matrices A, B and C can be found in Appendix A.

In rotating machine appiications, one of the crucial factors that determine the
system performance is the disturbance rejection capability. Therefore, we will focus
on the disturbance-rejection related issues, namely, system stiffness (or equivalently,
compliance) properties and allowable unbalances. The system compliance matrix
S(s), which is the transfer function from the external disturbance d; to the output

Yp, is given by:
Si(s) = S(s)Lq, (3.11)

where S4(s) = [I + C,(sI - A,L,)_IB,,K(.S)]—l C,(sI— Ap)-l. A similar expression
can also be obtained for the transfer function from the unbalance vector d, to the

output. However, what concerns us here is how to compute maximum ”magitudes”

31



of the unbalances so that when they are imposed to the system, the performance
constraints such as Eqs.(2.28)-(2.30) or Eqs.(2.28)-(2.30) would not be violated.

To solve this problem, let us take a close look at d,. Due to the sinusoidal
nature of this vector and the identity sin(¢ + 5) = cos(d), to study the effect of
unbalances, it is sufficient to examine how the transfer functions in question behaves
at the frequency Q in the input direction Q2 {jeejsl,rej“j?,eej‘sl, jrej'52]T. For exam-

ple, the quantity éﬂ + hd—“ has a sinusoidal nature with the amplitude equal to

Jeedt
Jb2
i®[1 0 0 0](-K(jQ) +sDS(NL, :j& . Since
jrei®
jeedh 7 0
Tei% 01 ee?®t ,
eejsl = 1 0 [ Tejb.g } ? (3.12)
jTel’ 0 j

T
it is easy to see, by treating [eeJ‘sl T6J52] as a new input vector, that |ﬂ-Il @l[ < v

if

VEFT12< 0,070, [i9°]1 0 0 0] (-K(jQ) + sD)SGQ)L (3.13)

D - O .
N0 =D

for any arbitrary phase angles §; and é;. This inequality, in which o,,,, denotes the
maximum singular value of the quantity between brackets, utilizes the fact that the
maximum singular value of a tranfer function matrix represents the largest principle
gain among all possible input directions [26]. Similar analysis can also be applied to
obtain the upper bounds of unbalances for the other constraints. The largest quan-
tity v/e2 + 72 that meets all the performance constraints is defined as the allowable

unbalance.



3.4 Achievable Performance of a Magnetically Lev-
itated Turbo Pump

Now we use the properties of LTR controllers to investigate the achievable perfor-
mance of a real machine. We are particularly interested in how the system bandwidth
and hardware parameters influence the disturbance-rejection. The example used here
is the magnetically levitated turbo pump discussed in [56]. Main system parame-

ters are listed in table 3.4. In addition, the radial bearings employed, which have

System parameters

m=22Kg mass

I, =1.555 x 103K g — m? longitudinal moment of inertia
I, = 8.285 x 1073 Kg — m? transverse moment of inertia

a; = 0.0238M moment arm

az; = 0.0691 M moment arm

vs = 24volts supply DC voltage
Por = T2Watts maximum supply power

Table 3.1: System parameters

ho =25 x 107*m, A = 9.75 x 10~®m?, and n = 200turns. are made of laminated
silicon steel with B, =~ 1.2Telsa. For the pupose of reducing the heat dissipation
and avoiding excessive flux leakage and fringe fluxes due to the high flux intensity,
a safety factor of 1.5 is adpoted and B,,, = 0.8Telsa is assumed. This leads to
wp = 300.47-"’% and 7 = 0.7958 Amps when B~ = 0.5 is used. Consequently, we
have P, . = 33.14 and v; = 10.34. Now the LTR controller K(s) in Figure 3.1 is
applied to the system by choosing p =1 X 107!° to recover the loop. The achievalbe
performance, in terms of the system compliance and the allowable unbalance. of the
control system will be investigated belowed.

Figure 3.2 and Figure 3.3 show the maximum singular value of the system compliance?

2To recover the true compliances, one has to mutiply the normalized values by a factor f-%%,

sat
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Figure 3.2: The system compliance curves of the input-state linearization scheme

S4(jw) for these two current control schemes when the disturbance F; is exerted at
the first radial bearing (or { = —a) and the rotor is spinning at 25000RPM. Both
figures reveal that the compliance is low at low frequencies, which is due to the in-
tegral action. Then the compliance increases with the frequency. After it reaches
the maximum, the compliance decreases monotonously. and the two current control
schemes present similar behavior at high frequencies regardless the system bandwidth
changes. However, the input-state linearization scheme has smaller maximum com-
pliances in the low frequency region. and its compliance curves are generally lower
than those of the bias current scheme. This is possibly attributed to the fact that the
input-state tranformation, which assumes that perfect linearization is possible, can
cancel the actuator nonlinearities and thus eliminate the system instability; there-
fore, in input- state linearization scheme the controller does not have to deal with

instability problems which would occurred in the bias current linearization scheme.

which equals 5.035¢ in this case.
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Figure 3.3: The system compliance curves of the bias current scheme

It can also be observed from Figure 3.2 and Figure 3.3 that, in either scheme,
when one increase the system bandwidth, the compliance curves are lowered down
accordingly. Such an observation tends to make one conclude that a high bandwith
system is more favorable than a low bandwidth one. This argument is true only when
unmodeled dynamics is not excited by the control action. Practically, unmodeled
dynamics such as rotor flexibilities always exist and would make the model invalid at
high frequencies. These effects usually prevent one from increasing the system band-
width infinitely. The analysis on how the first mode constrains the system bandwidth
can be found in Appendix B.

Figure 3.4 and Figure 3.5 show that, for both schemes, the allowable unbalance
decreases as the normalized rotation speed increases and the unbalance curves get
lower when one increases the system bandwidth. Since the unbalances of the rotor
are fixed quantities, in order to assure that the system can pass all desired rotation

speeds, the rotor unbalance v/e? + 72 has to be at least less than the minimum value
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Figure 3.4: The allowable unbalance curves of the input-state linearization scheme

of unbalance curves. For example, if the system bandwidth is selected as 1 and the
rated rotation speed is 25000RPM. which corresponds to a normalized speed of 8.7,
this minimum value is about 0.038 for input-state linearization scheme and is about
0.023 for the bias currrent scheme. However. readers have to keep in mind that
if perfect linearization is not obtained for the input-state linearization scheme. the
performance may be deteriorated and the instability may occur.

Basically. increasing the bandwidth makes the system stiffer; however, the bear-
ings also become more vulnerable to the unbalances. Figures 3.2-3.5 can be used to
select a proper bandwidth so that the system not only has desired stiffness proper-
ties but is also robust enough against the expected unbalances. For instance. if the
expected static unbalance. the expected dynamic disturbance, and the rated speed
are known, then Figure 3.4 or Figure 3.5 can be employed to determine the minimum
bandwidth so that the associated characteristic curve is above the normalized distur-

bance quantity across the operating speed range. Once the minimum bandwidth is
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Figure 3.5: The allowable unbalance curves of the bias current scheme

acquired, one can use Figure 3.4 or Figure 3.5 to select the appropriate bandwidth
which gives satisfactory compliance responses.

When designing magnetically levitated machines, plotting similar system compli-
ance curves and allowable disturbance curves also enable engineers to check whether
the hardware parameters, such as the bearing gap xo, the pole area A,the DC supply
voltage v,, the maximum power P,,,,, the rotor inertias and the system geometry,
are well-chosen. For instance, if the DC supply voltage is only 12volts, the allowable
unbalance curves for the bias current scheme appear to be those in Figure 3.6. It is
shown that due to the low voltage supplied, the allowable unbalance are significantly

reduced.

3.5 Summary and Remarks

An analysis procedure for evaluating the achievable performance of magentically lev-

itated machines was presented. By applying the LTR methodology to systems in
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Figure 3.6: The allowable unbalance curves of the bias current scheme for v, = 12volts

dimensionless form, the disturbance rejection characteristics for two different current
control schemes were investigated. It was shown that while increasing the system
bandwidth decreases the system compliances, the allowable unbalances are domi-
nated by the hardware constraints. Morever, according the simulation curves, it was
also observed the the input-state linearization scheme, which relies on a precise de-
scription of the actuator dynamics, generally exhibits better performance compared
to the bias current scheme.

The analyi this chapter makes use of the simple model developed previously.
The LTR design assumes all the system parameters are known and there is no model
uncertainties. However, frequently in practical applications, the behavior of real sys-
tems is not the same as that of the theoretical model and the information about
system dynamics is only partially available. As a result, linear control design such
as LT R may be inappropriate and one often needs to seek different control methods

that are capable of dealing with nonlinear, uncertain systems such as the magnetically

38



levitated rotating machines. Due to this reason, an adaptive controller for nonlinear
uncertain system was proposed and will be described in Chapter 5. But in the next
chapter, a model refining procedure will be first presented so that a simple but accu-
rate model can be used later for extensive simulations and to faciliate control system

B3

design.
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Chapter 4

System Idenfication and Model
Refinement

4.1 Introduction

The discussions thus far use the system model developed in chapter 2. The actuator
dynamics in this model, despites its simplicity, is valid only when the nonideal effects
such as the flux leakage, the fringing fluxes and the eddy current are negligible. In
this chapter, system identification is performed onr the existing magnetically levitated
turbo pump to study its dvnamic behavior. Because this machine is open-loop unsta-
ble, an stabilizing linear analog compensator is used in the identification processes.
The frequency responses of the theoretical actuator models are compared to the ex-
perimental results. Then a detail analysis on the magnetic fluxes is used to explain

the discrepencies and provide knowledge in refining the system model.

4.2 A description of the existing analog control
system

The magnetically levitated turbo pump under investigation basically utilizes the bias
current linearization scheme discussed previously. Furthermore, to reduce the power
consumption, one coil current in each of the opposite coil pairs is turned off if the

corresponding control current becomes too excessive. Taking the thrust bearing for
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Figure 1.1: Frequency response of a typical analog compensator

(4.1)

This nonlinear relation in Eq. (4.1) is implemented using electronics and the resul-
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tant current signals, which are in voltage form, are applied to linear power amplifiers.
The power amplifiers then output appropriate coil currents to the bearings. Figure
4.2 shows the frequency responses of the power amplifier associated with the thrust
bearing. Basically, the amplifier dynamics for all the five axes can be approximated

by the the form:

1

gls) = ) T (=51 (4.2)

27wn 27wn

in which w, ranges from 1A' Hz to 1.7K H=. Because the controller bandwidth chosen
later will be much less than the w,’s. the amplifier dynamics will be ignored.

The system is also equipped with a fairly complicated linear analog compensator.
The compensator circuit is made up of an integration circuit to increase static rigidity,
a phase lead circuit to increase the damping force of the rotor in the intermediate
frequency range. The amplitude and phase characteristics of the frequency response of
a typical compensator used are shown in Figure 1.1. The compensator for the thrust
bearing has six zeros and seven poles and an overall gain while that for the radial
bearing has five zeros, five poles and an overall gain. Therefore, totally there are 58
parameters that need to be tuned. The control law is fixed for all operating speeds.
The controller is decentralized and the design is based on linearized theoretical models
ignoring the coupling effects among various axes.

The purpose of this research is to improve the bearings’ stiffness properties by
redesigning the control system. A simple but accurate model can greatly facilitate
this design process. Because the system is unstable, as revealed by the characteristic
equation such as Eq. (2.31). performing system identification in the open loop sense is
not feasible. However. with the help of the analog compensator. we can still conduct
frequency-response analysis to obtain the linearized dynamic behavior of the open

system. The system identification procedure is described in the following section.
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Figure 4.2: Bode plots for the power amplifier associated with the thrust bearing

4.3 System Idenfication and Linearized Dynam-
ics

Figure 4.3 shows the experimental setup for system identification. This identification

procedure is based on the frequency response tests. During the tests, the rotor was at

rest and the analog controller was turned on to stabilize the system. An HP dynamic

signal analyzer was used to send a swept sine signal, which acted as a disturbance,

to one of the bearings. The signal frequency ranges from 0.1 Hz to 10 KHz. The
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frequency response is the experimental transfer function between the output position
and the input current, both measured in terms of voltage, of the asscciated bearing.
The carrier frequency of the source signals used in the induction position sensors is
25K Hz and the sensor dynamics is ignored in the thesis. The sensor gains are 25000‘;’
for the radial bearings and 9450% for the thrust bearing. Besides, the control currents

were measured using 0.30hms sensing resistors.

Disturbance Signal

!
i

N { — control rotor
Reference '—:b_" ! or.
i | Power {CUment!  Magneti Pt
| r ' | agnetic g
> Controller i+ | Amplifier | Bearing Rotor
- —_— —_—
Sensor

Figure 4.3: Experimental setup for the frequencey response tests

Due to the small amplitude of disturbances injected (0.01Volts), the frequency
response tests reflect the local open-loop dynamic behavior of each bearing. The
behavior depicts the linearized system dynamics around the operating point z;, z,,
Y1, Y2, 2, T1, T2, Y1, Y2. 35 Uzp, Uz, Uyl, Uye = 0, u, = u,s, where u,, is the steady

state current required to support the weight of the rotor at the nominal position.

4.3.1 Theoretical Linearized Dynamics

The system model obtained in Section 2.2 can be used to study the theoretical lin-
earized dynamics. Take the thrust bearing for example. Assuming u,; > 2ig, which

means ., = o + 0.5u; and ¢.; = 0. linearizing the thrust bearing dynamics gives us

= poAn?u?,  poAntuy,

bu.. (4.3)

2mhd 2mh} )
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where 6z is a perturbed displacement due to a perturbed control current du, around
ugs. Therefore, the theoretical transfer function from éu. to 4z is given by the follow-

ing expression:

A 2
6z(s) 02,:;;%‘“

buy(s) 2 — ———3""”0;1112"2. ’

mhyg

(4.4)

The resultant system is obviously unstable and it has poles located at =, / “éf:;;z .

Similar derivations can be applied to the radial bearings. However, it should be
noticed that the radial bearing system is an MIMO system and even the rotor is at
rest, ; and z2 (y; and y,) are coupled due to the geometic and inertia propertieé'
of the rotor-bearing assembly. The frequency response test of a single axis may not
produce useful information about the linearized radial bearing dynamics. However, it
is observed that during the tests, due to the control action of the analog compensator,
for w < 100H = the displacements of all axes remain stationary except the axis on
which the frequency response is conducted.

For example, when the disturbance signal is applied to the x; axis, z; = 0. Con-
sequently, there is only one degree of freedom in the X direction at low frequencies

and the dynamics as part of Eq. (2.3) is simplified to:

;= (a1 + ap)?
d1 —
I, + ma?

Fi, (4.5)

in which the expression for F,, id given by Eq.(2.6). At the levitated equilibrium
position, the current in both electromagnets equals 7o; therefore, u;; = 0, z; = 0, and

71 = 0. Thus the linearized model becomes:

5 (a1 + (12)2 N;loAian (Hio 1 ) .
oxy = -— = . .
N T mad R Uk ottt 30U (4.6)

The theoretical ; transfer function corresponing to the frequency response test con-



ditions can be given by the following expression:

(a14a2)? rpgdipn®

6z1(s) _ I, +maZ  2R2 wn
duzy(s 2 _ (aitaz)? n2udAign? ’ .
a1(s) § I, +ma3 ohg

4.3.2 Experimental and Theoretical Frequency Responses

Now we present experimental frequency responses together with the theoretical trans-

fer functions of the magnetic bearings. The theoretical responses are calculated using

the system parameters in Table 3.4 and the bearing parameters in Table 4.3.2.
Radial Bearing Thrust Bearing
20 = 0.35Amps 20 = 0.50Amps
n = 200turns n = 133turns

A=975%x10"°m? A=70x10"*m?
ho = 2.5 x 107*m ho = 4.0 x 10™*m

Table 4.1: Magnetic bearing parameters

Figure 4.4 shows the experimental frequency response of the z; radial bearing.
Also shown in this figure is the frequency response of the theoretical transfer func-
tion. Substituting the associated parameters into Eq. {(4.7), the thecretical transfer

function for the z; bearing is found to be

bry(s) 657 V o
5“:1(8) - ( s )2 _ I(F)’ (4.8)

117.

[+ ]

but the experimental frequency response can be curve-fitted by the following transfer

function:

éry(s) 141 (_‘_-_’_
buna(s) (=) -1V

81.7

)- (4.9)

Although the model in Eq. (4.7) is valid only for «w < 100H z, from Figure 4.4, it

is clear that this model is not accurate enough to predict the experimental responses
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Figure 4.4: Experimental and theoretical frequency responses of the z; bearing

especially the DC gain and the break frequency. Before getting into the detail of how
to refine the theoretical model to match the experimental behavior, let us also take
a look at the frequency responses of the thrust bearing.

Figure 4.5 shows the experimental and theoretical responses. In this case, the

measured steady siate current uss = 1.5Amps is substitued in the theoretical model.
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Different from the radial bearings, discrepencies exist not only in the DC gains and
break frequencies but also in the roll-off rates. Actually, in the low frequency range,

the experimental frequency response can be curve-fitted as
6z(s) 11.15 (E)
fu(s) T 2P+ (2P -1V

where w, = 191.64’—%‘—! (30.5 Hz), while the analytical one has the following expression:

oz(s) 8.40 (K
duc(s) (3:g)2—1V

(4.10)

). (4.11)

4.4 Model Refinement

In order to refine the theoretical models. one has to examine the validity of model-
ing assumptions made in Section 2.2.2, namely, the flux leakage, fringing fluxes are
neglected, and the core material is highly permeable. Figure 4.6 shows the typical
magnetic fluxes existing in the radial bearing. Both the flux leakage and the fringing
fluxes are shown in this figure. If the lumped-parameter modeling approach is still
adopted, one can discretize the whole system according to the assumed flux behavior
and obtain a more detailed picture. Figure 4.7.(a) presents a more precise bond graph
model of the radial bearing. In this model, the magnetomotive force n: is discretized
as a collection of effort sources S.. These effort sources are connected, through 1
junctions. to the generialized capacitances C. which models the core permeance. C;’s
represent the effects of the flux leakage across the legs of the electromagnet. while
Cy’s model the permeances of fringing fluxes. The permeances inside the rotor are
also modeled by C.’s. Cy, still characterize the generalized capacitance for the useful
fluxes. Notice that it is also assumed in this model that magnetic forces contributed
from the fringing fluxes are negligible compared to those due to the useful fluxes.

This is a resonable assumption for our current system (see Appendix C). Therefore,

Ca()’s imposes magnetic forces to the I-C field exclusively.
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Figure 4.5: Experimental and theoretical frequency responses of the thrust bearing

Analyzing this bond graph seems to be a formidable task at the first glance.
However, using Thevenin’s theorem it is possible to separate C, and the I-C field
and then obtain a simple representation of the rest of the system , namely, the effort
source-capacitance network. Figure 4.7.(b) shows the equivalent system model. The

network consisting of effort sources and generalized capacitances is now represented by
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Figure 4.6: Magnetic fluxes existing in the radial bearing

an equivalent effort source ani and an equivalent linear capacitance C.,. Identifying
the constants a and C,, using the experimental data allows us to refine the theoretical
model to match the real system.

Using the casuality assignemt method in [24], it is easy to see that the system in
Figure 4.7.(b) only has two energy storage elements with integral casualities !. This
means the model is a second order system. This is compatible to the experimental

roll-off rate.

results associated with the radial bearings, say. r;. which has —40 ‘if

decade

However, the —60 de‘if — roll-off rate of experimental response for the thrust bearing

implies that it is a third order system. Such a difference is due to the fact that the

1Because the rotor is not spinning, the I-C field behaves like pure inertial elements
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Figure 4.7: Bond graph model of the radial bearing

thrust bearing cores are not laminated so that the eddy current loss is significant.
Modeling of this energy loss can be achieved by using the relation P.44, o (%—)2[44],
where P.44, is the power loss due to the eddy current, ¢ is the magnetic flux, and the
proportional constant is a function of the geometry and material properties. Accord-
ing to the argument in the appendix. the power dissipated for the resistive element
R is equal to R (‘;—‘t’)z. Therefore, we can identify the resistance induced by the eddy
current by a generalized resistence R,.. The new system with R, augumented is shown
in Figure 4.7.(c). Due to the existence of the generalized resistence, one can assign

integral casualities for all the capacitances and the order of the system becomes three.
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Accordingly, the state equations for the thrust bearing can be written as,

: 111 2(ho —z)| ., an
_ 1 Aho—2)) , om 412
6 R [Ceq+ oA ]¢+Reu (4.12)
2= o (4.13)
. 1 ¢
v. = A I (4.14)

and, after the linearization. the transfer function can be computed as,

N e
8=(s) _ (4.15)

Us
= k 2mh )
bu.(s) mRe(Mu“ )2s3 + —————MA(ZW“P s2—-1

where h = 25‘;’ + ho is the equivalent nominal bearing gap. By comparing the
coefficients of Eq. (4.13) with those of the experimental response, the constants
R., a, h, and thus C., can be identified. Then one can use state equations such as
Eq. (4.15), instead of Egs. (2.6) and (2.7). to model the actuator dynamics more
accurately. In the current application. the parameters a, h and R, are identified for

all the bearings and they are outlined in Table 4.4.

a h R,
z, bearing 0.8135 2822um 0
¥, bearing 0.8856 276.7um 0
z2 bearing 0.4940 163.0um O
y, bearing 0.7656 214.5um 0
thrust bearing 0.8318 531.23um 1258 .82mperturnisec

Table 4.2: Magnetic bearing parameters

Among the parameters, R, = 0 is assumed for all radial bearings because of the
lamination. Despite the the seemingly similar configurations, bearings in the radial 2
axes are very different from those of the radial 1 axes. Particularly, the parameters a

are much lower in 2 axes and the equalivent bearing gaps h are less then the nominal

(1]
(W]



gap ho = 250um 2. This is possibly due to the fact that the 2 axis bearings were not

manufactured and assembled precisely according to the specifications.

|
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Figure 4.8: A magnetic circuit model

A different model has been suggested in [17]. This model is reproduced in Figure
4.8. Basicaliy, there are several disadvantages associated with this model. First, the
author used resistors instead of generalized capacitances to characterize the magnetic
reluctances. This certainly does not capture the energy storage behavior of the mag-
netic field. Furthermore, the flux leakage is directly modeled as a resistor in parallel
with the voltage source resulting from the magnetomotive force, and the core reluc-
tance is only considered to be in series with air reluctance. It is obvious from Figure
4.6 and Figure 4.7 that the core reluctances and reluctances of fringe flux paths are
coupled in a way that it is impossible to isolate either one of them from the other.
Therefore, the refined model discussed in this thesis. which considers the detailed flux

behavior, makes a better connection between the physics and the experimental data.

2Intuitively, the equivalent bearing gap should be larger that the nominal gap because of the
additional core reluctances



4.5 Summary and Remarks

In this chapter, more detailed behavior of the magnetic bearings such as flux leakages,
fringing fluxes and the eddy current loss are investigated. The use of the Thevenin’s
theorem to obtain simple but accurate refined models is presented. The refined mod-
els not only match the experimental linear responses but also explain the nonlinear

characteristics of the magnetic forces.



Chapter 5

Adaptive Control of Nonlinear,
Uncertain Systems Using Local Function
Estimation

5.1 Introduction

The preceding analysis has shown that, depending on the current linearization scheme
employed, the dynamics of the magnetically levitated rotating machines is either
marginally stable or unstable. To achieve high performance, a stabilizing controller
is absolutely required. In chapter 3, the LTR methodology is applied to investigate
the achievable system performance. However, the use of this controller is only for
analysis purpose. In practical applications, one usually encounters nonlinearities and
uncertainties which mainly result from the magnetic bearing dynamics. These effects
are not considered in the LTR design.

Furthermore, the magnetically levitated rotating machines also experience dy-
namic changes during the acceleration and deceleration periods. To illustrate how
significant the dynamics changes, we use the state equations in Eq.(2.27) to plot the
root locus of the linearized open-loop radial bearing system as the rotor spins from
ORPM to 30000RPM. The result is shown in Figure 5.1. When the rotor is at rest,
the system has poles at +118.9rad/s. £136.0rad/s, £263.5rad/s and +£265.8rad/s.
As the rotor starts spinning. due to the gyroscopic efffect, the poles migrate toward
the jw axis and they settle at £j516.8rad/s, £j46.3rad/s. and £217.3 £ j11.8rad/s

when the speed reaches 30,000RPM. The LTR controller assumes that the spinning
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speed of the rotor is constantly measured and used as one of the system parameters
to compute the control effort. Practically, one may not have the luxury to access the
spinning speed on-line and stability of the resultant time-varying controller may not
be guaranteed due to the imprecise measurement, sensor noises, computational lag

and so on.

Im(s)
8

600
400

200
b3 x
P ra\ N .
300 { " D’ 2o 3 Re(S)
P %0f >

-400

-600,
-800

Figure 5.1: The root locus of the linearized open-loop radial bearing system

In order to directly address these critical issues associated with nonlinearities.
uncertainties and changing dynamics as part of the control system design, a new
adaptive control scheme is proposed. The scheme uses the local function estimation to
cancel the nonlinear and uncertain dynamics present in the system and introduce some
desired dynamics. With the help of a proper designed sampling rule, the neighborhood
of approximation can be moved from time to time in order to capture the fast changing
system dynamics. The main concept and related stability proofs are described in this
chapter. Chapter 6 discusses the practical implementation issuses and presents the

simulations of several dynamic systems.
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5.2 Problem Statement

Consider a plant and a reference model described by

x = Ax+f(x)+ Bu (Plant), (5.1)

X A, X, + B, r ( Reference Model), (5.2)

where X, X,, € R" are the state vectors of the plant and the model respectively,
AA, € R, B.B,, € R"™™ are all known matrices and A,, is asymptotically
stable, f(x) = [fi(x) fa(x)... fn(x)]T is an uncertain, nonlinear vector function, u €
R™ is a control input, and r € R™ is a bounded reference input. The task is to design
a controller which will estimate and cancel the function f(x) on-line and force x(t)
to follow the reference trajectory X,,(¢). In order to define the control objective more
specifically, assumptions regarding the plant and the model are made as follows.

1) Approzimation Conditions: f(x) is smooth and there exist a constant M, > 0
and a positive integer p such that f,(x.x;), the pth order Taylor’s expansion of f(x)

near X;, satisfies:

M,
(p+1)!

I (x. i) — f(x)|| < [l — x|+ (5.3)

Vx,x; € R", where ||.|| represents the Euclidean norm. This inequality allows one to
approximate f(x) using f,(x.x;) when ||x — x;|| is sufficiently small. In fact, Eq.(5.3)
is true if the (p + 1)th derivative of f(x) is bounded [18]. For simplicity, we would
take p = 1 in the ensuing investigation; however, the case associated with p > 1 can
be treated in a similar way with no further difficulties.

2) Matching Conditions: Rank(B) = m, and Vx € R", there exist matrices Cg(x)

and C;(x) of order m x n such that

BC,(x) = —Gi(x) (5.4)
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for k = 0,1, where Go(x) = diag [fi(x), ..., fu(X)] and [Gl(x)]ij = [a_fi’_‘l]

az,

3) Controllability Conditions: There exist matrices K and A such that
A +BK=A, and BA =B,,.. (5.5)

Remark: Some classes of systems automatically satisfy the matching conditions

in Eq.(5.4). Examples include SISO systems expressed in the canonical form:

™+ f(z,&,...,2007Y) = bu (5.6)
with the state vector x = [z, #,...,2" 1|7 and MIMO systems taking the form
y+f(y.y) =Bu (5.7)

with the state vector x = [ ;’, ]

5.3 An Adaptive Control Scheme Using Local Func-
tion Estimation

In this section, we formulate the idea of using local function estimation for control.
Let us first introduce a controller structure. Assume that the control law for u is

given by
u = Kx + Ar + u,y, (5.8)

where Kx is a full-state feedback component, Ar is a feedforward term based on the
reference input r, and u,y is an adaptive compensating control signal. Here we use
U.q to estimate and cancel f;(x,X;). the first order Taylor’s expansion of f(x) near
x;. The reason for doing this is that the polynomial-like function f;(x, x;), which is a
good approximation to f(x) in the neighborhood of x;, has a linearly-parameterizable
form which makes the design of a fast, stable adaptation law possible. This point will

be futher exploited later.
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Combining Egs.(5.1), (5.5) and (5.8) and denoting Bu,y = —f'l(x, X;) as the esti-

mate of f1(X, X;), we then have the error dynamics
é = Ane +f(x,x;) + fi(x, %), (5.9)

where e = x — Xx,, is the error state vector, f.(x,X;) = [f(x) — fi(x, x;)] is the approx-
imation error between the system function f(x) and its Taylor’s expansion f;(x,x;)
and f'l(x, X;) = [fl(x, X;) — fi(x, xi)] is the estimation error. In this equation, f.(x, x;)
and f; (x,X;) can be treated as two exogenous inputs to a stable, linear, time-invariant
system. Consequently, to keep the tracking error within acceptable limits, these two

inputs must be guaranteed to be

sufficiently small ”. In other words, not only
should x stay close enough to x; so that f;(x,x;) can approximate f(x) well, but
also a proper adaptative control law must be provided so that f'l(x, X;) can estimate

f)(x,x;) accurately.

X(1): state trajectory

X(0).X,,(0)

moving sphere gXt)

Figure 5.2: An adaptive control scheme using local function estimation

To solve these problems, an adaptive control scheme using local function esti-

mation is proposed. The basic concept is shown in Figure 5.2. First, we define
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an n dimensional “ moving sphere ” ®() centered at x,,(t); i.e., ®(t) = {y €
R |y — xm(®)|] £ p}, where p > 0 is the radius of the sphere. Assume that
initially [|x(0) — x,(0)]] < p, so x(0) is in ®(0). While both the full-state feedback
and the feedforward terms are always used as part of u, the adaptation term ugq is
initially set to zero. If the evolution of x is such that at ¢ = ¢, it first “ penetrates
” the surface of the moving sphere ®(#;), or ||x(t1) — Xn(t1)|| = |le(t1)|| = p, we
sample x(¢;) as X;. The controller turns on the adaptation immediately to estimate
and cancel fi(x,X;). Before going too far away from x;, x will be forced to return
into ®(¢). Then, the controller turns off the adaptation and waits for the next time
x leaves ®(t). The same sampling and adaptation processes repeat for x3,Xs,...,X;
and so on.
Obviously, the key issue in this scheme is to design u,q such that it can estimate
and cancel f;(x,x;) properly. In view of Eq.(5.4), we express f;(x,X;) as
k=1
fi(x,x;) = —B};}Ck(xi)wk(x, Xi), (5.10)
where wo(x,x;) = [1...1]7 and w;(x,%;) = x — x;. This equation suggests that u,,
takes the form:
k=1
Uy = ;Ck(xi,t)wk(x, Xi), (5.11)
where Ci(x;,t)’s are the estimates of Ci(x;)’s. Notice that the time dependency
of ék(xi,t)’s is due to the fact that Ci(x;)’s will be on-line estimated using the
adaptation laws presented later.
Ck(xi, t)’s are functions of time ¢ as well as x;.
since their Substituting Eqs.(5.10) and (5.11) into Eq.(5.9), we get
k=1

é=Ane+f(x,x)+BY Culx;, t)wi(x,x;), (5.
k=0

(1]
—
(8]
~
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where Ck(x,-,t) = ék(x;,t) — Ci(x;) for k = 0,1. Here Ci(xi,t)’s can be treated as
the estimation error matrices, and we will denote them by Cy’s for simplicity from
now on.

To derive a stable adaptation law for ék(xi,t)’s, we first observe that A, 1is

asymptotically stable, so there exists a matrix P so that
ATP+PA, =-1L (5.13)
Such a P matrix allows us to define a Lyapunov function V, where

1 1 k=1 . _
V(x:,t) = 7e"Pe+ o kz_%Tr [CIC (5.14)
for each x;. Note that v is the adaptation gain and T'r [.] represents the trace of the

quantity in question. Using Eqs.(5.12) and (5.13), V, the time derivative of V along

the state trajectory, can be calculated as

k=1

f} = _._])'.eTe + eTPfe(x, x;) + <'PB Z éka(x, X,‘)
2 k=0
1 k=1 :T .
+- Y Tr (6,84 (5.15)
! k=0

Because C(x;)’s are constant matrices for a given X;, if we apply the adaptation law

Ci(xi.t) = —yBTPew/(x,x;) when |le]| > p

= 0 otherwise (5.16)

for £ = 0,1 and use the relation Tr(ab?) = b”a, where a and b are column vectors,

Eq.{5.15) becomes

Y= —éeTe + eTPf.(x.x;) (5.17)

for Jlef| = p.
Before investigating further the stability of the control system, we first show the

following lemmas.
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Lemma 5.3.1 Every element in the matrices Gi(x)’s in Eq.(5.4) is bounded for all
x in B, where! B = {®(t)| Vi > 0}.

Proof: Using the fact that A,, is asymptotically stable and r is bounded, obviously
Xn(t) is bounded V¢t > 0. B is also bounded because of the triangle inequality
I¥ll € 1x=(®)|l + o Yy € ®(¢). Then, B, the closure of B, is closed and bounded.
From the smoothness of f(x), one can conclude that elements of matrices Gi(x)’s are

bounded on B[5], thus on B. ]
Lemma 5.3.2 The Cy(x) and C(x) matrices in Eq.(5.4) are unique.

Proof: Assume, for example, there exists another Cy(x) matrix such that BCy(x) =
—Go(x). Substracting this equation from Eq.(5.4) with k = 0, we get B (Co(x) — C;(x)) =
0. Since all the m-dimensional column vectors of Cq(x) — Cy(x) are perpendicular to
the B matrix’s row vectors , which spans R™ because of the assumption rank(B) = m,
it is required that Co(x) — Cy(x) = 0. Thus. Co(x) is unique. The same proof also
applies to C;(x). a

The above two lemmas establish the following corollary.

Corollary 5.3.1 There exist constants No. Ny > 0 such that Tr [C,{(xi)Ck(x;)] <
Ny for all x;’s and k =0,1.

Proof: Inferring from Lemma 5.3.2, for k¥ = 0,1, elements of matrices Cy(x) can
be solved as unique linear combinations of [Gk(x)];;’s. Because of Lemma 5.3.1 and
the definition of the trace function, Y"¥=i Tr [C{(X)Ck(x)] is bounded on B. In
particular, since x; € B Vi, the result immediately follows. m]

Now we turn to the stability issue. Let us temporarily assume that ||f.(x,x;)|| =

[If(x) — fi(x,x;)|| < € for |le|| > p. Selecting p = 4||P||e, where ||P|| is the induced

1B can be imagined as an n-dimensional tube.

62



matrix norm of P associated with the Euclidean norm, from Eq.(5.17) one obtains

- 1
Vo< —5llell® + 1Pl llell - [Ife(x, %)l

1,12, P p’
< —sllel”+ Fllell = =7 (5.18)

for |le]| > p, or V(t) is upper bounded by —342— outside ®(¢). Such a condition allows

us to claim the following lemma.

Lemma 5.3.3 If |[f.(x,x:)|| < € for |le|| = p and the Ck(x,-,t)’s are initialized to

zero matrices whenever X leaves ®, then X has to return into ® in finite time.

Proof: Assume that x leaves ® at t = t;; i.e., X; = x(¢;). If |le(t)]| = p Vt > ¢,
then the Lyapunov function satisfies V(¢;) — %(t —t;) 2> V(t) because of Eq.(5.18).

Equivalently, we have
Lerpet LS 10 [0T6]
2 2y § kk
k=0 (t=t,)

> (-eTPe + = 3:1 Tr [CTCL])

Since 424 Tr [CTCi] > 0 and An[Pl[le]> < eTPe < Aas[P]|le])?, where A[]

(5.19)

t

represents the eigenvalue of the corresponding matrix. the above inequality can be

rewritten as

2

k=
(Amu{flllellz 1 Zl Ir [cfck])l -
< 7 k=0 (t=t))

> (Al

Moreover, ék(x;. t;) = 0 due to the initialization. so Ck[(t-t y = Ci(x;). Eq.(5.20) is

(5.20)

t

further reduced to

13 maz[P]lle|
57 2 T [CEeaICrixi)] + (i—“:ﬂ)

-

{t=t.)
2 . 2
_ %(t _ ti) > (Amm[.P]“e” )

4

(5.21)

t
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Using the relations ||e(¢)|| > p, |le(t:)|| = p and the constants Ng, N; in Corollary

5.3.1, we finally get

Ama.r[l:’]p2 NO + Nl P2 /\min[P]pz = ¢
5 + 2 - Z(t -t) > — 5 (5.22)
or
2(No+ Ny)

t—t <2 [/\mar[P] mm[P]] + p2
B

Consequently, the number (¢ — t;) must be bounded from above for all :’s, which
concludes that x can only stay outside ® for a finite period of time. ]
The argument just shown was mainly based on the assumption that ||f.(x, x;)|| <

y the following the:,rem.

_ _»
€ =
4||P]|

Theorem 5.3.1 For the adaptive control scheme proposed, if there exist positive

numbers® v and & such that ||B,r(t)|| <r for allt >0 and

1 p , 2(No + Ny)
—b—p—F) >0t U
M, (\/ L 7 ) =T

+2 (/\mar[P] — Amin [P]) ) (5.24)
then |[f(x, x)|| < € = gfpy for le(t)]| > p. where My, = (| An]| - [Ixm(0)]] + 1) /5222fpd +
1
2r and ¢ = (32fp] ,,2 + ;R;T;?f»]) g

Proof: See Appendix E.

Basically, this theorem says that if the state trajectory can return into the moving
sphere before the dyanmics changes too much, then the approximation error would
be small. The term on the left side of Eq.(5.24) represents the time scale that the
dynamics would change. the term on the right indicates how fast x can go back to
the sphere.

The next corollary follows from the proof of Theorem 5.3.1 immediately.

2§ can be arbitrarily small.
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Corollary 5.3.2 If conditions in Theorem 5.3.1 are satisfied, then ||e(t)|| < ¢ for all

t>0.

Obviously, this corollary gives us a bounded tracking error. However, previous
derivations requires that the initial condition ||e|| should be less than p and the
ék(x;, t) matrices are initialized to zero whenever x leaves the moving sphere. There-
fore, only localy stability can be guaranteed for this adaptive controller.

Notice that turning off the adaptation inside ®(¢) assures the boundness of the
matrices Ci’s. This, and Theorem 5.3.1, together with Corollary 5.3.2, provide a
sufficient condition for stability. Particularly, Eq. (5.24) can be used as a guide-line
for selecting the adaptation gain (), the reference model dynamics (A,,, thus P)
based on the prior knowledge about the uncertain dynamics (Ng, N; and M), the
initial condition (x,,(0)) and the reference input (r) to achieve the specified tracking
acccuacy (|le]| = p). Besides, according to Corollary 5.3.2, in face of large uncertainty,
the controller could inevitably require a high adaptation gain in order to have accurate
tracking.

Besides p = 1, one can simply use the zeroth order Taylor’s expansion to approxi-
mate f(x); i.e., take p = 0, and the resultant controller will have a PID like structure.
Furthermore. the controller design procedure can be extended to the case p > 1. In
this case, matching conditions similar to Eq.(5.4) need to be satisfied when f,(x,x;)
is expressed in a linearly parametrized form as Eq.(5.10).

Because it is difficult to present results for higher order approximation concisely
as what was done previously, we will use a simple example to illustrate the idea.
Assume that x = [z;, z,. .1'3]T and the vectorial function f(x) has two components f;
and f;. If approximating f(x) using its second order Taylor’s expansion is of interest,

in addition to the matching conditions in Section 5.2, there should also exist a matrix



C,(x) of order m x 6 so that

BC,(x) = —Gy(x) (5.25)
where
gl'i" afi 3f1 2%_ 3fi g[%
9rf Oz dr, Or18x3 Or 9z20x3 Oz}
_ | af af2 3f2 2[;_ 2f2 3f2 :

G (x) = §£f 911012 Dx10z3 Oxi 9zp0z3 5% (5.26)
afa Afa 3fs dfa dfa afs
9z{ Ozr10r2 Oz10za dz3 Or0z3 Orj

If such an additional matching condition also holds, one can express f,(x, x;), the

second order Taylor’s expansion of f(x) at x;, as

k=2
f(x,x;) = =B Y Cr(x:)wi(x,Xx;), (5.27)

k=0

in which wo(x,x;) and w;(x, X;) are the same as those in Eq.(5.10) and

(1 — $1i)2
(7 — x1;) (22 — T94)
(1 — z1:)(23 — 3:)
! (le- $;)2 3l (5.28)
(22 — $2i)($3 — T3;)
(3 — x3;)? i

wa(x,X;) =

Ir the above equation, x;;, z,; and z3; are the components of x;. After the parametriza-
tion such as Eq.(5.27) is obtained, deriving the adaptation law becomes straightfor-
ward. Nevertheless, it should be noticed that the term THPEII_MT in Eq.(5.24) has to be
replaced with "*f/fl’l’—"p'ﬁ-ﬂ% accordingly. Generally speaking, choosing p properly can
improve the system performance because the uncertain, nonlinear system function
can be estimated and cancelled more effectively.

The discussion up to now assumed that B is known. If B is constant but unknown.
adaptation laws can still be derived using a similar approach. However, the first of

the controllability conditions in Eq.(5.5) should be modified to

A+B,K=A,, (5.29)
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and the controller structure in Eq.(5.8) also needs to be changed to
u= A(Kx+r+uad), (5.30)

where A is the estimate of A%, Adding T [\IIT'Il} to the Lyapunov function V

with % = A~! — A~!, one can obtain the adaptation laws as

Ci(x;,t) = —yBIPewl(x.x;) when |e|] > p
= 0 otherwise (5.31)
for K =0,1, and

—*)’AB?,;PeuTA when |le|| > p

P
I

= 0 otherwise. (5.32)

Since the new Lyapunov function is not radially unbounded in the space of {e, Ci’s, A}

the stability result is further localized [32].

5.4 Summary and Remarks

In this chapter, an adaptive scheme for controlling nonlinear, uncertain systems using
local function estimation concept is introduced. By making some mild assumptions
about the system functions and selecting the control parameters properly, global
stability can be guaranteed. Compared to other control methods, this scheme has a
simpler structure which is more suitable for practical implementation. Nevertheless,
several modifications still have to be made in the control law to avoid exciting the
unmodeled dynamics, to reduce the noise sensitivity and to accommodate the various

signal levels in system response. These issues are addressed in the next chapter.

3 A is assumed to be invertible in this case.
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Chapter 6

Practical Implementation Issues and
Simulations of the Adaptive Controller

In this chapter, several practical issues associated with implementing the proposed
adaptive controller are first addressed. Then the important features and performance
of the proposed controller are illustrated through simulations of some physical exam-
ples. Finally, comparisons of the adaptive controller with other control schemes are

given.

6.1 Practical Implementation Issues

In this section, several modifications are suggested to make the implementation of

the control scheme practical.

6.1.1 Avoiding Discontinuity in Control

For the u,; designed above, Ck(xi. t;)’s are reset to zero matrices when the sampling
of x; occurs. This will lead to a discontinuity in the control signal, which may in turn
excite unmodeled dynamics of the system. Here a modification is given to avoid the
discontinuity.

While we still have Cl(x;. t;) =0 Vi's, éo(x,-. t;)’s are reset to

Co(x,-,t,-) = Co(x.‘-x-l‘i)

+C(xiy.t;)diag [x; — Xi_1] (6.1)



with éo(xl,tl) = 0. By direct substitution, the continuity of u,qs at { = ¢; can be
easily verified.

However, in this case the boundness of the quantity Ei:(l, Tr [CE ék] l(c:m;) is not
guaranteed as before and the stability condition is thus no longer valid. To solve the
problem, one has to know the bounds on each component of Cy(x) Vx € B. In other
words, we have to acquire a matrix Comqr such that |[Co(x)],,.| < [Comazle,: Where
the notation [-],, represent the {mth component of the associated matrix. Using the

a

matrix Comar Co(X;,1;) is reset to

- [Cﬂ(xhti)]
irti = Cmaz T ) 2
[Colxi,t:)], =[Co lgmsat( Conl., (6.2)
where
Co(xi,t;)) = ColXio1,t:)
+Ci(xi1, t:)diag [x; — Xi—1], (6.3)
and the function sat(.) satisfies
sat(y) =y when|y| <1
= sgn(y) when|y|> 1. (6.4)

Assuming T'r [CgmaxCOmar] = N; and using the inequalities T'r [ég (%, ti)éo(xi, ti)] <

N and (Tr[AB))* < Tr [ATA] Tr [BTB], we have

Tr [Cgég]l =Tr [Cg(xi,ti)éo(xf, ti)]

(t=t)
~2Tr [€F(x:,1:)Co(x:)] + T [CF (x:)Co(x;)]

< ( N; + \/170)2 (6.5)

Consequently, k=1 Tr {CZCk” ) is bounded by (\/ NE + Ng)2 + N for all z;'s.

(t=t,

69



6.1.2 Use of a Hysteresis Loop

To implement the sampling and adaptation processes in the proposed controller, one
needs a flag to define the status of ||e(t)||. This flag equals 1 when ||e(t)|| > p and
equals 0 otherwise. A rising edge in the flag triggers the sampling and adaptation
process, and thereafter, the controller waits for the falling edge to turn off the adap-
tation. Since there is always noise present in the system, either from the sensor or
the numerical calculation, the controller may trigger the sampling and switch the

adaptation falsely around |le]| = p.

Flag

Bl Hysteresis Loop

' & el
0 p-0 p p+o

Figure 6.1: A hysteresis loop

To reduce the noise sensitivity of the controller, the use of a hysteresis loop is
suggested. As shown in Figure 6.1. when the rising edge occurs, or the tracking error
has a transition from |le|| < p+ o to |le]| > p + o, the sampling and adaptation
are triggered. Whenever the flag resets to zero again, or the tracking error has a

transition from |le|]| > p — o to ||e|| < p — 0. the adaptation is turned off. Obviously,
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in order to justify the use of the hysteresis loop, 20, the thickness of the loop, needs
to be at least larger than the noise intensity . This in turn means that the tracking
accuracy should be at least of the same order of magnitude as the noise intensity

because p > o.

6.1.3 Scaling of State Variables

In the preceeding discussion, the Euclidean norm was used to compute the triggering
level of the sampling and adaptation process; i.e. ||e]|>? = €2 + €2+ ... + €2. This
implicitly assumes a scaling relation among the state variables. However, similar to
the weighting matrices used in optimal control problems, it is useful to employ a
weighted Euclidean norm to accommodate the signal levels and the different units
among the state variables.

Consider an SISO system for example. If the reference model is in the form
.rﬁ,':) + alxg"l’ + i F 1Ty + apT, = br (6.6)

with n repeated poles at w, then the position signal r,, has most of its frequency
contents below w. Heuristically, % units of the velocity signal z,, is as significant
as one unit of the position signal z,,. This suggests the use of a weighting matrix
W = diag |1, :—J, ceny ﬁ] to rescale the state variables by the relation x* = Wx.
As a result. the norm and the eigenvalues of the associated P matrix are inversely

proportional to w™~!. Recalling the rule 4||P|le = p. after the rescaling, it becomes
W lp = Be. (6.7)

where 3 is a certain constant. This is referred as the “balance condition™ in [39].
Eq.(6.7), combined with the approximation € ~ (p%_'lﬁllx — x;||P*?, produces

My||x — x|t = (p + D)™ p. (6.8)
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Such a condition gives us an insight into how the localization of the estimation de-
pends on the properties of the system function, tle order of approximation, the system
bandwidth, and the tracking accuracy. Basically, if the system function is quite non-
linear (large M,), or the system bandwidth is low (small w), or an accurate tracking
is required (small p), the controller must constantly update its operating point ||x;||
to adapt to the fast changing dynamics. Nevertheless, one can increase the order
of approximation p to enlarge the * window size ” ||x — x;|| used in estimating the

uncertain, nonlinear system function.

6.2 Controller Simulations

Simulations of several examples are presented in this section to illustrate the main
features of the proposed adaptive control scheme. The first example illustrates the
conservatism of Theorem 5.3.1, while the second one shows the resulté of using dif-
ferent order of approximation in estimating the uncertain, nonlinear function. The
effects of adjusting the adaptation gain are presented in the third example.

Example 1: Consider the following first order system
= f(a)+u (6.9)
and the reference model
Ty = —8T, + 8stn(0.87t). (6.10)

with 2(0) = z,,(0) = 0. In Eq.(6.9), f(x) equals sin(z) but will be assumed unknown
to the controller. Using a first order approximation, the proposed control scheme will
generate an estirate of f(z) in order to cancel its effect.

According to the previous notations, A,, = —8 and thus P = 0.0625. To compute

M,,, instead of using the expression in Theorem 5.3.1, we will take M,, = 3 since
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|£m(2)] < 3 V¢ > 0. Furthermore, it is assumed that f(z) and its derivatives are
known a priori to be bounded by 1. This implies that NJ = No = Ny = M; =1
Finally, p = 0.08 is chosen here in order to make the controller achieve such a tracking

accuracy.

0.15

0.1

0.05

X-X"

-0.05

-0.1

-0.15

Time t

Figure 6.2: Tracking errors for v = 10600 and v = 20

Substituting these parameters into Eq.(5.24)!, one obtains

562.
15625 1 (0.72 _ Jo.ooss + 32 _ 6) . (6.11)
2 3 2

This inequality can be used to solve for the adaptation gain 4. By trial and error, we

get v > 10000, which means that a very high adaptation gain is needed. Recalling
that Eq.(5.24) is only a sufficient condition for stability, hence the resultant ¥ could
be very conservative. Actually, depending on the system function f(z), a “ moderate
” 4 may achieve appreximately the same tracking accuracy without requiring too

high of a control authority. This argument is verified through simulations. Figure 6.2

In all the examples, the use of the modified continuous control laws in Egs.(6.1) and (6.2) is
assumed. Therefore, one should replace the No+ Ny term with (/N + VN )2+N 1 in this equation.
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shows the tracking error results for v = 10000 and v = 20. For v = 10000, it is seen
that once z leaves ®(t), which corresponds to the case |t — z,,| > p, the controller
applies significant effort to force it to return immediat.e]‘y. On the other hand, when
~ = 20, the controller allows r to leave ®(¢) for a while and does the adaptation in a
milder way. Notice that the tracking performance for both cases are about the same.
Consequently, one can simply apply a * sufficiently high " adaptation gain to ensure
the stability and the tracking performance without obeying Eq.(5.24) exactly. This
gives us more flexibility in designing the controller. Our current research focuses on
obtaining a result leading to a less conservative 4.

Example 2: Here we still use the same system as above. However, we choose p =
0.01 and inject a white noise of intensity 0.0015 in the measurement of x. Moreover.
a hysteresis loop of thickness 20 = 0.004 is employed to account for the noise effect.

Figure 6.3 shows the tracking performance corresponding to different orders of
approximation in the control scheme. where 4 = 100 is set for all cases. These
simulation results show that we have a more accurate tracking with a higher order
approximation for this particular nonlinear function. This can be futher explained
by the simulations shown in Figures 6.4. €.5 and 6.6. These results which show the
uncertain function and its estimates by different controllers. It is clear that in this
particular example the controller using high order approximation leads to a better
function estimation.

Example 3: Now let us consider a second order plant and a reference model with

the forms [38]

I = f(x.7)+ u. (6.12)

Im = -20&, —100x, + 100, (6.13)

where f(r,1) = —6sin(41) 4+ 3¢~ + r 4+ & and r is given by a 0.4H z, unity square
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Figure 6.3: Tracking errors for different orders of approximation

wave filtered through a first order filter with a bandwidth of 10%.

For the purpose of accommodating the system dynamics, state variables are scaled
as illustrated in Section 4. The values of the parameters p and o are related as
p = 0.015 and o = 0.001. Note that the hysteresis loop is used to provide robustness
against the noise resulting from numerical calculations. Figure 6.7 compares the
tracking performance corresponding to different adaptation gains. The simulation
results indicate that the performance improves as the adaptation gain is increased.

The function estimates using the proposed procedure are shown in Figure 6.8. It
is seen that an increase in the adaptation gain results in a better estimate. We note.
however, that the high frequency components of f(x, &) do not appear in the function

estimates. One possible explanation is that the reference model, which generates the

rad
s

desired trajectory, has a bandwidth of 10™2¢, and consequently the adaptation scheme

will be constrained to frequencies in that range.
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Figure 6.4: Uncertain function and its estimate for zeroth order approximation scheme

6.3 Comparisons of the Adaptive Controller with
Other Control Schemes

The performance of the proposed adaptive controller using local function estimation is
compared with other control schemes including a simple P controller, a sliding-mode
controller and an adaptive controller. The simulation example used here is similar
to the first-order system discussed in Example 1 except that the uncertain function
f(z) In Eq.(6.9) now equals 22 and x,,(0) = 0.04, z(0) = 0.02. Notice that due to
the square nonlinearity and nonzero initial condition, the solution for the open-loop

system is

z(0)

x(t) = 1= i2(0)’

(6.14)

thus the state trajectory has a finite escape time equal to ﬁ.

Adaptive control using local function estimation:

Again we still choose p = 0.08. Because |z,,(t)| <1Vt > 0. |z()] < |zm(t)| +p =
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Figure 6.5: Uncertain function and its estimate for first order approximation scheme

1.08 if z(t) € B. This implies |f(z)] < 1.08 and |f (z)] < 2.16 for z € B. In
other words. we can select N = Np = 1.08 and N; = 2.16. Further, if the first
order Taylor’s expansion is used to approximate f, then M; = 2 due to the fact that
f'(x) =2 V.

Similar to Example 1. one can substitute the related parameters into Eq.(5.24).

one obtains

213:
2133 _
T

-

!

W

2
(0.4857 - %).0064 + 10921 _ 6) . (6.15)

By trial and error, we get 4 > 20000. which also means that a very high adaptation
gain is needed.

Figure 6.9 shows the tracking error results for 4 = 20000 and v = 200. For
4 = 20000. once z leaves ®(t). which corresponds to the case |r — z,,| > p. the
controller applies significant effort to force it to return immediately. On the other
hand, when 4 = 200, the controller allows r to leave ®(¢) for a while and does the

adaptation in a milder way. Notice that the tracking performance for both cases are
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Figure 6.6: Uncertain function and its estimate for second order approximation
scheme

about the same and the tracking errors are dictated by the parameter p.

P control:

Figure 6.10 shows the tracking error when a simple P control u = —8z is applied
to the plant. It is obvious that the resultant system presents larger tracking error
compared to Figure 6.9.

Sliding-mode controller:

Now we assume that the dynamics of f(z) is not exactly known but is bounded

by a known function 2z2, in other words,
|f(x)} < 22% (6.16)

In order to have the plant track z(t) = x,,(t), we define a sliding surface e = 0. We

then have:

€= — &y = f(z)+ u+ 8z, — 8sin(0.87t). (6.17)

-1
0.9]
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Figure 6.7: Tracking errors for ¥ = 0, ¥ = 500 and v = 1000
According to [39], the sliding-mode controller can be selected as:

u = ~82, + 8sin(0.87t) — k(z)sat(%), (6.18)

in which k(x) is a control gain to be determined, p = 0.08 is the boundary layer
thickness ? and sat(.) is the saturation funtion defined in Eq. (6.4).
By choosing k() to be large enough, we can guarantee the stability of the systém.

Indeed, we have from Eq. (6.17) and Eq. (6.18) that
1d , . €
g€ =¢€= flx)e — L(:c)sat(;). (6.19)

Therefore. letting

from Eq. (6.19) we have

——e€° < —8le| forle| > p (6.21)

2The boundary layer here is similar to the set B discussed in Lemma 5.3.1.
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Figure 6.8: Uncertain function and its estimates for 4 = 500 and ~ = 1000

which guarantees that the boundary layer is attractive, hence invariant: all trajec-
tories starting inside B(¢t = 0) remain inside B(t) for all £ > 0. Such a fact can also
be demonstrated by the simulations in Figure 6.11. in which the time response of the
tracking error € is plotted. Although the state trajectory stays inside the boundary
layer all the time and more accurate tracking is achieved in this case. the selection of
k(z) requires the knowledge of the bound of f(r). If such information is not available.
a stabilizing sliding-mode controller can not be designed.

Conventional adaptive controller:

In this approach. it is assumed that the structure of the square nonlinearity in
f(x) is known but the parametric uncertainty exists. namely. it is known a priori that
f(x) = cx? but the coefficient ¢ = 1 is unknown.

The error dynamics in Eq. (6.17) motives us to choose the following control law:

u = —8r,, + 8sin(0.875t) — 3¢ — _f(.r) = —8r,, + 8sin(0.87t) — 8¢ — ér® (6.22)
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Figure 6.9: Tracking errors for the adaptive control using local function estimation

where ¢ is the estimate of ¢. Substituting Eq. (6.22) into the error dynamics, we get
é = 8¢ + éx? (6.23)

where ¢ = 1 — ¢ is the estimation error.

To derive a stable adaptation law, we define a Lyapunov function V = %ez + %c‘z.
Then the time derivative of V along the state trajectory can be calculated as
V = eé+éc
= _8e? 4 eca? 4 & %
= —8¢e°+ ecr” + ¢éc (6.24)
Consequently, if the adaptation law
A o2 o=
¢c=¢er (6.25)
is chosen, we have V = —8¢2. Thus the stability of the control system is guaranteed.

Simulations of this adaptive control system is shown in Figure 6.12. The tracking

performance is very similar to the P controller discussed previously.
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Figure 6.10: Tracking error for the P controller: v =0
6.4 Summary and Remarks

Practical implementation issues and simulation examples are presented in this chap-
ter. Particularly, the performance of the proposed adaptive control scheme is con:-
pared with other control schemes. Although the sliding-mode control can achive high
tracking performance, prior information on the bounds of the nonlinearity and the
uncertainty is needed. On the other hand, the convention adaptive controller, which
is mainly used to tackle systems with parametric uncertainty, heavily relies on the
knowledge about the structure of the unknown system function. As will be shown
later, the system functions for magnetically levitated rotating machines are both
nonlinear and uncertain. The bounds for the system functions are usually unknown
and it is difficult to express the system uncertainties in parametric forms. The only
knowledge available is the smoothness of the system functions. As a result, it may

be more appropriate to use the proposed adaptive control scheme to locally estimate

oD
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Figure 6.11: Tracking error for the sliding-mode controller

and cancel the system functions. This is the subject of the next chapter.
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Figure 6.12: Tracking error for the conventional adaptive controller
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Chapter 7

Adaptive Control of a Magnetically
Levitated Turbo Pump

The successful operation of magnetically levitated rotating machines requires five-axis
control simultaneously. If the rotor stands upright, which is the case for the turbo
pump under consideration, the control of the thrust bearing is decoupled from the
control of the radial bearing system. For the thrust bearing control, the controller
has to counteract the gravity and cancel the system nonlinearities. On the other
hand, the controller for the radial bearing system not only faces the nonlinearities,
but it also has to deal with the MIMO nature of the system and provide consistent
performance under the changing dynamics.

The adaptive control scheme proposed previously uses the local function esti-
mation to cancel the nonlinear and uncertain dynamics present in the system and
introduce some desired dynamics. With a proper designed sampling rule, the neigh-
borhood of approximation can be moved from time to time in order to capture the
fast changing system dynamics. Therefore, this scheme naturally lends itself to a
promising approach for controlling the magnetically levitated rotating machines.

In this chapter, the implementation of the adaptive control scheme for the existing
turbo pump is described. Numerical simulations as well as experimental results are
used to evaluate the controller performance in comparison with the analog compen-

sator.



7.1 Controller Design for the Magnetic Bearings

Now, we will use the thrust bearing to illustrate the controller structure. When the
eddy current loss is ignored. the nonlinear equation of motion for the thrust bearing
can be written as:

z(t)=[g (ll]z+[,::(9:,:,]—[2], (7.1)

0
where the state vector z = [z Z]T. and F.(u.,:) is obtained by subsitituting the
transformation in Eq.(4.1) into Eq.(2.10). This adaptive controller is applicable if
one technically assumes that the nonlinear function F' can be approximated in the

following manner,

Fu..z2)x~ f.(z—z)+b.u.. as - — z, (7.

=~
8%
S—

in which f. (-) is a polynomial with its coefficeints depending on z;, and b, is a known
constant. This assumption requires some justification.

Practically, the rotor displacements are constrainted by the existence of touchdown
bearings and the maximum control currents should be limited to avoid damaging the

power amplifier. For the thrust bearing. we consider the following operating region:

=]

lusl < imar (7.3)

INA

Ztouckhdouwn

in which ziouchdown = 200um and i,,; = 3Amps. Figure 7.1 shows the 3-D surface
plot of F,(u..z) as a function of = and wu.. It is clear that F is quite smooth in the
operating region. If the region is further divided into several regions as Figure 7.2.
for each region. one can use a function of the form ag + a;z + bu. to fit F.(z.u.)

in the least square sense. Notice that in subregions III. Figure 7.2 shows that the
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Figure 7.1: 3-D surface plot of the magnetic force

thrust bearing exerts a large force in the same direction as z. These regions are not
considered because such cases should not happen when the controller is well-designed.

Table A in Figure 7.2 lists the fitting results when the nonlinear input transforma-
tion in Eq.(4.1) is applied, while the results for the bias current strategy! are listed
in Table B. Obviously. in the nonlinear input transformation case, the parameter b
does not vary much in different regions compared to what occurs in the bias current

strategy. Thus it is reasonable to assume F, can be approximated as
F.(u..z) = f(z) + b.u.. (7.4)

In this approximatin. we may use the average of b values in the least square fitting

In this case, the relations iy, = ig+0.5u;: iy = ig—0.5u, are employed regardless of the magnitude
of u,.

v 4]
-1



uz, control current
[

A. Fitting results with the nonlinear input transformation

)
Imax
& : I H
a, ON 0.56N
I
EE a, 2.92e+4N/m 5.16e+4N/m
B
N b
il 11.2N/A 10.4 N/A
N ,
mAaximum
error 750N 6.38N
Z, air gap
—_ ™ B. Fitting results with the bias current strategy onl
ztouchdown Z,5uchdown e gy only
I 1]
a, ON 13.2N

2.92e+4N/m 7.58e+4N/m

1.2 N/A 2.74N/A

maximum
error 7.50N 106N

lmax

1. F(z,uz)=ap+ajz+bu, isassumed in the fitting.

2. In subregions III, the bearing applies a large force in the same direction as z.
These regions are not considered here because such cases should not happen
when the controller is well-designed.

Figure 7.2: Least square fitting of the magnetic force function

for the constant b.. Moreover. the function f(z) should be smooth and has bounded
second derivative due to the smoothness of F,(u., z).

The function f(z) certainly satisfies the approximation condition discussed in
section 5.2, so the adaptive controller can be used to on-line estimate and cancel
f:, (2 — z;), the local first order Taylor's expansion of f, and force z(t) to follow

the reference trajectory z,(t). The trajectory z,,(t) is generated by a second order

o0
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reference model of the following form:

Zm = AnZm + erﬁ (75)

inwhichAm=[ o 1

—w: —=2Cw,

]. and B,, = [ u?'z ] The parameters ( and w, are
the damping ratio and the natural frequency of the second order reference model
respectively. Moreover, r = 0 is assumed because regulator problems are of interest.

Similar to Eq.(5.8). the control law is chosen as:

(Kz + uqq), (7.6)

u. = 1
=5

where Kz is a full-state feedback component with K = [~w2 — 2(¢w,], and u,q is an

adaptive compensating control signal used to to estimate and cancel f, (z — z;).

The basic concept of designing u,q is the following: First, we define an two dimen-
sional “ moving sphere " ®(t) centered at z,,(t); i.e., ®(¢) = {y € R?| ||y —zm(t)]] <
p}, where p > 0 is the radius of the sphere (see Figure 5.2). Assume that initially
|2(0) — 2,(0)|] < p. so z(0) is in ®(0). While the full-state feedback term is always
used as part of u., the adaptation term w,q is initially set to zero. If the evolution of
z is such that at ¢ = ¢, it first “ penetrates = the surface of the moving sphere ®(t,),
or ||z(t1) —2zm(t1)|| = p. we sample z(t,) as z;. The controller turns on the adaptation
term u,4 immediately to estimate and cancel f. (= — ).

Because f. (z.z;) is expressed as

falz—z1) = a0+ ar(z — ). (7.

=1
|
R—

3 . .
2=z and aq; = J|:=:,. then u,q4 is given by:

! d=

where ag = f

—
=1
[¢'7]

N—

Ugd = —lo — a31(5 — z;),
with

. Fo
ao = veTP [ ] when|le|| > p



= 0 otherwise
2 0
i, = ~(z—n)efP [ | ] when|le]| > p

= 0 otherwise. (7.9)

In this adaptive control law. e = z — 2z, is the error state vector, @, and @; are
the estimates of ag and a;. v is the adaptation gain and P is the matrix satisfying
ATP 4+ PA,, =-1L

If f(z) is estimated and canceled properly. z will be forced to return into ®(¢)
before it goes too far away from z;. Then, the controller turns off the adaptation and
waits for the next time z leaves ®(¢). The same sampling and adaptation processes
repeat for z,,23,...,2; and so on.

The controller structure shown in Egs. (7.6), (7.8) and (7.9) still lacks of prac-
ticability. Modifications discussed in chapter 6 have to be made in the control law
to avoid exciting the unmodeled dynamics, to reduce the noise sensitivity and to
accommodate the various signal levels in system response.

Control of the radial bearing system is slightly different from that of the thrust
bearing due to the coupling effects among the radial axes. While the rotor geometry
always makes r; and r; (y; and y;) axes coupled, the additional gyroscopic effects
resulted from spinning causes the X axes dynamics to be influenced by the ¥ axes ve-
locities and vice versa. In addition, the gyroscopic coupling forces also appear as part
of system dynamics. In fact, denoting X = [z1, 2,91, ¥2]7 and u = [ug1, Usg, Uy, Uy2]7,

the system dynamics can be expressed in the following form:
x = Ax+ K(Q)x + F(x,u). (7.10)

in which the vectorial function K(-) represents the gyroscopic effect due to the rotor
speed 2, and F(x, u) represents the magnetic force vector contributed by the radial

bearings.
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Similar to the previous arguments used in the axial bearing case. the vectorial

force function F(x,u) can be approximated as
F(x.u) = f,(x) + Bu. (7.11)
Combining Eqs.(7.10) and (7.11). the radial bearing dynamics is

x = Ax+K(Q)x +f,(x)+ Bu

= Ax+f(x)+Bu (7.12)

where the function f(x) = K(Q)x + f,(x) explains the the actuator nonlinearities
as well as the uncertain dynamics due to the gyroscopic effects. Eq.(7.12) is the
same as the plant equation described in Eq.(3.1). Therefore, the MIMO version
of the proposed adaptive controller is applicable to cancel the nonlinearities and

uncertainties.

7.2 Controller System Implementation

The adaptive controller was implemented digitally using a high speed digital signal
processor (DSP) board. This controller is intended to replace the analog compensator
described previously. The sampling frequency for all the five axis is chosen to be
15K H:=. The position signals from the inductive sensors are filtered by second order
Butterworth antialiasing filters with cut-off frequency of 3K Hz. Then the output
signals are sent to analog to digital converters (A/D converters) which are linked to
the DSP board. The control voltages are calculated by the DSP board and are send
out through the digital to analog converters (D/A converters). The D/A converters
contain low pass filters with 15K Hz cut-off freqency. Moreover, because the rotor
has major bending modes at 875H = and 2.2k H:. the control voltages are further

filtered by two sets of notch filters to avoid exciting the unmodeled dynamics in the
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bending mode frequency regions. Details on the DSP control software and the notch

filters are provided below.

7.2.1 DSP Control Software

A high speed DSP board (ADSP-21000)[2. 3] interfaced with a PC is used for digital
implementation of the controller. The control programs are written in assembly
language. The program for the thrust bearing , “axialctr.asm”, and the program for
the radial bearings, “radctr.asm”. are given in Appendix F. Figure 7.3 shows the
steps to compile and run the programs. First, a reset program is used to reset the
DSP chip. Then a batch file "asm” evokes the assembler, the linker and the PROM
splitter to complile the program, to generate executable files and to generates PROM
programer files in byte-stacked format. Then one can use the program "dumpdsp.exe”
to download the byte-stacked format files (files with extension “.stk”) into the DSP
program memory. To run the control codes, “startdsp” is executed and thus a starting
stroke is sent to the processor. Finally, the program “stopdsp” stops the program.
The readers can refer to [48] on details about the PC interfacing and the DSP software

development.

7.2.2 Notch Filters

The implementation of notch filters is achieved by using M4 X275 chips, the continuous-

time active filters made by MAXIM company[29]. First, bandpass filters of the form

(7.13)

are realized using the circuit diagram in Figure 7.4. In this diagram, INA(INB) is
the input, BPOA(BPOB) is the output. The DC gain A, the bandpass frequency wy.
and the bandpass width @ depends cn the selection of R1, R2, R3, R4[29]. Notice
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| |

asm axialctr

i

dumpdsp axia.tr.stk

U

stopdsp

Figure 7.3: The block diagram for the DSP control software

that because the MAX275 comprises two 2nd-order sections, two bandpass filters
(INA-BPOA and INB-BPOB) can be realized on one chip.

If we choose the DC gain A" to be 1 and subtract the input from the output of
the bandpass filter, then the overall transfer function becomes

24+ w8

G(s) = .
(s) 32+3('=‘-3)+w§'

(7.14)

which is a notch filter with notch frequency wg and notch width wp. Notice that the

substraction just mentioned can be implemented using simple operational amplifer
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Figure 7.4: MAX275 circuit diagram for bandpass filters

circuits shown in Figure 7.5.

resistor values for the notch filters are selected as:

first mode notch filter

second mode notch filter

R1
R2
R3
R4

1649492
2MQ
1649%Q
21000

1383k
1MQ
138340
750402

Table 7.1: Resistor values for notch filters
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Vo

Vo = V-V,
Figure 7.5: Basic difference amplifier circuit

Thus the first mode notch filters have the following form:

82 4+ 3.7452 x 107
52 4+ 1.5261 x 103s + 3.7452 x 107"

Gnotchl = (715)

The magnitude and phase plots of this transfer function are shown in Figure 7.6. The

second mode notch filters have the following form:

52 +2.0884 x 108
52 4 1.8064 x 103s + 2.0884 x 108"

Gnotchl = (716)

The magnitude and phase plots of this transfer function are shown in Figure 7.7.

7.3 Controller System Evaluation

In the ensuing discussion, we will present simulations of time responses using the
refined nonlinear model along with the experimental results. Besides, robustness of

the control system against disturbances will also be experimentally evaluated.
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Figure 7.6: Bode plots for the first mode notch filter

7.3.1 Time responses

I. Thrust bearing:

Assuming that the controller is uncertain about the nonlinearity in the actuator
forces, the goal is to levitate the rotor from the touchdown bearing to ti.e nominal gap
position. The control algorithm used the first order Taylor’s expansion to estimate
the system function. w, = 6005—"5 and ¢ = 1 were chosen for the reference model.

The velocities of the rotor was obtained by taking the backward difference on the
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Figure 7.7: Bode plots for the second mode notch filter
position signals. Based on the results in the appendix. b. = 11.5‘;‘—,’ was adopted.

Furthermore . p = 1um and a hysteresis loop of 0.5um were used, and an adaptation
gain v = 1 x 103 for the normalized state vectors was applied. A constant control
voltage equivalent to 1.34 was used together with the full-state feedback and the
adaptation signal in order to counteract the gravity.

Figure 7.8 shows the time responses of the thrust bearing system under closed-loop

control. It is clear that the controller can adapt the uncertain system dynamics and
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levitate the rotor quickly. The simulated position response is able to approximately
portrait the experimental response particularly on the lag behind the reference trajec-
tory and the settling time. However, the simulated control voltage is more oscillatory
than the experimental one. One possible explanation for this is that the analog circuit

used to implement Eq.(4.1) can not truely reproduce such ideal behavior.

x10-5 Thrust Bearing Time Response

simulation

reference trajectory

experiment

Rotor Displacement (meters)
-
=)

-25
0 0.02 0.04 0.06 0.08 0.1
Time (seconds)
15 Thrust Bearing Time Response
2 1 E .
E .
P simulation
g
Z o5t \ -
> .
-§ /
=
3 0 : .
o " |/ experiment §
!
{
05t
0 0.02 0.04 0.06 0.08 0.1

Time (seconds)

Figure 7.8: Time responses of the thrust bearing system
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II. Radial Bearings

Table 7.3.1 lists the control parameters for the radial bearings. In the control
algorithm, the zeroth order Taylor’s expansion was used to estimate and cancel the
nonlinearites in the actuator force functions and the uncertainties resulting from the
gyroscopic effects. In addition, p = 0.53um and a hysteresis loop of 0.25um were
chosen in order to mimimize the noise effect. Because of the coupling nature among
the radial axes, the radial bearings can be treated as either two 4th order system
when the rotor is at rest. or an 8th order svstem as the rotor spins. Consequently.

the sphere ®(¢) has higher dimensions than the ti:rust bearing case.

ry, y; bearings . y2 bearings
wn = 550722 wn = 770782
¢=1 (=1

4 =T70x108 ~=14x108
bey =964 b = 14975
ba =11.995 by, =16.72%

Table 7.2: Control parameters for radial bearings

The simulated and experimental time responses are shown in Figures 7.9 and 7.10.
It is clear that the rotor tracks the reference trajectories very closely without using
too much control authority. The simulated models are able to qualitively predict
the experimental behavior except the oscillations occur initially in both position and
control voltage responses. Such discrepencies are possibly due to the low frequency
periodical noise observed in the position measurements. According to Figure 7.11. in
which the spectrum of the position signal is plotted. major components of the sensor

noise appear at 180Hz. 360H =z and so on.
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Figure 7.9: Time responses of the z, radial bearing
7.3.2 Disturbance Rejection

In the rotating machine applications. the presence of disturbances is inevitable. The
disturbances may come from, for example, the machining forces in machine-tool spin-
dles, and the air dynamic forces and the rotor unbalance in turbo machinery. Thus

it is crucial to assure that the bearings have good disturbance rejection capability.
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Figure 7.10: Time responses of the w, radial bearing

Since the derivations of the adaptive controller in the previous two chapters did not
include the disturbances. it is also important to examine the robustness of the con-
troller against external disturbances. Therefore. the disturbance rejection, in term
of the bearing compliance, has been experimentally evaluated. The tests also used

the same experimental setup as Figure 4.3. However, in the tests the experimental
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Figure 7.11: Noise spectrum of the position signal

transfer function between the output position and the input disturbance, which is
equivalent to the bearing compliance, is desired.

Figure 7.12 shows the disturbance rejection responses of the thrust bearing for the
analog and adaptive controllers. The maximum compliances of 347 and 204% were
observed for the adaptive controller and the analog controller respectively. Particu-
larly, the adaptive control system is about 20 times stiffer than the analog one for
w<2H-:.

The disturbance rejection responses of the x,, r, radial bearings for two types of
controllers are shown in Figures 7.13, 7.14. The tests were conducted when the rotor
was at rest and while it was spinning at speeds of 15,000RPM and 30,000RPM. The
adaptive controller has lower maximum compliance than that of the analog controller,
and the bearings are generally much more stiffer at low frequencies. In addition, at

frequencies up to 150H z, the disturbance rejection properties are almost the same
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Figure 7.12: Disturbance rejection of thrust bearing under analog and adaptive con-
trollers

for different operating speeds. Such superior performance of the adaptive controller
is attributed to its abilitity to estimate the nonlinear, uncertain dyanmics on-line.

Nevertheless, for the adaptive controller, it can be noticed that the disturbance
rejection gets degraded around w = 875H z as the the spinning speed increases. This is
primarily due to the coupling between the gyroscopic effect and the rotor flexibility.
A simple model shown in figure 7.15 explains the coupling behavior. Because the
bearings present high stiffness at low frequencies, it makes sense to treat they as
fixed point supports. Thus we can model the system as an overhung rotor with fixed
supports in order to study the coupling behavior qualitatively. Figure 7.15 shows
such a simple system. If it is further assumed that the rotor can be modeled as an
axially symmetric spring with torsional spring constant k, = I,w?, where w; is the
first mode frequency of the rotor, then the equation of motion becomes [21]:

I _
¥ — 7O+ =0, (7.17)
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Figure 7.13: Disturbance rejection of radial bearings under adaptive controller

in which ¥ is a vectorial quantity and ¥ = [0,itch yauw|’- The eigenvalues of the

characteristic equation are given by:

2
A=) éQ:E\J«..:;"+(Iag) . (7.18)

I.2 L2
Consequently, as Q increases, the poles associated with the first mode are splitted
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Figure 7.14: Disturbance rejection of radial bearings under analog controller

in the way that one pair goes to higher frequencies and the other goes to lower
frequencies. Although the control system is equipped with notch filters with notch
freqency equal to 875Hz, at high speeds the width of the filters may not be wide

enough to suppress the vibrations arising from the coupling effect described.
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Chapter 8

Conclusions and Recommendations

Total elimination of friction and the active control nature make magnetic bearings
more attractive than conventional bearings. However, because of the unique behav-
ior, issues associated with modeling, analysis and control need to be carefully studied.
This thesis first presented a finite dimensional model for a magnetically levitated ma-
chine. The rigid rotor dynamics as well as the actuator dynamics were described.
Such a model is used to motivated the three main research themes, namely, investi-
gating achievable performance, obtaining a simple but accurate model and developing
an adaptive controller that is robust to nonlinearities and changing dynamics.

Regarding the achievable performance of magnetically levitated machines, an anal-
ysis procedure is proposed. By applying the LTR methodology to systems in dimen-
sionless form, the disturbance rejection characteristics for two different current control
schemes were investigated. It was shown that while increasing the system bandwidth
decreases the system compliances. the allowable unbalances are dominated by the
hardware constraints.

On the modeling part, in order to further refine the simple finite dimensional
model, more detailed system behavior such as flux leakages, fringing fluxes and the
eddy current loss has been considered. Then Thevenin’s theorem was used to obtain a
simple equivalent model. Such an equivalent model is more capable of predicting the
system behavior accurately because it makes good connection between the physics
and experimental data. Thus one can use this model in extensive simulatione to

facilitate the controller design.
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Finally, we presented an adaptive scheme using local function estimation concept.
This controller is able to tackle the actuator nonlinearities as well as the uncertainties
arising from the gyroscopic effects in magnetically levitated rotating machines. By
making some mild assumptions about the system functions and selecting the con-
trol parameters properly, stability can be guaranteed. Compared to other control
methods. this scheme has a simpler structure which is more suitable for practical
implementation. This controller was first validated using simulations based on the
refined model. Then it was implemented as an alternative to an existing linear analog
compensator. Experimental time responses were compared with the simulations. Dis-
turbance rejection tests were also conducted for spinning and nonspinning conditions.
Results indicate that the adaptive control system has much better stiffness properties
at low frequencies. However. the disturbance rejection at high frequencies gets de-
graded as the spinning speed increases. A simple overhung rotor model showed that
this phenomenon is unavoidable if the coupling between the gyroscopic effect and the
rotor flexibility is not properly accounted for. Thus if a very high spinning speed is
required, one either has to design adaptive notch filters with frequency tracking capa-
bilities so as to avoid structural resonance. or to sacrifice the performace by designing
less stiff bearing control systems.

Some issues in thesis can be further investigated. First, the analysis on the achiev-
able performance uses LTR design. Some other control scheme such as H,, control. u
synthesis methods may also be employed to investigate how the hardware components
constrain the system performance. In addition. the allowable unbalance analysis in
section 3.4 is based on the fact that the magnetic cores and the power amplifiers are
not saturated and thus the control system operates linearly. This assumption can
lead to conservative results. Therefore. one may have to investigate how the satura-

tion nonlinearities would affect the stability of the system and then perform stability
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analysis using tools such as describing functions to compute the less conservative
allowable unbalances.

In chapter 4, the modeling refining procedure strongly relies on the lumped-
parameter approach to acquire the equivalent model. However, the true electromag-
netic behavior is described by the Maxwell’s equations. It would be interesting to
solve these equations numerically and compare the results with the simple equivalent
model. Then useful information for analysis and synthesis can be obtainred.

For the control theory. since only the sufficient condition for stability is derived
at this time, it may lead to a conservative design. A possible way in fixing this issue
is to examine the nonlinear. uncertain system function in detail. For example, one
can look into the system characteristics to investigate how the system function is
composed, how many variables are involved, and thus reduce the dimensionality and
make the estimation easier.

As far as the controller implementation to the magnetically levitated turbo pump
is concerned, it was observed that the disturbance rejection at high frequencies gets
degraded as the spinning speed increases. Consequently, to achieve better perfor-
mance at high rotor speeds, further modifications on the adaptive controller need to
be made so as to account for the coupling between the gyroscopic effect and the rotor

flexibility.
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Appendix A
LTR Designs with Integral Control

We start with adding integrators in each control channel to Eq.(3.7). While ignoring

d; and d, for the purpose of simplicity, the state equations can be augumented as:

u,| [0 O u, I
[*P} B [BP AP][XP}+[0 :
u
= |0 C Pt All)
y = [0 ¢G,] [ . ] (
Because only the control of the radial bearing system is considered here, the design

plant model is a 12th order system in the form of Eq.(3.1). The new control vector

T T

is u and the new state vector is x! = [up ,xp] in which x, consists of four position

measurements and four velocity measurments. Furthermore,

0 0 I \ -
A=[Bp Ap],B:[O],cz[o C,|. (A.2)

In order to achieve the approximation in Eq.(3.4), L, the process noise influencing

matrix has to be selected carefully. Here we adopt the method in [6] to select L.

Writing LT = [L{ \ L{,] . the matrix C(jwwl — A)™'L in Eq.(3.3) can be expanded as:

C(jwI-A)'L=[0 C, |

j% 0 L
UoAn 7By (T — Ap)t | | L

v
C,(jwI—-A,)"'B,L; N

o C,(j«I—- A,) 'Ly. (A.3)

At high frequencies, or w — oc, it easy to see that

. _ C,L
Cjwl-A)'L — ;’ =8 (A4)
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Thus Ly can be selected, say, Ly = CZ [C,,Cﬂ_l, to influence the high frequency
behavior of the target feedback loop so that Eq.(3.4) is true at high frequencies. Note
that Ly is still available as a design parameter. It can be selected to match the
singular values at low frequencies. However, one needs some caution in selecting L.

The matrix A, in the bias current linearization scheme is nonsingular. Therefore.

at low frequencies. or w — 0, we have

CjwI-A)'L — -SeBele _ ¢ A1,
~ —Cehs Bl (A.5)
Jjw . o
Consequently, one can select Ly = — [C,,A;IB,,]—1 to make C(jwI— A)”'L, or

Gk r(jw), behave like J—I; at low frequencies.
On the other hand. A, in the input-state linearization scheme is singular due to
the rigid body motions of the rotor, the above selection of L does not apply here.

Nevertheless, the special structures of A,. B,. and C,. namely, A, = [g IG ]

B, = [ l;)1 ], and C, = [ Io0 ] provide us an insight to choose L. First. one can

express the resolvent matrix (juwI — A)™" as

1 ul-G)™
el = 4)7" = [ éw (j.‘;iw_ G)! ] : (A.6)
Then at low frequencies,
C(jwI-A)T'L — Cpuwl—?:)-*n,,m
= -G Bl (A7)

Because B, is always nonsingular. and G = 0 at low rotation speed and nonsingular

otherwise, one can select L;, = —B;! so that

ClijuwI-A)'L — L (A.8)

(Gw)®
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at low rotation speeds and select L; = —~B['G so that

ClijwI—A)'L - L (A.9)

(3w)

otherwise. Note that both Eq.(A.8) and Eq.(A.9) are only valid at low frequencies.

112



Appendix B

System Bandwidth Constraints Imposed
by the Flexibility Effects

The equations of motion in Eq.(2.3) assumed that the rotor is rigid; thus ignored
the flexibility effects. In the reality, the rotor is not infinitely rigid and the flexural
effects usually have significant influence on the stability of the control system. Among
the flexibility effects. the bending modes of the rotor are particullary dominating in
rotating machine applications [7]. For the purpose of investigating how the bending
effects constrain the system banwidth, we start by constructing a flexible rotor model.

Figure B.1 shows a flexible rotor acted upon by two external forces, F;; and
F,, which are generated by the z; and z; bearings respectively. The rotor is made of
material with Young's modulus equal to E and density equal to p. The cross-sectional
area of the rotor is A and the the area moment of inertia about the neutral axial is
I. If the rotor is at rest, according to the Bernoulli-Euler beam theory, the equation

of motion in the X direction can be written as [11, 24]:

8‘w azw
ey + PA—at—2 = F18(v — v1) + Fr26(v — vq), (B.1)

Er
where 6(.)’s are impluse functions and w(v.t) is the z-direction displacement of
the position v at the time t. The partial differential equation has force free boundary

conditions which mean that no shear force and no moment exist at v =0 and v = L.

The boundary conditions can be written in terms of w(v.t) as

2 a2,
?—?(O,t) = O—u(L,t) = 0 for the zero-moment constraint, (B.2)

dr ox?
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and

Pw Pw .
5;5(0’” = %—é—(L,t) = 0 for the zero-shear constraint. (B.3)

SR Rttt Bt
.
.

w(v, t)

|
|
|
!

.

v

Figure B.1: A Bernoulli-Euler beam with point forcing

The assumed-mode method in [30] can be used to solve for w(v,t). It is assumed

in this method that the forced solution has the form
w(v,t) = 3 Ya(v)Cas(t), (B.4)
n=0
where Y;,(v) is the mode shape function of the nth mode and (,,(t) is the associated
coordinate. We substitute this solution into Eq.(B.1) and then multiply each term
by Y,.(v) and integrate with respect ot v from v = 0 to v = L. With the help of the

orthogonality property of the mode shapes, we obtain
rnnc;x + mnwnCnr = F.z‘lYn(vl) + F1‘2Y;1(v1)7 (B5)

where m,, = fOL pAY2dv is the modal mass and w, is the natural frequency. Both are

associated with the nth mode.
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In this simple analysis, only the rigid body motion and the first bending mode
are of interest. Therefore, the infinite series in Eq.(B.4) are truncated to three terms,

namely,
w(v,t) = Yo(v)Go(t) + Yi(v)i(t) + Ya(v)(a(2), (B.6)

in which Yp(v) and Y;(v) represent the modes for the rigid body translation and
rotation, both having natural frequencies equal to 0, and Y3(v) is the mode shape
for the first bending mode. Because there exists a linear transformation between
[¢oz, Ciz] and [z1, z2], the two equations of motion in (o, and (i, coordinates can also

be represented by the first two equations in Eq.(2.3) with Q@ = 0. Moreover, we have

Titrue = 'LU(’Ul, t) = Yz)(vl )Q.O.r(t) + }’i(t’l)Clr(t) + y’2(vl)c21‘(t)v (BT)

Totrue = W(v2, 1) = Yo(v2)Coz(t) + Y1(v2)(1(t) + Ya(v2)(2x(2), (B.8)

where x4, and x4, represent the true displacements of the rotor at z; and =z,
bearing locations. Consequently, the overall system dynamics can be describe by the
block diagram in Figure B.2.

In this block diagram, the plant P consists of the first four equations of Eq. (2.3)
(the disturbances are ignored in this case), and can be written as P = C,(sI —
A,)"'B,, where A,, B, and C, are the matrices in Eq.(3.7) corresponding to the
input-state linearization scheme. It is assumed that the dynamics in the Y direction
has similar characteristics as that of the X direction and the analysis is still valid
when the rotor spins. Furthermore. rather than assuming the system possesses no
damping, a modal damping coefficient £ is introduced.

Based on the previous discussion. the nominal model P and AP due to the first
bending mode effect comprise the true system dynamics. Since the LTR design uses

the nominal model, the critical issue here is to assure the control system is robust
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Figure B.2: A block diagram describing the rigid body motion and the first bending
mode effect

against the purturbation AP. Here we employ some results in the robust control
theory to test the robust stability of the control system.
In [12, 14]. the small gain theorem is used to prove that a stabilizing controller C

for the plant P can provide robust stability for the plant P + AP if
JAP(I+ CP)™' C||o < 1, (B.9)

where ||.||c denotes the infinity norm of the associated transfer function. In other
words, in Figure B.3, if the infinity norm of the product of AP and the transfer
function from (, to f is less than 1, the control system is robust stable. The condition

in Eq.(B.9) is only a sufficient condiditon and it can be satisfied if

Tmaz [AP(jw)] < o7}, [(T+ Cljw)P(jw)) ™ C(jw)] - (B.10)

maxr

This stability test can be immediately applied to the LTR control system using the

input-state linearization scheme. In this case,
AP = R’PR

116



a P .

f v . ‘_.*“’
___I ",-"
r=0 + + X
C P | —’;4'——6
+ e
e
e

Robust stability test: ‘o] <1
My
ey oo gl
il . 1%y ]

lfy;J y2.|

Figure B.3: A block di;syademonstrating the robust stability test for the input-

state linearization sche
P

- ’ = ! RR. (B.11)

- ma(s? + 28wys + w3)

7

/Usi’ﬁ/g/t/he relation o,,,2 [RTR] = Omar [RRT] . we have

1
my(s2 + 26wss + w3)’

Omaz [AP(jw)] = (B.12)

where m, = = is the equivalent modal mass. Now, the robust stability
Y7 (v1)+YF (v2)

condition becomes

1
ma((jw)? + 26wa(jw) + w3)

< one [T+ Cjw)P(jw)) ™ C(jw)] Ve. (B.13)
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It can be concluded from the above inequality that if the inverse of the maximum

signular value of the transfer function (I+ CP)™'C is larger than the magnitude

1

TGP Taen o) for all frequencies, then the controller also guarantee robust

of
stable against the first bending mode.

The robust stability test of the LTR control system. which is designed based on
the nominal model in Eq.(3.7), for the input-state linearizaiton scheme is shown in
Figure B.4. In this figure, the rotor is assumed spinning at 25000RPM and the
function o} [(I + C(jw)P(jw))! C(jw)] is plotted for different bandwidths. Due
to the complexities of the rotors, the acquisition of parameters m,, £, and w, usually

rely on performing system identification experimentally. For the purpose of illustra-

tion, m, = 4.0kg, £ = 0.08, w, = 875Hz are adpoted and the magintude plot of

1
my ((jw)2+2€w2 (juw)+w?)

is also shown in this figure. Clearly, as the normalized system
bandwith increases over 4, the condition in Eq. B.13 is violated and the control
system may loose its stability due to the first mode bending effect. With a larger
equivalent model mass m,, a higher bending frequency w, and a larger modal damping
ratio £, it is more likely the control system can have robust stability. Besides, among
all the three factors, the damping effect is more prevalent over the other two because
the violation of Eq. B.13 mainly occurs at the peak of the function on the left of this
inequality and the size of the peak is inversely proportional to the modal damping.
Notice in Figure B.4, dimensionless parameters are used; thus m; is normalized with
respect to m, the mass of the rotor, while w, is normalized with respect to w,.
Similar analysis procedure can be also applied to the control system associated
with the bias current linearization scheme. However, the control variables now are
the currents instead of the magnetic forces. Figure B.5 shows such a control system,
in which P and AP have the same meanings as before. Because the magnetic force

in the bias current linearization scheme is a linear combination of the current and the
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Figure B.4: Robust stability tests of LTR control system using the input-state lin-
earization scheme

displacement, we have
f = I\'K]X+K1i, (814)

where the expressions for f, K;, x and i can be found in Figure B.5. Therefore, using

the notations in Eq.(3.7), the following relation holds:
C,(sI-A,)"'B, = (I-«PK,;)™ PK;, (B.15)

since both sides of the equality represent the transfer function from i to x. Again, us-
ing the small gain theorem, it can be shown that the controller provides the robust sta-
bility if the infinity norm of the product AP and (I + K;CP - <K;P)™" (vrK; — K;C).
which is the transfer function from v to f in Figure B.3, is less than 1.

The robust stability test is applied to the LTR control system associated with
the bias current linearization scheme and the results are shown in Figiure B.6. The

parameters and the operating conditions are the same as the previous case. The robust
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Figure B.5: A block diagram demonstrating the robust stability test for the bias
current linearization scheme

stability condition is violated when «, > 2. Comparing Figure B.4 and Figure B.6,
one can conclude that the control system associated with the bias current linearization
scheme is more susceptible to the flexibility effects than the control system assocated

with the input-state linearization scheme. This is possibly due to the instability

introduced by the former scheme.
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Figure B.6: Robust stability tests of LTR control system using the bias current
linearization scheme

121



Appendix C
Fringing Flux Effects

The model-refining procedure in Section 4.4 strongly relies on the assumption that
the magnetic forces contributed from the fringing fluxes are negligible compared to
those due to the useful fluxes, so that one can isolate the air gap capacitance (', and
obtain an equivalent description for the effort-source-capacitance network. In this
section, a justification on this assumption using the radial bearing as an example is

given.

polar enlargement

Figure C.1: Typical fringing fluxes existing in the radial bearing
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Figure C.1 shows the typical fringing fluxes existing in the radial bearing. The
total fringing flux path consists of several simple paths. These paths can be catego-
rized into six types which are designated by numbers 1 to 6 in the same figure. Also
using the dimensions a, b, t. h labeled in this figure, one can obtain the capacitance
of each type of flux paths(33]:

Type-1 fluxr path. This type of flux flows either from the front or the rear face of
the polar enlargement to the rotor surface. Therefore. there are two type-1 paths.

The capacitance of each path is given by:

2 24
PO ln(1 4+ =
T h

C'1 =

). (C.1)

Type-2 flux peth. This type of flux flows from the edge of the front or the rear
face of the polar enlargement to the rotor surface. Therefore, there are two type-2

paths. The capacitance of each path is given by:
Csy = 0.52p¢a. (C.2)

Type-3 flux path. This type of flux flows from each corner edge of the polar
enlargement to the rotor surface. The fringing flux is in the shape of a one-eighth
spherical shell. and there are four type-3 paths. The capacitance of each path is given

by:

;= ot (C.3)

0
2
Type-4 fluz path. This type of flux flows from each corner of the polar enlargement

to the rotor surface. The fringing flux is in the shape of a one-eighth spherical. and

there are four type-4 paths. The capacitance of each path is given by:

Cs = 0.3080h. (C.4)
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Type-5 fluz path. This type of flux flows from the either side face of the po-
lar enlargement to the rotor surface. Therefore, there are two type-5 paths. The

capacitance of each path is given by:

In(1 + ). (C.5)

Type-6 flur path. This type of flux flows from the edge of the either side face of
the polar enlargement to the rotor surface. Therefore, there are two type-6 paths.

The capacitance of each path is given by:
Ce = 0.52p0b. (C.6)

Finally, the capacitance for the useful flux is given by

ca=”%w (C.7)

A bond graph model characterizing the magnetic fluxes in Figure C.1 is shown
in Figure C.2.(a). Because the fringing flux paths and the useful flux path connect
the polar enlargement to the rotor surface, they share the same magnetomotive force
and a 0 junction can be used to represent such a parallel connection. The generalized
capacitive elements associated with the fringing paths can be further combined into

a single capacitor with the capacitance
Cf = 2C1 + ‘..)Cz + 4C3 + 404 + 205 =+ 206- (CS)

Now we can use expressions similar to Eq.(2.4) to determine the magnetic forces
contributed by the fringing fluxes and the useful flux. For the fringing fluxes, the

associated magnetic force Fy is given by:

o€, __MdC, )

br=—r="%
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Fringing-fiux effect
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Figure C.2: Bond graph representations of the fringing fluxes and the useful flux

where &; is the magnetic energy stored in the fringing fluxes and M is the mag-

netomotive force. For the useful fluxes, the associated magnetic force F, is given

by:

9E, M2 dC,
oh ~ 2 dn’ (C.10)

where &, is the magnetic energy stored in the useful flux.
Eq.(C.9) and Eq.(C.10) together allow one to compute the ratio ;{-, which is given
by:

Fy G 8la+bht 12324 ©.11)
F, Lo ~ wab(h + 2t) rab '

For the radial bearings of the turbo pump in this study, a = 0.75¢m, b = 1.3cm,

t = 0.375¢m, and h = 250pum. Substituting these values into Eq. (C.11), we have
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% = 0.0645, which justifies the assumption that the magnetic force due to the fringing

fluxes is negligible compared to the force coming from the useful flux.
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Appendix D
Modeling of the Eddy Current Loss

If the magnetic bearing is made up of n, laminations of ferromagnetic sheet insulated
from one another as shown in Fig. D.1, the power loss P4, of the core can be

calculated and written as[44]:

a® [dB\?
Peddy = 4L,png (W) (I(lh)

la  (do\*
= —| - D.1
4kphn? (dt ) (D-1)
where p is the resistivity of the material. [ is the mean circumference of the core and

k is a constant which accounts for the fact that the paths near the surface will have

larger induced emf’s than those in the interior of the lamination.

path of eddy current

h

ﬁ

7

/

n laminations

Figure D.1: Laminated Magnetic Core
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In the bond graph analogy, the power dissipated for the resistive element R is equal

2
to R(f,—‘f) . Therefore we can identify the resistance induced by the eddy current as
R, = 4—,::#. In addition. Eq D.1 also shows that when a sinusoidal flux is existing

in the magnetic circuit. the energy dissipated by the eddy current effect would be

proportional to the frequency squared.
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Appendix E
Proof of Theorem 5.1

The proof of Theorem 5.3.1 depends on the following lemma.

Lemma E.0.1 If ||B,.r(t)|| < r for allt > 0, then the reference trajectory X,,(t) is

Lipschitz continuous. In other words, a Lipschitz constant M,, erists so that
% (ta) = Xm (to)l| < Mum|ta —ts|, Vta.ty > 0. (E.1)
Proof: Let us start by estimating [|eA=t||. Consider a linear system described by
z=A,z (E.2)

We define a Lyapunov function V with V = %ZTPZ. Using Eqgs.(5.13) and (E.2), we

get V = —1272. Since
2Tz=— ) [Plz7z > 2_y (E.3)
" AmacP]T " Amaz[P] -
it is implied that
. 1
< V. .
V< Amar[P]v (EA4)

Accordingly, we have
1

%Amm[P]”Z(t)”z SV(t) < V(O)e-xmazll’lt

< 5Ama[Plllz(0)]? (E.5)

1
2

Vt > 0, or ||z(2)] < i,:_?:[lg]l”z(o)”’ This. together with the fact that Eq.(E.2) has a
unique solution z(t) = eAm!z(0), means that
/\max[P]

lleA*2(0)]] < T 12Ol V=0, (E-6)

129



Because Eq.(E.6) holds for all z(0) € R", we have

Amaz|P] -
Amt||  |Imazl” ] > 0. .
lle™™| < oo [P] Vi>0 (E.7)
Next, notice that x,,(¢) has the form
t
Xm(t) = eAmtx, (0) + /0 eAn(t=1B_r(r)dr. (E.8)

Substituting this solution back into Eq.(5.2) and taking norms give us

Ix= ()] < ”AmeAMtxm (0)]]

t
+]An /0 An(t=1B_ r(r)dr| + |Bmr(t)]]. (E.9)

Because of Eq.(E.6) and ||B,,r{t)|| < r Vt > 0, we can futher reduce Eq.(E.9) to

(0] < nAmn\]I E= (O]

maJ:[P]
¥ ( FinlP] ”) " (E10)

Vt > 0, by using the fact that [[A,, fs eAn(=7)dr|| = ||t —T|| < ||| + 1.

Choosing M., = (||An|||ix=(0)]] + ) ‘/—\ﬁ‘:—:—[[pll+7r we have ||x,,(¢)|| < M. Con-

sequently, the Lipschitz continuity of x,, follows by the Mean-Value Theorem. ]

We are now in the position to prove Theorem 5.3.1.

Proof of Theorem 5.3.1: We prove this theorem by contradiction. Denoting the
function ||f(x) — f;(x,x;)|| by d:(t), then it is continuous because of the smoothness
of f(x) and the continuity of the state trajectory x(t). First assume that there
exists t; > #; such that d(t;) > e. Because d(t;) = 0, we can infer that the set

S:;={t|di(t) =€ t; <t<t]}is nonempty by the intermediate value theorem®.

!The intermediate value theorem states that for a continuous function f on a closed interval
S D R, if there are two points @ < 3 in S such that f(a) # f(/3), then f takes every value between
f(a) and f(B) in the interval (a, 3).
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Let ¢; be the minimum element of §;; i.e., t7 = minS;; then d;(t) < efor t; <t < 7.
In the mean time, ||e(t)|| > p for ¢; < t < ¢} is automatically assumed here since it is
the only case of interest. Consequently, Eq.(5.23) holds with ¢ = ¢;. This, together
with Eq.(5.24) gives us

. 1 p
1, < —b—p—6). .
E-tsqr (VznPllMl o=r ‘5) (E-11)

Besides, it can be concluded from Eq.(5.21) that

max [P] 2 A‘l\ro + ;}\rl ) %
e(t < + = Q. E.12
et < (2 + S ) = (E.12)
By the use of Egs.(E.1), (E.11) and ( ). Ix(#7) — x| (= ||Ix(#7) — x(¢;)||) can be

bounded as follows

Ix(£5) —xill < leC) + [1xm(8) — xm (£:)]] + lle(2:)]]

P___

< ¢ M. (t — t; <
o+ M, ( J+p < 7,

< >||P|w1 \/ T8 (E.13)

Applying this result to Eq.(5.3) with p = 1. obviously we have d(t7) < e which is
contradictory to the statement that d(¢;) = e. Therefore, such a t; does not exist for

lle]l = p. This completes the proof. O
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Appendix F

Control Software for Thrust and Radial
Bearings

Control programs for the axial bearing and the radial bearings share similar struc-
ture. The flow chart of the programs is shown in Figure F.1. Take "axialctr.asm” for
example, the program start with including header files and defining control param-
eters. The header file "defebara.h” contains the definitions for the A/D offsets, the
D/A offsets, some A/D constants and some D/A constants. The header file 7 def-
macro.h” defines some macros such as DIV (for division), STARTCONYV (for starting
conversion) and DATACONYV (to convert the data into DSP readable format). After
these definitions, the program allocate data memory space for storging control vari-
ables. These control variables are then initialized properly. In the main control loop,
the rotor position is sampled and the rotor velocity is calculated using the backward
diffference method. Since the presence of noise is innevitable, the velocity is further
filtered. Afterwards, the reference position and velocity together with the position
error and velocity error are computed using the discrete version of Eq.(7.5). In order
to determine when to turn on and off the adaptation, we calculate the value of a flag.
The flag value, which is set to 0 initially, equals 1 when the ||e||., exceeds p+ 0, equals
2 when ||e||, is less than p— 0. If ||| is between p + o and p — o, then the current
flag value is equal to the flag value of the last sampling period. Notice that for the
purpose of saving computation time, the infinity norm instead of Euclidian norm is

used here. Finally, the control effort which consists of PD term and adaptation term



is computed and is sent to the D/A.

Including the header files
Defining control parameters

'

Allocating memory for
storaging variables

Y
Initialization
!

Sampie

!

Computing the velocity,
reference signals and error signals

Determining the flag

L

Computing the control efforts
(PD+Adaptation)

Sending control to

Figure F.1: Flow chart for the control software
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F.1 Header Files for the Control Software
A. "defebara.h”

{
{ - defebara.h -

{This file includes status register bit definitions and hardware parameters
{for the DSP board used in EBARA project.

{

{Status register bit definitions}

{

[

{

Wy

{MODE1 register}
#define IRPTEN 0x00001000
{MODE2 register}
#define TIMEN 0x00000020
#define FG20UTPUT 0x00020000

{ASTAT register}

{STKY register}

{IRPTL and IMASK and IMASKP register}
#define THZHI  0x00000010

{Hardware parameters}

{
{

(SR

{CPU speed}
#define CPUSPEED 33333333.333

{A/D offset value}
#define ADOOFFSET 0x00000906
#define ADIOFFSET O0x000008E6
#define AD20FFSET 0x00000905



#define AD3OFFSET
#define AD40QFFSET
#define ADSOFFSET
#define ADGOFFSET

{D/A offset value}
{#define DAOOFFSET
{#define DA10OFFSET

#define DAOOFFSET
#define DA10OFFSET
#define DA20FFSET
#define DA30OFFSET
#define DA4OFFSET

{ D/A constants

#define DAVOLTSMAX
#define DAVOLTSMIE
#define DABITSMAX

{ A/D constants

#define ADVCOLTSMAX
#define ADVOLTSMIN
#define ADBITSMAX

B. "defmacro.h”

0x00000904
0x000008DB
0x000008E4
0x00000926

42.0}
-28.0}

OxFFFFFFF2
0x0000000C
OxOFFFFFF1
OxFFFFFFFE
OxFFFFFFFF

5.0
-5.0
8192.0

5.0
-5.0
8192.0

{
{

- defmacro.h -

{This file includes the macros used in the EBARA project

{

{ Toggle FLAG2 to signal I/0 board to start conversion

#define STARTCONV

BIT SET ASTAT 0x00200000;\
BOP; NOP; ROP;\

BIT CLR ASTAT 0x00200000;\
NQP; NOP; NOP
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#define startconv BIT SET ASTAT 0x00200000;\
NOP; HOP; NOP;\
BIT CLR ASTAT 0x00200000;\
NOP; HOP; NOP

{ division macro - if there is a quicker way, just change macro }
{ macro requires the following: }
{ FO = numerator }
{ F12 = denominator }
{
{ Division Algorithm - Given Q = D/N, multiply N and D by the same set
{ of factors, Rmn.
{ ExROXRI x ... xRn
{ Q=
{ DxROXRlx ... xRn
{
{ Choose Rn such that as the number of factors increases, the
{ denominator approaches 1. The quotient is then approximately equal
{ to the numerator.
{
{ RO is the seed provided by the RECIPS instruction. Succssive Rn are
{ calculated by the following formula:
{ Ri = 2-D(i-1)
{
{ NOTE: The macro uses the following registers:
{ Fo, F7, F11, F12
{ These registers will be over-written upon exit from macro.
{
#define div Fi1 = 2.0; \

FO = RECIPS F12, F7 = FO; \

F12 = FO*F12; \

F7 = FO*F7, FO = F11-F12; \

F12 = FO*F12; \

F7 = FO*F7, FO = F11-F12; \

F12 = FO*F12; \

F7 = FO*F7, FO = F11-F12; \

FO = FO*F7
#define DIV Fi1 = 2.0; \

FO = RECIPS F12, F7 = FO; \
F12 = FO*F12; \
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F7 = FO*F7, FO = F11-F12; \
F12 = FO*F12; \

F7 = FO*F7, FO = F11-F12; \
F12 = FO*F12; \

F7 = FO*F7, FO = F11-F12; \
FO = FO*F7

{ Convert the bit information from DSP to D/A

{ FO = the output (in volts OR AMPS OR METERS) of DSP;

{F1 VOLTS2BITS (OR AMPS TO BITS OR METERS TO BITS); F2 = DABITSMAX;
{ RO = final bits in DA, F3 = offset in DA

#define DACONV FO = F1*F0;\
FO = F3+F0;\
F1 = FO+F2;\
RO = FIX F1;\
RO = ASHIFT RO BY 2

#define daconv FO = F1%F0;\
FO = F3+F0;\
F1 = FO+F2;\
RO = FIX Fi1;\
RO = ASHIFT RO BY 2
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F.2 Control Program for the Thrust Bearing

{ Axialctr.asm: The assembly program for controlling the axial bearing }

#include "defebara.h"

{The header file defebara.h defines the A/D offsets, D/A offsets, A/D
constants, D/A constants}

#include "defmacro.h"

{The header file defmacro.h defines some macros such as div , startconv
and dataconv}

#define NUMOFCHANNEL 1  {number of channel}
#define SMPLSPEED 20000.0 {sampling rate = 20k Hz }
#define SAVEOFFSET 256 {parameter for saving the data }

{Define some control parameters }

#define REF_NATFREQ 600.0 {reference model banwidth = 600 rad/s)
#define REF_DAMP 1.0 {reference model damping = 1.0 }
#define AXL_B 49.68 {VOLTS TO NEWTONS, equivalent to
b_{z}=11.50/4%4.32 A/V}

#define AXL_SENGAIN 9450.0 {METERS TO VOLTS, the sensor gain}

#define AXL_INITSIG -0.3189 {VOLTS, the initial control current ----
corresponding to  2.2KG, }

#define AXL_MAXU 1.08 {VOLTS, the maximum control current---
corresponding to 4 AMPS}

#define HYSTERESIS 0.0000005 {METERS, the thichness of hysteresis loop}
#define ADAPTATION 1.0el3 {no unit, adaptation gain}

#define C1 0.8187307531 {EXP~-ALPHA*T, ALPHA=FILTER
BANDWIDTH , a parameter of the first order filter for the velocity signal,
filter bandwidth =1kHz}

#define C2 0.1812692469 {a parameter of the first order filter
for the velocity signal, filter bandwidth =1kHz}

{ve(k+1)=Cixve(k)+C2*v(k) vt : filter velocity, v: raw velocity}
{ The following ports are found on the ADSP board }
.SEGMENT /DM status;

.VAR DSPSTAT; {DSP status register}
.ENDSEG;
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.SEGMEFET /DM timer;
.VAR DSPTIMER; {DSP timer}
.ENDSEG;

{ The following ports are found on the 32-channel ADC board

.SEGMEKT /PM ioadin;
.VAR ADFIFO; {A/D fifo }
.ENDSEG;

.SEGMENT /PM iostat;
.VAR IOSTAT; {input-output status }
.ENDSEG;

.SEGMERT /DM iodaout;
.VAR DAFIFO; {D/A fifo }
.ENDSEG;

.SEGMENT /DM iochans;
.VAR CHANNELS; {input-output channel }
.ENDSEG;

.SEGMENT /DM iocntrl;
.VAR CONTROL; { control register }
.ENDSEG;

.SEGMENT /DM dm_data;
{ Conversion factors
.VAR VOLT2BITS; {bits/volt }
.VAR BITS2VOLT; {volts/bit }

{ Define variables
.VAR ADINPUT; {the A/D input}

.VAR DACONTROL; {the D/A control signal}

.VAR SMPL_PERIOD; {sampling period}

{variables for the reference model}
.VAR REF_PO0OSO;

.VAR REF_VELO;

.VAR REF_PQS;

.VAR REF_VEL;
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{ variables for the plant,}
.VAR AXL_XO0; {old position}
.VAR AXL_X1; {new position}
.VAR AXL_V1; <{new velocity}
.VAR AXL_VO; {old velocity}

{ error signall}
.VAR ERR_X; <{position error}
.VAR ERR_V; {velocity error}

.VAR AXL_BINV; {1/b_{z}}
.VAR AXL_COEV1; { a conversion factor}

{parameters used in the reference model A matrix}
.VAR REF_AT12;
.VAR REF_AT21;
.VAR REF_AT22;

.VAR P_GAIN; {p gain}

.VAR D_GAIN; {d gain}

.VAR NRML_FCTR; { normalizing factor }

.VAR FLAG; { the flag for the deadzone+ hysteresis loop }

.VAR ADAPT_X; {position gain used in computing the adapation signall}
.VAR ADAPT_V; {velocity gain used in computing the adapation signal}

.VAR ADAPT_U; {the adaptation signal }

{ Variables needed to save data in memory for later dumping }
.VAR INPUT_OFFSET;

.VAR QUTPUT_O:r¥SET;

.VAR SAVE_END;

.ENDSEG;

.SEGMENT /PM rst_svc;

{

{ At reset, the BANK registers are as follows:
{ PMBANK1 = 0x800000

{ DMBANK1 = 0x20000000

{ DMBANK2 = 0x40000000
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{ DMBANK3 = 0x80000000
{ These values, by coincidence, are perfect for our I/0 board

{

(W SI

The default value of PMWAIT at reset is OxO003DE. This corresponds
to the following:

bit 13 0 (Fo automatic wait state)

bits 12-10 = 000 (memory page size = 256 words)

bits 9-7 = 111 (7 PMBANK1 wait states)

bits 6-5 = 10 (Int. and Ext. wait state ack mode)

bits 4-2 = 111 (7 PMBANKO wait states)

bits 1-0 = 10 (Int. and Ext. wait state ack mode)

For our setup, the DSP board accesses memory at O wait states and
accesses all ports and 1 wait state. Therefore:

bit 13 = 0 (No automatic wait state)

bits 12-10 = 100 (memory page size = 4096 words)

bits 9-7 = 001 (1 PMBANK1 wait state)

bits 6-5 = 10 (Int. and Ext. wait state ack mode)

bits 4-2 = 000 (0 PMBAEKO wait states)

bits 1-0 = 10 (Int. and Ext. wait state ack mode)

AMAAAAAAAAAAAAAAAASA A A A A A

S S O Y S I W

PMWAIT = 0x0010C2;

{
{ The default value of DMWAIT at reset is OxO00OF7BDE. This corresponds
{ to the following:

bit 23 = 0 (No automatic wait state)

bits 22-20 = 000 (memory page size = 256 words)
bits 19-17 = 111 (7 DHMBARK3 wait states)

bits 16-15 = 10 (Int. and Ext. wait state ack mode)
bits 14-12 = 111 (7 DMBANK2 wait states)

bits 11-10 = 10 (Int. and Ext. wait state ack mode)
bits 9-7 = 111 (7 DMBANK1 wait states)

bits 6-5 = 10 (Int. and Ext. wait state ack mode)
bits 4-2 = 111 (7 DMBANKO wait states)

bits 1-0 = 10 (Int. and Ext. wait state ack mode)

For our setup, the DSP board accesses memory at O wait states and
accesses all ports and 1 wait state. Therefore:

bit 23 =0 (No automatic wait state)

bits 22-20 = 100 (memory page size = 4096 words)

bits 19-17 = 001 (1 DMBANK3 wait states)

At A A A A A A A A A A A A AN
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bits 16-15 = 10 (Int. and Ext. wait state ack mode)
bits 14-12 = 001 (i1 DMBANK2 wait states)
bits 11-10 = 10 (Int. and Ext. wait state ack mode)

bits 9-7 = 000 (0 DMBANK1 wait state)
bits 6-5 = 10 (Int. and Ext. wait state ack mode)
bits 4-2 = 000 (0 DMBANKO wait states)
bits 1-0 = 10 (Int. and Ext. wait state ack mode)

L o N e W W W e W W
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DMWAIT = 0x00431842;

{

{ Set FLAG2 to output mode so we can trigger I/0 board conversion when
{ we need to.

STV

{

MODE2 = FG20UTPUT;

JUMP initialize;
.ENDSEG;

.SEGMENT /PM pm_code;
initialize:

{ initialize registers }

IMASK
MODE1

0;
0x00012000;

I0 =
I1 =
I2 =
I3 =
I4 =
Is =
I6 =
I7 =
MO =
M1 =
M2 =
M3 =
Mg =

we we we we we

O OO0 OO 0000 0O OO0 Oo



M5 =
M6 =
M7 =
Lo =
L1 =
L2 =
L3 =
L4
LS =
L6 =
L7 =

]
O 000000000 OO

This program does the following:
1. Triggers A/D conversion on one channel
2. Polls A/D status register to see when conversion complete
3. Pushes A/D value out to D/A
4. returns to step 1

e et

{ Make sure FLAG2 toggle is initially zero.
BIT CLR ASTAT 0x00200000;

{ Calculate D/A conversion factor
FO = DABITSMAX;

F12 = DAVOLTSMAX;

DIV;

DM(VOLT2BITS) = FO;

{ Calculate A/D conversion factor
F12 = ADBITSMAX;

FO = ADVOLTSMAX;

DIV;

DM(BITS2VOLT) = FO;

{ Initialize the control signal to zero }

R3 = DAOOFFSET;

F3 = FLOAT R3;

F1 = DM(VOLT2BITS);
F2 = DABITSMAX;

FO = 0.0;

DACORNV;

DM(DACONTROL) = RO;
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{ Set up axial bearing conversion factor for A/D
{ axl_convi=bits2volt/axl_sengain

{ axl_sengain-position sensor conversion factor
FO = DM(BITS2VOLT); {1 bit = ? volts }

F12 = AXL_SENGAIR; {1 meters =7 volts }

DIV;

DM(AXL_CORV1) = FO; {1 bit = ? meters}

{ Set up the sampling time T }

FO = 1.0;

F12 =SMPLSPEED;

DIV;

DM(SMPL_PERIOD) = FO;

{ Set up axial bearing 1*PERIOD constant 1/(T)
FO = SMPLSPEED;

F12 = 1.0;

DIV;

DM(AXL_PERIOD) = FO;
{ Set up normalizing constant 1/omega
FO = 1.0;

F12 = REF_NATFREQ;

DIV;

DM(NRML_FCTR) = FO;

{ Set up adaptation constants}

FO = REF_NATFREQ;
F1 = FO;

FO = F1*FO;

Fl1 = 4.4;

F12 = F1%F0;

FO = ADAPTATION;
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DIV;

FO = -FO;
F1 = DM(SMPL_PERIOD);
FO = F1*F0;

DM(ADAPT_X) = FO;
F12 = REF_NATFREQ;
F1 = REF_DAMP;
F12 = F1*F12;
DIV;
DM(ADAPT_V) = FO;
{ In this case, a_{0}(k+1)=a_{0}(k)+ADAPT_X*ERR_X+ADAPT_V+ERR_V,
the discrete version of Eq. (7.9). Because in simulations, the adaption effort

due to a_{1} in Eq. (7.9) is insignificant compared that due to a_{0}, to save
the computation time, the Zeroth order approximation is implementedt}

{ Set up AXL_BINV (1/b) constant }
FO = 1.0;

F12 = AXL_B;

DIV;

DM(AXL_BINV) = FO;

{Set up the reference model A*T matrix constants }

{ For the reference model, xm(k+1)=(I+A*T)#*xm(k) }

FO = DM{SMPL_PERIOD);

DM(REF_AT12) = FO;

FO = REF_NATFREQ;

F1 = FO;

F2 = DM(SMPL_PERIOD);
F3 = FO*F1;

FO = -1.0;
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F3 = FO*F3;
DM(P_GAIE) = F3;
F3 = F3*F2;

DM(REF_AT21) = F3;

FO = -2.0;

F1 = REF_DANMP;

F2 = REF_NATFREQ;

F3 = DM(SMPL_PERIOD);

F4 = FO*F1;
F4 = F4*F2;
DM(D_GAIN) = F4;
F4 = F4»F3;

DM(REF_AT22) = F4;

{ Setup the initial velocity for the reference model

{ The initial position will be acquired by the sampling process
{ Also initialize the flag and adaptation contrcl signal

FO = 0.0;

DM(REF_VELO) = FO;

DM(AXL_VO) = FO;

DM(FLAG) = FO;

DM(ADAPT_U) = FO;

{ Setup variables required to saving data in memory for later recall
RO = SAVEOFFSET;

DM(INPUT_OFFSET) = RO;

R1 = ASHIFT RO BY 1;

R2 = 0x8000;

R2 = R2-R1;

R2 = ASHIFT R2 BY -i;
R1 = R2+RO;

DM (OUTPUT_OFFSET) = Ri;
Ri = R1i+R2;

DM(SAVE_END) = R1;

{ Reset I/0 board
RO = 0x0;
DM(CONTROL) = RO;
NOP; NOP; NOP;
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{
{ Set 1 A/D channel and 0 D/A channels.

{ both the A/D and D/A conversions are triggered.

{ the number of D/A to 0 so that nothing goes out.

{

{ Number of Channels Register: [default - DM(0x40000001)]
{ bits 2-0 -> number of A/D channels

{ bits 5-3 -> number cf D/A channels

{

RO = NUMOFCHANNEL;

R1 = LSHIFT RO BY 3;

RO = RO+R1;

DM(CHANNELS) = RO;
EOP; NOP; NOP;

{ ———————————————

{ Release analog reset (don"t know why) and set go mode to flag2 toggle

{

{ Control Register: [default - DM(0x40000002)]

{ bits 2-0 -> go mode (0 = go on toggle of FLAG2)
{ (1 = go on interrupt)

{ bits 5-3 -> IRQ mode

{ bit 6 -> Status select

{ bit 7 -> Analog reset

{

RO = 0x80;

DM(CONTROL) = RO;
KOP; MOP; HNOP;

{ Set timer sampling period and counter

F12 = SMPLSPEED;
FO = CPUSPEED;
DIV;

Ri = FIX FO;

RO = R1-1;

TPERIOD = RO;
TCOUNT = RO;

{Set the initial current}
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FO
F2

AXL_INITSIG;
AXL_MAXU;

{Make the control current does not exceed the limit }

COMP(FO0,F2);
IF GT FO=F2;
F2=-F2;

COMP(FO,F2);
IF LT FO=F2;

Fi
F2

DM(VOLT2BITS);
DABITSMAX;

R3 = DACOFFSET;

F3 = FLOAT R3;
DACONV;

DM(DACONTROL)=RO;

{Send the initial current and get the initial position information

DM(DAFIFO) = RO;

STARTCORV;

R1i = 0x03;
wait_init: RO = PM(IOSTAT);
R7 = RO AND Ri;

IF NE JUMP wait_init;

{

{ Get A/D value(s) from FIFO. [default - PM(0x800000)]

{

{ The values obtained are 14-bit 2°s-complement values sign extended to
{ the left. 2°s complement is obtained by negating the real value and
{ adding 1. The range of values for our particular A/D is:

{

{ +5V = 0001 1111 1111 1111

{ OV = 0000 0000 0000 0000
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-6V = 1110 0000 0000 0001

Sample code for converting 2°s complement notation to floating point

is as follows:
R1
FO

]

FEXT RO BY 0:16 (SE);
FLOAT RO;

Sample code for converting floatin point numbers to 2°s complement
notation is as follows:
FO = FIX RO;

A A A AN A A

L R R

{Read and discard the A/D value}
RO = PM(ADFIFO);

{Resend the control signal }
RO = DM(DACONTROL) ;
DM(DAFIFQ) = RO;

STARTCONV,;

R1 = 0x03;
wait_initi: RO = PM(IOSTAT);
R7 = RO AND Ri;

IF NE JUMP wait_initi;

{ Convert the A/D value to meters 1}
RO = PM(ADFIFO);

RO = FEXT RO BY 0:14 (SE);
DM(ADINPUT) = RO;

R1 = ADOQFFSET;

RO = RO+R1;

FO = FLOAT RO;

F1 = DM(AXL_CONV1);
FO = FO*F1;

{ Store the initial position
DM(REF_P0OSO) = FO;
DM(AXL_X0) = FO;

DM(AXL_X1) = FO;
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{ Set up input/output save pointers in last address registers }
I6 = DM(INPUT_OFFSET);
I7 = DM(OUTPUT_OFFSET);

(1]

{Save the first A/D input(sensor output), D/A output(control input data)}
#ifdef PLOT

RO = DM(ADINPUT);
DM(I6,1) = RO;

RO = DM(DACONTROL);
F3 = DABITSMAX;

R3 = FIX F3;

RO = FEXT RO BY 2:14;
RO = RO-R3;

DM(17,1) = RO;

#endif
#ifdef plot

RO = DM(ADINPUT);
DM(I6,1) = RO;

RO = DM(DACONTROL);
F3 = DABITSMAX;

R3 = FIX F3;

RO = FEXT RO BY 2:14;
RO = RO-R3;

DM(17,1) = RO;
#endif

{ Reset interrupt latch register }
BIT SET IRPTL 0x0;

{ Allow timer interrupts }
BIT SET IMASK TMZHI;

{ Turn on timer }
BIT SET MODE2 TIMEN;

{ Allow interrupt gemeration }
BIT SET MODE1 IRPTEN;

idlecycle: IDLE;
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JUMP idlecycle;

{The control code starts here}
sample:

RO = DM(DACONTROL);
DM(DAFIFO) = RO;

STARTCONV; { Start A/D conversion after sampling}

R1 = 0x03;

{Wait until the conversion is done}
waiti: RO = PM(IOSTAT);
R7 = RO AND R1;
IF RE JUMP waiti;

{

{ Get A/D value(s) from FIFO. [default - PM(0x800000)]

{

{ The values obtained are 14-bit 2"s-complement values sign extended to
{ tke left. 2°s complement is obtained by negating the real value and
{ adding 1. The range of values for our particular A/D is:

45V = 0001 1111 1111 1111
OV = 0000 0000 0000 0000
-6V = 1110 0000 0000 0001
Sample code for converting 2°s complement notation to floating point
is as follows:
R1 = FEXT RO BY 0:16 (SE);
FO = FLOAT RO;

Sample code for converting floatin point numbers to 2°s complement
notation is as follows:
FO = FIX RO;

A A A A A A A A A A A A A

RO = PM(ADFIFQ);
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{ Transform the sampling data into right format----- adding offset,
multiplying the conversion factor}

RO = FEXT RO BY 0:14 (SE);

DM(ADINPUT) = RO;

R1 = ADOOFFSET;
RO = RO+R1;

FO = FLOAT RO;

F1 = DM(AXL_COEV1);
FO = FO*F1;

{Store the position signal as AXL_XO}

DM(AXL_X0) = FO;
{Determine RAW velocity using backward difference }

F1 = DM(AXL_X1);

FO = FO-Fi;

F1 = DM(AXL_PERIOD);
FO = FO*F1;

{Pass the velocity signal through a filter }

{ve(k+1)=Ci*ve(k)+C2*v(k) vf : filter velocity, v: raw velocity}
Fl1 = C2;
FO = FO *Fi1;
F1 = Ci;
F2 = DM(AXL_V1);
F2 = F1#F2;
FO = FO +F2;

DM(AXL_VO) = FO;

{The filtered velocity is now saved in AXL_VO }

{
{

o

{Compute the reference signals ( position and velocity) and the error signals
position and velocity)}

FO = DM(REF_AT12);

F1 = DM(REF_VELO);



F2 = FO*F1;
FO = DM(REF_POS0);
F2 = F2+F0;

DM(REF_POS) = F2;
F1 = DM(AXL_X0);
F1 = F1-F2;
DM(ERR_X)=F1;

FO = DM(REF_AT21);
F1 = DM(REF_POSO);
F2 = FO*F1;

FO = DM(REF_AT22);
F1 = DM(REF_VELO);

F3 = FO*F1;
F2 = F2+F3;
FO = DM(REF_VELO);
F2 = FO+F2;

DM(REF_VEL) = F2;
F1 = DM(AXL_VO);
Fi1 = Fi-F2;
DM(ERR_V)=F1;

{Determine the flag value, the flag is initially 0, }

F3 = DM(FLAG);

FO = DM(ERR_X);

FO = ABS FO;

Fi = DM(ERR_V);

F1 = ABS Fi;

F2 = DM(NRML_FCTR);

F1 =F1*F2;

F2 = MAX(FO,F1); {Determine the max norm}
F4 = HYSTERESIS;

COMP(F2,F4);

IF LE JUMP setflagoO;

Fl = 1.41421;
F4 = F1#F4;
CONP(F2,F4):

IF GT JUMP setflagl;
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JUMP setflag;

setflag0: F3 = 0.0;
JUMP setflag;

setflagi: F3 = 1.0;
JUMP setflag;

setflag: DM(FLAG) = F3;

{Determine the adaptive control action }
FO = DM(ERR_X);

F1 = DM(ADAPT_X);

FO = FO*F1;

F1 = DM(ERR_V);
F2 = DM(ADAPT_V);

F1 = FixF2;
F3 = FO+F1;
F4 = DM(FLAG);
F3 = F3%F4;

F5 = DM(ADAPT_U);
F5 = F3+F5; {Adaptive control action}
DM(ADAPT_U) = F5;

{Determine the PD control action }
FO = DM(P_GAIN);

F1 = DM(AXL_XO0);

F2 = FO*F1;

FO = DM(D_GAIN);

Fi = DM(AXL_VO);

F3 = FO*F1i;

F2 = F2+F3; <{PD control force}
F2 = F2+F5; {PD +Adaptive control}
FO = DM(AXL_BINV);

F2 = F23%FQ;

F1 = AXL_INITSIG;

FO = F1+F2; {Total volts}

{Check if any saturation occurs in the control current}
F2 = AXL_MAXU;

COMP(FO0,F2);
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IF GT FO=F2;
F2=-F2;

COMP(FO,F2);
IF LT FO=F2;

F1 = DM(VOLT2BITS);
F2 = DABITSHMAX;

R3 = DAOOFFSET;

F3 = FLOAT R3;
DACORV;

DM(DACONTROL)=RO;

DM(DAFIFO) = RO;

STARTCONV;
R1 = 0x03;
wait2: RO = PM(IOSTAT);

R7 = RO AND R1;
IF NE JUMP wait2;

{Save the reference position, velocity }
FO = DM(REF_POS);

DM(REF_P0OS0) = FO;

FO = DM(REF_VEL);

DM(REF_VELO) = FO;

{Update system position information }

FO = DM(AXL_XO0);

DM(AXL_X1) = FO;

FO = DM(AXL_VO);

DM(AXL_V1) = FO;

{ Save original input value before we over-write it
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#ifdet PLOT

RO
R1
RO
IF

16;
DM(OUTPUT_OFFSET) ;
R1-RO;

EQ JUMP sskip;

RO = DM(ADINPUT);
DM(I6,1) = RO;
RO =

R1
RO
IF

RO
F3
R3
RO
RO

-
-

17;
DM(SAVE_END) ;
R1-RO;

EQ JUMP sskip;

1l

DM{DACONTROL) ;
DABITSMAX;

FIX F3;

FEXT RO BY 2:14;
RO-R3;

DM(I7,1) = RO;

#endif

#ifdef plot

RO
R1
RO
IF

16;
DM(OUTPUT_OFFSET) ;
R1-RO;

EQ JUMP sskip;

RO = DN(ADINPUT);
DM(I6,1) = RO;

RO =

R1
RO
IF

RO
F3
R3
RO
RO

I17;
DM(SAVE_END);
Ri-RO;

EQ JUMP sskip;

DM(DACONTROL) ;
DABITSHMAX;

FIX F3;

FEXT RO BY 2:14;
RO-R3;

DM(I7,1) = RO;

#endif
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sskip: RO = PM(ADFIFO);

ret:
RTI;

.ENDSEG;

.SEGMENT /PN tmzh_svc;
JUMP sample;

.ENDSEG;
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F.3 Control Program for the Radial Bearings

{ Radctr.asm: the assembly program for controlling the radial bearing system}

{

#include '"defebari.h"

{The header file defebara.h defines the A/D offsets, D/A offsets, A/D

constants, D/A constants}

#include "defmacro.h"
{The header file defmacro.h defines some macros such as
and dataconv}

#define NUMOFCHANNEL 4 {number of channel}
#define SMPLSPEED 15000.0 {sampling rate = 20k Hz }
#define SAVEOFFSET 256 parameter for saving the data }

div

, startconv

{Define some control parameters }

#define REF1_NATFREQ 550.0 {reference model bandwidth for 1 axis=550
rad/s}

#define REF2_NATFREQ 770.0 {reference model bandwidth for 1 axis=770
rad/s}

#define REF_DAMP 1.0 {reference model damping ratio}

#define RAD_B1 22.6 {X1 VOLTS TO NE¥WTONS, b_{x1}=22.6 N/V}

#define RAD_B2 35.1 {X2 VOLTS TC NEWTONS, b_{x2}=35.1 N/V}

#define RAD_B3 28.1 {Y1 VOLTS TO NEWTONS, b_{y1}=28.1 N/V}

#define RAD_B4 39.1 {Y2 VOLTS TO NEWTONS, b_{y2}=39.1 N/V}

#define RAD_SEN 25000.0 {METERS TO VOLTS, the sensor gain}

#define RAD_MAXU 1.47 {VOLTS, the maximum control current---

corresponding to 3.S5AMPS}

#define HYSTERESIS 0.25e¢-6 {METERS, the width of hysteresis loop}
#define ADAPTATION1  7.0el3 {no unit, adaptation gain for 1 axis}
#define ADAPTATION2  14.0el3 {no unit, adaptation gain for 2 axis}

{Define filter parametars for the velocity signal}

{vE(k+1)=C1*vE(k)+C2*v(k) vE : filter velocity, v: raw velocity}

#define C1 0.8187307531 {EXP"-ALPHA*T, ALPHA=FILTER
BANDWIDTH , a parameter of the first order filter for the velocity signal,

filter bandwidth =1kHz}

#define C2 0.1812692469 {1-c1} {a parameter of the first order

filter for the velocity signal, filter bandwidth =1kHz}



#define ALPHA 0.5229147967 {1/M+L1°2/Ir}

#define BETA 0.2560445493 {1/M-L1#L2/Ir}
#define GAMMA 1.0308653097 {1/M+L2"2/Ir}
#define ALPHAINV 2.1771366598
#define BETAINV -0.54075345203
#define GAMMAIRV 1.104370244287
{ | ALPHAINV , BETAINV | --| ALPHA , BETA | -1
| BETAIRV , GAMMAIEV | --| BETA , GAMMA] }

{ Fotice that the equations of motion for the radial bearings are
ddot x1= f1{x1,x2,dotyl,doty2)+ALPHA*Fx1+BETA*Fx2;
ddot x2= £2(x1,x2,dotyl,doty2)+BETA*Fx1+GAMMA*Fx2;
ddot yi1= f3(dotx1,dotx2,y1,y2)+ALPHA*Fy1+BETA*Fy2;
ddot y2= f4(dotx1,dotx2,yl,y2)+BETA*Fy1+GAMMA*Fy2;

where the f1,£2,f3,f4 are the nonlinear, uncertain funtions due to the
magnetic field and the gyroscopic effect, Fxi1=b_{xil}*uxi, Fx2=b_{x2}*ux2,
Fyi=b_{yi}*uyi and Fy2=b_{y2}*uy2 are the magnetic forces.
(ux1,ux2,uyl,uy2 are the control voltages)}

{ The following ports are found on the ADSP board }

.SEGMENT /DM status;
.VAR DSPSTAT; {DSP status register}
.ENDSEG;

.SEGMENT /DM timer;

.VAR DSPTIMER; {DSP timer}
.ENDSEG;

{ The following ports are found on the 32-channel ADC board }
.SEGMENT /PM ioadin;

.VAR ADFIFO; {A/D fifo }

.ENDSEG;

.SEGMENT /PM iostat;

.VAR IOSTAT; {input-output status }

.ENDSEG;

.SEGMENT /DM iodaout;
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.VAR DAFIFO; {D/A fifo }
.ENDSEG;

.SEGMENT /DM iochans;
.VAR CEANNELS; <{input-output channel }
.ENDSEG;

.SEGMENT /DM iocntrl;
.VAR CONTROL; { control register }
.ENDSEG;

.SEGHENT /DM dm_data;
{ Conversion factors
.VAR VOLT2BITS; {bits/volt }
.VAR BITS2VOLT; {volts/bit }

.VAR ADINPUT[NUMOFCHANNEL]; {the A/D input}

.VAR DACONTROL [NUMOFCHANBEL]; {the D/A control signal}

.VAR ADOFFSET[5]=ADOOFFSET, AD1OFFSET, AD20FFSET,
AD3OFFSET, AD4OFFSET; {A/D offsets }

.VAR DAOFFSET[5]=DAOOFFSET, DA1OFFSET, DA20FFSET,
DA3OFFSET, DA40FFSET; {D/A offsets }

{ Define variables
.VAR RAD_SENGAIN=RAD_SEN;

{ Radial bearing variable storage locations }
.VAR SMPL_PERIOD; {sampling period}
.VAR RAD_PERIOD;

{variables for the 1 axis reference model}
.VAR REF1_P0SO[2];
.VAR REF1_VELO[2];
.VAR REF1_POS[2];
.VAR REFi_VEL[2];

{variables for the 2 axis reference model}
.VAR REF2_P0SO[2];
.VAR REF2_VELO[2];
.VAR REF2_P0S[2];
.VAR REF2_VEL[2];
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{ variables for the plant }

.VAR RAD_XO[NUMOFCHANNEL]; {x1,y1,x2,y2 new position}
.VAR RAD_X1[NUMOFCHANNEL]; {x1,y1,x2,y2 old position}
.VAR RAD_V1[NUMOFCHANEEL]; {x1,y1,x2,y2 old velocity}

.VAR RAD_VO[NUMOFCHANNEL]; {x1,y1,x2,y2 new velocity}

.VAR ERR_X[NUMOFCEANNEL]; {x1,y1,x2,y2 position error}
.VAR ERR_V[NUMOFCHANNEL]; {x1,y1,x2,y2 velocity error}
.VAR RAD_BINV[NUMOFCHANREL]; {1/b_{x1}, 1/b_{y1}, 1/b_{x2},
1/o_{y2}}

.VAR RAD_CONV; { a conversion factor}

{parameters used in the 1 axis reference model A matrix}
.VAR REF1_AT12;
.VAR REF1_AT21;
.VAR REF1_AT22;

{parameters used in the 2 axis reference model A matrix}
.VAR REF2_AT12;
.VAR REF2_AT21;
.VAR REF2_AT22;

.VAR PD_U1[4]; {PD matrix for X1,Y1 bearing}

.VAR PD_U2[4]; {PD matrix for X2,Y2 bearing}

.VAR HRML_FCTR1; { normalizing factor (1/omega) for 1 axis }

.VAR NRML_FCTR2; { normalizing factor (1/omega) for 2 axis }

.VAR FLAG; {flag for switching the adaptation}

.VAR ADAPT_U1[4]; { adaptation gain matrix for Xi,Y1 bearing, the four
columns correspond to xi, yi, dxi, dyi}

.VAR ADAPT_U2[4]; { adaptation gain matrix for X1,Y1 bearing, the four
columns correspond to x2, y2, dx2, dy2}

.VAR ADAPT_U[NUMOFCHANNEL]; { adaptation control vector}

.VAR OVERALL_U[NUMOFCHAENEL]; { overall control vector}

{ Variables needed to save data in memory for later dumping }
.VAR INPUT_OFFSET;

.VAR OUTPUT_OFFSET;

.VAR SAVE_END;

.ENDSEG;

.SEGMENT /PK rst_svc;
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{

{ At reset, the BANK registers are as follows:

{ PMBANK1 = 0x800000

{ DMBANK1 = 0x20000000

{ DMBANK2 = 0x40000000

{ DMBANK3 = 0x80000000

{ These values, by coincidence, are perfect for our I/0 board
{

S S W Y e T

The default value of PMWAIT at reset is Ox0003DE. This corresponds
to the following:

bit 13 = 0 (No automatic wait state)
bits 12-10 = 000 (memory page size = 256 words)
bits 9-7 = 111 (7 PMBANK1 wait states)

bits 6-5 = 10 (Int. and Ext. wait state ack mode)
bits 4-2 111 (7 PMBARKO wait states)
bits 1-0 = 10 (Int. and Ext. wait state ack mode)

For our setup, the DSP board accesses memory at O wait states and
accesses all ports and 1 wait state. Therefore:

bit 13 = 0 (No automatic wait state)

bits 12-10 = 100 (memory page size = 4096 words)

bits 9-7 001 (! PMBAFK1 wait state)

bits 6-5 = 10 (Int. and Ext. wait state ack mode)

bits 4-2 = 000 (0O PMBANKO wait states)

bits 1-0 = 10 (Int. and Ext. wait state ack mode)

AR AAAAAAAAAAAA A A A AN

PMWAIT = 0x0010C2;

L B s o B e I

{
{ The default value of DMWAIT at reset is OxO00F7BDE. This corresponds
{ to the following:

bit 23 = 0 (No automatic wait state)
bits 22-20 = 000 (memory page size = 256 words)
bits 19-17 = 111 (7 DMBANK3 wait states)

bits 16-15 = 10 (Int. and Ext. wait state ack mode)
bits 14-12 = 111 (7 DMBANK2 wait states)
bits 11-10 = 10 (Int. and Ext. wait state ack mode)
bits 9-7 = 111 (7 DMBANK1 wait states)
bits 6-5 = 10 (Int. and Ext. wait state ack mode)
bits 4-2 = 111 (7 DMBARNKO wait states)
bits 1-0 = 10 (Int. and Ext. wait state ack mode)

A AAAAA A AN
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{ For our setup, the
{ accesses all ports
bit 23 =
bits 22-20
bits 19-17
bits 16-15
bits 14-12 =
bits 11-10
bits 9-7
bits 6-5
bits 4-2
bits 1-0 =

0]

= 000

= 000

A A A A A A A A

DMWAIT = 0x00431842;

{__

{ Set FLAG2 to output

{ we need to.

board accesses memory at O wait states and

1 wait state. Therefore:
(No automatic wait state)

(memory page size = 4096 words)

(1 DMBANK3 wait states)
(Int. and Ext. wait state
(1 DMBANK2 wait states)
(Int. and Ext. wait state
(0 DMBANK1 wait state)
(Int. and Ext. wait state
(0 DMBANKO wait states)
(Int. and Ext. wait state

ack mode)
ack mode)
ack mode)

ack mode)

T ™ L IS A S T S S

—---}

mode so we can trigger I/0 board conversion when }

MODE2 = FG20UTPUT;

JUMP initialize;
.ENDSEG;

.SEGMENT /PM pm_code;

initialize:

{ initialize registers }

IMASK
MODE1

0;
0x00012000;

I0 =
I1 =
I2 =
I3 =
I4 =
I5 =
16 =
17 =

s we we

-e

O OO 000 0o

-
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MO =
M1l =
M2 =
M3 =
Mg =
M5 =
M6 =
N7 =
LO =
L1 =
L2 =
L3 =
L4 =
L5 =
Lé =
L7 =

“s we we

-

OO0 0000000000000 OoO

wr we we we we woe

This program does the following:
1. Triggers A/D conversion on one channel
2. Polls A/D status register to see when conversion complete
3. Pushes A/D value out to D/A
4. returns to step 1

B S O Y A

R N Y TR

{ Make sure FLAG2 toggle is initially zero.
BIT CLR ASTAT 0x00200000;

{ Calculate D/A conversion factor
FO = DABITSMAX;

F12 = DAVOLTSMAX;

DIV;

DM(VOLT2BITS) = FO;

{ Calculate A/D conversion factor
F12 = ADBITSMAX;

FO = ADVOLTSMAX;

DIV;

DM(BITS2VOLT) = FO;

{ Initialize the control signal to zero }

BO = DACONTROL;
Bi = DAOFFSET;
F1 = DM(VOLT2BITS);
F2 = DABITSMAX;
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LCETR = NUMOFCHARNEL;
DO initctr UNTIL LCE;
FO = -0.1518;
R3 = DM(I1,1);
F3 FLOAT R3;
DACONV;
initetr: DM(I0,1) = RO;

{ Set up radial bearing conversion factor for A/D
{ rad_conv=bits2volt/rad_sengain
{ rad_sengain-position sensor conversion factor

FO = DM(BITS2VOLT); {1 bit = ? volts 1}

F12 = DM(RAD_SENGAIN); {1 meters =7 volts }
DIV;
DM(RAD_CONV) = FO; {1 bit = ? meters}

{ Set up the sampling time T }

FO = 1.0;

F12 =SMPLSPEED;

DIV;

DM(SMPL_PERIOD) = FO;

{ Set up radial bearing 1#PERIOD constant 1/(T)
FO = SMPLSPEED;

F12 = 1.0;

DI1V;

DM(RAD_PERIOD) = FO;

{ Set up normalizing constant 1/omega
FO = 1.0;

F12 = REF1_NATFREQ;

DIV;

DM(NRML_FCTR1) = FO;

FO = 1.0;
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F12 = REF2_NATFREQ;
DIV;

DM(NRML_FCTR2) = FO;

{ Set up RAD_BINV constant }
BO = RAD_BIEV;

FO = 1.0;

F12 = RAD_B1;

DIV;

DM(I0,1) = FO;

FO = 1.0;
F12 = RAD_B2;
DIV;

DM(I10,1) = FO;

FO = 1.0;
F12 = RAD_B3;

DIV;

DM(10,1) = FO;

FO = 1.0;
F12 = RAD_B4;
DIV;

DM(I0,1) = FO;

{ Set up the 1 axis reference model A*T matrix constants
{ For the reference model, xm(k+1)=(I+A*T)*xm(k) }
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FO = DM(SMPL_PERIOD);

DM(REF1_AT12) = FO;

FO = REF1_NATFREQ;
Fl = FO;

F3 = FO*Fi;

FO = -1.0;

F7 = FO*F3;

{-¥Wn1"2 is now stored in F7 }

F2
F3

DM(SMPL_PERIOD);
F7%F2;

DM(REF1_AT21) = F3;

FO = -2.0;

F1 = REF_DAMP;

F2 = REF1_NATFREQ;
F3 = DM(SMPL_PERIOD);
F4 = FO*Fi;

F8 = F4*F2;

{-2*#damping*¥n1 is now stored in F8}

F4 = F8%F3;
Fi1 = 1.0;
F4 = Fi+F4;

DM(REF1_AT22) = F4;

{Set up the 2 axis reference model A*T matrix constants
{ For the reference model, xm(k+1)=(I+A*T)*xm(k) }
FO = DM(SMPL_PERIOD);

DM(REF2_AT12) = FO;

FO = REF2_NATFREQ;
F1 = FO;

F3 = FO*F1;

FO = -1.0;
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Fi3 = FO*F3;
{-¥n2-2 is now stored in Fi13 }

F2
F3

DM(SMPL_PERIOD);
F13%F2;

DM(REF2_AT21) = F3;

FO = -2.0;

F1 = REF_DAMP;

F2 = REF2_NATFREQ;
F3 = DM(SMPL_PERIOD);
F4 = FO*F1;

F14 = F4*F2;

{-2*damping*Wn2 is now stored in Fi4}

F4 = F14»F3;
Fi1 = 1.0;
F4 = F1+F4;

DM(REF2_AT22) = F4;

{ Setup the parameters for the PD matrix
BO = PD_U1;

Bi = PD_U2;
F1 = ALPHAINV;
F2 = F1xF7;
DM(10,1) = F2;
F2 = F1%F8;

DM(I0,1) = F2;

F1 = BETAINV;
F2 = F1#F13;
DM(I0,1) = F2;
F2 = F1sF7;
DM(11,1) = F2;
F2 = F1#F14;
DM(10,1) = F2;
F2 = F1+F8;

DM(I1,1) = F2;

F1 = GAMMAIEV;
F2 = F1#F13;
DM(I1,1) = F2;
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F2 = F1*F14;
DM(I1,1) = F2;

{ Set up parameters for the adaptation gain matrices}
BO = ADAPT_U1;
Bi = ADAPT_U2;

FO = 1.0;

F10 = 2.0;
F12 = F10*F7;
DIV;

{ FO = -1/2Wn1-2}
F1 = ADAPTATION1;

F7 = F1#F0;

F3 = DM(SMPL_PERIOD);
F7 = F3#F7;

F9 = F7,

{ F7 =-ADAPTGAIN1* T/2Wn1-2 }

FO = F7;

F1 = REF1_NATFREQ;
F12 = REF_DAMP;
F12 = F1#F12;

DIV;

F8 = FO;
{ F8 =-ADAPTGAIN1* T/2DAMP*Wni-3 }

FO = 1.0;

F10 = 2.0;

F12 = F10%*F13;
DIV;

{ FO = -1/2Wn2"2}
F1 = ADAPTATION2;

F13 = Fi*FO;
F3 = DM(SMPL_PERIOD);
Fi3 = F3%F13;
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{ F13 =-ADAPTGAIN2* T/2Wn2"2 }

FO = F13;

F1 = REF2_NATFREQ;
F12 = REF_DAMP;
F12 = F14F12;

DIV;

Fi4 = FO;

{ F14 =-ADAPTGAIK2* T/2DAMP*Wn2"3 }

F7 = F9;

F1 = ALPHA;

FO = F1#F7;
DM(I0,1) = FO;
FO = F14F8;

DM(I0,1) = FO;

F1 = BETA;

FO = F1*F13;
DM(I10,1) = FO;
FO = F1*F7;
DM(I1,1) = FO;
FO = F1*F14;
DM(I0,1) = FO;
FO = F1%F8;

DM(I1,1) = FO;

F1 = GAMMA;
FO = F1%F13;
DM(I1,1) = FO;
FO = Fi#F14;

DM(I1,1) = FO;

{ Setup the initial velocity for the reference model

{ The initial position will be acquired by sampling processes
{ Also initialize the flag and adaptation control signal

FO = 0.0;

DM(FLAG) = FO;

BO = REF1_VELO;

B1 = REF2_VELO;
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LCNTR = 2;
DO resetparl UNTIL LCE;
DM(10,1) = FO;
resetpari: DM(Ii,1)
B1 = RAD_VO;
B2 ADAPT_U;
B3 = OVERALL_U;
LCNTR = NUMOFCHANKEL;
DO resetpar UNTIL LCE;
DM(I1,1) = FO;
DM(I2,1) = FO;
resetpar: DM(13,1)

FO;

FO;

{ Setup variables required to save data in memory for later recall }
RO = SAVEOFFSET;
DM(IFEPUT_OFFSET) = RO;
R1 ASHIFT RO BY 1t;
R2 = 0x8000;

R2 = R2-R1;

R2 = ASHIFT R2 BY -1;
R1 = R2+RO;
DM(QOUTPUT_OFFSET) = Ri;
R1 = R1+R2;
DM(SAVE_END) = Ri;

{ Reset I/0 board }
RO = 0x0;

DM(COETROL) = RO;

HOP; HOP; NOP;

{ }
{ Set 1 A/D channel and O D/A channels. When a conversion is triggered,}
{ both the A/D and D/A conversions are triggered. Therefore, I set the }
{ the number of D/A to 0 so that nothing goes out.

{

{ Number of Channels Register: [default - DM(0x40000001)]

(S RO R W W

{ bits 2-0 -> number of A/D channels

{ bits 5-3 -> number of D/A channels

{ -
RO = NUMOFCHANNEL;

Ri = LSHIFT RO BY 3;

RO = RO+R1;

DM(CHANNELS) = RO;



NOP; NOP; KOP;

{

{ Release analog reset (don"t know why) and set go mode to flag2 toggle
{

{ Control Register: [default - DM(0x40000002)]

{ bits 2-0 -> go mode (0 = go on toggle of FLAG2)
{ (1 = go on interrupt)

{ bits 5-3 -> IRQ mode

{ bit 6 -> Status select

{ bit 7 -> Analog reset

{

RO = 0x80;

DM(CONTROL) = RO;
HOP; NOP; NOP;

{ Set timer sampling period and counter

F12 = SMPLSPEED;
FO = CPUSPEED;
DIV;

R1 = FIX FO;

RO = R1-1;

TPERIOD = RO;
TCOUNT = RO,

{Set the initial current}

BO = DACOHTROL;

B1 = DAOFFSET;

LCNTR = NUMOFCHANNEL;
DO resetctr UNTIL LCE;

FO = -0.1518;
F1 = DM(VCLT2BITS);
F2 = DABITSMAX;
R3 = DM(I1,1);
F3 = FLOAT R3;
DACONV;
resetctr: DM(10,1)=R0O;
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{Send the initial current and get the initial position information

BO = DACOETROL;

LCATR = NUMOFCHANNEL;

DO sentinit UNTIL LCE;
RO = DM(I10,1);

sentinit: DM{DAFIFO) = RO;
STARTCONV;
R1 = 0x03;
wait_init: RO = PM(IOSTAT);

R7 = RO AND R1;
IF NE JUMP wait_init;

Gt A/D value(s) from FIFO. [default - PM(0x800000)]

The values obtained are 14-bit 2"s-complement values sign extended to
the left. 2°s complement is obtained by negating the real value and
adding 1. The range of values for our particular A/D is:

+5V = 0001 1111 1111 1111
OV = 0000 0000 0000 0000
-5V = 1110 0000 0000 0001

Sample code for converting 2°s complement notation to floating point

is as follows:
R1
FO

FEXT RO BY 0:16 (SE);
FLOAT RO;

Sample code for converting floatin point numbers to 2°s complement
notatiocn is as follows:
FO = FIX RO;
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{Read and discard the A/D value}

LCNTR = ¥UMOFCHABNEL;
DO discard UNTIL LCE;
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discard: RO = PM(ADFIFO);
{Resend the control signal }

BO = DACONTROL;

LCETR = NUMOFCHANKEL;

DO resendctr UNTIL LCE;
RO = DM(I0,1);

resendctr: DM(DAFIFO) = RO;
STARTCORV;

R1 = 0x03;
wait_initl: RO = PM(IOSTAT);

R7 = RO AND Ri;
IF NE JUMP wait_initi;

{ Convert the A/D value to meters }

BO = ADINPUT,;
B1 = ADOFFSET;
B3 = RAD_XO;
B4 = RAD_X1;

LCNTR = NUMOFCHANNEL;
DO storeinitl UNTIL LCE;

RO = PM(ADFIFO);

RO = FEXT RO BY 0:14 (SE);
DM(I0,1) = RO;

R1 = DM(I1,1);

RO = RO+R1;

FO = FLOAT RO;

Fi = DM(RAD_CONV);
FO = FOF1;

{ Store the initial position
DM(13,1) = FO;
storeinitil: DM(I4,1) = FO;

B1 REF1_P0SO;

B2 = REF2_P0SO;

B3 = RAD_XO;

LCHETR = 2;

DO storeinit2 UNTIL LCE;
FO = DM(I3,1);
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DM(I1,1) = FO;
FO = DM(I3,1);

storeinit2: D¥(I2,1) = FO;
{ Set up input/output save pointers in last address registers }
16 = DM(INPUT_OFFSET);

I7

DM(OUTPUT_OFFSET) ;

{Save the first A/D input(sensor output), D/2 output(control input data)}
#ifdef PLOTX1

BO = ADIKPUT;

RO = DM(I0,1);

DM(I8,1) = RO;

BO = DACONTROL;

RO = DM(10,1);

F3 = DABITSMAX;

R3 = FIX F3;

RO = FEXT RO BY 2:14;
RO = RO-R3;

DM(I7,1) = RO;

#endif
#ifdef plotxi

BO = ADINPUT;

RO = DM(10,1);
DM(I6,1) = RO;

BO = DACONTROL;

RO = DM(I0,1);

F3 = DABITSMAX;

R3 = FIX F3;

RO = FEXT RO BY 2:14;
RO = RO-R3;

DM(I7,1) = RO;
#endif

#ifdef PLOTX2
BO = ADINPUT;
RO = DM(1,I0);
DM(16,1) = RO;
BO = DACOETROL;



RO = DM(1,10);

F3 = DABITSMAX;

R3 = FIX F3;

RO = FEXT RO BY 2:14;
RO = RO-R3;

DK(I7,1) = RO;

#endif
#ifdef plotx2

BO = ADINPUT;

RO = DM(1,I0);
DM(16,1) = RO;
BO = DACONTROL;

RO = DM(1,I0);

F3 = DABITSMAX;

R3 = FIX F3;

RO = FEXT RO BY 2:14;
RO = RO-R3;

DM(I7,1) = RO;
#endif

#ifdef PLOTY1
BO = ADINPUT;
RO = DM(2,I0);
DM(I6,1) = RO;

BO = DACONTROL;

RO = DM(2,I0);

F3 = DABITSMAX;

R3 = FIX F3;

RO = FEXT RO BY 2:14;
RO = RO-R3;

DM(I7,1) = RO;

#endif
#ifdef plotyl

BO = ADINPUT;
RO = DM(2,I10);
DM(16,1) = RO;
BO = DACONTROL;
RO = DM(2,10);
F3 = DABITSMAX;
R3 = FIX F3;
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RO = FEXT RO BY 2:14;
RO = RO-R3;
DM(17,1) = RO;

#endif

#ifdef PLOTY2
BO = ADINPUT;
RO = DM(3,I0);
DM(16,1) = RO;

BO
RO
F3
R3
RO
RO

DACONTROL;
DM(3,10);
DABITSMAX;

FIX F3;

¥EXT RO BY 2:14;
RO-R3;

DM(I7,1) = RO;

#endif
#ifdef ploty2

BO = ADINPUT;

RO = DM(3,10);
DM(I6,1) = RO;

BO = DACONTROL;

RO = DM(3,I0);

F3 = DABITSMAX;

R3 = FIX F3;

RO = FEXT RO BY 2:14;
RO = RO-R3;

DM(17,1) = RO;

#endif

{ Reset interrupt latch register
BIT SET IRPTL 0x0;

{ Allow timer interrupts
BIT SET IMASK TMZHI,;

{ Turn on timer
BIT SET MODE2 TIMEN;

{ Allow interrupt generation
BIT SEi MODE1 IRPTEN;
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idlecycle: IDLE;
JUMP idlecycle;

sample:
BO = DACONTROL;
LCNTR = NUMOFCHANNEL;
DO sentctr UNTIL LCE;
RO = DK(IO0,1);
sentctr: DM(DAFIFO) = RO;

STARTCONV; { start A/D conversion after sampling}

R1 = 0x03;
wait1: RO = PM(IOSTAT);
R7 = RO AND Ri;

IF NE JUMP waiti;

{
{ Get A/D value(s) from FIFO. [defauit - PM(0x800000)]

{

{ The values obtained are 14-bit 2"s-complement values sign extended to
{ the left. 2-s complement is obtained by negating the real value and
{ adding 1. The range of values for our particular A/D is:

+5V = 0001 1111 1111 1111
OV = 0000 0000 0000 0000
-5V = 1110 0000 0000 0001
Sample code for converting 2°s complement notation to floating point
is as foliows:
R1 = FEXT RO BY 0:16 (SE);
FO = FLOAT RO;

Sample code for converting floatin point numbers to 2°s complement
notation is as follows:
FO = FIX RO;
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BO = ADINPUT;
B1 = ADOFFSET;
B2 = RAD_XO;
B3 = RAD_X1;
B4 = RAD_V1;
B5 = RAD_VO;

LCNTR = NUMOFCHANNEL;
DO smposvel UNTIL LCE;

RO = PM(ADFIFO);

RO = FEXT RO BY 0:14 (SE);
DM(I0,1) = RO;

R1 = DM(Ii,1);
RO = RO+R1;
FO = FLOAT RO;
F1 = DM(RAD_CONV);
FO = FO*F1;
{Store X0 }

DM(I2,1) = FO;
{Determine RAW velocity using backward difference }

F1 = DM(I3,1);

FO = FO-F1;

F1 = DM(RAD_PERIOD);
#0 = FO*F1;

{Pass the velocity signal through a filter 1}
F1 = C2;

FO = FO*F1;
F1 = C1;
F2 = DM(14,1);
F2 = F1%F2;
FO = FO+F2;
smposvel: DM(I5,1) = FO;

{

{The control code start here



{
{Calculate the reference model signals and the error signals }

BO = REF1_P0SO;
B1 = REF1_VELO;
B2 = REF1_POS;
B3 = RAD_XO;
B4 = ERR_X;
F5 = DM(REF1_AT12);
F6 = DM(REF1_AT21);
F7 = DM(REF1_AT22);
LCNTR = 2;
DO refcall UETIL LCE;
Fi = DM(I1,1);
F2 = F1#F5;
FO = DM(10,1);
F2 = F2+F0;

DM(I2,1) = F2;
F1 = DM(13,2);
Fi = F1-F2;
refcall: DM(14,2)=F1;

BO
B1
B2

REF1_POSO;
REF1_VELO;
RAD_VO;

B3 REF1_VEL;

B4 = ERR_V;

LCNTR = 2;

DO refcal2 UNTIL LCE;
F1 = DM(I0,1);
F2 = F6%F1;

F1 = DM(I1,1);
F3 = F7%F1;
F2 = F2+F3;
DM(13,1) = F2;
F1 = DM(I2,2);

F1 = F1-F2;
refcal2: DM(14,2)=F1;
BO = REF2_P0SO;
Bi = REF2_VELO;
B2 = REF2_PGS;
B3 = RAD_XO;
B4 = ERR_X;



Fi
F1
F5

DM(13,1);
DM(14,1);
DM(REF2_AT12);
F68 = DM(REF2_AT21);
F7 = DM(REF2_AT22);
LCNTR = 2;
DO refcal3 UNTIL LCE;

F1 = DM(I1,1);

F2 = F1#F5;

FO = DM(10,1);

F2 = F2+F0;

DM(I2,1) = F2;

F1 = DM(13,2);

F1 = Fi-F2;
refcal3: DM(I4,2)=F1;

BO
Bi

REF2_P0SO;
REF2_VELO;
B2 RAD_VO;
F1 = DM(I2,1);
B3 = REF2_VEL;
B4 = ERR_V;
F1 = DM(14,1);
LCHIR = 2;
DO refcal4 UNTIL LCE;
F1 DM(10,1);
F2 F6x*F1;
F1 = DM(11,1);
F3 = F7*F1;
F2 = F2+4F3;
DM(13,1) = F2;
F1 = DM(I2,2);
F1 = F1-F2;
refcal4: DM(I4,2)=F1;

]

{In order to simplify the computation, the infinity norm instead of two norm
is used to determine the switching of the adaptation. The infinity norm of
a vector is defined as the largest absolute value among the vectorial
components}

{Determine the flag value-—---- the flag equals 1 when the infinity norm of
the error vector is larger than rho(size of the deadzone)+sigma(width of
the hysteresis loop). The flag equals O when the infinity norm of the error
vector is less than rho-sigma. When the infinity norm of the error vector is
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between rho+sigma and rho-sigma, the current flag value equals the flag
value of the previous sampling period. }

F3

BO
FO

Fi
F1
FO
F1
F1
FoO
F1
F1
FoO

B1
F1
F1
F2
Fi
F2

F4
F2

F1

DM(FLAG);

ERR_X;

= DM(10,1);
FO =

ABS FO;
DM(10,1);
ABS F1;

= MAX(FO,F1); {Determine the maximum between e_x1 and e_y1}

DM(10,1);

ABS F1i;

MAX(FO,F1); {Determine the maximum between e_x1,e_yl and e_x2}
DM(10,1);

ABS F1;

MAX(FO0,F1); {Determine the maximum between e_x1,e_y1 e_x2, and e_y2}

ERR_V;

= DM(I1,1);

= ABS Fi;

= DM(NRML_FCTR1);
= F1¥F2;

= DM(I1,1);

F2 =

ABS F2;
DM(NRML_FCTR2);
F2+*F4;

MAX(F1,F2); {Determine the maximum between e_dxi and

e_dy1}

F2
F2
F4
F2
F1

DM(I1,1);

ABS F2;

DM(BRML_FCTR1);

F4*F2;

MAX(F1,F2); {Determine the maximum between e_dx1,e_dy1,

e_dx2}

F2
F2
F4
F2
F1

]

DM(I1,1);

ABS F2;

DM(NRML_FCTR2);

F4*F2;

MAX(F1,F2); {Determine the maximum between e_dx1,e_dyi,

e_dx2, and e_dy2}



F2 = MAX(FO0,F1); {Determine the infinity norm of the error vector}
F4 = HYSTERESIS;
COMP(F2,F4);

IF LE JUMP setflagQ;

F1 = 2.0;
F4 = F1%*F4;
COMP(F2,F4);

IF GT JUMP setflagil;
JUMP setflag;

setflag0: F3 = 0.0;
JUMP setflag;
setflagl: F3 = 1.0;

JUMP setflag;

setflag: DM(FLAG) = F3;

{Determine the PD and adaptive control action }

BO = ADAPT_U1;
B1 = ADAPT_U2;
B2 = ERR_X;

B3 = ERR_V;

F7 = 0.0;

F8 = 0.0;
LCRTR = 2;

DO adaptcalx UNTIL LCE;
FO = DM(I2,1);
F1 = DM(I0,1);

F1 = FO*F1i;
F7 = F7+F1;
F2 = DM(I1,1);
F2 = FO*F2;
F8 = F8+F2;

FO = DM(I3,1);
F1 = DM(I0,1);

Fi = FO*Fi;
F7 = F7+F{;
F2 = DM(I1,1);
F2 = FO*F2;
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adaptcalx: F8 = F8+F2; {F7,F8 store the x adaptive action}

BO = ADAPT_U1;
Bl = ADAPT_UZ2;
Fi1 = 0.0;
F12 = 0.0;
LCNTR = 2;
DO adaptcaly UNTIL LCE;
FO = DM(I2,1);
F1 = DM(10,1);
F1 = FO*F1;
F11 = F11+4F1;
F2 = DM(I1,1);

F2 = FO*F2;
F12 = F12+4F2;
FO = DM(13,1);
F1 = DM(10,1);
F1 = FO*F1;

F11 = F114F1;
F2 = DM(11,1);

F2 = FO*F2;
adaptcaly: F12 = F12+F2; {F11,F12 store the y adaptive action}

BO = PD_U1;

B1 = PD_U2;

B2 = RAD_XO;

B3 = RAD_VO;

F9 = 0.0;

F10 = 0.0;

LCNTR = 2;

DO pdcalx UNTIL LCE;
FO = DM(12,1);
F1 = DM(IO,1);
F1 = FOxF1;

F9 = F9+F1;

F2 = DM(I1,1);
F2 = FO%*F2;
F10 = F10+4F2;
FO = DM(I3,1);
Fi = DM(IO,1);
F1 = FO*F1;

F9 = F9+F1;

F2 = DM(I1,1);
F2 = FO*F2;
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pdcalx: F10 = F10+F2; {F9,F10 store the x PD action}

BO = PD_U1;
B1 = PD_U2;
F13 = 0.0;
Fi14 = 0.0;
LCETR = 2;
DO pdcaly UNTIL LCE;
FO = DM(I2,1);
F1 = DM(I0,1);
F1 = FO*F1i;

F13 = F13+F1;
F2 = DM(I1,1);

F2 = FO*F2;
F14 = F14+F2;
FO = DM(I3,1);
F1 = DM(10,1);
F1 = FO%F1;

F13 = F13+F1;
F2 = DM(I11,1);

F2 = FO*F2;
pdcaly: F14 = F14+F2; {F13,Fi4 store the PD action}
F4 = DM(FLAG);
F7 = FT7#F4;
F8 = F8%F4;
Bi = ADAPT_U;
BO = OVERALL_U;
F1 = DM(I1,0);
F7 = F7+F1; {adaptive control action }

DM(I1,1) = F7;

Fb6 = F7+F9;

DM(10,1) = F5; {Radx1l adaptive + PD control action}
F1 = DM(I1,0);

F8 = F8+F1;
DM(I1,1) = F8; {adaptive control action }
F5 = F8+F10;

DM(I0,1) = F5; {Radx2 adaptive + PD control action}

F4 = DM(FLAG);
F11 = F11%F4;
F12 = F12%F4;

F1 = DM(I1,0);
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F11 = F11+F1; {adaptive control action }

DM(I1,1) = Fii;

F5 = F11+4F13;

DM(I10,1) = F5; {Radxl adaptive + PD control action}
F1 = DM(I1,0);

F12 = F12+F1;

DM(I1,1) = F12; {adaptive control action }

F5 = F12+F14;

DM(I0,1) = F5; {Radx2 adaptive + PD control action}

BO = OVERALL_U;
Bi = RAD_BINV;
B2 = DACONTROL;
B3 = DAOFFSET;

LCNTR = NUMOFCHANNEL;
DO checksat UNTIL LCE;

FO = DM(I0,1);
F2 = DM(I1,1);
FO = F2*F0;

{Check if any =aturation occurs in the control current}
F2 = RAD_MAXU;

COMP(F0,F2);
IF GT FO=F2;
F2=-F2;

COMP(F0,F2);
IF LT FO=F2;

F1 = -0.1518;
FO = FO+F1;

F1 = DM(VOLT2BITS);
F2 = DABITSMAX;

R3 = DM(I3,1);

F3 = FLOAT R3;
DACONV;

DM(I2,1)=RO;
checksat: DM(DAFIFO) = RO;

STARTCONV;
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Ri = 0x03;
wait2: RO = PM(IOSTAT);
R7 = RO AND R1i;

IF NE JUMP wait2;

{Save the reference position, velocity

BO = REF1_POS;
B1 = REF1_P0SO;
B2 = REF1_VEL;
B3 = REF1_VELO;
LCRTR = 2;

DO savedatal UNTIL LCE;
FO = DM(I0,1);
DM(I1,1) = FO;

FO = DM(I2,1);

savedatal: DM(I3,1) = FO;
BO = REF2_P0S;

B1 = REF2_P0SO;

B2 = REF2_VEL;

B3 = REF2_VELO;

LCETR = 2;

DO savedata3 UNTIL LCE;
FO = DM(I0,1);
DM(I1,1) = FO;
FO = DM(I2,1);
savedata3: DM(I3,1) = FO;

{Update system position information }

BO = RAD_XO;
B1 = RAD_X1;
B2 = RAD_VO;
B3 = RAD_Vi;

LCNTR = NUMOFCHANNEL;
DO savedata2 UNTIL LCE;

FO = DM(I10,1);
DM(I1,1) = FO;



FO = DM(I2,1);
savedata2: DM(I3,1) = FO;

{ save original input value before we over-write it
#ifdef PLOTX1

RO = I6;

Ri = DM(OUTPUT_OFFSET);
RO = R1-RO;

IF EQ JUMP sskip;

BO = ADINPUT;

RO = DM(I0,1);
DM(1I6,1) = RO;

RO = I7;

R1 = DM(SAVE_END);
RO = R1-RO;

IF EQ JUMP sskip;

BO = DACONTROL;

RO = DM(10,1);

F3 = DABITSMAX;

R3 = FIX F3;

RO = FEXT RO BY 2:14;
RO = RO-R3;

DM(I7,1) = RO;

#endif

#ifdef plotxi

RO = I6;

R1 = DM(OUTPUT_OFFSET):
RO = R1-RO;

IF EQ JUMP sskip;
BO = ADINPUT;

RO = DM(I0,1);
DM(I6,1) = RO;

RO = I7;

R1 = DM(SAVE_END);
RO = R1-RO;

IF EQ JUMP sskip;
BO = DACONTROL;
RO = DM(I0,1);
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F3
R3
RO
RO

DABITSMAX;

FIX F3;

FEXT RO BY 2:14;
= RO-R3;

DM(I7,1) = RO;

#endif

#ifdef PLOTX2

RO = I6;

Ri = DM(OUTPUT_OFFSET);
RO = R1-RO;

IF EQ JUMP sskip;

BO = ADINPUT;

RO = DM(1,10);
DM(I6,1) = RO;

RO = I7;

R1 = DM(SAVE_END);

RO = R1-RO;

IF EQ JUMP sskip;

BO = DACONTROL;

RO = DM(1,I0);

F3 = DABITSMAX;

R3 = FIX F3;

RO = FEXT RO BY 2:14;
RO = RO-R3;

DM(I7,1) = RO;

#endif

#ifdef plotx2

RO = I6;

R1 = DM(QUTPUT_OFFSET);
RO = R1-RO;

IF EQ JUMP sskip;
BO = ADINPUT;

RO = DM(1,10);
DM(16,1) = RO;

RO = 17;

R1 = DM(SAVE_END);
RO = R1-RO;

IF EQ JUMP sskip;
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BO = DACONTROL;

RO = DM(1,I0);

F3 = DABITSMAX;

R3 = FIX F3;

RO = FEXT RO BY 2:14;
RO = RO-R3;

DM(17,1) = RO;
#endif

#ifdef PLOTY1

RO = I6;
R1 = DM(OUTPUT_OFFSET);
RO = R1i-RO;

IF EQ JUMP sskip;

BO = ADINPUT;

RO = DM(2,10);
DM(I6,1) = RO;

RO = 1I7;

R1 = DM(SAVE_END);
RO = R1-RO;

IF EQ JUMP sskip;

BO = DACONTROL;
RO = DM(2,10);

F3 = DABITSMAX;

R3 = FIX F3;

RO = FEXT RO BY 2:14;
RO = RO-R3;

DM(1I7,1) = RO;
#endif

#ifdef plotyl

RO = I6;
R1 = DM(OUTPUT_OFFSET);
RO = R1-RO;

IF EQ JUMP sskip;

BO = ADINPUT;
RO = DM(2,10);
DM(16,1) = RO;
RO = I7;
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R1
QRO
IF
‘e
BO
RO
F3
R3
RO
RO

DM(SAVE_END);
R1-RO;

EQ JUMP sskip;

DACOBTROL;
DM(2,10);
DABITSMAX;

FIX F3;

FEXT RO BY 2:14;
RO-R3;

DM(17,1) = RO;

#endif

#ifdef PLOTY2

RO = I6;

R1 = DM(OUTPUT_OFFSET);
RO = R1-RO;

IF EQ JUMP sskip;

BO = ADINPUT;

RO = DM(3,I0);
DM(16,1) = RO;

RO = I7;

R1 = DM(SAVE_END);

RO = R1-RO;

IF EQ JUMP sskip;

BO = DACONTROL;

RO = DM(3,I0);

F3 = DABITSMAX;

R3 = FIX F3;

RO = FEXT RO BY 2:14;
RO = RO-R3;

DM(I7,1) = RO;

#endif

#ifdef ploty2

RO
R1
RO
IF

16;
DM{(QOUTPUT_OFFSET) ;
R1-RO;

EQ JUMP sskip;

BO = ADINPUT,;
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RO = DM(3,10);
DM(I6,1) = RO;
RO = I7;

DM(SAVE_END) ;

R1
RO
IF

BO
RO
F3
R3
RO
RO

R1-RO;

EQ JUMP sskip;

DACONTROL;
DM(3,10);
DABITSMAX;
FIX F3;

FEXT RO BY 2:14;

RO-R3;

DM(I7,1) = RO;

#endif

sskip:

ret:

RTI;

.ENDSEG;

LCNTR = NUMOFCHANNEL;
DO sendagain UNTIL LCE;
sendagain:

RO = PM(ADFIFO);

.SEGMENT /PM tmzh_svc;

JUMP sample;

.ENDSEG;
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