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Researchers have recently proposed several systems that ease the process of developing Bayesian probabilistic
inference algorithms. These include systems for automatic inference algorithm synthesis as well as stronger
abstractions for manual algorithm development. However, existing systems whose performance relies on the
developer manually constructing a part of the inference algorithm have limited support for reasoning about
the correctness of the resulting algorithm.

In this paper, we present Shu�e, a programming language for developing manual inference algorithms that
enforces 1) the basic rules of probability theory and 2) statistical dependencies of the algorithm’s corresponding
probabilistic model. We have used Shu�e to develop inference algorithms for several standard probabilistic
models. Our results demonstrate that Shu�e enables a developer to deliver performant implementations of
these algorithms with the added bene�t of Shu�e’s correctness guarantees.

1 INTRODUCTION
Researchers have recently proposed several systems that ease the process of Bayesian probabilistic
inference wherein a developer speci�es a generative probabilistic model and, through a combination
of both automated and manual methods, computes a posterior probability distribution for a set of
variables in the model. These systems support speci�cation approaches that range from declarative
speci�cations of limited classes of graphical models [18] to Turing-complete stochastic programs.
The inference strategies supported by these systems include general automated inference (using
a single or small set of inference algorithms) [8, 9], libraries of optimized inference programs for
speci�c models [18], and handcoded inference programs [14, 19].

In cases where a developer can write some or all of the inference code, existing probabilistic
inference systems have limited capability to help developers ensure that their inference programs are
correct. Potential sources of errors include both 1) standard programming errors and 2) high-level
inference errors in which the resulting inference code does not adhere to the rules of probability
theory.

In this paper we present Shu�e, a programming language that provides developers with tools to
reason about whether their programs 1) respect the statistical dependencies of their probabilistic
model and 2) adhere to the basic rules of probability theory. Shu�e enables developers to explicitly
specify their probabilistic model, which then serves as a speci�cation from which Shu�e de�nes
the semantics of terms in a program. Given the semantics of a program’s terms, Shu�e can then
ascribe a type for each term and verify that overall program is typesafe.

The contributions of this work are:

Language: Shu�e provides a set of operators that enable a developer to compose terms to
produce an inference procedure. The types of Shu�e’s terms are associate each term with random
variables in a probabilistic model. For an example, a function f can be explicitly typed as a density
function for the distribution Pr(A | B) where A and B are random variables in the model.
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Fig. 1. Illustration of how a user interacts with Shu�le.

1 model GMM
2 {
3 domain Samples = {0:4};
4 domain Mus = {0:1};
5
6 variable R[Samples] obsSamples;
7 variable R[Mus] mu;
8 variable Mus[Samples] z;
9

10 def muPrior(j in Mus) : density(mu[j]) =
11 normal(mu[j],0,100);
12
13 def zPrior(i in Samples ): density(z[i]) =
14 uniform(Mus ,z[i]);
15
16 def obsDensity(i in Samples , j in Mus) :
17 density(obs[i] | mu[j], z[i], z[i] == j)
18 = normal(obs[i],mu[j],1)
19 }

Fig. 2. A Gaussian mixture model with four observations and two mixture components in Shu�le.

Correctness: We present a semantics of Shu�e objects, and we sketch a proof that Shu�e’s
type system is sound with respect to this semantics and can be used to ensure correctness of
Shu�e-generated inference algorithms. The application of each Shu�e type rule may require a
precondition. For example, a developer can coerce a density function with the type Pr(B | A) to a
density function with the type Pr(B | A, C) if the random variable C is statistically independent of
B given the dependencies of the model.

Shu�le Environment: Figure 1 shows how a user interacts with Shu�e. Shu�e takes as input
a probabilistic model and an inference procedure written in Shu�e’s language. It generates an
executable inference program, as well as a set of proof obligations. The inference program is a
Python program. The proof obligations are extra preconditions that Shu�e cannot verify internally.
Shu�e assumes the user will verify these with external tools such as manual auditing, mechanical
veri�cation with a system such as Coq, or an SMT solver which can automatically produce a
solution.

2 EXAMPLE: GAUSSIAN MIXTURE MODEL
To use Shu�e to create an inference program, a developer �rst speci�es a probabilistic model.
Figure 2 presents a speci�cation of a two-component Gaussian Mixture Model (GMM), a model
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for representing clustering relationships. In general, an n-component GMM models a set of real-
valued datapoints as a set of noisy observations, each coming from one of n real-valued quantities
termed mixture components. Each observation is Gaussian distributed with the value of one of the n
mixture components as its mean. For simplicity of presentation, we �x the variance of each mixture
component. In addition, the value of each mixture component has a Gaussian prior with mean 0.

SpecifyingRandomVariables. The two-component GMM speci�ed here has four observations
contained in obs and two mixture components in mu. Figure 2 states what set each variable belongs
to. Note that R refers to the domain of real numbers, and {0:1} refers to a �nite set consisting
of the values 0 and 1. We model collections of random variables as functions from a domain to a
target set. For example, obs represents all of the datapoints in the GMM, but obs[0] represents a
single random variable corresponding to a single element of the domain Samples.

A GMM models the uncertainty in the attribution of each observation to a mixture component
with an explicit set of random variables z (one for each observation). If z[i] = 0, then obs[i] has
been attributed to mixture component mu[0] – and therefore its Gaussian has mu[0] as its mean.
Alternatively, if z[i] = 1, then obs[i] is an observation of mu[1] with mu[1] as its mean.

Specifying Distributions. Figure 2 also speci�es the probability densities for the random
variables in the model via the def statement. A def statement speci�es the type and implementation
of a named term in the environment. For example, the de�nition of muPrior on Line 10 states that
muPrior is a function – with a quanti�ed variable j that ranges over all values of Mus (denoted by
j in Mus) – with the type density(mu[j]). A type speci�cation density(A|B,ϕ) denotes that
the term is a conditional probability density for the set of random variables A given, optionally, the
set of conditioned random variables B under the optional constraint ϕ. In the case of muPrior, B
and ϕ are the default values of the empty set and true. This means that for all values of j, muPrior
computes the density of the random variable mu[j]. The implementation of muPrior computes the
density of each mixture component as with the model that each mixture component is normally
distributed with mean zero and variance 100. The function normal is a Shu�e provided primitive
for computing the density

The de�nition of zPrior on Line 13 gives the density for each mixture assignment, z[i], as
uniformly distributed over the domain Mus (i.e., z[i] takes on any value in the domain of Mus with
equal probability).

The de�nition of obsDensity on Line 16 gives the density of each observation, obs[i]. Unlike
muPrior and zPrior, obsDensity has a non-empty set of condition variables as well as a constraint.
Namely, the density of each obs[i], is conditioned on the random variable z[i] (the observation’s
mixture component assignment) and the random variable mu[j] when z[i] == j (the mean for
the observation’s assigned mixture component). Constraints therefore enable a density function to
express parameterized dependencies (as a function of each quanti�ed variable) as well as dynamic
dependencies (as a function of the observed value of other random variables in the model). We
restrict the language of constraints to equalities and inequalities over quanti�ed parameters and
observed random variables. A key motivation for this design is that Shu�e models can express
dynamic dependencies while still being amenable to analysis using a constraint solver. This stands
in contrast to Turing-complete probabilistic programming languages in which precise dependency
analysis is undecidable in general.

Inference. Shu�e enables a developer to soundly construct an inference program. An inference
program computes a conditional distribution from the model. For our example two-component
GMM, the two distributions we are interested in are 1) the distribution of the mixture component
assignments given the observations (the basic clustering problem of mapping to observations to
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clusters) – generally denoted by P(z | obs) and 2) the distribution of the mixture component means
– generally denoted by P(mu | obs). Shu�e enables a developer to compute these distributions
through both exact and approximate inference techniques.

2.1 Exact Inference
One approach to compute P(z | obs) is to create a probability density function that exactly computes
the distribution. One implementation of this approach in Shu�e is to construct a function with
type density(z, obs) that computes the joint density of z and obs and then divide that density
by a function with type density(obs) that computes the density of obs. This implementation
approach follows straightforwardly from Bayes’ Rule in that for all random variables A and B,
P(A,B) = P(A|B) · P(B) (Bayes’ Rule) implies that P(A|B) = P(A,B) / P(B) (provided that P(B) > 0).

Figure 3 presents a Shu�e program that implements this strategy. Lines 1 to 43 implement the
supporting density functions that are required to produce the joint density of obs and z, denoted
by the de�nition zJoint on Line 45, as well as the density of obs, denoted by obsPrior on Line 48.
We have deliberately unfolded most of this computation to make the types of the intermediate
density objects clear.

Independence. The �rst three de�nitions (muPriorZ on Line 1, zPriorI on Line 4, and
obsDensityI on Line 17) leverage the statistical independence relationships of the model to coerce
the densities within the model to di�erent types.

• muPriorZ: The de�nition of muPriorZ coerces muPrior from the model to the type
density(mu[j]|z) using the independent annotation on a def. This coercion is sound
under the assumption that for all j, mu[j] is independent of z. A manual inspection of the
GMM model con�rms that this is in fact true and therefore that this is a sound coercion.
Shu�e does not verify this independence relationship. Shu�e instead emits to a log the fact
that the inference program uses an independence assumption. Shu�e speci�cally emits
the assertion

∀j. mu[j] ⊥⊥ z.

• zPriorI: The de�nition for zPriorI coerces zPrior from the model de�nition to the type
density(z[i] | z{i0 in Samples: i0 < i}) using the independent annotation. This
usage of independence demonstrates that a user can assert the independence of a variable
with quanti�ed sets of variables. In this case, the developer asserts that each z[i] is
independent of all other z[i0] where i0 is less than i (given the standard total ordering
on the integers given by <). Shu�e emits to its log the independence assertion

∀ i. z[i] ⊥⊥ z{i0 in Samples: i0 < i}.

• obsDensityZ: The de�nition for obsDensityZ uses the independent annotation to coerce
obsDensity from the model de�nition to new type that adds to the set of conditioned
variables the variable group z{i0 in Samples: i0 != i}

This new variable group represents the set of all cluster assignments except for the one
that is at position i. Shu�e emits to its log the assertion that

∀i,j. z{i0 in Samples: i0 != i} ⊥⊥ obs[i] | mu[j], z[i], z[i] == j

A key observation here is that Shu�e enables a developer to specify constrained inde-
pendenices that are valid only under a given condition: namely, that z[i] == j. This
independence assertion states that an observation is independent of other cluster assign-
ments given its own cluster assignment.
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1 def independent muPriorZ(j in Mus) : density(mu[j] | z) =
2 muPrior(j);
3
4 def independent zPriorI (i in Samples) :
5 density(z[i] | z{i0 : i0 < i}) =
6 zPrior;
7
8 def independent obsDensityZ (i in Samples , j in Mus ):
9 density(obs[i] | z{i0 in Samples: i0 != i},

10 mu[j], z[i], z[i] == j) =
11 obsDensity(i,j);
12
13 def obsDensityZ1 (i in Samples , j in Mus):
14 density(obs[i] | mu[j], z, z[i] == j) =
15 obsDensityZ(i,j);
16
17 def independent obsDensityI(i in Samples , j in Mus) :
18 density(obs[i] | obs{i0 in Samples: i0 < i && z[i0] == j},
19 mu[j], z ,z[i] == j) =
20 obsDensityZ1(i,j);
21
22 def independent obsProd(j in Mus) :
23 density(obs{i0 in Samples: z[i0] == j} | mu[j], z) =
24 prod i in Samples where z[i] == j : obsDensityI(i,j);
25
26 def obsJoint(j in Mus) :
27 density(obs{i0: z[i0] == j}, mu[j] | z) =
28 obsProd(j) * muPriorZ(j);
29
30 def obsMarg(j in Mus) :
31 density(obs{i0 in Samples: z[i0] == j} | z) =
32 int obsJoint(j) by mu[j];
33
34 def muPost(j in Mus) :
35 density(mu[j] | obs{i0 in samples: z[i0] == j}, z) =
36 obsJoint(j) / obsMarg(j);
37
38 def independent obsMarg1(j in Mus) :
39 density(obs{i0 in Samples: z[i0] == j} |
40 obs{i0 in Samples: z[i0] < j}, z) =
41 (obsJoint(j) / (muPost(j));
42
43 def obsAll : density(obs | z) = prod j in Mus : (obsMarg1 );
44
45 def zJoint : density(obs , z) =
46 obsAll(j) * (prod i in Samples where true : zPriorI );
47
48 def obsPrior : density(obs) = int zJoint z;
49
50 def export zPost : density(z | obs) = zJoint / obsPrior;

Fig. 3. Inference program for computing density(z | obs) for a GMM.
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Density Product. In the next step on Line 2, the developer constructs the density obsProd,
which is the density of all observations that belong to the same cluster. The developer uses the prod
operator to compute this density function. The product operator takes as input a density function
that is indexed by a quanti�ed variable and constructs a density function that multiples the results
of that density function for each possible value of the quanti�ed variable. The syntax where z[i]
== j denotes that this product does not apply to the whole domain of the index variable i, but
only to values of i that satisfy the predicate z[i] == j. In this example, given the quanti�ers i
and j, the resulting density multiplies all values of obsDensityI(i, j) for which z[i] == j.

Density Multiplication. Shu�e also enables a developer to multiply densities as demonstrated
in the de�nition for obsJoint on Line 6. In this de�nition, the developer multiples together
obsProd and muPriorZ. Density multiplication corresponds to Bayes’ rule: P(A,B) = P(A|B) · P(B).
The left and right operands of the multiplication correspond to the �rst and second probabilitiy
distributions, respectively, on the right side of the equality. The resulting density for obsProd and
muPriorZ therefore computes the joint density of the mean of the mixture component mu[j] and
the observations that have been assigned to that mixture component.

Integration. Shu�e also enables a developer to marginalize out variables in a density via
integration as demonstrated in the de�nition for obsMarg on Line 10. In this de�nition, the
developer integrates obsJoint(j) with mu[k]. This has the e�ect of eliminating mu[k] from the
type of obsJoint, thereby computing the density of the observations from one cluster center

obs{i0 in Samples: z[i0] == j}

unencumbered by the actual cluster center mu[j]. Shu�e enables a developer to specify arbitrary
integrals (and corresponding sums) over continuous (and discrete) spaces. To provide an implemen-
tation for integrations, Shu�e contains simpli�cation rules that encode analytic solutions to certain
integral forms. In cases where Shu�e cannot produce an e�cient executable implementation via
its simpli�cation rules, Shu�e reports an error.

Density Division. Shu�e also enables the developer to divide densities as demonstrated in the
de�nition for muPost on Line 14, which is a density for a cluster center given the observations from
that center. In this de�nition the developer constructs muPost using the operator /, which divides
the values returned by the two input densities obsJoint and obsMarg. This has the opposite e�ect
of multiplication, shifting a variable — in this case obs{i0: i0 < i && z[i0] == j} — from
being part of the joint density to being conditioned on.

Summary. The remaining supporting de�nition obsAll leverages the operations discussed thus
far to enable the developer to produce our desired densities of zJoint : density(obs, z) and
obsPrior : density(obs), which, through the division of the two densities, enable the developer
to produce zPost : density(z | obs) (Line 50).

2.2 Approximate Inference
An alternative to exact inference is approximate inference. An approximate inference algorithm
estimates the posterior distribution instead of computing it exactly. This may be more e�cient for
some models. In the exact inference algorithm for GMM, although Shu�e is able to generate an
e�cient implementation of the integration in obsMarg (Line 10), the integration over the discrete
variable z in obsPrior has no simple solution and is tantamount to summing over all possible
values of the variable group z. The variable group z is of the same size as the number of datapoints
to the model and each variable may take on a value from Mus. The complexity of this summation is
therefore |Mus | |Samples | . In general, for large models, this summation is intractable.
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1 def ziPost(i in Samples) : density(z[i] | z{k : k != i}, obs , true) =
2 ...;
3
4 def ziSample(i in Samples) :
5 sampler(z[i] | z{k : k != i}, obs) =
6 z[i] := sample ziPost(i);
7
8 def ziKernel(i in Samples) :
9 kernel(z[i] | z{k : k != i}, obs) =

10 lift zkSample(i);
11
12 def zKernel : kernel(z | obs) =
13 join i in Samples: zKernel(i);
14
15 def zSample : kernel(z | obs) =
16 fix zKernel ();
17
18 def export zEst : estimator(z | obs) =
19 lift zSample ();

Fig. 4. Approximate Inference Fragment for GMM. We present the full algorithm in Appendix B.

1 def muApprox(obs , count) :
2 sum = 0
3 total = 0
4 z = zeros(len(obs))
5 for i in range(num):
6 weight = zEst(obs ,z)
7 sum += (weight if z[0] != z[1] else 0)
8 total += weight
9 return sum / total

Fig. 5. Python code for using the extracted code for zEst to estimate the probability that observation 0 and 1
are in di�erent clusters. Note that zeros(n) returns a list of n zeros and zEst destructively updates the z
variable

Figure 4 presents a fragment of an alternative approximate inference implementation in Shu�e
for GMM that avoids executing the full summation. The primary result of this algorithm is an
estimator for the distribution P(z | obs), zEst (Line 18). An estimator produces a list of weighted
samples that can be used to approximately answer questions about the distribution the estimator
represents. As the number of samples increases, the approximation becomes more accurate.

Figure 5 presents an example of how one would use an external program written in Python to
use an estimator generated by Shu�e to estimate the probability that datapoint 0 and datapoint
1 are in di�erent clusters. Speci�cally, repeatedly calling zEst produces a stream of weighted
samples from the distribution of P(z | obs) and the resulting program computes the expectation of
the indicator function that returns 1 when z[0] != z[1].
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Shu�e enables developers to implement approximate inference algorithms, which are often
higher-performance than their exact counterparts, by exposing abstractions for samplers, kernels,
and estimators as primitives in the language.

Samplers. A sampler with type denoted by sampler(A | B) is a function that produces a single
sample of the random variableA given a value for the random variable B and a source of randomness.
In Figure 5, the de�nition ziSample : i. sampler(z[i] | z{k in Samples: k != i)}, obs)
implements a sampler that produces a value for z[i] given values for all di�ering z[k] and all of
the observations. The developer implements this by directly sampling from the density ziPost,
which computes the density for that distribution. We have elided the de�nition of ziPost for clarity
of presentation, but a developer can produce ziPost using similar density arithmetic operations as
those in the exact inference algorithm.

Kernels. A kernel with type denoted by kernel(A | B) is a function that produces a single
sample of the random variable A given values for bothA and B and a source of randomness. Kernels
enable an inference algorithm to explore the sample space of a distribution by generating a new
sample sample point in the space given a starting point within the space. Shu�e enables a developer
to directly create a kernel from a sampler using the lift statement as in the de�nition of ziKernel
(Line 9).

Given a kernel, a developer can also instantiate and compose repeated applications of a kernel
for all values of a quanti�ed variable. For example, in the de�nition of zKernel, the developer
uses join to produce samples for each z[k] in turn, thereby producing a kernel for all of z –
denoted by the type kernel(z | obs). Finally, a developer can create a sampler from a kernel. In
the de�nition of zSample the developer uses the fix operator to convert a kernel into a sampler
for a distribution. The key observation here is that the fix operator computes the �xpoint (via
iterative self-application) of the kernel which, in the limit, is semantically equivalent to a sampler.

Estimator. An estimator with type denoted by estimator(A | B) is a function that given a
value of the random variable B produces a random sample of A and a weight for that sample. In
the de�nition of zEst, the developer directly lifts a sampler to be an estimator with the resulting
estimator producing samples directly from the sampler with a weight of 1.

Summary. Together, Shu�e’s abstractions for densities, samplers, kernels, and estimators
enable developers to compose inference procedures with strongly-typed abstractions that 1) prevent
developers from making common inference mistakes and 2) provide an audit trail for common
modeling assumptions, such as independence. In the remaining sections, we present the full
Shu�e language along with its semantics, type system, soundness proofs, and an evaluation of the
performance of Shu�e on several models.

3 THE LANGUAGE
Figures 6 and 7 present Shu�e’s syntax for the declarative speci�cation of the model and the code
that implements an inference program, respectively.

3.1 Model
A probabilistic model, M , de�nes the model’s domain of values, the model’s set of random variables,
and the probability densities that relate them.

Model Domains. A domain declaration, DDecl, speci�es a domain δ ∈ ∆ of values.
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M → DDecl+ VDecl+ DDef+

DDecl→ domain δ = {n:n}

VDecl→ variable (δ | R)[δ] v

DDef→ def x ((q in δ )∗): T = Dm

Dm → r | n | q

| v[Dm] | a(D
∗
m)

| Dm * Dm | Dm / Dm

| Dm + Dm | Dm - Dm

| if (ϕ) { Dm } else { Dm }

n ∈ N, r ∈ R, x ∈ X , v ∈ V , q ∈ Q, δ ∈ ∆

a ∈ A

T → Tb(V
+
д

(
| V +д (, ϕ)

?
)?
)

Tb → density | sampler | kernel | estimator

Vд → V | v | v{q : ϕ}

V → v[n] | v[q]

Op→ == | != | <= | <

ϕ → A Op A | ϕ && ϕ | ϕ || ϕ

A→ n | q | V

Fig. 6. The Syntax of Shu�le Models and Types

P → def independent? x ((q in δ )∗): T = (D | S | K | E) ; P

| def export x ((q in δ )∗): T = (D | S | K | E)

D → x(A∗) | D * D | D / D

| int D by Vд | prod q in δ where ϕ : D

S → x(A∗) | V := sample D

| S ; S | join q in δ : S | fix K

K → x(A∗) | lift S | join q in δ : K | K ; K

E → x(A∗) | lift S | factor E by D

Fig. 7. The Syntax of Shu�le Inference Programs

Model Variables. A variable declaration, VDecl, speci�es a random variable v ∈ V . A random
variable is array-valued, and a domain δ speci�es the index space of the array.

Model Densities. A model probability density, Dm , de�nes a probability distribution through
density operators. A model probability density is either a real number, r , a natural number n, a
quanti�ed variable q, a model random variable indexed by a model density v[Dm], an atomic
density called with model-density arguments a(D∗m), a multiplication of two densities, Dm * Dm ,
a division of a density by another density, Dm / Dm , an addition of two densities, Dm + Dm ,
a subtraction of a density from another density, Dm - Dm , or a conditional switch between
densities,if (ϕ) { Dm } else { Dm }.

Model Density Declarations. A model probability density declaration, DDef, de�nes a mapping
between a variable x ∈ X and a model probability density. The de�nition speci�es a set of quanti�ed
variables q ∈ Q that are bound within Dm . The de�nition also speci�es a type, T , for the de�nition.
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The language of types Tb(V +д
(
| V +д (, ϕ)

?
)?
) denotes that a object is either a density, sampler,

kernel, or estimator that computes the probability of a set of random variables conditioned on
another set of random variables, while subject to a constraint on the conditioned random variables.
The random variables within either set may be either a singular random variablev , a single random
variable from an array of random variables, v[n] or v[q], or a constrained subset of the random
variables within an array, v{q:ϕ}.

A constraint, ϕ, that appears in either a type or a random variable subset notation is a boolean
predicate (with conjunction and disjunction) of inequalities over 1) integers, 2) quanti�ed variables
from domains that are isomorphic to the integers, and a single random variable with a value from a
domain that is isomorphic to the integers.

3.2 Inference Program
Densities. A program probability density, D, de�nes a probability distribution through density

operators. The items and operators allowed in an inference program are di�erent than those
allowed in a model. Namely, a program probability density is either an invocation of a density
function, a multiplication of two densities, a division of two densities, an integration, or a product.
While the model density language supports a rich set of language constructs, the inference density
language consists only of the operators which are supported by Shu�e’s type system.

Samplers. A sampler, S , de�nes a probability distribution through sampler operators. Sampler
operators include invoking a de�ned sampler, updating a value with a sample from a density,
concatenating two such samplers together, joining over a quanti�ed sampler, and to computing the
�xed point of a kernel.

Kernels. A kernel, K , de�nes a probability distribution in terms of kernel operators. Kernel
operators include lifting a sampler, composing two kernels together, and joining over a quanti�ed
kernel.

Estimators. An estimator, E, de�nes a probability distribution as a weighted sampler. A Shu�e
user can construct an estimator out of a sampler, and use a density to reweight the samples.

3.3 Semantics
The semantics of a Shu�e term p, where p may be a density, sampler, estimator, constraint, or
variable access is given by JpK. The type of JpK varies depending on the kind of the term p. The
following sections describe the behaviour of JpK for each kind of term p.

3.3.1 Preliminaries.

Variables. Our formalization relies on several disjoint variable spaces. A quanti�ed variable
q ∈ Q is drawn from the spaceQ; a named distribution x ∈ X drawn fromX , the space of distribution
names, a random variable v ∈ V is drawn from V , the space of variable names, a domain δ ∈ ∆ is
drawn from ∆, the space of domain names, and an atomic density is drawn from A, the space of
pre-de�ned density atoms. Our semantics for Shu�e leverages three types of variables:

(1) Quanti�ed Variables. The denotation of a quanti�ed variable q is the value the environ-
ment maps q to. If q is not in the environment, then the denotation is an error.

(2) Random Variables. The denotation of a random variable v [ e ], where e is either a
quanti�ed variable q or a literal n, is the value that the environment maps v [ e ] to. We
assume that the environment always maps every random variable to a value.
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Jd1 * d2K(σ ) = Jd1K(σ ) ∗ Jd2K(σ )
Jd1 / d2K(σ ) =

{ Jd1K(σ )Jd2K(σ ) Jd2K(σ ) , 0
⊥0 elseJint d by VдK(σ ) =

∫JVдK(σ )JdK
Jprod q in δ where ϕ : dK =

∏
n∈JδK

{JdK(σ [q 7→ n]) JϕK(σ [q 7→ n])

1 else

Fig. 8. The denotational semantics of densities

(3) Distribution Variables. A named distribution variable x may be invoked with a sequence
of arguments e0, . . . . If x exists in the environment, then the denotation of the invocation
x (e0, . . . ) is the denotation of the procedure x refers to, with the parameters q0, . . .
rebound to the invocation arguments.

(4) Domains. The denotation of a domain δ ∈ ∆ is a range of natrual numbers: JδK =
[n1,n2] ⊂ N.

Environments. An environment, σ ∈ Σ = (V × N) + Q + X → (R+ + N) is a �nite map from
random variables, quanti�ed variables, and bound distributions. The notation σ (e) denotes the
value to which e is mapped by σ , which can either be 1) a random variable access (v,n) where n is
a natural number 2) a quanti�ed variable access q or 3) a named distribution access x .

We use the notation σ [a 7→ b] to mean σ with a, which could be any of the above, remapped
to b. We also use σ to refer to an element of Σrv = (V × Q) → (R

+ + N), the subset of Σ that only
maps random variables.

Constraints. Constraints may be recursively composed out of conjunctions and disjunctions,
as well as built out of equalities and inequalities of quanti�ed variables and random variables. The
meaning of a constraint is a boolean value corresponding to whether the constraint holds or not.

Source of Randomness. A source of randomness, denoted by sr is an in�nite sequence of
uniform distributed values on the interval [0, 1] ⊂ R+. We let the notation

∫
sr f (sr) denote an

integral over a set of �nite pre�xes of sr. We let the function split denote a function that returns
two identical sources of randomness in that the integrals

∫ 0
sr f (sr

0) and
∫ 1
sr f (sr

1) are equal for any
positive measurable function f .

Errors. A Shu�e inference procedure may produce one of two error values instead of a con-
ventional value: 1) a procedure produces the error value ⊥σ if and only if it requires access to
an element of the environment that is not within the environments domain and 2) a procedure
produces the error value ⊥0 if and only if it contains a division by 0. In the semantics below we
elide explicit failure propagation rules. However, in general, if an operator requires the results of
multiple operands and more than one operand yields an error value, then the operation returns the
join over all all operands as given by the lattice of elements {v,⊥σ ,⊥0} with the re�exive total
order v ≤ ⊥σ ,v ≤ ⊥0,⊥σ ≤ ⊥0 where v denotes a standard value.

3.3.2 Densities.

The denotation of a density d , denoted by JdK ∈ Σ→ (R++⊥), is a function from an environment
to a positive real number or an error value.
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Jv [ e ] := sample dK(σ , sr) = argminr
( ∫

x ∈(−∞,r ]JdK(σ [(v, JeK(σ )) 7→ x])
)
> srJs1 ; s2K(σ , sr) = Js2K(Js1K(σ , sr1), sr0)

jImpl(q, s, [n1,n1],σ , sr) = JsK(σ [q 7→ n1], sr)
jImpl(q, s, [n1,n2],σ , sr) = JsK(jImpl(q, s, [n1,n2 − 1],σ , sr0)[q 7→ n2], sr1)Jjoin q in δ : sK(σ , sr) = jImpl(q, s, JδK,σ , sr)

Fig. 9. Denotational semantics for samplers.

Multiplication. The * operator takes two densities and multiplies them together pointwise.
Multiplication is the primary way information from multiple densities is combined in Shu�e. For
example, if d1 is a density for the distribution Pr(A|B,C), where A, B, and C are subsets of the
random variables in σ , and d2 is a density for Pr(B |C), then d1 * d2 is a density for the distribution
Pr(A,B |C).

Division. The / operator divides the �rst density by the second pointwise. Division’s serves as
an inverse operation to multiplication. If d1 is a density for the distribution Pr(A,B |C), where A, B,
and C are subsets of the random variables in σ , and d2 is a density for Pr(B |C), then d1 / d2 is a
density for Pr(A|B,C). Division also serves to eliminate random variables. If d1 is a density for the
distribution Pr(A,B |C) and d2 is a density for Pr(B |A,C), then d1 / d2 is a density for Pr(A|C).

Integration. The syntax int d by Vд computes the integral of a probability density, d . It
computes the integral of its density parameter over all possible values of the random variables, Vд .
These random variables may take values in any valid Shu�e space. A developer uses integration to
turn a joint density into a marginal density. Speci�cally, if d is a joint density for the distribution
Pr(A,B |C), where A, B, and C are sets of random variables, then int d by B is the marginal density
for Pr(A|C).

A developer has a choice whether to use division or integration to eliminate a random variable.
If the developer can easily �nd densities for the distributions Pr(B |A,C) and Pr(A,B |C), then he or
she can divide them to build a density for the desired distribution Pr(A|C). If the developer can �nd
a density for the distribution Pr(A,B |C), and knows that either B is �nite or the integral int d by B
can be simpli�ed, then he or she can use integration to build the density Pr(A|C).

Products. The syntax prod q in δ where ϕ : d combines an indexed family of densities into a
single density using the multiplicative product of a constrained subset of densities in the family.
Speci�cally, it computes the product of over all instantiations of the index, q, for which the constraint
ϕ evaluates to “true”. For an example use-case, if for all n ∈ JδK = [n1,n2], d is a density for the
distribution Pr(vn |{vn′ : (n1 ≤ n′ < n) ∧ JϕK(σ [q 7→ n′])},C), where vn is an indexed subset of the
random variables in σ and C is another subset of the random variables that is disjoint from all vn ,
then prod q in δ where ϕ : d is a density for the distribution Pr({vn : JϕK(σ [q 7→ n])}|C).

3.3.3 Samplers.

The denotation of a sampler s , denoted by the semantic function JsK ∈ (Σ × SR) → (Σ + ⊥), is a
function that takes an environment and a source of randomness, and produces a new environment
or an error value.

Sampling a Density. The syntax v [ e ] := sample d constructs a sampler from the density
d . The sampler updates σ so that the mapped value of (v, JeK(σ )) is overwritten with the newly

12



J lift sK = JsKJk1 ; k2K(σ , sr) = Jk2K(Jk1K(σ , sr1), sr0)
∀f . ∫sr f (J fix kK(σ , sr)) = ∫

sr f (Js; fix sK(σ , sr))
jImpl(q,k, [n1,n1],σ , sr) = JkK(σ [q 7→ n1], sr)
jImpl(q,k, [n1,n2],σ , sr) = JkK(jImpl(q,k, [n1,n2 − 1],σ , sr0)[q 7→ n2], sr1)Jjoin q in δ : kK(σ , sr) = jImpl(q,k, JδK,σ , sr)

Fig. 10. Denotational semantics for kernels

sampled value. The denotation of the sample command uses inverse transform sampling to produce
a value. Inverse transform sampling requires solving a de�nite integral, which may not be feasible
in general. Thus, while Shu�e de�nes a semantics for any sampler, it can only generate code for
samplers of �nite densities, or Gaussian densities using the Box-Muller transform[3].

Sampler Composition. A developer can compose two samplers s1 and s2 with the syntax s1 ; s2.
Speci�cally, if s1 is a sampler for the distribution Pr(B |C) and s2 is a sampler for the distribution
Pr(A|B,C), then s1 ; s2 is a sampler for the distribution Pr(A,B |C), where A, B, andC are subsets of
the random variables in σ . Semantically, this feeds the output state of s1 into s2.

Join. The syntax join q in δ : d combines an indexed family of samplers into a single sampler
that combines the results of each member of the family. Namely, it iterates over instantiations
of the index q, passing the returned state of the previous iteration as the input state to the next
one. For an example use-case, if for all n ∈ JδK = [n1,n2], d is a sampler for the distribution
Pr(vn |{vn′ : n1 ≤ n′ < n},C), where vn is an indexed subset of the random variables in σ and C
is another subset of the random variables that is disjoint from all vn , then join q in δ : d is a
sampler for the distribution Pr({vn : n ∈ JδK}|C).

3.3.4 Kernels.

The denotation of a kernel k , written JkK ∈ (Σ × SR) → (Σ + ⊥), is a function that takes an
environment and a source of randomness, and produces a new environment or an error value.

Lift. A developer can lift a sampler to a kernel. The resulting kernel has exactly the same
behavior as the original sampler, and is used to represent the same distribution.

Kernel Composition. A developer can compose two kernels with the ; operator. Speci�cally, if
k1 is a kernel for the distribution Pr(A|B,C) and k2 is a kernel for the distribution Pr(B |A,C), where
A, B, and C are subsets of the random variables in σ , then k1 ; k2 is a kernel for the distribution
Pr(A,B |C). Composing kernels feeds the environment that results form applying the �rst kernel
as input to the application of the second kernel. Note that while kernel and sampler composition
have the same semantics, kernel composition has a di�erent type signature.

Join. The syntax join q in δ : d combines an indexed family of kernels into a single kernel
that combines the results of each member of the family. Namely, it iterates over instantiations
of the index q, passing the returned state of the previous iteration as the input state to the next
one. For an example use-case, if for all n ∈ JδK = [n1,n2], d is a kernel for the distribution
Pr(vn |{vn′ : n′ , n},C), where vn is an indexed subset of the random variables in σ and C is
another subset of the random variables that is disjoint from all vn , then join q in δ : d is a kernel
for the distribution Pr({vn : n ∈ JδK}|C).
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J lift sK(σ , sr) = (1, JsK(σ , sr))J factor e by dK(σ , sr) = let (w,σ ′) = JeK(σ , sr) in (w ∗ JdK(σ ′),σ ′)
Fig. 11. Denotational semantics for estimators

JqK(σ ) =

{
σ (q) q ∈ σ

⊥σ elseJv [ e ]K(σ ) = σ (v, JeK(σ ))Jx (e0, . . . )K(σ ) = let (q0, . . . ),p = σ (x) in{JpK(σ [q0 7→ Je0K(σ )][. . . ]) x ∈ σ

⊥σ elseJdef x (q0 in δ0, . . .): t = p1 ; p2K(σ ) = Jp2K(σ [x 7→ ((q0, . . . ),p1)])Jdef independent x (q0 in δ0, . . .): t = p1 ; p2K = Jdef x (q0 in δ0, . . .): t = p1 ; p2KJdef export x (q0 in δ0, . . .): t = pK(σ ) = JpK(σ )
Fig. 12. Semantics of Shu�le’s structural constructs

Fixed points. For a given kernel for a distribution, a developer can produce a sampler for the
same kernel via the fix operator. The denotational semantics of fix are declarative, as Figure 10
speci�es that the operator must have the property that the sampled distribution is invariant under
composition with the kernel. Shu�e type checks its code assuming an exact implementation of fix,
but generates code that approximately implements it by running the kernel and passing its output
back to itself in an iterative process. As the number of iterations grows large, the approximate
distribution approaches the true distribution.

3.3.5 Estimators.

The denotation of an estimator e , denoted by JeK ∈ (Σ × SR) → ((R+ × Σ)+⊥), is a function that
takes as input a source of randomness and an environment, and produces either a pair consisting
of a new environment and a weight associated with that environment, or an error value.

Lift. A developer can lift a sampler to an estimator. The resulting estimator always returns the
value 1 as the weight of a sampler.

Factor. The factor e by d takes a distribution and reweights it according to its density
argument. A developer can use a factor statement to add additional conditions to an estimator.
If e is an estimator for the distribution Pr(A|B), and d is a density for the distribution Pr(C |A,B),
where A, B, and C are subsets of the random variables in σ , then factor e by d is an estimator for
the distribution Pr(A|B,C). The semantics of the factor statement calls its estimator argument to
return an initial weight, and then takes the resulting state and passes it through the density to get
a new weight. The new weight is then multiplied with the old one.

3.4 Structural Constructs
Literals. The denotation of a literal real number r or natural number n is the number itself,

regardless of the environment.
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De�nitions. The denotation of a de�nition def x (q0 in δ0, . . .): t = p1 ; p2 is the denotation
of p2 with x bound to the procedure p1 with the parameters (q0, . . . ). The denotation erases the
type t and the domains (δ0, . . . ).

4 TYPE SYSTEM
In this section we present Shu�e’s type system.

4.1 Model
Variable Sets. A variable set is a comma delimited list of random variables (V +д in Figure 6) that

we denote by the symbols A, B, and C . We specify the semantics of a variable set by the semantic
function JAK : Σ→ P(V) whereV = V × N. The denotation of a variable set is therefore a set of
pairs that each consist of a random variable and the corresponding index within that variable. For
each syntatic form, we give variable sets the following denotation:

• Set Comprehensions. For variable sets of the form A = v {q0 in δ1: ϕ}, we let JAK(σ ) =
{(v,n) | JϕK(σ [q0 7→ n])}.
• Indexed Variables. We de�ne the variable set v [ e ] as syntactic sugar for the set
v {q0 in δ: q0 == e}, with the corresponding denotation given by that for set comprehen-
sions.
• Whole Variables. The variable setv is syntactic sugar for the setv {q0 in δ: true}, with

the corresponding denotation given by that for set comprehensions.

Variable Set List. The comma operator A,B unions two disjoint variable sets. Namely, we
therefore de�ne the denotation of this operator by the function

JA,BK(σ ) = {JAK(σ ) ∪ JBK(σ ) JAK(σ ) ∩ JBK(σ ) = ∅
⊥σ else

Joint Density. We de�ne the joint density of all variables in the model, J , as follows. Let
def xi (q0 in δ0, . . .): Tbi(Ai |Bi,ϕi) = pi be a declaration from the model. Then,

J(σ ) =
∏
i

∏
n̂∈(δ0, ... )

{JpiK(σ [q0 7→ n0] . . . ) JϕiK(σ [q0 7→ n0] . . . )

1 else

We de�ne the notation J(S1 |S2), where S1 ⊆ V , S2 ⊆ V , where S1 ∩ S2 = ∅, as

J(S1 |S2) =

∫
V−(S1∪S2)

J∫
V−S2

J

The term J(S1 |S2) is a function of the type Σrv → R
+.

4.2 Typing Judgment
A typing judgment is a logical proposition of the formM, Γ,L ` p : t whereM is a model, Γ is a
type environment, L is an assumption log, p is a Shu�e inference program, and t is a type.

An independent typing judgment is a logical proposition of the formM, Γ,L `I p : t whereM
is a model, Γ is a type environment, L is an assumption log, p is a Shu�e inference program, and t
is a type. Independence typing judgments only hold under independence assumptions provided by
the developer.
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Type Environment. A type environment, Γ, is an element of the language de�ned by the
grammar

Γ → ∅ | Γ :: β
β → [x : q∗,δ ∗,T ] | [v : δ ,δ ] | [q : δ ]

where x is a named distribution, q is a quanti�ed variable, T is a Shu�e type (Figure 6), v is a
random variable name, and δ is a domain.

Assumption Log. An assumption log, L, records the set of model and inference program
assumptions made by the developer during the construction of their inference program. An
assumption log is of the form

L → ∅ | L :: α
α → (ϕ ⇒ A ⊥⊥ B | C) | ReachesAll(s).

An individual assumption is therefore either a statistical independence assertion or a reachability
assertion. The entries in an assumption log are logical propositions. We denote the semantics of
each entry by the semantic function JLK : Σ→ B, which we give by

JL :: aK(σ ) = JLK(σ ) ∧ JaK(σ )Jϕ ⇒ A ⊥⊥ B | CK(σ ) = JϕK(σ ) ⇒ (
J(JA,BK(σ )|JCK(σ ))(σ )

= J(JAK(σ )|JCK(σ ))(σ ) ∗ J(JBK(σ )|JCK(σ ))(σ ))JReachesAll(s)K(σ ) = ∀v,n.
(
∃sr, r . s(σ [(v,n) 7→ r ], sr)(v,n) , r ⇒ ∀r .∃sr. s(σ , sr)(v,n) = r

)
Model Relationsihp for Environments. An environment σ can model, written σ � Γ,M,L

a Shu�e modelM, type environment Γ, and assumption log L. This relation is de�ned as

σ �x Γ,M,L = ∀x .(M, Γ,L ` x : ∀q̂. t) ⇒ (x 7→ (q̂, δ̂ ,p) ∈ σ )
σ �q Γ,M,L = ∀q.(M, Γ,L ` q : δ ) ⇒ (q 7→ n ∈ σ ) ∧ (n ∈ JδK)
σ � Γ,M .L = σ �x Γ,M,L ∧ σ �q Γ,M,L ∧ J(σ ) > 0

and note that, for any model, there is a dynamic and static environment which each contain
mappings for all densities and random variables in in the model, and these environments satisfy �.

4.3 Types
Densities. A density is a function that, under any substitution of the relevant quanti�ed variables,

computes appropriate distribution from the model. Speci�cally if,
(1) M, Γ,L ` d : ∀q̂. density(A|B,ϕ)
(2) σ � Γ,M,L

then, for any environment σ ′ = σ [q̂ 7→ n̂], JϕK(σ ′) ⇒ JdK(σ ′) = J(JAK(σ ′)|JBK(σ ′))(σ ′)
Samplers. A term with sampler type is a function with it is possible to compute the expectation

of any positive function f under the distribution P(A|B). Speci�cally, if
(1) M, Γ,L ` s : ∀q̂. sampler(A|B,ϕ)
(2) σ � Γ,M,L

then for any environment σ ′ = σ [q̂ 7→ n̂] and any f ∈ Σrv → R
+

JϕK(σ ′) ⇒ ∫
sr
f (JsK(σ ′, sr)) = ∫

JAK(σ ′) f (σ ′) ∗ J(JAK(σ ′)|JBK(σ ′))(σ ′)
16



Kernels. A kernel k is a surjective function such that for any sampler s for a given distribution
and any positive function f , the expectation of f under s is the same as that under the composition
of s with k . Speci�cally, if

(1) M, Γ,L ` k : ∀q̂. kernel(A|B,ϕ)
(2) σ � Γ,M,L

then for any environment σ ′ = σ [q̂ 7→ n̂], f ∈ Σrv → R+, and sampler s such that∫
sr
f (s(σ ′, sr)) =

∫
JAK(σ ′) f (σ ′) ∗ J(JAK(σ ′)|JBK(σ ′))(σ ′)

,
(1) JϕK(σ ′) ⇒ ∃ϵ > 0.

∫
sr f (k(σ

′, sr)) > ϵ
∫JAK(σ ′) f (σ ′) ∗ J(JAK(σ ′)|JBK(σ ′))(σ ′)

(2) JϕK(σ ′) ⇒ ∫
sr0,sr1 f (k(s(σ

′, sr0), sr1)) =
∫JAK(σ ′) f (σ ′) ∗ J(JAK(σ ′)|JBK(σ ′))(σ ′)

Estimators. An estimator is a function that produces a sample and corresponding weight such
that the expectation of a positive function f under the estimator is correct. Speci�cally, if

(1) M, Γ,L ` est : ∀q̂. estimator(A|B,ϕ)
(2) σ � Γ,M,L

then for any environment σ ′ = σ [q̂ 7→ n̂], and any f ∈ Σrv → R
+,

JϕK(σ ′) ⇒ ∫
sr

π0(JestK(σ ′, sr)) ∗ f (π1(JestK(σ ′, sr)))∫
sr π1(JestK(σ ′, sr)) =

∫
JAK(σ ′) f (σ ′) ∗ J(JAK(σ ′)|JBK(σ ′))(σ ′)

where π0 and π1 are projections that extract the �rst and second elements, respectively, of their
pair-valued arguments.

4.4 Auxiliary Definitions.
We also de�ne the semantics of the notationM,L � PR, for the logical proposition PR, as follows:

M,L � ϕ ⇒ A ⊥⊥ B | C = ∀σ . JLK(σ ) ⇒ Jϕ ⇒ A ⊥⊥ B | CK(σ )
M,L � ReachesAll(s) = ∀σ . JLK(σ ) ⇒ JReachesAll(s)K(σ )

During type checking, Shu�e checks a number of side predicates that are necessary to ensure
safety properties.

(1) Free variables. The notation FV(e) means the free variables of the term e , which can
either be a variable set or a constraint. The set of free variables contains the names
of any quanti�ed or random variables, with the exception of a variable set de�ned by
v {q0 in δ: ϕ}, whose free variables to not include q0. The notation FRV(e) has the same
de�nition, but refers only to the random variables. Likewise, the notation FQV(e) refers to
the free quanti�ed variables.

(2) Variable Subsets If S is a set of variable names of the form S = v0,v1, . . . ,vn , then the
predicate S ⊆ A, for a variable set A, means that A must be of the form A0,A1, . . . ,Am ,
and furthermore S ⊆ {A0,A1, . . . ,Am}.

(3) Quanti�ed Variable Subsets. The notation q̂ ⊆′ q̂′, where q and q′ are lists of quanti�ed
variable de�nitions, means that if q0 ∈ q, then q0 ∈ q

′

(4) Dynamic Dependence Checking. If A and B are variable sets, the dynamic dependence
predicate DDep(A,B) holds if for any random variable set v {q in δ: ϕ} appears in either
A or B, and v ′ [ q′ ] appears in ϕ, then if q , q′, either v ′ or v ′ [ q′ ] must appear in B. If
q = q′, then v ′ must appear in B.

(5) Valid Types. A type Tb(A|B,ϕ) satis�es the predicate Valid(Tb(A|B,ϕ)) if
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M, Γ,L ` d1 : ∀q̂. density(A|B,C,ϕ) M, Γ,L ` d2 : ∀q̂. density(B |C,ϕ) DDep(A,C)
DMUL

M, Γ,L ` d1 * d2 : ∀q̂. density(A,B |C,ϕ)
M, Γ,L ` d1 : ∀q̂. density(A,B |C,ϕ) M, Γ,L ` d2 : ∀q̂. density(B |C,ϕ) DDIV

M, Γ,L ` d1 / d2 : ∀q̂. density(A|B,C,ϕ)
M, Γ,L ` d1 : ∀q̂. density(A,B |C,ϕ) M, Γ,L ` d2 : ∀q̂. density(A|B,C,ϕ)

DDIV2
M, Γ,L ` d1 / d2 : ∀q̂. density(B |C,ϕ)
M, Γ,L ` d : ∀q̂. density(A,B |C,ϕ)

DINT
M, Γ,L ` int d by B : ∀q̂. density(A|C,ϕ)

M, Γ :: [q : δ ],L ` d : ∀q, q̂′. density(v [ q ]|
v {q0 in δ: q0 < q && ϕ[q0/q]},C,ϕ) q < FV(C)

DPROD
M, Γ,L ` prod q in δ where ϕ : d : ∀q̂′. density(v {q0 in δ: ϕ[q0/q]}|C)

M, Γ : [q : δ ],L ` d : ∀q, q̂′. density(
v {q0 in δ0: v ′ [ q0 ] == q}|
v {q0 in δ0: v ′ [ q0 ] < q},C) M, Γ,L ` v : (δ0,δ ) q < FV(C)

DPROD2
M, Γ,L ` prod q in δ where ϕ : d : ∀q̂′. density(v |C)

Fig. 13. Type rules for probability densities

(a) For every random variable name v such that v [ q ] is referenced in ϕ, either v [ q ]
or v must appear in the random variable set B, and

(b) DDep(A,B).

Capture-avoiding Substitution. A basic type t can have a quanti�ed variable q subsituted
with another term e if e is another quanti�ed variable q′ or a random variable V (Figure 6). The
substitution is written t[e/q] The semantics of this is to replace every instance of q with e , unless e
captures q. This means that for a variable de�nition v {q0 in δ: ϕ}, if q0 = q, then no substitution
takes place for this term. If e = q′ = q0, then e captures q and q0 is given a new name q′0 that does
not con�ict with the existing quanti�ed variable names. We note here that renaming q0 does not
change the semantics of the variable set.

4.5 Densities
DMUL. This rule takes two densities and multiplies them together pointwise. It converts one of

the conditioned variables in the �rst density to an output variable. This assumes that the converted
variable is an output variable in the second density. The rule also ensures the removed condition
variable does not render the constraints invalid.

DDIV. This rule divides the �rst density by the second. This has the e�ect of converting output
variables in the �rst density to a conditioned variable in the new density. The moved variables
must be output variables in the second density.

DDIV2. This rule allows a developer to convert a joint density over two variables to a density
over only one of the variables. The developer must have the density for the variable we want to
eliminate, conditioned on the variable we want to keep. We then divide the densities pointwise.

DINT. This rule provides a method for eliminating a set of variables from a joint distribution.
The resulting density has an integral expression over the eliminated variables.
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M, Γ,L ` d : ∀q̂. density(v [ e ]|B,ϕ)
SLIFT

M, Γ,L ` v [ e ] := sample d : ∀q̂. sampler(v [ e ]|B,ϕ)

M, Γ,L ` s1 : ∀q̂. sampler(B |C,ϕ) M, Γ,L ` s2 : ∀q̂. sampler(A|B,C,ϕ) DDep(A,C)
SBIND

M, Γ,L ` s1 ; s2 : ∀q̂. sampler(A,B |C,ϕ)
M, Γ :: [q : δ ],L ` s : ∀q, q̂′. sampler( v0 [ q ], . . .|
v0 {q0 in δ: q0 < q}, . . . ,C) q < FV(C)

SALL
M, Γ,L ` join q in δ : s : ∀q̂′. sampler(v0, . . .|C)

Fig. 14. Type rules for samplers

M, Γ,L ` s : ∀q̂. sampler(A|B,ϕ) M, Γ,L ` v : δ1,δ2 L � ReachesAll(s)
KLIFT

M, Γ,L ` lift s : ∀q̂. kernel(A|B,ϕ)
M, Γ,L ` k1 : ∀q̂. kernel(A|B,C,ϕ) M, Γ,L ` k2 : ∀q̂. kernel(B |A,C,ϕ) DDep((A,B),C)

K2
M, Γ,L ` k1 ; k2 : ∀q̂. kernel(A,B |C,ϕ)

M, Γ :: [q : δ ],L ` k : ∀q, q̂′. kernel(v [ q ]|v {q0 in δ: q0 != q},C) q < FV(C)
KALL

M, Γ,L ` join q in δ : k : ∀q̂′. kernel(v |C)
M, Γ,L ` k : ∀q̂. kernel(A|B,ϕ)

KFIX
M, Γ,L ` fix k : ∀q̂. sampler(A|B,ϕ)

Fig. 15. Type rules for kernels

DPROD. The DPROD rule transforms a density for an individual element of a set into a density
over the whole set. It does this by taking the product over all possible instantiations of the quanti�ed
variable that de�nes an individual element in the set. If constraints restrict the size of the set, it
only includes those members for which the constraints are satis�ed. The DPROD2 rule is similar,
but combines densities for disjoint subsets of a random variable set into a density for the whole set.

4.6 Samplers
SLIFT. This rule states that a density for a particular distribution can be used to build a sampler

for the same distribution. It samples from one random variable at a time, with the random variable
being indexed by an arbitrary quanti�ed variable or constant.

SBIND. This rule allows for reasoning about composed samplers. Its type signature is the same
as that of DMUL.

SALL. This rule builds a sampler for an entire set of variables given a sampler for an individual
member of that set. It does this by joining them together. The input sampler must sample one
variable at a time, and be unconstrained. Any conditions in the input sampler, other than the set of
random variables previously sampled, must not depend on the quanti�ed variable.

4.7 Kernels
KLIFT. This rule constructs a kernel out of a sampler. In order to do so, the sampler’s output

must be a �nite random variable. The ReachesAll predicate means that the input sampler must
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M, Γ,L ` e : ∀q̂. sampler(A|B,ϕ)
ELIFT

M, Γ,L ` lift e : ∀q̂. estimator(A|B,ϕ)
M, Γ,L ` e : ∀q̂. estimator(A|B,ϕ) M, Γ,L ` d : ∀q̂. density(C |A,B,ϕ) DDep(C,B)

EFACT
M, Γ,L ` factor e by d : ∀q̂. estimator(A|B,C,ϕ)

Fig. 16. Type rules for estimators

have some probability of reaching any part of its output space. The constructed kernel’s behavior
is the same as the input sampler’s.

K2. This rule combines two kernels for conditional densities into a kernel for a joint density.
Speci�cally, the two kernels must be conditioned on each other’s output variables. The sampler
returned represents the joint density of each kernel’s output conditioned on any global conditions
both kernels have. Functionally, the rule composes the kernels together using sampler composition.

KALL. This rule is the inductive variant of KERN-COMBINE. Given a kernel for an individual
variable conditioned on all other variables in the set, KERN-ALL returns a kernel for the whole set
of of variables. The rule uses the join syntax to construct the new kernel.

KFIX. This rule transforms a kernel for a distribution into a sampler for the same distribution
using the fix operator. The fix operator has well-de�ned behavior, but is not implemented exactly
in Shu�e. In practice, we use an iterative scheme that approximates its true value.

4.8 Estimators
ELIFT. This rule enables us to build an estimator for a distribution out of a sampler for precisely

the same distribution. The estimator calls the sampler to generate a sample, and assigns each
sample a weight of 1 regardless of its value.

EFACT. This rule performs likelihood weighting. It requires an estimator for a distribution and
a density whose conditional variables — A and B — also appear in the estimator. The density’s
conditions must include the conditional and resulting variables in the estimator. The rule produces
an estimator which has the resulting variable of the density as an added condition. It does this by
re-weighting the samples from the original estimator according to the density.

4.9 Structural Rules
DEF. The DEF and DEF-IND rules allows a user to introduce a new distribution with a def

statement. These rules also include type assertions. These assert that the checked type of the
internal distribution can be coerced to the user-supplied type included in the def statement, possibly
appending a sequence of assumptions to the assumption log in the process. There are two rules for
the two di�erent kinds of coercions: one for regular coercions, and one for independence coercions.

MODEL. This rule gives a type for all densities established by the model. It serves as the set of
axioms for the type system.

INV. The INV rule types invocations of distributions de�ned with one of the DEF rules. To
�nd the new type, each quanti�ed variable from the de�nition is substituted with its invocation
argument. For each invocation argument, if it has a free quanti�ed variable, then this variable is
added to the type. If the invocation argument has no free quanti�ed variables, then the argument
is ignored for the purposes of constructing the new quanti�ed variable list q̂′. An additional side
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M, Γ :: [q0 : δ0] :: . . . ,L ` p1 : ∀q0, . . . . t1 M, Γ :: [x : (q0, . . . ), (δ0, . . . ), t1],L ` p2 : t2
DEF

M, Γ,L ` def x (q0 in δ0, . . .): t1 = p1 ; p2 : t2

M, Γ :: [q0 : δ0] :: . . . ,L `I p1 : ∀q0, . . . . t1 M, Γ :: [x : (q0, . . . ), (δ0, . . . ), t1],L ` p2 : t2 DEF-IND
M, Γ,L ` def independent x (q0 in δ0, . . .): t1 = p1 ; p2 : t2

M, Γ,L ` x : q̂, δ̂ ,Tb(A|B,ϕ) M, Γ,L ` ê : δ̂ (
⋃
e ∈ê FRV(e)) ⊆ B

INV
M, Γ,L ` x (ê) : ∀FQV(ê).

(
Tb(A|B,ϕ)

)
[ê/q̂]

M, Γ,L ` e : t e ′ , e
ENV-REC

M, Γ :: [e ′ : t ′],L ` e : t
ENV

M, Γ :: [e : t],L ` e : t

n ∈ JδK
ENV-NAT

M, Γ,L ` n : δ

M, Γ,L ` v : (δ1,δ2) M, Γ,L ` e : δ1 ENV-VAR
M, Γ,L ` v [ e ] : δ2

M, Γ,L ` e : δ M, Γ,L ` ê : δ̂
ENV-LST

M, Γ,L ` e,ê : δ , δ̂

ENV-EMPTY-LST
M, Γ,L ` · : ·

M, Γ :: [q0 : δ0] :: . . .,L ` p : t
EXP

M, Γ,L ` def export x (q0 in δ0, . . .): t = p : ∀q0, . . . . t

M, Γ,L ` p : ∀q̂. t1 q̂ ⊆ q̂′ L ` t1 → t2 C
M, Γ,L ` p : ∀q̂′. t2

M, Γ,L ` p : ∀q̂. t1 L ` t1 →I t2 IND
M, Γ,L `I p : ∀q̂. t2

M, Γ,L `I p : ∀q̂. t
CIND

M, Γ,L ` p : ∀q̂. t
def x (q0 in δ0, . . .): t = p ∈ M M, Γ,L ` q0 : δ0 . . . MODEL

M, Γ,L ` p : ∀q0, . . . . t

Fig. 17. Type rules for defining and calling distribution objects.

predicate states that every random variable which any of the invocation arguments depend on
must be contained in the conditions of the type.

C, IND, and CIND. The C, IND, and CIND rules ensure that coercions introduced by the DEF
rules maintain the soundness of the system. speci�cally, they state that the new type appended
to Γ in DEF and DEF-IND, respectively, can be deduced within the type system. Each rule makes
appendages to the assumption log as required.

4.10 Coercions
Normal Coercions. Shu�e uses a normal coercion of the form t1 → t2 to assert that a type

judgment t1 implies another type judgment t2. These require additional predicates which encode
logical formulae. Shu�e employs the Z3 theorem prover [12] to verify that these predicates are
true. These predicates are:
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M � ϕ2 ⇒ A ≡ C M � ϕ2 ⇒ B ≡ D M � ϕ2 ⇒ ϕ1 LOG-TYPE-C
M ` Tb(A|B,ϕ1)→ Tb(C |D,ϕ2)

M,L � ϕ ⇒ A ⊥⊥ C | B M � ϕ ⇒ (A ∩C = ∅)
LOG-TYPE-CIND

M,L ` Tb(A|B,ϕ)→I Tb(A|B,C,ϕ)

Fig. 18. Rules for coercion side predicates

• M � ϕ ⇒ A ≡ B. This predicate states that whenever, ϕ is true, the variable sets A and
B must be equivalent. Shu�e checks this by constructing, for each random variable v
speci�ed by the modelM, the formulas ϕvA and ϕvB which specify the set of indices n
such that (v,n) ∈ JAK(σ ) or (v,n) ∈ JAK(σ ), respectively. Shu�e then checks whether
ϕ ⇒ (ϕvA ⇐⇒ ϕvB ).
• M � ϕ1 ⇒ ϕ2. This predicate states that the constraints ϕ1 imply the constraints ϕ2.
• M � ϕ ⇒ (A ∩ B) = ∅. This predicate determines that the variable groups A and B are

disjoint.
The semantics of each predicate are de�ned as follows

M � ϕ ⇒ A ≡ B = ∀σ . JϕK(σ ) ⇒ (JAK(σ ) = JBK(σ ))
M � ϕ1 ⇒ ϕ2 = ∀σ . Jϕ1K(σ ) ⇒ Jϕ2K(σ )
M � ϕ ⇒ (A ∩ B) = ∅ = ∀σ . JϕK(σ ) ⇒ JAK(σ ) ∩ JBK(σ ) = ∅

Independence Coercions. Shu�e uses a normal coercion of the form t1 →I t2 to assert that a
type judgment t1 implies another type judgment t2. This requires the assumption log L to entail
independence amongst certain variables present in t1 and t2.

5 SOUNDNESS
5.1 Preliminaries

Integration by Substitution. The soundness theorems presented in this section rely on a
property of integrals known as the substitution rule. For measurable functions f and д,

ψ (r ) =

∫
x ∈(− inf,r ]

д(x) ⇒

∫
x ∈ψ [S ]

f (x) =

∫
x ∈S

f (ψ (x)) ∗ д(x)

where the notationψ [S] means the set obtained by mapping the functionψ over S .

Valid Models. A modelM is considered valid if for every de�nition inM of the form
def xi( q̂ ) : tbi (Ai|Bi,ϕ) = pi

(1) For every variable (v,n) in the model’s space, and for any σ there is exactly one value of i
such that JϕKσ ∧ ((v,n) ∈ JAiKσ )

(2) There exists a strict partial order≺ such that∀σ , (v1,n1) ∈ JAK(σ ), (v2,n2) ∈ JBK(σ ). (v1,n1) ≺
(v2,n2)

(3)
∫
Ai

JpiK = 1
(4) ∀i .Valid(tbi (Ai |Bi ,ϕ))
(5) JAiK(σ ) , ⊥σ and JBiK(σ ) , ⊥σ

Equivalence of Substitution and Environment Mapping. We make use of the following
lemma in the proof sketches below. Let p be a Shu�e term that is either a variable set or a constraint.
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We have the following equivalences, for any environment σ :JpK(σ [q 7→ n]) = Jp[n/q]K(σ )JpK(σ [q1 7→ n]) = Jp[q2/q1]K(σ [q2 7→ n])JpK(σ [q 7→ n1]) = Jv [ n2 ]/qK(σ [(v,n2) 7→ n1])JpK(σ [q1 7→ n1]) = Jp[v [ q2 ]/q1]K(σ [(v,n2) 7→ n1][q2 7→ n2])

5.2 Progress
Progress Theorem. Assuming

(1) M, Γ,L ` p : ∀q̂. Tb(A|B,ϕ)
(2) q̂ = q0,q1, . . . ,qm is a list of quanti�ed variables, and n0,n1, . . . ,nm is a list of values for

these variables drawn from the appropriate domains
(3) σ � Γ,M,L

and de�ning σ ′ = σ [q0 7→ n0][q1 7→ n1] . . . [qm 7→ nm]we will show that
(1) JpK(σ ′) is never ⊥σ or ⊥0
(2) JϕK(σ ′) ⇒ JAK(σ ′) ∩ JBK(σ ′) = ∅
(3) Neither JAK(σ ′) nor JBK(σ ′) is ever ⊥σ .
(4) Valid(∀q. Tb(A|B,ϕ))

Proof Sketch. We proceed by induction on the structure of derivations for types. Speci�c cases
are outlined below.

DMUL. Recall the DMUL rule
M, Γ,L ` d1 : ∀q̂. density(A|B,C,ϕ) M, Γ,L ` d2 : ∀q̂. density(B |C,ϕ) DDep(A,C)

DMUL
M, Γ,L ` d1 * d2 : ∀q̂. density(A,B |C,ϕ)

The density d2 * d2 must be well-de�ned (i.e. d1 * d2 is not⊥σ or⊥0) if d1 and d2 are well-de�ned.
If B,C is not ⊥σ , then the denotations of B and C are disjoint, and, combined with the inductive
hypothesis that A’s denotation is disjoint from B,C’s , this means that the denotation of A,B is
disjoint from that ofC . Furthermore,Amust be disjoint from B soA,B is never⊥σ . The type validity
follows directly from the inductive assumptions and the fact that DDep(A,C) ∧ DDep(B,C) ⇒
DDep((A,B),C).

DDIV and DDIV2. Recall the DDIV and DDIV2 rules
M, Γ,L ` d1 : ∀q̂. density(A,B |C,ϕ) M, Γ,L ` d2 : ∀q̂. density(B |C,ϕ) DDIV

M, Γ,L ` d1 / d2 : ∀q̂. density(A|B,C,ϕ)
M, Γ,L ` d1 : ∀q̂. density(A,B |C,ϕ) M, Γ,L ` d2 : ∀q̂. density(A|B,C,ϕ)

DDIV2
M, Γ,L ` d1 / d2 : ∀q̂. density(B |C,ϕ)

The density d2 / d2 must be well-de�ned if d1 and d2 are well-de�ned and d2 is nonzero, which
must be the case if J(σ ) > 0 as prescribed in the assumption σ � Γ,M,L. The disjointness of A
and B,C (or B andC in the case of DIV2) follows from the same reasoning as in DMUL, as does the
argument that none of the variable sets’ denotation is ⊥σ . The �nal conclusion for progress results
from the fact that DDep((A,B),C) ⇒ DDep(A, (B,C)) and DDep((A,B),C) ⇒ DDep(B,C)

DINT. Recall the DINT rule
M, Γ,L ` d : ∀q̂. density(A,B |C,ϕ)

DINT
M, Γ,L ` int d by B : ∀q̂. density(A|C,ϕ)

For any quanti�ed variable q that B depends on, we can show by structural induction on the
type rules that q must appear in q̂, which means that assuming d is well-de�ned int d by B must
be well-de�ned. The remaining conclusions follow straightforwardly from the properties of A,B.
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DPROD. Recall the DPROD and DPROD2 rules
M, Γ :: [q : δ ],L ` d : ∀q, q̂′. density(v [ q ]|
v {q0 in δ: q0 < q && ϕ[q0/q]},C,ϕ) q < FV(C)

DPROD
M, Γ,L ` prod q in δ where ϕ : d : ∀q̂′. density(v {q0 in δ: ϕ[q0/q]}|C)

M, Γ,L ` d : ∀q in δ , q̂′. density(v [ q ]|v {q0 in δ: q0 < q},C) q < FV (C)
DPROD2

M, Γ,L ` prod q in δ where ϕ : d : ∀q̂′. density(v {q0 in δ: ϕ[q0/q]}|C)

For any quanti�ed variable q that ϕ depends on, we can show by structural induction on the type
rules thatq must appear in q̂′, which means that assumingd is well-de�ned prod q in δ where ϕ : d
must be well-de�ned. The disjointness and variable well-de�nedness conclusions follow from the
dijointness properties of the “,” operator, and the remaining conclusion follows from inlining the
de�nitions of FRV and DDep.

SLIFT. Recall the SLIFT rule
M, Γ,L ` d : ∀q̂. density(v [ e ]|B,ϕ)

SLIFT
M, Γ,L ` v [ e ] := sample d : ∀q̂. sampler(v [ e ]|B,ϕ)

For any quanti�ed variable q thatv [ e ] depends on, we can show by structural induction on the
type rules thatq must appear in q̂, which means that assumingd is well-de�nedv [ e ] := sample d
must be well-de�ned. The remaining conclusions follow straightforwardly because the parameters
of the type are the same.

SBIND. Recall the SBIND rule
M, Γ,L ` s1 : ∀q̂. sampler(B |C,ϕ) M, Γ,L ` s2 : ∀q̂. sampler(A|B,C,ϕ) DDep(A,C)

SBIND
M, Γ,L ` s1 ; s2 : ∀q̂. sampler(A,B |C,ϕ)

The sampler s1 ; s2 is well-de�ned if s1 and s2 are well-de�ned. The remaining conclusions
follow from the same reasoning as that of DMUL.

SALL. Recall the SALL rule
M, Γ :: [q : δ ],L ` s : ∀q, q̂′. sampler( v0 [ q ], . . .|
v0 {q0 in δ: q0 < q}, . . . ,C) q < FV(C)

SALL
M, Γ,L ` join q in δ : s : ∀q̂′. sampler(v0, . . .|C)

The sampler join q in δ : s is well-de�ned if s is well-de�ned. The disjointness and variable
well-de�nedness conclusions follow from the disjointness properties of the “,” operator, and the
remaining conclusion follows from properties of FRV and DDep.

KLIFT. Recall the KLIFT rule
M, Γ,L ` s : ∀q̂. sampler(A|B,ϕ) M, Γ,L ` v : δ1,δ2 L � ReachesAll(s)

KLIFT
M, Γ,L ` lift s : ∀q̂. kernel(A|B,ϕ)

The kernel lift s is well-de�ned if s is well-de�ned. The remaining conclusions follow straight-
forwardly because the parameters of the type are the same.

K2. Recall the K2 rule
M, Γ,L ` k1 : ∀q̂. kernel(A|B,C,ϕ) M, Γ,L ` k2 : ∀q̂. kernel(B |A,C,ϕ) DDep((A,B),C)

K2
M, Γ,L ` k1 ; k2 : ∀q̂. kernel(A,B |C,ϕ)

The kernel k1 ; k2 is well-de�ned if k1 and k2 are well-de�ned. Using the semantics of the “,”
operator, we show that if JAK(σ ′) ∩ JB,CK(σ ′) = ∅ and JBK(σ ′) ∩ JA,CK(σ ′) = ∅, then JA,BK(σ ′) ∩JCK(σ ′) = ∅ and JAK(σ ′) ∩ JBK(σ ′) = ∅. The �nal conclusion follows from the de�nition of Valid
and inductive validity assumptions.
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KALL. Recall the KALL rule
M, Γ :: [q : δ ],L ` k : ∀q, q̂′. kernel(v [ q ]|v {q0 in δ: q0 != q},C) q < FV(C)

KALL
M, Γ,L ` join q in δ : k : ∀q̂′. kernel(v |C)

The kernel join q in δ : k is well-de�ned if k is well-de�ned. The disjointness and variable
well-de�nedness conclusions follow from the disjointness requirement of the “,” operator, and the
remaining conclusion follows from inlining the de�nitions of FRV and DDep.

KFIX. Recall the KFIX rule
M, Γ,L ` k : ∀q̂. kernel(A|B,ϕ)

KFIX
M, Γ,L ` fix k : ∀q̂. sampler(A|B,ϕ)

Since the semantics of fix k is de�ned declaratively, we must show that a solution exists. Due to
the �rst property of kernel soundness, we can apply a theorem from (author?) [5] which states that
the �xed point can be approximated to arbitrary precision with an iterative algorithm. This means
that a solution must exist and furthermore, the solution is unique. The remaining conclusions
follow straightforwardly because the parameters of the type are the same.

ELIFT. Recall the ELIFT rule
M, Γ,L ` e : ∀q̂. sampler(A|B,ϕ)

ELIFT
M, Γ,L ` lift e : ∀q̂. estimator(A|B,ϕ)

The estimator lift s is well-de�ned if s is well-de�ned. The remaining conclusions follow
straightforwardly because the parameters of the type are the same.

EFACT. Recall EFACT rule
M, Γ,L ` e : ∀q̂. estimator(A|B,ϕ) M, Γ,L ` d : ∀q̂. density(C |A,B,ϕ) DDep(C,B)

EFACT
M, Γ,L ` factor e by d : ∀q̂. estimator(A|B,C,ϕ)

The estimator factor e by d is well-de�ned if e and d are well-de�ned. According to the
semantics of the “,”, if JAK(σ ′)∩JBK(σ ′) = ∅ and JCK(σ ′)∩JA,BK(σ ′) = ∅, then JAK∩JB,CK = ∅ andJBK∩JCK = ∅. Finally, the validity of the type follows from the fact that DDep(A,B)∧DDep(C,B) ⇒
DDep(A, (B,C)).

DEF. Recall the DEF and DEF-IND rules
M, Γ :: [q0 : δ0] :: . . . ,L ` p1 : ∀q0, . . . . t1 M, Γ :: [x : (q0, . . . ), (δ0, . . . ), t1],L ` p2 : t2

DEF
M, Γ,L ` def x (q0 in δ0, . . .): t1 = p1 ; p2 : t2

M, Γ :: [q0 : δ0] :: . . . ,L `I p1 : ∀q0, . . . . t1 M, Γ :: [x : (q0, . . . ), (δ0, . . . ), t1],L ` p2 : t2 DEF-IND
M, Γ,L ` def independent x (q0 in δ0, . . .): t1 = p1 ; p2 : t2

Taking q̂ = q0, . . . and δ̂ = δ0, . . . , and assuming p2 is well-de�ned under the environment
σ [x 7→ (q̂,p1)], the program def x (q0 in δ0, . . .): t1 = p1 ; p2 is well-de�ned. The program p2
must be well-de�ned by inductive assumption because σ � M, Γ,L ⇒ σ [x 7→ (q̂,p1)] � M, Γ ::
[x : q̂, δ̂ , t1],L. The remaining conclusions follow from the fact that the side predicate L ` ta → t1
enforces that the variable sets in ta and t1 are the same, and the predicate L ` ta →I t1 enforces
that all modi�cations to the variables preserve disjointness.

INV. Recall the INV rule

M, Γ,L ` x : q̂, δ̂ ,Tb(A|B,ϕ) M, Γ,L ` ê : δ̂ (
⋃
e ∈ê FRV(e)) ⊆ B

INV
M, Γ,L ` x (ê) : ∀FQV(ê).

(
Tb(A|B,ϕ)

)
[ê/q̂]
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From the assumption that σ � Γ,M,L, we know that σ (x) = (q0 in δ0, . . . ),p is de�ned,
which means that x (e0, . . . ) must be well-de�ned. To prove the disjointness condition, we
apply the environment-substitution lemma. Also because of the assumption that σ � Γ,M,L,
we know thatM, Γ,L ` p : ∀q0 in δ0, . . . . Tb(A|B,ϕ), which means our inductive assump-
tion yields Valid(Tb(A|B,ϕ)). Combined with the assumption that (FRV(e0) ∪ . . . ) ⊆ B, this
means that DDep(A[e0/q0][. . . ],B[e0/q0][. . . ]), DDep(B[e0/q0][. . . ],B[e0/q0][. . . ]), and further-
more FRV(ϕ[e0/q0][. . . ]) ⊆ B. This means that Valid(Tb(A|B,ϕ)) is true.

MODEL. See the model validity assumptions above.

C and CIND. Recall the C, IND, and CIND rules
M, Γ,L ` p : ∀q̂. t1 q̂ ⊆ q̂′ L ` t1 → t2 C

M, Γ,L ` p : ∀q̂′. t2
M, Γ,L ` p : ∀q̂. t1 L ` t1 →I t2 IND

M, Γ,L `I p : ∀q̂. t2
M, Γ,L `I p : ∀q̂. t

CIND
M, Γ,L ` p : ∀q̂. t

The program p must be well de�ned by assumption. The remaining conclusions follow from the
fact that the side predicate L ` ta → t1 enforces that the variable sets in ta and t1 are the same, and
the predicate L ` ta →I t1 enforces that all modi�cations to the variables preserve disjointness.

5.3 Densities
Density Soundness Theorem. A density is considered sound if, under any substitution of the

relevant quanti�ed variables, the density evaluates to the appropriate distribution from the model.
Speci�cally, given the assumptions

(1) M, Γ,L ` d : ∀q̂. density(A|B,ϕ)
(2) σ � Γ,M,L

it must be true that, for any environment σ ′ = σ [q0 7→ n0][q1 7→ n1] . . . [qm 7→ nm] that binds
values for the set of quanti�ed variables q̂ = q0 in δ0,q1 in δ1, . . . ,qm in δm ,

JϕK(σ ′) ⇒ JdK(σ ′) = J(JAK(σ ′)|JBK(σ ′))(σ ′)
Proof Sketch. Proceed by induction on the derivations. Speci�c rules are outlined below:

MODEL. Recall the MODEL rule
def x (q0 in δ0, . . .): t = p ∈ M M, Γ,L ` q0 : δ0 . . . MODEL

M, Γ,L ` p : ∀q0, . . . . t
From the de�nition of J , we know that

J(JAK(σ ′)|JBK(σ ′)) =
∫
V−(JAK(σ ′)∪JBK(σ ′)∏i

{JdiK(σ ′) JϕiK(σ ′)
1 else∫

V−JBK(σ ′)∏i

{JdiK(σ ′) JϕiK(σ ′)
1 else

There exists some i∗ such that di∗ = p and ϕi∗ = ϕ. Furthermore, because A and B are disjoint,JpK(σ ′) does not depend on any variables outside of A and B, and
∫JAK(σ ′)JpK(σ ′) = 1, we can
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simplify the above equation to

J(JAK(σ ′)|JBK(σ ′)) = {JpK(σ ′) JϕK
1 else

∗

∫
V−(JAK(σ ′)∪JBK(σ ′)∏i,i∗

{JdiK(σ ′) JϕiK(σ ′)
1 else∫

V−JBK(σ ′)∏i,i∗

{JdiK(σ ′) JϕiK(σ ′)
1 else

Given that the product in the numerator is independent of the values of variables in JAK(σ ′), we
can further simplify this equation to

J(JAK(σ ′)|JBK(σ ′)) = {JpK(σ ′) JϕK
1 else

which means JϕK(σ ′) ⇒ J(JAK(σ ′)|JBK(σ ′)) = JpK(σ ′) as required.

DMUL. Recall the DMUL rule
M, Γ,L ` d1 : ∀q̂. density(A|B,C,ϕ) M, Γ,L ` d2 : ∀q̂. density(B |C,ϕ) DDep(A,C)

DMUL
M, Γ,L ` d1 * d2 : ∀q̂. density(A,B |C,ϕ)

The basic premise of the rule is based on the following property of J

J(S1 |S2, S3)J(S2 |S3) =

( ∫
V−(S1∪S2∪S3)

J∫
V−(S2∪S3)

J

) ( ∫
V−(S2∪S3)

J∫
V−S3

J

)
=

∫
V−(S1∪S2∪S3)

J∫
V−S3

J
= J(S1, S2 |S3)

DDIV. Recall the DDIV rule
M, Γ,L ` d1 : ∀q̂. density(A,B |C,ϕ) M, Γ,L ` d2 : ∀q̂. density(B |C,ϕ) DDIV

M, Γ,L ` d1 / d2 : ∀q̂. density(A|B,C,ϕ)
Applying the identity from DMUL in reverse, we see that

J(S1 |S2, S3)J(S2 |S3) = J(S1, S2 |S3) ⇒ J(S1 |S2, S3) =
J(S1, S2 |S3)

J(S2 |S3)

which justi�es the basic rule construct.

DDIV2. Recall the DDIV2 rule
M, Γ,L ` d1 : ∀q̂. density(A,B |C,ϕ) M, Γ,L ` d2 : ∀q̂. density(A|B,C,ϕ)

DDIV2
M, Γ,L ` d1 / d2 : ∀q̂. density(B |C,ϕ)

From the identity in DMUL, we can deduce that

J(S1 |S2, S3)J(S2 |S3) = J(S1, S2 |S3) ⇒ J(S2 |S3) =
J(S1, S2 |S3)

J(S1 |S2, S3)

which justi�es the basic rule construct.

DINT. Recall the DINT rule
M, Γ,L ` d : ∀q̂. density(A,B |C,ϕ)

DINT
M, Γ,L ` int d by B : ∀q̂. density(A|C,ϕ)

This rule relies on the following simpli�cation of J :∫
S1
J(S1, S2 |S3) =

∫
S1

∫
V−(S1∪S2∪S3)

J∫
V−S3

J
=

∫
S1

∫
V−(S1∪S2∪S3)

J∫
V−S3

J
=

∫
V−(S2∪S3)

J∫
V−S3

J
= J(S2 |S3)

The second step above is justi�ed by the fact that S1 ∩ S3 = ∅, so the denominator is a constant
with respect to the outer integral.
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DPROD. Recall the DPROD rule
M, Γ :: [q : δ ],L ` d : ∀q, q̂′. density(v [ q ]|
v {q0 in δ: q0 < q && ϕ[q0/q]},C,ϕ) q < FV(C)

DPROD
M, Γ,L ` prod q in δ where ϕ : d : ∀q̂′. density(v {q0 in δ: ϕ[q0/q]}|C)

In this rule, q is a value from a domain δ consisting an ordered set of integers [n1,n2]. De�ne the
set δn′2 = [n1,n

′
2] for n′2 ∈ [n1,n2]We proceed by induction over n′2. Our inductive hypothesis is

that
M, Γ,L ` prod q in δn′2 where ϕ : d : ∀q̂′. density(v {q0 in δ: q0 <= n

′
2 && ϕ[q0/q]}|C,ϕ)

is sound for any n′2 ∈ [n1,n2] with n′2 = n1 as the base case.
• Base case. If the constraints are satis�ed, then the de�nition of semantics for densities

de�nes that the product over a set of size 1 simply returns the inner density d . We also use
the equivalences between variable sets

v {q0 in D: q0 <= n1} = v [ n1 ], v {q0 in D: f [ q0 ] < n1} = ∅

to justify the type judgment. If the constraints are not satis�ed, then the hypothesis still
holds because J(∅|S2) = 1 by de�nition.
• Inductive step. Assuming the inductive hypothesis is true for n′2 − 1, we will show it is

true for n′2. First consider the case where ϕ is true for q0 = n′2. In this case, we show that
the following programs are semantically equivalent:

prod q in δn′2 where ϕ : d
def xI (q in δ): t = d ; x (n′2) * prod q in δn′2−1 where ϕ : d

We will now give an appropriate type to the latter program, and show that this type is
sound. We note that choosing t as

density(v {q0 in δ: q0 == q}|v {q0 in δ: q0 < q && ϕ[q0/q]},C,ϕ)

is always a valid coercion. The inductive hypothesis is equivalent to stating that the
following type is sound for the product in the above program:

∀q̂′. density(v {q0 in δ: q0 < n
′
2 && ϕ[q0/q]}|C,ϕ)

Using the soundness of the DEF, CALL-LIT, and DMUL rules, we show that
∀q̂′. density(v {q0 in δ: q0 == q},v {q0 in δ: q0 < n

′
2 && ϕ[q0/q]}|C,ϕ)

is a sound type for this program. Using the semantics of variables sets, we show that this
type is semantically equivalent to the type

∀q̂′. density(v {q0 in δ: q0} <= n′2 && ϕ |C,ϕ)

completing the proof.
If ϕ is not true for q0 = n′2, then the value of the product remains unchanged, as do the

variable sets in the type. Therefore, the type is sound in this case as well.
The conclusion of the rule follows from choosing n′2 = n2, since δn2 = δ . An analogous proof holds
for the DPROD2 rule.

5.4 Samplers
Sampler Soundness Theorem. For a sampler to be sound, it must be able to properly compute

the expectation of any positive function f . A sampler computes the expectation by feeding its
output into f , and this must be equal to the model expectation de�ned by multiplying with the
appropriate distribution and integrating. Speci�cally, under the assumptions

(1) M, Γ,L ` s : ∀q̂. sampler(A|B,ϕ)
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(2) σ � Γ,M,L
it must be true that, for any environment σ ′ = σ [q0 7→ n0][q1 7→ n1] . . . [qm 7→ nm] that binds
values for the set of quanti�ed variables q̂ = q0 in δ0,q1 in δ1, . . . ,qm in δm , and any f ∈ Σrv →
R+ JϕK(σ ′) ⇒ ∫

sr
f (JsK(σ ′, sr)) = ∫

JAK(σ ′) f (σ ′) ∗ J(JAK(σ ′)|JBK(σ ′))(σ ′)
Proof sketch. We proceed by structural induction on the rules which may produce samplers.

Individual cases are outlined below.

SLIFT. Recall the SLIFT rule
M, Γ,L ` d : ∀q̂. density(v [ e ]|B,ϕ)

SLIFT
M, Γ,L ` v [ e ] := sample d : ∀q̂. sampler(v [ e ]|B,ϕ)

In the discrete case, notice that the size of the set

{sr|Jd := sample K(σ ′[(v, e) 7→ n])}

is exactly JdK((v, e) 7→ n), and furthermore each such set is disjoint for di�erent values of a.
Therefore, we can write the integral over sr as a linear combination over these di�erent cases:∫

sr
f (JsK(σ )) =∑

n

JdK(σ ′[(v, e) 7→ n]) ∗ f (n)

According to the assumptions in the rule, this is equal to
∫J AK(σ ′)f ∗J(JAK(σ ′)|JBK(σ ′) as required.

In the continuous case, the sample returned must be a real value r such that

sr =
∫
x ∈[−∞,r ]

JdK(v, JpK(σ ′) 7→ x) = д(r ) ⇒

∫
sr
f (JsK(σ ′, sr)) = ∫

sr
f (д−1(sr))

Substituting д forψ and f ◦ д−1 for f in the de�nition for the substitution rule, we see that∫
sr
f (JsK(σ ′, sr)) = ∫

JAK(σ ′) f (σ ′) ∗ JdK(σ ′) = ∫
JAK(σ ′) f (σ ′) ∗ J(JAK(σ ′)|JBK(σ ′))(σ ′)

where the above step is due to the soundness theorem for densities.

SBIND. Recall the SBIND rule
M, Γ,L ` s1 : ∀q̂. sampler(B |C,ϕ) M, Γ,L ` s2 : ∀q̂. sampler(A|B,C,ϕ) DDep(A,C)

SBIND
M, Γ,L ` s1 ; s2 : ∀q̂. sampler(A,B |C,ϕ)

First, we apply the soundness assumption for s1 to �nd the expectation of the function s1 ◦ f .
Then, we use the assumption soundness assumption on s2. This yields the equation∫

sr0,sr1
f (Js2K(Js1K(σ ′, sr0), sr1))

=

∫
JAK(σ ′),JBK(σ ′) f (σ ′) ∗ J(JAK(σ ′)|JB,CK(σ ′))(σ ′) ∗ J(JBK(σ ′)|JCK(σ ′))(σ ′)

Using the identity from DMUL, we can simplify this to

=

∫
JAK(σ ′),JBK(σ ′) f (σ ′) ∗ J(JA,BK(σ ′)|JCK(σ ′))(σ ′)
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SALL. Recall the SALL rule
M, Γ :: [q : δ ],L ` s : ∀q, q̂′. sampler( v0 [ q ], . . .|
v0 {q0 in δ: q0 < q}, . . . ,C) q < FV(C)

SALL
M, Γ,L ` join q in δ : s : ∀q̂′. sampler(v0, . . .|C)

In this rule, δ represents an ordered set of integers [n1,n2]. De�ne the set δn′2 = [n1,n
′
2] for

n′2 ∈ [n1,n2]We proceed by induction over n′2. Our inductive hypothesis is that
M, Γ,L ` join q in δn′2 : s : ∀q̂′. sampler(v0 {q0 in δ: q0 <= n′2}, . . .|C,ϕ)

is sound for any n′2 ∈ [n1,n2] with n′2 = n1 as the base case.
• Base case. The de�nition of semantics for samplers de�nes that the product over a set of

size 1 simply returns the inner sampler s . We also note the following equivalences between
variable sets

∀i . vi {q0 in δ: q0 <= n1} = vi [ n1 ], vi {q0 in δ: q0 < n1} = ∅

justifying the type judgment.
• Inductive step. Assuming the inductive hypothesis is true for n′2 − 1, we will show it is

true for n′2. We �rst note that the following programs are semantically equivalent:
join q in δn′2 : s

def xI (q in δ): t = s ; (join q in δn′2−1 : s) ; x (n′2)

We will now give an appropriate type to the latter program, and show that this type is
sound. We note that choosing t as

sampler(v0 [ q ], . . .|v0 {q0 in δ: q0 < q]}, . . . ,C,true)

is always a valid coercion. The inductive hypothesis is equivalent to stating that the
following type is sound for the product in the above program:

∀q̂′. sampler(v0 {q0 in δ: q0 < n′2}, . . .|C,ϕ)
Using the soundness of the DEF, CALL, and SBIND rules, we show that

∀q̂′. sampler(v0 [ n′2 ], . . . ,v0 {q0 in δ: q0 < n′2}, . . .|C,true)
is a sound type for this program. Using the semantics of variables sets, we show that this
type is semantically equivalent to the type

∀q̂′. sampler(v0 {q0 in δ: q0 <= n′2}, . . .|C,true)
completing the proof.

The conclusion of the rule follows from choosing n′2 = n2, since δn2 = δ

5.5 Kernels
Kernel Soundness Theorem. Kernels require two properties in order two be sound. The �rst

property states that the kernel can reach any state a sampler for the same distribution could reach,
and the second property says that a sampler for the distribution is invariant under the kernel.
Speci�cally, assuming

(1) M, Γ,L ` k : ∀q̂. kernel(A|B,ϕ)
(2) σ � Γ,M,L
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it must be true that, for any environment σ ′ = σ [q0 7→ n0][q1 7→ n1] . . . [qm 7→ nm] that binds
values for the set of quanti�ed variables q̂ = q0 in δ0,q1 in δ1, . . . ,qm in δm , any f ∈ Σrv → R

+,
and any s such that ∫

sr
f (s(σ ′, sr)) =

∫
JAK(σ ′) f (σ ′) ∗ J(JAK(σ ′)|JBK(σ ′))(σ ′)

it must be true that there exists an ϵ > 0 such that
(1)

∫
sr f (k(σ

′, sr)) > ϵ
∫JAK(σ ′) f (σ ′) ∗ J(JAK(σ ′)|JBK(σ ′))(σ ′)

(2)
∫
sr0,sr1 f (k(s(σ

′, sr0), sr1)) =
∫JAK(σ ′) f (σ ′) ∗ J(JAK(σ ′)|JBK(σ ′))(σ ′)

Proof sketch. we proceed by structural induction on the rule derivations for kernels. The
speci�c cases are outlined below.

KLIFT. Recall the KLIFT rule
M, Γ,L ` s : ∀q̂. sampler(A|B,ϕ) M, Γ,L ` v : δ1,δ2 L � ReachesAll(s)

KLIFT
M, Γ,L ` lift s : ∀q̂. kernel(A|B,ϕ)

To prove the �rst property, we can choose ϵ = 1 and inline the de�nition of the sampler. For the
second condition, we must deduce that if s is a sampler, then fix s ≡ s . In otherwords, for any
measurable function f over the output space, the equation∫

sr
f (�x(σ , sr)) =

∫
sr,sr′

f (�x(s(σ , sr′), sr))

is satis�ed for �x = s . To see this, we inline the de�nition for a sampler, which reduces the second
property to the equation ∫

JAK(σ ′) f (σ ′) ∗ J(JAK(σ ′)|JBK(σ ′))(σ ′)
=

∫
JAK(σ ′) J(JAK(σ ′)|JBK(σ ′))(σ ′)∫JAK(σ ′) f (σ ′)J(JAK(σ ′)|JBK(σ ′))(σ ′)

which must hold because
∫
S1
J(S1 |S2) = 1.

K2. Recall the K2 rule
M, Γ,L ` k1 : ∀q̂. kernel(A|B,C,ϕ) M, Γ,L ` k2 : ∀q̂. kernel(B |A,C,ϕ) DDep((A,B),C)

K2
M, Γ,L ` k1 ; k2 : ∀q̂. kernel(A,B |C,ϕ)

First, we will show that k1 is invariant for the distribution A,B |C . This means that k1 satis�es
the second property forM, Γ,L ` k1 : ∀q̂. kernel(A,B |C,ϕ) to be sound, even though k1 does
not satisfy the �rst property. This is true because, for a sampler s such that∫

sr
f (s(σ ′, sr)) =

∫
JA,BK(σ ′) f (σ ′) ∗ J(JA,BK(σ ′)|JCK(σ ′))(σ ′)

because of the property from DMUL, we must have that∫
sr
f (s(σ ′, sr)) =

∫
JA,BK(σ ′)(f (σ ′) ∗ J(JBK(σ ′)|JCK(σ ′))(σ ′)) ∗ J(JAK(σ ′)|JB,CK(σ ′))(σ ′)

Substituting in f ∗ J(JBK(σ ′)|JCK(σ ′)) for f in the soundness assumption for k1, we can deduce
that∫
sr0,sr1

f (k1(s(σ
′, sr0), sr1)) =

∫
JA,BK(σ ′)(f (σ ′)∗J(JBK(σ ′)|JCK(σ ′))(σ ′))∗J(JAK(σ ′)|JB,CK(σ ′))(σ ′)
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Using again the identity from DMUL, this means that∫
sr0,sr1

f (k1(s(σ
′, sr0), sr1)) =

∫
JA,BK(σ ′) f (σ ′) ∗ J(JA,BK(σ ′)|JCK(σ ′))(σ ′)

completing the proof of the invariance property of k1. By a similar logic, k2 is also invariant for the
distribution A,B |C . This means that k1 ; k2 is invariant for the distribution A,B |C . This proves the
second property of kernel soundness. For the �rst property, we note that the ReachesAll condition
applies transitively to any kernel that can be generated with the kernel rules.

KALL. Recall the KALL rule

M, Γ :: [q : δ ],L ` k : ∀q, q̂′. kernel(v [ q ]|v {q0 in δ: q0 != q},C) q < FV(C)
KALL

M, Γ,L ` join q in δ : k : ∀q̂′. kernel(v |C)
In this rule, δ represents an ordered set of integers [n1,n2]. De�ne the set δn′2 = [n1,n

′
2] for

n′2 ∈ [n1,n2]We proceed by induction over n′2. Our inductive hypothesis is that
M, Γ,L ` join q in δn′2 : k :

∀q̂′. kernel(v {q0 in δ: q0 <= n
′
2}|v {q0 in D: n′2 < q0},C,true)

is sound for any n′2 ∈ [n1,n2] with n′2 = n1 as the base case.
• Base case. The de�nition of semantics for samplers de�nes that the product over a set of

size 1 simply returns the inner sampler s . We also note the following equivalences between
variable sets

v {q0 in δ: q0 <= n1} = v [ n1 ], v {q0 in δ: n1 < q0} = v {q0 in δ: q0 != n1}

justifying the type judgment.
• Inductive step. Assuming the inductive hypothesis is true for n′2 − 1, we will show it is

true for n′2. We �rst note that the following programs are semantically equivalent:
join q in δn′2 : k

def xI (q in δ): t = k ; (join q in δn′2−1 : k) ; x (n′2)

We will now give an appropriate type to the latter program, and show that this type is
sound. We note that choosing t as

kernel(v [ q ]|v {q0 in δ: q0 < q},v {q0 in δ: q < q0},C,true)

is always a valid coercion. The inductive hypothesis is equivalent to stating that the
following type is sound for the product in the above program:

∀q̂′. sampler(v {q0 in δ: q0 < n
′
2}|C,ϕ)

Using the soundness of the DEF, CALL, and K2 rules, we show that

∀q̂′. kernel(v [ n′2 ],v {q0 in δ: q0 < n
′
2}|v {q0 in δ: n

′
2 < q0},C,true)

is a sound type for this program. Using the semantics of variables sets, we show that this
type is semantically equivalent to the type

∀q̂′. kernel(v {q0 in δ: q0 <= n
′
2}|v {q0 in δ: n

′
2 < q0},C,true)

completing the proof.
The conclusion of the rule follows from choosing n′2 = n2, since δn2 = D
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KFIX. Recall the KFIX rule
M, Γ,L ` k : ∀q̂. kernel(A|B,ϕ)

KFIX
M, Γ,L ` fix k : ∀q̂. sampler(A|B,ϕ)

The semantics of fix state that the sampler fix k must be consistent with the second proposition
of kernel soundness, and we know from the progress theorem that this sampler’s denotation must
be unique.

5.6 Estimators
Estimator Soundness Theorem. An estimator is considered sound if the sample it produces,

when fed through a reweighted version of an arbitrary positive function f , computes the expectation
of that function. Speci�cally, under the assumptions

(1) M, Γ,L ` s : ∀q̂. estimator(A|B,ϕ)
(2) σ � Γ,M,L

it must be true that, for any environment σ ′ = σ [q0 7→ n0][q1 7→ n1] . . . [qm 7→ nm] that binds
values for the set of quanti�ed variables q̂ = q0 in δ0,q1 in δ1, . . . ,qm in δm , and any f ∈ Σrv →
R+

JϕK(σ ′) ⇒ ∫
sr

π0(JeK(σ ′, sr)) ∗ f (π1(JeK(σ ′, sr)))∫
sr π1(JeK(σ ′, sr)) =

∫
JAK(σ ′) f (σ ′) ∗ J(JAK(σ ′)|JBK(σ ′))(σ ′)

Proof sketch. We proceed by structural induction on the rules which may produce estimators.
Individual cases are outlined below.

ELIFT. Recall the ELIFT rule
M, Γ,L ` e : ∀q̂. sampler(A|B,ϕ)

ELIFT
M, Γ,L ` lift e : ∀q̂. estimator(A|B,ϕ)

Since the �rst element of e is de�ned to be 1 in all cases the expression

JϕK(σ ′) ⇒ ∫
sr

π0(JeK(σ ′, sr)) ∗ f (π1(JeK(σ ′, sr)))∫
sr π1(JeK(σ ′, sr))

can be simpli�ed to
∫
sr f (JsK([q 7→a],sr))∫

sr 1
=

∫
sr f (JsK([q 7→ a], sr)) which, according to the correctness

of the sampler, must equal the expression
∫JAK(σ ′) f (σ ′) ∗ J(JAK(σ ′)|JBK(σ ′))(σ ′) as required.

EFACT. Recall the EFACT rule
M, Γ,L ` e : ∀q̂. estimator(A|B,ϕ) M, Γ,L ` d : ∀q̂. density(C |A,B,ϕ) DDep(C,B)

EFACT
M, Γ,L ` factor e by d : ∀q̂. estimator(A|B,C,ϕ)

Using the de�nitions from the semantics, the expression

JϕK(σ ′) ⇒ ∫
sr

π0(JeK(σ ′, sr)) ∗ f (π1(JeK(σ ′, sr)))∫
sr π1(JeK(σ ′, sr))

becomes ∫
srJdK(JsK(σ ′, sr))f (JsK(σ ′, sr))∫

srJdK(JsK(σ ′, sr)) =

∫
JAK(σ ′) f (σ ′) ∗ J(JAK(σ ′)|JB,CK(σ ′))(σ ′)

where the last step requires inlining the soundness theorems for d and s , and on properties of J
established in the proof for DMUL.
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5.7 Structural Rules
For clarity, we have omitted the cases for structural rules in the above theorems. The cases are
symmetric for each theorem.

DEF. Recall the DEF rule
M, Γ :: [q0 : δ0] :: . . . ,L ` p1 : ∀q0, . . . . t1 M, Γ :: [x : (q0, . . . ), (δ0, . . . ), t1],L ` p2 : t2

DEF
M, Γ,L ` def x (q0 in δ0, . . .): t1 = p1 ; p2 : t2

According to the de�nition of �, we can show that.

σ ′ � Γ,M,L ⇒ σ ′[x 7→ ((q0, . . . ),p1)] � Γ :: [x : (q0, . . . ), (δ0, . . . ), t1],M,L

which means we can inductively apply the soundness assumption for p2. The proof for the DEF-IND
rule is similar.

INV. Recall the INV rule

M, Γ,L ` x : q̂, δ̂ ,Tb(A|B,ϕ) M, Γ,L ` ê : δ̂ (
⋃
e ∈ê FRV(e)) ⊆ B

INV
M, Γ,L ` x (ê) : ∀FQV(ê).

(
Tb(A|B,ϕ)

)
[ê/q̂]

Due to the assumption that σ � Γ,M,L, we know that σ (x) = (q0 in δ0, . . . ),p is de�ned and
furthermoreM, Γ,L ` p : ∀q0 in δ0, . . . . Tb(A|B,ϕ). The soundness of the INV rule follows
straightforwardly from applying the inductive assumption and the substitution-environment lemma.

C. Recall the C rule
M, Γ,L ` p : ∀q̂. t1 q̂ ⊆ q̂′ L ` t1 → t2 C

M, Γ,L ` p : ∀q̂′. t2
Writing the types t1 and t2 asTb(A1 |B1,ϕ1) andTb(A2 |B2,ϕ2), respectively, the added assumptions
mean that, for any σ ′, JA1K(σ ′) = JA2K(σ ′), JB1K(σ ′) = JB2K(σ ′), and Jϕ1K(σ ′) ⇒ Jϕ2K(σ ′). This
means that the soundness of the judgmentM, Γ,L ` p : ∀q. t1 implies the soundness of the
judgmentM, Γ,L ` p : ∀q′. t2.

CIND. Recall the IND and CIND rules
M, Γ,L ` p : ∀q̂. t1 L ` t1 →I t2 IND

M, Γ,L `I p : ∀q̂. t2
M, Γ,L `I p : ∀q̂. t

CIND
M, Γ,L ` p : ∀q̂. t

Writing the types t1 and t2 as Tb(A|B,ϕ) and Tb(A|B,C,ϕ), respectively, the added assumptions
mean that, for any σ ′, J(JC,AK(σ ′)|JBK) = J(JCK(σ ′)|JBK(σ ′)) ∗ J(JAK(σ ′)|JBK) which, applying
the identity from the DMUL case, means J(JAK(σ ′)|JB,CK(σ ′)) = J(JAK(σ ′)|JBK(σ ′).
6 THE SHUFFLE SYSTEM
Shu�e as a system performs type checking, assumption log generation, and inference program
extraction. A developer therefore receives a concrete executable inference program that has been
type checked against the program’s speci�ed types as well as an auditable list of assumptions about
the probabilistic model

6.1 Type Checking
The Shu�e system implements the type checking rules presented in Section 4.

Assumption Log. Shu�e’s type checking algorithm emits an assumption log. The assumption
log includes assumed independence assertions generated by The rule DEF-IND in Figure 17 and
assumed reachability assertions generated by rule KFIX in Figure 15.
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6.2 Inference Program Extraction.
Shu�e extracts a python program for a given type checked Shu�e program. Shu�e’s program
extraction is by and large a straightforward, syntax-directed recursive procedure that produces
a python program that implements the denotational semantics presented in Figure 8, Figure 9,
Figure 10, Figure 11, and Figure 12 . Shu�e’s extraction procedure di�ers operationally from
the denotational semantics in that it 1) simpli�es integral expressionr 2) fails to compile integral
expressions it cannot simplify and 3) uses a representation for probabilities that ensures numerical
stability.

To illustrate the extraction process, consider the following fragment from the GMM inference
procedure in Figure 3.

1 def independent obsProd(j in Mus) :
2 density(obs{i0 in Samples: z[i0] == j} | mu[j], z) =
3 prod i in Samples where z[i] == j : obsDensityI(i,j);
4
5 def obsJoint(j in Mus) :
6 density(obs{i0: z[i0] == j}, mu[j] | z) =
7 obsProd(j) * muPriorZ(j);
8
9 def obsMarg(j in Mus) :

10 density(obs{i0 in Samples: z[i0] == j} | z) =
11 int obsJoint(j) by mu[j];
12
13 def muPost(j in Mus) :
14 density(mu[j] | obs{i0 in samples: z[i0] == j}, z) =
15 obsJoint(j) / obsMarg(j);
16
17 def export obsMarg1(j in Mus):
18 density(obs{i0 in Samples: z[i0] == j} |
19 obs{i0 in Samples: z[i0] < j}, z) =
20 (obsJoint(j) / muPost(j));

Simpli�cation. Shu�e �rst simpli�es the inference procedure by removing any type coercions
and inlining any def statements. For the running example, this yields the following procedure:
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1 def export obsMarg1(j in Mus) =
2 (
3 prod i in Samples where z[i] == j: normal(obs[i],mu[j],1) *
4 normal(mu[j],0,100)
5 )
6 /
7 (
8 (
9 prod i in Samples where z[i] == j:

10 normal(obs[i],mu[j],1)
11 *
12 normal(mu[j],0,100)
13 ) /
14 (int (
15 prod i in Samples where z[i] == j:
16 normal(obs[i],mu[j],1)
17 *
18 normal(mu[j],0,100)
19 ) by mu[j])
20 )

Next, Shu�e simpli�es integrals with known closed-form solutions. Shu�e can currently simplify
conjugate and posterior-predictive distributions for Gaussian and Dirichlet distributions. In the
running example, the code from Line 7 to Line 20 is the Gaussian conjugate distribution. Shu�e
recognizes this, and simpli�es this sub-procedure. The running example becomes

1 def export obsMarg1(j in Mus):
2 (
3 prod i in Samples where z[i] == j: normal(obs[i],mu[j],1) *
4 normal(mu[j],0,100)
5 )
6 /
7 (
8 let tmp1 = (sum i in Samples where z[i] == j: obs[i]) in
9 let tmp2 = (sum i in Samples where z[i] == j: 1) in

10 normal (
11 mu[j],
12 (1 /. 100 + tmp1 /. 1) / (1 /. 100 + tmp2 /. 1),
13 1 / (1 /. 100 + tmp2 /. 1)
14 )
15 )

Code Generation. Shu�e translates the simpli�ed procedure to Python code. Any operations
involving probabilities become logarithmic space-operation for numerical stability, meaning multi-
plication becomes addition and division becomes subtraction. If there are any unsimpli�ed integrals
over real-valued random variables, the code generator produces an error. The running example
generates the following Python code:
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1 from samplelib import *
2
3 def obsMarg1(j,z,obs ,mu):
4 tmp1 = 0
5 for i in Samples:
6 if z[i] == j:
7 tmp1 += obs[i]
8 else:
9 tmp1 = tmp1

10 tmp2 = 0
11 for i in Samples:
12 if z[i] == j:
13 tmp2 += 1
14 else:
15 tmp2 = tmp2
16 tmp3 = 0
17 for i in Samples:
18 if z[i] == j:
19 tmp3 += normald(obs[i],mu[j],100)
20 else:
21 tmp3 = tmp3
22 return (tmp3 + normald(mu[j],0 ,100)) - normald(
23 mu[j],
24 (1/100 + tmp1 /1) / (1/100 + tmp2/1),
25 1/(1/100 + tmp2 /1)
26 )

Here, the function normald on Line 22 is assumed to be a library function imported from in
samplelib on Line 1.

7 EVALUATION
In this section we evaluate the performance of extracted Shu�e inference procedures for several
models. A key goal is demonstrate that Shu�e’s abstractions do not reduce the performance of an
algorithm when compared to a standardly handcoded solution.

7.1 Methodology
Performance. The performance of an approximate inference algorithm can be broken down

into the approximation amount and the computational e�ciency. The approximation amount is
simply the number of samples required to reduce the Monte Carlo approximation error to an
acceptable amount, or similarly the number of iterations in the iterative implementation of fix
that are required to achieve the desired level of accuracy. The computational e�ciency is the
amount of time required to generate a sample or run an iteration. In this section, we focus on the
computational e�ciency of Shu�e relative to other state-of-the-art probabilistic inference systems.

Baseline. To determine Shu�e’s computational e�ciency independently of approximation
amount, we compared against an existing probabilistic programming system called Venture [14].
Venture makes a good comparison point for Shu�e because unlike other probabilistic programming
systems, Venture provides �exible built-in support for advanced handcoded inference procedures
(however without a guarantee of safety). Also, Venture is written in Python, the same language
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Shu�e Venture
GMM 0.349 ± 0.007s 2.16 ± 0.04s
SLAM 0.138 ± 0.002s 3.10 ± 0.04s
LDA 573 ± 13s 5.07 ± 0.05s

(a) Shu�le vs. Venture run time on three di�erent models. The format is “average” ± “standard deviation”.

GMM Size Shu�e Venture Speedup (average)
N = 20,K = 5 0.067 ± 0.001s 0.45 ± 0.02s 6.7x
N = 20,K = 10 0.237 ± .003s 0.86 ± 0.04s 3.6x
N = 20,K = 15 0.500 ± 0.004s 1.43 ± 0.05s 2.86x
N = 20,K = 20 0.89 ± 0.01s 1.94 ± 0.06s 2.2x

(b) Speedup of Shu�le vs. Venture for various sizes of GMM. N is the number of data points and K is the
number of clusters. The runtimes of Shu�le and Venture each are reported in the format “average” ± “standard
deviation”, and the speedup is the average Venture time divided by the average Shu�le time.

Table 1

that Shu�e extracts to, so any performance di�erence is due di�ering internal abstractions and not
the underlying sampling and mathematical primitives.

Case Study. As a case study, we considered inference algorithms that employ collapsing. Col-
lapsing is the task of using density arithmetic to remove a random variable from consideration
during the inference algorithm. As an example, the approximate inference algorithm for a GMM in
Figure 4 collapses out the mu variable by means of analytic solutions to integrals over Gaussian
probability densities.This GMM inference algorithm approach is known as collapsed Gibbs sampling,
for which there are theoretical results in the literature on how collapsing a�ects the approximation
amount[13]. In each of the benchmarks below, we consider some form of sampling that is made
more e�cency through collapsing.

Benchmarks. The three benchmarks we used were:
(1) GMM. A Gaussian mixture model similar to the one in Figure 2. This model contained

150 datapoints and 3 cluster centers. Inference in this model uses an approximate sampler
similar to the one in Figure 4.

(2) SLAM. A small instance of the Simultaneous Localization And Mapping problem [6].
Inference is performed with a Rao-Blackwellized particle �lter [6] without any “resampling”
or “rejuvenation” steps. This benchmark used 50 samples or particles.

(3) LDA. A Latent Dirichlet Allocation model [2], using 100 words, 5 topics, 5 documents and
an alphabet size of 100. Words are assumed to be distributed evenly across the documents.
Inference is performed using a collapsed Gibbs sampler [10].

For the Gibbs samplers for GMM and LDA, we ran each sampler for 100 iterations and found the
average iteration time. For SLAM, we ran both Shu�e’s and Venture’s inference procedures 100
times and computed the average run-time.

7.2 Results
Performance Results. Table 1a shows the results of the experiments. Shu�e performed well

in most cases, but was slower on the LDA benchmark. Suspecting scalability issues, we ran tests
that varied the size of the model.
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Assumption Type GMM SLAM LDA
Independence 7 5 13
Reachability 1 0 1

Table 2. The number of each type of assumption in each case study.

Table 1b shows the results of varying the size of the GMM. For this test, we used 100 iterations
at each model size, with data generated from the prior, and recorded the average speedup of Shu�e
over Venture. This shows that while Shu�e enjoys a considerable advantage, it is reduced at larger
scales. We suspect Shu�e is faster because it has leaner abstractions compared to Venture’s internal
data structures. Venture performs run-time type checking, interprets rather than compiles inference
procedures, and indirectly implements Gibbs sampling as a type of Metropolis-Hastings[11, 15]
sampler, all of which contribute to overhead. We are exploring program optimizations to improve
the scalability of Shu�e’s inference procedures.

Assumption Logs. For each case study, we measured the number of each type of external
assumption that Shu�e generated. Table 2 shows the results. Shu�e generates on the order of 10
independence assumptions on each case study, and at most one reachability assumption. We are
investigating whether these assumptions can be veri�ed automatically.

8 RELATEDWORK
Shu�e builds on (author?) [1] by providing a novel semantics and programming language for
typesafe probabilistic programming. There are several systems that enable their users to perform
probabilistic inference.

Automated Inference. Church [8] and WebPPL [9] enable a user to specify Turing-complete
stochastic programs as models, but restrict inference algorithms to all-purpose algorithms such as
Metropolis-Hastings [11, 15]. JAGS [18] provides a notation for expressing graphical models and
automatically performs sampling for a �xed set of distributions. JAGS therefore provides automated
support for a subset of Shu�e’s rules. For example, JAGS can automatically generate a collapsed
sampler for GMM. However, it can do so only if the model is speci�ed with a monolithic GMM
primitive. This stands in contrast to Shu�e, which, via its compositional nature, enables a user to
prove the correctness of collapsed sampling for a wide class of models.

Manual Unveri�ed Inference. Other systems, suchas Venture [14] and PyMC [17] enable a
user to augment the system’s inference procedure with arbitrary code. However, when the user
augments the inference algorithm with arbitrary code, there is no guarantee that the resulting
inference algorithm is correct. In contrast, the code that a user generates with Shu�e is in
accordance with the Shu�e’s proof rules and therefore enjoys Shu�e’s correctness guarantees.

Compiled Inference. AugurV2 [4] provides a language of coarse-grained operators to build
inference procedures out of, like Shu�e. AugurV2 supports a richer set of kernels than Shu�e, but
does not support estimators. AugurV2 also provides more support for parallelism and alternative
compilation targets. However, AugurV2 does not provide correctness guarantees as strong as
Shu�e’s. In particular, AugurV2’s kernels are not guaranteed to converge iteratively to the target
distribution. AugurV2 also does not have density operations to support collapsed Gibbs samplers.
Thus AugurV2 does not support any of the benchmarks from Section 7, although it does support
other inference procedures for the GMM and LDA models.
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Automatic Simpli�cation. There are languages that have built-in systems for simplifying
probability densities. For example, Hakaru [16] employs the Maple computer algebra system and
PSI [7] is a solver dedicated speci�cally to this problem. These systems provide correct densities
for a larger class of distributions than those support by Shu�e. However, these systems are not
compositional in the same sense as Shu�e. PSI only handles densities, and cannot reason about
composing samplers, kernels, and estimators. Hakaru provides tools for composing simpli�ed
densities, but only transforms whole programs. Shu�e’s proof rules, by contrast, can build a whole
inference program out of smaller programs for sub-components of the model.

9 CONCLUSION
In this paper we presented Shu�e, a system for typesafe programming with probability distribu-
tions. Shu�e’s language of distributions is rich enough to support several complicated inference
algorithms. The terms in this language are densities, samplers, kernels, and estimators, and we
have developed operators over these terms as well as type rules that associate each term with
part of a probabilistic model. We have proven Shu�e’s type system is sound with respect to the
semantics we have provided.

Shu�e supports extracting inference algorithms to Python, and the performance of extracted
code compares favorably with probabilistic programming systems using the same base language.
Shu�e also has the ability to simplify some integral expressions. Most importantly, Shu�e can
generate proof obligations that are necessary for an inference algorithm’s correctness. These
encapsulate parts of the veri�cation process that are external to Shu�e itself.

The aim of Shu�e is to explore the relationship between program veri�cation and probabilistic
inference. Probabilistic models provide good speci�cations for situations where there is uncertainty,
such as with inference algorithms. However, inference algorithms have resisted compositional
analysis and veri�cation due to their randomized and uncertain nature. Shu�e provides developers
with the ability to develop inference algorithms with con�dence that they are correct, and hopefully,
similar techniques could result in a suite of programming tools for developers to handle uncertainty
e�ectively.
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