
MIT Open Access Articles

ThreadScan: Automatic and Scalable Memory Reclamation

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Alistarh, Dan et al. “ThreadScan: Automatic and Scalable Memory Reclamation.”
Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures
(SPAA 2015), June 13-15, 2015, Portland, Oregon, USA, Association for Computing Machinery
(ACM), June 2015 © 2015 Association for Computing Machinery (ACM)

As Published: http://dx.doi.org/10.1145/2755573.2755600

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/112177

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/112177
http://creativecommons.org/licenses/by-nc-sa/4.0/

ThreadScan: Automatic and Scalable Memory Reclamation

Dan Alistarh
Microsoft Research

dan.alistarh@microsoft.com

William M. Leiserson
MIT

willtor@mit.edu
Alexander Matveev

MIT
amatveev@csail.mit.edu

Nir Shavit
MIT and TAU

shanir@mit.edu

ABSTRACT
The concurrent memory reclamation problem is that of de-
vising a way for a deallocating thread to verify that no other
concurrent threads hold references to a memory block being
deallocated. To date, in the absence of automatic garbage
collection, there is no satisfactory solution to this problem;
existing tracking methods like hazard pointers, reference
counters, or epoch-based techniques like RCU, are either
prohibitively expensive or require significant programming
expertise, to the extent that implementing them efficiently
can be worthy of a publication. None of the existing tech-
niques are automatic or even semi-automated.

In this paper, we take a new approach to concurrent mem-
ory reclamation: instead of manually tracking access to mem-
ory locations as done in techniques like hazard pointers, or
restricting shared accesses to specific epoch boundaries as in
RCU, our algorithm, called ThreadScan, leverages operating
system signaling to automatically detect which memory lo-
cations are being accessed by concurrent threads.

Initial empirical evidence shows that ThreadScan scales
surprisingly well and requires negligible programming effort
beyond the standard use of Malloc and Free.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming

General Terms
Data Structures, Design, Performance

Keywords
Synchronization, Memory Management

1. INTRODUCTION
An important principle for data structure scalability is

having traversals that execute without any synchronization:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPAA’15, June 13–15, 2015, Portland, OR, USA.
Copyright c© 2015 ACM 978-1-4503-3588-1/15/06 ...$15.00.
http://dx.doi.org/10.1145/2755573.2755600.

sequences of reads with no memory updates (hence no mem-
ory fences, contention or cache pollution [25]) that work cor-
rectly by utilizing the semantics of the given data structure.
The gain from such unsynchronized traversals is significant
because traversals account for a large fraction of data struc-
ture operations, whether these search for a given item, or
lead to updates, insertions or deletions of a small set of ele-
ments.

As a simple example, consider the lazy-list algorithm [22].
This is a concurrent linked list algorithm in which modifi-
cations to the list are done by acquiring fine-grained locks
on the two nodes adjacent to where an insert or remove of a
node is to take place. Because chances are typically low that
there will be concurrent modifications to adjacent nodes, ac-
quiring locks for these modifications introduces virtually no
overhead. However, the frequent search operations travers-
ing the list to reach the insertion or deletion point or to
check if it contains a given item, are executed by reading
along the sequence of pointers from the list head, ignoring
the locks, and thus incurring no synchronization overhead.
These unsynchronized traversals are key to the scalability of
the data structure.

Not surprisingly, the unsynchronized traversal approach
is increasing in popularity: it is at the base of the widely
used read-copy-update (RCU) framework for designing con-
current data structures [36], as well as high performance
structures such as hash-tables [26, 30, 42], search trees [1, 4,
13, 19, 23, 31], and priority queues [3, 43]. The unsynchro-
nized traversals are in many cases wait-free, that is, they
complete in a finite number of operations independently of
ongoing data structure modifications. They can be used
both for data structures that use locks for modifications and
ones that do not (see for example [23, 31]), and deliver im-
proved performance in both cases. A detailed survey of such
structures can be found in [25, 38].

These high performance, unsynchronized traversals, al-
though a boon to languages like Java (in the form of Java’s
Concurrency Package [29]), are more difficult to use in lan-
guages like C and C++ which have no garbage collection.
Because they use no locks, memory fences, or shared mem-
ory writes, traversing threads leave no indication for other
threads to detect what they are reading at any given time.
To C and C++, the unsynchronized traversals are thus in-
visible. This invisibility makes memory reclamation a night-
mare, because a thread wishing to reclaim a memory block
has no way of knowing how many threads are concurrently
traversing that block.

Thread T1
1. B = A.next
2. A.next = C
// Now B is disconnected
// So T1 can reclaim B
3. Free(B)
// Should deallocate B
// only when T2 has no
// reference to B

Thread T2
1. B = A.next

// B is accessed
// T1 must be able
// to detect this
4. val = B.value
5. Return val + 2

2

A B C D

T1$

A B C D

T2$

T1$T2$

1

Figure 1: Concurrent memory reclamation for a linked-list:
thread T1 deletes node B while thread T2 concurrently accesses

the same node. Before calling free(B), thread T1 first
“disconnects” B, by removing any heap (or shared) pointers that
may lead to B, and only then it calls free(B) that is responsible
to detect if some other thread has a reference to B. In memory
reclamation, the programmer is responsible to disconnect the
node, and the memory reclamation protocol is responsible to

implement the free() function.

1.1 Concurrent Memory Reclamation
The concurrent memory reclamation problem is thus to de-

vise techniques that will allow a deallocating thread to verify
that no other thread has a reference to that block. More pre-
cisely, a programmer first makes this block“unreachable,”by
removing any shared reference that may lead to this block,
and then uses the free(..) method of the memory reclama-
tion scheme to safely deallocate this block. Any concurrent
data-structure to be used in practice, in particular high per-
formance ones that have invisible traversals, must include a
solution to this problem. Otherwise, after a shared object
gets deallocated, threads that still have a private reference
(or a dangling pointer) to this object may access “garbage”
memory and execute on an inconsistent memory state. As an
example, consider the execution shown in Figure 1 on a con-
current linked-list: thread T1 deletes node B while thread
T2 concurrently accesses the same node. Notice that, before
calling free(B), thread T1 first “disconnects” B, by removing
the shared reference from A to B (that may lead to B), and
only then it calls free(B) that initiates the memory reclama-
tion protocol.

This makes concurrent memory reclamation a simpler prob-
lem than garbage collection [5, 34, 8, 28], as we are not inter-
ested in shared references that are used to construct a data-
structure on the global heap, or any shared references that
are used to transfer or communicate nodes between threads.
It is the responsibility of the programmer to eliminate those
shared references before actually calling free(..). Providing a
scalable and easy-to-use solution to the memory reclamation
problem is important because historically, many high perfor-
mance applications are written in unmanaged languages like
C and C++ that have no built-in garbage collector support,
and because of the large existing code base, these languages
are likely to remain in high demand for decades to come.

As it turns out, despite being simpler than garbage collec-
tion, to date, there is no satisfactory solution to the problem:
existing tracking methods are either prohibitively expensive
or require significant programming expertise. Known tech-
niques roughly fall into three categories:

Reference counting. These techniques originated in the
realm of garbage collection. Algorithms such as [11, 17,
44], smart pointers [39, 41] and more recent improve-
ments using hardware transactions [12], assign shared
counters to objects, and use them to count the num-
ber of references to an object at any given time. Ref-
erence counting schemes are automatic: counters and
counter modifications can be added to code at com-
pile time. However, in all these schemes, the counting
process is expensive, requiring a shared memory read-
modify-write operation for each shared memory read,
making them prohibitively expensive and eliminating
the scalability advantages of using invisible read-based
traversals.

Pointer-based. Hazard pointers [37] and pass-the-buck [24],
or the more recent Drop-the-Anchor technique [7] re-
quire the programmer to explicitly declare the cur-
rently accessed locations, and then track them dynami-
cally. This is a complex task even for simple data struc-
tures such as linked lists. In practice, using hazard
pointers also requires modifications to the data struc-
tures to make them “hazard pointer friendly.” The
tracking process itself introduces a significant perfor-
mance overhead, as all threads must synchronize with
the reclaiming thread by executing a memory fence
for each new hazard pointer. Thus, the performance
advantages of having invisible readers are partly lost.

Epoch-based. Quiescence-based techniques [20, 14, 21]
such as RCU [36] have threads accessing the data struc-
ture register the start and end of methods, and have
the reclaiming thread wait a sufficiently long period of
time until it can be ensured that no registered thread
holds a reference to a deleted object. These techniques
are efficient since here is no per-read tracking, making
them compatible with invisible traversals. However, a
delayed thread may prevent the reclamation process.
Also, there are still significant programming complex-
ities: for example, in the RCU technique, references
that move outside methods must be tracked manually
in ways similar to hazard pointers. This makes the de-
sign of complex data structures using such techniques
a matter for concurrent programming experts [9] and
does not allow for automation.

Recent work [12, 2] has explored the potential of Hardware
Transactional Memory (HTM) to simplify memory recla-
mation. Dragojevic et al. [12] showed that HTM can be
used to speed up and significantly simplify prior reclama-
tion schemes, while Alistarh et al. [2] devised a technique
which streamlines the tracking of node references, by ensur-
ing that each data structure operation appears as having
executed inside a single hardware transaction. While these
techniques are promising, their performance fundamentally
relies on HTM, whose availability is currently limited.

Summing up, there is currently no concurrent memory
reclamation scheme that is widely-applicable, has low over-
head, and works without careful programmer involvement.

1.2 Our Contribution
In this work, we take a new approach to concurrent mem-

ory reclamation: instead of manually tracking accesses to
memory locations as done in techniques like hazard pointers,

or limiting reclamation to specific code boundaries as done
in RCU, we use the operating system signaling and thread
control to automatically detect which memory locations are
being accessed.

Our protocol, called ThreadScan, is designed as a memory
reclamation library: the programmer provides a data struc-
ture implementation with correct free calls, and ThreadScan
will implement it automatically ensuring efficient memory
reclamation. Our main technical contribution is the proto-
col for tracking memory references both automatically and
efficiently.

At a high level, ThreadScan works as follows: when a
thread deletes a node, it adds it to a shared delete buffer.
When the buffer becomes full, the thread inserting the last
node initiates a Collect procedure, which examines mem-
ory for references to nodes in the delete buffer, and marks
nodes which still have outstanding references. The reclaim-
ing thread frees nodes which are no longer referenced.

The key challenge in ThreadScan is to provide an auto-
matic and efficient implementation of Collect.

Figure 2 illustrates the key idea of ThreadScan: when ini-
tiating a Collect, the reclaiming thread sends signals to all
threads accessing the data structure, asking them to scan
their own stacks and registers for references to nodes in the
delete buffer, and to mark nodes in the delete buffer which
might still be referenced. Threads execute this procedure as
part of their signal handlers. At the end of this process, each
thread replies with an acknowledgment, and resumes its ex-
ecution. Once all acknowledgments have been received, the
thread reclaims all unmarked nodes and returns.

There are two main advantages to this design. First,
ThreadScan is shielded from errors in data structure code,
such as infinite loops: these will not prevent the protocol
from progressing, since the operating system signal handler
code always has precedence over the application [27].

Second, ThreadScan offers strong progress guarantees as
long as the operating system does not starve threads. In
particular, notice that since the reclaiming thread waits for
acknowledgments, the reclamation mechanism could in the-
ory be blocking. This is not an issue in a standard pro-
gramming environment, since each participant must finish
executing ThreadScan in the signal handler before returning
to its code. Therefore, the only way a thread may become
unresponsive is if it is starved for steps by the operating
system. This phenomenon is highly unlikely in modern op-
erating systems, which schedule threads fairly: for instance,
the Linux kernel avoids thread starvation by using dynamic
priorities [35, 40]. At the same time, we emphasize that
all other data structure operations preserve their progress
properties, as ThreadScan adds a bounded number of steps
to their execution.

The cost of the memory scan is amortized among threads
by having each thread scan its own stack and registers, mark-
ing referenced nodes in the delete buffer. The scan is per-
formed word-by-word, checking each chunk against pointers
in the delete buffer. ThreadScan does assume that the pro-
grammer will not actively “hide” pointers to live nodes.1

We implemented ThreadScan in C to provide memory recla-
mation for a set of classic data structures: Harris’ lock-
free linked list [20], a lock-based skip-list, and a concur-

1This assumption is similar to assumptions made in conser-
vative garbage collectors [6], and is necessary for automatic
reclamation.

Var2%

Thread'1' Thread'2'

…%

STACK%2%

Var3%

1.%Free(P)%
2.%Add%P%to%Del9Buf%
3.%Del9Buf%Full%
4.%Start'Scan'Process'
5.%Signal%Threads%
6.%Scan%Stack%
7.%Scan%Registers%

Thread'3'

…%

STACK%3%

Var5%

…%

STACK%1%

Var1%

In'Sig5Handler'
1.%Scan%Stack%
2.%Scan%Registers%

In'Sig5Handler'
1.%Scan%Stack%
2.%Scan%Registers%

Var4%

…%app%code%…% …%app%code%…%

ThreadScan:%Signal%and%Scan%Stacks%

Figure 2: ThreadScan protocol illustration. Thread 1 calls
Free(P) and this makes the delete buffer full. As a result,

Thread 1 initiates a reclamation process that sends a signal to
other threads and makes each thread to scan its own stack and

registers. After all threads are done, Thread 1 traverses the
delete buffer and deallocates nodes that have no outstanding

reference to them.

rent hash-table algorithm [25]. We ran tests on an Intel
Xeon chip with 40 cores, each multiplexing two hardware
threads. We compared ThreadScan against Hazard Point-
ers [37], epoch-based reclamation [20], and StackTrack [2],
as well as an un-instrumented implementation which leaked
memory. ThreadScan matches or outperforms all prior tech-
niques, improving performance over Hazard Pointers by 2x
on average, and provides similar performance to the leaky
implementation. These findings hold even when the sys-
tem is oversubscribed. Stack scans are the main source
of overhead for ThreadScan, although the empirical results
show that the overhead is well amortized across threads and
against reclaimed nodes.

Besides its low footprint, the key advantage of ThreadScan
is that it is automatic: the programmer just needs to pass
nodes to its interface, which handles reclamation. We be-
lieve this ease-of-use can make ThreadScan a useful tool for
designing scalable data structures.

ThreadScan works under the following assumptions on the
application code. First, we assume that nodes in the delete
buffer have already been correctly unlinked from the data
structure, as is standard for memory reclamation [24]. Sec-
ond, pointers to live objects should be visible to the scan,
which precludes the use of pointer masking techniques. Fi-
nally, we assume a bound on the number of reclamation
events that may occur during the execution of a method
call, which is enforced by batching deletes.

The ThreadScan library “hooks” into the signaling mech-
anism of the operating system, so it is independent of bugs
or infinite loops that may occur inside the application. As
a result, the ThreadScan library guarantees that each oper-
ation completes within bounded time as long as all threads
continue to be scheduled by the operating system. In par-
ticular, it is sufficient that signal handler code is scheduled
fairly by the operating system.

The source code is available from Github [33]. It is re-
leased to the public under the MIT license, which permits
copying, modifying, and redistribution with attribution.

Roadmap. We give an overview of related techniques in
Section 2, and give a formal definition of the problem in Sec-

tion 3. We describe ThreadScan in Section 4, where we also
provide an overview of implementation details. We provide
a proof of correctness in Section 5. Section 6 describes the
experimental setup and the empirical results. We discuss
the results in Section 7.

2. COMPARISON WITH PREVIOUS WORK
The concurrent memory reclamation problem was first

formally described in [24]. Subsequently, a considerable
amount of research went into devising practical solutions for
this problem. As described previously, known approaches
can be split across four different categories: reference count-
ing [10, 17], epoch-based [20, 15], pointer-based [37, 24, 7],
and HTM-based [12, 2].

Our scheme could be seen as a generalization of epoch-
based reclamation, where we enforce quiescent states through
signaling: the reclaiming thread signals all other threads,
which scan their memory, isolating the subset of nodes which
can be safely freed. The signal-based implementation avoids
some of the main shortcomings of quiescence: references that
cannot be used outside epoch boundaries, and thread delays
inside application code that may delay the reclamation in-
definitely. ThreadScan can be seen as enforcing quiescent
periods via the signaling mechanism. The idea of produc-
ing a consistent view of memory for the reclaiming thread
and scanning this view for references was also used in [2].
The key difference is that their technique guarantees view
atomicity by wrapping all data structure operations inside
hardware transactions; here, we avoid HTM by using an
inter-thread signaling protocol.

The key departure from pointer-based techniques, such
as hazard pointers, is the fact that we do not ask the pro-
grammer to explicitly mark live references through hazards,
guards, or anchors. References are checked by the proto-
col, and therefore the interaction with the application code
is limited to the signal handlers. However, our technique
assumes that node references are not obfuscated by the pro-
grammer.

ThreadScan has a roughly similar structure to on-the-fly
garbage collectors with deferred reference counting, e.g., [5,
34]. Such garbage collectors are typically structured in phases,
separated by handshakes. Regular threads are usually aware
of the collector state, as they may execute barrier opera-
tions, and co-operate with the collector in scanning their
stacks. In particular, some collectors require threads to pro-
vide them with a view that is equivalent to an atomic snap-
shot of the stack [8, 28]. We exploit a weaker property in
ThreadScan, by performing a non-atomic scan of the threads’
memory, which we use to identify references to reclaimed
nodes. Memory reclamation is fundamentally simpler than
garbage collection, and as such we focus on minimizing the
performance overhead of reclamation for the original data
structure operations, while working within the confines of
an un-managed programming language.

3. MEMORY RECLAMATION

3.1 Problem Definition
In the following, we consider a set of n threads, communi-

cating through shared memory via primitive memory access
operations. These operations are applied to shared objects,
where each object occupies a set of (shared) memory lo-

cations. A node is a set of memory locations that can be
viewed as a single logical entity by a thread. A node can be
in one of several states [37]:

1. Allocated. The node has been allocated, but not yet
inserted in the object.

2. Reachable. The node is reachable by following valid
pointers from shared objects.

3. Removed. The node is no longer reachable, but may
still be accessed by some thread.

4. Retired. The node is removed, and cannot be accessed
by any thread, but it has not yet been freed.

5. Free. The node’s memory is available for allocation.

Memory Reclamation. The concurrent memory recla-
mation problem is defined as follows [24, 37]. We are given
a node (or a set of nodes) which are removed, and we are
asked to move them first to state retired, then to state free.
Notice that, in state retired, nodes are no longer accessible
by any thread besides the reclaiming thread, and therefore
cannot lead to access violations. The key step in the prob-
lem is deciding when a node can be retired, i.e., when it is
no longer accessible by concurrent threads. Since we wish to
perform memory reclamation automatically, it is important
to describe which code patterns are disallowed by the above
problem definition.

3.2 Mapping to Code
Reference Types. We split node references into two types,
depending on the possible thread access patterns.

1. Shared References: A reference that can be accessed
by more than one thread.

2. Private References: A reference that is local to a thread,
and can be used only by a particular thread.

Data structure pointers are a standard example of shared
references. Such references are usually located on the heap,
and may be accessed concurrently by multiple threads. Lo-
cal pointers, such as the ones a thread uses to traverse a
list, are an example of private reference. Such references are
usually stored in the threads’ stack or registers.

Code Assumptions. In developing ThreadScan, we make
the following assumptions, discussed below.

Assumption 1. We assume the following hold.

1. Shared References. Nodes in the delete buffer have al-
ready been removed, and cannot be accessed through
shared references, or through references present on the
heap.

2. Reclamation Rate. There exists a fixed finite bound
on the number of distinct reclamation events that may
occur during any method’s execution.

3. Matching References. Node references are word-aligned,
and they can be matched to node pointers via compar-
ison. Arbitrary memory words do not match to node
addresses.

Discussion. Assumption 1.1 follows from the definition of
concurrent memory reclamation [24, 37], and in fact is one
of the main distinctions from concurrent garbage collection.
Assumption 1.2 is justified by the fact that reclamation is
usually batched, freeing several nodes at once. Assumption
1.3 prevents the programmer from hiding references through
arithmetic operations such as XOR. It is standard for simi-
lar tasks such as conservative garbage collection, and is in-
tuitively necessary to allow automatic reclamation.

4. THREADSCAN
Generic Structure. Our algorithm is based on the fol-
lowing blueprint: once a thread wishes to reclaim a node,
it adds a pointer to this node to a delete buffer, whose size
is fixed by the application. Whenever the buffer is full, the
thread which inserted the last node into the buffer becomes
the reclaimer. For simplicity, we assume that there can only
be a single reclaimer at a given point in time. (In practice,
this is enforced by a lock and choosing a delete buffer of
appropriate size.)

The chosen thread starts a ThreadScan Collect operation
by signaling all other threads to help with examining refer-
ences to nodes in the buffer. Thus, the ThreadScan algorithm
consists of the implementation of the collect procedure on the
reclaimer side, and of the implementation of the scan signal
handler for all other threads accessing the data structure.

In the following, we describe the implementation of Collect
which works under Assumption 1. The implementation en-
sures that, at the end of the Collect, each node in the buffer
is either marked or unmarked. Marked nodes may still have
outstanding references, and cannot yet be reclaimed. Un-
marked nodes are safe for reclamation, and are freed by the
thread as soon as the collect procedure completes.

4.1 ThreadScan Collect
Reclamation is organized in a series of reclamation phases,

illustrated in Figure 2. In each phase, we are given a set of
unreachable data structure nodes, and must reclaim a subset
of them ensuring that this process does not cause any access
violations.

The TS-Collect procedure, whose pseudocode is given in
Figure 1, works as follows. The reclaiming thread first sorts
the delete buffer, to speed up the scan process. Next, the
reclaimer signals all other participating threads to start a
TS-Scan procedure, and executes this procedure itself. This
procedure will mark all nodes with outstanding references.
The reclaimer then waits for an acknowledgment from all
other threads. Once it receives all thread acknowledgments,
it scans the delete buffer for unmarked nodes to free.

The TS-Scan procedure is called by the signal handler for
all participating threads. Each thread scans its stack and
registers word-by-word,2 and looks for each in the delete
buffer. If a possible reference is found, the node is marked
in the delete buffer, which prevents it from being deleted in
this reclamation phase. At the end of the scan, the thread
sends an acknowledgment to the reclaimer, and returns to
the execution of its application code.

4.2 Implementation Details and Limitations
The previous section provides a detailed overview of our

technique, but omits several important implementation de-

2The details of this procedure are given in Section 4.2.

Algorithm 1 ThreadScan Pseudocode.

1: function TS-Collect(delete buffer)
2: sort(delete buffer)
3: for each thread t do
4: signal(t, scan)
5: end for
6:
7: TS-Scan(delete buffer)
8:
9: wait for ACK from all other threads

10:
11: for each pointer p in delete buffer do
12: if delete buffer [p].marked == false then
13: free(p)
14: end if
15: end for
16: end function
17:
18: function TS-Scan(delete buffer)
19: for each word chunk in thread’s stack and registers do
20: index = binary-search(delete buffer , chunk)
21: if index 6= -1 then
22: delete buffer [index].marked = true
23: end if
24: end for
25: signal(reclaimer ,ACK)
26: end function

tails, for simplicity of presentation. We provide these details
below.

Signaling. We use POSIX Signals [45] for inter-thread
communication. A thread that receives a signal is inter-
rupted by the OS and begins running the signal handler
immediately [27]. If another signal arrives during the execu-
tion of ThreadScan’s signal handler, then a second handler
will be pushed onto the thread’s stack.

If the thread is blocked in a system call, the signal inter-
rupts the system call and executes the signal handler. In this
case, a system call implicitly restarts or returns the EINTR
error code to the caller, that passes the restart responsibility
to the programmer 3.

In general, if a thread is stalled due to any reason (for
example, a context-switch), the OS resumes the thread im-
mediately, and invokes the signal handler on the resume.
Notice that this behavior is a standard OS feature that is
used to kill or terminate threads that are stalled or stuck,
and the idea of ThreadScan is to use this feature to ensure a
prompt response from all of the participating threads.

Progress. The ThreadScan library uses the OS signaling
system to scan the stacks. As a result, the only way to
introduce delays into ThreadScan is by delaying the OS sig-
nals. This means that the progress guarantees of ThreadScan
depend on the specific progress guarantees of the OS im-
plementation. In modern systems, such as Linux, the sys-
tem scheduler has a fair execution policy that is guaranteed
not to starve threads, and therefore, in such systems the
ThreadScan has a non-blocking progress guarantee.

Stack Boundaries. Our current implementation hooks
the pthread’s library pthread create function call to detect
the boundaries of thread stacks. In most practical cases,
using this method is enough to identify the stacks, however,
sometimes the stacks may have a more complex structure,

3A system call that returns EINTR documents this behavior
and requires the programmer to handle these case

like the “Cactus” stacks in the Cilk programming language
runtime [32]. Providing support for more complex stack
structures is an interesting topic for future work.

Reclamation. For simplicity, our presentation assumed a
single shared buffer to which pointers to reclaimed nodes are
added. We implement a more complex, distributed version
of this buffer to avoid false sharing on the buffer and con-
tention on the index. Specifically, each thread has its own
local buffer to which it adds pointers. When an individual
buffer becomes full, that thread becomes the reclaimer and
aggregates the pointers from all of the threads’ buffers into
a master buffer that is used for scanning. Individual buffers
are circular arrays that are guaranteed to be single-reader,
single-writer, so concurrent accesses are simple and inexpen-
sive.

Further, we ensure that there is always at most a sin-
gle active reclaimer in the system via a lock. In general,
large delete buffer sizes ensure that this lock is not con-
tended. Also, the above buffer construction has the con-
sequence that a thread waiting to become a reclaimer will
probably discover that its buffer has been drained into the
master buffer, and that it can go back to work.

Pointer Operations. We assume that the underlying code
does not employ pointer obfuscation. The scanning process
masks off the low-order bits of memory it reads on a stack
chunk, but if the pointer is obfuscated in some other way,
for instance by XOR-ing, or if it is not word-aligned, the
reference will not be detected by TS-Scan. We also assume
that arbitrary memory chunks can not be interpreted as ad-
dresses to existing nodes in the delete buffer. While breaking
this assumption does not affect the correctness of our pro-
tocol, it could prevent the reclamation of the target nodes.
We consider this phenomenon unlikely.

4.3 ThreadScan Extension
Our ThreadScan algorithm, as described in Section 4, is

able to detect private references that reside inside the stacks
and registers of threads. However, a programmer may de-
cide to pre-allocate a heap block and use this block to store
private references on the heap (which violates code Assump-
tion 1). For such specific scenarios, we extend the API of
ThreadScan in a way that allows it to detect private refer-
ences that reside on the heap.

Our extension is based on a simple observation: a heap
block that holds private references is private to each thread.
As a result, our extension introduces two additional meth-
ods:

1. TS add heap block(start addr, len)

2. TS remove heap block(start addr, len)

The add method allows the programmer to declare a pre-
allocated heap block that the thread uses to hold private
references, so that the ThreadScan signal handler can add
those heap blocks to the scan process of this thread (in ad-
dition to the scan of the stack and registers). The remove
method unregisters the region.

This extension makes the ThreadScan semi-automatic: the
programmer must declare the per-thread heap blocks that
may hold private references. However, ThreadScan still han-
dles the scanning and reclamation process automatically.

5. CORRECTNESS PROPERTIES

5.1 Shared Memory Model
We assume a group of n threads which cooperate to im-

plement a general abstraction O, providing a set of methods
M . The implementation of each method m ∈M consists of
a sequence of steps.

The interleaving of the threads’ steps is decided by an
abstraction called the scheduler. A scheduler is fair if it
guarantees that each thread is scheduled to perform an in-
finite number of shared-memory steps. This implies a finite
bound on the number of steps between the invocation of an
operation by a thread and its application to shared memory.

5.2 Safety Properties
In the following, we prove correctness for the basic version

of ThreadScan. These properties can be easily generalized
for the extended variant presented in Section 4.3.

We first prove that, if all nodes in the delete buffer are in
removed state, then ThreadScan will not reclaim any node
that is not retired. Thus, reclamation cannot lead to any
memory access violation.

Lemma 1. Under Assumption 1, any node reclaimed by
ThreadScan has already been retired.

Proof. Assume for the sake of contradiction that there
exists a memory node d reclaimed by the algorithm at time
τ , but is not retired at this time. In particular, the node
can be reached by a thread as part of the execution after τ .

We now take cases on the location of references to node d
at time τ . Since the node was reclaimed, it must have been
part of the delete buffer, and therefore it must have been
removed (unreachable) after the beginning of the current
reclamation phase, which we denote by t0. Therefore, by
Assumption 1.1, we have that 1) no such reference could
have been present in the heap after time t0 and that 2) no
such reference can be accessed by more than one thread after
time t0.

It therefore follows that the reference must have been
present in the stack or registers of some thread after t0. Fur-
ther, the reference is not shared, therefore it cannot travel
between thread stacks. Hence, in order to be able to access
the node after time τ , the thread must possess a reference to
this node in its stack or registers throughout the time inter-
val [t0, τ]. However, the algorithm ensures that the thread
will scan its stack and registers during this time interval,
and we are guaranteed to identify the reference by Assump-
tion 1.3. This contradicts the assumption that the node d is
reclaimed by the algorithm, completing the proof.

5.3 Liveness Properties
Termination. We focus on the termination properties of
operations under ThreadScan. First notice that, under As-
sumption 1.2, ThreadScan does not influence the termination
of method calls that do not invoke free. This follows since
ThreadScan may only add a bounded number of steps to any
method invocation that does not invoke free.

Lemma 2. Under Assumption 1.2, any method implemen-
tation m that does not call free preserves its progress prop-
erties under ThreadScan.

Proof. Consider a method m consisting of a finite num-
ber of shared-memory steps, executing in the context of

ThreadScan. Since m does not call free, its corresponding
thread may not initiate a reclamation phase. However, each
time it receives a reclamation request, the thread must per-
form a bounded number of additional steps, scanning its
stack and registers. Let B be a bound on this number of ex-
tra steps. Moreover, by Assumption 1.2 there exists a finite
bound k on the number of times that the method invocation
may receive scan requests. Therefore, ThreadScan adds a to-
tal of at most kB steps to any method invocation. Further,
by the structure of the algorithm, if m does not call free,
no such step is a busy-wait. This implies that the method
preserves its progress properties, as claimed.

We then prove termination for the free implementation.
We assume a fair scheduler, and show that TS-Collect com-
pletes within a finite number of steps. We note that this
property holds irrespective of the structure (lock-free, lock-
based) of the original data structure.

Lemma 3. Under Assumption 1.2 and any fair scheduler,
the TS-Collect call completes within a finite number of steps,
irrespective of the progress conditions of the original imple-
mentation.

Proof. Recall that we assume that a single reclaimer
exists at any one time. Assume such a reclaimer p, call-
ing TS-Collect. Thread p has a finite number of steps to
perform before busy-waiting for the replies to its reclama-
tion signal. Since the scheduler is fair, these steps will be
completed within finite time. Further, under Assumption
1.2, each non-reclaiming thread involved in the invocation
of TS-Collect has a bounded number of steps B to perform
before sending the acknowledgment to the reclaimer. Since
the scheduler is fair, all threads will complete these steps
within a finite number of steps, and send back an acknowl-
edgment. Once these signals are received by the reclaimer,
it returns within a finite additional number of steps. This
implies that the reclaimer returns within a finite number of
scheduled steps.

Eventual Reclamation. Finally, we prove the following
claim about the set of nodes freed in a reclamation phase.
The proof follows from the fact that stack scans do not gen-
erate false positives. Hence, any node in the delete buffer
which is not referenced by any thread will not match the
result of a scan, and will hence be reclaimed.

Lemma 4. Under Assumption 1.3, for any reclamation
phase, all nodes which can not be accessed through references
in stacks or registers at the beginning of the phase will be
retired by ThreadScan.

6. EXPERIMENTAL RESULTS
Experimental Setup. Tests were performed on an 80-
way Intel Xeon 2.4 GHz processor with 40-cores, where each
core can multiplex 2 hardware threads. The ThreadScan li-
brary was configured to store up to 1024 pointers per thread.
Threads tended to have relatively full buffers, so the total
number of pointers any reclaimer worked with was roughly
1,000 times the number of threads in the process. For all
tests, we used the highly scalalable TCMalloc [16] allocator.

Data Structures. Tests were run on three data structures:

1. Lock-free Linked List: Code was adapted for C
from the Java provided in [25]. Each node was padded
to 172 bytes to avoid false sharing.

2. Lock-free Hash Table: The Synchrobench suite [18]
provided a hash table that used its own lock-free linked
list for its buckets. This implementation was replaced
with the [25] list.

3. Lock-based Skip List: StackTrack [2] provided an
implementation with 104 byte nodes (representing the
maximum size due to height). No padding was added
to these nodes.

Techniques. We tested the data structures using the fol-
lowing reclamation techniques.

1. Leaky: The original memory leaking data-structure
implementation without any memory reclamation.

2. Hazard Pointers: As introduced by Michael et al.
[37]. The programmer manually declares and con-
stantly updates the hazard pointer tracking informa-
tion for shared memory accesses, and the reclaiming
thread scans this information to determine nodes that
can be deallocated. This was simulated in the linked
list and hash table by introducing barriers after each
read while advancing along the list. Actual hazard
pointers were already provided in the skip list imple-
mentation [2].

3. Epoch: As introduced by Harris et al. [20] and
McKenney et al. [36]. The programmer delimits the
epoch-start and epoch-end points in the code, and the
reclaimer waits for the epoch to pass, at which point it
is safe to deallocate nodes. This was simulated in all
three data structures by adding thread-specific coun-
ters to be updated before and after each operation. A
thread that had removed 1024 nodes would read all
epoch counters before continuing.

4. Slow Epoch: Represents the sensitivity of Epoch
to application code that has thread delays: simulated
by a 40ms busy-wait by the affected thread during its
cleanup phase.

5. ThreadScan: Our new fully automatic technique as
described in Section 4.

Methodology. Each data point in the graphs represents
the average number of operations over five executions of 10
seconds. The update ratio was set at 20%, so about 10% of
all operations were node removals.

Linked lists were 1024 nodes long, and the range of values
was 2048. Hash tables contained 131,072 nodes with a range
of 262,144. The expected bucket size was 32 nodes. Skip lists
contained 128,000 nodes with a range of values of 256,000.

Results. Figure 3 shows the results for the three data struc-
tures under the various memory reclamation schemes. Up to
the full 80 hardware threads, ThreadScan and Epoch scale
along with the Leaky implementation. ThreadScan amor-
tizes the cost of its reclamation phase over the operations
being performed by the user application. Even with 10%
removals, the cost of signaling and reclaiming nodes is dis-
tributed over the cheap operations performed on the hash
table. Epoch likewise scales because the burden it imposes

Figure 3: Throughput results for the lock-free linked list, lock-free hash table, and locked skip list: X-axis shows the number of threads,
and Y-axis the total number of completed operations.

Figure 4: Throughput results for the oversubscribed system.

on the operations is low: two writes per method, except
during reclamation where it must read every thread’s epoch
counter. But when all threads are completing their opera-
tions in a timely way, this overhead is low.

Slow Epoch, with an errant thread, shows significant bur-
den because a thread that wants to free its pointers cannot
do so until the errant thread updates its epoch counter. The
reclaiming thread must wait until it has seen a change in the
epoch counter of every thread that was in the midst of an
operation. In this case, the thread that does not complete
its operation for whatever reason holds up the reclaiming
thread.

Hazard pointers scale well in the lock-free hash table be-
cause bucket traversals are short and so there are few mem-
ory barriers per operation. More overhead is visible in the
other two data structures, however, as the number of haz-
ard pointer updates increases. In the list and skip list data
structures, the expected number of steps in a traversal is
O(n) and O(log(n)), respectively. Since each step requires
a barrier, even in a non-mutating operation, the overhead
becomes significant.

The results of oversubscription tests, run on the same ma-
chine, are presented in Figure 4. Slow Epoch and Hazard
Pointers were not included in the oversubscription exper-
iment since they were shown not to scale well in normal
circumstances. Oversubscription does not help their perfor-
mance.

ThreadScan begins to show overhead versus the leaky im-
plementation because not all threads can run simultaneously
and the reclaimer must wait for all of them to complete.
Additionally, overheads are higher because more signals are
sent and the list of pointers to collect is larger, leading to
more cache misses. Increasing the size of the delete buffer,

and thereby reducing the frequency of reclamation itera-
tions, is a useful way of amortizing the cost of signals and
of waiting. However, it also increases the size of the list
of pointers. The limitations of amortizing reclamation are
clearly correlated with the costs of operations on the various
data structures: The linked list overhead is negligible, the
skip list is about 25% at 200 threads.

ThreadScan was tuned for the hash table to improve per-
formance. The ThreadScan line presented in the hash table
graph shows the results of increasing the length of the per-
thread delete buffer length to 4096. Although this led to an
improvement in performance, 25% overhead at 200 threads,
comparable to the skip list, the overhead is still significant.
Solving the oversubscription problem in a general way is an
important avenue of future work.

7. CONCLUSION AND FUTURE WORK
Discussion. The memory reclamation problem has limited
the adoption of high-performance non-blocking data struc-
tures in non-garbage-collected languages like C and C++.
Since a thread may access a node without notifying other
threads, a thread that wants to free the node must be de-
fensive when reclaiming memory. Existing techniques for
detection typically complicate the algorithm and/or render
it inefficient.

In this paper, we have presented ThreadScan, an efficient
method for detecting otherwise invisible reads. The user
simply hands nodes to ThreadScan, which buffers them un-
til there are enough to start a reclamation phase. It then
leverages OS signals to force all threads to make their in-
visible reads visible. Because a thread need only make its
reads visible during a scan, that cost can be amortized over
the cost of freeing the pointers being tracked.

Our empirical results show that ThreadScan matches or
outperforms the performance of previous memory reclama-
tion techniques, taking advantage of the fact that its code
runs as part of signal handlers, and is thus isolated from ap-
plication code. Besides good performance, ThreadScan has
the advantage of being completely automatic, as the pro-
grammer simply needs to link its data structure to use the
TC-Collect calls implemented by ThreadScan.

We believe ThreadScan can be a useful general tool for
the design and prototyping of non-blocking concurrent data
structures. It makes implementation of these structures
practical in C and C++ because of the low overhead and be-
cause it encapsulates all of the complexity of tracking down
references.

Available at: https://github.com/Willtor/ThreadScan

Future Work. The main usability limitation of ThreadScan
is in responsiveness of the reclaimer. The reclaiming thread
must wait on the other threads and perform all the free calls,
itself. The number of these calls is expected to scale linearly
with the number of threads on the system, and therefore the
reclaimer may become unresponsive at large thread counts.

In future work, we plan to investigate whether the latter
problem may be solved by sharing the reclamation overhead,
requiring scanning threads to call free for some subset of re-
tired nodes in the subsequent TS-Scan call. TS-Scan would
then check to see whether there are any pending nodes to
free (from a previous iteration) after it has scanned its stack
for the new set of nodes. This creates a trade-off between
the latency improvement for the reclaiming thread versus
the added overhead for the other operations. Another direc-
tion of future work is to apply ThreadScan to large legacy
systems, such as concurrent databases or the kernel refer-
ence counted data-structures (for example, the VMA), to
test both its interface and its potential to improve perfor-
mance in a complex practical system.

8. ACKNOWLEDGEMENTS
Support is gratefully acknowledged from the National Sci-

ence Foundation under grants CCF-1217921, CCF-1301926,
and IIS-1447786, the Department of Energy under grant
ER26116/DE-SC0008923, and the Oracle corporation. In
particular, we would like to thank Dave Dice, Alex Kogan,
and Mark Moir from the Oracle Scalable Synchronization
Research Group for very useful feedback on earlier drafts of
this paper.

9. REFERENCES
[1] Yehuda Afek, Haim Kaplan, Boris Korenfeld, Adam

Morrison, and Robert E. Tarjan. Cbtree: A practical
concurrent self-adjusting search tree. In Proceedings of
the 26th International Conference on Distributed
Computing, DISC’12, pages 1–15, Berlin, Heidelberg,
2012. Springer-Verlag.

[2] Dan Alistarh, Patrick Eugster, Maurice Herlihy,
Alexander Matveev, and Nir Shavit. Stacktrack: An
automated transactional approach to concurrent
memory reclamation. In Proceedings of the Ninth
European Conference on Computer Systems, EuroSys
’14, pages 25:1–25:14, New York, NY, USA, 2014.
ACM.

[3] Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir
Shavit. The spraylist: A scalable relaxed priority

queue. In 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming,
PPoPP 2015, San Francisco, CA, USA, 2015. ACM.

[4] Hillel Avni, Nir Shavit, and Adi Suissa. Leaplist:
Lessons learned in designing tm-supported range
queries. In Proceedings of the 2013 ACM Symposium
on Principles of Distributed Computing, PODC ’13,
pages 299–308, New York, NY, USA, 2013. ACM.

[5] Stephen M. Blackburn and Kathryn S. McKinley.
Ulterior reference counting: Fast garbage collection
without a long wait. In Proceedings of the 18th Annual
ACM SIGPLAN Conference on Object-oriented
Programing, Systems, Languages, and Applications,
OOPSLA ’03, pages 344–358, New York, NY, USA,
2003. ACM.

[6] Hans-Juergen Boehm. Space efficient conservative
garbage collection. In Proceedings of the ACM
SIGPLAN 1993 Conference on Programming
Language Design and Implementation, PLDI ’93,
pages 197–206, New York, NY, USA, 1993. ACM.

[7] Anastasia Braginsky, Alex Kogan, and Erez Petrank.
Drop the anchor: lightweight memory management for
non-blocking data structures. In Proceedings of the
25th ACM symposium on Parallelism in algorithms
and architectures, SPAA ’13, pages 33–42, New York,
NY, USA, 2013. ACM.

[8] Perry Cheng and Guy E. Blelloch. A parallel,
real-time garbage collector. In Proceedings of the ACM
SIGPLAN 2001 Conference on Programming
Language Design and Implementation, PLDI ’01,
pages 125–136, New York, NY, USA, 2001. ACM.

[9] Austin T. Clements, M. Frans Kaashoek, and Nickolai
Zeldovich. Scalable address spaces using rcu balanced
trees. SIGPLAN Not., 47(4):199–210, March 2012.

[10] David Detlefs, Paul A. Martin, Mark Moir, and Guy
L. Steele Jr. Lock-free reference counting. Distributed
Computing, 15(4):255–271, 2002.

[11] David L. Detlefs, Paul A. Martin, Mark Moir, and
Guy L. Steele, Jr. Lock-free reference counting. In
Proceedings of the twentieth annual ACM symposium
on Principles of distributed computing, PODC ’01,
pages 190–199, New York, NY, USA, 2001. ACM.
http://doi.acm.org/10.1145/383962.384016.

[12] Aleksandar Dragojevic, Maurice Herlihy, Yossi Lev,
and Mark Moir. On the power of hardware
transactional memory to simplify memory
management. In Proceedings of the 30th Annual ACM
Symposium on Principles of Distributed Computing
(PODC), pages 99–108, 2011.

[13] Mikhail Fomitchev and Eric Ruppert. Lock-free linked
lists and skip lists. In Proceedings of the 23rd annual
ACM symposium on Principles of Distributed
Computing (PODC’ 04), pages 50–59, New York, NY,
USA, 2004. ACM Press.
http://doi.acm.org/10.1145/1011767.1011776.

[14] Keir Fraser. Practical lock-freedom. Technical Report
UCAM-CL-TR-579, University of Cambridge,
Computer Laboratory, February 2004.

[15] Keir Fraser and Timothy L. Harris. Concurrent
programming without locks. ACM Trans. Comput.
Syst., 25(2), 2007.

[16] Sanjay Ghemawat and Paul Menage. Tcmalloc,
Retrieved 2015. Available at http://goog-
perftools.sourceforge.net/doc/tcmalloc.html.

[17] Anders Gidenstam, Marina Papatriantafilou, H̊akan
Sundell, and Philippas Tsigas. Efficient and reliable
lock-free memory reclamation based on reference
counting. IEEE Trans. Parallel Distrib. Syst.,
20(8):1173–1187, 2009.

[18] V. Gramoli. More than you ever wanted to know
about synchronization: Synchrobench. In Proceedings
of the 20th Annual ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming
(PPoPP), 2015.

[19] Sabine Hanke. The performance of concurrent
red-black tree algorithms. In Jeffrey Vitter and
Christos Zaroliagis, editors, Algorithm Engineering,
volume 1668 of Lecture Notes in Computer Science,
pages 286–300. Springer Berlin / Heidelberg, 1999.
http://citeseer.ist.psu.edu/viewdoc/summary?

doi=10.1.1.25.6504.

[20] Tim L. Harris. A pragmatic implementation of
non-blocking linked-lists. In Proceedings of the
International Conference on Distributed Computing
(DISC), pages 300–314, 2001.

[21] Thomas E. Hart, Paul E. McKenney, Angela Demke
Brown, and Jonathan Walpole. Performance of
memory reclamation for lockless synchronization. J.
Parallel Distrib. Comput., 67(12):1270–1285, 2007.

[22] Steve Heller, Maurice Herlihy, Victor Luchangco,
Mark Moir, William N. Scherer III, and Nir Shavit. A
lazy concurrent list-based set algorithm. In James H.
Anderson, Giuseppe Prencipe, and Roger
Wattenhofer, editors, Proceedings of the 9th
International Conference on Principles of Distributed
Systems (OPODIS 2005), Revised Selected Papers,
volume 3974 of Lecture Notes in Computer Science,
pages 3–16. Springer, 2006.
http://dx.doi.org/10.1007/11795490_3.

[23] Maurice Herlihy, Yossi Lev, Victor Luchangco, and
Nir Shavit. A simple optimistic skiplist algorithm. In
Proceedings of the 14th international conference on
Structural information and communication complexity,
SIROCCO’07, pages 124–138, Berlin, Heidelberg,
2007. Springer-Verlag. http:
//dl.acm.org/citation.cfm?id=1760631.1760646.

[24] Maurice Herlihy, Victor Luchangco, Paul Martin, and
Mark Moir. Nonblocking memory management
support for dynamic-sized data structures. ACM
Trans. Comput. Syst., 23(2):146–196, May 2005.

[25] Maurice Herlihy and Nir Shavit. The Art of
Multiprocessor Programming. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2008.

[26] Maurice Herlihy, Nir Shavit, and Moran Tzafrir.
Hopscotch hashing. In Proceedings of the 22nd
international symposium on Distributed Computing,
DISC ’08, pages 350–364, Berlin, Heidelberg, 2008.
Springer-Verlag.
http://dl.acm.org/citation.cfm?id=1432316.

[27] Michael Kerrisk. The Linux Programming Interface.
No Starch Press, Inc., San Francisco, CA 94103, 2010.

[28] Gabriel Kliot, Erez Petrank, and Bjarne Steensgaard.
A lock-free, concurrent, and incremental stack

scanning mechanism for garbage collectors. SIGOPS
Oper. Syst. Rev., 43(3):3–13, July 2009.

[29] Doug Lea. Java concurrency package, 2005. Available at
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/.

[30] Doug Lea, 2007.
http://g.oswego.edu/dl/jsr166/dist/docs/java/

util/concurrent/ConcurrentHashMap.html.

[31] Doug Lea, 2007.
http://java.sun.com/javase/6/docs/api/java/

util/concurrent/ConcurrentSkipListMap.html.

[32] I-Ting Angelina Lee, Silas Boyd-Wickizer, Zhiyi
Huang, and Charles E. Leiserson. Using memory
mapping to support cactus stacks in work-stealing
runtime systems. In Valentina Salapura, Michael
Gschwind, and Jens Knoop, editors, 19th International
Conference on Parallel Architecture and Compilation
Techniques (PACT 2010), Vienna, Austria, September
11-15, 2010, pages 411–420. ACM, 2010.

[33] William M. Leiserson. Threadscan git repository, 2015.
Available at https://github.com/Willtor/ThreadScan.

[34] Yossi Levanoni and Erez Petrank. An on-the-fly
reference-counting garbage collector for java. ACM
Trans. Program. Lang. Syst., 28(1):1–69, January
2006.

[35] Robert Love. Linux System Programming, 2nd
Edition. O’Reilly Media, Sebastopol, CA 95472, 2013.

[36] P. E. McKenney, J. Appavoo, A. Kleen, O. Krieger,
R. Russell, D. Sarma, , and M. Soni. Read-copy
update. In In Proc. of the Ottawa Linux Symposium,
page 338?367, 2001.

[37] Maged M. Michael. Hazard pointers: Safe memory
reclamation for lock-free objects. IEEE Trans. Parallel
Distrib. Syst., 15(6):491–504, 2004.

[38] Mark Moir and Nir Shavit. Concurrent data
structures. Handbook of Data Structures and
Applications, pages 47–14, 2007.

[39] Objective-C, 2014. http://en.wikipedia.org/wiki/
Automatic_Reference_Counting.

[40] Mark Russinovich and David A. Solomon. Windows
Internals: Including Windows Server 2008 and
Windows Vista, Fifth Edition. Microsoft Press, 5th
edition, 2009.

[41] Anthony Savidis. The implementation of generic smart
pointers for advanced defensive programming. Softw.,
Pract. Exper., 34(10):977–1009, 2004.

[42] Ori Shalev and Nir Shavit. Split-ordered lists:
Lock-free extensible hash tables. J. ACM, 53:379–405,
May 2006.
http://doi.acm.org/10.1145/1147954.1147958.

[43] Nir Shavit and Itay Lotan. Skiplist-based concurrent
priority queues. In Parallel and Distributed Processing
Symposium, 2000. IPDPS 2000. Proceedings. 14th
International, pages 263–268. IEEE, 2000.

[44] John D. Valois. Lock-free linked lists using
compare-and-swap. In Proceedings of the 14th Annual
ACM Symposium on Principles of Distributed
Computing (PODC), pages 214–222, 1995.

[45] WIKI. http://en.wikipedia.org/wiki/Unix_signal.

