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Recent laboratory studies have found large, stable
individual differences in the location people first fixate
when identifying faces, ranging from the brows to the
mouth. Importantly, this variation is strongly associated
with differences in fixation-specific identification
performance such that individuals’ recognition ability is
maximized when looking at their preferred location
(Mehoudar, Arizpe, Baker, & Yovel, 2014; Peterson &
Eckstein, 2013). This finding suggests that face
representations are retinotopic and individuals enact
gaze strategies that optimize identification, yet the
extent to which this behavior reflects real-world gaze
behavior is unknown. Here, we used mobile eye trackers
to test whether individual differences in face gaze
generalize from lab to real-world vision. In-lab fixations
were measured with a speeded face identification task,
while real-world behavior was measured as subjects
freely walked around the Massachusetts Institute of
Technology campus. We found a strong correlation
between the patterns of individual differences in face
gaze in the lab and real-world settings. Our findings
support the hypothesis that individuals optimize real-
world face identification by consistently fixating the
same location and thus strongly constraining the space
of retinotopic input. The methods developed for this
study entailed collecting a large set of high-definition,
wide field-of-view natural videos from head-mounted
cameras and the viewer’s fixation position, allowing us
to characterize subjects’ actually experienced real-world

retinotopic images. These images enable us to ask how
vision is optimized not just for the statistics of the
‘‘natural images’’ found in web databases, but of the
truly natural, retinotopic images that have landed on
actual human retinae during real-world experience.

Introduction

The crux of the problem of visual recognition is the
ability to appreciate that an object is the same across
the very different images it casts on the retina due to
changes in position, size, lighting, and viewing angle, to
name a few (DiCarlo & Cox, 2007). Recent work
suggests that for the case of face recognition, position
invariance is achieved in part by behavior rather than
by computation: People fixate a consistent and
stereotyped position on the face, thus minimizing
variability in the retinal position of face images (Gurler,
Doyle, Walker, Magnotti, & Beauchamp, 2015; Me-
houdar, Arizpe, Baker, & Yovel, 2014; Peterson &
Eckstein, 2012). In particular, robust individual dif-
ferences are found in the precise location where people
make their first saccade into the face, with a continuous
distribution ranging from the brows to the mouth.
These differences are robust over time, task, face
familiarity, and variation in low-level properties such as
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color, size, and contrast (Gurler et al., 2015; Mehoudar
et al., 2014; Or, Peterson, & Eckstein, 2015; Peterson &
Eckstein, 2012, 2013). Most importantly, face recogni-
tion performance drops by nearly 20% when faces are
presented at another subject’s preferred looking posi-
tion if it differs from one’s own (Or et al., 2015;
Peterson & Eckstein, 2013). This work suggests that the
representations that underlie face recognition are
retinotopically specific, with position invariance largely
attained not by cortical computations (Riesenhuber &
Poggio, 1999; Serre, Wolf, Bileschi, Riesenhuber, &
Poggio, 2007) but by looking behavior. However, all of
this work has been conducted in laboratory settings,
with eye movements monitored as subjects performed
tightly controlled tasks in which photographs of faces
are presented at a fixed distance while head and body
movements are restricted by a chinrest.

The lab testing situation differs from real-world
face viewing in a number of respects, yet few studies
have investigated real-world gaze on faces in non-
clinical populations (Einhäuser et al., 2009; Macdon-
ald & Tatler, 2013, 2015). In the lab, visual
stimulation is limited to a centrally presented com-
puter screen, whereas real-world faces generate a wide
array of retinal images of unpredictable sizes and
positions anywhere in the visual field. In the world,
unlike the lab, retinal stimulation is determined not
only by eye movements, but also by head direction
and body orientation. Further, real-world vision is
dynamic and interactive, with goals shifting moment
to moment, rather than fixed by task instructions.
Perhaps most importantly, in the real world the face
we are looking at is often looking back at us,
engendering a social context associated with tasks,
signals, actions, and behavioral consequences that are
distinct from the lab. Given the dramatic differences
between these conditions, it is important to know
whether the consistent individual differences in face-
looking behavior documented in previous lab studies
are also found in everyday real-world vision. Here we
asked this question by measuring each subject’s
preferred face-fixation position in the lab with the
same methods used previously, and then by sending
them off for a walk around the Massachusetts
Institute of Technology (MIT) campus while wearing
a mobile eye tracker. This design enabled us to
monitor where individuals fixated on faces that came
into view during naturalistic real-world vision. If
position invariance for face recognition is indeed
solved in large part by looking behavior (rather than
computation), then individual differences in preferred
face-fixation positions measured in lab should gener-
alize to real-world behavior. Failure to find this result
would suggest that the prior results reflect a special
case, and would cast doubt on the hypothesis that
position invariance in face recognition is solved by eye

movements. A failure to generalize would also call
into question the extent to which face recognition
behavior measured in the lab should be applied to our
understanding of how the brain processes faces during
normal operation.

Beyond answering whether face-fixation behavior
observed in the lab generalizes to the world, the
present study will enable us to make a first foray into a
broader research program of characterizing what
might be called ‘‘retinal image statistics’’ (RIS). Most
prior studies of natural image statistics use photo-
graphs from the web that likely represent a biased
sample of the images people actually see in everyday
life. First, these photos reflect situations in which
someone used a camera to select and frame a small
portion of the visual world at a specific moment. The
criteria for the photographer’s selection likely differ
from the criteria viewers use to select saccade targets.
Second, most photographs are thrown away, and the
ones that survive and get posted on the web are a
nonrandom sample, less likely to be marred by the
occlusions, blur, bad lighting, or other factors that
reduce the intelligibility or attractiveness of the image
but are common in real-world contexts. Third, and
perhaps most importantly, images on the web do not
come with information about where viewers were
fixating. Fixation position matters enormously, be-
cause acuity declines sharply from the fovea toward
the periphery, meaning that only a few degrees of the
world around fixation are seen with high resolution.
For all these reasons the standard web-photo–based
analyses of natural image statistics do not represent an
unbiased sample of the visual information that reaches
the brain. Because our mobile eye tracking study
records both the image seen by the subject, and the
subject’s eye position on that image, our study
provides a collection of experienced images with the
fixation point on each, a necessary first step in a
broader study of the statistics of experienced natural
retinal images.

Methods

The study was run in two stages. In Stage I,
participants identified celebrity faces presented on a
computer screen while their eye movements were
monitored. Each subject was categorized into one of
three groups according to where they tended to fixate
on the faces. A subset of these subjects from each
group were later recalled to participate in Stage II, in
which they wore a mobile eye tracker to monitor
their gaze while they walked around natural envi-
ronments.
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Methods (Stage I: In lab)

Participants

Seventy participants were recruited using flyers and
departmental subject lists (40 MIT students and 30
from the Cambridge community; 48 female; M age ¼
28.0 years, min ¼ 18 years, max ¼ 62 years). Subjects
received $20 for participation, gave informed consent,
and had normal or corrected-to-normal vision. The
study was approved by the MIT Committee on the Use
of Humans as Experimental Subjects.

Eye tracking

The right eye of each participant was tracked using
an SR Research EyeLink 1000 Desktop Mount
sampling at 1000 Hz (SR Research Ltd., Ottawa,
Ontario, Canada). A nine-point calibration and vali-
dation were run at the beginning of the session and
after every 40 trials with a mean error of no more than
0.58 visual angle. Saccades were classified as events
where eye velocity was greater than 228/s and eye
acceleration exceeded 40008/s2.

Stimuli and display

Stimuli were 160 frontal view images of 80 well-
known Caucasian celebrities (e.g., Tom Cruise, Jennifer
Lawrence) acquired using Google image search (two
different images per celebrity, 40 male and 40 female).
Images were converted to gray scale, rotated to an
upright orientation, scaled so that the center of the eyes
and center of the mouth were in the same position and
separated by 6.08, cropped from the top of the head to
the chin (4633 463 pixels or 16.98) and contrast energy

normalized. All stimuli were presented on a 17-in. CRT
monitor with a resolution of 1024 3 768 pixels and
refresh rate of 85 Hz. Subjects sat 50 cm from the
monitor, with each pixel subtending 0.0368.

Procedure

Participants saw each of the 160 images in random
order. Following the procedure used in our earlier
studies (Peterson & Eckstein, 2012, 2013), a trial
began with a fixation cross located 108 from the
center of the monitor at either the left, right, top, or
bottom edge of the screen (location randomly
selected). The subject fixated the center of the cross
and pressed the spacebar when ready. After a
random, uniformly distributed delay between 500 and
1500 ms, the cross disappeared and the randomly
sampled face image was displayed at the center of the
monitor. Note that in an earlier control experiment,
we found that the pattern of individual differences in
preferred fixation behavior on centrally presented
faces were conserved when faces were presented at
unpredictable locations (Peterson & Eckstein, 2013).
During the delay period the subject was required to
maintain fixation at the cross, with a deviation of
more than 1.08 resulting in an error message and
restarting of the trial. The face image remained visible
for 500 ms, during which eye movements were
allowed, and was then replaced with a 500-ms high-
contrast white noise mask. A response screen then
appeared consisting of two columns of five names
each (the correct name of the face they had just seen
and nine randomly sampled foils of the same gender,
positions randomized). The subject used the mouse to
click on the name they thought was correct after
which the correct answer was highlighted for 500 ms
before commencing the next trial (Figure 1).

Figure 1. In-lab famous face identification paradigm (Stage I). Picture of the author for illustrative purposes only; in the actual study,

subjects were shown pictures of real celebrities.
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Analysis

Identification performance was quantified as the
proportion of trials with a correct identification (PC).
Individual’s face-fixation behavior was quantified by
computing the mean location of the first into-face
fixation (i.e., the location at the end of the first into-
image saccade as defined above in Methods (Stage I):
Eye tracking) across the 160 image presentations. We
then defined an individual’s relative fixation metric, c,
as the distance of his or her mean fixation upward from
the mouth relative to the total distance between the
mouth and eyes:

c ¼ yfixation � ymouth

yeyes � ymouth
ð1Þ

Methods (Stage II: Real world)

Participants

‘‘Looking groups’’ were defined before the current
study based on independent data from 250 subjects
who had participated in similar face identification
studies at the University of California, Santa Barbara
(Or et al., 2015; Peterson & Eckstein, 2012, 2013,
2014). As in the current study, the previous work
measured the mean location of subjects’ first into-face
fixation. Interindividual variation was found to be
large and consistent along the vertical dimension,
ranging from the eyebrows to the mouth (Gurler et al.,
2015; Mehoudar et al., 2014; Or et al., 2015; Peterson
& Eckstein, 2013). Using these data, we defined
criteria to categorize people into three looking groups:
Upper Lookers (ULs) were the 15% of the sample who
looked highest up on the face, Lower Lookers (LLs)
were the 15% who looked lowest, and Middle Lookers
(MLs) were everybody in between. We used these
predefined criteria to categorize the original 70
subjects from Stage I of the current study into looking
groups based on the average location of their first
into-face fixation from Stage I. The current sample
yielded 11 ULs (15.7%), 45 MLS (64.3%), and 14 LLs
(20.0%). For each looking group, we recalled the 10
subjects with the highest calibration scores, as
measured by the EyeLink, to participate in Stage II
(10 ULs, 10 MLs, and 10 LLs). As with Stage I,
subjects received $20 for participation, provided
informed consent, and had normal or corrected-to-
normal vision. The study was approved by the MIT
Committee on the Use of Humans as Experimental
Subjects.

Procedure

Subjects were told only that we were interested in
assessing everyday, natural visual experience. Critically,
we did not mention any specific interest in faces or
people. Subjects were first fitted with the mobile eye
tracker glasses and GoPro camera (Figure 2A) before
initial calibration, validation, and registration (see
below and Figure 2B). The experimenter then accom-
panied the subject for 8–12 min around the lab and
nearby hallways of the Brain and Cognitive Sciences
Building and the Stata Center across the street,
engaging in conversation aimed toward making them
feel comfortable with the apparatus. Subjects were then
instructed to walk unaccompanied across campus
walkways, courtyards, a long hallway, and a busy city
street to a predesignated location (12–15 min). The
experimenter met the subjects at the location and
accompanied them back to the calibration room (5
min), concluding the study (25–30 min total). Each
subject followed a similar path that exposed them to a
representative sample of environmental settings (indoor
locations like hallways, rooms, corridors, etc., and
outdoor locations like streets, yards, etc.) and social
contexts (no people, engaged in one-on-one interaction,
watching others interact, etc.; Figure 2C). Subjects were
all run at a similar time of day to maximize the
between-subjects consistency of environmental and
social conditions.

Real-world eye tracking: Overview

Measuring and analyzing eye movements in uncon-
strained real world environments poses multiple
challenges. Here, we detail a standardized framework
that allows the experimenter to reliably collect and
analyze accurate data. The framework focuses on
standardized routines that maximize the consistency,
precision, and retention of data, while avoiding
possible subject- and task-specific biases. It also allows
for frequent validation across time, a critical aspect as
data from mobile eye trackers can be marred by
subject/apparatus motion and changing environmental
(e.g., lighting) and eye (e.g., pupil size) states that can
dramatically compromise initial calibration. Finally,
the framework develops a combination of automatic
algorithms and novel crowdsourcing techniques for
analysis and interpretation.

Apparatus

Real-world gaze direction was measured at 60 samples
per second with a pair of Applied Science Laboratory
(ASL) Mobile Eye-XG Eye Tracking Glasses (ASL Eye
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Tracking, Billerica, MA). The ASL tracker uses two
cameras to estimate fixation position relative to the
central region of the visual world in front of the wearer
(Figure 2A). The first camera, termed the scene camera,
rests on the top rim of the glasses and records video at 60
frames per second (fps), with a field of view (FOV)
spanning 648 horizontally and 488 vertically (6403 480
pixels). The scene camera was adjusted to align the center
of its FOV with that of the subject’s. The second camera,
termed the eye camera, records an infrared (IR) image of
the subject’s right eye reflected off a partially IR-
reflective coated lens that protrudes from the main lens.

This allows the eye camera to detect both the subject’s
pupil and the corneal reflection of a pattern of three dots
produced by an IR emitter (with one dot selected as the
primary). The position and orientation of both the eye
camera and the IR-reflective lens were adjusted for each
subject so that the pupil was centered in the eye camera’s
FOV and the three IR dots were near the pupil center
when the subject looked straight ahead. The eye camera
lens was then focused to maximize pupil and IR dot
sharpness.

To improve upon the scene camera’s FOV, resolu-
tion, and image sensor quality (contrast sensitivity,

Figure 2. Real-world eye-tracking paradigm (Stage II). (A) Subjects were fitted with a pair of ASL eye tracking glasses. A supplemental

GoPro camera enhanced the quality and FOV of the recorded video of the subject’s visual environment. (B) Calibration (moving dot)

and ASL-to-GoPro video synchronization and registration (checkerboard) were automated and standardized across participants. (C)

Each subject walked a similar route through the uncontrolled environments around the MIT campus. Routes and times were chosen

to ensure that a variety of locations and social settings were sampled.
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temporal properties, etc.), subjects wore a supplemen-
tary GoPro Hero4 Black camera (FOV spanning 1108
horizontally and 908 vertically; 2704 3 2028 pixels; 30
fps; GoPro, San Mateo, CA). The GoPro was
positioned just above the eye tracker glasses and
adjusted so that its FOV center aligned with that of the
ASL’s (Figure 2A). A substantial fisheye distortion was
present at the extreme edges of the GoPro FOV.
However, the fixations analyzed in the study were
mainly restricted to the central region where distortion
was minimized.

Calibration

The ASL estimates gaze position by learning the
mapping between specific locations in the world (in x-y
coordinates relative to the scene camera) and the
displacement vector from the pupil center to the
primary IR dot registered by the eye camera. To
minimize head movements during calibration, subjects
placed their heads on a chin rest located 42 cm from an
18-in. CRT monitor centered in the subject’s FOV with
a resolution of 1024 3 768 pixels (spanning 508
horizontally and 37.58 vertically). To maximize cali-
bration accuracy and reliability, subjects completed a
standardized calibration task written in MATLAB
(MathWorks, Natick, MA) and PsychToolbox 3.0.10

(Brainard, 1997). Subjects first fixated on a centrally
presented black dot (outer radius 1.08) with a small
gray circular center (inner radius 0.158). When the
subjects were confident they were fixating steadily as
close to the dot center as possible, they pressed the
spacebar. The dot then relocated randomly to one of 12
positions arranged in a 4 3 3 grid, spaced 14.08 apart
horizontally and 15.88 vertically (spanning 42.08 3
31.68; Figure 2B). The subjects would then fixate the
new dot location and again press the spacebar,
proceeding through the 13 locations (12 grid plus initial
central). After all dots were fixated, an image of the
entire array appeared, during which the subjects were
instructed to look at the center of each dot, starting
from the upper left and moving left to right and row by
row for post hoc validation.

This data was used after the testing session for
manual calibration using ASL’s EyeXG software (ASL
Eye Tracking). Independent raters viewed the scene
camera video in slow motion (8 fps) with an image of
the pupil and displacement vector from the eye camera
superimposed. For each calibration dot transition
event, the raters waited for the subject’s eye to move
and stabilize on the new location as ascertained by an
abrupt shift in the overlaid pupil/displacement vector.
The rater used a mouse to manually select the location
of the center of the current calibration dot on the scene
camera image (Figure 3A). The ASL EyeXG software

Figure 3. Post processing of eye tracking and video data. (A) A subject-specific function that estimates gaze direction is learned by

registering the location of each calibration dot (relative to the ASL scene camera) to the position of the pupil center and corneal

reflection (from the eye camera). (B) The vertices of the postcalibration checkerboard pattern are automatically detected in both

scene recordings, allowing for automatic synchronization and coordinate registration between videos. (C) Data quality was validated

every 3 min by having the subject fixate the corners of a checkerboard pattern. (D) Saccade and fixation events were automatically

detected and their spatial coordinates mapped to the high-resolution, wide FOV GoPro video.
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then computed a function that mapped the displace-
ment vectors (eye camera) to the dot locations (scene
camera) for the 13 calibration dots for each subject.

Gaze location and fixation event detection

Subjects’ gaze location (in x-y coordinates) relative
to the scene camera image for each valid frame was
estimated by the ASL EyeXG software using the
mapping function learned during calibration (Figure
3D). Frames were defined as invalid if the corneal
reflection was lost during saccades, blinks, large
eccentricity fixations, or extreme external IR illumina-
tion and were not included in the analysis. Across all
subjects, 67.3% 6 3.4% (mean 6 standard error of the
mean) of frames were classified as valid, with no
significant difference in the percentage of valid frames
between looking groups (ULs: 69.3% 6 5.5%, MLs:
67.3% 6 7.3%, LLs: 65.4% 6 5.4%; p ¼ 0.91).

Fixations were defined by the automated ASL
algorithm as events where six or more consecutive
samples (100 ms) were measured within 18 of the
sample group centroid. Fixation events were terminat-
ed when three consecutive samples measured greater
than 18 from the fixation centroid or when pupil data
was lost for 12 or more samples (200 ms; Figure 3D).
To check the accuracy of this automated algorithm, we
reanalyzed the data using two techniques shown to be
robust for fixation detection in noisy eye tracking data
with significant flicker: (a) a modified automatic
fixation detection protocol that incorporates bilateral
filtering, and (b) human rater hand-coding (Holmqvist
et al., 2011; Wass, Smith, & Johnson, 2012). While both
techniques yielded fewer and longer fixations than the
ASL algorithm, there was close agreement between all
three regarding fixation positions (see Figures 9 and 10
and the Appendix for detailed methods).

Synchronization and registration

The ASL EyeXG software outputs an estimated gaze
location for each frame in x-y coordinates relative to
the ASL native scene camera, but ultimately we wanted
to map these fixation coordinates to the higher
resolution, larger FOV GoPro video. To do this, we
presented a 16 3 12 checkerboard pattern on the
monitor immediately after validation (Figure 3B). After
the fact, we implemented an automatic routine in
MATLAB that searched for the first frame in the native
scene camera video in which a 16 3 12 checkerboard
pattern could be detected. The time in the video was
recorded and the coordinates of the checkerboard
vertices (192 points) automatically detected (Figure
3B). The same was done with the GoPro video. The

video streams were then synchronized by aligning the
checkerboard onset times. Then, we computed the
projective linear transform matrix, T, that mapped the
192 vertex points from ASL to GoPro coordinates with
the minimum mean-square error. The transform matrix
was then used to map gaze coordinates for each frame
and each fixation event from the ASL video to the
GoPro (Figure 3D).

Recalibration and reregistration

To ensure data validity over the course of the study,
subjects regularly performed a recalibration and
reregistration routine. Every 3 min, the subject was
instructed to stop and hold at arm’s distance a
calibration/registration checkerboard pattern centered
at eye level. While keeping the head steady, the subject
would fixate, in turn, the extreme upper-left, upper-
right, lower-left, and lower-right corners of the
checkerboard for two seconds each before resuming
their walk (Figure 3C). Similar to the initial calibration,
independent raters viewed each recalibration at 8 fps.
For each of the four corner fixations, the raters waited
until the subject’s eye moved and stabilized on the new
location indicated by a sudden shift and stabilization of
the overlaid pupil/displacement vector. The rater
selected the location of the center of the current
recalibration target on the scene camera image (Figure
3C), which the ASL EyeXG software used to augment
the displacement vector to gaze-location mapping
function. Similarly, the 16 3 12 checkerboard pattern
and its corresponding vertices were automatically
detected in both videos and any necessary adjustments
to the transform matrix were applied.

Analysis: Automatic fixation event filtering

On average, we obtained 24.2 min (87,165 frames) of
data per subject (Figure 4A). For this study, we were
interested only in the fixation location targeted by
saccades. This information is contained completely in
the image and gaze position corresponding to the first
frame of each detected fixation event. This allowed us
to greatly reduce our data set by automatically
selecting, for each fixation, a single video frame and eye
position for further analysis (average of 3,023 frames/
subject; Figure 4B).

Analysis: Crowdsourcing face-fixation events

One of the primary difficulties with studies con-
ducted outside traditional laboratory environments is
the decreased ability to control subjects’ sensory
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input. In the lab, the experimenter precisely deter-
mines the spatial and temporal characteristics of
visual stimulation. Thus, the position (x, y) of gaze at
some time (t) unambiguously maps to known stimulus
properties. Unconstrained environments do not pro-
vide this level of control, as the spatiotemporal
properties of the visual stimulus are not known a
priori. This situation makes measurements of gaze
timing and position necessary but not sufficient for
mapping to meaningful stimulus properties. The
difficulty of this mapping is determined by the
stimulus properties the experimenter is interested in,
the quality of the visual recording, and the complexity
of the visual environment.

In this study we are interested in how people look at
faces. This goal requires the ability to reliably
determine whether a fixation is on a face given only the
recorded video image and the associated x-y gaze
position. While advances in algorithms and computing
resources have led to impressive gains in automatic face
detection within complex images (Phillips & O’Toole,
2014; Taigman, Yang, Ranzato, & Wolf, 2014), the
combination of high-resolution video and uncon-
strained environmental uncertainty poses a serious
challenge to even the most advanced computer face
detection systems. In this type of scenario, humans
remain the gold standard for face detection accuracy.
However, this advantage comes at a cost of processing
capacity: An individual can accurately detect faces only
up to a certain speed.

To maximize accuracy and throughput, we devel-
oped a simple crowdsourcing algorithm using Ama-
zon Mechanical Turk. By drawing on the judgments
of many individuals in parallel, crowdsourcing greatly

increases the bandwidth of human-based face recog-
nition. Turk raters were shown a series of randomly
sampled single video frames corresponding to fixation
onsets as described in the previous section. For each
image (trial), a bright green dot was overlaid at the
measured fixation location, and the rater responded
whether any portion of the green dot was touching a
face (Figure 4C). To ensure raters were real humans
who understood and were actively attending to the
task, each image was rated by multiple people. If the
first two raters agreed, the response was taken as
truth and the image was removed from the rating
pool. If the first two raters did not agree, the image
was shown to a third tie-breaking rater. Individual
raters’ performance was monitored by calculating
their miss (responding No Face when two separate
raters responded Face) and false alarm rates (re-
sponding Face when two other raters responded No
Face). For online quality assurance, each trial had a
one in 30 chance of being a probe. The probe set was
a mixture of 80 author-verified images and an
expanding set of images that had already been
successfully rated by two other raters (who had not
themselves been excluded because of low concordance
with other raters), with author-verified images more
likely to be sampled on earlier trials. If the rater
disagreed with the consensus, they would be given a
warning message. Raters were allowed two mistakes;
a third disqualified them from further participation
and all of their rating data was discarded from final
analyses. Post hoc manual verification by the authors
of a random sample of rated images revealed no false
positives or negatives.

Figure 4. Analysis and interpretation of fixation data. The current study is concerned only with the locations of distinct fixation events,

greatly reducing the amount of data to be analyzed (from 60 to around two samples per second). Since only on-face fixations were

relevant here, data was further refined with the help of human raters on Mechanical Turk. Finally, human raters were again enlisted

to determine the location of the on-face fixations relative to the eyes and mouth.
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Analysis: Crowdsourcing face-fixation location

To quantitatively compare within face-fixation loca-
tion between the laboratory and the real world, we need
to compute the relative fixation metric, c (see Equation 1
in the Analysis section of Methods [Stage I]). In the lab,
this calculation is simple, as the position of the eyes and
mouth are set and known by the experimenter. For the
mobile section, we need to estimate these locations on the
video frames where faces could be present at any
combination of location, pose and size. We again turned
to crowdsourcing with a second Mechanical Turk task.
Raters were shown random frames that were determined
from the first Turk task to have on-face fixations (again
signified by a green dot). If the rater determined that the
image was originally misclassified as face-present in the
first Turk task, a No Face option was available that
recycled the image back to the previous Turk task pool.
Otherwise, raters were first asked to rotate the image
until the face with the dot on it was upright and then
clicked on the center of one of the visible eyes and the
center of the upper lip (the upper lip was chosen so as to
minimize the variability in estimated mouth position due
to plastic changes arising from talking, expressions, etc.;
Figure 4D). The c was then computed as before
(Equation 1). Each image was scored by two raters. If the
raters disagreed by more than 108 of rotation and/or
more than 10% of the eye-to-mouth distance, a third
rater scored the image and the two most similar ratings
were averaged. After the fact, manual verification of a

random sample of rated images showed good agreement
by the raters and no systematic biases.

Results

In-lab initial face-fixation behavior

Across subjects, the initial into-face saccade landed
on average below the eyes (mean 6 standard error of
the mean: c¼ 0.757 6 0.025, t[69]¼ 9.86, p , 0.001)
and left of the midline (v¼0.041 6 0.014, t[69]¼3.02, p
¼ 0.0035; Figure 5). Consistent with past literature,
individuals varied greatly and consistently in the their
preferred face-fixation behavior along the vertical
dimension, ranging from the eye brows (max[c]¼ 1.11
6 0.061) to just above the mouth (min[c]¼0.17 6 .065;
Figure 5; Gurler et al., 2015; Mehoudar et al., 2014;
Peterson & Eckstein, 2013).

An existing independent sample of face-looking
behavior (n ¼ 275) was used to predefine criteria to
categorize the current subject sample into three
groups. ULs fixate higher on the face than 85% of the
total previously sampled population (cUL¼ 0.93), LLs
fixate lower than 85% (cLL ¼ 0.55), with MLs
constituting everybody else. Using this criteria, 11 of
70 subjects were categorized as ULs (15.7%), 14 as
LLs (20.0%), and 45 as MLs (64.3%; Figure 5). The 10
subjects with the best Stage I EyeLink calibration
scores from each group were recalled for the mobile

Figure 5. Stage I (in-lab) initial-fixation behavior for face identification. On the left, each dot represents the mean location, across

trials, of the initial on-face fixation for one subject. Subjects were categorized as UL (orange), ML (white), or LL (teal) according to

predetermined criteria based on previous work. On the right, fixations for each trial (small dots) and the mean across trials (large

dots) for one UL (orange) and one LL (teal).
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condition, resulting in the following c values (mean 6

standard deviation) for each group: ULs: cUL¼ 0.995
6 0.098, MLs: cML¼ 0.815 6 0.133, LLs: cLL¼ 0.326
6 0.183 (Figure 7A).

Real-world face-fixation behavior

Subjects’ distinctive preferred face-fixation behavior
can be appreciated in the example subject videos from
each looking group (Figure 6A): Individuals fixated
predominantly at their preferred region, with occa-
sional fixations on other face regions quickly followed
by a return to the preferred region. Most importantly,
individuals’ preferred real-world fixation regions were
consistent with their laboratory fixations (Figure 6B).
Grouping subjects according to their in-lab behavior,

the data from real-world viewing showed that ULs (cUL

¼ 0.921 6 0.040) looked significantly higher than MLs
(cML ¼ 0.735 6 0.056, t[18] ¼ 2.91, p¼ 0.005) who
looked significantly higher than LLs (cLL ¼ 0.267 6

0.066, t[18] ¼ 5.69, p , 0.001; Figures 6C, 7A).

Relationship between in-lab and real-world

face-fixation behavior

A repeated measures two-way analysis of variance
found significant main effects of looking group (F [2,
27]¼ 65.45, p , .001) and modality (laboratory vs. real
world; F [2, 27]¼ 9.62, p¼ 0.004) on fixation behavior
(c), but not a significant interaction (F [2, 27]¼ 0.28, p¼
0.76; Figure 7A).

Figure 6. Real-world face-fixation behavior for lab-defined ULs, MLs, and LLs. (A) Each video is from one representative subject from

each group, with the white dot denoting gaze position. (B) Dots represent individual on-face fixation events for the same subjects as

(A). (C) Each dot represents the mean location across all on-face fixations for a single subject.
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Across the sample, correlational analysis showed that
an individual’s real-world fixations were strongly pre-
dictive of their laboratory behavior (r[28]¼ .914, p ,

0.001; Figure 7B). This relationship was near ceiling
given the reliability of the each modality’s measurements.
For each of 1,000 bootstrap samples, we randomly split
each subject’s data in half, computed c for each half, and
calculated the correlation between the two halves. The
average split-half reliabilities were r¼0.996 and r¼0.909
for the in-lab and real-world measurements, respectively,
with an average split-half correlation of r¼0.905 between
them (correlation value lower than for the full data set
due to smaller sample sizes).

Discussion

Here we tested whether individual differences in
face-looking behavior, observed previously only in
restricted lab conditions, generalize to the real world.

To answer this question, we measured subjects’ fixation
positions on faces both under controlled lab conditions
and while they walked around the MIT campus. Our
main finding is that face-fixation patterns are remark-
ably similar in the two situations, with an individual’s
lab fixation behavior strongly predicting their real-
world gaze, nearly as well as possible given measure-
ment reliability (Figure 7). These results demonstrate
that the prior lab-based finding of individual differ-
ences in face-fixation behavior generalizes to real-world
vision. They further imply that the superior face
recognition performance when an individual fixates his
or her preferred location (Peterson & Eckstein, 2013)
both reflects, and optimizes, that person’s real-world
face recognition behavior. Taken together, these results
suggest that real-world face recognition entails two
qualitatively distinct stages: face detection in the
periphery and face recognition at the fovea. Finally, the
methods developed here provide a rich dataset of
images that humans have actually experienced during
real-world viewing, including the viewer’s fixation
position on each image, opening up important new
avenues for investigation of the statistics of the images
landing on peoples’ retinas during natural behavior
(RIS), and the tuning of human behavior and neural
representations to those statistics.

Comparing real-world and in-lab eye
movements

The work presented here builds on previous studies
that have sought to characterize how people move their
eyes in naturalistic real-world environments and how
these eye movements relate to those observed under
controlled laboratory conditions. Most mobile eye-
tracking studies have assessed fixation behavior while
subjects execute specific tasks, generally within a single
location (making tea or sandwiches: Hayhoe, 2000;
Hayhoe & Ballard, 2005; Land, Mennie, & Rusted,
1999; driving: Land, 1992; Land & Lee, 1994; visual
search: Foulsham, Chapman, Nasiopoulos, & King-
stone, 2014; Mack & Eckstein, 2011; gaze-cueing:
Macdonald & Tatler, 2013, 2015; social: Einhäuser et
al., 2009; Laidlaw, Foulsham, Kuhn, & Kingstone,
2011; Risko, Laidlaw, Freeth, Foulsham, & Kingstone,
2012). A smaller number of studies have assessed eye
movements in unconstrained natural environments and
behavior (Cristino & Baddeley, 2009; Foulsham,
Walker, & Kingstone, 2011; Hart et al., 2009). In
general, these studies have assessed coarse statistical
trends across groups of subjects (e.g., tendency to fixate
the image center in the lab versus a ‘‘world-center,’’ the
horizon, outside the lab). The improved reliability of
data collection and efficiency of data analysis provided
by the techniques developed here allow for a significant

Figure 7. Relationship between real-world and in-lab face-

fixation behavior. (A) The lab-measured group differences in the

mean location of the initial on-face fixation, from 0 (center of

the mouth) to 1 (center of the eyes), are also observed under

real-world conditions. (B) The conservation of face-gaze

patterns between the lab and the world is consistent at the

individual level across the range of observed behavior.
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expansion of the type and scope of real-world eye
tracking studies (Figures 2 through 4).

Peripheral detection and foveal recognition as
distinct stages of face perception

The evidence presented here suggests that real-world
face recognition entails a systematic sequence of
processing steps in which detection operates in the
periphery in parallel with recognition at the fovea
(Figure 8). According to this hypothesis, the detection
mechanism continuously monitors for the presence of
faces in the visual periphery (Step 1: Detect). Relevant
features of peripheral faces that can be computed with
adequate precision (e.g., location, size, pose, motion)
are then combined to form a retinotopic face priority
map, which is integrated with other social and
nonsocial priority calculations to form a general
attention-guiding priority map (Step 2: Prioritize;
Bisley & Goldberg, 2010; Fecteau & Munoz, 2006; Itti,
Koch, & Niebur, 1998; Koehler, Guo, Zhang, &
Eckstein, 2014). Next, the highest priority location is
selected for subsequent fixation (Step 3: Select). When a
face is selected for the next fixation, the eye movement

system exploits the stereotyped T-shaped configuration
of facial features to precisely target saccades to the
individual’s specific preferred face-fixation position
(Step 4: Saccade). This brings the face image to a
reliable position on the fovea, where it is processed by
specialized recognition mechanisms, shown previously
to be highly retinotopically specific (Step 5: Recognize;
Peterson & Eckstein, 2012). According to this model,
face detection and face recognition are fundamentally
different processes, with detection occurring for faces in
the periphery at a wide range of eccentricities and
positions, and recognition proceeding at the fovea on
faces that are usually centered at a single stereotyped
retinal location. Note that Steps 1–4 (detection,
prioritization, selection, and saccadic targeting of
peripheral faces) likely proceed in parallel with Step 5
(recognition of the currently foveated face).

The model of face perception just sketched can be
tested using the methods developed in the current
study. In particular, we can use our growing database
of natural images our observers experienced (including
their fixation position on those images) to ask: (a)
Where do faces land on the retina in real-world
viewing? (b) What are the features of peripherally
viewed faces that guide selection for saccadic targeting?

Figure 8. Schematic of a parallel peripheral-detection/foveal-recognition model. At any given time, t, the foveal (red) and peripheral

(blue) retinal images are determined by the position of the body, head, and eyes. Peripheral mechanisms are tuned to image

properties that support face detection. Faces likely to contain important visual information are selected and targeted with eye

movements, providing powerful foveal resources for detailed recognition tasks. The eye movement is precise and individual-specific,

eliminating image translation variance and possibly matching retinotopic face representations.
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(c) Is human size invariance for face recognition tuned
to the statistics of retinal face sizes that occur during
natural viewing? The general hypothesis that we can
now test in detail is that the face detection and face
recognition systems are each specifically tuned for task-
specific statistics of experienced natural images.

Retinal image statistics

More broadly, this work makes possible a richer and
more ecologically valid dataset with which to test the
core ideas of Natural Systems Analysis (Geisler,
2008)—that the computations employed by the visual
system are the product of evolutionary optimization for
the sensory evidence (i.e., images) and tasks critical for

survival. A deep understanding of these systems
requires knowledge of the properties of the visual
environment in which they operate (i.e., natural image
statistics; Botvinick, Weinstein, Solway, & Barto, 2015;
Olshausen & Field, 1996; Simoncelli & Olshausen,
2001; Torralba & Oliva, 2003). While the study of
natural image statistics has provided crucial insights
into the computations carried out by the visual system,
the degree to which these images faithfully represent
real-world visual experience is unclear. Prior studies
have typically analyzed sets of narrow FOV static
photographs that have not been selected to reflect
everyday visual experience. Critically, these images do
not have fixation data, a critical missing element given
the radically lower visual acuity in the visual periphery.
The framework presented here simultaneously collects
high resolution, wide FOV video of the visual
environment and corresponding eye movements, al-
lowing us to directly measure the retinotopic images
people experience in everyday life, which we term RIS.
This new database should be applicable to myriad
problems of vision beyond face perception.

Real-world face fixations in impaired
populations

Finally, the methods developed here enable us to
rigorously measure real-world gaze behavior in popu-
lations that may have deficits in face recognition.
Fixation behavior may be a prime determinant of
successful face recognition, yet how those with possible
recognition deficits look at faces in the real world is
largely unknown.

For example, a deficit in the recognition of faces is
frequently reported in Autism Spectrum Disorder
(ASD). While the findings in the literature are
conflicting, most evidence suggests that face recogni-
tion impairments in people with ASD are greater under
natural viewing conditions (e.g., static vs. dynamic,
computer images vs. real faces; Jemel, Mottron, &
Dawson, 2006; Weigelt, Koldewyn, & Kanwisher,
2012). The literature is also conflicting on the question
of whether people with ASD differ from typically
developing (TD) subjects in the way they look at faces,
but avoidance of faces in general and eyes in particular
apparently becomes more pronounced with increasing
naturalism (Gharib, Adolphs, & Shimojo, 2014; Klin,
Jones, Schultz, Volkmar, & Cohen, 2002; Speer, Cook,
McMahon, & Clark, 2007). Most importantly, few
studies have measured gaze behavior on faces in
natural viewing in people with ASD (Magrelli et al.,
2013; Vabalas & Freeth, 2015), and none have done so
on a large scale during normal behavior in uncon-
strained environments. Overall, the evidence suggests
that any differences in face perception between people

Figure 9. Example of fixation validation for a 6-s segment from

one subject’s data. Thin black lines in the top and middle plots

are the raw x and y gaze coordinates, respectively, with thin red

lines denoting the gaze position after bilateral filtering and

interpolation. Above the traces, bars represent the times of

individual fixation events detected by the ASL algorithm (black),

by the new filtering procedure (red), and by hand (blue). The

bottom plot shows instantaneous velocity for the raw (black)

and filtered (red) data, with the dotted gray line denoting the

threshold used for saccade detection.

Journal of Vision (2016) 16(7):12, 1–18 Peterson, Lin, Zaun, & Kanwisher 13

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/935271/ on 11/13/2017



with ASD and TDs should be greatest under these
conditions, which we can test in the future using the
methods developed here.

Another disorder that may be informed by tests of
real-world gaze behavior is developmental prosopag-
nosia (DP), a lifelong deficit in face recognition in the
absence of known neurological damage (Behrmann &
Avidan, 2005; Duchaine & Nakayama, 2006; Zhang,
Liu, & Xu, 2015). The few studies that have examined
face-looking behavior in people with DP have incor-
porated small sample sizes (often a single patient) and
lab viewing conditions (Barton, Radcliffe, Cherkasova,
& Edelman, 2007; Bate, Haslam, Tree, & Hodgson,
2008; Pizzamiglio et al., 2015; Schmalzl, Palermo,
Green, Brunsdon, & Coltheart, 2008; Schwarzer et al.,
2006). A natural hypothesis is that some or all of the
deficits in face recognition in people with DP result
from suboptimal and/or inconsistent looking behavior
on faces, which could disrupt the normal development
of face representations and/or the ability to enact eye
movement strategies that reliably constrain retinotopic
input.

Finally, it is of great interest to understand how,
why, and when individuals acquire their distinct face
gaze behavior. One possibility is that retinotopic
tuning of face representations is present at birth, with
location tuning varying across the population. This
account holds that individuals learn fixation strategies
that are optimized for their specific tuning. A second,
more likely possibility is that face representations are
not strongly tuned to position at birth. Rather,
individuals vary, for whatever reasons, in where they
look on faces. This early retinotopic visual experience
might then guide the learning and development of the

basic structure of face representations. This situation
could create a positive feedback scenario, such that
the performance advantage for fixating a specific
region provides an incentive to maintain this looking
behavior. On this hypothesis, any early disruption of
face-looking behavior could lock in a self-reinforcing
cycle of suboptimal face representations and subopti-
mal face-looking behavior, providing a possible
account of developmental prosopagnosia and/or face
deficits in people with ASD. This hypothesis could
also account for the lifelong face perception deficits in
individuals treated early in life for bilateral or left (but
not right) lateralized congenital cataracts that deprive
face-selective regions in the right hemisphere of
patterned visual input for a brief period after birth (Le
Grand, Mondloch, Maurer, & Brent, 2001, 2003). A
final possibility is that although face representations
are retinotopically specific, the general ability to
encode new faces is not itself tuned to an individual’s
particular fixation preference. Rather, consistently
fixating the same position causes most face memories
to be encoded relative to the individual’s specific
preferred gaze location. According to this hypothesis,
the stability of an individual’s specific face-fixation
behavior optimizes recognition by matching the
retinotopic position of the current face to the
retinotopic positions of previously encoded faces. This
matching hypothesis predicts that individuals should
identify new faces best when they are trained and
tested at the same fixation position. Critically, there
should be no correlation between individual differ-
ences in preferred fixation position and the fixation
position during learning that leads to maximum
recognition performance during test.

Conclusion

In sum, we found that individual differences in face-
fixation behavior reported previously in the lab
generalize to real-world viewing. These findings suggest
a distinction between two components of face percep-
tion: detection of faces in the periphery and recognition
of faces in the fovea. These findings also suggest
possible causes of lifelong deficits in face perception in
people with DP, ASD, and congenital cataracts.
Finally, the methods developed here make possible the
large-scale collection natural images as seen by
humans, including the critical information of fixation
position on each image, a dataset that may open up
important new constraints on natural systems analysis
(Geisler, 2008).

Keywords: mobile eye tracking, eye movements, face
recognition, natural systems, retinal image statistics

Figure 10. Correspondence between each subject’s mean face-

fixation location (c) according to fixations detected by the ASL

algorithm (x-axis, cASL) and the new filtering procedure (y-axis,

cfiltered).
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Appendix

Fixation results were validated by comparing the
position and timing data of the fixations detected by the
ASL algorithm (see Methods [Stage II], Gaze location
and fixation event detection) to fixations detected using
modified versions of two techniques that have been
shown to be robust to high levels of position noise and
frequent periods of lost or unreliable data (Wass et al.,
2012).

First, we reanalyzed all data following a modified
version of the fixation-detection algorithm for unreli-
able eye tracking data described in Wass et al. (2012).
The procedure was as follows: (a) Samples labeled as
missing data, or with out-of-range coordinates (x more
than 328 and/or y more than 248 from the scene camera
center), were labeled as invalid; (b) Valid data was
smoothed with a bilateral filter to reduce small within-
fixation jitter while preserving large saccadic displace-
ments (Durand & Dorsey, 2002; Frank, Vul, &
Johnson, 2009; Stampe, 1993); (c) The mean absolute
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deviation (MAD) in gaze position was calculated
within a six sample (100 ms) sliding window; (d)
Windows with a MAD less than 508/s were classified as
potential fixations, with consecutive qualifying win-
dows concatenated into longer potential fixations; (e)
Potential fixations separated by fewer than nine
consecutive invalid samples (150 ms) were concatenated
if they were displaced by less than 18, with invalid
samples assigned the mean position of the preceding
potential fixation; and (f) Potential fixations were
labeled as valid fixations if they were immediately
preceded and followed by a likely saccade event (MAD
of three preceding/succeeding samples greater than
1008/s) and displaced from the mean of the preceding
and succeeding potential fixations by at least 18.

Second, the authors hand-coded fixation events for a
random sample of data through visual inspection of
gaze position versus time plots (Holmqvist et al., 2011;

Wass et al., 2012) and fixation-overlaid scene camera
video (Figure 6). Fixations were defined as epochs of
relatively stable gaze position preceded and succeeded
by abrupt shifts in gaze.

The two validation procedures were in good
agreement with the automatic ASL algorithm (see
Figure 10 for an example of fixations detected by each
procedure). Both of the validation procedures detected
fewer, and longer, fixations than the ASL, largely due
to the merging of shorter fixations interrupted by brief
false saccade events into longer fixations (Figure 9).
Fixation position did not differ across procedures, and,
critically, the positions of on-face fixations were
unaffected, with strong across subject correlations
between the ASL procedure’s c values and both the
filtering procedure (r¼ 0.95, p , 0.01; Figure 10) and
hand-coding (r ¼ 0.89, p , 0.01).
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