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We present the results of a combined experimental and theoretical study of drop coales-
cence in the presence of an initial temperature difference ∆T0 between a drop and a bath
of the same liquid. We characterize experimentally the dependence of the residence time
before coalescence on ∆T0 for silicone oils with different viscosities. Delayed coalescence
arises above a critical temperature difference ∆Tc that depends on the fluid viscosity: for

∆T0 > ∆Tc, the delay time increases as ∆T
2/3
0 for all liquids examined. This observed

dependence is rationalized theoretically through consideration of the thermocapillary
flows generated within the drop, the bath and the intervening air layer.
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1. Introduction

When a drop falls onto a bath of a miscible liquid, one expects it to coalesce immedi-
ately upon impact. However, such is not always the case, owing to the presence of a thin
lubricating air layer between drop and bath that must drain to a critical thickness before
coalescence is initiated by intermolecular forces (Walker 1978). Careful observation of
raindrops hitting a puddle, lake or sea surface reveal that some millimetric droplets may
bounce, leap and roll along the surface prior to coalescence (Reynolds 1881; Rayleigh
1899). Everyday experience indicates that a temperature difference may further delay
coalescence. When milk is poured into hot tea or coffee, drops may linger on the surface,
levitating there for up to a few seconds before merging.

Coalescence has been studied extensively and the influence of relevant physical quan-
tities (fluid density ρ, surface tension σ, viscosity µ, surface charges, etc.) has been
characterized (e.g., Charles & Mason 1960a,b; Jeffreys & Davis 1971), leading to a
classification of different dynamical regimes (Aryafar & Kavehpour 2006). Advances in
high speed imaging (Thoroddsen & Takehara 2000), experimental techniques (Mohamed-
Kassim & Longmire 2004), and numerical simulations (Blanchette & Bigioni 2006, 2009)
have furthered our understanding of coalescence in various circumstances, including the
effects of concentration-induced Marangoni stresses (Blanchette et al. 2009). The myriad
aspects of coalescence were recently reviewed by Kavehpour (2015).

The influence of thermal effects on drop coalescence has received relatively less at-
tention. A series of experimental studies have examined the non-coalescence of two
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Figure 1. A schematic of thermally-delayed drop coalescence. (a) A drop approaches a bath of
the same liquid with initial temperature difference ∆T0 = Tb − Td. Thermal gradients induce
Marangoni stresses that drive thermocapillary flows within both the liquid and gas phases. (b)
A close-up of the lubrication layer of air between drop and bath.

drops maintained at different temperatures owing to the presence of thermally-induced
Marangoni stresses (Dell’Aversana et al. 1996, 1997; Dell’Aversana & Neitzel 1998).
These studies demonstrate that above a critical temperature difference, coalescence is
precluded by Marangoni stresses driving recirculating flows inside the drops that enhance
the intervening lubrication pressure (as in figure 1), a physical picture supported by the
numerical simulations of Monti et al. (1996) and Monti & Savino (1997). Savino et al.
(2003) confirmed that coalescence of drops floating on a liquid bath could be delayed by a
temperature difference between drop and bath, and the sustenance of the intervening air
film by the associated thermocapillary flows. Neitzel & Dell’Aversana (2002) and Lappa
(2005) have reviewed studies of different aspects of non-coalescence.

While it has been established that the influence of thermocapillary flows in the lubricat-
ing air layer will resist coalescence between two drops with a temperature difference above
some critical value (Neitzel & Dell’Aversana 2002; Savino et al. 2003), no theoretical
model has provided a rationale for this critical temperature difference. Moreover, previous
studies have neither characterized nor rationalized the dependence of the residence time
of a floating droplet (denoted τr henceforth) on the temperature difference between drop
and bath. We focus here on the coalescence of a drop into a bath of the same liquid,
when an initial temperature difference ∆T0 is imposed between the bath and the drop
(figure 1a). In §2 we provide experimental evidence of a functional relationship between
τr and ∆T0. In §3, we rationalize our observations through theoretical consideration of
the thermocapillary flows arising within the drop, the bath and the intervening air layer.

2. Experiments

Consider a drop with initial temperature Td approaching a bath of the same liquid with
temperature Tb (figure 1a). The drop is released sufficiently close to the bath surface that
the effect of its initial velocity is negligible. The initial temperature difference between
the drop and the bath, ∆T0 = Tb − Td, is prescribed. Owing to the dependence of surface
tension σ on temperature T , thermal gradients along the interface result in Marangoni
stresses that drive thermocapillary flows within both the liquid and gas phases, of the
general form sketched in figure 1. The majority of our experiments were performed with
∆T0 > 0, as in the case of a cold milk drop on the surface of hot coffee. We also performed
several experiments with ∆T0 < 0.
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Figure 2. (a) Schematic of the experimental set-up. (b) Image showing a drop sitting on a bath
of 1 cSt silicone oil with ∆T0 = 0 prior to coalescence (see Movie 1). (c) Image captured with a
green laser light sheet reveals a recirculating Marangoni flow within a cold drop (see Movie 2).

Figure 3. Montage of typical experiments for two different silicone oils with kinematic viscosities
(a) νo = 20 cSt and (b) νo = 1 cSt (see also Movie 4 and Movie 5). The first two frames correspond
to drop detachment from the needle (t = 0) and initiation of coalescence (t = τr). Subsequent
images show the coalescence process. The difference between the two sequences is striking: the
20 cSt drop coalesces directly, while the 1 cSt drop executes a coalescence cascade (Thoroddsen
& Takehara 2000) with up to 5-6 daughter droplets, only 2 of which are shown here.

2.1. Materials and Methods

Figure 2a shows a schematic of our experimental set-up. The bath consists of a liquid
pool in a customized square cell of dimensions 3.175 cm by 3.175 cm by 1.9 cm deep. The
cell, with acrylic walls and a metallic substrate, is placed on a dual cold/hot plate (Teca
AHP-301 CPV) that allows for precise control of the temperature at the base of the cell.
The temperature of the bath surface (Tb) and that of the drop (Td) are monitored with
a hand-held thermometer equipped with a K-type thermocouple. In the range of ∆T0
considered, the influence of convective overturning within the bath was negligible. Drops
are dispensed through a needle centred above the cell at a height of approximately one
drop diameter above the bath. The liquid is pushed by a syringe pump at a flow rate of
0.07 ml/min, the drop then gently released onto the bath in order to insure a negligible
approach speed. A BD stainless steel standard bevel needle 16G was used, fixing the
drop radius to be R = 0.6 mm. A Phantom high speed camera, mounted on a 3-axis
positioning stage, recorded each experiment, typically at 2000 fps. Figure 2b shows a
digital video frame of a drop floating on a bath prior to coalescence (see Movie 1). Back-
lighting with a white LED was used in all measurements (see Movie 3), but a halogen
lamp proved more effective in visualizing the rapid dynamics of the coalescence process,
as shown in figure 3 (see also Movie 4 and 5). The residence time τr was measured as
the interval between drop detachment from the needle and the onset of coalescence (see
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Figure 4. (a) Measurements of the residence time τr as a function of the absolute value of the
initial temperature difference |∆T0| for the four different silicone oils considered. Open symbols
represent the cases where ∆T0 < 0. Each data point corresponds to an average over 30 drops and
error bars are equivalent to two standard deviations. (b) The delay time τd, nondimensionalised
by the characteristic thermal diffusion time τth = R2/αo, as a function of the initial Marangoni
number Ma0. Symbols correspond to data from (a). The solid line is the theoretical prediction
from the model described in § 3.2 with β = 1/4. The dashed line is an approximate closed-form

expression derived in the limit of t >
√

3/γ̇.

first two images in figure 3a,b), which is readily identified by the appearance of capillary
waves on the surface of the droplet. The acquisition rate guarantees that the error on
τr is on the order of 1 ms, and so negligible relative to the variability between successive
measurements.

In order to visualize the thermocapillary flow within the drop, the 5 cSt oil was seeded
with TiO2 particles with an average diameter of 3µm. A drop was then formed, pinned in
place by the dispensing needle and illuminated with a green laser sheet (see Movie 2). A
synthetic streak image obtained by superposing 100 digital video frames taken at 30 fps
prior to coalescence is shown in figure 2c. The particle pathlines are clearly evident and
reveal a poloidal motion with characteristic speed of ∼ 5 mm/s in the interior of the drop
for ∆T0 = 5◦C. This vortical circulation is initiated when the droplet detaches from the
needle (see Movie 2). A complementary thermocapillary flow is expected to arise within
the bath (Savino et al. 2003, see figure 1).

Silicone oils allowed us to tune viscosity without substantially altering other
properties of the liquid phase (see table 1 in Kavehpour et al. 2002). Five dif-
ferent silicone oils were tested, with kinematic viscosities (νo) of 1, 5, 10, 20 and
500 cSt. All the oils are assumed to have density ρo = 0.9 g/cm3 and thermal
diffusivity αo = 7 · 10−4 cm2/s. The surface tension is assumed to decrease linearly
with increasing temperature: σ(T ) = σ0 − σT (T − T0) where σ0 = 20 dyn/cm and
σT = ∂σ

∂T = 5 · 10−2 dyn/(cm ◦C). The air is characterized by its dynamic viscosity
µa = 0.018 cP, density ρa = 1.2 · 10−3 g/cm3 and thermal diffusivity αa = 0.2 cm2/s. In
our theoretical developments, density and viscosity are assumed to be independent of
temperature: the only property that changes significantly over the range of temperatures
considered is surface tension.

2.2. Measurements of the residence time

In figure 4a we report the residence times τr for the five oils at different ∆T0. The
dashed line indicates the isothermal reference value that is independent of the oil viscosity
and assumes a nearly constant value τ0r ' 160±50 ms for all liquids considered and for the
given R. Two important features should be noted. First, as in the case of complete non-
coalescence of drops (Dell’Aversana et al. 1996), there is a critical temperature difference
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below which the residence time τr is comparable to τ0r , as indicated by the points lying
close to the reference dashed line. This critical value, henceforth denoted ∆Tc, increases
monotonically with the fluid viscosity. While the 5 cSt oil has ∆Tc ' 1◦C, the 500 cSt
oil has a value of ∆Tc much higher than those accessible with our set-up; thus we never
observed delayed coalescence with this oil. Second, above ∆Tc, for all viscosities the
residence time monotonically increases with the initial temperature difference with a
characteristic power law such that τr ∼ ∆T 0.66±0.10

0 .
To isolate the influence of thermocapillary flows, we introduce the delay time

τd = τr − τ0r and rescale the initial temperature difference in terms of the initial
Marangoni number Ma0 = |∆σo|R/µoαo = |σT∆T0|R/µoαo which prescribes the relative
magnitudes of the characteristic timescales of thermal diffusion and convection within
the drop, respectively τth = R2/αo and τconv = Rµo/(σT∆T0). In figure 4b we recast the
data of figure 4a in terms of these two variables, with the delay time nondimensionlised
by the characteristic thermal diffusion time τth. The data all collapse onto a single
curve that approaches a line with slope 2/3 at large Ma. We note that the threshold
below which no delayed coalescence is observed, previously characterized in terms
of a viscosity-dependent ∆Tc, may now be expressed in terms of a single critical
Marangoni number, Mac ' 100± 50. Consequently, the delay time may be expressed as
τd/τth ' 0.01(Ma0 −Mac)

2/3. We also note that the points in figure 4a with τr ∼ τ0r are
automatically shifted to Ma � Mac and so are beyond the limits of the plot. In order
to rationalize both Mac and the resulting power law scaling of τd with Ma, we proceed
by considering the thermocapillary flows generated within the system.

3. Theoretical modelling

In §3.1, we first describe the air flow in the gap between the drop and the bath using a
lubrication analysis from which the critical Marangoni number Mac is deduced. In §3.2,
we then rationalise the functional relationship between the residence time and the initial
temperature difference through a description of the mixing dynamics within the drop.

3.1. Lubrication flow within the air gap

Our analysis rests on a series of simplifying assumptions. Figures 2b and c suggest that
the geometry of the flow is non-trivial due to the bath curvature induced locally by the
drop’s weight. Previous studies (Dell’Aversana et al. 1997; Neitzel & Dell’Aversana 2002;
Savino et al. 2003) have pointed out that in these conditions the underside of the drop
may deform such that the height of the gap is not constant. We avoid such geometrical
complexities by treating the gap as a cylindrical disk with height h(t) and radius Rd,
where Rd = R2/lc is the effective contact radius (Mahadevan & Pomeau 1999), and
lc =

√
σ/ρog is the capillary length of the oil; an approximation one expects to be valid

provided Bo = ρogR
2/σ < 1. In our experiments Bo = 0.17 and Rd = 0.25 mm ' 0.4R.

The initial height of the gap is h(0) and h(t)� (R,Rd) at all times.
We also assume that Rea(h/R)� 1, where Rea = ρaV h0/µa is the Reynolds number of

the air flow, so that the lubrication approximation can be invoked and the Navier-Stokes
equations simplified to:

0 ' −∂p
∂r

+ µa
∂2vr
∂z2

, 0 ' −∂p
∂z

(3.1)

where p is the pressure field and vr the radial velocity. While both boundaries are free,
µo/µa � 1 so we can apply no-slip boundary conditions, specifically vr(0) = vb, the
surface speed of the bath, and vr(h(t)) = vd, the surface speed of the drop. Note that
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vb and vd can be positive or negative depending on the sign of ∆T0. If ∆T0 > 0, vb < 0
while vd > 0, and vice versa (see figure 1). In isothermal conditions, one may assume that
vb = 0 = vd, and the problem reduces to the classic lubrication squeezing flow between
two parallel disks (Stefan 1874). However, in the presence of thermal gradients, both
interfaces have radial flows driven by Marangoni stresses with characteristic magnitude
U0 ∼ σT∆T/µo, leading to the following mixed Couette-Poiseuille velocity profile within
the gap:

vr(r, z) =
1

2µa

(
−∂p
∂r

)
[zh− z2] + (vd − vb)

z

h
+ vb. (3.2)

After imposing conservation of mass for a control volume within the gap and the
kinematic boundary condition vz = −ḣ at z = h, one can use the velocity profile to
derive an ODE for the pressure field:

−∂p
∂r

=
6µa(−ḣ)

h3
r +

6µa∆v

h2
, (3.3)

where ∆v = −(vd+ vb) > 0 regardless of the sign of ∆T0 (Monti et al. 1996). Integrating
equation (3.3) with the boundary condition p(Rd) = pa yields:

p(r)− pa =
3µa(−ḣ)

h3
(R2

d − r2) +
6µa∆v

h2
(Rd − r). (3.4)

The form of the pressure field indicates that the Marangoni flow augments the pressure
within the gap, thus resisting the settling of the drop, independent of the sign of ∆T0.
Assuming that the drop acceleration is negligible, so that its weight is supported quasi-
statically by the pressure field, we deduce:

ρo
4

3
πR3g = 2π

∫ Rd

0

[p(r)− pa] rdr =
3πµaR

4
d

2h3
(−ḣ) +

2πµaR
3
d∆v

h2
. (3.5)

We thus obtain an ODE for the height of the gap h(t). We define a dimensionless height
h? = h/h0, and a dimensionless time t? = t/τs, where τs = 9µaR

4
d/(16ρogR

3h20) is the
characteristic settling time that would arise in the absence of thermocapillary effects. A
balance between thermocapillary and viscous stresses at the interface allows us to express
∆v as ∆v = K|σT∆T |/µ0, with K ∼ O(1). In the absence of direct measurements of the
surface velocity, we set the constant K to unity. We thus write the ODE in dimensionless
form as:

−∂h
?

∂t?
= h?

(
h?2

2
− 4

3

τs
τth

R

Rd
Ma

)
, (3.6)

where τth = R2/α0 is the thermal diffusion time and Ma = |σT∆T |R/µoαo is the
Marangoni number. Under isothermal conditions (Ma = 0), equation (3.6) yields the
well-known solution h?(t?) = 1/

√
1 + t? for squeezing flow between two disks under

constant force (Stefan 1874).
If Ma 6= 0, equation (3.6) indicates that there is a critical value Mac above which

the gap height does not decrease in time. Using values of fluid properties listed in
§2.1 and an estimated initial height of h0 = 1.5µm (Monti & Savino 1997) we obtain
τs = 0.0078 s and τth = 5.14 s, which gives Mac = 3τthRd/(8τsR) ' 100, in good
agreement with the experimental results. The value of Mac can be used to estimate
∆Tc for any viscosity. In particular, for νo = 5 cSt the critical temperature difference is
∆Tc = Macµoαo/σTR ' 1◦C, in agreement with our experiments, while for νo = 500 cSt,
∆Tc ' 115◦C, which is well beyond the maximum accessible ∆T0 and so again consistent
with our experiments. We further note that the exact value of Mac depends on the
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Figure 5. (a) Streamlines (blue) and velocity field (red) of the potential flow solution
corresponding to Hill’s spherical vortex. (b) Simulation of a fluid element being deformed and
convected with the assumed potential flow (with ∆T0 = 10◦C, ν0 = 5 cSt, see also Movie 6).
The accompanying schematic indicates the reference system of eq. (3.9). (c) Predicted decay
of temperature obtained through eq. (3.12) for ∆T0 = 26◦C and ν0 = 5 cSt (solid black line).

Approximation of the solution for early times (t→ 0, solid blue line) and for long times (t>
√

3/γ̇,
dashed red line).

quantities h0 and K which have only been estimated here. Precise measurements of both
would be required for a more accurate estimate of Mac.

3.2. Mixing and its effect on the residence time

The flow induced by Marangoni stresses acting on the air within the gap accounts
for the existence of a critical Marangoni number. To rationalize the dependence of the
thermal delay time on ∆T0, we need to estimate the time required for such stresses to
diminish, i.e., for temperature differences to decrease such that Ma < Mac. Formally, this
requires the combined solution of the energy equation and the Navier-Stokes equations.
However, a relatively expedient route may be found with appropriate simplifications.

Figure 2c provides direct evidence of convection and the resulting thermal homogenisa-
tion by highlighting the recirculating flow inside the drop prior to coalescence. Assuming
that the characteristic velocity is that of the interface U0 ∼ |σT∆T0|/µo, one obtains an
estimate of the convective time-scale τconv ∼ R/U0 ∼ Rµo/|σT∆T0| ∼ τth/Ma0. Given
that Ma0 >Mac ' 100, we infer that τconv � τth so that convection dominates in the
initial stages of thermalisation. This suggests that when the drop gets close to the bath
its lower extremities are warmed up (or cooled down, depending on the sign of ∆T0) and
a poloidal convective motion is established that rapidly transports these fluid elements
while deforming them into elongated filaments, or lamellae. Only on longer time scales
does thermal diffusion become effective and the drop equilibrate thermally.

A mathematical framework to study related advection-diffusion problems has been
developed in the context of mixing by Ottino et al. (1979) and Ranz (1979), and recently
applied by Meunier & Villermaux (2003) to describe scalar mixing in an axisymmetric
vortex flow. In the following, we apply this method to the case of thermal homogenisation
within the drop, assuming that a roughly symmetric process is also taking place in the
bath (Savino et al. 2003). We assume that the velocity field is expressible in terms of the
Hill’s spherical vortex (Batchelor 1967, p. 237). Defining a dimensionless velocity field as
v? = v/Ū , where Ū is a characteristic velocity proportional to U0 and a dimensionless ra-
dial coordinate as r? = r/R, the dimensionless velocity components for this potential flow
are v?r = −(1− r? 2) cos θ and v?θ = (1− 2r? 2) sin θ, which are plotted together with the
streamlines (ψ? = 1/2(r? 2 − 1)r? 2 sin2 θ = const) in figure 5a. From these expressions,
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we compute the dimensionless strain rate tensor within the drop:

e? =

(
2r? cos θ −3/2r? sin θ
−3/2r? sin θ −r? cos θ

)
. (3.7)

Accounting for the evident spatial variations would substantially complicate the analysis;
hence, we consider an average flow by performing an area-weighted average of the local
shear rate tensor over all angles θ in the range [0, π], obtaining

〈e?〉 =
1

π

∫ π

0

∫ 1

0

e? r?dθdr? =

(
0 −1/π
−1/π 0

)
. (3.8)

Equation (3.8) suggests that, on average, each element of fluid is undergoing a shear flow.
To find the dimensional average shear rate γ̇ we consider the shear rate at the interface to
be that imposed by the gradient in surface tension,γ̇R = (∂σ/∂θ)/2µoR = |σT∆T |/2Rπµo.
Computing the maximum shear rate at the interface (r? = 1, θ = π/2) from equa-
tion (3.7), we deduce Ū = U0/3π. Following the method introduced by Ottino et al.
(1979), we write the energy equation in the frame of reference (X,Y ) of a material
element that is convected and deformed as shown in figure 5b. Neglecting variations in
the X-direction, we write:

∂T

∂t
+ V

∂T

∂Y
= αo

∂2T

∂Y 2
. (3.9)

The velocity field V can be written in terms of the thickness of the lamella s(t) based
on the rate of stretching ε̇ = d ln s(t)/dt as V = ε̇Y . For a flow dominated by shear,

s(t) = s0/
√

1 + γ̇2t2, where s0 is the initial size of the blob of fluid that has been warmed
up (or cooled down) to a temperature close to Tb as the drop approaches the bath.
An estimate of s0 can be derived by considering that convection can be induced only
when a temperature gradient is established on the drop surface. Consequently, s0 is
prescribed by the local balance, at early times, between diffusion from the bath, at a rate
α0/(d`)

2 with d` ∼
√
αot independent of the temperature difference, and deformation by

Marangoni stresses, at a rate |σT∆T0|/(µos0). When |σT∆T0|/(µos0) > α0/(d`)
2,that is

for s0 ' Ma0(d`)2/R, the fluid blob will start moving. As convection is established, this
initial blob of fluid at T ∼ Tb is stretched into a thin lamella that is wrapped around the
drop (see Movie 6). Ultimately, the drop is characterized by a series of alternating warm
and cold layers.

By changing variables such that ξ = Y/s(t) and τ =
∫ t
0
αo/s

2(t′)dt′, we can reduce
equation (3.9) to:

∂θ

∂τ
=
∂2θ

∂ξ2
, (3.10)

where θ = (Tb−T )/∆T0 and ξ ∈ [−1/2, 1/2]. The change of variables effectively rescales
the convection-diffusion equation in order to capture the correct length- and time-scales
over which thermalisation acts, specifically those of a stretching and thinning lamella.
By definition, convection dominates diffusion when τ � 1. As τ approaches O(1), the
two become comparable so that conduction across the lamella becomes important.

To characterise the thermal equilibration of the drop, we solve equation (3.10) from
the perspective of a lamella originally at Td, in contact at its boundaries with fluid at Tb.
In terms of dimensionless quantities this means that θ(τ = 0) = 1 inside the lamella (for
|ξ| < 1/2), and θ(τ = 0) = 0 outside (for |ξ| > 1/2). The resulting analytical solution
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of 3.10 thus emerges:

θ(ξ, τ) =
1

2

[
erf

(
ξ + 1/2

2
√
τ

)
− erf

(
ξ − 1/2

2
√
τ

)]
. (3.11)

From equation (3.11) we can compute the evolution of the maximum temperature
difference arising at the centre of the lamella ξ = 0:

θM (0, t) =
∆Tlamella(t)

∆T0
= erf

(
1

4
√
τ(t)

)
= erf

(
s0

4
√
αot+ αoγ̇2t3/3

)
. (3.12)

Equation (3.12) is plotted in figure 5c for the case of ∆T0 = 26◦C and νo = 5 cSt.
The temperature difference is initially constant since fluid elements are first convected
and deformed into lamellae before diffusion becomes significant. When 4

√
τ ∼ 1, thermal

diffusion acts effectively across the thickness of the lamella, altering the local temperature
and ultimately leading to thermal homogenisation of the drop. At long times equa-
tion (3.12) shows that ∆T (t)lamella ∼ ∆T0

√
3/(4παo)(s0/(γ̇t

3/2)). This suggests that the

delay time should scale as τd ∼ ∆T 2/3
0 ∼ Ma

2/3
0 . We note that the same scaling applies

provided the kinematics of the flow field do not have elongational characteristics such
that fluid elements separate exponentially quickly in time.

Using equation (3.12) for a fixed viscosity, we can obtain an estimate for the delay
time as a function of ∆T0. We expect the temperature difference across a lamella before
coalescence (at t ' τd) to be comparable to the critical temperature difference measured
for the entire drop at uniform temperature, i.e., ∆Tlamella(τd) = β∆Tc with β ∼ O(1).
The resulting estimate for the delay time τd obtained by solving this nonlinear equation is
shown in figure 4b with a solid curve computed with β = 1/4. Comparison with the data
shows that, notwithstanding the simplifying assumptions, our analytical model effectively
captures the main physical phenomena, rationalizing the observed dependence of τd on
Ma0. Finally, we note that a closed form for τd can be obtained from∆Tlamella(τd) = β∆Tc
in the limit t >

√
3/γ̇. In this case we have τ̃d = (

√
3∆T0s0/(

√
4πα0β∆Tcγ̇))2/3, as shown

as a dashed line in figure 4b. As Ma0 → Mac, this approximation is no longer valid
because it is based on the neglect of the linear term in t in equation (3.12) that becomes
significant for small γ̇.

4. Summary and Conclusions

We have investigated the role of temperature differences between drop and bath in
delaying drop coalescence. Experiments indicate a minimum temperature difference,
dependent on the oil viscosity, below which no appreciable difference with the isothermal
case exists and above which the residence time increases as a function of the initial
temperature difference. We have demonstrated that the observed behaviour is described
by a unique curve: above a critical Marangoni number Mac the delay time τd increases
as τd/τth ∼ (Ma0 −Mac)

2/3.
By analysing the lubrication air flow within the gap, we have shown that the critical

Marangoni number is prescribed by the minimum velocity that must be established for
the pressure field, induced by the recirculating air flow within the gap, to sustain the
drop’s weight. Due to the symmetry of the pressure field, the effect is independent of
the sign of ∆T0, as indicated by our experiments. By considering the kinematics of
thermal mixing in a frame deforming with the fluid elements, we have calculated the
characteristic time-scale for thermal homogenisation within the drop, rationalising the
observed dependence of τd on Ma0 (and therefore on ∆T0).
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Our study suggests that a similar formulation can be applied to the case of drop
flotation (Savino et al. 2003) and also to the case of impinging drops (Dell’Aversana
et al. 1996) provided the drop weight is replaced by the applied load. The onset of the
coalescence cascade should be delayed but otherwise largely unaffected by an initial
temperature difference between the mother droplet and the bath. Once the first drop
has coalesced following the thermal mixing process elucidated here, the temperature of
its daughter droplets should be comparable to that of the bath. Finally, we note that
thermally-delayed drop coalescence may prove useful in levitating drops on vibrating
baths (Bush 2015).
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