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The p-parity conjecture for
elliptic curves with a p-isogeny

By Kęstutis Česnavičius at Cambridge, MA

Abstract. For an elliptic curve E over a number field K, one consequence of the Birch
and Swinnerton-Dyer conjecture is the parity conjecture: the global root number matches
the parity of the Mordell–Weil rank. Assuming finiteness of X.E=K/Œp1� for a prime p
this is equivalent to the p-parity conjecture: the global root number matches the parity of
the Zp-corank of the p1-Selmer group. We complete the proof of the p-parity conjecture
for elliptic curves that have a p-isogeny for p > 3 (the cases p � 3 were known). Tim and
Vladimir Dokchitser have showed this in the case whenE has semistable reduction at all places
above p by establishing respective cases of a conjectural formula for the local root number.
We remove the restrictions on reduction types by proving their formula in the remaining cases.
We apply our result to show that the p-parity conjecture holds for everyE with complex multi-
plication defined over K. Consequently, if for such an elliptic curve X.E=K/Œp1� is infinite,
it must contain .Qp=Zp/2.

1. Introduction

If E is an elliptic curve defined over a number field K, its completed L-series is
conjectured to have a holomorphic continuation ƒ.E=K; s/ to the whole complex plane, and
to satisfy a functional equation

(1) ƒ.E=K; 2 � s/ D w.E=K/ƒ.E=K; s/:

Here w.E=K/ 2 ¹˙1º is the global root number of E=K. It can be given a definition indepen-
dent of (1) as the product

(2) w.E=K/ D
Y

v place ofK

w.E=Kv/

of local root numbersw.E=Kv/ 2 ¹˙1º (hereKv is the completion ofK at v), withw.E=Kv/
defined as the root number of the Weil–Deligne representation associated to E=Kv if v −1,
and w.E=Kv/ D �1 if v j 1 (cf., for instance, [Roh94]).

Granting holomorphic continuation of ƒ.E=K; s/, the Birch and Swinnerton-Dyer
conjecture (BSD) predicts that

(3) ordsD1ƒ.E=K; s/ D rkE.K/;
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46 Česnavičius, The p-parity conjecture for elliptic curves with a p-isogeny

where rkE.K/ WD dimQE.K/˝Q is the Mordell–Weil rank of E=K. Combining (1) and (3)
one gets

Conjecture 1.1 (Parity conjecture). One has .�1/rkE.K/ D w.E=K/.

The parity conjecture is more approachable than BSD, and Tim and Vladimir Dokchitser
have showed [DD11, Theorem 1.2] that it holds if one assumes that the 2- and 3-primary parts
of the Shafarevich–Tate group X.E=K.EŒ2�// are finite (K.EŒ2�/ is the smallest extension
of K over which the 2-torsion of E is rational).

If one hopes for unconditional results, then one is led to consider the p1-Selmer
rank rkp.E=K/ instead of rkE.K/ for each prime p. To define it one takes the exact sequence

(4) 0! E.K/˝Qp=Zp ! lim
�!

Selpn.E=K/!X.E=K/Œp1�! 0

and lets
rkp.E=K/ WD dimQp HomZp .lim�!

Selpn.E=K/;Qp=Zp/˝Zp Qp

be the Zp-corank of the p-primary torsion abelian group lim
�!

Selpn.E=K/. From (4) one gets

(5) rkp.E=K/ D rkE.K/C rp.E=K/;

where rp.E=K/ is the Zp-corank of X.E=K/Œp1� (equivalently, rp.E=K/ D the number of
copies of Qp=Zp in X.E=K/Œp1�). Since X.E=K/ is conjectured to be finite [Tat74, Con-
jecture 1] (to the effect that rp D 0), Conjecture 1.1 leads to

Conjecture 1.2 (p-parity conjecture). One has .�1/rkp.E=K/ D w.E=K/:

The p-parity conjecture is known ifK D Q thanks to the work of Nekovář [Nek06, Sec-
tion 0.17], Kim [Kim07, Theorem 1.4], and T. and V. Dokchitser [DD10], and also if K is
totally real excluding some cases of potential complex multiplication [Nek09], [Nek12, Theo-
rem A], [Nek14, Section 5.12]. Over arbitrary K and for arbitrary p the following theorem
of T. and V. Dokchitser is the most general result currently known (one can weaken the as-
sumptions on reduction types above p somewhat, see Theorem 1.16).

Theorem 1.3 ([DD08, Theorem 2] and [DD11, Corollary 5.8]). The p-parity conjecture
holds for E=K provided that E has a p-isogeny (defined over K) and either p � 3 or E has
semistable reduction at all places of K above p.

The main goal of this paper is to remove the semistable hypothesis in Theorem 1.3.
Namely, we complete the proof of the following result.

Theorem 1.4 (Sections 1.13, 2.20 and 2.21, and Theorem 5.26). The p-parity conjec-
ture holds for E=K provided that E has a p-isogeny.

In fact, both the global root number and the parity of the p1-Selmer rank do not change
in an odd degree Galois extension [DD09, Proposition A.2 (3)], so this gives a slightly stronger

Theorem 1.40. Thep-parity conjecture holds forE=K provided that the elliptic curveE
acquires a p-isogeny over an odd degree Galois extension of K.
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Since rkE.K/ D rkp.E=K/ is equivalent to finiteness of the group X.E=K/Œp1�, from
Theorem 1.40 we get

Corollary 1.5. The parity conjecture holds for E=K provided that the elliptic curve E
acquires a p-isogeny over an odd degree Galois extension of K and X.E=K/Œp1� is finite.

Implications for elliptic curves with complex multiplication. I thank Karl Rubin for
pointing out to me that one corollary of Theorem 1.4 is

Theorem 1.6 (Theorem 6.4). Let E be an elliptic curve defined over a number field K,
and suppose that EndK E ¤ Z, i.e., that E has complex multiplication defined over K. Then
the p-parity conjecture holds for E=K for every prime p.

Remark 1.7. If E is an elliptic curve over a totally real field L with complex multipli-
cation (necessarily defined over a non-trivial extension of L), the p-parity conjecture for E=L
has been established by Nekovář [Nek12, Theorem A] in the cases where 2 − ŒL W Q� or p splits
in .EndLE/˝Q.

If E=K is as in Theorem 1.6, then F WD .EndK E/˝Q is an imaginary quadratic field
and E.K/˝Q is an F -vector space. Consequently, rkE.K/ D dimQE.K/˝Q is even.
This is half of

Theorem 1.8 (Proposition 6.3). If E has complex multiplication defined over K, then
the parity conjecture holds for E=K. More precisely, rkE.K/ is even and w.E=K/ D 1.

Since w.E=K/ D 1, Theorem 1.6 tells us that rkp.E=K/ is even. Therefore, from (5)
we obtain that rp.E=K/ is even as well. Concerning the conjectural finiteness of X.E=K/,
this gives

Theorem 1.9. If E has complex multiplication defined over K and X.E=K/Œp1� is
infinite, then X.E=K/Œp1� contains .Qp=Zp/2.

If X.E=K/div denotes the divisible part of the Shafarevich–Tate group

X.E=K/ ŠX.E=K/div ˚ .X.E=K/=X.E=K/div/;

then from the Cassels–Tate pairing [Cas62] one knows that dimFp .X.E=K/=X.E=K/div/Œp�

is even. As dimFp X.E=K/div Œp� D rp.E=K/, we obtain

Theorem 1.10. If E has complex multiplication defined overK, then the Fp-dimension
of X.E=K/Œp� is even.

Theorem 1.10 is a special case of the following weaker version of the Shafarevich–Tate
conjecture:

Conjecture XTp.K/ ([MR10, p. 545]). For every elliptic curve E=K, the Fp-dimen-
sion of X.E=K/Œp� is even.
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For an application of Conjecture XTp.K/ to Hilbert’s Tenth Problem, see [MR10, The-
orem 1.2].

The strategy of proof of Theorem 1.4. It is known (see Section 1.13) that a con-
jectural formula of T. and V. Dokchitser (Conjecture 1.12) for the local root number implies
Theorem 1.4 if p > 2. In fact, Theorem 1.3 was proved in [DD08, Section 5] and [DD11]
for p � 3 by establishing appropriate cases of this formula (recalled in Section 2). We intro-
duce it after the following preparations.

1.11. The setup. Let Kv (to be renamed K from Section 2.1 on) be a local field of
characteristic 0 and let E=Kv be an elliptic curve with a (Kv-rational) isogeny

E
�
�! E 0

of prime degree p � 3. Let

 WGal.Kv=Kv/! Aut.EŒ��/ Š F�p

be the character giving the Galois action on the kernel EŒ�� of the isogeny and let

Kv; D Kv.EŒ��/

be the fixed field of ker . We denote by �vWE.Kv/! E 0.Kv/ the map onKv-points induced
by � and note that the long exact cohomology sequence for � tells us that # coker�v is finite.
Thus it is legitimate to set

��v D .�1/
ordp

�
# coker�v
# ker�v

�
;

where ordp a is the p-adic valuation of a 2 Q�. Denoting by . ;�1/v the Artin symbol
defined by

(6) . ;�1/v D

´
1; if � 1 is a norm in Kv; =Kv;

�1; if not;

(see Section 2.13 for another description), we are ready to state

Conjecture 1.12 (p-isogeny conjecture [DD11, Conjecture 5.3]). One has

w.E=Kv/ D . ;�1/v � ��v :

1.13. Conjecture 1.12 implies Theorem 1.4 for p � 3. A well-known global arith-
metic duality argument using the Cassels–Poitou–Tate exact sequence (see, for instance,
[CFKS10, Theorem 2.3]) shows that for p � 3

.�1/rkp.E=K/ D
Y

v place ofK

��v ;

almost all factors on the right hand side being 1. Hence, Conjecture 1.12, the product formula
for the Artin symbol from global class field theory, and (2) imply Theorem 1.4 if p � 3.
Conjecture 1.12 has been settled in many cases, including the case p D 3 (see Section 2.22
and Theorem 5.2 for a summary of known cases); to prove Theorem 1.4 we settle the remain-
ing cases, hence completing the proof of the following theorem.

Theorem 1.14 (Theorem 5.26). The p-isogeny conjecture is true for p > 3.
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1.15. Progress to date. Using the work of Breuil [Bre00, Theorem 2.1] on classifica-
tion of finite flat group schemes, Coates, Fukaya, Kato, and Sujatha have proved both a version
of Theorem 1.4 in [CFKS10] and a version of Conjecture 1.12 in [CFKS10, Theorem 2.7]
for abelian varieties of arbitrary dimension. Unfortunately, their methods require a set of
hypotheses that exclude some cases of Conjecture 1.12. For elliptic curves and p > 3 their
results give

Theorem 1.16 ([CFKS10, Corollary 2.2]). For p > 3, the p-parity conjecture holds
forE=K ifE has a (K-rational) p-isogeny, and if at each place v above p one of the following
is true:

(a) E has potentially good ordinary reduction at v,

(b) E has potentially multiplicative reduction at v,

(c) E achieves good supersingular reduction after a finite abelian extension of Kv.

We make essential use of both the results and the methods of Coates, Fukaya, Kato, and
Sujatha in Section 5 to settle Conjecture 1.12 in the case of a place v j p of additive reduction
of Kodaira type III or III�. In all other cases the proof is independent of Theorem 1.16.

1.17. The contents of the paper. In Section 2 we recall known cases of Conjecture 1.12
and indicate how Theorem 1.4 was proved by T. and V. Dokchitser if p � 3 (see Sections 2.20
and 2.21). We prove in Section 3 that the p-isogeny conjecture is compatible with making
a quadratic twist. The work of Section 3 is used in Section 4, where we settle all the remain-
ing cases of Conjecture 1.12 except those of Kodaira types III or III�. These are taken up in
Section 5 where we make use of the results and methods of Coates, Fukaya, Kato, and Sujatha
to finish our proof. In Section 6 we prove Theorems 1.6 and 1.8 that concern elliptic curves
with complex multiplication.

1.18. Conventions. (See also Section 2.1 for a notational setup that is valid from
Section 2 on.) Whenever we work with algebraic extensions of a (global or local) field K,
they are implicitly assumed to lie inside a fixed separable closure K of K. Given a global
field K and a place v, we implicitly fix an embedding K ,! Kv and get the corresponding
inclusion of a decomposition group Gal.Kv=Kv/ ,! Gal.K=K/. For a finite flat group scheme
(such as EŒ��) over a field K of characteristic 0, we confuse it with its associated Galois
representation (such as EŒ��.K/) whenever it is convenient to do so. If E is an elliptic curve
over a field K, we sometimes write E=K to emphasize the base; if L=K is a field extension,
then E=L denotes the corresponding base change E �SpecK SpecL. We also make use of the
subscript notation to denote base change: for instance,EŒ�� is aK-scheme, andEŒ��L denotes
the base change EŒ�� �SpecK SpecL.

Acknowledgement. I thank my advisor Bjorn Poonen for his support and many helpful
conversations and suggestions, as well as for reading the manuscript very carefully. I thank
Tim Dokchitser for his lectures at the Postech Winter School 2012 in Pohang, South Korea
which got me interested in the question answered by this paper, and for pointing out to me
Theorem 4.6. Thanks are also due to POSTECH and the organizers of the winter school for
an inspiring and hospitable atmosphere. I thank Karl Rubin for telling me that Theorem 1.6
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follows from Theorem 1.4. I thank Douglas Ulmer for a very helpful conversation about the
technique of twisting. I thank Tim Dokchitser, Jessica Fintzen, Jan Nekovář, and Bjorn Poonen
for comments. I thank the anonymous referee for suggestions and a careful reading of the
manuscript.

2. Known cases of the p-isogeny conjecture

We have seen in Section 1.13 that Theorem 1.4 follows once we establish the p-isogeny
conjecture (Conjecture 1.12). In this section we recall some of the known cases of the
latter (Sections 2.3–2.4, Sections 2.10–2.12, Sections 2.17–2.20), all of which are due to T. and
V. Dokchitser [DD08, Section 5], [DD11]. In the cases of Section 2.11 and Section 2.19 minor
simplifications are provided by Corollary 2.15 and the results of Section 3. Since for the rest
of the paper we will be working in a local setting, we first change the notation of Section 1.11
slightly (see also Section 1.18 for other conventions). We also recall the classification of local
root numbers of elliptic curves in Theorem 2.2. In Section 2.21 we discuss the case p D 2
which is excluded from Conjecture 1.12.

2.1. The setup. From now on, K denotes a local field of characteristic 0 (which is
assumed to be nonarchimedean from Section 2.5 on). If K is nonarchimedean, we write v
(or vK) for its normalized discrete valuation, OK for the ring of integers, mK for the maximal
ideal, �K for a uniformizer, and FK for the residue field. If L=K is a finite extension of non-
archimedean local fields, we write eL=K and fL=K for the ramification index and the degree
of the residue field extension, respectively. Let E=K be an elliptic curve with a (K-rational)
p-isogeny �WE ! E 0 for a prime p � 3. The map on K-points induced by � is denoted
by �K WE.K/! E 0.K/. We write K for the fixed field of the kernel of the Galois character

 WGal.K=K/! Aut.EŒ��/ Š F�p :

We write . ;�1/K , instead of . ;�1/v, for the Artin symbol (6). Conjecture 1.12 becomes

(7) w.E=K/
‹
D . ;�1/K � ��K :

Theorem 2.2 ([Roh96, Theorem 2], [Kob02, Theorem 1.1], reformulated in [DD10, The-
orem 3.1]). Let E be an elliptic curve over a local field K. Then

(a) w.E=K/ D �1 if K is archimedean.

If K is nonarchimedean, then:

(b) w.E=K/ D 1 if E has good or non-split multiplicative reduction,

(c) w.E=K/ D �1 if E has split multiplicative reduction,

(d) w.E=K/ D .�1FK
/ if E has additive potentially multiplicative reduction and char FK > 2

(here .�1FK
/ is 1 if �1 2 F�2K and �1 otherwise),

(e) w.E=K/ D .�1/bv.�/ � #FK=12c if E has potentially good reduction and char FK > 3

(here � is a minimal discriminant of E).

We now begin the proof of (7).
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2.3. The case K D C. Since EŒ�� � E.C/ and coker�K D 0, one has . ;�1/K D 1
and ��K D �1. Since K is archimedean, w.E=K/ D �1, and (7) holds.

2.4. The case K D R. Since coker�K is 2-torsion, p � 3, and # ker�K D 1 or p,
we have ��K D 1 or ��K D �1, respectively. Accordingly, K D C or K D R, so by (6),
. ;�1/K D �1 or . ;�1/K D 1. Since w.E=K/ D �1, (7) holds in both cases.

Since the archimedean cases of (7) have been dealt with in Sections 2.3–2.4, we assume
from now on that K is nonarchimedean.

2.5. If f WA! A0 is a homomorphism of abelian groups, we write �.f / for # cokerf
# kerf .

Whenever we do so, it is implicitly assumed that the quotient makes sense, i.e., that kerf and
cokerf are both finite. With this notation, ��K D .�1/

ordp �.�K/. We state several elementary
properties of �.f / that will be used later.

Proposition 2.6. Given a morphism of short exact sequences

0 // A //

f

��

B //

g

��

C

h
��

// 0

0 // A0 // B 0 // C 0 // 0,

one has �.g/ D �.f /�.h/.

Proof. The proposition follows from the snake lemma.

Proposition 2.7. If f WA! A0 and A;A0 are finite, then �.f / D #A0
#A .

Lemma 2.8. Let f WK� ! K� be the pth power map. Then

�.f / D

´
p; if char FK ¤ p,

p1CŒKWQp�; if char FK D p.

Proof. A choice of a uniformizer �K gives K� Š Z �O�K , so

�.f / D p � �
�
O�K

f
�! O�K

�
by Proposition 2.6. If one uses the filtration of O�K by higher units together with the logarithm
isomorphism 1Cmn

K Š mn
K for big enough n, from Propositions 2.6 and 2.7 one gets

�
�
O�K

f
�! O�K

�
D �.p/;

where pWmn
K ! mn

K is the multiplication by p map. Observe that the latter is an isomorphism
if char FK ¤ p; if char FK D p, one has �.p/ D pŒKWQp�.

2.9. Another description of ��K
. Let E0.K/ � E.K/ be the subgroup consisting of

points whose reduction lies in the identity component eE0 of the special fiber eE WD E �OK FK
of the Néron model E=OK of E=K. The reduction homomorphism

E.K/ Š E.OK/
r
�! eE.FK/
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52 Česnavičius, The p-parity conjecture for elliptic curves with a p-isogeny

is surjective because E=OK is smooth and OK is henselian [BLR90, Section 2.3, Proposition 5],
so

E.K/=E0.K/ Š eE.FK/=eE0.FK/;
which is finite. The order ofE.K/=E0.K/ is the local Tamagawa factor cE=K . The kernel of r
is denoted by E1.K/, so E0.K/=E1.K/ Š eE0.FK/. The cardinality of the latter is invariant
with respect toK-rational isogenies: this can be seen, for instance, from the isogeny invariance
of the local L-factor L.E=K; s/ which encodes #eE0.FK/. Applying Propositions 2.6 and 2.7
to

0 // E0.K/ //

�0
��

E.K/ //

�K
��

E.K/=E0.K/

��

// 0

0 // E 00.K/
// E 0.K/ // E 0.K/=E 00.K/

// 0

and a similar diagram for E1.K/ � E0.K/ gives

�.�K/ D
cE 0=K

cE=K
�.�0/ D

cE 0=K

cE=K
�.�1/:

If p ¤ char FK , then �1 is an isomorphism [Tat74, Corollary 1], so

(8) ��K D .�1/
ordp �.�K/ D .�1/

ordp
cE0=K
cE=K :

If char FK D p, one cannot use this formula. Instead one proceeds as follows: since E1.K/
can be identified with the points of the formal group associated to E, one has the canonical
exhaustive filtrationE1.K/�E2.K/� � � � defined byEm.K/ WD ker.E.OK/! E.OK=m

m
K//

(see the proof of Lemma 5.15 for another description). The subquotients of the filtration
are Ei .K/=EiC1.K/ Š FK (see [Tat75, Section 4]). With this at hand, one applies Propo-
sitions 2.6 and 2.7 repeatedly to get �.�1/ D �.�m/ for m � 1. Choose Néron differentials !
on E and !0 on E 0. Then ��!0 D ˛! for some ˛ 2 OK . Form large enough, formal logarithm
furnishes isomorphisms Em.K/ ��! mm

K and E 0m.K/
�
�! mm

K , under which, by [Rub99, Pro-
position 3.14], �m corresponds to multiplication by ˛. The analogue of (8) is therefore

(9) ��K D .�1/
v.˛/fK=QpCordp

cE0=K
cE=K :

Formula (9) is a special case of a more general formula [Sch96, Lemma 3.8] valid for abelian
varieties of any dimension.

If E has potentially good reduction, then the local Tamagawa factors are at most 4
(see, for instance, [Tat74, Addendum to Theorem 3]). If in addition p > 3, then (8) for the
case char FK ¤ p becomes

��K D 1;

and (9) for the case char FK D p becomes

(10) ��K D .�1/
v.˛/fK=Qp :

2.10. The case char FK ¤ p, and E has good reduction. The local Tamagawa
factors are 1, so (8) gives ��K D 1. Also, K � K.EŒp�/, and the latter is an unramified
extension of K by the criterion of Néron–Ogg–Shafarevich. Hence, so is K =K, and from (6)
we get . ;�1/K D 1. By Theorem 2.2 (b), w.E=K/ D 1, and (7) holds.
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2.11. The case char FK ¤ p, and E has potentially multiplicative reduction. If the
reduction is not split multiplicative, it becomes so after a unique quadratic extension L=K
which is unramified if and only if E has multiplicative reduction [Tat74, pp. 190–191]. The
quadratic twist of E by L=K has split multiplicative reduction (this can be seen, for instance,
from Proposition 3.8). By Theorem 3.12, we are therefore reduced to the case of split multi-
plicative reduction (see Remark 3.13).

Using Tate’s theory of rigid analytic uniformization (loc. cit.) one has E Š Gm=q
Z

for some q 2 K� with v.q/ > 0 (and similarly for E 0). Using rigid-analytic GAGA one sees
that �WE ! E 0 can be written as Gm=q

Z ! Gm=.q
p/Z induced by the pth power map,

or Gm=.q
0p/Z ! Gm=.q

0/Z induced by the identity. By Proposition 2.6 and Lemma 2.8, in
the first case �.�K/ D p; in the second �.�K/ D 1=p. In both cases ��K D �1. In the first
caseK DK.�p/; in the secondK DK. In both casesK =K is unramified, so . ;�1/K D 1.
Theorem 2.2 (c) gives w.E=K/ D �1, and (7) holds.

2.12. The case char FK ¤ p, p > 3, and E has additive potentially good reduction.
This is [DD08, Lemma 9].

2.13. Another description of the Artin symbol. For a continuous character

� WGal.K=K/! Q=Z

and a 2K�, let .�; a/K 2Q=Z be the corresponding symbol (cf. [Ser79, Chapter XIV, Sec-
tion 1]). It can also be defined by setting

.�; a/K WD �.ArtK.a//

where
ArtK WK� ! Gal.K=K/ab

is the local Artin homomorphism. Therefore, the pairing .�; a/K is bilinear, and if K� is the
fixed field of ker � , then .�; a/K vanishes if and only if a is a norm in K�=K. Since we are
only interested in the case a D �1, we think of .�;�1/K as taking values in ¹˙1º.

Fix an injection F�p ,! Q=Z. One possible choice for � is  (Section 2.1). In this case
one hasK D K.EŒ��/, and we recover the Artin symbol . ;�1/K (cf. (6)). Another possible
choice is the cyclotomic character ! W Gal.K=K/! F�p described as follows: for �p a primi-
tive pth root of unity s.�p/ D �

!.s/
p (this is independent of �p). In this case K! D K.�p/.

Lemma 2.14. For a finite extension L=K and every � as above, one has

.�;�1/L D .�;�1/
ŒLWK�
K :

Proof. This follows from the bottom diagram of [Ser67, Section 2.4] applied to �1.

Corollary 2.15. Suppose that K is a finite extension of Qp. Then

.!;�1/K D .�1/
ŒKWQp�:

Proof. Since .!;�1/Qp D �1 (see, e.g., [Ser67, Section 3.1, Theorem 2 (2)]), one
applies Lemma 2.14.
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To handle the cases of (7) when char FK D p we need to be able to compute sym-
bols .�;�1/K for continuous characters � WGal.K=K/! F�p , in which case K� is a cyclic
extension of K of degree dividing p � 1. These symbols have been worked out by T. and
V. Dokchitser:

Lemma 2.16 ([DD08, Lemma 12]). Let K be a finite extension of Qp with p odd, and
fix a character � WGal.K=K/! F�p . Then

.�;�1/K D .�1/
fK=Qp .p�1/=eK�=K I

in other words, .�;�1/K D 1 if and only if either fK=Qp or p�1
eK�=K

is even.

2.17. The case char FK D p > 3, E has potentially good reduction, and fK=Qp
is

even. We show that all the terms in (7) are 1. Lemma 2.16 gives . ;�1/K D 1, whereas
formula (10) gives ��K D 1. To compute w.E=K/ we use Theorem 2.2 (e): #FK is a square,
so one gets #FK � 1 mod 24, whereas v.�/ < 12 because the reduction is potentially good.
Hence, w.E=K/ D .�1/bv.�/=12c D 1.

2.18. The case char FK D p, and E has good reduction. Because of Section 2.17,
we assume that fK=Qp is odd. By Theorem 2.2 (b), w.E=K/ D 1, so by Lemma 2.16 and (10),
to check (7) one needs to argue that

.�1/
.p�1/=eK =K D .�1/v.˛/;

where ˛ defined in Section 2.9 is also the coefficient of T in the power series f .T / giving the
action of � on formal groups. This is done in [DD08, Section 6] by a careful analysis of f .T /.

2.19. The case char FK D p, and E has potentially multiplicative reduction. The
argument is the same as in Section 2.11, and the second case there requires no modification.
In the first case, by Proposition 2.6 and Lemma 2.8, �.�K/ D p1CŒKWQp�, so

��K D .�1/
1CŒKWQp�:

We have K D K.�p/, so by (6) and Corollary 2.15, . ;�1/K D .!;�1/K D .�1/ŒKWQp�.
By Theorem 2.2 (c), w.E=K/ D �1, so (7) holds.

2.20. The case p D 3. The argument of [DD08, Lemma 9] used in Section 2.12 faces
complications if p D 3. Calculations are still manageable if char FK ¤ p (see [DD08, Lem-
ma 10]), but get out of hand if char FK D p. To treat these cases, and hence establish (7)
if p D 3, T. and V. Dokchitser have used a global-to-local deformation argument with [Nek09,
Theorem 1] as an input, see [DD11, Theorem 5.7].

2.21. The case p D 2. Formula (7) does not hold if p D 2. Indeed, the kernel of
a 2-isogeny is always rational, so K D K, giving . ;�1/K D 1. If K D R and �K is not
surjective, then # coker�K D 2 and ��K D 1. This violates (7), because by Theorem 2.2 (a)
one has w.E=R/ D �1.

In case p D 2, Theorem 1.4 was proved by T. and V. Dokchitser by finding an
analogue [DD11, Conjecture 5.3] of formula (7), proving it in most cases by direct compu-
tations in [DD08, Section 7], and using a global-to-local deformation argument to handle the
remaining ones in [DD11, Theorem 5.7].
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2.22. Summary of the known cases. By Sections 2.3–2.4, Sections 2.10–2.12, and
Sections 2.17–2.20, the p-isogeny conjecture (7) is true in all the cases, except possibly when
char FK D p > 3, fK=Qp is odd, and the reduction is additive potentially good. After some
preparations in Section 3 we take up the remaining cases in Section 4.

3. Compatibility with making a quadratic twist

To verify that the p-isogeny conjecture (7) is compatible with making a quadratic twist
(Theorem 3.12), we investigate how its individual terms change under this operation (Propo-
sitions 3.4, 3.6 and 3.11). The technique of twisting is standard but to fix ideas we begin by
recalling the way in which we prefer to think about it. The setup is that of Section 2.1.

3.1. Twisting by a quadratic Galois character. Suppose that L=K is a quadratic
extension and let

� WGal.K=K/! ¹˙1º

be the corresponding nontrivial character. Since ¹˙1º � AutK.E/, we can think of

� WGal.K=K/! AutK.E/

as a (crossed) homomorphism and therefore identify the character � with the correspond-
ing element of H 1.K;AutK.E//. The elements of the latter pointed set classify twists of E
(cf. [Ser02, Chapter I, Section 5.3] or [BS64, Proposition 2.6]), i.e., elliptic curves over K that
are K-isomorphic to E. In particular, � gives rise to the twist eE=K of E=K by L=K.

For a K-scheme X , the X -valued points of eE are the X �K K-valued points of

EK WD E �K K

that are invariant under the twisted by � Galois action, i.e., those P 2 E.X �K K/ with

P D �.s/ � sP for all s 2 Gal.K=K/:

These are P 2 E.X �K L/ on which the nontrivial element t 2 Gal.L=K/ acts as tP D �P .
This gives a description of the functor of points of eE=K; we also see that the isomorphism
EK Š

eEK is Gal.K=L/-equivariant, so E and eE are L-isomorphic. Twisting being functorial
in E (loc. cit.), eE possesses a p-isogenye�WeE !fE 0 defined over K.

Remark 3.2. If L D K.
p
d/ and one wishes to think in terms of Weierstrass equations

(11) EWy2 D x3 C Ax C B;

then the quadratic twist described above is the usual

eEW dy2 D x3 C Ax C B:
Indeed, since Œ�1�E in these coordinates is .x; y/ 7! .x;�y/, multiplying the y-coordinate
by
p
d has the desired effect as far as the Galois action is concerned. By scaling the variables
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one can bring the equation for eE to

(12) y2 D x3 C Ad2x C Bd3:

The discriminants � and e� of (11) and (12) are related by

(13) e� D d6�:
3.3. Implications for the p-isogeny. Consider the restriction of scalars NL=KE of

E=L back toK. By definition, .NL=KE/.X/ D E.X �K L/ functorially inX andE. We have
seen that eE.X/ identifies with the �1-eigenspace of .NL=KE/.X/ for the action of t ;
similarly E.X/ identifies with the C1-eigenspace. These identifications being functorial, one
gets a K-homomorphism of abelian varieties

fE W E � eE ! NL=KE:

Since the intersection of the eigenspaces consists of 2-torsion points, so does the kernel of fE .
We conclude that fE is an isogeny and that�

E.X/˝ Z

�
1

2

��
˚

�eE.X/˝ Z

�
1

2

��
�
�! .NL=KE/.X/˝ Z

�
1

2

�
:

The latter being functorial in X and E, taking X D SpecK we get the commutative diagram

.E.K/˝ ZŒ1
2
�/˚ .eE.K/˝ ZŒ1

2
�/

.�K˝ZŒ 1
2
�/˚.��K˝ZŒ 1

2
�/
��

� // E.L/˝ ZŒ1
2
�

�L˝ZŒ 1
2
�

��

.E 0.K/˝ ZŒ1
2
�/˚ .fE 0.K/˝ ZŒ1

2
�/

� // E 0.L/˝ ZŒ1
2
�.

(14)

Since �˝ ZŒ1
2
� is exact and does not affect the p-primary parts (p > 2), (14) gives

Proposition 3.4. One has
��K���K D ��L :

3.5. The twist of  . Describing the character e WGal.K=K/! F�p that gives the
Galois action on eEŒe�� is easy: eEŒe��.K/ identifies with EŒ��.K/ with the Galois action twisted
by � , so e D  � .

Proposition 3.6. One has

. ;�1/L D 1 D . ;�1/K.e ;�1/K.�;�1/K :
Proof. To deal with the left hand side one applies Lemma 2.14. The right hand side is

taken care of by bilinearity (Section 2.13):

. ;�1/K.e ;�1/K.�;�1/K D . ;�1/2K.�;�1/2K D . �; 1/K D 1:
3.7. Implications for the l -adic Tate module. The isogeny fE induces an isomor-

phism of l-adic Tate modules (l ¤ 2)

Vl.E=K/˚ Vl.eE=K/ Š Vl..E � eE/=K/ Š Vl..NL=KE/=K/ Š IndKL Vl.E=L/:

Brought to you by | MIT Libraries
Authenticated

Download Date | 1/23/17 3:38 PM
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The last isomorphism is a general property of the restriction of scalars for abelian varieties (use
[Mil72, Proposition 6 (b)] together with the formula .IndKL 1L/˝Vl.E=K/Š IndKL Vl.E=L/).
Of course, this gives an isomorphism of the corresponding Weil–Deligne representations
[Roh94, Sections 3, 4, and 13] (take l ¤ 2; char FK)

(15) � 0E=K ˚ �
0�E=K Š IndKL �

0
E=L:

Proposition 3.8. The local L-factors are related by

L.E=K; s/L.eE=K; s/ D L.E=L; s/:
Proof. This follows immediately from (15) and the multiplicativity and inductivity of

the L-factor of a Weil–Deligne representation [Roh94, Section 8 and Section 17].

3.9. Properties of local root numbers. Let �WK ! C� be a nontrivial (continuous)
additive character and let dx be a Haar measure on .K;C/. Let � 0 be a Weil–Deligne repre-
sentation and let �.� 0; �; dx/ be its �-factor (cf. [Roh94]). The root number of � 0 is

w.� 0; �/ WD
�.� 0; �; dx/

j�.� 0; �; dx/j
:

Standard properties of �-factors show (op. cit.) that w.� 0; �/ is independent of the choice of dx
and is even independent of � if � 0 is essentially symplectic, in which case we write w.� 0/.
Due to Weil pairing, this is the case for � 0

E=K
associated to an elliptic curve E (op. cit.); by

definitionw.E=K/ D w.� 0
E=K

/. For use in the proof of Proposition 3.11 we record some basic
properties of the root number, all of which follow from analogous properties of the �-factor
(op. cit.):

(a) Additivity:
w.� 01 ˚ �

0
2; �/ D w.�

0
1; �/w.�

0
2; �/:

(b) Inductivity in degree zero: if L=K is a finite extension and � 0 is a virtual representation
of degree 0 of the Weil–Deligne group W 0.K=L/ of L, then

w.IndKL �
0; �/ D w.� 0; � ı trL=K/:

(c) Determinant formula:
w.� 0; �/w.� 0�; �/ D .det �/.�1/;

where � 0� is the contragredient of � 0, � is the underlying representation of the Weil
group W.K=K/, and, with the local Artin homomorphism ArtK from Section 2.13,
.det �/.�1/ D det � ı ArtK.�1/.

In particular, applying (c) to a self-contragredient character such as 1K or � we get

(16) w.1K ; �/2 D 1 and w.�; �/2 D �.�1/ D .�;�1/K :

Lemma 3.10. One has

w.IndKL 1L; �/2 D .�;�1/K :
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Proof. Using decomposition IndKL 1L Š 1K ˚ � , we compute

w.IndKL 1L; �/2 D w.1K ; �/2w.�; �/2 by Section 3.9 (a)

D .�;�1/K by (16):

Proposition 3.11. The local root numbers are related by

w.E=L/ D w.E=K/w.eE=K/.�;�1/K :
Proof. From (15) we get

w.E=K/w.eE=K/ D w.IndKL �
0
E=L; �/

D
w.E=L/

w.1L ˚ 1L; � ı trL=K/
w.IndKL .1L ˚ 1L/; �/ by Section 3.9 (b)

D w.E=L/w.IndKL 1L; �/2 by (16)

D w.E=L/.�;�1/K by Lemma 3.10:

Since .�;�1/K 2 ¹˙1º, we can carry it to the other side, and the conclusion follows.

Theorem 3.12. Fix a prime p � 3. The p-isogeny conjecture (7) is compatible with
quadratic twists: in the setup of Section 2.1 and Section 3.1,

w.E=L/ � .. ;�1/K � ��K / � ..
e ;�1/K � ���K / D .. ;�1/L � ��L/ � w.E=K/ � w.eE=K/:

In particular, if the p-isogeny conjecture holds for two of E=K;E=L;eE=K, then it holds for
the third one.

Proof. Combine Propositions 3.4, 3.6 and 3.11.

Remark 3.13. Note that Theorem 3.12 holds regardless of char FK , and in its proof
we have not used the case-by-case analysis of the p-isogeny conjecture from Section 2. In
particular, it was legitimate to use it in Section 2.11 and Section 2.19.

4. The remaining cases of the p-isogeny conjecture

We have seen in Section 2.22 that the p-isogeny conjecture holds in most cases, including
all cases when char FK ¤ p. In this section we prove it in all of the remaining cases except for
Kodaira types III or III�, which are treated in Section 5.

4.1. The restricted setup. Since the p-isogeny conjecture is known in other cases
(see Section 2.22), for the rest of the paper we make the following assumptions in addi-
tion to those of Section 2.1: the degree of the isogeny is equal to the residue characteristic
char FK D p > 3, the reduction ofE is additive potentially good, and the degree of the residue
field extension fK=Qp is odd. Let� be a minimal discriminant ofE. Define�0 similarly forE 0.
Since char FK > 3 and the reduction is potentially good, we get v.�/ < 12 (see [Tat75, p. 46]).
In fact, v.�/ D 2; 3; 4; 6; 8; 9, or 10, corresponding to Kodaira types II, III, IV, I�0 , IV�, III�,
or II�, respectively (loc. cit.).
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Lemma 4.2. Suppose that L=K is a finite extension of ramification index e D eL=K ,
and that the degree fL=K of the residue field extension is odd. Write ev.�/ D 12b C a with
0 � a < 12, so that b D bev.�/=12c. Define a0; b0 analogously using �0. Then:

(a) a and a0 are the L-valuations of minimal discriminants of E=L and E 0=L, respectively,

(b) ��L D �
e
�K
� .�1/bCb

0

.

Proof. Choose minimal equations for E=K and E 0=K to get associated minimal
discriminants � and �0, and Néron minimal differentials ! and !0. When we pass from K

to L, those equations might not be minimal anymore: one may need to make changes of coor-
dinates to arrive at minimal equations over L. When making those changes of coordinates one
will have some u; u0 2 L for which �;�0 will get multiplied by u�12; .u0/�12, respectively,
and !;!0 will get multiplied by u; u0, respectively [Del75, (1.2) and (1.8)]. Since the reduction
will stay potentially good, the L-valuations of new minimal discriminants will be < 12 and
will therefore equal a and a0, respectively, giving (a). Also, vL.u/ D b, vL.u0/ D b0, and (b)
follows from (10) because we are assuming that fK=Qp and fL=Qp are odd.

Remark 4.3. The set ¹v.�/; v.�0/º is a subset of one of the following: ¹2; 10º, ¹3; 9º,
¹4; 8º, or ¹6º. This is because E acquires good reduction over an extension L=K if and only
if E 0 does, whereas Lemma 4.2 (a) tells us that the minimal ramification index of an extension
over whichE acquires good reduction is 12

gcd.v.�/;12/ . Hence, gcd.v.�/; 12/ D gcd.v.�0/; 12/.

Lemma 4.4. LetL=K be a ramified quadratic extension and let eE be the corresponding
twist of E. Let e� be a minimal discriminant of eE. Then v.e�/ � v.�/C 6 mod 12.

Proof. Since char FK > 3 and the reduction of eE is potentially good, we get v.e�/ < 12
(see [Tat75, p. 46]). But L D K.

p
�K/ for some uniformizer �K 2 OK , so the conclusion

follows from (13).

Proposition 4.5. Under the assumptions of Section 4.1, the p-isogeny conjecture (7) is
true if v.�/ D 6.

Proof. Lemma 4.2 (a) shows that E acquires good reduction after a quadratic ramified
extension L=K. The corresponding quadratic twist has good reduction by Lemma 4.4. The
conclusion then follows from Theorem 3.12 and Section 2.18.

The following relation between the discriminants of elliptic curves related by a p-isogeny
has been communicated to me by Tim Dokchitser:

Theorem 4.6 ([Coa91, Appendix, Theorem 8], [DD12, Theorem 1.1]). Let E and E 0

be elliptic curves over a field K of characteristic 0. Suppose that �WE ! E 0 is a p-isogeny
with p > 3. Let � and �0 be discriminants of some Weierstrass equations for E and E 0,
respectively. Then �0=�p 2 .K�/12 regardless of the Weierstrass equations chosen.

Lemma 4.7. Under the assumptions of Section 4.1, suppose that v.�/D 4 or v.�/D 8.
Then v.�/ D v.�0/ if and only if #FK � 1 mod 6.
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Proof. Theorem 4.6 tells us that v.�0/�p �v.�/ � 0 mod 12. Hence, if v.�/ D v.�0/,
then p � 1 is divisible by 3, so #FK D p

fK=Qp � p � 1 mod 6.
Conversely, if #FK � 1 mod 6, then p � 1 mod 6, and hence v.�0/ � v.�/ mod 6, so

by Remark 4.3 we must have v.�/ D v.�0/.

Proposition 4.8. Under the assumptions of Section 4.1, the p-isogeny conjecture (7) is
true if v.�/ D 4 or v.�/ D 8.

Proof. Choose a cubic totally ramified extension L=K. By Lemma 4.2 (a), E=L has
good reduction, so by Section 2.18 it satisfies the p-isogeny conjecture. We check how the
terms change when passing from K to L:

(a) We have . ;�1/L D . ;�1/K by Lemma 2.14.

(b) The valuation v.�/ is 4 or 8, and Lemma 4.2 implies that b is 1 or 2 accordingly. By
Remark 4.3, v.�0/ also is 4 or 8, so b0 is 1 or 2 accordingly. Thus, by Lemma 4.2 (b), one
has ��L ¤ ��K if and only if v.�/ ¤ v.�0/. By Lemma 4.7, this is the case if and only
if #FK � 5 mod 6.

(c) By Theorem 2.2 (e), we have w.E=L/ D 1, whereas w.E=K/ D 1 if #FK � 1 mod 6,
and w.E=K/ D �1 if #FK � 5 mod 6. Therefore, w.E=L/ ¤ w.E=K/ if and only
if #FK � 5 mod 6.

We conclude that when passing from K to L both sides of (7) change sign if and only if
#FK � 5 mod 6. Since (7) holds for E=L by Section 2.18, it must hold for E=K as well.

Proposition 4.9. Under the assumptions of Section 4.1, the p-isogeny conjecture (7) is
true if v.�/ D 2 or v.�/ D 10.

Proof. Choose a quadratic ramified extension L=K. By Lemma 4.2 (a), the valuation
of a minimal discriminant of E=L is 4 or 8. By Lemma 4.4, the valuation of a minimal dis-
criminant of the twist eE is 8 or 4. In particular, the p-isogeny conjecture holds for both E=L
and eE=K by Proposition 4.8. By Theorem 3.12, it must hold for E as well.

Remark 4.10. Another way to prove Proposition 4.9 is to choose a ramified cubic
extension L=K and check that none of the terms in (7) change when passing from K to L.
The argument is similar to that of Lemma 5.1.

5. The case of Kodaira type III or III�

As pointed out in Section 4.1, this is the case when v.�/ D 3 or v.�/ D 9. To study
it we are going to use the work of Coates, Fukaya, Kato, and Sujatha [CFKS10] that settles
the p-isogeny conjecture in many cases. We begin with a lemma that will be useful later in
imposing additional assumptions in Lemma 5.4.

Lemma 5.1. Under the assumptions of Section 4.1, suppose that v.�/D 3 or v.�/D 9
and let L=K be an extension of odd degree. The p-isogeny conjecture (7) holds forE=K if and
only if it holds for E=L.
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Proof. In fact, none of the terms in (7) change when passing from K to L:

(a) We have . ;�1/L D . ;�1/K by Lemma 2.14.

(b) We have ��L D ��K because in Lemma 4.2 (b) one has b � b0 mod 2. Indeed, by
Remark 4.3, v.�0/ 2 ¹3; 9º, so one only needs to check that�

3 � eL=K

12

�
�

�
9 � eL=K

12

�
mod 2;

or equivalently that �
eL=K

4

�
�

�
3 � eL=K

4

�
mod 2:

This is confirmed after a short check of possibilities eL=K 2 ¹1; 3; 5; 7º mod 8.

(c) The valuation vL.�L/ of a minimal discriminant of E=L is in ¹3; 9º by Lemma 4.2 (a).
Also, Theorem 2.2 (e) yields

w.E=L/ D .�1/bvL.�L/ � #FL=12c:

The latter is .�1/bvL.�L/ � #FK=12c, because #FL � #FK mod 8. Since

w.E=K/ D .�1/bv.�/ � #FK=12c;

to check that w.E=L/ D w.E=K/ one needs to check that�
3 � #FK
12

�
�

�
9 � #FK
12

�
mod 2;

which is the same computation as in (b).

Theorem 5.2 ([CFKS10, Theorem 2.7, Proposition 2.8 (3)]). Assume the setup of
Section 4.1. The p-isogeny conjecture (7) holds if either E has potentially good ordinary
reduction, or E achieves good supersingular reduction over a finite abelian extension of K.

5.3. Consequences for the case at hand. Assume the setup of Section 4.1 and suppose
that v.�/ D 3 or v.�/ D 9. Let F=K be a totally ramified extension of degree 4, so E=F has
good reduction by Lemma 4.2 (a). If K contains a primitive 4th root of unity, i.e., if �1 2 F�2K ,
the extension F=K is abelian and we can apply Theorem 5.2 to deduce (7). If �1 62 F�2K ,
then #FK � 3 mod 4, and because of Theorem 5.2 we can assume in addition that E=K is
potentially supersingular.

Lemma 5.4. Under the assumptions of Section 4.1, suppose that v.�/D 3 or v.�/D 9,
E=K has potentially supersingular reduction, and #FK � 3 mod 4. To prove the p-isogeny
conjecture (7) for E=K it suffices to prove it assuming that K.EŒ��/ D K (without losing
other assumptions).

Proof. Consider the subfieldL ofK =K fixed by the 2-Sylow subgroup of Gal.K =K/.
As Gal.K =K/ is cyclic of order dividing p � 1, the degree ŒK W L� is at most 2 and ŒL W K�
is odd. Using Lemma 5.1, we replace K by L (we do not lose any assumptions by doing this;
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in particular, Lemma 4.2 (a) shows that E=L still has additive reduction of Kodaira type III
or III�). If K D L, we are done, so assume that ŒK W K� D 2. The p-isogeny conjecture is
already known for E=K : if K =K is unramified, this is Section 2.17, and if it is ramified,
this follows from Lemma 4.2 (a) and Proposition 4.5. Using Theorem 3.12 we can therefore
replace E by its quadratic twist eE by K =K (without losing any assumptions). But the Galois
action on eEŒe�� is trivial by construction, so we have reduced to the case K.EŒ��/ D K.

5.5. Assumptions specific to the present case. In view of Section 5.3 and Lemma 5.4,
for the rest of the paper we will be assuming in addition to Section 4.1 that v.�/ D 3 or 9,
#FK � 3 mod 4, the reduction is potentially good supersingular, and K.EŒ��/ D K. In this
case the Galois closure L of F=K from Section 5.3 is of degree 8 with eL=K D 4, fL=K D 2.
Also, Lemma 4.2 (a) shows thatE=L has good supersingular reduction. We setG D Gal.L=K/
and let I C G be the index 2 inertia subgroup. The subfield of L=K fixed by I is denoted
by M .

The assumption K.EŒ��/ D K gives in particular that . ;�1/K D 1, so (7) in this
case is

(17) w.E=K/
‹
D ��K :

5.6. A convenient Weierstrass equation. Assume the setup of Section 5.5 and pick
a minimal Weierstrass equation for E=K with associated quantities a1; a2; : : : ; c4; c6; �
and j D c34=� (cf. [Tat75, Section 1]). Then

y2 D x3 �
c4

48
x �

c6

864

is another minimal equation for E=K since it has integral coefficients and the same valuation
of the discriminant (we are assuming p > 3) [Tat75, (1.7)]. If one considers it as an equation
for E=L, it is no longer minimal but after a change of coordinates

x D u2X;

y D u3Y;

with u D �v.�/=3L one arrives at a minimal equation

(18) Y 2 D X3 �
c4

48u4
X �

c6

864u6

for E=L. Indeed, its discriminant has valuation 0 and it has integral coefficients because the
relations 3v.c4/ � v.�/ (i.e., v.j / � 0) and 1728� D c34 � c

2
6 show that v.c4/ � v.�/=3

and v.c6/ � v.�/=2.

5.7. The formal group of E=L. With the choice of a minimal equation (18),

T D �X=Y

is a parameter for the formal group F of E=L. Similarly, t D �x=y is a parameter for the
formal group of E=K, and

(19) T D ut:
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Since E=L has good supersingular reduction, it follows that F is of height 2. In other words,
in Œp�F .T / D pT C V2T

2 � � � C VpT
p C � � � C Vp2T

p2 C � � � the first coefficient which is
a unit is Vp2 . Let mC0 � K consist of all elements of positive valuation after uniquely
extending v to K (see also Section 5.22). The Gal.K=L/-module EŒp� is isomorphic to the
kernel Np � mC0 of Œp�F via the map T .P / D �X.P /=Y.P / (one puts T .O/ D 0).

Lemma 5.8. The L-valuation of a nonzero ˇ 2 T .EŒ��/ is an odd integer independent
of ˇ.

Proof. For a nonzero P 2 EŒ��, (19) shows that

vL.T .P // D vL.t.P //C vL.u/ D 4 � v.t.P //C
v.�/

3

is an odd integer, because v.t.P // is an integer due to our assumption that EŒ�� � E.K/. But
since EŒ�� and T .EŒ��/ are cyclic of order p, and the formal group law is

T1 C T2 C higher order terms;

all nonzero elements of T .EŒ��/ have the same valuation.

5.9. The actions of G . Let E=OL be the Néron model of E=L, and let E 0=OL be that
of E 0=L. For each � 2 G D Gal.L=K/ we have a commutative diagram

E

��

� // E

��

Spec OL
� // Spec OL.

(20)

Here � WSpec OL ! Spec OL is a morphism corresponding to OL
��1

���! OL and � WE ! E is
the unique morphism making the square commute, obtained by invoking the Néron property.
Uniqueness gives us actions of G on both Spec OL and E which are compatible with the
morphism E ! Spec OL. Analogous statements are true for E 0=OL.

Since E=OL is an abelian scheme, [BLR90, Section 7.3, Proposition 6] shows that the
isogeny �WE ! E 0 extends to an isogeny �WE ! E 0, whose kernel is a finite flat commutative
OL-group scheme EŒ�� of order p with generic fiber EŒ��L D EŒ��L. The diagram (20) being
functorial, we get an action of G on EŒ�� which is compatible with its action on Spec OL.
Restricting this action to I and reducing to the special fiber EŒ��FL , we get an action of I
on EŒ��FL preserving the morphism to Spec FL.

Following [CFKS10, Remark after Lemma 2.20] we define the OL=pOL-module (or
the OL-module):

(21) Lie.EŒ��/ WD Ker.EŒ��..OL=pOL/Œ��=.�
2//! EŒ��.OL=pOL//:

(One could more accurately call this Lie.EŒ��OL=pOL/.) The action of G on EŒ�� gives
an OL-semilinear action of G on Lie.EŒ��/.

Since E=L is a base change of E=K, one also has an action of G on E.L/ Š E.OL/

for which �L is G-equivariant, being defined over K. Let �OL WE.OL/! E 0.OL/ be the map
induced by �WE ! E 0 on OL-points; it is G-equivariant as well. Since E.L/G D E.K/, and
similarly for E 0, we get

(22) �.�K/ D �.E.OL/
G

�OL
���! E 0.OL/

G/:
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Theorem 5.10 ([TO70, pp. 14–16, Remarks 1 and 5]). Let A be OL, L, FL, or FL.
There is a bijective correspondence between isomorphism classes of finite flat group schemesG
of order p over A and equivalence classes of factorizations p D ac with a; c 2 A, where
p D ac and p D a0c0 are said to be equivalent if there is a u 2 A� such that a0 D up�1a
and c0 D u1�pc. As an A-scheme, the group scheme corresponding to p D ac is isomorphic
to SpecAŒs�=.sp � as/ (c appears in the description of the group law).

Remark 5.11. Theorem 5.10 is part of a more general Oort–Tate classification of finite
flat group schemes of order p, cf. [TO70]. The version stated here will be sufficient for our
purposes. In Theorem 5.10 the factorization corresponding to the constant group scheme Z=pZ
is p D 1 � p (see [TO70, pp. 8–10 and Remarks on pp. 14–15]). (With our choices for A, this
can also be seen from Theorem 5.10 directly, because if SpecAŒs�=.sp � as/ has a nontrivial
A-point, then a D up�1 for some u 2 A, u ¤ 0.)

Lemma 5.12. As finite FL-group schemes, EŒ��FL Š p̨. Its corresponding factoriza-
tion is p D 0 � 0.

Proof. The kernel of a p-isogeny between supersingular elliptic curves in characteris-
tic p is local-local. Therefore, one has EŒ��FL Š p̨, because p̨ has no twists and is the only
local-local group scheme of order p over FL. Also, p̨ is isomorphic to its own Cartier dual,
so the second claim follows, because by [TO70, p. 15, Remark 2] in characteristic p Cartier
duality has the effect ac $ .�c/.�a/.

5.13. The kernel of �WE ! E 0 as a scheme. Let p D ac with a; c 2 OL be a factori-
zation corresponding to EŒ��. Since EŒ��L Š EŒ��L is the constant group scheme, it follows
from Remark 5.11 that its corresponding factorization is p D 1 � c0. Theorem 5.10 therefore
gives a D ap�10 for some a0 2 OL. Moreover, by Lemma 5.12 the factorization of EŒ��FL
is p D 0 � 0. We conclude that a0 and c are of positive valuation, and as a scheme EŒ�� is
isomorphic to Spec OLŒs�=.s

p � a
p�1
0 s/ with 0 < vL.a0/ < vL.p/=.p � 1/.

Lemma 5.14. We have lengthOL
Lie.EŒ��/ D .p � 1/vL.a0/.

Proof. Interpreting (21) on rings, Lie.EŒ��/ consists of OL-algebra homomorphisms

OLŒs�=.s
p
� a

p�1
0 s/! .OL=pOL/Œ��=.�

2/

whose composite with
.OL=pOL/Œ��=.�

2/! OL=pOL;

� 7! 0;

sends s to 0. Such are given by s 7! b� with ap�10 b D 0, or equivalently with

b 2 �
vL.p/�.p�1/vL.a0/
L OL=�

vL.p/
F OL:

Lemma 5.15. For any nonzero element ˇ 2 T .EŒ��/,

vL.a0/ D vL.ˇ/

(cf. Lemma 5.8).
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Proof. One way to define the filtration E1.L/ � � � � � Em.L/ � � � � discussed in
Section 2.9 is as follows (cf. [LS10, Lemma 5.1]): for z 2 E1.L/ let Sz D ¹zº be the closure
of z in E; if z ¤ 0, then S0 \ Sz is a local Artin scheme, whose length we denote by l.z/; now
let Em.L/ consist of all z 2 E1.L/ with l.z/ � m (one sets l.0/ D1).

One nonzero L-point of the group scheme EŒ�� is s 7! a0, its closure in EŒ�� (and
hence E) is Spec OLŒs�=.s�a0/, the intersection with the zero section is Spec OLŒs�=.s; s�a0/,
and the length of this local Artin scheme is vL.a0/. On the other hand, every nonzero point
of EŒ��L belongs to the filtration level vL.ˇ/ by definition.

Lemma 5.16. If N is a finite length OM -module equipped with an OM -semilinear
action of G=I , then

lengthOK
NG=I

D lengthOM
N:

Proof. This is clear ifN D FM �� � ��FM by classical Galois descent for vector spaces.
The general case follows by induction on the number of nonzero terms in the .G=I /-stable
filtration N � �KN � �2KN � � � � using Hilbert’s Theorem 90.

Corollary 5.17. One has

lengthOK
Lie.EŒ��/G D lengthOM

Lie.EŒ��/I :

Proof. Observe that both lengths are finite by Lemma 5.14 and apply Lemma 5.16
with N D Lie.EŒ��/I .

Lemma 5.18. One has

ordp �.�K/ � ordp #.Lie.EŒ��/G/ � lengthOM
Lie.EŒ��/I mod 2:

Proof. The second congruence holds because fK=Qp is assumed to be odd: indeed, by
Corollary 5.17,

ordp #.Lie.EŒ��/G/ D fK=Qp lengthOK
Lie.EŒ��/G � lengthOM

Lie.EŒ��/I mod 2:

The first congruence is [CFKS10, Lemma 2.20 (4) and (5)] together with (22). The proof given
there does not use the assumption (iii) of [CFKS10, Theorem 2.1] and therefore extends to the
situation considered here. We recall the argument of op. cit. below.

Let EFL and E 0FL denote the reductions of E=L and E 0=L.

Claim 5.18.1. One has

�.�K/ D
#E 0.FL/G

#E.FL/G
�

#.Lie EFL/
G

#.Lie E 0FL/
G
� �
�
Lie.E/G

Lie.�/
����! Lie.E 0/G

�
:

Proof. Let mL � OL be the maximal ideal and choose a large n 2 Z>0 such that
the G-equivariant

mn
L Lie E ! Ker

�
E.OL/

r
�! E.OL=m

n
L/
�

and
mn
L Lie E 0 ! Ker

�
E 0.OL/

r 0

�! E 0.OL=m
n
L/
�
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induced by the exponential maps of E and E 0 are isomorphisms. By Hensel’s lemma, r and r 0

are surjective, so [Ser67, Section 1.2, Lemma 3] and the coprimality of #G and p ensure the
exactness of

0 // .mn
L Lie E/G //

��

E.OL/
G

�OL

��

r // E.OL=m
n
L/
G //

��

0

0 // .mn
L Lie E 0/G // E 0.OL/

G r 0 // E 0.OL=m
n
L/
G // 0

in spite of the presence of G-invariants. Therefore, (22) together with Propositions 2.6 and 2.7
give

�.�K/ D
#E 0.OL=m

n
L/
G

#E.OL=m
n
L/
G
�

#.Lie E=mn
L Lie E/G

#.Lie E 0=mn
L Lie E 0/G

� �
�
Lie.E/G

Lie.�/
����! Lie.E 0/G

�
:

To conclude it remains to argue that one has G-equivariant isomorphisms

Ker
�
E.OL=m

iC1
L /! E.OL=m

i
L/
�
Š

mi
L Lie E

miC1
L Lie E

for i � 1, and similarly for E 0.

These are supplied by deformation theory: e.g., invoke [Ill05, Theorem 8.5.9 (a) and (the ana-
logue of) Remark 8.5.10 (b)] and use the zero lift to get a canonical trivialization of the appear-
ing torsor.

Claim 5.18.2. One has

#.Lie EFL/
G
D #.Lie E 0FL/

G :

Proof. LetD be the covariant Dieudonné module of the p-divisible group of EFL , let V
be the Verschiebung operator of D, and let D0 and V 0 be the corresponding objects for E 0FL .
The G-equivariant isomorphism Lie EFL Š D=VD and [Ser67, Section 1.2, Lemma 3] give

.Lie EFL/
G
Š DG=VDG :

Consequently, since DG is a free Zp-module of finite rank and V is Zp-linear,

(23) #.Lie EFL/
G
D det.V ˝Zp QpWD

G
˝Zp Qp ! DG ˝Zp Qp/:

It remains to note that DG ˝Zp Qp Š .D ˝Zp Qp/G , so the right hand side of (23) is the
same for E 0FL because � induces a G-isomorphism

.D ˝Zp Qp; V ˝Zp Qp/ Š .D
0
˝Zp Qp; V

0
˝Zp Qp/:

Claim 5.18.3. One has

ordp #E.FL/
G
D ordp #E 0.FL/

G :

Proof. Since the action of the inertia I C G preserves the morphism EFL ! Spec FL,
the subgroup .E.FL/Œp1�/I � E.FL/Œp1� is Gal.FL=FL/-stable. Let FrobK 2 Gal.K=K/
be a geometric Frobenius. On the one hand, the action of FrobK on .E.FL/Œp1�/I lifts the
action of the generator of G=I . On the other hand, the action of Frob2K is that of the geometric
Frobenius in Gal.FL=FL/. In conclusion,

E.FL/
G Œp1� D Ker

�
1 � FrobK W .E.FL/Œp1�/I ! .E.FL/Œp

1�/I
�
:

Brought to you by | MIT Libraries
Authenticated

Download Date | 1/23/17 3:38 PM
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Since .E.FL/Œp1�/I � E.FL/Œp1� is cut out by an idempotent of ZpŒI �, it inherits p-divisi-
bility. Set Tp WD lim

 �
.E.FL/Œpn�/I and Vp WD Tp ˝Zp Qp. Since E.FL/G is finite, 1 � FrobK

is injective on Tp, and hence also on Vp. Consequently, the snake lemma applied to

0 // Tp //

1�FrobK
��

Vp //

1�FrobK
��

.E.FL/Œp1�/I //

1�FrobK
��

0

0 // Tp // Vp // .E.FL/Œp1�/I // 0

gives the first equality in

(24) ordp #E.FL/
G
D ordp #

�
Tp

.1 � FrobK/Tp

�
D ordp det.1 � FrobK WVp ! Vp/:

The claim follows from (24): indeed, similar reasoning applies to E 0, so, denoting by V 0p the
analogue of Vp, one notes that � induces a FrobK-equivariant isomorphism Vp Š V

0
p.

Claim 5.18.4. One has

�
�
Lie.E/G

Lie.�/
����! Lie.E 0/G/ D # Lie.EŒ��OL=pOL/

G

D #.Lie.EŒ��/G/ by Section 5.9:

Proof. The Lie algebras Lie.E/ and Lie.E 0/ are free OL-modules of rank 1. Considera-
tion of the isogeny dual to � shows that

Lie.E/
Lie.�/
����! Lie.E 0/

is injective and its cokernel Q is killed by p.
Consider the short exact sequence

(25) 0! EŒ��OL=pOL ! EOL=pOL ! E 0OL=pOL
! 0

of OL=pOL-group schemes. Forming Lie algebras commutes with base change, so (25) gives
the exact

0! Lie.EŒ��OL=pOL/! Lie.E/˝OL OL=pOL
Lie.�/˝OL

OL=pOL
��������������! Lie.E 0/˝OL OL=pOL:

Consequently, the snake lemma applied to the commutative diagram

0 // Lie.E/
Lie.�/

//

p

��

Lie.E 0/ //

p

��

Q //

0

��

0

0 // Lie.E/
Lie.�/

// Lie.E 0/ // Q // 0

of G-modules gives Q Š Lie.EŒ��OL=pOL/. Since .#G;p/ D 1, the resulting

0! Lie.E/
Lie.�/
����! Lie.E 0/! Lie.EŒ��OL=pOL/! 0

remains short exact after taking G-invariants, and the desired conclusion follows.

In conclusion, Claims 5.18.1 to 5.18.4 provide an equality underlying the first congruence
of Lemma 5.18.
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5.19. Vector space structures. Let M0 WD
bM ur be the completion of the maximal

unramified extension ofM , and let andL0 be a compositum ofM0 andL. The fieldL0 is com-
plete, and L0=M0 is Galois with Galois group identified with I . In particular, ŒL0 WM0� D 4.
The rings of integers of L0 and M0 will be denoted by OL0 and OM0 .

As observed in Section 5.9, I acts on EŒ�� compatibly with its action on Spec OL. With
the identification above, I therefore acts on EŒ��OL0 compatibly with its action on Spec OL0 ,
and we get an OL0-semilinear action of I on Lie.EŒ��OL0 / Š Lie.EŒ��/˝OL OL0 .

By definition, Lie.EŒ��/ is an OL=pOL-module. In particular, denoting by W.FL/ the
ring of Witt vectors, we can regard Lie.EŒ��/ as a vector space over

FL Š W.FL/=pW.FL/ � OL=pOL

equipped with an FL-linear action of I . In other words, Lie.EŒ��/ is a finite-dimensional
FL-representation of I with

(26) lengthOL
Lie.EŒ��/ D dimFL Lie.EŒ��/;

and also

(27) lengthOM
Lie.EŒ��/I D dimFL Lie.EŒ��/I :

On the other hand,
Lie.EŒ��OL0 / Š Lie.EŒ��/˝FL FL;

and also
Lie.EŒ��OL0 /

I
Š Lie.EŒ��/I ˝FL FL:

Therefore

(28) lengthOL
Lie.EŒ��/

(26)
D dimFL Lie.EŒ��/ D dimFL

Lie.EŒ��OL0 /;

and also

(29) lengthOM
Lie.EŒ��/I

(27)
D dimFL Lie.EŒ��/I D dimFL

Lie.EŒ��OL0 /
I :

Corollary 5.20. One has

ordp �.�K/ � dimFL
Lie.EŒ��OL0 /

I mod 2:

Proof. Combine Lemma 5.18 and (29).

5.21. The Dieudonné module of the special fiber. The special fiber of EŒ��OL0
is EŒ��FL , which by Section 5.9 carries the action of I preserving the morphism to Spec FL.
By Lemma 5.12, EŒ��FL Š p̨, so the (covariant) Dieudonné module D.EŒ��FL/ Š D. p̨/ is
especially easy to describe:

D.EŒ��FL/ Š FL

with vanishing Frobenius and Verschiebung. By functoriality, D.EŒ��FL/ is an FL-represen-
tation of I . The latter is cyclic of order 4, so it acts onD.EŒ��FL/ via scaling by some 4th roots
of unity.
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5.22. FM -representations of inertia. Let IM C Gal.K=M/ be the inertia subgroup,
and letPM C IM be the wild inertia. We are interested in continuous irreducible FM -represen-
tations V of IM . Since char FM D p, and PM is pro-p, one has V PM ¤ 0 (see [Ser77, Pro-
position 26]). Moreover, PM is normal in IM , so V PM is IM -stable, hence V PM D V .
In other words, V is the inflation of a continuous irreducible representation of the tame
inertia IM=PM . Tame inertia is abelian, so V is 1-dimensional; it must, therefore, be isomor-
phic to some Va, a 2 Q, constructed as follows (cf. [Ser72, Sections 1.7–1.8]). The valuation v
onK extends uniquely to a (no longer discrete) valuation onK, which we continue to denote v.
Let ma be the set of x 2 K with valuation v.x/ � a. Let mCa � ma be the set of x 2 K
with v.x/ > a. The quotient ma=m

C
a is a 1-dimensional m0=m

C
0 Š FM -linear representation

of IM , which we call Va. In addition, Va Š Vb if and only if a � b 2 ZŒ1=p� (loc. cit.), and we
conclude that the Grothendieck group of continuous FM -representations of IM is isomorphic
to the group ring R WD ZŒQ=ZŒ1=p��. Multiplication in R corresponds to tensor product of
representations (loc. cit.).

In fact, since IM identifies with Gal.M0=M0/, we can think of R as the Grothendieck
group of continuous FM -linear representations of Gal.M0=M0/. The representations that
will interest us most are Lie.EŒ��OL0 / and D.EŒ��FL/; they factor through the finite quotient
Gal.M0=M0/=Gal.M0=L0/ D I of order 4.

5.23. Maps related toR. Following [CFKS10, Section 7.2] let us supplement the ring

R D ZŒQ=ZŒ1=p��

of Section 5.22 with

(a) the notation 
.a/ for the standard Z-basis element ofR corresponding to a 2 Q=ZŒ1=p�,

(b) the automorphism 'WR! R induced by sending 
.a/ to 
.pa/,

(c) the Z-linear map ˛WR! Q=ZŒ1=p� which sends 
.a/ to a,

(d) the Z-linear map ęWR!Q defined by sending 
.a/ to the unique element of Z.p/\.0; 1�
whose class mod ZŒ1=p� is a,

(e) the Z-linear map ı0WR! Z such that ı0.
.0// D 1 and ı0.
.a// D 0 for a ¤ 0,

(f) the Z-linear map degWR! Z which sends each 
.a/ to 1.

Thinking in terms of representations of Gal.M0=M0/, one observes that deg (resp., ı0) is
nothing else than the FM -dimension of the representation space (resp., the fixed subspace).

Proposition 5.24. Denoting by ŒV � the class in the ring R of an FM -representation V
of Gal.M0=M0/, we have the following relations:

ę.'�1.ŒD.EŒ��FL/�// � ę.ŒD.EŒ��FL/�/(a)

D
deg.ŒLie.EŒ��OL0 /�/

4
� ı0.ŒLie.EŒ��OL0 /�/ in Q

and

(b) � ˛.ŒD.EŒ��FL/�/ D
p � deg.ŒLie.EŒ��OL0 /�/

4.p � 1/
in Q=ZŒ1=p�.
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Proof. This is [CFKS10, Proposition 7.3] applied to P D EŒ��OL0 ; their K is our M0,
their L is our L0, their k is our FM (D FL), and their � is our I . Since EŒ�� � E.K/, the
Galois representation on geometric points of the generic fiber of EŒ��OL0 is trivial, which
allows us to discard the first summand in [CFKS10, Proposition 7.3 (2)].

Proposition 5.25. Under the assumptions of Section 5.5, the p-isogeny conjecture (17)
is true.

Proof. From Section 5.21 we get that ŒD.EŒ��FL/� is 
.i/, where i D 0; 1
4
; 1
2

, or 3
4

.
Moreover,

deg.ŒLie.EŒ��OL0 /�/ D dimFL
Lie.EŒ��OL0 / by Section 5.23

D lengthOL
Lie.EŒ��/ by (28)

D .p � 1/vL.a0/ by Lemma 5.14

D .p � 1/.2mC 1/;

for some m � 0, where the last equality follows from Lemma 5.15 and Lemma 5.8. Proposi-
tion 5.24 (b) gives

�i D
p.2mC 1/

4
in Q=ZŒ1=p�:

Since p � 3 mod 4, this means that i D 1
4

if m even, and i D 3
4

if m is odd. Therefore, we
have '�1.
.i// D 
.3

4
/ if m is even, and '�1.
.i// D 
.1

4
/ if m is odd. The left hand side of

Proposition 5.24 (a) is therefore 1
2

if m is even, and �1
2

if m is odd.
Write p D 4k C 3. If m is even, Proposition 5.24 (a) gives

ı0.ŒLie.EŒ��OL0 /�/ D
.p � 1/.2mC 1/

4
�
1

2
D k.2mC 1/Cm � k mod 2:

If m is odd, it gives

ı0.ŒLie.EŒ��OL0 /�/ D
.p � 1/.2mC 1/

4
C
1

2
D k.2mC 1/C .mC 1/ � k mod 2:

We conclude that in all cases ı0.ŒLie.EŒ��OL0 /�/ � k mod 2. On the other hand,

ı0.ŒLie.EŒ��OL0 /�/ D dimFL
Lie.EŒ��OL0 /

I by Section 5.23

� ordp �.�K/ mod 2 by Corollary 5.20;

so ��K D .�1/
k .

To compute the root number, note that by Theorem 2.2 (e),

w.E=K/ D .�1/bv.�/ � #FK=12c:

The latter is .�1/bv.�/ �p=12c, because #FK D p
fK=Qp � p mod 24, since fK=Qp is odd.

Because v.�/ 2 ¹3; 9º, one checks that w.E=K/ D 1 if p � 3 mod 8, and w.E=K/ D �1
if p � 7 mod 8. The former occurs if k is even, the latter if k is odd.

Theorem 5.26. The p-isogeny conjecture is true for p > 3.

Proof. Indeed, we have settled all the remaining cases: see Section 2.22, Proposi-
tions 4.5, 4.8 and 4.9, Section 5.3, Lemma 5.4, Section 5.5, and Proposition 5.25.
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6. The p-parity conjecture for elliptic curves with complex multiplication

In this section E denotes an elliptic curve over a number field K such that E=K has
complex multiplication by an order of the imaginary quadratic field F WD .EndK E/˝Q. The
ring of integers of F will be denoted by OF . We set

Xp.E=K/ WD HomZp .lim�!
Selpn.E=K/;Qp=Zp/˝Zp Qp

and note that by definition rkp.E=K/ D dimQp Xp.E=K/.
In Theorem 6.4 we prove the p-parity conjecture for such elliptic curves; I thank Karl

Rubin for pointing out to me that this result follows from Theorem 1.4. In Proposition 6.3 we
prove that the global root number ofE=K is 1, which gives Theorem 1.8. We begin by recalling
two well-known results that will be used in the proofs.

Proposition 6.1. There is an elliptic curve E 0=K such that EndK E 0 Š OF and there
is an isogeny �WE ! E 0 defined over K.

Proof. See, for instance, [Rub99, Proposition 5.3].

Proposition 6.2. If E and E 0 are two elliptic curves defined over a number field K
and �WE ! E 0 is an isogeny defined over K, then

rkp.E=K/ D rkp.E 0=K/ and w.E=K/ D w.E 0=K/:

Proof. If �0 is the dual isogeny, then one notes that the composition �0 ı � induces
automorphisms of Xp.E=K/ and Vl.E=K/, and similarly for � ı �0. Hence the maps induced
by � are isomorphisms. This gives the claim about rkp. The local root numbers at finite places
are defined in terms of Vl.E=K/ and at infinite places are �1 by Theorem 2.2 (a), so the
conclusion follows.

Proposition 6.3. If E has complex multiplication defined over K, then w.E=K/ D 1.
More precisely, if  E=K D

Q0
v  vWA

�
K=K

� ! C� is the Hecke character associated to E=K
(cf., for instance, [Rub99, Theorem 5.15]), then w.E=Kv/ D  v.�1/ for every place v.

Proof. It is clear that the first claim follows from the second by taking the product over
all places: Y

v

 v.�1/ D  E=K.�1/ D 1:

Let v be a finite place of K and choose a rational prime p such that v − p and p splits in F .
The Galois representation Vp.E=Kv/ is a direct sum  v ˚  v (see [Rub99, Corollary 5.6 and
Theorem 5.15 (ii)]) (here we engage in the usual abuse of local class field theory by identifying
characters of K�v and of W.Kv=Kv/). If !vWW.Kv=Kv/! C� is the cyclotomic character,
then, because of the Weil pairing,  v!

�1=2
v squares to the trivial character, and hence is self-

contragredient. The determinant formula (c) from Section 3.9 applies, giving

w. v!
�1=2
v ; �/2 D  v.�1/:

Since a twist by !�1=2v does not affect the root number [Roh94, Section 11, Proposition (iii)],
we conclude that w.E=Kv/ D w. v; �/2 D  v.�1/.

Brought to you by | MIT Libraries
Authenticated

Download Date | 1/23/17 3:38 PM
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The formula w.E=Kv/ D  v.�1/ holds at an archimedean place v as well. Indeed,
we have w.E=Kv/ D �1 by Theorem 2.2 (a), while  v.�1/ D �1 by construction of  E=K ,
see the proof of [Rub99, Theorem 5.15] (the  E=K constructed there is unique because (ii)
there determines its finite component uniquely, and then the infinite component is uniquely
determined because  E=K is a Hecke character).

Theorem 6.4. If E has complex multiplication defined over K, then the p-parity
conjecture holds for E=K.

Proof. Due to Propositions 6.1 and 6.2, we assume that E has complex multiplication
by the maximal order OF . If p is inert or ramifies in F , then Fp WD OF ˝Qp is a quadratic
extension of Qp. Since Xp.E=K/ is an Fp-vector space, rkp.E=K/ D dimQp Xp.E=K/ is
even and the conclusion follows from Proposition 6.3. On the other hand, if p ramifies or splits
in F and p is a prime of F above p, then EŒp� WD

T
˛2p¹P 2 E.K/ W ˛P D 0º is a subgroup

of EŒp� of order p defined over K (see [Rub99, Proposition 5.4] for instance). In other words,
the subgroup EŒp� is the kernel of a p-isogeny defined over K, and the conclusion follows
from Theorem 1.4.
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Česnavičius, The p-parity conjecture for elliptic curves with a p-isogeny 73

[MR10] B. Mazur and K. Rubin, Ranks of twists of elliptic curves and Hilbert’s tenth problem, Invent. Math.
181 (2010), no. 3, 541–575.

[Mil72] J. S. Milne, On the arithmetic of abelian varieties, Invent. Math. 17 (1972), 177–190.
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Kęstutis Česnavičius, Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

e-mail: kestutis@math.mit.edu

Eingegangen 3. September 2012, in revidierter Fassung 10. März 2014

Brought to you by | MIT Libraries
Authenticated

Download Date | 1/23/17 3:38 PM

http://www.math.jussieu.fr/~nekovar/pu/loc.pdf

