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Recent advances in designing metamaterials have demonstrated
that global mechanical properties of disordered spring networks
can be tuned by selectively modifying only a small subset of
bonds. Here, using a computationally efficient approach, we
extend this idea to tune more general properties of networks.
With nearly complete success, we are able to produce a strain
between any two target nodes in a network in response to an
applied source strain on any other pair of nodes by removing
only ∼1% of the bonds. We are also able to control multiple pairs
of target nodes, each with a different individual response, from
a single source, and to tune multiple independent source/target
responses simultaneously into a network. We have fabricated
physical networks in macroscopic 2D and 3D systems that exhibit
these responses. This work is inspired by the long-range coupled
conformational changes that constitute allosteric function in pro-
teins. The fact that allostery is a common means for regulation
in biological molecules suggests that it is a relatively easy prop-
erty to develop through evolution. In analogy, our results show
that long-range coupled mechanical responses are similarly easy
to achieve in disordered networks.

mechanical metamaterials | allostery | tunable response | proteins |
disordered networks

The ability to tune the response of mechanical networks
has significant applications for designing metamaterials with

unique properties. For example, the ratio G/B of the shear mod-
ulus G to the bulk modulus B can be tuned by over 16 orders of
magnitude by removing only 2% of the bonds in an ideal spring
network (1). Such a pruning procedure allows one to create a
network that has a Poisson ratio ν anywhere between the auxetic
limit (ν=− 1) and the incompressible limit [ν= 1/(d − 1) in d
dimensions]. In another example, the average coordination num-
ber of a network controls the width of a failure zone under com-
pression or extension (2). Both these results are specific to tuning
the global responses of a material. However, many applications
rely on targeting a local response to a local perturbation applied
some distance away. For example, allostery in a protein is the
process by which a molecule binding locally to one site affects the
activity at a second distant site (3). Often this process involves
the coupling of conformational changes between the two sites
(4). Here we ask whether disordered networks, which generically
do not exhibit this behavior, can be tuned to develop a specific
allostery-inspired structural response by pruning bonds.

We introduce a formalism for calculating how each bond con-
tributes to the mechanical response, anywhere in the network,
to an arbitrary applied source strain. The formalism allows us
to develop algorithms to control how the strain between two
arbitrarily chosen target nodes responds to the strain applied
between two arbitrary source nodes. In the simplest case, bonds
are removed sequentially until the desired target strain is reached.
For almost all of the initial networks studied, only a small frac-
tion of the bonds need to be removed to achieve success. As was
the case in tuning the bulk and shear moduli, we can achieve the
desired response in a number of ways by pruning different bonds.
We have extended our approach to manipulate multiple targets

simultaneously from a single source, as well as to create multiple
independent responses to different locally applied strains in the
same network. Our central result is the ease and precision with
which allostery-inspired conformational responses can be created
with only minimal changes to the network structure.

We demonstrate the success of this method by reproducing
our theoretical networks in macroscopic physical systems con-
structed in two dimensions by laser-cutting a planar sheet and
in three dimensions by using 3D printing technology. Thus, we
have created a class of mechanical metamaterials with specific
allostery-inspired functions.

Theoretical Approach
Our networks are generated from random configurations of soft
spheres in three dimensions or disks in two dimensions with
periodic boundary conditions that have been brought to a local
energy minimum using standard jamming algorithms (5, 6); the
spheres overlap and are in mechanical equilibrium. We convert
a jammed packing into a spring network by joining the centers
of each pair of overlapping particles with an unstretched central-
force spring. We chose this ensemble because it is disordered
and provides initial networks with properties—such as elastic
moduli—that depend on the coordination of the network in ways
that are understood (1, 7, 8). We can work either with the entire
system that is periodically continued in space or with a finite
region with free boundaries that is cut from the initial network.

Starting with a network with N nodes and Nb bonds in d
dimensions, our aim is to tune the strain εT between two tar-
get nodes in response to the strain εS applied between two
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source nodes. (The two nodes comprising the source, and sim-
ilarly the target, are chosen so that they are not initially con-
nected by a bond; see Supporting Information for details.) We
create a specific response in our system by tuning the strain ratio
η= εT/εS to a desired value η∗. At each step, we calculate to
linear order the change in η in response to the removal of each
bond in the network using a computationally efficient linear alge-
bra approach (Materials and Methods). We then remove the bond
whose deletion minimizes the difference between η and η∗ and
repeat until we reach a desired tolerance.

Computational Results
We apply our tuning approach to networks with free boundaries
in both two and three dimensions (Materials and Methods). We
characterize the connectivity of our networks by the excess coor-
dination number ∆Z ≡Z−Ziso. Here Z is the average number of
bonds per node and Ziso≡ 2d−d(d+1)/N is the minimum num-
ber of bonds needed for rigidity in a network with free boundary
conditions (9). For each trial, a pair of source nodes was chosen
randomly on the network’s surface, along with a pair of target
nodes located on the surface at the opposing pole. (Note that
we could have chosen anywhere in the network for the location
of the source and target.) In two dimensions, we chose networks
that, on average, had 190 nodes and 400 bonds before tuning,
with ∆Z ≈ 0.19. In three dimensions, networks had, on average,
240 nodes, 740 bonds, and ∆Z ≈ 0.18. Before pruning, the aver-
age strain ratio of the networks in two dimensions was η ≈ 0.03
and in three dimensions was η ≈ 0.2 for the system sizes and
∆Z values we studied. The response of each network was tuned
by sequentially removing bonds until the difference between the
actual and desired strain ratios, η and η∗, respectively, was less
than 1%.

To demonstrate the ability of our approach to tune the
response, we show results for η=±1. Note that η > 0 (<0) corre-
sponds to a larger (smaller) separation between the target nodes
when the source nodes are pulled apart. Fig. 1 shows a typical
result for a 2D network: in Fig. 1A, the strain ratio has been tuned
toη= +1 with just 6 (out of 407) bonds removed; Fig. 1B shows the
same network tuned to η=−1 with a different set of 6 removed
bonds. The red lines in each figure indicate the bonds that were
pruned. Animations of the full nonlinear responses of these net-
works are provided in Movies S1 and S2. We note that some of the
removed bonds are the same for both η= +1 and η=−1.

The average strain ratio versus the number of removed bonds
is shown in Fig. 2A. Remarkably few bonds need to be removed
to achieve strain ratios of η = ±1. In two dimensions, only about
five bonds out of about 400 were removed, on average (∼1%);

A B

Fig. 1. Network with 194 nodes, and 407 bonds at ∆Z = 0.19 tuned to
exhibit (A) expanding (η= +1) and (B) contracting (η=−1) responses to
within 1% of the desired response. Source nodes are shown in blue, and
target nodes are shown in black. Arrows indicate the sign and magnitude
of the extensions of the source and target. The removed bonds are shown
as red lines.

A

C

B

Fig. 2. (A) Strain ratio η versus the number of removed bonds Nr for
expanding (red) and contracting (blue) responses in both 2D (solid lines)
and 3D (dashed lines). For each response type and dimension, the strain
ratio is averaged over 1,024 tuned networks constructed from 512 initial
systems. Networks in 2D have about 190 nodes and 400 bonds, on aver-
age, with an initial excess bond coordination of ∆Z≈ 0.19, whereas those
in 3D have about 240 nodes and 740 bonds, on average, with ∆Z≈ 0.18. (B)
Failure rate of tuning systems to within 1% of a specified strain ratio magni-
tude in 2D (dashed lines) and 3D (solid lines) averaged over contracting and
expanding responses. (C) Distribution of the number of removed bonds for
three different strain ratio magnitudes: |η|= 0.1 (blue), |η|= 1.0 (green),
and |η|= 10.0 (red). (Inset) All three distributions collapse when scaled by
the average number of removed bonds 〈Nr〉.

similarly, in three dimensions, only about 4 bonds out of about
740 were removed on average (∼0.5%). Fig. 2B shows the frac-
tion of networks that cannot be tuned successfully to within 1%
of a given strain ratio. The failure rate is less than 2% for strain
ratios of up to |η|= 1 in two dimensions and less than 1% in three
dimensions. Therefore, not only does our algorithm allow for pre-
cise control of the response, it also works the vast majority of
the time. The failure rate increases significantly for |η|� 1, but
here we are considering only the linear response of the network.
Extremely large values of η necessitate an extremely small input
strain at the source and may therefore not be physically relevant.

The failure rate is insensitive to ∆Z except at very small
values. In the small ∆Z regime, the failure rate is higher
because very few bonds can be removed without compromising
the rigidity of the system. If we increase the bond connectivity
to ∆Z ≈ 1.0 for networks in two dimensions, the failure rate
remains very low, but bonds are removed in a thin region con-
necting the target and source. This narrowing of the “damage”
region is reminiscent of the results of ref. 2, in which bonds above
a threshold stress were broken, or of ref. 1, in which bonds that
contribute the most to either the bulk or shear modulus were
successively pruned. A narrow damage region is consistent with
results seen in some allosteric proteins, in which strain is local-
ized to a thin region between the source and target (10).

Fig. 2C shows the distribution of the number of bonds that
must be removed to tune a network to within 1% of a desired
strain ratio for |η| = 0.1, 1, and 10. These distributions are broad,
and the mean shifts upward as η increases. Fig. 2C, Inset shows
that the distributions collapse when normalized by the average
number of removed bonds 〈Nr 〉. Note that we do not achieve the
desired strain ratio simply by tuning the entire free surface of
the network to have large strain ratios; the response of the des-
ignated target is large, whereas the strain response of other pairs
of nodes is essentially unaffected by the source strain (Fig. S1).
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Fig. 3 demonstrates the variety of responses that we are able
to create. Fig. 3A, I and II show a single network with two
independent sources and targets whose responses were tuned
simultaneously and independently of one another. When a strain
is applied to the first pair of source nodes, its target responds
strongly, whereas the other target does not respond at all. Like-
wise, when the strain is applied to the second pair of source
nodes, its target responds, whereas the first target does not. In
Fig. 3B, a network with one pair of source nodes controls three
targets, each of which has been tuned to a different strain ratio.
These networks have ∆Z = 1.0; the failure rate for creating these
more complicated responses is generally higher for lower val-
ues of ∆Z in two dimensions. Fig. 3C shows a periodic disor-
dered network with one source and target, demonstrating that a
network can be tuned successfully without free boundaries (see
Movie S3 for an animation of the nonlinear response). We have
also found that initial disorder in the network is not necessary
for success (Fig. S2A), nor is close proximity of the two nodes
comprising the source or the target (Fig. S2B).

Experimental Results
Fig. 4A shows an image of a 2D network created by laser-cutting
a flat sheet. The network is the same as the simulation shown
in Fig. 1A. Insets (zoomed-in areas) show the strain response
at the target along with the applied strain at the source nodes.
Movie S4 shows the response of a similarly designed network.
Fig. 4B shows an image of a 3D network created by 3D print-
ing. In this case, the network was designed to have a strain
ratio of η=−5. Insets again show the strains of the source and
target.

A-I

B C

A-II

Fig. 3. (A) Network with 200 nodes and 502 bonds at ∆Z = 1.0 with two
independent responses tuned simultaneously into the system. (I) One tar-
get contracts in response to a strain at the first source, whereas the other
target does not respond. (II) Second target responds to a strain at the
second source, whereas the first target remains unaffected. This demon-
strates that separate responses can be shielded effectively from one another.
(B) Same network tuned to show responses at three targets with responses
of η= 1, 2, and−1. All three targets are controlled by a single pair of source
nodes. (C) Periodic network with 254 nodes and 568 bonds at ∆Z = 0.47
tuned to display an expanding response with η= 1, showing that open
boundaries are not necessary for tuning to be successful.

Fig. 4. (A) Physical realization of the network in Fig. 1A. (Insets) Zoom-ins
show the initial and final distance between the source nodes, lS and lS + eS,
respectively, and between the target nodes, lT and lT + eT . The undeformed
network is shown in black, and the deformed network is superimposed in
red. (B) Photograph of a 3D network constructed by 3D printing with 33
nodes and 106 bonds at ∆Z = 0.42 tuned to exhibit a negative response
(η=−5.0). (Insets) In the zoom-ins, the yellow and blue arrows show the
distance between the undeformed, lS (lT ), and deformed, lS + eS (lT + eT ),
source (target) nodes, respectively.

To obtain a quantitative analysis of how well the physical
realizations agree with the simulated networks, we measure the
strain on every bond in the 2D example when the distance
between the source nodes is varied. The majority of the bonds do
not change their length appreciably. We therefore focus only on
the distance between nodes that were connected by bonds that
were removed as the network was tuned. As one might expect,
these are the most sensitive to the applied source strain. We cal-
culate, for those changes in distances, the Pearson correlation
coefficient between the experiments and the simulations,

C =
〈(xi − 〈xi〉)(ci − 〈ci〉)〉

σxσc
. [1]

Here xi (ci) is defined as the fractional change due to the source
strain in the distance between nodes initially connected by bond
i as measured in experiments (computer simulations). The stan-
dard deviations of xi and ci are σx and σc , respectively. We
find that, when averaged over four experimental realizations of
different designed networks, C = 0.98± 0.02, confirming that
the experiments are very accurate realizations of the theoretical
models.

In contrast to our simulations, where junctions are connected
only via central-force springs, our experimental systems have
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physical struts between the nodes. This introduces bond-bending
forces, because the struts emerging from a node have pre-
ferred angles between them. To minimize such forces, we have
manufactured the struts with a nonuniform width so that they are
thinner at their ends where they attach to a node than along the
rest of their length. This ensures that the struts deform preferen-
tially near the nodes rather than buckling in their middle. Fig.
5 shows that decreasing the width of the thinnest part of the
struts alleviates effects due to bond bending and monotonically
increases the response. This is crucial for determining how much
of the designed response survives in our physical networks.

Apart from bond bending, there is also a possibility of 2D net-
works buckling out of the plane, along with nonlinear effects that
are present in real systems undergoing finite strains. All these
factors can weaken the designed response. To investigate these
effects, we used laser cutting to create realizations of 10 of the
2D networks produced from the computations in Fig. 2. The net-
works chosen were tuned successfully in the linear regime and
had nonlinear responses within a factor of 2 of the linear pre-
diction at a source strain of 5%, according to our computations.
For the experimental realizations, we found that in the nonlin-
ear regime, three of the networks demonstrated a response that
was more than 10% of the designed response at a source strain
of 5%. (See Fig. S3 for an example of an experimental strain
measurement.)

Discussion
We have shown that it is strikingly easy to tune allosteric defor-
mation responses into an arbitrary spring network by removing
only a small fraction of the bonds. Not only can we tune the
strain ratio to large negative or positive values for the same net-
work, but we achieve strain ratios of order |η| ≈ 1 with almost
100% success. Our theoretical approach can also be extended to
more general responses. We can control multiple pairs of target
nodes simultaneously with the same pair of source nodes, and we
can tune multiple independent source/target responses simulta-
neously into a network. We have also achieved similarly excellent
results for tuning responses in periodically continued systems.

The approach we have described here performs a discrete
optimization of the response. We have also tuned the response
using a standard numerical optimization technique (e.g., gradi-
ent descent), by varying the stiffnesses of all of the bonds con-
tinuously. This brute force method is less efficient but equally
successful in producing a desired response. Our approach can
also be generalized to other types of bond manipulation such as
introducing new bonds.

Fig. 5. Strain ratio η versus w, the width of the struts near their ends. The
responses are those of the network shown in Fig. 1A for four values of w.
The response increases monotonically as the bonds are made thinner near
the nodes. At their center, the struts have a full width of 2 mm. (Inset) The
strut geometry.

Our theoretical approach provides a framework for under-
standing and controlling the response of networks relevant to a
wide range of fields. For example, networks with built-in local-
ized, long-distance responses could be a novel way of design-
ing architectural structures based on disordered frameworks that
have added functionalities. In addition, our theoretical approach
can be generalized to other problems such as origami, where
one may wish to tune the fold structure so that the system folds
in a specific way in response to locally applied external forces
(11). This problem is similar to ours, except that folds are added
instead of bonds being removed. Ref. 11 introduces an opti-
mization technique in which fold rigidities vary continuously.
This technique is computationally expensive because the network
response must be recalculated with each optimization step. A
generalization of our theoretical approach to origami, using lan-
guage similar to that of ref. 12, could lead to a more efficient
algorithm.

The network responses we create are reminiscent of the
localized, long-range-correlated deformations that characterize
allostery in proteins. In fact, folded proteins have long been
modeled as elastic networks (13), and the response to local-
ized forces in the resulting networks has been studied (14). Our
results demonstrate the ease with which allosteric conforma-
tional changes in networks can be achieved by removing a very
small set of bonds. Perhaps our finding provides a rationale for
why allostery is so common in large biological molecules (15).

Similarly, our finding that networks can be tuned to have a
variety of different responses may help elucidate multifunctional
behavior (16) and multiple allosterically interacting sites (17) in
proteins. It has also been observed that small changes in a pro-
tein’s covalent structure can often change its biochemical func-
tion (18). One might ask whether our method could be extended
to develop a systematic way to determine which intraprotein
interactions to modify or create new allosteric functions. It has
been emphasized that the ability to control allosteric responses in
folded proteins could lead to significant advances in drug design
(19, 20). Although much work has focused on identifying, under-
standing, and controlling preexisting allosteric properties, the
question of how to introduce new allosteric functions is relatively
unexplored (21).

Our success in constructing experimental systems despite non-
linear and bond-bending effects suggests that results are often
robust even outside the simple linear regime. However, proteins
are thermal whereas our networks are athermal structures. Sta-
tistical fluctuations in the structure of proteins have been shown
to play an important role in allosteric functionality (22, 23). In
the linear response regime, the equilibrium response at finite
temperature is equivalent to that at zero temperature, so the
set of bonds that are removed and the average strain ratio are
independent of temperature in the harmonic regime. However,
the nonlinear response will show differences, particularly at tem-
peratures beyond the harmonic regime. It is thus important to
investigate how thermal effects can influence the ability to design
a desired response in the nonlinear regime. In addition, pro-
tein contact networks generally contain prestressed bonds, as
well as bond-bending and twisting constraints, whereas our the-
oretical networks are constructed in the absence of such effects
(24–26).

Further work needs to be done to understand why remov-
ing specific bonds achieves the desired response. Our method of
identifying the elements of the stress basis associated with indi-
vidual bonds (Supporting Information) indicates that these stress
states are fundamental to this understanding. The dependence
on network size and node connectivity also needs to be under-
stood in greater detail. The limits of our algorithm are not yet
known, including the number of targets that can be controlled
and the number of independent responses that can be tuned
for networks of a given size and coordination. To understand
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experimental systems ranging from proteins to the macroscopic
networks we have fabricated, we must extend the theory to
include temperature, dynamics, prestress, bond-bending, and
nonlinear effects due to finite strains. Our approach provides a
starting point for addressing these issues.

Materials and Methods
Computed Networks and Choice of Source and Target Nodes. To create a finite
network, we choose a cutoff radius from the center of our box and remove
all bonds that cross that surface. This process often creates zero-energy
modes at the boundary of our network. Because we require rigid networks,
we remove nodes associated with these modes. We calculate zero modes by
performing a spectral decomposition of the dynamical matrix. For each zero
mode calculated this way, we identify the node with the largest displace-
ment amplitude and remove it. We then recalculate the zero modes and
repeat this process until no zero modes exist. This method of removing zero
modes works in any dimension and does not require an arbitrary threshold
for whether a node contributes to a zero mode or not. Our final networks
are approximately disk-shaped in two dimensions or ball-shaped in three
dimensions with N nodes and Nb bonds.

We choose the pair of source nodes to lie on the exposed surface of the
networks. The pair of target nodes is chosen to be on the opposing pole of
the network surface. When choosing a pair of nodes, we also ensure that
the nodes are not connected by a bond. This is done to avoid surface bonds
whose tensions do not couple to the rest of the network. However, because
our formalism relies on applying tensions and measuring the strains of bonds,
we introduce a bond of zero stiffness, called a “ghost” bond, between the
two nodes comprising each source or target (Supporting Information).

Further Details of Theoretical Approach. Our approach tunes the ratio η =

εT/εS of the target strain εT to the source strain εS by removing bonds
sequentially, one at a time. First, we define the cost function that mea-
sures the difference between the network’s response η and the desired
response η∗,

∆
2 ≡

n∑
j=1

{
(ηj/η

∗
j − 1)2 if η∗j 6= 0
η2

j if η∗j = 0
, [2]

where j indexes the targets and their corresponding sources (e.g., n = 1, 2, 3
in Figs. 1 and 3 A and B, respectively). Target/source pairs may be defined
for the same network response, or for separate independent responses for
the same network with different applied source strains. With each step, we
choose to remove the bond that creates the largest decrease in ∆2.

To decide which bond to remove, we must calculate how the removal
of each bond changes η. First, we define the vectors of bond extensions
|e〉 and bond tensions |t〉 in response to the externally applied strain, each
of length Nb. To access the extensions and tensions on individual bonds,
we define the complete orthonormal bond basis |i〉, where i indexes the
bonds. The extension on bond i can then be found, ei = 〈i|e〉, along with
the bond tension, ti = 〈i|t〉. The strain of bond i is εi = ei/li , where li is the
bond’s equilibrium length. The tension and extension are related by a form
of Hooke’s law,

|t〉 = F−1|e〉, [3]

where the flexibility matrix is defined as 〈i|F|j〉= δij/ki . Here we choose the
stiffness of bond i to be ki =λi/li , where λi is the bond’s material modulus
with units of energy per unit length.

In addition to the bond tensions and extensions, we can define the dN
vectors of node displacements |u〉 and net forces on nodes |f〉. The equi-
librium matrix Q relates quantities defined on the bonds to those defined
on the nodes through the expressions QT |u〉= |e〉 and Q|t〉= |f〉 (27). In
general, Q is a rectangular matrix with dN rows and Nb columns. The total
energy can then be written as

E =
1

2
〈u|H|u〉, [4]

where the Hessian matrix H = QF−1QT is a dN× dN matrix. In the presence
of an externally applied set of tensions |t∗〉, the minimum energy configu-
ration satisfies

H |u〉 = Q|t∗〉. [5]

To calculate the change in the displacements if a bond were removed,
the naive approach would be to set the stiffness to zero for that bond in the
flexibility matrix and to solve this equation. However, performing this matrix
inversion to test the removal of each bond can be prohibitively expensive,

with a computational cost of O (NbN3), so we have developed a more effi-
cient approach. Note that here we calculate the response to applied ten-
sions, not the strains we need to calculate η. However, because we are only
interested in the ratio of the target strain to the source strain and are work-
ing in the linear regime, we do not need to explicitly apply a strain nor
specify the tension amplitude.

We use the equilibrium matrix Q to define a convenient basis of the bond
tensions and extensions. Performing a singular value decomposition of Q
gives access to its right singular vectors, yielding two mutually orthonor-
mal subbases of vectors that, together, form a complete basis of size Nb

(28). The first subbasis comprises vectors with singular values of Q that
are zero, that is, tensions that do not result in net forces on the nodes.
These are commonly known as the “states of self-stress” (SSS), and we
denote them as |sβ〉, where β indicates the particular basis vector. These
vectors can also be interpreted as incompatible extensions, or extensions
that do not correspond to valid displacements. The second subbasis com-
prises vectors with positive singular values of Q: tensions that correspond
to net forces on nodes, or extensions that are compatible with node dis-
placement. We call these vectors the “states of compatible stress” (SCS)
and denote them as |cα〉, where α indicates the basis vector. In total,
there are Nc SCS basis vectors and Ns SSS basis vectors, which total to
Nc + Ns = Nb.

Using these two subbases (and rescaling the bond stiffnesses so they are
identically k; see Supporting Information), we can calculate the discrete
Green’s function

G =
1

k

∑
α

|cα〉 〈cα| , [6]

which maps bond tensions to extensions. Using this result, we calcu-
late the change in the bond extension vector |e〉 if bond i were to be
removed,

|∆e〉 = |Ci〉
〈Ci|t∗〉

k
(
1− C2

i

) , [7]

where |Ci〉= kG|i〉 and C2
i ≡〈Ci|Ci〉. From this equation, we can calculate

the changes in both εT and εS and therefore the change η. This result can
also be derived by inverting Eq. 5 and using the Sherman–Morrison for-
mula to calculate the change in the inverse of the Hessian (29). Note that
this calculation does not include the zero stiffnesses of the ghost bonds,
which cannot be mapped to unity with the rest of the system. A general-
ization of Eq. 7 is needed to take this restriction into account (Supporting
Information).

The next step is to calculate Eq. 7 (or its generalization found in Sup-
porting Information) for the removal of each bond. We choose the bond
that minimizes ∆2 in Eq. 2 upon removal. One restriction is that we do not
choose bonds that introduce zero modes (Supporting Information). Finally,
once a bond is chosen, we recalculate the SCS and SSS subbases with the
bond removed (Supporting Information).

A summary of our tuning algorithm contains the following steps:

i) Transform to a system where all bonds initially have the same stiffnesses
and add a ghost bond of zero stiffness for each pair of target and source
nodes.

ii) Use the equilibrium matrix to calculate the initial SCS and SSS bases.
iii) Calculate the initial extensions of the source and target bonds in

response to the applied tension t∗. Use this result to calculate the
initial η.

iv) For each bond, use the general form of Eq. 7 found in Eq. S20 to calcu-
late the change in η if that bond were to be removed.

v) Remove the bond that minimizes ∆2 in Eq. 2. Recalculate the SCS and
SSS subbases with the bond removed and update the extensions of the
source and target bonds.

We repeat steps iv and v until
√

∆2 < 0.01 or the process fails. The
computational cost of determining and removing a bond using this algo-
rithm is dominated by step v with a complexity of O (N3

b), much faster
than the naive approach of directly solving Eq. 5 with a complexity of
O (NbN3).

There are three potential sources of failure represented in Fig. 2B:
√

∆2

cannot be lowered below 0.01 by removing any bond, no bonds can be
removed without creating zero modes, or the numerical error in ∆2 exceeds
1%. This third source of failure arises because numerical error is introduced
as bonds are removed. To ensure that our results are accurate, we com-
pare our final value of ∆2 to the value obtained from the solution of
Eq. 5 with the given set of pruned bonds removed. If the relative error
exceeds 1%, we call it a failure. Our results constitute an upper bound on
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the failure rate, which could potentially be reduced by using more accurate
techniques to decrease numerical error or more sophisticated minimization
algorithms.

Experimental Networks. We create experimental realizations of the theo-
retically designed networks in both two and three dimensions. To make 2D
networks, we obtain the positions of the nodes and struts from our design
algorithm. Next, we laser-cut the shape of the network from a silicone
rubber sheet. To reduce out-of-plane buckling, we use 1.6-mm-thick poly-
siloxane sheets with a Shore value of A90. The ratio of strut length to width
within the plane of the network is ∼10:1. The struts are designed to be
thinner at their ends to alleviate bond bending.

To make 3D networks, we determine the positions of nodes and struts
from the computer simulations and fabricate the networks using 3D print-
ing technology. The proprietary material is a mixture of rubber (simulating
styrene based thermoplastic elastomers) and rigid plastic (simulating acry-

lonitrile butadiene styrene) with a Shore value of A85. The dimensions of
each strut have a ratio of ∼1:1:11. As in our 2D networks, the struts are
made thinner at their ends.
Note Added in Proof. Yan et al. (31) present a different computational algo-
rithm for tuning mechanical networks to generate an allosteric response.
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