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Creation of a Bose-condensed gas of rubidium 87 by laser cooling

Jiazhong Hu,∗ Alban Urvoy,∗ Zachary Vendeiro, Valentin Crépel, Wenlan Chen, and Vladan Vuletić
Department of Physics and Research Laboratory of Electronics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

We demonstrate direct laser cooling of a gas of rubidium 87 atoms to quantum degeneracy. The
method does not involve evaporative cooling, is fast, and induces little atom loss. The atoms are
trapped in a two-dimensional optical lattice that enables cycles of cloud compression to increase
the density, followed by degenerate Raman sideband cooling to decrease the temperature. Light-
induced loss at high atomic density is reduced by using far red detuned optical pumping light and a
near-one-dimensional trapping geometry. Starting with 2000 atoms, we prepare 1400 atoms in 300
ms at quantum degeneracy, as confirmed by the appearance of a bimodal velocity distribution as the
system crosses over from a classical gas to a Bose-condensed, interacting, nearly one-dimensional
gas with a macroscopic population of the quantum ground state. The method should be broadly
applicable to many bosonic and fermionic species, and to systems where evaporative cooling is not
possible.

The ability to prepare quantum degenerate Bose [1–3]
and Fermi [4] gases has opened up a multitude of research
areas, including quantum simulation of complex Hamil-
tonians [5] and quantum phase transitions [6]. Quantum
degenerate gases are prepared in two steps: fast laser
cooling until a certain density and temperature limit is
reached, followed by slower evaporative cooling to Bose-
Einstein condensation (BEC) or below the Fermi tem-
perature. Compared to laser cooling, evaporative cooling
[1–4] is slower, requires favorable atomic collision proper-
ties, and only a small fraction of the original ensemble is
left at the end of the process. The one exception to this
scheme is strontium [7], which features a very narrow op-
tical transition. The latter enables the laser cooling of a
thermal cloud in a large trap, while a small (1%) fraction
of the ensemble undergoes BEC in a tighter, collisionally
coupled trap.

Previous attempts at laser cooling all other species,
and especially the alkali workhorse atoms, stopped short
of BEC due to two adverse effects that set in at high den-
sity: optical excitation of pairs of atoms at short distance,
leading to light-induced loss [8, 9], and reabsorption of
emitted photons at high optical density, leading to excess
recoil heating [29].

With respect to reaching quantum degeneracy, laser
cooling techniques can be characterized in terms of the
phase space density D, which is the peak occupation per
quantum state for a thermal cloud. Standard polariza-
tion gradient cooling [11] reaches D ∼ 10−6. A signif-
icant improvement is offered by Raman sideband cool-
ing (RSC) [12–14], where by isolating the atoms from
each other in a three-dimensional (3D) optical lattice,
D ∼ 10−2 has been reached [14]. Demagnetization cool-
ing of chromium has also reached D ∼ 10−2 [15]. Weiss
and co-workers pioneered a release-and-retrap compres-
sion approach to increase the occupation in a 3D optical
lattice [16], and, in combination with RSC, attained a
record D ∼ 0.03 [17], limited by light-induced loss in
doubly occupied lattice sites.

In this Report we show that by judicious choice of op-
tical cooling parameters and trap geometry, it is pos-
sible to create a Bose condensate of 87Rb atoms with-
out any evaporation. Degenerate Raman sideband cool-
ing (dRSC) [13] is performed with optical pumping
light red detuned by several hundred MHz from the D1

atomic transition in a 2D lattice geometry. Both the
large red detuning and the near-one-dimensional confine-
ment observably reduce light-induced loss, while a pho-
ton scattering rate below the trap vibration frequencies
likely suppresses excess recoil heating in the festina lente
regime[10, 29]. We use release-and-retrap compression
[16, 17] to strongly increase the atomic density after each
optical cooling cycle. Starting with 2000 atoms in the
central trapping region, we reach quantum degeneracy in
300 ms with 1400 atoms, as observed through a bimodal
velocity distribution. BEC is reached in a crossover be-
tween 1D and 3D regime [25], and between a weakly in-
teracting 1D gas and a strongly interacting Tonks gas
[23, 24]. Although in this regime there is no known sim-
ple relation between the momentum distribution and the
condensate fraction, we estimate that up to 40% of the
ensemble, or 550 atoms, are in macroscopically occupied
ground states of 30 tubes with a peak occupation of 50
atoms per tube.

The centerpiece of our setup is a square 2D optical lat-
tice created by two orthogonal retroreflected beams, each
with a power of 1.1 W, and focussed to an e−2 intensity
waist of 18 µm at the atoms’ position. The incoming
beams are vertically polarized, while the polarizations of
the reflected beams are rotated by θ = 80◦. This induces
a polarization gradient in the lattice that provides the
required Raman coupling for dRSC [13]. The trap depth
of each 1D optical lattice is U/h = 13 MHz, the axial
(tight) vibrational frequency is ωxy/(2π) = 180 kHz, and
the radial vibrational frequency is ωr2D/(2π) = 4.5 kHz.
In the 2D lattice with both beams, this yields ωz =√

2ωr2D = 2π × 6.3 kHz along the vertical (z) direc-
tion. A magnetic field B = 0.23 G along z, is set to
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FIG. 1. Experimental scheme and procedure. A 87Rb atoms are trapped in a 2D lattice formed by two orthogonal retroreflected
trapping beams at 1064 nm. The cooling light at 795-nm propagates along the magnetic field (z), and is σ−-polarized. B
Simplified atomic level structure for dRSC. The Zeeman splitting between two magnetic sublevels is matched to the vibrational
splitting in the tightly confined direction. C Release-and-retrap compression sequence used to increase the atomic density.
Starting from a sparsely filled 2D lattice, we perform dRSC (I) and then switch off the Y trapping beam to compress the atoms
along y in the X trapping beam (II). After a short thermalization time we switch back to the 2D lattice with an increased
occupation number per trap (III). The procedure is repeated for the X beam to compress the atoms into a small number of
tubes (IV). A final dRSC in this system (V) then yields a condensate.

match the Zeeman splitting between the magnetic sub-
levels |F = 2,m = −2〉 and |2,−1〉 to ~ωxy.

A cooling cycle consists of a Raman transition
|2,−2〉 → |2,−1〉 induced by the trapping light, that
removes one vibrational quantum in the tightly con-
fined direction (Fig. 1B), followed by optical pumping
back to |2,−2〉. This reduces an atom’s motional en-
ergy by ∼ ~ωxy per optical pumping cycle. The very
far detuned trap light that drives the Raman transition
(wavelength λt = 1064 nm) does not produce any ap-
preciable atom loss, but the optical pumping can in-
duce inelastic binary collisions as an atom pair is ex-
cited to a molecular potential that accelerates the atoms
before they decay back to the ground state [9]. To re-
duce this process relative to photon scattering by indi-
vidual atoms [18], we use a σ−-polarized optical pumping
beam tuned below the D1 line away from photoassocia-
tion resonances [9, 15]. Since an excited atom can also
decay to F = 1, we use bichromatic light with detun-

ings ∆2/(2π) = −630 MHz and ∆1/(2π) = −660 MHz
relative to the |5S1/2, F = 2〉 → |5P1/2, F

′ = 2〉 and
|5S1/2, F = 1〉 → |5P1/2, F

′ = 2〉 transitions, respec-
tively. This far-detuned D1-line optical pumping con-
figuration reduces light-induced inelastic collisions by at
least an order of magnitude.

The experimental sequence starts by accumulating
87Rb atoms in a magneto-optical trap, loading them into
the 2D lattice using polarization gradient cooling [16],
and applying dRSC for 100 ms. This prepares the atoms
near the vibrational ground state in the strongly con-
fined x and y directions (the kinetic energy measured
via time-of-flight imaging is Kxy/h =50 kHz, close to
1
4ωxy/(2π) = 45 kHz), while in the vertical direction (z)
the atoms are cooled to Tz ≈ 12 µK (Kz/h = 120 kHz)
via collisional thermalization between the axial and ra-
dial directions of the tubes. At this point there are
N = 2000 atoms in the 2D lattice with a peak occu-
pation of N1 ≈ 1 atom per tube, corresponding to a
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FIG. 2. A to C: Bimodal velocity distribution emerging dur-
ing the final laser cooling stage indicating macroscopic popu-
lation of the ground state. Observed optical depth (OD) along
z after a ballistic expansion of 1.3 ms for cooling times of 5 ms
(A), 20 ms (B) and 80 ms (C), averaged over 200 repetitions
of the experiment. The red lines show Gaussian fits to the
wings of the distributions, and green lines are quadratic fits
to the remaining distribution in the center. Here the inten-
sity of the trapping beams is ramped down in 400 µs, slowly
compared to the axial trapping frequency but rather quickly
with regard to the motion along z, in order to reduce the
interaction energy. D: Evolution of the total atom number
N (blue) or atom number per lattice tube N1 (red), vs the
phase space density D during the sequence, with the steps
labeled I to V as defined in Fig. 1B. The solid lines represent
the dRSC process and the dotted lines represent the spatial
compression. Each cooling step enhances D by one order of
magnitude, then the release-and-retrap compression increases
the peak occupation number N1 while slightly decreasing D.
E: Velocity distribution along z for the same parameters as
in C, but observed for a 2D gas after releasing the atoms into
the 1D lattice Y.

peak phase space density D = 0.02, and peak density
n0 = 2.2 × 1014 cm−3. In order to further increase n0
and D, we apply release-and-retrap compression [16] by
adiabatically turning off (in 400 µs) the Y trapping beam,
such that the cloud shrinks in the y direction due to the
radial confinement of the X beam (Fig. 1C). After ther-
malization for 10 ms, the spatial extent of the cloud can
be estimated by z =

√
kBTz/m/ωr2D = 1.1µm, where

Tz = 10 µK is the measured radial temperature, m is
the 87Rb mass, and kB is Boltzmann’s constant. The
lattice beam is then turned back on in 1 ms. This loads
the compressed ensemble back into a 2D lattice, result-
ing in a higher temperature (T ∼ 50 µK), and we apply
again dRSC for 100 ms. This yields again Kxy ≈ ~ωxy/4,
Tz =12 µK, but at a peak occupation number of N1 = 6.9
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FIG. 3. A Cooling performance in the final stage. Average
kinetic energy measured by the time-of-flight method in the
directions of strong (blue) and weak (red) confinement against
cooling time. After 80 ms of cooling, the atoms are in the
2D vibrational ground state. The inset shows that there is
almost no atom loss during cooling. B Condensate fraction
vs cooling time. In A and B the dashed lines are exponential
fits shown as a guide to the eye. C Condensate fraction vs
the inverse peak phase space density D−1. The blue line is
the theoretical prediction for an ideal gas of 50 atoms in a 1D
trap [32], shown as a guide to the eye.

atoms per tube for a total atom number N = 1700. We
repeat this procedure for the X lattice beam and end
up with N = 1400 and N1 = 47 at a peak density
n0 = 1 × 1016 cm−3. At this point the ensemble is be-
low our optical resolution of 8 µm, and N1 is estimated
from the measured temperatures in the corresponding
1D lattices, and the separately measured trap vibration
frequencies. Fig. 2D shows the evolution of N , N1 and
D during the sequence that brings the system close to
D = 1. We would like to emphasize that evaporation
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is not occurring at any point, since temperature reduc-
tion is only observed when the cooling light is on, and
kBT ≤ 0.1U at all times.

When we subsequently apply the final dRSC stage for
up to 100 ms, we observe the gradual appearance of a
characteristic signature of condensate formation, a bi-
modal velocity distribution along the z direction that be-
comes more pronounced with longer dRSC time t (Fig. 2).
A fit to the observed distribution for t = 80 ms with a sin-
gle Gaussian curve yields a reduced χ2 = 137 (Fig. 2C),
as opposed to χ2 = 0.91 for a bimodal distribution with
a parabolic central component. (At t = 5 ms, the cor-
responding values are χ2 = 0.89 and χ2 = 0.75, respec-
tively.) The bimodal distribution persists if we adiabati-
cally turn off the X trap after cooling for t = 80 ms and
observe the 2D gas in a 1D lattice (Fig. 2E).

In Fig. 3, we show the evolution of the kinetic energy,
the bimodal distribution, and the atom number as a func-
tion of final-stage cooling time. Along the tightly con-
fined directions, we cool to the vibrational ground state
Kxy/h = 50 kHz = 1.1 × 1

4ωxy/(2π), while along z we
reach an average kinetic energy Kz/h = 120 kHz. Addi-
tionally, we observe only very limited atom loss (< 5% at
a peak density of n0 = 1× 1016 cm−3, inset to Fig. 3A),
confirming that light-induced losses are strongly sup-
pressed. (For the initial two cooling stages, we observe a
similar temperature evolution at a slightly smaller loss.)
Fig. 3C also shows the condensate fraction N0/N vs the
calculated inverse phase space density 1/D (see supple-
mentary materials), where N0 is the number of condensed
atoms. N0/N is estimated in the absence of a detailed
one-dimensional theory as the fractional area under the
narrower peak in the bimodal distribution. The onset
of the bimodal distribution is observed near D = 0.7.
Note that in 1D systems, only a smooth crossover to a
quantum degenerate gas occurs [20, 21], which is in agree-
ment with our observation for N0/N . For our parame-
ters the system is both in the crossover region between
a weakly interacting 1D gas [22] and the strongly inter-
acting Tonks-Girardeau gas [23, 24] (the calculated di-
mensionless interaction parameter is γ ≈ 2.7 at the peak
local density), and in the crossover region between a 1D
Bose gas and a 3D finite-size condensate [25] (see sup-
plementary materials). While the exact character of the
condensate is therefore ambiguous, the velocity distribu-
tion (Fig. 2) clearly reveals a macroscopic population of
the ground state.

Since the atomic cloud is below our optical resolu-
tion, the atomic density cannot be directly determined
through optical imaging. However, an independent veri-
fication is possible by measuring 3-body loss, where the
loss coefficient (K = 2.2 × 10−29 cm6s−1 for a 3D ther-
mal gas [26]) has been previously determined. In a 1D
gas with γ ≈ 2.7, the 3-body loss is strongly suppressed
by a factor ∼100 [27, 28], and indeed we do not detect
any loss in the 1D tubes. Instead, we measure the 3-body

recombination in the 1D lattice, i.e. for a 2D gas, where
we observe a lifetime of 300 ms, from which we deter-
mine a peak density of 5.3 × 1014 cm−3 in the 2D gas,
corresponding to a peak atom number of N1 ≥ 45 atoms
per tube, and a phase space density D = 1.1 at the onset
of quantum degeneracy (see supplementary materials),
both in agreement with the previous estimation.

In conclusion, we have directly laser cooled a gas of al-
kali atoms to quantum degeneracy, which had remained
an elusive goal since the early quest for BEC. We expect
that the atom number can be substantially increased in
the future using higher trap power, and that the method
can be applied to various bosonic as well as fermionic
atomic species, potentially even under conditions where
evaporative cooling is impossible. The far-detuned opti-
cal pumping light may also enable atom-number resolv-
ing measurements in quantum gas microscopes [30, 31].
Finally, the fast preparation may pave the way for fur-
ther studies of the strongly correlated Tonks gas regime
[23, 24].
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TABLE S1. Experimental parameters.

trap wavelength λ 1064 nm

power of each trapping beam 1.1 W

waist 18 µm

ωxy/(2π) 180 kHz

ωr2D/(2π) 4.5 kHz

ωz/(2π) 6.3 kHz

trap depth in the 1D lattice U/h 13 MHz

magnetic field B 0.23 G

∆1/(2π) −660 MHz

∆2/(2π) −630 MHz

Materials and Methods
Experimental details
The two trapping beams differ in frequency by 160 MHz
to avoid interference effects and their powers can be in-
dependently controlled by separate acousto-optic mod-
ulators. The intensity of the circularly polarized opti-
cal pumping beam on the D1 transition at 795 nm is
set to an off-resonant scattering rate Γs ∼ 2 × 103 s−1

for the |F = 2,mF = 1〉 → |F = 2,mF = 2〉 transi-
tion at a detuning ∆2/(2π) = −630 MHz. An electro-
optic modulator generates sidebands at 6.8 GHz, and
the power ratio between the two frequency component
is set to have a 3 times stronger scattering rate on the
|F = 1,mF = 1〉 → |F = 2,mF = 2〉 transition. This
prevents the atoms that have decayed to the |F = 1〉
state from undergoing heating Raman transitions. The
atoms are imaged after a time-of-flight of typically 1.3 ms
via absorption imaging on the cycling transition of the
D2-line, in the plane defined by the lattice beams, and at
a 20◦ angle relative to the X lattice beams (see Fig. 1 of
the main text). We summarize the relevant experimental
parameters in Table S1.

Estimation of the phase space density D
We measure the kinetic energies Kxy and Kz, and com-
pare them to the trapping vibrational frequencies ωxy
and ωz. Hence, we estimate the relative ground state
occupation along each direction when the chemical po-
tential is zero. Assuming Tβ (β = x, y or z) is the tem-
perature along direction β with the vibrational frequency
ωβ , the kinetic energy Kβ is related to Tβ by

Kβ =
1

4
~ω +

1

2
~ω

1

e
~ωβ
kBTβ − 1

. (S1)

Then, we know the relative ground state occupation is

p0,β = 1− e−
~ωβ
kBTβ =

2
4Kβ
~ωβ + 1

. (S2)

The occupation of the 3D ground state is

P0 = p0,xp0,yp0,z =
2

4Kz
~ωz + 1

 2
4Kxy
~ωxy + 1

2

. (S3)

Thus the phase space density D is calculated as

D = N1P0 = N1
2

4Kz
~ωz + 1

 2
4Kxy
~ωxy + 1

2

≈ N ~ωz
kBTz

 2
4Kxy
~ωxy + 1

2

, (S4)

here Tz = 2Kz/kB � ~ωz/kB is the measured temper-
ature along z. Kx = Ky = Kxy is the measured kinetic
energy along x or y, and N1 is the peak atom number
per lattice tube.

Gaussian fit to the wings of the distribution
After we measure the velocity distribution of the bal-
listic expansion, we choose two lines (dashed orange in
Fig. S1) on the slopes of the distributions, separating
the central peak and the wings parts. These two lines
are fixed for all the measurements with 1.3 ms expansion
time. We fit a Gaussian function (red solid lines) to
the data points lying outside of the two lines. Then
we subtract the fitted Gaussian function from the data
points to fit a non-negative quadratic function and add
it to the top of the Gaussian fit (green solid lines).
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FIG. S1. The method of Gaussian fit to the wings of the
distribution.

Three-body recombination measurement
It was previously reported that three-body losses are
strongly reduced in a one-dimensional cloud [27, 28].
Indeed we are not able to measure any significant
three-body loss in the tubes. Therefore we measured
the three-body recombination rate in a two-dimensional
geometry by transferring the atoms to the Y optical
lattice (i.e. by merging the tubes in the x direction)



3

●
●
●●
●

●

●

●

●

●●

●●
●

●

●
● ● ●

0 200 400 600 800
0

400

800

1200

holding time /ms

at
om

nu
m
be
r

FIG. S2. Atom number in the |F = 2〉 state as a function of
the holding time in the Y lattice. The blue solid line is a fit
to the analytic solution of the three-body loss decay, with an
initial loss timescale of τ = 300 ms.

after the final cooling for 10 ms, and measuring the atom
number as a function of the holding time (Fig. S2).

By fitting the theoretical model for the three-body loss,
we obtain an initial loss timescale of τ = 300 ms. Assum-
ing a thermal velocity distribution for the atoms and av-
eraging over the Gaussian density profile in each trap and
over the different lattice sites in the 1D lattice, we obtain
the following relation between the initial peak density n
in the 2D gas and τ :

n =

(
9

τK

)1/2

= 5.3× 1014 cm−3. (S5)

Here we used the value K = 1.1×10−28 cm6s−1 from [26]
as the three-body loss coefficient for the |5S1/2, F = 2〉
state for a classical (non-condensed) gas. This density
is also consistent with the peak atom number per
tube derived from the atomic temperature and trap
vibrational frequencies.

Detuning dependence of the cooling sequence
We also test a few different detuning for the op-
tical pumping beam of dRSC. For each detuning
setting, the laser intensity was adjusted to main-
tain a scattering rate of Γs ∼ 2 × 103 s−1 on the
|5S1/2, F = 2,mF = 1〉 → |5P1/2, F = 2,mF = 2〉
transition. When using exactly the same cooling
sequence as described in the main text, we succeed
to produce a condensate also at a the smaller de-
tuning ∆2/(2π) = −100 MHz (Fig. S2C) but not at
∆2/(2π) = −20 MHz or +40 MHz (Fig. S3A-B).
Velocity distribution of the Z and X direction
We measure the velocity distributions of the Z and X di-
rections with 1.3 ms ballistic expansion time (Fig. S4).
It shows a bimodal velocity distribution along the verti-
cal direction and a Gaussian distribution along the hori-
zontal direction. Near 95% atoms are in the vibrational
ground state of X (or Y) direction. The velocity (mo-
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FIG. S3. Velocity distribution of the atoms along the Z di-
rection after 80 ms of cooling in the final cooling stage, for
various detunings of the cooling beam ∆2/(2π) = −20 MHz
(A), ∆2/(2π) = +40 MHz (B) and ∆2/(2π) = −100 MHz
(C), avaraged over 100 repetitions. The data is fitted with a
bimodal distribution in the same way as in Fig. 2 of the main
text.

mentum) distribution is showing the Gaussian profile of
the vibrational ground state.

BEC regime
For our parameters, at the critical temperature for quan-
tum degeneracy of kBT ≈ ~ωxy, the system is at the
boundary between a 3D gas and a 1D gas [25]. Fur-
thermore, the dimensionless interaction parameter γ =
mg1/~2n1 [20], where n1 is the 1D density, and g1 ∼
2~ωxya is the interaction strength for the 3D scattering
length a, for our system is γ ≈ 2.7 at the peak 1D density.
This means that the system is also at the boundary be-
tween a weakly interacting Thomas-Fermi gas (γ � 1, for
high linear density n1) and a strongly correlated Tonks
gas (γ � 1, for low n1) [20, 23, 24]. In fact, the latter has
been measured to exhibit substantially lower collisional
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FIG. S4. Velocity distribution of the Z (vertical) and X (hor-
izontal) directions with 1.3 ms expansion time. The trap is
instantaneously turned off (< 100 ns) and the final stage cool-
ing time is 200 ms. The red line is a Gaussian fit to the wings
of the distribution.

two-body and three-body loss due to the reduced corre-
lation function [27, 28]. This effect may also help further
reduce the light-induced loss during dRSC in the near-1D
geometry. We estimate average final thermalization rate
as 103 s−1, including a factor of 5 reduction for γ ≈ 2.7
[33], and a factor of e−1.5 reduction for kBT < 2~ωr [34].
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