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Abstract

The energy losses and geometric constraints associated with conventional curing

techniques of polymeric systems motivate the study of a highly scalable out-of-oven

curing method using a nanostructured resistive heater comprised of aligned carbon

nanotubes (A-CNT). The experimental results indicate that, when compared to con-

ventional oven-based techniques, the use of an “out-of-oven” A-CNT integrated heater

leads to orders of magnitude reductions in the energy required to process polymeric

layered structures such as composites. Integration of this technology into structural

systems enables the in situ curing of large-scale polymeric systems at high efficiencies,

while adding sensing and control capabilities.
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1 Introduction

Polymeric materials whose structure and properties can be precisely and reversibly engi-

neered using external stimuli, such as heat,1–5 light,2–4 etc., are prime candidates for use

in many high value applications including self-healing/re-healing materials,1–6 sensors and

actuators,1,4 electronic skin,4 and structural components.1–3 While heat is one of the most

accessible and widely used type of stimuli,1,3,4 the introduction of heat into a complex poly-

meric structure or device in an efficient and direct manner is difficult, and requires the

effective integration of small form-factor heaters into the polymeric architectures.4 This can

be achieved using microheater films. Using nanoscale elements, such as carbon nanotubes

(CNTs),7–22 graphene,10,20–23 metal nanowires (NWs),19,24–31 or hybrids of thereof,24,32 recent

work has shown that microheater films with high operating temperatures and fast thermal

ramp rates can be made. However, the lack of CNT/graphene/NW alignment in these micro-

heater films compromises their mechanical properties and electrical stability,32 making them

less suitable for application in structures that may be exposed to stress, such as airplane

wings.

Recent work on A-CNT networks showed that microheaters made via roller densification

of A-CNT arrays are highly scalable,33–36 and have tunable electron transport properties.34–37

Additionally, the low density of these films,34 which originates from the CNT intrinsic density

and volume fraction,38 makes them ideal for applications requiring a lightweight integrated

microheater film, such as in situ deicing and heat treatment of airplane wings.39 However,

while these previous studies explored the physics underlying electron transport in the A-CNT

networks, they did not explore the performance of these films as microheaters in realistic

operating conditions. Here we study the performance of A-CNT networks as microheaters,

and show that these films can enable highly efficient manufacturing of effective structural

elements for next-generation material architectures.

To evaluate the use of A-CNT networks as integrated heating elements for large struc-

tures, A-CNT networks were used to heat treat a polymer matrix composite (PMC) com-
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Figure 1: Comparison of conventional and out-of-oven manufacturing techniques. (a) Illus-
tration of the key differences between conventional (autoclave) and aligned carbon nanotube
(A-CNT) film out-of-oven curing techniques. (b) Comparison of the amount of energy de-
livered to the composite structure as a function of the amount of energy in showing orders
of magnitude reductions in energy required for manufacturing.

monly used in aerospace architectures. While such materials are normally processed using

a geometrically constrained autoclave or similar oven based technique, here we show that

an integrated microheater film can be used to heat treat the PMCs in situ regardless of the

part size and shape (see Figure 1a for an illustration of the two manufacturing techniques,

the latter termed “out-of-oven”). Since the integrated heating film directly and efficiently

transfers heat via conduction, whereas conventional oven based manufacturing techniques in-

directly and inefficiently transfer heat via convection through a gas medium, the integration

of an A-CNT network based microheater can significantly reduce, by orders of magnitude,

the energy consumed during manufacturing of PMCs. See Figure 1b for a plot illustrating

the percentage of input heat energy that was transferred to the part being manufactured
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for the conventional (oven-based), and A-CNT film based manufacturing techniques. This

order of magnitude analysis consisted of a 2D Biot-like comparison of two convective ther-

mal resistances assuming imperfect insulation: the ratio of the total thermal resistance from

the wall to the part and the convective thermal resistance of the oven assuming that the

ratio of the temperature differences between the wall and the part (∆Twp) and the wall and

the gas (∆Twg) is constant (→ ∆Twp/∆Twg ∼ 1.5 for a wall temperature of ∼ 500◦C, gas

temperature of ∼ 300◦C, and part temperature of ∼ 200◦C), and that one of the heater and

oven dimensions is matched (a 3D→ 2D simplification); the ratio of the conductive thermal

resistance from the heater to the part in a one-sided curing setup (see Figure 2 for illustra-

tion) and the convective thermal resistance from the heater to the ambient gas. As Figure 1b

shows, the A-CNT microheater based technique transfers ∼ 90% of the input energy to the

part regardless of the part width, whereas the fraction of energy transferred to the part

in the oven based techniques depends on the part width and oven size (to first order) and

peaks at ∼ 50% when the part size is matched to the oven dimensions. Additional energy

savings may be realized in the oven-based techniques by utilizing microwave heating,40,41

which also achieves a more uniform thermal distribution inside of the part relative to oven

or autoclave curing,40–43 but is limited by the interaction of the part with microwave radia-

tion and of course requires microwave generation and shielding.40 Reductions in cure cycle

duration could also be realized in the out-of-oven technique by utilizing the fast ramp rate of

the A-CNT film heater, which can exceed 1◦C/s,21 in conjunction with their enhanced heat

delivery mechanism. Through an analysis of the degree of cure of the PMC, we demonstrate

that integrated A-CNT network based microheaters can be effectively and efficiently (as

above) used for in situ heat treatment to manufacture (i.e. cure) structural components.

Since the sheet resistance of A-CNT networks synthesized via roller densification of A-

CNT arrays is inversely proportional to the length of the enclosed CNTs,37 and because a

lower sheet resistance enables more electric energy to be dissipated as heat at a given oper-

ating voltage,21 the A-CNT networks used here were comprised of long (' 300 µm) CNTs.
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Figure 2: Synthesis and testing methods. (a) Illustration of the synthesis process of aligned
carbon nanotube (A-CNT) films from A-CNT arrays via rolling densification. (b) Side view
schematic of the A-CNT film heater, and the one-sided curing setup used in this study. (c)
In-plane thermograph of the A-CNT film heater operating at ∼ 150◦C demonstrating spatial
variation in temperature of / 15◦C in the operating region.

See Figure 2a for an illustration of the roller densification process. These A-CNT films were

then joined with Cu mesh electrodes, for electrical contact, and a surfacing film, for electrical

but not thermal insulation, forming a ∼ 100 µm thick microheater film. See Figure 2b for

an illustration of the microheater film, and the setup used to test the microheater perfor-

mance via the heat treatment of a PMC. This manufacturing technique minimizes spatial

inhomogeneities, and ensures that the resulting microheater film exhibits no hot spots and
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has a precisely controllable operating temperature. See Figure 2c for a thermogram of the

microheater film at a target temperature of 150◦C with deviations of / 15◦C. Using this

microheater film, we show that a commercial laminated composite, Cycom 5320-1 unidirec-

tional carbon fiber thermoset prepreg in a 0◦ layup with fibers aligned with the direction of

current flow between electrodes (matching the alignment of the CNTs), used in aerospace

structures can be effectively processed outside of an oven.

2 Materials and Methods

Composite Fabrication and Processing. A-CNT arrays were grown in a 44 mm internal

diameter quartz tube furnace at atmospheric pressure via a thermal catalytic chemical vapor

deposition process, very similar to a previously described process,44–46 with ethylene as the

carbon source and 600 ppm of water vapor added to the inert gas. The CNTs were grown

on 40 mm × 50 mm Si substrates forming A-CNT arrays that are ' 300 µm tall, and are

composed of multiwalled CNTs that have an average outer diameter of ≈ 7.8 nm (3 − 7

walls47 with an average inner diameter of ≈ 5.1 nm),37 evaluated intrinsic CNT density of

≈ 1.6 g/cm3,37,38 average inter-CNT spacing of ≈ 59 nm, and corresponding volume fraction

of ≈ 1.6% CNTs.37,46,48 The A-CNTs were re-oriented horizontally and densified using a 10

mm diameter rod and Guaranteed Nonporous Teflon (GNPT) film by rolling in the desired

alignment directions (see Figure 2a for illustration). Since the post-growth H2 anneal step

weakens the attachment of the CNTs to the catalyst layer,49 the A-CNT film adheres to the

GNPT film and is cleanly removed from the Si substrate.

To assemble the A-CNT heater, two mesh electrodes made using Cu mesh (2CU4-100FA

from Dexmet, Inc.) were first attached to a composite surfacing film (TC235-1SF from

TenCate Advanced Composites USA, Inc.), and then joined with the A-CNT network that

is adhered onto GNPT (see Figure 2b) ensuring that the CNT alignment is perpendicular

to the length of the Cu mesh. This heater architecture has two primary advantages for
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resistive curing: (1) the surfacing film leads to a cured material that has both low porosity

and surface roughness; (2) the high resistivity of the surfacing film ensures that the A-CNT

film is electrically, but not thermally, insulated from the surface of the material that will be

cured, ensuring that electron transport is sequestered to the A-CNT film (for use in Joule

heating), and thereby enabling the formation of a uniform and tailorable temperature profile.

Additional details can be found elsewhere.50

Degree of Cure Testing. Degree of cure testing was performed on a 40 mm × 50

mm 16-ply unidirectional carbon fiber laminate following the vacuum bag scheme detailed

in the Cycom 5320-1 (Cytec Industries, Inc.) technical data sheet (these details can also be

found in ref 50). The following cure cycle was used for both the oven cured baseline, and the

samples cured using the A-CNT film heater: ramp rate of 0.6−2.8◦C/min; cure temperature

of 121± 6◦C with a hold time of 3 hr; and post cure temperature of 177◦C with a hold time

of 2 hr. Since the aligned CNT film heater on the laminate was heated by Joule heating, the

DC power supply(∼ 30 V) was directly connected to two electrodes of CNT film heater. By

manual adjustment of input voltage, the average temperature of CNT film heater followed

the selected cure cycle. Input voltage and current were recorded via a digital multimeter

(Hewlett Packard 34401A) with alligator clips every 0.3 s. Thermography was taken using a

thermal camera (PCE-TC 3 from PCE Group) every 6 seconds, and the average temperature

of CNT film heater was calculated from the temperature data in the area between two parallel

electrodes. Once the cure was complete, differential scanning calorimetry (DSC) was used

to evaluate the degree of cure (DoC) of the laminate by scanning up to 300◦C. The degree of

cure was calculated by comparing the area of the exothermic peak found in the DSC pattern

of the heat treated laminate, commonly known as the heat of cure, to the heat of cure of a

laminate that did not undergo heat treatment. In this analysis, a fully cured laminate would

have a DoC of 100% (no exothermal peak), whereas an uncured laminate would have a DoC

of 0%. Additional details can be found elsewhere.50

High Temperature Testing. The maximum operating temperature of the A-CNT film
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heater was determined in ambient air using a microheater measuring ∼ 15 mm × ∼ 15 mm

on a quartz substrate. The maximum temperature was recorded using a thermal camera

(T640 from FLIR Systems, Inc.).

3 Results and Discussion

Thermal processing of PMCs requires the heater to follow a very precise manufacturer spec-

ified thermal profile. The electrothermal response of the A-CNT film heater during thermal

processing can be split up into five stages (see Figure 3a). These five stages consist of three

ramps stages (I, III, and IV), an initial cure stage (II) where polymer flow, gelation, and

vitrification occurs, and a cure stage (IV) where polymer cross-linking occurs.51 In Stage I,

the temperature of the A-CNT film heater is ramped from room temperature to 121◦C at a

constant rate, and the heater resistance was observed to have a non-monotonic response of

first decreasing from ≈ 13 Ω to ≈ 9 Ω then recovering to ≈ 10 Ω, while the heater power

increased monotonically from ≈ 0 W to ≈ 16 W. In this stage, the resistance of the CNT

film first decreased due to the negative thermal coefficient of resistance (TCR) of the A-CNT

network,37 but then recovered at around 100◦C due to capillary driven wetting of the A-

CNT network by polymer found in the surfacing film.52 This polymer infusion process leads

to an increase in CNT-CNT junction resistance.53 In Stage II, where the temperature was

held at 121◦C, the heater resistance increased monotonically from ≈ 10 Ω to ≈ 14Ω due to

continued flow of polymer from the surfacing film into the A-CNT network, while the heater

power decreased from ≈ 16 W to ≈ 15 W due to the increase in heater resistance. In this

stage, the polymer goes through two transitions:51 gelation, where the polymer transforms

from a liquid to a rubber like state;54 and vitrification, where the polymer transforms from

a rubber like state to a solid glassy state.54 These transformations comprise the initial cure.

To arrive at the cure temperature, Stage III consisted of a temperature ramp-up from 121◦C

to 177◦C, and the heater resistance decreased from ≈ 14 Ω to ≈ 13 Ω (the TCR was lower
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Figure 3: Performance of the A-CNT film heater during manufacturing. (a) A-CNT film
heater temperature, resistance, and power during curing. The five stages of the composite
manufacturing cycle are indicated. (b) Spatial variations in peak temperature in stage IV
and the resulting degree of cure (100% corresponds to fully cured) for the 2nd, 7th, and 15th
layer of the 16 layer composite.

due to polymer impregnation into the A-CNT network), while the heater power increased

from ≈ 15 W to ≈ 28 W. The temperature was held at 177◦C at Stage IV, where the heater

resistance increased from ≈ 13 Ω to ≈ 15 Ω, and the heater power decreased from ≈ 28 W to

≈ 24 W due to the increased heater resistance. In this stage, the polymer undergoes cross-
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linking that maximize the thermomechanical properties of the structure.51 Stage V consisted

of the post-thermal processing ramp down, and the heater resistance increased from ≈ 15 Ω

to ≈ 18 Ω due to the negative TCR of the A-CNT film heater.37 These observed changes in

resistance and power during the thermal processing of the PMCs are a result of interactions

between the A-CNT film heater and the polymer surfacing film, suggesting that the A-CNT

film heater can act as a sensor during the formation of a polymer nanocomposite layer on

the surface of the fabricated part.

To evaluate the quality of the thermal processing, and to determine whether the A-CNT

film heater approach yields materials of equivalent quality, an analysis of the degree of cure

(DoC) was performed (see Figure 3b).50,55 As Figure 3b demonstrates, thermal processing

with the A-CNT film heater leads to DoCs that are equivalent to or outperform (DoC

≈ 93% − 99%) those obtained from the conventional oven technique (DoC ≈ 93%). Also,

Figure 3b illustrates that the DoC of the laminate is strongly dependent on the surface

temperature of the A-CNT film heater, which emphasizes the need for spatial control of

heating. Since there should be no significant spatial variations in the temperature profile of

the oven once steady state is reached, the DoC for the oven technique is only calculated at

≈ 180◦C (the scaling of the DoC with cure temperature for oven based techniques can be

found in Lee 50). Note that the asymmetric and uninsulated fabrication setup (see Figure 2b)

was purposefully designed to be the worst case scenario, and significant thermal losses were

observed in the through-thickness direction of the laminate. This causes the degree of cure

to decrease as a function of the ply number (∝ the distance from the surface of the A-CNT

film heater), although still exceeding the baseline (oven cured) DoC at 93% (see Figure 3b).

Since the addition of insulation promises a more uniform thermal distribution and suppressed

through-thickness thermal losses, future work on insulated asymmetric (a heater on one

side) and symmetric (a heater on both sides) A-CNT film heater setups is planned, and will

determine the maximum laminate thickness for which a uniform DoC throughout the whole

composite can be obtained.
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Previous studies have demonstrated that microheater films normally exhibit maximum

operating temperatures of ≈ 100◦C to 200◦C, which severely limits the materials they could

be used to process. As Figure 4 demonstrates, the A-CNT film heater used here is stable up

to ≈ 550◦C in ambient conditions (at 1 atm and ambient temperature of 25◦C to simulate

the worst case scenario), which is comparable to the best figures previously reported for CNT

based electrothermal devices operating in air (∼ 400◦C for pristine CNTs, and ∼ 700◦C for

SiC coated CNTs).8,15,21,56 Since the A-CNT film heater could maintain such a high temper-

ature for ' 1.5 hr at a heater power of ' 20 W/cm2in this highly oxidizing environment, this

microheater would see little degradation at / 550◦C during normal operation for part curing

where the A-CNT film will either be in vacuum or not directly exposed to the ambient air.

This means that the A-CNT film here reported here can be used for in situ thermal process-

ing of high temperature polymers, such as polyacrylonitrile (PAN), polyimide, and poly(aryl

ether ketone)s (e.g. PEEK and PEKK), which normally require temperatures of ∼ 300◦C to

400◦C for processing.57–62 Also, recent work has shown that CNT based heaters can be used

at temperatures > 1000◦C in non-oxidizing environments,18,56 meaning that the A-CNT film

heater reported here may be used for the low temperature carbonization step required for the

synthesis of PAN based carbon fibers,57 or the manufacture of other pyrolytic carbon based

materials, such as aligned CNT carbon matrix nanocomposites.38 These results indicate that

with environmental control, the A-CNT film based microheaters could potentially be used

to fabricate next-generation architectures comprised of both polymers and ceramics.

4 Conclusion

In summary, an aligned carbon nanotube (A-CNT) based microheater that is suitable for

integration into existing and future multifunctional architectures was presented. The experi-

mental results show that the A-CNT microheater film has a uniform surface temperature that

can be tuned to accurately follow a temperature control profile. Because the laminates cured
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by the A-CNT based microheater had a comparable degree of cure (DoC) to the laminates

cured using a conventional oven based techniques, but required much less input energy (< 30

W peak for the A-CNT film heater vs. & 1 KW peak for the oven), the microheater reported

here can lead to orders of magnitude energy savings during processing of materials, consistent

with the scaling analysis presented in Figure 1b. In the specific application presented here,

energy for thermal processing of advanced composites accounts for ∼ 25− 50% of the total

acquisition cost of such structures.63 Also, since the A-CNT microheater film can operate at

temperatures > 500◦C in air and > 1000◦C in non-oxidizing environments, this microheater

can could be used for thermal processing of high temperature polymers, e.g. polyimides

and polyaryletherketones, or low temperature pyrolysis of polymer derived ceramics. Since

the experimental setup used here was for the worst case scenario (heater on one side with

no insulation), future studies should explore the energy required for thermal processing of

laminates in setups that incorporate insulation and multiple microheater films. Additionally,

since the geometry of the part could affect the resulting temperature distribution, e.g. in

areas of thickness variation such as ply drops and tapers, further work is planned to quantify

the impact of laminate geometric variations on their DoC. Also, since thermal processing

using the A-CNT film heater yields a multifunctional aligned-CNT polymer nanocompos-
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ite layer on the composite surface, further work is required to explore the capabilities that

may arise from the incorporation of such a nancomposite layer into polymeric structures.

Using this microheater film, the design and manufacture of next-generation multifunctional

architectures with built-in damage sensing and repairing capabilities may become possible.
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