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Abstract 

We investigate the elastic behaviour of periodic hexagonal honeycombs over a wide range of 

relative densities and cell geometries, using both analytical and numerical approaches. Previous 

modelling approaches are reviewed and their limitations identified. More accurate estimates of 

all nine elastic constants are obtained by modifying the analysis of Gibson and Ashby (1997) to 

account for the nodes at the intersection of the vertical and inclined members. The effect of the 

nodes becomes significant at high relative densities. We then compare the new analytical 

equations with previous analytical models, with a numerical analysis based on a computational 

homogenization technique and with data for rubber honeycombs over a wide range of relative 

densities and cell geometries. The comparisons show that both the new analytical equations and 

numerical solutions give a remarkably good description of the data. The results provide new 

insights into understanding the mechanics of honeycombs and designing new cellular materials 

in the future. 
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1 Introduction 

Honeycombs are widely used as the cores of sandwich panels in the aerospace, automotive, 

construction, marine and wind energy industries. The separation of stiff, strong faces (for 

instance, fiber reinforced composite laminates) by a lightweight, typically cellular core, increases 

the moment of inertia of the panels with little increase in weight, making them efficient for 

resisting bending and buckling loads. 

Honeycombs are used extensively in the aerospace industry, due to their high specific stiffness 

and strength (Burton and Noor, 1997). The response of a sandwich structure under different 

types of load depends, in part, on the effective (equivalent) properties of the core (Allen, 1969; 

Burton and Noor, 1997; Hohe and Becker, 2001; Balawi and Abot, 2008). As a result, the 

effective elastic and inelastic properties of honeycombs have been widely studied using 

analytical and numerical models (e.g. (Kelsey et al., 1958; Gibson et al., 1982; Gibson and 

Ashby, 1988, 1997; Zhang and Ashby, 1992; Burton and Noor, 1997; Simone and Gibson, 1998; 

Balawi and Abot, 2008)). Many of these models use approximations that limit their validity to 

low values of the ratio of cell wall thickness to length and to isotropic cell walls. With a view 

towards applying honeycomb models to natural materials such as balsa wood, with relatively 

high values of cell wall thickness to length (compared with engineering honeycombs) and with 

anisotropic cell walls, we extend Gibson and Ashby's honeycomb model. 

We first review some widely used models available in the literature and identify the limitations 

of these models in Section 2. The analysis of Gibson and Ashby (1997) for hexagonal 

honeycombs with constant cell wall thickness is extended in Section 3 to allow more accurate 

estimates of all nine elastic constants of honeycombs with cell walls of constant thickness. In 

addition, new analytical equations for the elastic constants of honeycombs with double thickness 

vertical cell walls are presented in Appendix A.  

A 3D numerical analysis for the elastic constants, based on a computational homogenization 

technique, is described in Section 4. It is intended that the numerical model provide reference 

solutions to examine the range of validity of the new analytical equations. In addition, both the 

analytical and numerical results are compared with experimental data on rubber honeycombs 

(Gibson, 1981) in Section 5.  

Both the new analytical results and the numerical results give a remarkably good description of 

the available experimental data. The numerical approach can easily be adapted for an orthotropic 

cell wall, as in the case of woods. Finally, the use of the numerical approach in investigating the 

effect of relative density and cell geometry on the effective elastic properties of honeycombs and 

understanding the mechanics of honeycombs is discussed in Section 6. 

2 Literature  

One of the most widely used models for the elastic constants of honeycombs is that of Gibson 

and Ashby and co-workers (Gibson et al., 1982; Gibson and Ashby, 1988, 1997).  Their initial 

studies of the in-plane moduli focussed on bending deformation in cell walls of uniform 

thickness; bending-based models give a good description of the elastic moduli of low relative 

density honeycombs. They also modeled the out-of-plane elastic moduli. In general, good 

agreement between the models and experimental results was reported for all properties, although 

some discrepancies were observed, especially for in-plane shear properties which were attributed 

to shear deformation in the testing jig. Later on, they extended the models to include the 
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contribution of axial and shear deformations to the in-plane moduli and to include honeycombs 

with vertical walls of double thickness, representative of many honeycombs made by the 

corrugation and expansion processes (Gibson and Ashby, 1997). 

Honeycombs with double thickness vertical cell walls have attracted more attention in the 

literature than those with constant cell wall thickness. Masters and Evans (1997) derived 

analytical equations for the effective in-plane elastic properties of honeycombs with double 

thickness vertical cell walls, considering axial, bending and shear deformations as well as 

hinging (change of the angle at the intersection of vertical and inclined walls), obtaining results 

similar to those of Gibson and Ashby (Gibson and Ashby, 1997). The full set of analytical 

equations for honeycombs were also given by Burton and Noor (1997) by incorporating a 

coefficient in the equations derived by Gibson and Ashby (1988). 

There are several limitations to the above models. An exact expression for one of the out-of-

plane shear moduli is not obtained; only upper and lower bounds.  The accuracy of the in-plane 

models accounting for shear and axial deformation of the cell walls was never fully investigated.  

Although the analytical models given by Gibson and Ashby (1997) and Masters and Evans 

(1997) are similar and predict the effective elastic properties of low relative density honeycombs 

well, they become less accurate with increasing relative density. In addition, the analytical 

models do not capture the slight in-plane anisotropy of double wall honeycombs which increases 

with relative density.  

Numerical analysis has proven to be a powerful and promising approach, once validated, in 

studying the mechanics of heterogeneous media in the past (Guedes and Kikuchi, 1990; Kanit et 

al., 2006; Malekmohammadi, 2014). Therefore, some researchers have used numerical 

approaches (e.g. FE based) to better understand and predict the elastic behaviour of honeycombs 

(Chamis et al., 1988; Grediac, 1993; Silva et al., 1995; Vougiouka et al., 1998; Guo and Gibson, 

1999; Meraghni et al., 1999; Hohe and Becker, 2001; Chen, 2011; Catapano and Montemurro, 

2014). However, only few of them (Vougiouka et al., 1998; Hohe and Becker, 2001; Chen, 2011; 

Catapano and Montemurro, 2014), have actually attempted to predict all the elastic constants for 

generally orthotropic honeycombs and compare them with available analytical estimates or 

experimental data. Most researchers, employed shell (Chamis et al., 1988; Grediac, 1993; 

Vougiouka et al., 1998; Meraghni et al., 1999; Hohe and Becker, 2001; Chen, 2011) or beam 

(Silva et al., 1995; Guo and Gibson, 1999) elements for their numerical models. It should be 

noted that the 3D cell geometry and features such as the size of nodes at the intersection of the 

vertical and inclined members are not fully captured using shell elements. Moreover, most shell 

elements have limitations in capturing the true variation of normal and shear stresses through the 

shell thickness. As pointed out by Catapano and Montemurro (2014), this makes the validity of 

these numerical models questionable, especially for honeycombs with thick cell walls.  

Recently, Catapano and Montemurro (2014) conducted a 3D numerical study on the effective 

elastic properties of honeycombs with double thickness cell walls using the finite element 

method with solid elements. Predictions were compared with analytical models presented in 

Burton and Noor (1997) and Grediac (1993) for honeycombs with double thickness vertical 

walls. For in-plane properties, relative errors ranging from 8 to 23.5% were reported between 

shell-based models and solid-based models, although no significant difference was reported for 

out-of-plane properties. These differences for in-plane properties were attributed to the presence 

of normal out-of-plane stresses in cell walls of honeycombs. However, no comparisons with 

experimental data were given to support this argument. 
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3 Analytical Approach 

The models of Gibson and Ashby and co-workers (1981, 1982, 1988, 1997), ignore the vertices 

or nodes at the intersection of the vertical and inclined members of the periodic hexagonal 

honeycomb.  While the effect of the nodes on the elastic moduli is negligible for low relative 

density honeycombs, it can be significant at higher relative densities. In this section, we modify 

Gibson and Ashby's equations by considering the nodes and introducing the effective bending 

length of the cell wall into the analysis. The results presented in this section are for honeycombs 

with uniform cell wall thickness; results for honeycombs with double thickness vertical cell 

walls are given in Appendix A.  

We first calculate the relative density of periodic hexagonal honeycombs. As shown in Fig. 1, we 

note that the lengths of the inclined and vertical cell walls ( bl  and bh , respectively) which can 

bend under in-plane loading are: 

    2cos 1 sin cos,b bl l t h h t         (1) 

where t  is the cell wall thickness and   is the angle between the horizontal and the inclined cell 

wall, as shown in Fig. 1. The relative density for a unit cell of the material (shown in Fig. 2) can 

be determined by subtracting the void area within the cells: 
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The out-of-plane Young’s modulus of honeycombs in the axial or X3 direction can be estimated 

by assuming that for the normal loading in the X3 direction, the deformation is axial. Therefore, 

the longitudinal modulus of the honeycomb can be expressed as: 
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The Young’s moduli in the transverse, in-plane, directions (i.e. X1 and X2) are calculated as 

follows. In the X1 direction, the modulus, *

1E , can be obtained by dividing the applied stress to 

the induced strain: 
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The applied force to each inclined member, 1F , and its resulting deflection in the X1 direction, 1

, are shown in Fig. 3(b). Note that b  is the depth of the unit cell in Fig. 3(a). The total deflection, 

1 , can be written as the sum of deflections due to the axial a , shear s , and bending b  

deformation of the cell wall, in the X1 direction (see Fig. 3): 

 1 cos sin sina s b           (7) 

with: 

 1 cosb
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It should be noted that in deriving the above equations, deformations within the node have been 

neglected. The shear deflection in Eq. (9) is calculated according to the Timoshenko beam theory 

(Timoshenko and Goodier, 1970). 

The Young’s modulus in X1 direction can now be obtained by substituting Eq. (7) in Eq. (6) and 

subsequently in Eq. (4): 
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Using a similar approach in the X2 direction, the modulus *

2E  is: 
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The effective Poisson’s ratios, *

12  and *

21  are calculated by considering the strains in different 

directions. For loading in the X1 direction: 
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where s  is the Poisson’s ratio of the solid cell wall material. Note that it can be shown that the 

deflection in the transverse direction, denoted by 2 , is created by the axial, shear and bending 

deformation of the inclined member (see Fig. 3) as follows: 

 2 sin cos cosa s b            (14) 

A similar analysis can be performed for loading in the X2 direction. The final expression for *

21  

is: 
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In order to calculate the in-plane shear modulus, the shear force F  applied to a vertical member 

gives a shear stress 12  of (Fig.4): 

 
12
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   (16) 

As shown in Fig. 4(b), the applied in-plane shear force to the unit cell, F , is carried by two 

inclined members equally. Note that equilibrium requires: 
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The effective in-plane shear modulus *

12G  can be calculated as: 
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The total strain 12  in Eq. (18) is composed of the shear strain due to deflection in the vertical h  

and the inclined members, l , respectively. The shear strain in the vertical member is calculated 

to be: 
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where hu  is the displacement of the vertical member in the X1 direction due to its rotation ( ), 

bending and shear deformations (see Fig. 5(b)):  

  
2

2

2 2 2.4 1.5
48

b
h b b b s

s b

Fh t
u l h h

E hI


  
      
   

  (20) 

The shear strain in the inclined member, l , is calculated as: 
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The first and second term in the numerator of Eq. (21) is the displacement of the inclined 

member due to the axial deformation, denoted by  
ll axia

u , and the shear deformation, denoted by 

 
rl shea

u , projected in the X2 direction, respectively. These displacements are shown in Fig. 5 and 

are calculated as: 
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Substituting Eqs. (16), (19) and (21) into Eq. (18) and some simplifications gives: 
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where C  is expressed as: 
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The above equations are similar to those given in Appendix 4B of Gibson and Ashby (1997). 

However, there are slight differences in expressing terms which involve the length of inclined 

and vertical members of the honeycomb structure, as a result of considering the area of the nodes 

in the current analysis. As shown in Section 5.2, this more accurate analysis results in improved 

predictions of the honeycomb moduli. 

Upper and lower bounds for the out-of-plane shear moduli were obtained by previous researchers 

(Kelsey et al., 1958; Gibson et al., 1982; Gibson and Ashby, 1988, 1997). However, by 

considering compatibility of the displacement and traction at the interface of multiple blocks of 

the material unit cell (see Fig. 6) as well as equilibrium of forces, we obtain closed-form 

equations: 
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The analysis to obtain these equations is quite lengthy and therefore it is given in Appendix B for 

reference. 

The effective out-of-plane Poisson’s ratios are equal to those of the solid cell wall material, i.e.: 

 * *

31 32 s      (28) 

The validity of this estimate is examined below using finite element reference solutions. 

It is noted that once the effective Young’s moduli in all three different directions (i.e. *

1E , *

2E  

and *

3E ) are determined, the other effective Poisson’s ratio can be found from the reciprocal 

relations: 

 

* *
* * * *1 2
13 31 23 32* *

3 3

,
E E

E E
       (29) 

4 Numerical Approach 

Numerical reference solutions are obtained using a computational homogenization technique 

based on full-field microstructural simulations. Computational homogenization is a powerful 

technique in finding the effective properties of heterogeneous materials (Guedes and Kikuchi, 

1990; Kanit et al., 2006). This method is versatile and has been used for estimating the effective 

properties of heterogeneous materials with complex morphological characteristics (e.g. 

(Moulinec and Suquet, 1998; Michel et al., 1999)). Using computational homogenization, the 

effective stiffness tensor is determined by solving six elementary boundary value problems 

corresponding to three uniaxial extensions and three simple shear loadings (see (Gereke et al., 

2012)).  

Previous studies have shown that the apparent stiffness tensor of a given volume of the material 

depends on the type of boundary conditions applied (Huet, 1990; Kanit et al., 2003; Xia et al., 

2003). It has been shown that periodic boundary conditions are ideally suited for both periodic 

and random media (Kanit et al., 2003, 2006; Xia et al., 2003). Independent of the size of the 

volume, the apparent elastic properties obtained with periodic boundary conditions are closer to 

the effective properties than with other boundary conditions (i.e. homogeneous strain or stress 

boundary conditions). Therefore, a numerical approach based on a computational 

homogenization technique with periodic boundary conditions is used here to provide reference 

solutions and evaluate the analytical models in this paper.  

4.1 Unit Cell 

The hexagonal honeycomb is assumed to have a periodic microstructure with constant wall 

thickness; a unit cell can be identified (see Fig. 2). To investigate the effect of the relative 

density and cell geometry on the effective properties of the honeycomb, the cell wall lengths l  

and h , thickness, t , and the angle   are all defined as parameters that can be varied. 
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As stated by Catapano and Montemurro (2014), only solid elements capture the correct stress 

and strain distribution in the cell walls of 3D honeycombs. Therefore, the unit cell depicted in 

Fig. 7 is discretized using 8-node linear brick elements, C3D8I, in ABAQUS© software 

(ABAQUS Inc., 2013). The unit cell is discretized in a general way such that it can be used for 

multi-scale modelling of different wood species in future studies, similar to Qing and 

Mishnaevsky (2009) and Gereke et al. (2011). The cell wall of different wood species consists of 

four different layers (i.e. S1, S2, S3, CML). Therefore, four layers with distinct material 

behaviour are implemented for the cell walls. The material behaviour of each layer is defined as 

generally orthotropic and elastic. For this study, equal isotropic properties are assigned to all 

layers.  

4.2 Stiffness Matrix Computation 

The effective stiffness C  of the honeycomb with the linear elastic cell wall material is defined 

by: 

 :C    (30) 

In the above equation,   and  are the volume average of the stress and strain tensors in the unit 

cell, respectively. To determine the effective stiffness matrix of a unit cell of the material, 

denoted by C , six elementary loadings (three uniaxial extensions and three simple shear 

loadings) corresponding to pre-specified forms of the average strain tensor  have to be 

successively applied to the unit cell. In each case, the local problem is solved by the finite 

element method. 

The volume average of the resulting stress field in the unit cell, denoted by  , provides a 

specific column of the stiffness tensor (6×6 matrix representation), see e.g. Kanit et al., 2006 for 

more details. The engineering constants are then determined from the components of the 

compliance matrix obtained by taking the inverse of the stiffness matrix. 

4.3 Boundary Conditions 

To model the true behaviour of periodic honeycombs, just like any other periodic media (e.g. 

unidirectional composites), periodicity of displacements and tractions on the boundaries are 

required. Applying periodic boundary conditions instead of homogeneous displacement or 

traction boundary conditions prevents any over-constrained conditions in the numerical model 

and results in more accurate predictions of effective properties (Xia et al., 2003).  

Kinematical periodic boundary conditions are prescribed to impose each of the six elementary 

loadings. For a given load (corresponding to a prescribed strain ), the displacement field,  u x  

for any point x  belonging to the boundary   of the unit cell   must be periodic (see 

(Malekmohammadi, 2014)). To apply periodic boundary conditions, for every pair of opposite 

points A  and B  on the boundary of unit cell,  , the following relation has been imposed: 

      . ;B A B Au x u x x x x       (30) 

where Ax  and Ax  are the coordinates of the two opposite points. The periodic boundary 

conditions ensure the following average relationship: 
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1

x x dV
V 

     (31) 

where  x  is the strain field in the unit cell and V  is the total volume of the unit cell  .  

Periodic boundary conditions are implemented in ABAQUS© software (ABAQUS Inc., 2013) 

using Python© scripts (Python, 2013). Python scripts are used to create geometries, generate lists 

of nodes and elements, and define material properties in an appropriate format as required to be 

employed in the ABAQUS© environment. The resulting stress and strain fields are used to 

calculate the average stress and strain tensors and hence the effective stiffness matrix for the unit 

cell of the honeycomb is calculated. 

4.4 Convergence 

To determine the suitable mesh size for the discretized model, a convergence study is performed 

employing different mesh sizes. According to this study, a mesh size of 40 × 8 × 3 (i.e. number 

of elements along each cell wall length × thickness × depth) provides converged values for all 

engineering elastic constants. The results of this study for elastic properties are shown in Fig. 8. 

Different ABAQUS © shell (S4 and S4R) and solid (C3D8, C3D8R and C3D8I) elements were 

examined for this study. The reduced-integration linear elements (S4R and C3D8R) converged 

rapidly as the mesh was refined. However, the elements require hourglass control (see 

(ABAQUS Inc., 2013)) which is out of the scope of this study. 

It was found that regular 3D elements (C3D8), do not lead to converged values even with 

reasonably fine meshes. This is due to the shear locking of solid elements in bending which leads 

to unrealistically stiff results. Shear locking occurs in fully integrated, first order interpolation  

elements (e.g. C3D8) subjected to bending due to their numerical formulation and the induced 

unrealistic shear strains (see (Wang et al., 2000; Bower, 2010)). To overcome this problem, 

incompatible mode elements (C3D8I) were used. In these elements, in addition to the 

displacement degrees of freedom, incompatible deformation modes have been incorporated in 

the element formulation (ABAQUS Inc., 2013).  

The results of 4-node shell elements (S4 and S4R) matched those of solid C3D8I element for 

honeycombs with thinner cell walls. As the cell wall thickness increased, the shell element 

results deviated from the solid elements results. This is due to inaccuracy of these shell elements 

in describing the variation of through-thickness stresses in thick cell walls (Catapano and 

Montemurro, 2014). Therefore, only numerical results obtained using C3D8I elements are 

reported in this paper. 

5 Validation 

5.1 Experiments 

Gibson (1981) conducted a detailed experimental study on the mechanical properties of silicone 

rubber honeycombs with varying ratios of cell wall thickness to length, /t l , and cell geometry (

/h l  and  ); each honeycomb had constant cell wall thickness. The results of this previous study 

are used to assess the accuracy of both the analytical and numerical approaches described in this 

paper. Briefly, specimens were prepared by mixing silicon rubber with a hardener and pouring 

the mixture into moulds of the appropriate geometry. Each sample was loaded uniaxially in 
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different directions and, separately, in shear in different planes. The in-plane moduli in the X1 

and X2 directions, as well as the in-plane shear modulus, were all measured from the slope of 

load-deflection curves. The in-plane Poisson’s ratios, 12  and 21  of the honeycombs were also 

determined by displacement measurements in two perpendicular directions when samples were 

loaded uniaxially in the X1 and X2 directions. 

Gibson and Ashby (1997) found that their analytical model predictions gave a good description 

of their experimental measurements for the in-plane properties of honeycombs. They concluded 

that the in-plane behavior of honeycombs is mainly governed by beam bending of cell walls. 

However, some discrepancies were also reported, especially for in-plane shear modulus where 

the analytical model predictions were lower than the experimental values for all samples. The 

stiffening effect of the shear jig was reported as the possible reason for the discrepancies. As we 

show in the following section, numerical study by finite element method reveals that this may 

not be the only reason for the observed discrepancies. 

5.2 Honeycombs with uniform cell wall thicknesses 

Fig. 9 shows comparisons for the effective Young’s moduli in the three directions. In the in-

plane directions, the improved analytical model (Eqs. (11) and (12)) and the finite element 

results give an excellent description of the experimental measurements. Excellent agreement is 

also observed between the analytical estimates (Eq. (3)) and the numerical reference solutions for 

Young’s modulus in the X3 direction of honeycombs with various relative densities and cell 

geometries.  

Comparisons between the analytical models ((Gibson and Ashby, 1997) and Eqs. (24), (26) and 

(27)) and numerical results for the effective shear moduli are given in Fig. 10. Experimental data 

for in-plane properties (Gibson, 1981) are also shown to investigate the validity of the numerical 

model and the accuracy of the analytical equation (Eq. (24)) in predicting in-plane shear modulus 

of these honeycombs. The results show that the estimates of Eq. (24) are closer to the effective 

in-plane shear moduli of regular honeycombs than those of previous equations presented in 

(Gibson and Ashby, 1997), especially at higher /t l  ratios.  

Estimates for the in-plane Poisson’s ratios (Eq. (13)) are also found to be closer to the measured 

Poisson’s ratios than those obtained by previous equations (see Fig. 11). For the out-of-plane 

Poisson’s ratios, i.e. 32  and 31 , the numerical reference solutions indicates that the estimate of 

Eq. (28) is valid for the wide range of cell wall thickness to length ratios studied here (i.e. a 

constant value, s , not shown here). In general, the very good agreement between numerical and 

experimentally measured values for the in-plane properties of honeycombs validates the 

capabilities of current numerical approach in modelling the effective properties of periodic 

hexagonal honeycombs. 

To better understand the role of nodes in transferring in-plane and out-of-plane loads, the 

distribution of stresses through the cell walls are examined in numerical simulations. For in-

plane tensile loading in the X2 direction, the axial stress distribution in the vertical and inclined 

cell wall members and nodes at their intersection is given in Fig. 12. Note that the stress 

distribution is given in the local coordinate systems indicated below each plot in this figure. The 

applied tensile load in the X2 direction is mostly carried through the extension of the vertical 
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member (Fig. 12(a)) and the axial and bending deformation of the inclined members (see Fig. 

12(b)).  

For in-plane shear loading, the deformed shape and the induced normal stresses, 22 , in the unit 

cell’s global coordinate system, are given in Fig. 13. The stress distribution in the cell wall 

indicates that that the vertical member deflects only due to bending and shear deformation, as it 

was assumed in Section 3 for estimating the effective in-plane shear modulus. Note that the 

symmetric maximum and minimum values of 22  occurring at the intersecting node regions   

implies that no axial deformation is present in vertical members. Fig. 14 shows how the load is 

transferred through the cell wall for out-of-plane shear loadings of the honeycombs. For out-of 

plane shear loading in X1-X3 plane, the applied load is transferred through shear deformation of 

the inclined members as shown in Fig. 14(a). The very small 13  values in vertical members 

indicates that these members do not have any significant role in transferring the out-of plane 

shear load applied in the X1-X3 plane. However, both vertical and inclined members are sheared 

significantly when the load is applied in the X2-X3 plane (see Fig. 14(b)). These observations 

support the analytical approach presented in Appendix B for estimating the out-of-plane shear 

moduli of periodic honeycombs. 

5.3 Honeycombs with double thickness vertical cell walls 

For honeycombs with double thickness vertical cell walls, the predictions of the current 

analytical approach (Eqs. (A.3)-(A.8)) are compared with those of Gibson and Ashby (1997) as 

well as experimental data (Hexcel Corporation, 1999; Karakoc and Freund, 2012) for both in-

plane and out-of-plane moduli in Figs. 15 and 16, respectively. Although in Gibson and Ashby 

(1997) analytical equations are given for honeycombs with both constant cell walls and double 

thickness vertical cell walls considering the bending deformation of cell walls, the extended 

equations (in which axial, shear and bending deformation of the cell walls were taken into 

account) are only given for honeycombs with constant thickness cell walls. Therefore, 

predictions of the previous analytical equations (Gibson and Ashby, 1997), in which only cell 

wall bending was considered, are compared with those obtained from Eqs. (A.3)-(A.8).  

Fig. 15 and 16 show that although axial, shear and bending deformations are considered in these 

new equations, their predictions are very close to the previous ones given in Gibson and Ashby 

(1997) except for 23G . To show the relative agreement between the predictions and experimental 

data, the relative error ( e ) between the two, as well as the correlation coefficient ( 2r ), are 

calculated for both the equations in Gibson and Ashby (1997) and Eqs. (A.3)-(A.8). For 23G , the 

predictions of Eq. (A.8) are between the upper and lower estimates, and close to the upper bound 

(Kelsey et al., 1958; Gibson and Ashby, 1997). For other moduli, the predictions of and Eqs. 

(A.4)-(A.6) are slightly higher than those of Gibson and Ashby (1997). It should be pointed out 

that the relative density of available commercial honeycombs given in these figures are quite low 

( * 0.05s   ) and bending deformation is considered as the main deformation mechanism in 

in-plane loading of these honeycombs. Therefore, the two predictions of both analytical 

approaches are expected to be very close. This explains the very good agreement between the 

two models for the in-plane moduli.  
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Quantitative inspection of the predictions of the two in-plane Young's moduli, i.e. 1E  and 2E , 

reveals the in-plane anisotropy of regular hexagonal honeycombs (i.e. / 1, 30h l   ). This 

might seem surprising as the equations in Gibson and Ashby (1997) give identical values for the 

two in-plane Young’s moduli of regular honeycombs. As reported by Balawi and Abot (2008), 

regular hexagonal honeycombs show a higher value for 2E  comparing to 1E  at high relative 

densities. However, the difference between the two in-plane moduli is negligible for the 

commercial honeycombs having low relative densities. Further detailed experimental studies on 

such honeycombs with higher relative densities are required to investigate the validity range of 

Eqs. (A.4)-(A.8). 

6 Conclusions 

The mechanics of honeycombs with periodic structures are investigated using analytical and 

numerical approaches. For this purpose, the analytical models previously developed for 

honeycombs with very low relative densities are revisited and a more complete analysis is 

presented. To better understand the mechanics of honeycombs, we focused on honeycombs with 

constant cell wall thickness. However, honeycombs with double thickness cell walls are also 

addressed and analytical equations are presented for their effective moduli in Appendix A due to 

their importance in industrial applications.  

To investigate the importance and the role of the nodes at the intersection of the inclined and 

vertical cell wall members in the load transfer mechanism, a three dimensional numerical study 

with solid elements is conducted on honeycombs with constant cell wall thickness. The 

predictive capability of the numerical approach is then validated using a set of experimental data 

previously reported in the literature (Gibson, 1981). The results demonstrate the ability of the 

numerical approach to capture the effect of geometrical parameters, such as cell wall length, 

thickness, and angle, on the effective engineering constants of honeycombs. Moreover, they 

validate the accuracy of the complete analytical equations presented in this paper. These 

equations can be employed for optimizing the geometrical parameters of honeycombs as well as 

minimum weight analysis of sandwich structures with honeycomb cores (e.g. see (Burton and 

Noor, 1997; Catapano and Montemurro, 2014)). 

As shown in this paper, the numerical approach is a promising approach in studying the 

mechanics of periodic honeycombs over a wide range of relative densities and cell geometries.  It 

is flexible and can be used for cellular solids with various geometrical characteristics (e.g. cell 

wall size and thickness) and different types of solid cell wall properties (i.e. isotropic, 

transversely isotropic or orthotropic). It should be noted that the microstructure of several natural 

cellular materials such as wood and bone is similar to honeycombs. Findings of the current work 

provide new insights into understanding the mechanics of these natural cellular materials and 

designing novel bio-inspired materials in the future. 

Appendix A Analytical Equations for Honeycombs with Double Thickness 

Vertical Walls 

In this appendix, the effective moduli of honeycombs with double thickness vertical walls are 

presented. Note that the geometrical parameters are slightly different for these honeycombs (see 

Fig. A1). 
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Appendix B Analytical Approach for the Out-of-plane Shear Moduli of 

Honeycombs with Uniform Cell Walls 

In this appendix, we present an analytical approach to obtain the closed-form equations for 

estimating the out-of-plane shear moduli of honeycombs with constant thickness cell walls. 

By decomposing the cell walls into 5 blocks as shown in Fig. 6, the corresponding area of each 

block can be calculated as follow: 

 a bS th   (B.1) 

 2b b ecS S tl S     (B.2) 
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2 sin
4cos

d

t
S 
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Assuming uniform stress field in block d  and e , compatibility of tractions at the interface of 

block b  and e  gives: 

 cos cosb ed        (B.5) 

The equilibrium of forces in other directions requires that: 

 0a    (B.6) 

This has also been visualized in the contour plots of the stress field obtained from finite element 

simulation results (see Fig. 14(a)). 

These blocks are made of the same material, therefore: 

 cos cosb ed        (B.7) 

Displacements at the inside edge of the inclined members should also be compatible with the 

overall displacement due to the overall shear strain 13 . This can be written as: 

 132 2 cosb b bl l     (B.8) 

The equilibrium forces in the X1 direction requires that the applied shear force 13F  on the unit 

cell be equal to the sum of shear forces that these block carries. i.e.: 

     13cos c2 os2 sinb b e d d e etl S S S hl l            (B.9) 

Substituting Eqs. (B.1)-(B.5) into Eq. (B.9) gives the effective shear modulus as: 
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For shear loading in X2-X3 plane, again the applied shear stress induces shear forces in the cell 

wall blocks which should be in equilibrium with the applied shear force in X2 direction, or: 
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Again, assuming uniform stress field in block d and e, compatibility of tractions at the interface 

of block b  and e  gives: 

 sin sinb ed        (B.12) 

 sin sinb ed        (B.13) 

Compatibility of displacements along the outer edge of the cell walls requires: 

  23 sinb b b a b bhhl l       (B.14) 

Substituting Eqs. (B.12)-(B.14) into Eq. (B.11) gives the effective shear modulus as: 

 
 

2*

23

2/
sin

/ sin co

1 3
tan 2sin sin

2 2 2s
s

b bh l t

l
G

l

l

h l

t
G

l
   

 

     
   

   
      

  
        

  (B.15) 

It should be noted that the above equations for the effective out-of-plane shear moduli reduces to 

those given in (Gibson and Ashby, 1997) for regular Honeycombs (i.e. / 1h l   and 30  ). In 

fact, at 30  , 0eS  and the above equations can be simplified. 
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Figures 

 

Fig. 1 Effective bending lengths of the cell wall, bl  and bh , for periodic hexagonal honeycombs 

with uniform wall thickness. Schematic representation of (a) honeycomb cells, (b) geometrical 

dimensions and (c) building blocks of the node region. 

 

Fig. 2 Schematic representation of periodic, hexagonal honeycombs. A unit cell of the material 

has been highlighted. 

(a)

(c)

(b)

block

d

block e

block a

block cblock b

Material Unit Cell



2 
 

 

Fig. 3 Hexagonal honeycombs under in-plane loading in the 1X  direction: (a) unit cell of the 

material. Schematic representation of (b) the deformed shape and the deflections in the inclined 

member due to (c) axial, (d) shear and (e) bending deformations. 
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(a) (b)
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Fig. 4 Hexagonal honeycombs under in-plane shear loading: (a) unit cell of the material, (b) 

loads acting on the vertical and inclined members. 

 

 

Fig. 5 Hexagonal honeycombs under in-plane shear loading: (a) equilibrium of the cell walls 

under in-plane shear loading, (b) deflections of the vertical member ( hu ) and the inclined 

(b)(a)

(b)(a)

deformed 

shape

undeformed

shape
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member ( lu ) due to axial, bending and shear deformations. The undeformed and deformed shape 

of the members is shown in thick solid lines and dashed lines, respectively. 

 

Fig. 6 Schematic representation of the assumed shear stress distributions in the honeycomb cell 

walls when loaded in the (a) 31X X  and (b) 32X X  plane. 

(a) (b)



5 
 

 

Fig. 7 Discretized unit cell of the honeycomb structure. The different colours represent the 

different layers in wood cell wall (CML, S1, S2 and S3) 

 

Fig. 8 Convergence study on the effective engineering constants of a regular honeycomb with 

constant cell wall thickness ( * 0/ 0. 18s   ). The vertical axis shows the values of the effective 

properties ( P ) normalized by their converged values ( CP ). The horizontal axis indicates the 

number of elements along each inclined member (see Fig. 7). A similar study was performed for 

the cell wall thickness and depth. 
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Fig. 9 Effective Young's modulus in the (a) 1X , (b) 2X  and (c) 3X  directions. Comparisons 

between analytical model predictions of Gibson and Ashby (1997) shown by dashed (bending 

deformations only) and dotted-dashed (axial, shear and bending deformations) lines, current 

analytical model (Eqs. 3, 11 and 12) shown by solid lines, numerical (FE) results shown by 

square symbols, and experimental data (Gibson 1981) shown by crosses. Predictions are given 

for different cell wall geometries. 
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Fig. 10 Effective shear modulus in the (a) 1 2X X , (b) 31X X , and (c) 32X X  planes. 

Comparisons between analytical model predictions of Gibson and Ashby (1997) shown by 

dashed (bending deformations only) and dotted-dashed (axial, shear and bending deformations) 

lines, current analytical model (Eqs. 24, 26 and 27) shown by solid lines, numerical (FE) results 

shown by square symbols, and experimental data (Gibson 1981) shown by crosses. Predictions 

are given for different cell wall geometries. 
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Fig. 11 Effective in-plane Poisson's ratio. Comparisons between analytical model predictions of 

Gibson and Ashby (1997) shown by dashed (bending deformations only) and dotted-dashed 

(axial, shear and bending deformations included) lines, current analytical model (Eq. 13) shown 

by solid lines, numerical (FE) results shown by square symbols, and experimental data (Gibson 

1981) shown by crosses. Predictions are given for different cell wall geometries. 
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Fig. 12 Stress distribution in a regular honeycomb under tensile loading in the 2X  direction: (a) 

vertical member, (b) inclined member. 

 

 

Fig. 13 Stress distribution in a regular honeycomb under in-plane shear loading. 
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Fig. 14 Stress distribution in a regular honeycomb under out-of-plane shear loading when loaded 

in: (a) 1 3X X  plane, (b) 32X X  plane. 

 

 

(a)

(b)
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Fig. 15 Effective in-plane properties of honeycombs with double thickness vertical cell walls. 

Comparisons between the model predictions (previous analytical model (Gibson and Ashby 

1997) and current analytical model (Eqs. A.4-A.6)) and experimental data (Karakoç and Freund 

(2012)) for the effective (a) Young’s modulus in 1X  direction, (b) Young’s modulus in 2X  

direction and (c) shear modulus in 21X X  plane. The correlation coefficient, 2r , and the 

relative error, e , between the predictions and experimental data are given for each property. 
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Fig. 16 Effective out-of-plane shear properties of honeycombs with double thickness vertical cell 

walls. Comparisons between the model predictions (previous analytical model (Gibson and 

Ashby 1997) and current analytical model (Eqs. A.7 and A.8)) and experimental data (Hexcel 

1999) for the effective shear modulus in (a) 1 3X X  and (b) 32X X  plane. The correlation 

coefficient, 2r , and the relative error, e , between the predictions and experimental data are given 

for each property. 
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Fig. A1 Geometrical parameters defined for honeycombs with double thickness vertical cell 

walls. 
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