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FFRob: An efficient heuristic for task and
motion planning

Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling
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Abstract. Manipulation problems involving many objects present sub-
stantial challenges for motion planning algorithms due to the high dimen-
sionality and multi-modality of the search space. Symbolic task planners
can efficiently construct plans involving many entities but cannot incor-
porate the constraints from geometry and kinematics. In this paper, we
show how to extend the heuristic ideas from one of the most success-
ful symbolic planners in recent years, the FastForward (FF) planner, to
motion planning, and to compute it efficiently. We use a multi-query
roadmap structure that can be conditionalized to model different place-
ments of movable objects. The resulting tightly integrated planner is
simple and performs efficiently in a collection of tasks involving manip-
ulation of many objects.

1 Introduction

Mobile manipulation robots are physically capable of solving complex problems
involving moving many objects to achieve an ultimate goal. Mobile bases with
one or more arms are becoming available and increasingly affordable while RGBD
sensors are providing unprecedented sensory bandwidth and accuracy. However,
these new capabilities are placing an increasing strain on existing methods for
programming robots. Traditional motion-planning algorithms that find paths
between fully specified configurations cannot address problems in which the con-
figuration space of interest is not just that of the robot but the configuration
space of a kitchen, for example, and the goal is to make dinner and clean the
kitchen. We almost certainly do not want to choose whether to get the frying
pan or the steak next by sampling configurations of the robot and kitchen and
testing for paths between them.

Researchers in artificial intelligence planning have been tackling problems
that require long sequences of actions and large discrete state spaces and have
had some notable success in recent years. However, these symbolic “task-level”
planners do not naturally encompass the detailed geometric and kinematic con-
siderations that motion planning requires. The original Shakey/strips robot
system [1, 2], from which many of these symbolic planners evolved, managed
to plan for an actual robot by working in a domain where all legal symbolic
plans were effectively executable. This required the ability to represent symbol-
ically a sufficient set of conditions to guarantee the success of the steps in the



plan. This is not generally possible in realistic manipulation domains because
the geometrical and kinematic constraints are significant.

Consider a simple table-top manipulation domain where a variety of objects
are placed on a table and the robot’s task is to collect some subset of the objects
and pack them in a box, or use them to make a meal, or put them away in
their storage bins. The basic robot operations are to pick up an object and
place it somewhere else; in addition, the robot can move its base in order to
reach a distant object. Note that, in general, to reach some object, we will have
to move other objects out of the way. Which objects need moving depends on
their shapes, the shape of the robot, where the robot’s base is placed and what
path it follows to the object. When an object is moved, the choice of where to
place it requires similar considerations. The key observation is that constructing
a valid symbolic plan requires access to a characterization of the connectivity
of the underlying free configuration space (for the robot and all the movable
objects). We cannot efficiently maintain this connectivity with a set of static
assertions updated by strips operators; determining how the connectivity of
the underlying free space changes requires geometric computation.

A natural extension to the classic symbolic planning paradigm is to introduce
“computed predicates” (also know as “semantic attachments”); that is, predi-
cates whose truth value is established not via assertion but by calling an exter-
nal program that operates on a geometric representation of the state. A motion
planner can serve to implement such a predicate, determining the reachability
of one configuration from another. This approach is currently being pursued, for
example, by Dornhege et al. [3, 4], as a way of combining symbolic task-level
planners with motion planners to get a planner that can exploit the abstraction
strengths of the first and the geometric strengths of the second. A difficulty with
this approach, however, is that calling a motion planner is generally expensive.
This leads to a desire to minimize the set of object placements considered, and,
very importantly, to avoid calling the motion planner during heuristic evalua-
tion. Considering only a sparse set of placements may limit the generality of the
planner, while avoiding calling the motion planner in the heuristic leads to a
heuristic that is uninformed about geometric considerations and may result in
considerable inefficiency due to backtracking during the search for a plan.

An alternative approach to integrating task and motion planning has been
to start with a motion planner and use a symbolic planner to provide heuristic
guidance to the motion planner, for example in the work of Cambon et al. [5].
However, since the task-level planner is ignoring geometry, its value as a heuristic
is quite limited.

In this paper we show how to obtain a fully integrated task and motion
planner using a search in which the heuristic takes geometric information into
account. We show an extension of the heuristic used in the FastForward (FF) [6]
planning system to the FFRob heuristic, which integrates reachability in the
robot configuration space with reachability in the symbolic state space. Both
the search and the computation of the FFRob heuristic exploit a roadmap [7]



data structure that allows multiple motion-planning queries on the closely related
problems that arise during the search to be solved efficiently.

2 Related work

There have been a number of approaches to integrated task and motion planning
in recent years. The pioneering Asymov system of Cambon et al. [5] conducts
an interleaved search at the symbolic and geometric levels. They carefully con-
sider the consequences of using non-terminating probabilistic algorithms for the
geometric planning, allocating computation time among the multiple geometric
planning problems that are generated by the symbolic planner. The process can
be viewed as using the task planner to guide the motion planning search. The
work of Plaku and Hager [8] is similar in approach.

The work of Erdem et al. [9], is similar in approach to Dornhege et al. [3],
augmenting a task planner that is based on explicit causal reasoning with the
ability to check for the existence of paths for the robot.

Pandey et al. [10] and deSilva et al. [11] use HTNs instead of generative
task planning. Their system can backtrack over choices made by the geometric
module, allowing more freedom to the geometric planning than in the approach
of Dornhege et al. [3]. In addition, they use a cascaded approach to computing
difficult applicability conditions: they first test quick-to-evaluate approximations
of accessibility predicates, so that the planning is only attempted in situations
in which it might plausibly succeed.

Lagriffoul et al. [12] also integrate the symbolic and geometric search. They
generate a set of approximate linear constraints imposed by the program un-
der consideration, e.g., from grasp and placement choices, and use linear pro-
gramming to compute a valid assignment or determine one does not exist. This
method is particularly successful in domains such as stacking objects in which
constraints from many steps of the plan affect geometric choices.

In the hpn approach of Kaelbling and Lozano-Pérez [13], a regression-based
symbolic planner uses generators, which perform fast approximate motion plan-
ning, to select geometric parameters, such as configurations and paths, for the
actions. Reasoning backward using regression allows the goal to significantly bias
the actions that are considered. This type of backward chaining to identify rele-
vant actions is also present in work on navigation among movable obstacles. The
work of Stilman et al. [14, 15] also plans backwards from the final goal and uses
swept volumes to determine, recursively, which additional objects must be moved
and to constrain the system from placing other objects into those volumes.

Srivastava et al. [16, 17] offer a novel control structure that avoids computing
expensive precondition values in many cases by assuming a favorable default
valuation of the precondition elements; if those default valuations prove to be
erroneous, then it is discovered in the process of performing geometric planning
to instantiate the associated geometric operator. In that case, symbolic planning
is repeated. This approach requires the ability to diagnose why a motion plan is
not possible in a given state, which can be challenging, in general. Empirically,



their approach is the only one of which we are aware whose performance is
competitive with our FFRob method.

All of these approaches, although they have varying degrees of integration of
the symbolic and geometric planning, generally lack a true integrated heuristic
that allows the geometric details to affect the focus of the symbolic planning.
In this paper, we develop such a heuristic, provide methods for computing it
efficiently, and show that it results in a significant computational savings.

3 Problem formulation

When we seek to apply the techniques of symbolic planning to domains that
involve robot motions, object poses and grasps, we are confronted with a series
of technical problems. In this section, we begin by discussing those problems and
our solutions to them, and end with a formal problem specification.

We might naturally wish to encode robot operations that pick up and place
objects in the style of traditional AI planning operator descriptions such as:

Pick(C1, O,G, P,C2):

pre: HandEmpty , Pose(O,P ), RobotConf (C1), CanGrasp(O,P,G,C2), Reachable(C1, C2)
add: Holding(O,G), RobotConf (C2)
delete: HandEmpty , RobotConf (C1)

Place(C1, O,G, P,C2):

pre: Holding(O,G), RobotConf (C1), CanGrasp(O,P,G,C2), Reachable(C1, C2)
add: HandEmpty , Pose(O,P ), RobotConf (C2)
delete: Holding(O,G), RobotConf (C1)

In these operations, the C, P , and G variables range over robot configurations,
object poses, and grasps, respectively. These are high-dimensional continuous
quantities, which means that there are infinitely many possible instantiations
of each of these operators. We address this problem by sampling finitely many
values for each of these variable domains during a pre-processing phase. The
sampling is problem-driven, but may turn out to be inadequate to support a
solution. If this happens, it is possible to add samples and re-attempt planning,
although that was not done in the empirical results reported in this paper.

Even with finite domains for all the variables, there is a difficulty with explic-
itly listing all of the positive and negative effects of each operation. The opera-
tions of picking up or placing an object may affect a large number of Reachable
literals: picking up an object changes the “shape” of the robot and therefore
what configurations it may move between; placing an object changes the free
configuration space of the robot. Even more significant, which Reachable literals
are affected can depend on the poses of all the other objects (for example, remov-
ing any one or two of three obstacles may not render a configuration beyond the
obstacles reachable). Encoding this conditional effect structure in typical form
in the preconditions of the operators would essentially require us to write one
operator description for each possible configuration of movable objects.



We address this problem by maintaining a state representation that consists
of both a list of true literals and a data structure, called details, that captures the
geometric state in a way that allows the truth value of any of those literals to be
computed on demand. This is a version of the semantic attachments strategy [3].

The last difficulty is in computing the answers to queries in the details,
especially about reachability, which requires finding free paths between robot
configurations in the context of many different configurations of the objects.
We address this problem by using a conditional roadmap data structure called a
conditional reachability graph, related to a PRM [7], for answering all reachability
queries, and lazily computing answers on demand and caching results to speed
future queries.

More formally, a state is a tuple 〈L,D〉, where L is a set of literals and D
is a domain-dependent detailed representation. A literal is a predicate applied
to arguments, which may optionally have an attached test, which maps the
arguments and state into a Boolean value. A literal holds in a state if it is
explicitly represented in the state’s literal set, or its test evaluates to true in the
state:

holds(l, s) ≡ l ∈ s.L or l.test(s) .

A goal is a set of literals; a state satisfies a goal if all of the literals in the goal
hold in the state:

satisfies(s, Γ ) ≡ ∀l ∈ Γ. holds(l, s) .

An operator is a tuple 〈φ, epos , eneg , f〉 where φ is a set of literals representing
a conjunctive precondition, epos is a set of literals to be added to the resulting
state, eneg is a set of literals to be deleted from the resulting state, and f is a
function that maps the detailed state from before the operator is executed to
the detailed state afterwards. Thus, the successor of state s under operator a is
defined

successor(s, a) ≡ 〈s.L ∪ a.epos \ a.eneg , a.f(s)〉 .
An operator is applicable in a state if all of its preconditions hold in that state:

applicable(a, s) ≡ ∀l ∈ a.φ. holds(l, φ) .

An operator schema is an operator with typed variables, standing for the set
of operators arising from all instantiations of the variables over the appropriate
type domains.

Our general formulation has broader applicability, but in this paper we re-
strict our attention to a concrete domain in which a mobile-manipulation robot
can move, grasp rigid objects, and place them on a surface. To formalize this
domain, we use literals of the following forms:

• RobotConf (C): the robot is in configuration C, where C is a specification of
the pose of the base as well as joint angles of the arm;

• Pose(O,P ): object O is at pose P , where P is a four-dimensional pose
(x, y, z, θ), assuming that the object is resting on a stable face on a hori-
zontal surface;



• Holding(O,G): the robot is holding object O with grasp G, where G specifies
a transform between the robot’s hand and the object;

• HandEmpty : the robot is not holding any object;
• In(O,R): the object O is placed in such a way that it is completely contained

in a region of space R; and
• Reachable(C1, C2): there is a collision-free path between robot configurations
C1 and C2, considering the positions of all fixed and movable objects as well
as any object the robot might be holding and the grasp in which it is held.

The details of a state consist of the configuration of the robot, the poses of
all the objects, and what object is being held in what grasp.

Two of these literals have tests. The first, In, has a simple geometric test,
to see if object O, at the pose specified in this state, is completely contained
in region R. The test for Reachable is more difficult to compute; it will be the
subject of the next section.

4 Conditional reachability graph

In the mobile manipulation domain, the details contain a conditional reachability
graph (crg), which is a partial representation of the connectivity of the space of
sampled configurations, conditioned on the placements of movable objects as well
as on what is in the robot’s hand. It is similar in spirit to the roadmaps of Leven
and Hutchinson [18] in that it is designed to support solving multiple motion-
planning queries in closely related environments. The crg has three components:

• Poses: For each object o, a set of possible stable poses.
• Nodes: A set of robot configurations, ci, each annotated with a (possibly

empty) set {〈g, o, p〉} where g is a grasp, o an object, and p a pose, meaning
that if the robot is at the configuration ci, and object o is at pose p, then
the robot’s hand will be related to the object by the transform associated
with grasp g.

• Edges: A set of pairs of nodes, with configurations c1 and c2, annotated with
an initially empty set of validation conditions of the form 〈h, g, o, p, b〉, where
b is a Boolean value that is True if the robot moving from c1 to c2 along
a simple path (using linear interpolation or some other fixed interpolator)
while holding object h in grasp g will not collide with object o if it is placed
at pose p, and False otherwise.

The validation conditions on the edges are not pre-computed; they will be com-
puted lazily, on demand, and cached in this data structure. Note that some of
the collision-checking to compute the annotations can be shared, e.g. the same
robot base location may be used for multiple configurations and grasps.

Constructing the crg The crg is initialized in a pre-processing phase, which
concentrates on obtaining a useful set of sampled object poses and robot con-
figurations. Object poses are useful if they are initial poses, or satisfy a goal



condition, or provide places to put objects out of the way. Robot configurations
are useful if they allow objects, when placed in useful poses, to be grasped (and
thus either picked from or placed at those poses) or if they enable connections
to other useful poses via direct paths. We assume that the following components
are specified: a workspace W , which is a volume of space that the robot must
remain inside; a placement region T , which is a set of static planar surfaces upon
which objects may be placed (such as tables and floor, but not (for now) the tops
of other objects); a set Of of fixed (immovable) objects; a set Om of movable
objects; and a vector of parameters θ that specify the size of the crg. It de-
pends, in addition, on the start state s and goal Γ . We assume that each object
o ∈ Om has been annotated with a set of feasible grasps. The parameter vector
consists of a number np of desired sample poses per object (type); a number nik
of grasp configurations per grasp; a number nn of configurations near each grasp
configuration; a number nc of RRT iterations for connecting configurations, and
a number k specifying a desired degree of connectivity.

The ConstructCRG procedure is outlined below.

ConstructCRG(W,T, s, Γ,Of ,Om, θ) :

1 N = {s.details.robotConf } ∪ {robot configuration in Γ}
2 for o ∈ Om:
3 Po = {s.details.pose(o)} ∪ {pose of o in Γ}
4 for i ∈ {1, . . . , θ.np}:
5 Po.add(sampleObjPose(o.shape, T ))
6 for g ∈ o.grasps:
7 for j ∈ {1, . . . , θ.nik}: N.add(sampleIK(g, o, p), (g, o, p))
8 for j ∈ {1, . . . , θ.nn}: N.add(sampleConfNear(g, ( )))
9 E = { }

10 for n1 ∈ N :
11 for n2 ∈ NearestNeighbors(n1, k,N):
12 if CFreePath(n1.c, n2.c,Of ): E.add(n1, n2)
13 N,E = connectTrees(N,E,W, θ.nc)
14 return 〈P,N,E〉

We begin by initializing the set of nodes N to contain the initial robot configu-
ration and the configuration specified in the goal, if any. Then, for each object,
we generate a set of sample poses, including its initial pose and goal pose, if
any, as well as poses sampled on the object placement surfaces. For each object
pose and possible grasp of the object, we use the sampleIK procedure to sam-
ple one or more robot configurations that satisfy the kinematic constraints that
the object be grasped. We sample additional configurations with the hand near
the grasp configuration to aid maneuvering among the objects. We then add
edges between the k nearest neighbors of each configuration, if a path generated
by linear interpolation or another simple fixed interpolator is free of collisions
with fixed objects. At this point we generally have a forest of trees of configu-
rations. Finally, we attempt to connect the trees using an RRT algorithm as in
the sampling-based roadmap of trees [19].



To test whether this set of poses and configurations is plausible, we use it to
compute a heuristic value of the starting state, as described in section 5. If it is
infinite, meaning that the goal is unreachable even under extremely optimistic
assumptions, then we return to this procedure and draw a new set of samples.

Querying the crg Now that we have a crg we can use it to compute the test
for the Reachable literal, as shown in ReachableTest below.

ReachableTest(c1, c2, D,crg) :

1 for (o, p) ∈ D.objects:
2 for e ∈ crg.E:
3 if not 〈D.heldObj , D.grasp, o, p, ∗〉 ∈ e.valid :
4 p = CFreePath(e.n1.c, e.n2.c, o@p,D.heldObj , D.grasp)
5 e.valid .add(〈D.heldObj , D.grasp, o, p, (p ! = None)〉)
6 G = {e ∈ crg.E | ∀(o, p) ∈ D.objects. 〈D.heldObj , D.grasp, o, p,True〉 ∈ e.valid}
7 return ReachableInGraph(c1, c2, G)

The main part of the test is in lines 6–7: we construct a subgraph of the crg that
consists only of the edges that are valid given the object that the robot is holding
and the current placements of the movable objects and search in that graph to
see if configuration c2 is reachable from c1. Lines 1–5 check to be sure that the
relevant validity conditions have been computed and computes them if they have
not. The procedure CFreePath(c1, c2, obst , o, g) performs collision checking on
a straight-line, or other simply interpolated path, between configurations c1 and
c2, with a single obstacle obst and object o held in grasp g.

In addition, the crg is used to implement applicableOps(s,Ω,crg), which
efficiently determines which operator schema instances in Ω are applicable in a
given state s. For each schema, we begin by binding variables that have precon-
ditions specifying the robot configuration, object poses, the currently grasped
object and/or the grasp to their values in state s. We consider all bindings of
variables referring to objects that are not being grasped. For a pick operation,
P is specified in the current state, so we consider all bindings of G and C2 such
that (C2, (G,O, P )) ∈ crg.N . For a place operation, G is specified in the current
state, so we consider all bindings of P and C2 such that (C2, (G,O, P )) ∈ crg.N .

5 Planning algorithms

A planning problem, Π, is specified by 〈s, Γ,O, T,W,Ω〉, where s is the initial
state, including literals and details, Γ is the goal, O is a set of objects, T is a set
of placement surfaces, W is the workspace volume, and Ω is a set of operator
schemas.

Plan, shown below, is a generic heuristic search procedure. Depending on
the behavior of the extract procedure, it can implement any standard search
control structure, including depth-first, breadth-first, uniform cost, best-first,
A∗, and hill-climbing. Critical to many of these strategies is a heuristic function,



which maps a state in the search to an estimate of the cost to reach a goal state
from that state. Many modern domain-independent search heuristics are based
on a relaxed plan graph (rpg). In the following section, we show how to use the
crg to compute the relaxed plan graph efficiently.

Plan(Π,extract,heuristic, θ)

1 〈s, Γ,O, T,W,Ω〉 = Π
2 crg = ConstructCRG(W,T, s, Γ,O, θ)
3 def H(s): heuristic(RPG(s, Γ,crg, Ω))
4 q = Queue(SearchNode(s, 0,H(s),None))
5 while not q .empty():
6 n = extract(q)
7 if satisfies(n.s, Γ ): return n.path
8 for a ∈ applicableOps(n.s,Ω,crg):
9 s′ = successor(n.s, a)

10 q.push(SearchNode(s′, n.cost + 1,H(s′), n))

Computing the relaxed plan graph In classical symbolic planning, a plan graph is
a sequence of alternating layers of literals and actions. The first layer consists of
all literals that are true in the starting state. Action layer i contains all operators
whose preconditions are present and simultaneously achievable in literal layer i.
Literal layer i+1 contains all literals that are possibly achievable after i actions,
together with a network of mutual exclusion relations that indicates in which
combinations those literals might possibly be true. This graph is the basis for
GraphPlan [20] and related planning algorithms.

The relaxed plan graph is a simplified plan graph, without mutual exclusion
conditions; it is constructed by ignoring the negative effects of the actions. From
the rpg, many heuristics can be computed. For example, the HAdd heuristic [21]
returns the sum of the levels at which each of the literals in the goal appears.
It is optimistic, in the sense that if the mutual exclusion conditions were taken
into account, it might take more steps to achieve each individual goal from
the starting state; it is also pessimistic, in the sense that the actions necessary
to achieve multiple goal fluents might be “shared.” An admissible heuristic,
HMax [21], is obtained by taking the maximum of the levels of the goal literals,
rather than the sum; but it is found in practice to offer weaker guidance. An
alternative is the FF heuristic [6], which performs an efficient backward-chaining
pass in the plan graph to determine how many actions, if they could be performed
in parallel without deletions, would be necessary to achieve the goal and uses
that as the heuristic value. An important advantage of the FF heuristic is that it
does not over-count actions if one action achieves multiple effects, and it enables
additional heuristic strategies that are based on helpful actions. We use a version
of the helpful-action strategy that reduces the choice of the next action to those
that are in the first level of the relaxed plan, and find that it improves search
performance.

In order to use heuristics derived from the rpg we have to show how it can be
efficiently computed when the add lists of the operators are incomplete and the



truth values of some literals are computed from the crg in the details. We present
a method for computing the rpg that is specialized for mobile manipulation
problems. It constitutes a further relaxation of the rpg which allows literals
to appear earlier in the structure than they would in an rpg for a traditional
symbolic domain. This is necessary, because the highly conditional effects of
actions on Reachable literals makes them intractable to compute exactly. The
consequence of the further relaxation is that the HAdd and HMax heuristics
computed from this structure have less heuristic force. However, in section 5 we
describe a method for computing a version of HFF that recovers the effectiveness
of the original.

The intuition behind this computation is that, as we move forward in com-
puting the plan graph, we consider the positive results of all possible actions
to be available. In terms of reachability, we are removing geometric constraints
from the details; we do so by removing an object from the universe when it is first
picked up and never putting it back, and by assuming the hand remains empty
(if it was not already) after the first place action. Recall that, in applicable
and satisfies, the holds procedure is used to see if a literal is true in a state. It
first tests to see if it is contained in the literal set of the state; this set becomes
increasingly larger as the rpg is computed. If the literal is not there, then it is
tested with respect to the crg in the details, which becomes increasingly less
constrained as objects are removed.

Importantly, since the geometric tests on the crg are cached, the worst-case
number of geometric tests for planning with and without the heuristic is the
same. In practice, computing the rpg for the heuristic is quite fast, and using
it substantially reduces the number of states that need to be explored.

RelaxedPlanGraph, shown below, outlines the algorithm in more detail.
In the second part of line 1, in a standard implementation we would generate all
possible instantiations of all actions. However, because of the special properties
of reachability, we are able to abstract away from the particular configuration
the robot is in when an action occurs; thus, we consider all possible bindings of
the non-configuration variables in each operator, but we only consider binding
the starting configuration variable to the actual current starting configuration
and leave the resulting configuration variable free. In line 2, we initialize hState,
which is a pseudo-state containing all literals that are possibly true at the layer
we are operating on, and a set of details that specifies which objects remain as
constraints on the robot’s motion at this layer. In line 6, we ask whether a oper-
ator schema with all but the resulting configuration variable bound is applicable
in the heuristic state. We only seek a single resulting configuration that satisfies
the preconditions of op in hState; even though many such configurations might
exist, each of them will ultimately affect the resulting hState in the same way.
Lines 7–9 constitute the standard computation of the rpg. In lines 10–11 we
perform domain-specific updates to the detailed world model: if there is any way
to pick up an object, then we assume it is completely removed from the domain
for the rest of the computation of the rpg; if there is any way to put down the
currently held object, then we assume that there is no object in the hand, when



doing any further computations of reachability in the crg. Line 14 creates a new
hState, which consists of all literals possibly achievable up to this level and the
details with possibly more objects removed.

RelaxedPlanGraph(s, Γ,crg, Ω) :

1 D = s.D; ops = allNonConfBindings(Ω)
2 literals = [ ] ; actions = [ ] ; hState = s
3 while True
4 layerActions = { } ; layerLiterals = { }
5 for op ∈ ops:
6 if applicable(op, hState):
7 layerActions.add(op)
8 layerLiterals.union(op.epos)
9 ops.remove(op)

10 if op.type = pick : D.objects.remove(op.obj )
11 if op.type = place: D.heldObj = None
12 literals.append(layerLiterals)
13 actions.append(layerActions)
14 hState = 〈

⋃
i literalsi, D〉

15 if satisfies(hState, Γ ): return (literals, actions)
16 if layerActions = { }: return None

There is one last consideration: the strategy shown above does not make the
dependencies of Reachable literals at level i on actions from level i− 1 explicit;
the truth of those literals is encoded implicitly in the details of the hState. We
employ a simple bookkeeping strategy to maintain a causal connection between
actions and literals, which will enable a modified version of the FF heuristic
to perform the backward pass to find a parallel plan. We observe that, in the
relaxed plan, once an object is picked, it is effectively removed from the domain.
So, we add an extra positive effect literal, Picked(o) to the positive effects set of
the pick action, just when it is used in the heuristic computation.

The FFRob heuristic The FF heuristic operates by extracting a relaxed plan
from the rpg and returning the number of actions it contains. A relaxed plan
P constructed for starting state s and set of goal literals G consists of a set of
actions that has the following properties: (1) For each literal l ∈ G there is an
action a ∈ P such that l ∈ a.epos and (2) For each action a ∈ P and each literal
l ∈ a.φ, either l ∈ s or there exists an action a′ ∈ P such that l ∈ a.epos .

That is, the set of actions in the relaxed plan collectively achieve the goal as
well as all of the preconditions of the actions in the set that are not satisfied in the
initial state. It would be ideal to find the shortest linear plan that satisfied these
conditions, however that is NP-hard [6]. Instead, the plan extraction procedure
works backwards, starting with the set of literals in the goal G. For each literal
l ∈ G, it seeks the “cheapest” action a∗ that can achieve it; that is,

a∗ = arg min
{a|l∈a.epos}

∑
l∈a.φ

L(l) ,



where L(l) is the index of the lowest layer containing l (which is itself a quick
estimate of the difficulty of achieving l.)

The minimizing a∗ is added to the relaxed plan, l and any other literals
achieved by a∗ are removed from the goal set, and the preconditions a∗.φ are
added to the goal set unless they are contained in s. This process continues until
the goal set is empty.

The rpg computed as in section 5 does not immediately support this com-
putation, because the Picked fluents that are positive results of Pick actions
do not match the Reachable fluents that appear in preconditions. In general,
there may be many ways to render a robot configuration reachable, by removing
different combinations of obstacles. Determining the smallest such set is known
as the minimum constraint removal problem [22]. Hauser shows it is NP-Hard
in the discrete case and provides a greedy algorithm that is optimal if obstacles
must not be entered more than once. We have extended this method to handle
the case in which objects are weighted; in our case, by the level in the rpg at
which they can be picked. The weighted MCR algorithm attempts to find a set
of obstacles with a minimal sum of weights that makes a configuration reachable.

So, any action precondition of the form Reachable(c) is replaced by the set
of preconditions Picked(o) for all objects o in the solution to the weighted MCR
problem for configuration c. This represents the (approximately) least cost way
to make c accessible. Having carried out this step, we can use the standard FF
method for extracting a relaxed plan. The FFRob heuristic returns the number
of actions in this relaxed plan.

Geometric biases It frequently happens that multiple states have the same
heuristic value; in such cases, we break ties using geometric biases. These three
biases do not affect the overall correctness or completeness of the algorithm.
Intuitively, the idea is to select actions that maximize the reachability of config-
urations in the domain from the current state.

• Choose actions that leave the largest number of configurations corresponding
to placements of objects in their goal poses or regions available. This captures
the idea that blocking goal regions should be avoided if possible. This is useful
because although a heuristic will report when a placement is immediately
bad, i.e., already blocking future goals, it will not convey information that
the placement may prevent two necessary placements later in the search
because it was out in the open. This is because the relaxed plan assumed
that a free placement exists, despite objects being placed there, because it
does not model negative effects of actions.

• Choose actions that leave the largest total number of configurations corre-
sponding to placements reachable; this ensures that all placements are as
tight as possible against the edge of the reachable space.

• If neither of the previous biases breaks the tie, then select actions that max-
imize the total number of reachable configurations.



These biases experimentally prove to be helpful in giving the search ad-
ditional guidance in this domain, especially in combination with enforced hill
climbing search, which lacks backtracking to undo bad decisions.

6 Results

We have experimented with various versions of this algorithm, differing in the
definition of the heuristic, on a variety of tasks; we report the results in this
section.

The search strategy in all of our experiments is enforced hill-climbing [6],
in which a single path through the state space is explored, always moving to
the unvisited successor state with the smallest heuristic value, with ties broken
using geometric biases. This search strategy is known not to be complete, but we
have found it to be very effective in our domains. If the hill-climbing search were
to reach a dead end, one could restart the search (as is done in FastForward),
using the best-first strategy or weighted A∗, which are complete. However, even
with a complete search and no helpful-action heuristic, the overall planner is not
probabilistically complete, since it is limited to the initial set of sample poses
and configurations.

The parameters governing the creation of the crg are: np ∈ [25 − 50] (the
number of placements for each object); this varies with the size of the placement
regions; nik = 1 (number of robot configurations for each grasp); nn = 1 (number
of additional robot configurations near each grasp); nc = 250 (number of RRT
iterations); k = 4 (number of nearest neighbors).

In our experiments, we generate an initial crg using these parameters during
pre-processing and then test whether the value of the heuristic at the initial state
is finite. If it is not, we discard it and try again, with the same parameters. Very
few retries were necessary to find a crg with finite heuristic value. This condition
was effective: in every case in our experiments, the crg contained a valid plan.

The following versions of the planner are compared in the experiments:

1. No H: The heuristic always returns 0.
2. HFF: This is the original heuristic in FF, based only on the symbolic lit-

erals, completely ignoring the reachability conditions when computing the
heuristic. Helpful actions are not used.

3. HAddR: This is a version of the original HAdd heuristic that returns the sum
of the levels of the rpg at which the goal literals are first found. This makes
use of the crg to reason about reachability. It does not build a relaxed plan
and, therefore, does not have helpful actions.

4. HFFR,HA: This computes the rpg, does a backward scan to find a relaxed
plan and computes helpful actions based on that plan.

5. HFFRB: Like HFFR but using geometric biases to break ties and without
using helpful actions.

6. HFFRB,HA: Like HFFR but using geometric biases to break ties and using
helpful actions.



(a) Median 18 actions

(b) Median 20 actions

(c) Median 32 actions

Fig. 1: The initial and final state in three of the tasks (3,4,5) in the experiments.



We tested our algorithm on 6 different tasks, in which the goals were con-
junctions of In(Oi, Rj) for some subset of the objects (the ones not colored red).
Other objects were moved as necessary to achieve these goals. The last three
tasks are shown in Figure 1; the first three are tasks are simpler variations on
task 3 (Figure 1(a)). The table below shows the results of running the algorithms
in each of the tasks.
T Pre No H HFF HAddR HFFR, HA HFFRB HFFRB, HA

t m s t m s t m s t m s t m s t m s

0 21 265 35 48719 102 72 6123 41 19 536 6 5 78 7 5 87 2 0 23

1 25 300 0 63407 283 17 14300 162 55 2042 3 0 8 16 11 153 4 1 49

2 29 300 0 50903 300 0 8947 300 0 3052 5 1 12 17 13 114 7 2 32

3 23 300 0 39509 300 0 4849 300 0 1767 83 19 464 99 43 523 13 1 69

4 30 300 0 23920 300 0 1574 300 0 1028 300 0 1274 18 3 20 16 3 20

5 51 300 0 9422 300 0 1533 300 0 592 300 1 272 106 17 32 99 14 32

Each entry in the table reports median time (t) (in gray), median absolute de-
viation, MAD, of the times (m), and states (s) expanded. Each task also incurs
a pre-processing time for building the roadmap; this is reported (in seconds) in
the Pre column of the table. The median-based robust statistics are used instead
of the usual mean and standard deviation since the data has outliers. Entries
with a median time of 300 and MAD of 0 did not successfully complete any of
the simulations. There were 20 simulations per task for the first two heuristics
and 120 simulations per task for the others. Running times are from a Python
implementation running on a 2.6GHz Intel Core i7.

As can be clearly seen, especially in the number of expanded states, exploit-
ing geometric information in the heuristic produces substantial improvements.
Introducing geometric biases to settle ties helps in the most cluttered of the
examples.

Conclusion We have shown how to combine data structures for multi-query
motion planning algorithms with the search and heuristic ideas from the FF
planning system to produce a deeply integrated task and motion planning sys-
tem. The integrated heuristic in this system is quite effective in focusing the
search based on geometric information at relatively low cost.
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