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Abstract

There are major practical and technical barriers to understanding human health, and there-
fore a need for methods that thrive on large, complex, noisy data. In this work, we present
machine learning methods that distill large amounts of heterogeneous health data into latent
state representations. These representations are then used to estimate risks of poor outcomes,
and response to intervention in multivariate physiological signals. We evaluate the reduced
latent representations by 1) establishing their predictive value in important clinical tasks
and 2) showing that the latent space representations themselves provide useful insight into
underlying systems. In particular, we focus on case studies that can provide evidence-based
risk assessment and forecasting in settings with guidelines that have not traditionally been
data-driven.

In this thesis we evaluate several methods to create patient representations, and use
these features to predict important outcomes. Representation learning can be thought of as
a form of phenotype discovery, where we attempt to discover spaces in the new representation
that are markers of important events. We argue that these latent representations are useful
markers when they 1) create better prediction results on outcomes of interest, and 2) do not
duplicate features that are currently known bio-markers.

We present four case studies of learning representations, and evaluate the representations
on real predictive tasks. First, we create forward-facing prediction models using baseline clin-
ical features, and those from a Latent Dirichlet Allocation (LDA) model trained with clinical
progress notes. We then evaluate the per-patient latent state membership to predict mor-
tality in an intensive care setting as time moves forward. Second, we use non-parametric
Multi-task Gaussian Process (MTGP) hyper-parameters as latent features to estimate cor-
relations within and between signals in sparse, heterogeneous time series data. We evaluate
the hyper-parameters for forecasting missing signals in traumatic brain injury patients, and
predicting mortality in intensive care unit patients. Third, we train switching-state autore-
gressive models (SSAMs) to model the underlying states that emit patient vital signs over
time. We evaluate the time-specific latent state distributions as features to predict vasopres-
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sor onset and weaning in intensive care unit patients. Finally, we use statistical and symbolic
features extracted from wearable ambulatory accelerometers (ACC) mounted to the neck to
classify patient pathology, and stratify patients’ risk of voice misuse. We evaluate the utility
of both statistically generated features and symbolic representations of glottal pulses towards
patient classification.

Thesis Supervisor: Peter Szolovits
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Patient health is managed by the flow of information, but the volume of such records can

make it difficult for care-staff to identify the information relevant to patient care. In a

fragmented healthcare system, accurate knowledge of a patient’s disease state is critical.

Modern electronic healthcare records contain an increasingly large amount of data including

high-frequency signals from biomedical instrumentation, intermittent results from lab tests,

and text from notes.

Good physicians are able to sift through large amounts of often-irrelevant data in order

to discover information relevant to a patient’s current underlying state. In the same vein, a

goal of clinical inference and prediction is often to stratify patients who are similar in some

underlying, hidden, characteristics. In this thesis, our goal is to provide clinical staff with

support tools that will help them make better decisions. We focus on evidence generation in

three specific subtasks: early prediction of actionable in-patient interventions in the intensive

care unit (ICU), identifying good representations for post-discharge outcome prediction, and

creating evidence-based diagnosis of voice disorders in an out-patient setting.
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1.1 Need for Evidence Generation with Electronic Health

Records

Evidence generation in clinical settings is important because clinical decision-making is often

made in settings of limited knowledge and high uncertainty. For example, only 10 of 72

common ICU interventions have been associated with improved long-term outcomes [73].

Further, randomized controlled trials (RCTs) are commonly used to generate evidence about

medical practices, but do not cover a majority of treatments that are commonly used: only

10–20% of treatments are based on evidence from an existing RCT [64,67].

Critical care in the United States costs more than $55 billion annually [38], and is rapidly

growing as a specialty worldwide. Internationally, the mortality rate in the ICU is approx-

imately 15–16% [104]. However, despite the economic and human impact of critical illness,

practice in this field is informed by a relative paucity of high-quality trials [49].

Outside of critical care, most people spend a majority of their time outside of a clinical

environment. Ambulatory monitoring provides an exciting avenue for detecting and manag-

ing illness in non-clinical settings — especially for chronic conditions such as cardiovascular

disease [97], diabetes [76], or voice disorder [65]. As chronic conditions become more preva-

lent [72], it is increasingly important to understand how ambulatory monitoring can be used

to affect structural behavior changes that can improve patients’ lives.

In order to provide clinical staff with actionable recommendations for patient care, we

plan to gain insight from healthcare data, focusing on ambulatory bio-monitors and the

Electronic Health Record (EHR). Ambulatory monitoring is particularly compelling for con-

ditions that are behaviorally induced, like some voice disorders [42]. As in other chronic con-

ditions, patients with voice disorders are known to be poor judges of their behaviors [9,71,82].

Ambulatory monitoring allows for a more accurate understanding of such chronic conditions,

but comes with the computational challenge of finding behaviors that may be harmful to

an individual long-term from large amounts of high-frequency data. EHR data are also

becoming more prevalent — EHR systems that meet federal requirements are present in
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most acute care hospitals (97% in 2014 [13]) and office-based physicians’ practices (78% in

2015 [70]). This availability allows new investigations into evidence-based decision support

for critical care, where we can learn when patients are at high risk for mortality or need a

given intervention. However, working with such “secondary” data is difficult.

1.2 Challenges of Electronic Health Record Data

Unlike many other types of data used in clinical trials, secondary data gathered from EHRs

and out-patient monitoring solutions are not gathered specifically to answer a hypothesis.

Instead, their primary use case is to monitor a patient or make decisions about patient care.

Thus, there is innate confounding by indication, because the data are gathered in response to

the needs of the use case, which creates obvious interactions between the patient’s condition

and the data collection process. These conditions can lead to several issues that make learning

difficult, primarily that the data are 1) heterogeneous, 2) sparse, and 3) full of uncertainty.

First, EHRs contain heterogeneous data types ranging from notes typed at different

times during carestaff shift hours, to labs that are recorded when the clinicians order them,

to vitals that are noted hourly (or more often), to more static demographic data. These

large differences in data type, time scale, and sampling rates make modeling underlying

physiology challenging. Second, each data type has a different type of sparsity; a vital may

be unmeasured because a sensor fell off a patient, a lab value may be measured but the

value unreported in the EHR, or there may be no follow-up when a patient is prescribed

a medication to know if the medication was filled or (if filled) taken to completion. In the

clinical domain, labels themselves are often weak proxies for underlying truth — a diagnostic

clinical code for diabetes may indicate that a person has been diabetic for years, or that the

clinician suspects there may be diabetes and cannot bill patient insurance for the test until

there is an appropriate code in their EHR. There is also uncertainty in the bias of the

presented data; clinical data is often recorded only when a patient is sick, leading to a biased

sample of physiological state and history. Uncertainty also stems from the relative nature

of clinical data, where the content of a statement can vary wildly depending on the larger
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context, e.g., “the patient improved” for a comatose patient versus a patient with a flu.

Given these issues, applying state of the art machine learning methods out-of-the-box

without a deep understanding of the data and methodology is dangerous. This was illustrated

recently by work that considered applying a neural network to predict the risk of dying of

pneumonia in a hospital population [11]. The model learned that those patients with asthma

had a lower risk of dying, which is clinically (and intuitively) incorrect. As noted by the

authors, the “aggressive care received by asthmatic pneumonia patients (in the training set)

was so effective that it lowered their risk of dying from pneumonia compared to the general

population.”

1.3 Framework

Our main contributions are in two areas: 1) forming machine learning tasks that are clinically

meaningful, and 2) emphasizing methods that create meaningful representations of clinical

data. We present several examples of creating actionable clinical insights from machine

learning, with a focus on representations that work for the nuances of clinical datasets.

First, when forming a clinically meaningful task, it is critical to understand the desired

learning outcome. Forming machine learning tasks in a meaningful way with clinical data

is more difficult than it may initially seem. For example, in the hospital setting, it may

initially seem natural to predict mortality using all available data from a patient up until

their time of death. However, such a task would lead to learning that patients die when their

support machines are turned off in the preceding hour. Similarly, we may want to predict

what type of procedures patients with given conditions are most likely to need during their

stay. However, if we use a patient’s ICD9 codes as a proxy for their condition (e.g., as input)

for predicting procedures (e.g., as output), we have inherently cheated in the prediction task

because many “diagnostic” codes are created post-care (after a patient’s death or discharge)

using the record of hospital care they experienced.

Second, when learning representations, we balance the need for predictive power with the

desire to find representations appropriate for each presented problem. Representation learn-
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ing can be characterized as finding representations of data that contain useful information

towards some goal, and has been successfully used for tasks in speech recognition, object

recognition, and natural language processing [4]. Dealing with representations explicitly may

be advantageous because they can conveniently express general priors that are not specific

to a single predictive task. With any representation method, the reduced state space can

be viewed as a new set of biomarkers. In this work, we think of the latent “biomarkers”

as attributes or features that can be learned over data from many patients, and that sep-

arate patients out into meaningful groups. Our goal is to create representations that are

useful for important prediction tasks, and independent of the existing biomarkers known for

a particular outcome.

In each piece of presented work, we were guided by three general representation goals.

First, we want representations to be useful abstractions of data that disentangle underlying

factors. E.g., we can learn a latent state representation for hourly vitals that maximizes

the likelihood of observing the physiological data. Second, representations should enable

semi-supervised learning of an outcome 𝑌 . For example, the temporal trends pulled out of

a convolutional neural network should not only represent meaningless variation of a signal,

but rather be useful for recognition of physiological decline. Third, use of the representation

should be “shared” across many learning tasks (many 𝑌 ’s). For example, features that are

able to predict the future need for several different types of interventions.

To achieve these goals, we focus on semi-supervised frameworks, where we learn a model

of data in an unsupervised setting, but predict values for new cases in supervised settings.

In general, discriminative learning is based on the observation of data drawn from some dis-

tribution. In unsupervised learning, this may correspond to observing points 𝑥1, . . . , 𝑥𝑁 , and

modeling the distribution the data comes from. In supervised learning, this may correspond

to observing pairs of points (𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁) and predicting a new 𝑦𝑁+1 given an 𝑥𝑁+1.

1.3.1 Organization

The rest of this thesis is organized as follows:
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1. Early Prediction of In-Patient ICU Interventions: We target representations

that are predictive of early need for in-patient ICU interventions. The representations

are learned first in an unsupervised way, and then applied to targeted supervised

prediction tasks [35,36].

2. Representations for Post-Discharge Outcome Prediction: We learn represen-

tations of clinical notes that are predictive of in-hospital mortality, post-discharge

mortality, and psychiatric readmission [30,32,86].

3. Voice Disorder Detection in Wearable Out-patient Devices: We create features

of out-patient ambulatory accelerometer signals that are able to distinguish between

patients with two different types of voice disorder [33,34].

1.3.2 Assumptions

There are many assumptions made in the work presented here. First, in Chapter 2 we use the

actual behavior of clinicians as “correct” labels, even though they may not be. This “wisdom

of the crowd” approach to treatment has been harmful in clinical situations. For example,

clinicians initially thought that estrogen was cardioprotective because menopausal women

had a higher incidence of coronary heart disease [28]. Based on this, hormone therapy was

routinely prescribed as a preventative measure. However, subsequent large trials reported

either no benefit, or an increase in adverse cardiac events like coronary heart disease [27],

stroke and venous thromboembolism [78]. We also emphasize that our work presents learned

associations rather than learned mechanisms. We learn attributes of a patient that are

predictive of a targeted outcome, and attempt to relate our findings to known (or possible)

mechanisms, However, we would ideally we would like to understand the mechanism (in this

case, the pathophysiology) that has led to a patient’s outcome. To address this issue, future

work should target treatment comparisons using reinforcement learning or casual inference

frameworks.

In Chapter 3, we use mortality at various intervals as a proxy for patient acuity. The
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underlying issue behind this assumption is the general lack of a quantitative measure of

patient health. We use likelihood of mortality as a convenient proxy, but the correlation

is not perfect. For example, patients who are not acutely ill may die of causes unrelated

to their current or past severity of illness. Further, in a modern ICU patients may be kept

“alive” for an extended amount of time regardless of their severity of illness.

In Chapter 4 we have targeted prediction of a diagnosed voice disorder that occurs with-

out any recorded anatomical changes. In the absence of physical pathology, we rely on a

high-level “disordered” label where subjects’ instantaneous behaviors are producing voices

that are difficult for the subject to maintain, or for others to understand. This focuses our

work on identifying the changes between the accelerometer patterns recorded in the available

populations: patients pre-treatment, patients post-treatment, and subjects without an es-

tablished voice disorder. It is possible that our “control” population could eventually develop

a voice disorder, or that the patterns we associate with disordered voices in our population

would not be consistent in a larger population. To address these questions, larger datasets of

individuals with a voice disorder should be studied, and there is value to identifying potential

mid-level classification targets, e.g., classes or levels of disorder during specific segments of

voicing.
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Chapter 2

Early Prediction of In-Patient ICU

Interventions

2.1 Background

Decision-making in the intensive care unit (ICU) requires responding quickly to rapidly

changing situations, but the efficacy of many interventions remains unquantified [103, 105],

while other interventions have been shown to be ineffective or harmful to patients [73].

The vast amounts of data that are collected in ICUs—vital signs, clinical notes, fluids,

medications—suggest an opportunity for more data-driven decision-making. Many works

have used these ICU measurements to predict in-hospital or 30-day mortality of patients in

particular disease subgroups [10, 14, 30, 75]. However, these risk scores are of limited value

to clinicians, who must make decisions of how and when to treat patients regardless of their

underlying acuity.

This work takes an important step toward the actionable use of ICU data by modeling

interventions in the ICU. We focus on vasopressors, a class of drug used to elevate mean

arterial pressure. While vasopressors are commonly used in the ICU, few controlled clinical

trials have documented improved outcomes from their use [68], and they may even be harm-

ful in some populations [23]. We consider two important questions relating to vasopressor
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administration. First, we ask when a patient will require a vasopressor. Knowing who will

need a vasopressor administration even a few hours in advance can help the clinical staff

plan and execute interventions in a safer, more efficient manner. Second, we ask whether

a patient currently on a vasopressor is ready to be weaned from it. In addition to being

conservative about when the patient is ready for weaning, anecdotally clinicians report that

patients are often left on interventions longer than necessary because the staff are attend-

ing to other patients. However, extended interventions are both costly and detrimental to

patient health [23].

Unfortunately, making decisions from data generated in the ICU is challenging: clinical

signals are often irregularly sampled and contaminated by interference and human error.

Strong modeling assumptions are typically used to clean and impute the signals [50, 61].

However, these imputation techniques can introduce noise and bias into models [60]. They

also generally do not account for the highly dependent temporal nature of the data [44, 53,

62]. Dynamical system models, which impute data by building a model of how the data

evolve, provide an alternative to interpolation-based imputation techniques. In particular,

switching-state autoregressive systems (SSAMs) have been used to impute signals, identify

artifacts, and discover physiological states in a variety of critical settings [56, 79]. SSAMs

are attractive methods for modeling physiologic signals because they express the notion that

the dynamics of the physiologic signal will change depending on some internal patient health

state; given a patient’s health state, the set of physiological signals at the next time depends

only on the current signals. This assumption considerably simplifies the training of the model,

resulting in a more robust predictor. Interpretation of a SSAM is also relatively simple,

because at each time, a patient is assigned to exactly one discrete hidden state, rather than

some more complex embedding. Finally, we note that [46] demonstrated how an appropriate

discretization of the physiological signal can improve performance on downstream tasks; as

such our transition models are distinct from the SSAM in [56,79].
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2.2 Overview

Our work was done in close collaboration with Mike Wu and Finale Doshi-Velez of Harvard.

We use switching state models to model the physiological state of the patient. Unlike prior

work, we focus on actionable predictions regarding interventions, rather than mortality. We

also consider a much higher-dimensional space of 83 different physiological signals. Unlike

prior work, we focus on actionable predictions regarding interventions, rather than mortality.

We also consider a high-dimensional space of physiological signals and make use of signal

discretization to improve performance on downstream tasks. Specifically, we

• define three clinically actionable prediction tasks: immediate need for an intervention,

need for an intervention in the near future, and when a patient is ready to be weaned

from an intervention,

• achieve state-of-the-art predictions for both intervention-onset tasks using only physi-

ological signals in a large, public ICU dataset,

• quantify unnecessary extra intervention time. To our knowledge, ours is the first study

to use predictive models to address this question.

2.3 Data

The MIMIC II 2.6 database includes retrospective electronic medical records (EMRs) for

26,870 adult hospital admissions recorded between 2001 and 2008. [89] The creation and use

of the MIMIC database was approved by the Institutional Review Boards of both BIDMC

and MIT (IRB Protocol 2001-P-001699/3). Many ICU patients have a limited chance of

survival, regardless of clinical intervention. Therefore, our cohort contains only adult patients

on their first ICU stay without orders for reduced care (e.g., “comfort measures only,” “do

not resuscitate,” “do not intubate,” or “CPR not indicated”). Following prior work [43], we

also excluded patients with less than 12 hours of data or more than 96 hours of data to avoid

a group of fundamentally sicker patients. These criteria allowed us to focus on situations

in which clinical decisions might have a positive effect, rather than penalizing a classifier
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for situations where a patient is taken off life support. Applying these filters resulted in an

initial cohort of 15,695 patients: 4,331 who were administered vasopressors (positive class)

and 11,364 without vasopressors (control class).

2.4 Predictive Tasks

We consider three tasks: predicting (1) Imminent Vasopressor Need, (2) Short-term Vaso-

pressor Need, and (3) Wean Readiness (see Figure 2-1 for an illustration).

1. Task 1: Imminent Vasopressor Need. We define imminent vasopressor need as requiring

a vasopressor within the next 2 hours. For each patient, we make predictions every

hour until the first vasopressor administration or the end of stay. We only predict the

first vasopressor administration because patients with multiple vasopressors are likely

to be in fundamentally different physiological situations.

2. Task 2: Short-term Vasopressor Need. We define short-term need if the patient is

stable enough not to require vasopressor administration for the next 4 hours but will

require vasopressor administration in the following 2 hours. Predicting who will require

vasopressors in the near future—but not now—can help manage ICU logistics and

ensure that the patient is ready for the intervention. We make hourly predictions until

the first vasopressor administration or the end of stay.

3. Task 3: Wean Readiness. Vasopressors are administered via IV, and patients are

weaned by gradually reducing the dose. We define Wean Readiness as being able to

stop administration completely within 2 hours, and a successful wean as not requiring

vasopressors again within 4 hours.

2.5 Feature Construction

Numeric trends are generally produced by the bedside monitors once per second, but often

stored only once every 5 to 60 minutes. In this work we use the nurse-validated vital sign
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Figure 2-1: A subset of physiological timeseries with prediction windows highlighted. Pre-
dicting Imminent Vasopressor Need (Task 1) evaluates features from window “”a” on va-
sopressor need in window “b”. Predicting Short-term Vasopressor Need (Task 2) evaluates
features from window a on vasopressor need in window “c”. Predicting Wean Readiness
(Task 3) evaluates features from window “d” on the successful weaning of vasopressors in
window “e”.

trends from the clinical information system, which are most-often sampled on an hourly

basis. Variables were discretized using the mean and standard deviation from the training

set. In other work, variables were discretized along “normal” value ranges using clinical

knowledge [46]. In this work, we discretized values by rounding per-variable z-scores to

integer values in -4:4; we added an extra value for missing values so each new physiological

variable took on 10 discrete values. The additional value used to indicate missing was

specifically not interpreted as an ordinal, as each of the discretized values was viewed as a

possible emitted “character”. This discretization procedure helps the model to avoid fitting to
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small variations in the physiological signal and to identify global structure in the data while

respecting the missing data rather than imputing it. Vasopressor administration variables

were post-processed to recover continuous segments of administration.

2.5.1 Extracting and Processing Signals

Data were extracted from the MIMIC II 2.6 database. Data was gathered from four ICUs

at the Beth Israel Deaconess Medical Center (BIDMC): medical (MICU), surgical (SICU),

coronary care unit (CCU), and cardiac surgery recovery unit (CSRU).

We considered a total of 18 physiological variables for our model. These were the time

series of 7 nurse-verified vital signs: heart-rate (HR), mean arterial blood pressure (MEAN

BP), blood oxygenation level (SPO2), temperature (TEMP), spontaneous respiration rate

(RESP), first inspired oxygen (FIO2), and urine output (URINE); the time series of 11 labo-

ratory measurements: blood urea nitrogen (BUN), hematocrit (HCT), creatinine (CREAT),

bicarbonate (BICAR), lactate (LACT), magnesium (Mg), potassium (K), sodium (Na), glu-

cose (GLU), platelet count (PC), and white blood cell count (WBC); and 9 static variables:

admitting age, gender, first SAPS I score, first SOFA acuity score, first weight, first ICU

service type, body mass index (BMI), use of pacemaker, and whether the patient was noted

as “at risk” for falls.

We first binned into hours from when the patient was admitted. If there were multiple

values indicated for time series variables, the value for that hour was the mean of the values

noted. To handle missing data, we only incorporated the 10 total features with greater than

10% non-missing entries (MEAN BP, TEMP, HR, SPO2, FIO2, RR, GLU, BICAR, HCT,

K), and smoothed the data through sample-and-hold. All 9 static variables were included,

yielding a total set of 19 physiological variables.

Extracting and Processing Outcomes We extracted vasopressor administration as

any medication event with a generic or brand-name vasopressor label, including dopamine,

epinephrine, isuprel, levophed, vasopressin, and neosynephrine. We considered any modifi-
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cation of vasopressor settings to be a binary indicator of vasopressor administration in the

hour it occurred in. Because continuing vasopressor administration is not always noted in

the electronic health record, we interpolated any vasopressor gaps less than 4 hours as be-

ing continuously on the medication, unless there was an explicit stoppage of the medication

noted. From this smoothed timeseries, we computed the start time of the 𝑖𝑡ℎ vasopressor

administration 𝑡𝑣𝑖𝑛 and its corresponding wean 𝑡𝑤𝑖
𝑛 for each patient 𝑛.

Basic Statistics Table 2.1 shows the mean for features of patients before and during va-

sopressor administration, as well as patients who never had vasopressor administered during

their stay. The means of the intervention and control groups are largely similar, except for

the variables corresponding to which ICU the patient is in (MICU, SICU, CCU, CSRU, and

FICU) and the risk of falls (a proxy for frailty).

2.5.2 Feature Overview

For each task being evaluated at hour 𝑡 of patient 𝑛, we considered three types of input

features: (1) Raw, (2) SSAM and (3) Combined. The raw features are the previous 4 hours

of multidimensional z-scored physiological data at hour 𝑡 of patient 𝑛, appended with the

seven static admissions features. We learn the SSAM (switching state autoregressive model)

features in an unsupervised fashion using the Raw Features. The Combined Features were

obtained by concatenating the raw and SSAM feature vectors. (Figure 2-2)

2.5.3 SSAM

The physiological signals (Raw Features) 𝑥𝑛
𝑡 of a patient 𝑛 at time 𝑡 form a vector in R𝐷

of 𝐷 measurements, some of which may be missing. For each patient 𝑛, we observe a

sequence of {𝑥𝑛
1 ,𝑥

𝑛
2 ,𝑥

𝑛
3 , . . .𝑥

𝑛
𝑇𝑛
} of length 𝑇𝑛. We train a switching state autogressive model

to learn a hidden sequence of discrete, scalar variables {𝑦𝑛1 , 𝑦𝑛2 , 𝑦𝑛3 , . . . 𝑦𝑛𝑇𝑛
}, that determine

the transition dynamics of the observed variables 𝑥𝑛
𝑡 . These variables 𝑦𝑛𝑡 can be interpreted

as the physiological state of the patient.
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Figure 2-2: Overall graphical flow of experiment. (1) Baseline demographic features (e.g.
age, sex, etc.), vital signs (heart rate, temperature, blood pressure, etc.), lab results (glucose
levels, bicarbonate levels, etc.), and derived features (BMI) are extracted from the database
for a filtered selection of patients. (2) For each patient, corresponding vital signs and lab
results data are grouped into 4 hour blocks, flattened, and appended to the demographic
features. (3) A switching-state autoregressive model is used the model the time series. (4)
Latent features are then defined as the probability of each state at each time; these are
appended to the features from step (2). (5) Given these features, a classifier is trained to
predict the outcome of interest (e.g. vasopressor administration).

We assume that the transition dynamics of the hidden sequence {𝑦𝑛𝑡 } follow a Markov

model. Specifically, let there be 𝐾 possible discrete hidden states. Conditioned on the

current physiological state 𝑦𝑛𝑡 , the distribution over the next state is given by

𝑦𝑛𝑡 ∼ 𝑓𝑦(·|𝑦𝑛𝑡−1)

where the elements of the transition function 𝑓𝑦 can be compactly represented in a 𝐾 ×𝐾

matrix. We place a non-uniform prior over the transition matrix to reflect a bias toward a

patient staying in the same physiological state for extended periods of time, and we place a
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prior 𝜋𝑦 over the initial state 𝑦𝑛0 .

Given the physiological state sequence, the observations are generated by an autoregres-

sive model indexed by the hidden state 𝑦𝑛𝑡 for each dimension 𝑑:

𝑥𝑛
𝑡 (𝑑) ∼ 𝑓𝑥(·|𝑥𝑛

𝑡−1 . . .𝑥
𝑛
𝑡−𝑀 , 𝜃𝑑,𝑦𝑛𝑡−1

) (2.1)

where 𝜃 refers to the parameters of the transition model and 𝑀 is the number of previous

states that we consider when making predictions for the next state. Importantly, we assume

that each dimension 𝑑 has its own, independent transition function. This modeling choice

is reasonable because the measurements come from many different types of variables which

can be expected to behave with different dynamics. We considered several options for the

autoregressive transition model 𝑓𝑥, but settled on using random forest classifiers. As with

the hidden state sequence, we assume a prior distribution 𝜋𝑥 for the initial measurement

𝑥𝑛
0 (note that the hidden state 𝑦𝑛0 only governs the choice of transition dynamics, not the

output itself).

The likelihood of the model is given by

𝐿({𝑦}, {𝜃}|{𝑥}) =
𝑁∏︁
𝑛

𝜋𝑦(𝑦
𝑛
0 )𝜋𝑥(𝑥

𝑛
0 )

𝑇𝑛∏︁
𝑡=1

𝑓𝑦(𝑦
𝑛
𝑡 |𝑦𝑛𝑡−1)

𝐷∏︁
𝑑=1

𝑓𝑥(𝑥
𝑛
𝑡 (𝑑)|𝑥𝑛

𝑡−1, 𝜃𝑑,𝑦𝑛𝑡−1
)

where 𝑇𝑛 is the number of observations for patient 𝑛.

Our model contains two sets of latent variables: the hidden physiological state sequences

for each patient {𝑦𝑛1 , 𝑦𝑛2 , 𝑦𝑛3 , . . . 𝑦𝑛𝑇𝑛
} and the transition parameters 𝜃𝑑,𝑘 for each measurement

dimension 𝑑 and physiological state 𝑘. Our inference alternates between updating each of

these sets of variables. Inference was run for 45 iterations, starting with a random assignment

of states to 𝑦𝑛𝑡 . Tempering was used to used to avoid local optima [29].

2.5.4 Updating Autoregressive Function Parameters

Given the hidden state sequences for the patients {𝑦𝑛1 , 𝑦𝑛2 , 𝑦𝑛3 , . . .}, we can split the patient

data into 𝐾 sets of tuples {(𝑥𝑛
𝑡−𝑀 , . . . ,𝑥𝑛

𝑡−1,𝑥
𝑛
𝑡 )} for which 𝑦𝑛𝑡−1 = 𝑘. In other words, we
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split the cases into subsets that share the same previous state. The transition dynamics of

each of these 𝐾 sets are distinct; for each of these sets, we train 𝐷 classifiers, one for each

dimension. The input to the classifier is the previous sequence (𝑥𝑛
𝑡−𝑀 , . . . ,𝑥𝑛

𝑡−1) and the

output is the 𝑥𝑛
𝑡 (𝑑).

In equation 2.1, we used 𝜃𝑘,𝑑 to denote the parameters of this classifier. Any classifier that

can output the probability of a measurement 𝑝(𝑥𝑛
𝑡 (𝑑)|𝑥𝑛

𝑡−1, . . . ,𝑥
𝑛
𝑡−𝑀) can be used, and the

training process will depend on the particular choice of classifier, where any given classifier

will often have standard implementations in many machine learning libraries. Importantly,

once the subsets have been formed, the training of the classifiers can be parallelized across

each physiological state 𝑘 and each output dimension 𝑑. For the autoregressive models, we

considered random forests (with 10 trees).

2.5.5 Updating Physiological State and Transition Parameters

Given the autogressive transition parameters {𝜃𝑝,𝑘} and the transition function 𝑓𝑦, we can

update the state sequences using the standard forward-backward algorithm for HMMs [81].

We use a variant called forward-filtering backward sampling in which we first recursively

compute the probabilities of each state 𝑦𝑛𝑡 given the data {𝑥𝑛
1 ,𝑥

𝑛
2 , . . . ,𝑥

𝑛
𝑡 } up to time 𝑡:

𝑃𝑟(𝑦𝑛𝑡 |{𝑥𝑛
1 ,𝑥

𝑛
2 , . . . ,𝑥

𝑛
𝑡 }, {𝑦𝑛1 , 𝑦𝑛2 , . . . , 𝑦𝑛𝑡−1}, {𝜃𝑝,𝑘})

∝ 𝑓𝑦(𝑦
𝑛
𝑡 |𝑦𝑛𝑡−1)

𝐷∏︁
𝑑=1

𝑇𝑥(𝑥
𝑛
𝑡 (𝑑)|𝑥𝑛

𝑡−1, 𝜃𝑝,𝑦𝑛𝑡−1
)

· 𝑃𝑟(𝑦𝑛𝑡−1|{𝑥𝑛
1 ,𝑥

𝑛
2 , . . . ,𝑥

𝑛
𝑡−1}, {𝑦𝑛1 , 𝑦𝑛2 , . . . , 𝑦𝑛𝑡−2}, {𝜃𝑝,𝑘}) (2.2)

and then sampling each state 𝑦𝑛𝑡 in a backwards pass:

𝑦𝑛𝑡 ∼ 𝑓𝑦(𝑦
𝑛
𝑡 |𝑦𝑛𝑡+1) 𝑃𝑟(𝑦𝑛𝑡 |{𝑥𝑛

1 ,𝑥
𝑛
2 , . . . ,𝑥

𝑛
𝑡 }, {𝑦𝑛1 , 𝑦𝑛2 , . . . , 𝑦𝑛𝑡−1}, {𝜃𝑝,𝑘})

where the final state 𝑦𝑛𝑇𝑛
is simply sampled from equation 2.2.

Given the hidden state sequence {𝑦𝑛1 , 𝑦𝑛2 , 𝑦𝑛3 , . . . }, we learn the transition function 𝑓𝑦 by
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sampling from a Dirichlet distribution with parameters set by posterior transition counts.

For the SSAM, we used 5 hidden states and a diagonal transition matrix 𝑇 (𝑦, 𝑦′) with

𝑇 (𝑦, 𝑦) = 0.8 and the remaining entries 𝑇 (𝑦, 𝑦′) = 0.05 for 𝑦 ̸= 𝑦′.

2.6 Evaluation Procedure and Model Settings

The window size for autoregressive model (𝑀) was empirically determined. We found that

having 𝑀 > 1 decreased performance because then the training data was too sparse. During

training, we also explored a range of gap sizes for prediction (up to 12 hours), but found that

it was significantly harder to predict outcomes further away. When selecting the window

size for features, we found that features collected over 8 hours did not perform significantly

differently from those over 4 hours. We believe this may be due to the 8 previous hours not

providing more relevant temporal information given the previous 4 hours. We experimented

with using up to 10 states in our model, but found that there was no significant difference

in predictive performance; this may be due to the specific predictive tasks we have chosen

in this work.

For each task (administration and weaning) we trained the SSAM on the patients from

the positive class only. For vasopressor administration, we used all time points up to the

administration of the vasopressor. For weaning, we only considered data immediately after

the start of administration (control class) and immediately before the wean (positive class).

At time 𝑡 we computed the probabilities of being in each SSAM state over the last 4 hours

for all patients and all times in our cohort and used those as input features. Because there

are 𝑘 states at every hour, 4 hours of previous data creates 4𝑘 SSAM Features.

Models were built from each of these features using three different classifiers: a linear-

kernel support vector machine (SVM), naive Bayes (NB), and L2-regularized logistic regres-

sion (LR). Standard packages and settings were used for the SVMs, NB, and LR classifiers.

All analysis was performed in Python 2.7.
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2.7 Results

2.7.1 Predicting Vasopressor Administration Improved by SSAM

Features

Table 2.2 compares the performance of all feature sets on Tasks 1 and 2 (imminent and

short-term administration prediction) using L2-regularized logistic regression averaged over

five repetitions. The LR classifiers tended to have the best prediction performance across

feature sets; the results with all classification methods can be found in the Appendix.

Simply using the global SSAM features gives an area under the receiver operating curve

(AUC) of 0.87 (± 0.009) for imminent need prediction, and 0.83 (± 0.008) for short-term

need prediction. The combined features achieve the best results, and consistently improve

AUCs over only using the raw features - AUCs of 0.92 (± 0.002) and 0.88 (± 0.006) for

imminent need and short-term need prediction respectively.

2.8 Predicting Vasopressor Weaning Improved by SSAM

Features

Following the best results from administration prediction, we trained a classifier for Task

3 to predict successful weaning on those patients who were alive 30 days post-discharge.

We focus on this longer-term survival group in order to distinguish between physiological

patterns that lead to successful weans in patients who were able to survive all aspects of

their hospital treatment. The raw features obtained an AUC of 0.67 (± 0.008), SSAM(NB)

features were AUC 0.63 (± 0.021), and Raw+SSAM(NB) features were AUC 0.71 (± 0.005).

2.8.1 Quantifying Unnecessary Intervention Time Prior to a Wean

Our quantitative results above discriminate situations in which the clinician may have at-

tempted to wean too early, causing the wean to be unsuccessful. However, clinicians report
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that patients are often left on interventions for much longer than necessary. We focus on

the first time that our classifier predicted a successful wean for each patient in Task 3, and

examine the difference in time between these predicted weaning times and actual weaning

times. As shown in Figure 2-3, a significant portion of patients were successfully weaned

at the right time, but the heavy tail depicted suggests that many patients suffered from

extended interventions.

Figure 2-3: Histogram of excess time for which patients could have been successfully weaned
according to the classifier.

We choose two patients from different points in the histogram in figure 2-3 and examine

their medical notes.

Case 1: Figure 2-4 shows our probability of a successful wean from the time on vaso-

pressor onset for a 72 year old man with coronary artery disease who was put on mechanical

ventilation and vasopressors while in the ICU. The probability of a successful wean is low

while the patient fails mechanical ventilation weaning early on in his stay, and immediately

post-extubation. It is explicitly noted in his record at the lowest probability of wean that

the patient is dependent on the vasopressors he is receiving. The patient stabilizes as the

probability of wean success climbs, and the clinical staff actually begin to wean the patient

near the highest predicted success in our estimates.

37



Case 2: Figure 2-5 shows a similar plot for a 62 year old male patient with a cardiac

catheterization. The probability of successful wean remains low while the patient is given a

course of treatment and fluids, and he struggles with a low central venous pressure (CVP) and

increasing hematocrit (HCT). When the nursing staff notes an increasing need for vasopres-

sors, the corresponding probability of a wean dips further. During recovery, our modelâĂŹs

improved wean success matches the nurseâĂŹs note that the patient should be weaned in the

following day. In this case, the wean happens almost 10 hours after our model predicts that

it could successfully have been done. However, this is likely due to clinical staff schedules,

which vary widely in the ICU. For legal and ethical reasons, there is also a bias to maintain

interventions in ICU patients rather than withdraw too early, even if a patient seems to be

stable.

2.8.2 Clinical Relevance of Discovered States

The previous sections show that our SSAM features improve our ability to predict vasopressor

administration and weaning. We theorize that this quantitative evidence is due to physiolog-

ical models that are capturing physiological characteristics that are relevant to interventions

and intervention outcomes, but not captured by raw physiological variables. To investigate

this hypothesis, we investigated whether the odds ratios associated with the latent variables

were on par with those given to the raw features. In each of the tasks, latent state features

were some of the most heavily weighted features for logistic regression (see Appendix). To

identify which states are associated with high and low probabilities in weaning prediction, we

then counted the frequency with which any particular model was associated with correctly

predicting successful or unsuccessful weans. Specifically, we looked at which SSAM states

generated the highest 1% of successful wean probabilities in the patients that were successful

weans, and which SSAM states generated the lowest 1% of successful wean probabilities in

the patients that were unsuccessful weans.

As shown in Figure 2-6, we see an increased membership in SSAM states 5 and 6 in those

patients that had a high probability of a successful wean. On the other hand, data with a
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low probability of successful weaning in those patients who were not successful weans came

more often from SSAM states 1 and 3. We then investigated the physiological variables that

correspond to these states by examining the transitions probabilities for observed values in

SSAM states 3 and 5 (recall that the state of the SSAM governs the dynamics of the observed

physiological variables). There are several interesting differences in these probabilities. In

SSAM state 5, transition probabilities for blood hematocrit values tended to stabilize from

large abnormal values towards normalcy more often (8% vs. 5%). This could be indicative

of patients who are healthy enough to remove fluid resuscitation, so their hematocrit is

responding with decreased blood viscosity. In SSAM state 3, we observed that the respiration

rate tends to stabilize from low values towards normalcy more often (13% vs. 11%). This

could indicate that SSAM state 3 represents patients who eventually require some form of

mechanical ventilation, which can cause more unsuccessful weaning patterns.

2.9 Discussion

Much literature in clinical prediction has focused on using large numbers of manually defined

aggregate features as inputs to a classifier that will predict the risk of clinically significant

events. [46, 48, 54] Switching dynamical systems models have been used to impute signals,

identify artifacts, and discover physiological states in a variety of critical settings. [56,75,79]

Most of these works have focused on developing models for densely sampled, often one-

dimensional data. Our work differs in that we consider higher dimensional data and use

discretization and binning to find relevant signals over longer time scales. Other work has

applied unsupervised methods to discretized time series to discover anomalies and patient

similarities, but without a latent variable representation. [88,100] Time series symbolization

creates many opportunities to analyze physiological data with the rich literature of techniques

developed for discrete sequences; [59] our data processing approach also makes it natural for

us to consider rich, nonlinear transition models, such as random forests, rather than the

linear dynamical systems approaches of the work above.

The most recent prior work on vasopressor prediction used a subset of the MIMIC II
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patients receiving fluid resuscitation (2,944 adult ICU patients), and attempted to predict

subsequent vasopressor administration within 2 hours using a general model and two disease-

based models. [26] The general patient model achieved an AUC of 0.79 ± 0.02, and the

disease-models had AUCs of 0.82 ± 0.02 for pneumonia and 0.83 ± 0.03 for pancreatitis.

Our model used a similar short-term prediction approach in the general ICU population

and achieved an AUC of 0.88 (± 0.0061). To our knowledge, we have the highest reported

results for predicting vasopressor administration. These results suggest that the latent states

discovered by the SSAM is an effective summary statistic for making predictions about the

patientâĂŹs future intervention needs; an increased AUC of 0.05 could affect the treatment

of thousands of patients annually in a large ICU.

Predicting weaning success is harder than predicting intervention onset. There exists

fundamental uncertainty about when is the right time to wean a patient, and the decision

may depend on staffing considerations, clinical judgment, or lack of familial support for

intervention removal. In addition, unlike onset, the time of weaning is often present only

in the patient note and not indicated in any structured data sources. The most relevant

predictive work on vasopressor weaning specifically was done using clinically-guided feature

engineering over sliding windows of data. [43] In particular, they selected 32 variables from

a manually defined set over 438 clinically-guided features. They then classified patient

segments that preceded successful vasopressor weaning by 1-12 hours (AUC = 0.81), and

segments that preceded successful vasopressor weaning by 6-12 hours (AUC = 0.76). This was

improved by only looking at those patients who survived their hospital admission to AUCs of

0.82 and of 0.825 respectively. While our AUCs are lower (0.71± 0.005), our approach did not

use the large set of hand-engineered features; seeing whether our unsupervised physiological

features improve prediction accuracy when combined with these engineered features is an

interesting future direction. Another difference is that they excluded people who died in

hospital, whereas we excluded people who died in a month after discharge.

We obtain AUCs of .092, 0,88, and 0.71 for predicting un-gapped vasopressor adminis-

tration, gapped vasopressor administration, and vasopressor weaning. Our results for va-
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sopressor use are the best achieved to our knowledge, and better results on vasopressor

weaning were obtained with feature engineering on a smaller dataset. An important prop-

erty of our approach is that our SSAM was trained in a completely unsupervised manner,

specifically without knowing what the down-stream prediction task was to be, and without

hand-specification of important features. Our goal in training the SSAM was to model the

evolution of symbolized physiological time series—capturing global trends in the dynamics

of the measurements that could be interpreted as the physiological state. The features de-

rived from our SSAM resulted in improved performance regarding whether a patient would

receive a vasopressor administration (our 0.88 AUC versus 0.79 AUC for gapped prediction;

we also discovered several features associated with successful weaning from vasopressors and,

to our knowledge, made the first attempt to quantify anecdotal claims about unnecessary

intervention time. In summary, our work takes an important step toward moving away

from hand-engineered, task-specific features to features that capture key information about

patient health.

Our predictions of when a patient is ready to wean is just one of several actionable pre-

dictions in the space of vasopressor administration. Another important step would be to also

consider the drug and dosage used for the vasopressor. In particular, a multicenter random-

ized trial comparing the use of dopamine or norepinephrine as first-line vasopressor therapy

in 1,679 patients with shock found that patients treated with dopamine had significantly

more arrhythmic events. [20] We could also improve the prediction quality of our model with

additional features, such as those used to predict sepsis (sepsis is often preceded by episodes

of hypotension, so an early predictor of sepsis could also be learning many of the states that

might require vasopressor use). [39] Another interesting direction for future work would be

to test whether these features assist in stratifying risk for a variety of interventions and in-

termediate outcomes, such as mechanical ventilation, [101, 110], sepsis [39], and response to

different dosages of vasopressor [20] which, to date, have relied on hand-engineered features.

SSAMs have demonstrated value in detecting physiological states that influence the evo-

lution of clinical measurements over time, and our overall methodology could be used to
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answer many other clinical questions. In the specific context of vasopressor weaning readi-

ness, the ability to display the probability of a patient’s possible need for an intervention, and

their potential for weaning success, are important pieces of information that could enable

clinicians to view predictions across entire ICU populations, updated on an hourly basis.

This information could be further operationalized to create a clinical environment where

potential therapies can be evaluated based on their prior performance in diverse populations

and settings.

42



Feature Name Intervention V- Intervention V+ Control (C)

Age 65.812 65.811 60.787
% Male 65.719 65.719 56.070
SAPS-I 15.889 15.889 10.722
SOFA 7.844 7.844 3.251

Weight 82.229 82.229 81.767
ICU LoS 1.974 1.974 1.708

% Mortality 5.165 5.165 2.687
% MICU 14.251 14.251 41.733
% SICU 10.014 10.014 30.319
% CCU 12.759 12.759 16.336

% CSRU 62.085 62.085 9.504
% FICU 0.891 0.891 2.108

% Pacemaker Use 62.783 62.783 57.895
% ROF 59.726 59.725 5.660

Mean BP 76.235 74.680 82.120
TEMP 97.865 98.562 98.371

HR 83.979 85.251 83.682
SPO2 97.716 97.283 97.244
FIO2 0.736 0.530 0.51

RR 16.094 18.056 18.286
GLU 150.657 134.618 138.732

BICAR 25.090 24.023 24.866
HCT 29.031 29.903 31.457

K 4.531 4.244 4.078

Table 2.1: Mean values for variables in patient populations. ICU LoS denote ICU length
of stay in days, ROF is Risk of Falls, BP is blood pressure, BMI is body mass index, HR
is heart rate, SPO2 is the peripheral capillary oxygen saturation, FIO2 is the fraction of
inspired oxygen, RR is the respiration rate, and HCT is hematocrit. Care units are medical
(MICU), surgical (SICU), cardiac care (CCU), and cardiac-surgery recovery (CSRU).
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Table 2.2: Performance of features in vasopressor need tasks using logistic regression classi-
fier. Imminent Need predictions are inherently easier, as the data immediately prior to onset
is available. Short-term Need predictions are more challenging because they enforce a time
gap between observed data and the onset of the intervention. In general, SSAM features
learned with Naive Bayes performed as well as the raw data, and the combination of SSAM
features and Raw data did strictly better than either alone.

FEATURES USED IMMINENT NEED PREDICTION (AUC) SHORT-TERM NEED PREDICTION (AUC)
RAW 0.89 (± 1.1e-16) 0.83 (± 0.0040)

SSAM (RF) 0.81 (± 0.0584) 0.66 (± 0.0046)
SSAM (NB) 0.87 (± 0.0090) 0.83 (± 0.0076)

COMBINED: RAW+SSAM (RF) 0.92 (± 0.0008) 0.86 (± 0.0032)
COMBINED: RAW+SSAM (NB) 0.92 (± 0.0016) 0.88 (± 0.0061)
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Figure 2-4: Probabilities of successful weaning and state for Case 1.
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Figure 2-5: Probabilities of successful weaning and state for Case 2.
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Figure 2-6: Histograms of the states across patients at time points of high (left) and low
(right) probabilities of successful weans.
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Chapter 3

Representations for Discharge and

Post-Discharge Outcome Prediction

In this chapter, we focus on predicting discharge and post-discharge outcomes, including in-

hospital mortality and post-dischrage mortality. In particular, we evaluate two representation

techniques towards these tasks: topic modeling (or Latent Dirichlet Allocation) over the

clinical notes, and Multi-Task Gaussian Processes over clinical timeseries (both phsyiological

measurements and note/topic timseries). Most ICU mortality models primarily consider

structured data [15, 43] or physiological waveforms [46, 88]. However, most do not consider

the information captured in providers’ free text notes, account for interventions given by

care staff, or combine different forms of data. Many of the gold-standard ICU scores are

also not intended to be continuous surrogates of patient status [52]. Early recognition of

mortality could be used as a marker for physiological decline. The ICU is a location for

critical decisions that weigh patient state against possible response to treatment.

3.1 Background

Modeling mortality in critical care settings has been a broad area of research. Siontis et

al. [93] reviewed 94 studies with 240 assessments of 118 mortality prediction tools from 2009
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alone. Many of these studies evaluated established clinical decision rules for predicting mor-

tality, such as APACHE [47], SAPS-II [52], and SOFA [102] (with median reported AUCs

of 0.77, 0.77, and 0.84, respectively). ICU scoring systems such as SAPS (simplified acute

physiology score) use physiologic and other clinical data for acuity assessment. However,

Sionitis et al. noted a large variability of these measures across various diseases and popu-

lation subgroups. Even if the system itself were perfect, in 2012 the scoring systems were

used in only 10% to 15% of US ICUs [8].

Work to score patient state has primarily focused on feature engineering for mortality

prediction. This is usually accomplished by windowing or aggregating the structured numer-

ical data so that a single feature matrix can be fed into a structured deterministic classifier.

Some work has focused on clinical vitals and labs data for mortality and risk prediction. Hug

et al. [43] used several hundred structured clinical variables to create a real-time ICU acuity

score that reported an AUC of 0.88-0.89 for in-hospital mortality prediction. Weins et al.

represented patient risk as a time series, and used the distance to the margin of an SVM

for identifying patients at risk of testing positive for hospital acquired Clostridium difficile

(AUC of 0.79) on a held-out set of several hundred patients. [109]

Some work has used the clinical text written by care staff as a fundamentally different type

of signal: a trained professional’s sparse representation of a patient’s physiology over time.

Topic models are latent variable models that incorporate information from free text notes to

create topic-document-word mappings. [2,5] Several recent works have used information from

clinical notes in their model formulations. Saria et al. [92] combined structured physiological

data with concepts from the discharge summaries to achieve a patient outcome classification

F1 score of 88.3. Similarly, [31] described preliminary results indicating that topic models

extracted from clinical text in a subgroup of ICU patients were valuable in the prediction

of per-admission mortality. They found that common topics from the unlabeled clinical

notes were predictive of mortality, and an RBF SVM achieved a retrospective AUC of 0.855

for in-hospital mortality prediction using only learned topics. Lehman et al. [55] applied

Hierarchical Dirichlet Processes to nursing notes from the first 24 hours for ICU patient
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risk stratification. They demonstrated that unstructured nursing notes were enriched with

clinically meaningful information, and this information could be used for clinical support.

Using topic proportions, the average AUC for hospital mortality prediction was 0.78 (±

0.01). In combination with the SAPS-I variable, their average AUC for hospital mortality

prediction was 0.82 (± 0.003).

Other efforts have focused on combining well-engineered aggregate features with unsu-

pervised clustering methods. In 2011, Kshetri et al. modeled patient states in intensive care

patients using unsupervised clustering of multiple time-synched physiological signals. [48]

Each cluster was examined post-hoc for concentrations of conditions of interest, including

in-hospital mortality and acute kidney injury. The authors believe that the proportional con-

centration of certain states in different clusters (e.g. most patients who died passed through

cluster 10) made for an interesting low-dimensional representation of patient state. Cohen et

al. also used clustering analysis to identify clinically relevant patients states, but their analy-

sis focused on physiological data obtained after patient trauma [18]. Joshi et al. infused more

prior physiological knowledge into the clustering process using a layered technique known

as Radial Domain Folding. [46] In this work, patient severity was modeled in the ICU by

first transforming physiological signals into organ-system focused clusters. These clusters

are then “folded” together to create aggregate estimates of the overall physiological state

based on the permutations of cluster assignments at any given time. This approach requires

that hand-engineered aggregate features be aggregated into a higher-level set of features for

further prediction use.

3.2 Modeling Mortality Risk with Clinical Note Repre-

sentations

3.2.1 Overview

We focus on the task of on-going mortality prediction in the ICU using clinical notes. The

ICU is a particularly challenging environment because each patient’s severity of illness is
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constantly evolving. Further, modern ICUs are equipped with many independent measure-

ment devices that often produce conflicting (and even false) alarms, adversely affecting the

quality of care. Consequently, much recent work in ICU mortality models [45, 52, 102] has

aimed to consolidate data from these devices (primarily structured data and physiological

waveforms) and transform these information streams into knowledge. However, these works

omit perhaps the most descriptive sources of medical information: free-text clinical notes

and reports.

The narrative in the clinical notes, recorded by expert care staff, is designed to pro-

vide trained professionals a quick glance into the most important aspects of a patient’s

physiology. Combining features extracted from these notations with standard physiological

measurements results in a more complete representation of patients’ physiological states,

thus affording improved outcome prediction. Unfortunately, free-text data are often more

difficult to include in predictive models because they lack the structure required by most

machine learning methods. To overcome the obstacles inherent in clinical text, latent vari-

able models such as topic models [2, 5] may be used to infer intermediary representations

that can in turn be used as structured features for a prediction task.

We demonstrate the value of incorporating information from clinical notes, via latent

topic features, in the task of in-hospital mortality prediction as well as 30 day and 1 year

post-discharge mortality prediction. Specifically, we evaluated mortality prediction under

three prediction regimes: (1) baseline regime, which used structured data available on ad-

mission (2) time-varying regime, which used baseline features together with dynamically

accumulated clinical text using increasingly large subsets of the patient’s narrative record,

and (3) retrospective regime, which used all clinical text generated from a hospital stay to

supplement the baseline features. In the time-varying regime, we also compare models based

only on structured data to those also including topics from the notes. In all targeted out-

comes, we demonstrate that adding information from clinical notes improves predictions of

mortality.
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Figure 3-1: Overall flow of experiment. 1) Clinical baseline features are extracted from the
database for every patient (e.g. age, sex, admitting SAPS-II score) and derived features are
computed (e.g. maximum/minimum SAPS-II score) to form the Structured Features matrix
𝑣 (𝑣𝑝,𝑓 is the value of feature 𝑓 in the 𝑝𝑡ℎ patient). 2) Each patient’s de-identified clinical
notes are used as the observed data in an LDA topic model (i.e., Un-supervisted LDA Model),
and a total of 50 topics are inferred to create the per-note topic proportion matrix 𝑞. 3) Per-
note latent topic features are aggregated in extending 12 hour windows (e.g. notes within
0-12 hours, notes within 0-24 hours, etc.) and used to form matrix 𝑞′ where 𝑞′𝑚,𝑘 is the overall
proportion of topic 𝑘 in time-window 𝑚. 4) Depending on the model and time window being
evaluated, subsets of the feature matrix 𝑣 and matrix 𝑞′ are combined into an Aggregated
Feature Matrix. 5) A linear kernel SVM is trained to create classification boundaries for
three clinical outcomes: in-hospital mortality, 30 day post-discharge mortality, and 1 year
post-discharge mortality (i.e., Structured SVM Model).

3.2.2 Methods

Figure 3-1 gives a general overview of our experimental process. First, we extract clinical

baseline features, including age, sex, and SAPS-II score, from the database for every patient.

We also extract each patient’s de-identified clinical notes. We use these notes as the observed

data in an LDA topic model, and infer a total of 50 topics. We chose 50 topics after varying

the number from 20 − 200, and noting that validation set accuracy did not improve after 50.

We normalize the word counts associated with each note, so that each note is represented

by a 50-dimensional vector, summing to 1. These per-note topic distributions are then

aggregated on a 12 hour semi-continuous timescale (e.g. notes within 0-12 hours, notes
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within 0-24 hours, etc.). A linear kernel SVM is trained to create classification boundaries

with combinations of the structured clinical features and latent topic features to predict

in-hospital mortality, 30 day post-discharge mortality, and 1 year post-discharge mortality.

3.2.3 Data and Pre-Processing

We used ICU data from the MIMIC II 2.6 database [87], a publicly-available, de-identified

medical corpus that includes electronic medical records (EMRs) for 26, 870 ICU patients at

the Beth Israel Deaconess Medical Center (BIDMC) collected from 2001 to 2008. Patient

age, sex, SAPS-II scores, International Classification of Diseases-Ninth Revision (ICD-9)

diagnoses, and Disease-Related Group were extracted. Medical co-morbidities were repre-

sented by the Elixhauser scores (EH) for 30 co-morbidities as calculated from the ICD-9

codes. Patient mortality outcomes were also queried to determine which patients died in-

hospital, died within a certain time after discharge, or lived past the most recent query of

Social Security records.

We extracted all clinical notes recorded prior to the patient’s first discharge, including

notes from nurses, physicians, labs, and radiology. The discharge summaries themselves

were excluded because they typically stated the patient’s outcome explicitly. Vocabularies

for each note were generated by first tokenizing the free text and then removing stopwords

using the Onix stopword list 1. A TF-IDF metric [90] was applied to determine the 500

most informative words in each patient’s notes, and we then limited our overall vocabulary

to the union of the most informative words per-patient. This pre-processing step reduced

the overall vocabulary down to 285,840 words from over 1 million terms while maintaining

the most distinctive features of each patient.2

Patients were excluded if their notes had fewer than 100 non-stop words or were under

the age of 18. Specific notes were excluded if they occurred after the the end of the day

0Note that MIMIC supports ICD-9-CM codes, which are the U.S. “clinical modifications” that support the use of the codes
in billing.

1Onix Text Retrieval Toolkit, API Reference, http://www.lextek.com/manuals/onix
2Some medical term canonicalization parsers were also examined, but we found their outputs to be fairly unreliable for this

task.
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Table 3.1: Clinical Note Cohort Composition

Train Test Total
Patients 13,524 5,784 19,308
Notes 331,635 142,129 473,764

in which a patient died or was discharged (e.g. radiology or lab reports whose results were

reported afterwards). The resulting cohort consisted of 19,308 patients with 473,764 notes.

We held out a random 30% of the patients as a test set. The remaining 70% of patients were

used to train our topic models and mortality predictors. Table 3.1 summarizes the number

of notes and patients in the training and test sets.

3.2.4 Structured and Derived Features

In total, we extracted and derived 36 structured clinical variables for each patient: the age,

gender, SAPS II score on admission, minimum SAPS II score, maximum SAPS II score,

final SAPS II score, and the 30 EH comorbidities. Data were scaled to avoid the range of a

feature impacting its classification importance. This formed a feature matrix 𝑣, where the

element 𝑣𝑝,𝑓 was the value of feature 𝑓 in the 𝑝𝑡ℎ patient.

3.2.5 Topic Inference

Instead of considering each note separately, we used the set of all notes that occurred in

a particular time period as features for that period. We examined the distribution of note

times, and found three peaks in note entry for any given day in a patient’s stay (e.g. day 1,

day 2, etc.): around 06:00, 18:00 and 24:00.3 Given this distribution, we used 12 hours for

our time windows.

Topics were generated for each note using Latent Dirichlet Allocation [5,37]. Our initial

experiments found no significant difference in held-out prediction accuracy across a range of

20 to 100 topics. We set hyperparameters on the Dirichlet priors for the topic distributions

3The increases in note submission at 06:00 and 18:00 were likely due to the current 12 hour nursing shift cycle. The large
number of notes submitted at end-of-day were likely due to a previously common 14:00 - midnight nursing shift.
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(𝛼) and the topic-word distributions (𝛽) as 𝛼 = 50
𝑛𝑢𝑚𝑏𝑒𝑟𝑇𝑜𝑝𝑖𝑐𝑠

, 𝛽 = 200
𝑛𝑢𝑚𝑏𝑒𝑟𝑊𝑜𝑟𝑑𝑠𝐼𝑛𝑉 𝑜𝑐𝑎𝑏

. We used

50 topics in our final experiments, and topic distributions were sampled from an MCMC

chain after 2,500 iterations. This topic-modeling step resulted in a 50-dimensional vector of

topic proportions for each patient for each note.

We concatenated the topic vectors into a matrix 𝑞 where the element 𝑞𝑛,𝑘 was the pro-

portion of topic 𝑘 in the 𝑛𝑡ℎ note. Of particular interest was whether certain topics were

enriched for in-hospital mortality and long-term survival. We used an enrichment measure

defined by Marlin et al. [61], where the probability of mortality for each topic is calculated

as 𝜃𝑘 =
∑︀𝑁

𝑛=1 𝑞𝑛,𝑘*𝑦𝑘∑︀𝑁
𝑛=1 𝑞𝑛,𝑘

, where 𝑦𝑛 is the noted mortality outcome (0 for a patient who lives, and

1 for a patient who dies). These enrichment measures are reported in section 3.2.7.

The time windows were used to construct feature vectors for each prediction task, where

(at each step) we extended the period of consideration forward by 12 hours. From the

previously constructed per-note matrix 𝑞 that describes the distribution over topics in each

note, we collapse into another matrix 𝑞′ where 𝑞′𝑚,𝑘 describes the overall proportion of topic

𝑘 in time-window 𝑚. The element 𝑞′𝑚,𝑘 is given by the mean of that topic’s proportions of

all the notes in time-window 𝑚: mean𝑛∈𝑚𝑞𝑛,𝑘.

3.2.6 Prediction Task Definition

We considered three prediction regimes with the inferred topic distributions: baseline pre-

diction, dynamic (time-varying) outcome prediction and retrospective outcome prediction

for the outcomes of in-hospital, 30-day, and 1-year mortality.

A separate linear SVM [12] was trained for each of the three outcomes, and each set of

model features evaluated. The loss and class weight parameters for the SVM were selected

using five-fold cross-validation on the training data to determine the optimal values with

AUC as an objective. The learned parameters were then used to construct a model for the

entire training set, and make predictions on the test data.

All outcomes had large class-imbalance (mortality rates of 10.9% in-hospital, 3.7% 30
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day post-discharge, and 13.7% 1 year post-discharge4). To address this issue, we randomly

sub-sampled the negative class in the training set to produce a minimum 70%/30% ratio

between the negative and positive classes. Test set distributions were not modified to reflect

the reality of class imbalance during prediction, and reported performance reflects those

distributions.

Figure 3-2: The probability of in-hospital mortality for each topic, indicating that topics
represent differences in outcome. Probabilities are calculated as 𝜃𝑘 =

∑︀𝑁
𝑛=1 𝑞𝑛,𝑘*𝑦𝑛∑︀𝑁

𝑛=1 𝑞𝑛,𝑘
(see sec-

tion 3.2.5). Each bar shows the prevalence of a given topic 𝑘 in the mortality category, as
compared to the set of all patients. Bars are shown as above (in red) or below (in green) the
baseline in-hospital mortality based on the value of 𝜃𝑘 for each topic 𝑘.

First, we established a static baseline model using only structured features present at

admission (i.e. clinical baseline features and derived features thereof). We then ran dynamic

outcome prediction in intervals of 12 hours at each step by including larger sets of patient

notes in a step-wise manner. We finally performed retrospective outcome predictions, where

we included structured features and all notes written during the stay as a static entity

for prediction. Significantly, predictions of mortality with this type of feature set are a

4This includes those who die within the first 30-days post-discharge, so two of the prediction targets have overlap.
4Note that we purposefully excluded the discharge summaries
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retrospective exercise only: it is not possible to first select all notes that occur before a

patient’s death, and then predict in-hospital mortality, because the time of mortality is not

known a-priori. The observer would have to “know” that the patient’s hospital record was

about to finish (either by death or discharge). The following settings were evaluated:

• Admission Baseline Model : A baseline model using the structured features of age,

gender, and the SAPS II score at admission. These baseline features are extracted

from the data present at patient admission only. (3 features total)

• Time-varying Topic Model 1 - 20 : Outcome prediction performed by including notes

in a step-wise fashion, extending the period of consideration forward by 12 hours at

each step. For example, Time-varying Topic Model 1 includes topic features derived

from all notes written during the first 12 hours of a patient’s stay in the ICU, while

Time-varying Topic Model 20 includes those derived from the first 240 hours. (50

features total)

• Combined Time-varying Model 1 - 20 : Outcome prediction using the same setup as

Time-varying Topic Model 1 - 20, but with the static structured features from Ad-

mission Baseline Model (gender, age, admitting SAPS score) included. (53 features

total)

• Retrospective Derived Features Model : A retrospective model using the structured

features of age, gender, admitting SAPS II score, the minimum SAPS II score, the

maximum SAPS II score, the final SAPS II score, and all EH comorbidities. (36

features total)

• Retrospective Topic Model : A retrospective model using topics derived from all notes

written during a patient’s stay in the ICU. (50 features total)

• Retrospective Topic + Admission Model : A retrospective model combining structured

features from Admission Baseline Model (gender, age, admitting SAPS scores) with

latent topic features from Retrospective Topic Model. (53 features total)
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• Retrospective Topic + Derived Features Model : A retrospective model combining struc-

tured features from Retrospective Derived Features Model (gender, age, admitting/min/-

max/final SAPS scores, EH comorbidities) with latent topic features from Retrospec-

tive Topic Model. (86 features total)

We compare the prediction results for all models on each of the outcomes in Figure 3-3

and Table 3.3. We again emphasize that retrospective models are retrospective exercises

only to establish the isolated and combined prediction ability of clinical notes and features.

We also note that our Time-varying Topic Model is time-varying only in its application.

We do not use other possible latent variable models such as “Dynamic topic models” [6],

because we do not want to model the time evolution of topics, but rather the time evolution

of membership to a given set of topics.

3.2.7 Results

Qualitative Enrichment Table 3.2 lists the top words for the topics that had the largest

enrichment (𝜃𝑘 =
∑︀𝑁

𝑛=1 𝑞𝑛,𝑘*𝑦𝑘∑︀𝑁
𝑛=1 𝑞𝑛,𝑘

) for in-hospital mortality, the smallest enrichment for in-

hospital mortality, and the highest enrichment for 1 year mortality. The relative distributions

of the in-hospital mortality probabilities for each of the 50 topics are shown in Figure 3-2.

There was a wide variation in the in-hospital mortality concentration for the different topics,

ranging from 3% - 30%. (See Table A.2 for a listing of top ten words for all topics.)

The topics enriched for in-hospital mortality presented a detailed view of the possible

causes of death in the ICU. For example, patients in a modern ICU rarely die suddenly.

Often patient life is sustained for some time in order for their family to express their wishes

regarding terminal care and death. This could be one interpretation for Topic 27, which

pertains to the discussion of end-of-life care options. Other topics with in-hospital mortal-

ity enrichment pertained to top causes of ICU mortality: respiratory infection (Topic 7),

respiratory failure (Topic 15), and renal failure (Topic 5).

Hospital survival was also marked by topics which seem relevant to factors tied closely to

the ability to recover from physiological insults: patients who are admitted for cardiovascular

59



Table 3.2: Top ten words in topics enriched for in-hospital mortality, hospital survival (any
number of days post-discharge), and 1 year post-discharge mortality.

Topic Top Ten Words Possible Topic
In-hospital Mor-
tality

27 name, family, neuro, care, noted,
status, plan, stitle, dr, remains

Discussion of end-of-
life care

15 intubated, vent, ett, secretions,
propofol, abg, respiratory, resp,
care, sedated

Respiratory failure

7 thick, secretions, vent, trach, resp,
tf, tube, coarse, cont, suctioned

Respiratory infection

5 liver, renal, hepatic, ascites, dialy-
sis, failure, flow, transplant, portal,
ultrasound

Renal Failure

Hospital Sur-
vival

1 cabg, pain, ct, artery, coronary,
valve, post, wires, chest, sp

Cardio-vascular
surgery

40 left, fracture, ap, views, reason, clip,
hip, distal, lat, report

Fracture

16 gtt, insulin, bs, lasix, endo, monitor,
mg, am, plan, iv

Chronic diabetes

1 Year Mortality 3 picc, line, name, procedure,
catheter, vein, tip, placement,
clip, access

PICC5 line insertion

4 biliary, mass, duct, metastatic, bile,
cancer, left, ca, tumor, clip

Cancer treatment

45 catheter, name, procedure, contrast,
wire, french, placed, needle, ad-
vanced, clip

Coronary catheteriza-
tion

surgery (Topic 1) are often not allowed as surgical candidates until they are in relatively good

health; patients who are able to respond to their care staff and the ICU environment (Topic

26, Table A.2) are adequately dealing with the known stress of ICU admission; patients with

trauma-based injuries such as fracture and pneumothorax (Topics 8, 40); and patients with

chronic conditions like diabetes (Topic 16).

The topics enriched for 1 year post-discharge mortality suggested that patients who are

discharged but die within a year have conditions with a low chance of long-term survival.

For example, cancer (Topic 4), the need for long-term IV access while in the ICU (Topic 3),

and the use of coronary catheterization (Topic 45) to diagnose activity in coronary arteries
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or other valvular/cardiac issues.

Prediction We evaluated the predictive power of each model and outcome pair. Figure

3-3 shows the AUCs achieved by each model for the three targeted outcomes. Table 3.3 lists

a more complete set of the SVM classification metrics.

As shown in Table 3.3, the prevalent class imbalance resulted in a bias toward low speci-

ficities in the Admission Baseline Model. The balance between sensitivity and specificity

generally leaned towards favoring higher specificities for in-hospital and 30 day mortality

prediction as time moved forward in the Time-varying models, but this was not uniformly

true in all cases. In general, the Retrospective Derived Features Model had a high sensitivity

and low specificity, the Retrospective Topic Model had good specificity, and the combined

models tended to have a more even set of both measures.

For 30 day and 1 year post-discharge mortality prediction, the Admission Baseline Model

was very steady, averaging an AUC of 0.68 over all time windows for both outcomes. The

Combined Time-varying Model achieved an average/best performance of 0.77/0.8 for 30 day

mortality and 0.75/0.77 for 1 year mortality. In both outcomes the Time-varying Topic Model

performed strictly better than the Admission Baseline Model until the available patient

subset became minimal (the 204 -216 hour windows), and the Combined Time-varying Model

was always better than either alone.

As expected, the four Retrospective models were generally more predictive than any of the

Time-varying models. Retrospective models tended to increase performance as more features

were added. For in-hospital and 30 day mortality prediction, the Retrospective Topic Model

performed better than the Retrospective Derived Features Model (AUCs increased from 0.90

to 0.94 and 0.75 to 0.78 respectively). For 1 year mortality this was reversed (AUC decreased

from 0.78 to 0.76).

In the in-hospital mortality setting, it seemed that admission features were not needed

once latent topic features are known, but the derived features did provide extra informa-

tion6. However, in the 30 day setting, latent topic features were similarly improved by either

6Adding the admission features did not improve the Retrospective Topic Model, but adding the derived features boosted
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the admission features or the derived features7. This is likely because the derived features

included EH comorbidities derived from the ICD-9 codes, and the ICD-9 codes themselves

are often transcribed after a patient’s discharge with the most actionable (or billable) con-

ditions a patient presented. It is possible that these features are most relevant to in-hospital

mortality risks (e.g. EH scores for myocardial infarction, congestive heart failures, etc.).

However, this also suggests that the EH scores are not a practical way to build predictive

models, because they cannot be computed until after discharge.

3.3 Modeling Clinical Timeseries with Gaussian Process

Hyperparameter Representations

3.3.1 Overview

The general issue of comparing signals that are not aligned and irregularly sampled has been

considered before. Establishing similarity metrics among time-series data is an important

part of many learning tasks and often is achieved using a variety of summarization methods.

However, many modeling methods fail when applied to irregularly sampled data unless strong

assumptions are made about the functional form present in the underlying data source.

Furthermore, in cases where such methods work, data imputation is often necessary, which

can introduce additional sources of error and bias. Finally, many methods work on a single

timeseries, but fail to generalize to (or take advantage of) other related time-series data.

This work was done in close collaboration with Marco Pimentel of Oxford University. Our

proposed technique transforms a variety of irregularly-sampled clinical data into a new latent

space using the hyperparameters of multi-task Gaussian Process (MTGP) models. Patients

are compared based on their similarity in the new hyperparameter space. Our work differs

from other work in that it: 1) uses the correlation between and within multiple time-series

to estimate parameters instead of considering each timeseries separately; 2) infers a compact

AUC slightly to 0.96.
7Adding the admission features to the Retrospective Topic Model improved AUC to 0.81 but adding the derived features did

not improve AUC further.
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latent representation of the source data, rather than finding patterns that are common

within different timeseries; and 3) leverages the information contained in the inferred model

hyperparameters for supervised learning, whereas others use the predicted mean function of

the GP as a pre-processing or smoothing step (see 3.3.2).

We use MTGPs for forecasting patient acuity based on irregularly sampled heteroge-

neous clinical data. We evaluate the value of the inferred MTGP hyperparameters as a new

latent space for representing multi-dimensional timeseries in two ways: 1) estimating and

forecasting a cerebrovascular autoregulation index from noisy physiological time-series data

in patients who suffered a traumatic brain injury and 2) transforming irregular ICU patient

clinical notes into timeseries, and using MTGP hyperparameters from these timeseries as

features to predict mortality probability.

3.3.2 Gaussian Processes

Gaussian processes (GP) form the basis for a Bayesian modeling technique that has been

used for various machine learning tasks [83]. Most commonly, GPs are used to predict a

single output (denoted here as a “task") based on one or more input timeseries. We refer

to this model as a single-task GP (STGP). Lasko et al. used Gaussian process regression

as a smoothing function of irregularly-sampled signals [50]. This is a common usage model

for GPs on clinical timeseries: GPs are used to model observed data through the predicted

mean function of the timeseries. Clifton et al. used GPs as a framework for coping with

data artifacts and incompleteness in mobile sensor data [17]. In a related work [16], a

functional version of extreme value statistics was proposed for physiological data in order to

compare different timeseries. Similarly, GPs were used for robust regression of noisy heart

rate data [95]. The remainder of the related work has used STGP models to predict a single

output based on one or more input variables.

In the present study, we explore the potential of a novel approach using MTGP models [7]

to learn the correlation between and within time-series, and obtain a concise representation

of time-varying physiological and clinical data based on the inferred hyperparameters.
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Here, we motivate the use of MTGPs and describe the method (source code is available

on-line8) that we have adapted for hyperparameter construction [22].

3.3.3 Multi-Task Gaussian Process Models

The general STGP framework may be extended to the problem of modeling 𝑚 tasks si-

multaneously where each model uses the same index set x (e.g., physiological or clinical

timeseries). A naïve approach is to train a STGP model independently for each task, as

illustrated in Figure 3-4(a). We introduce instead an extension to multi-task GP models

proposed in [7], which makes use of the covariance in related tasks to reduce uncertainty in

the inferred signal.

Let Xn = {𝑥𝑗
𝑖 | 𝑗 = 1, ...,𝑚, 𝑖 = 1, ..., 𝑛𝑗} and Yn = {𝑦𝑗𝑖 | 𝑗 = 1, ...,𝑚, 𝑖 = 1, ..., 𝑛𝑗, }

be the training indices and observations for the 𝑚 tasks, where task 𝑗 has 𝑛𝑗 number of

training data. We consider the regression model y𝑛 = 𝑔(x𝑛) + 𝜖, in which 𝑔(𝑥) represents

the latent function and 𝜖 ∼ 𝒩 (0, 𝜎2
𝑛) is a noise term. GP models assume that the function

𝑔(x𝑛) can be interpreted as a probability distribution over functions such that yn = 𝑔(x𝑛) ∼

𝒢𝒫
(︁
𝑚(x𝑛), 𝑘(x𝑛,x

′
𝑛)
)︁
, where 𝑚(x𝑛) is the mean function of the process (assumed = 0) and

𝑘(x𝑛,x
′
𝑛) is a covariance function describing the coupling among the independent variables

x𝑛 as a function of their kernel distance. To specify the affiliation of index 𝑥𝑗
𝑖 and observation

𝑦𝑗𝑖 to task 𝑗, a label 𝑙𝑗 = 𝑗 is added as an additional input to the model, as shown in Figure

3-4(b). To model the correlation between tasks as well as the temporal behaviour of the

tasks within a unified GP model, two independent covariance functions are assumed, and

the covariance matrix K𝑀𝑇 for all 𝑚 tasks can be written

K𝑀𝑇 (X𝑛, l,𝜃𝑐,𝜃𝑡) = K𝑐(l,𝜃𝑐)⊗K𝑡(X𝑛,𝜃𝑡) (3.1)

where ⊗ is the Kronecker product, l = {𝑗 | 𝑗 = 1, ...,𝑚}, K𝑐 and K𝑡 represent the correlation

and temporal covariance functions, and 𝜃𝑐 and 𝜃𝑡 are vectors containing hyperparameters for

K𝑐 and K𝑡, respectively. Within geostatistics, this approach is also known as the intrinsic
8http://www.robots.ox.ac.uk/~davidc/publications_MTGP.php
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correlation model [106].

By modifying the temporal covariance function we can encode our prior knowledge con-

cerning the functional behavior of the tasks that we wish to model. The most frequently-used

example is the squared-exponential covariance function [83]:

K𝑡 = 𝜃2𝐴 exp

{︂
− ‖ 𝑥− 𝑥′ ‖2

2𝜃2𝐿

}︂
, (3.2)

where 𝜃𝑡 = {𝜃𝐴, 𝜃𝐿}, and 𝜃𝐴 and 𝜃𝐿 are hyperparameters modeling the 𝑦-scaling and 𝑥-scaling

(or time-scale if the data are timeseries) of the covariance function, respectively.

To construct a valid positive semidefinite correlation covariance function K𝑐, we used the

Cholesky decomposition and the “free-form” parameterization of the elements of the lower

triangular matrix L proposed in [7], such as

K𝑐 = LL⊤, L =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜃𝑐,1 0 . . . 0

𝜃𝑐,2 𝜃𝑐,3 0
... . . . ...

𝜃𝑐,𝑘−𝑚+2 𝜃𝑐,𝑘−𝑚+2 . . . 𝜃𝑐,𝑘

⎤⎥⎥⎥⎥⎥⎥⎦ (3.3)

where 𝑘 =
∑︀𝑚

𝑖=1 𝑖 is the number of correlation hyperparameters.

Identically to STGPs, the hyperparameters 𝜃 for a MTGP may be optimized by mini-

mizing the negative log marginal likelihood via gradient descent [83], and predictions for test

indices {x*
𝑝, l

*
𝑝} can be made by computing the conditional probability 𝑝(y*

𝑝|x*
𝑝, l𝑝,x𝑛, l𝑛,y𝑛).

Figure 3-5 shows an example of STGPs and an MTGP applied to a simple synthetic

dataset with 4 sample tasks. Tasks 1 and 2 were correlated, task 1 and task 2 were both

anti-correlated with task 4, and task 3 was uncorrelated with all other tasks. For this, 4 tasks

were sampled from a MTGP model with the following hyperparameters: 𝜃𝐿 = 𝜃𝐴 = 𝜃𝑐,1 =

𝜃𝑐,2 = 𝜃𝑐,3 = 𝜃𝑐,6 = 𝜃𝑐,10 = 1, 𝜃𝑐,4 = 𝜃𝑐,5 = 𝜃𝑐,0 = 0, and 𝜃𝑐,7 = 𝜃𝑐,8 = −1. Artificial gaps were

then randomly created in different tasks at different time points and with different durations.

The STGP (Figure 3-5(b)), applied to each task independently, fails to adequately represent

the functions, particularly where data are not available. Figure 3-5(c) shows that the MTGP
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improves the predictions in all 4 tasks by capturing the relationships between them.

The MTGP has several useful properties as compared to the traditional GP:

• We can allow task-specific training indices 𝑛𝑗; i.e., training data may be observed at

different times for different tasks (Figure 3-5);

• The correlations within and between tasks are automatically learned from the data by

fitting the covariance function in Equation 3.1; and

• The framework assumes that the tasks have similar temporal characteristics and hy-

perparameters 𝜃𝑡.

A limitation of the MTGP is computational cost: 𝒪(𝑚3𝑛3) compared with 𝑚×𝒪(𝑛3) for

STGPs. This limitation is not as relevant for our application, given that we are not dealing

with densely-sampled time-series data, but data which is sparse and irregular. Another

limitation of the MTGP is that the number of hyperparameters can increase rapidly for an

increasing number of tasks, which can lead to a multi-modal parameter space.

3.3.4 Signal Representation via Hyperparameters

We use the inferred MTGP hyperparameters 𝜃 that describe the temporal correlation within

and between tasks as features that represent our set of observations: 𝜃𝐴 and 𝜃𝐿 which

respectively govern each output scale of our functions and the input, or time, scale, and 𝜃𝑐,𝑖

that correspond to the correlation between the different tasks (outputs) modelled. In effect,

𝜃 provides a new latent search space to examine and evaluate the similarity of any two given

multi-dimensional functions. Importantly, these parameters are:

1. a means of representing the functional behavior of a set of observations {y𝑛,x𝑛};

2. learned directly from data; and

3. generalizable to any type of longitudinal data, including categorical and numerical

types.
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3.3.5 Experiment 1: Using Multiple Noisy Time-Series Data to In-

terpolate Clinical Signals and Assess Stability

In this experiment, we use physiological signals from Traumatic Brain Injury (TBI) patients

to test the MTGP’s ability to assess and forecast multiple related signals. We examine two

noisy timeseries: the intracranial pressure (ICP) and mean arterial blood pressure (ABP).

Continuous monitoring of ICP and ABP has become a standard in neurological ICUs. Cere-

brovascular autoregulation is an important mechanism to sustain adequate cerebral blood

flow [108], and impairment of this mechanism indicates an increased risk to secondary brain

damage and mortality [41].

Cerebrovascular autoregulation is most commonly assessed based on the Pressure-Reactivity

Index (PRx), which is defined as a sliding window Pearson’s correlation between the ICP and

ABP [19]. However, the ICP and ABP timeseries are often contaminated by artifacts and

missing data, and PRx can no longer be calculated in these situations. Although methods

have been proposed to detect and remove artifacts [25], the artifact removal process still

creates gaps of missing data in the timeseries.

In this experiment, we demonstrate how the proposed MTGP model can be applied to

interpolate the incomplete data in ICP and ABP signals and, more importantly, to accurately

estimate PRx.

The ICP and ABP data were collected from 35 TBI patients who were monitored for more

than 24-hours in a Neuro-ICU of a tertiary care hospital between January 2009 and December

2010. The continuously monitored physiological readings were sampled and recorded every 10

seconds. For experimental evaluation, we selected 30 ten-minute windows from each patient

recording, where ICP and ABP signals were free from artifacts and missing values. We then

randomly introduced artificial gaps in both signals as shown in Figure 3-6. We evaluated

the PRx estimation accuracy, and we further compared the performance of MTGP to that

of STGP, which models each signal independently. For implementation, priors over the

hyperparameters were selected after 100 random initializations for each case.
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Results The quality of predictions is evaluated using the squared error loss, where we

compute the squared residual (𝑦* − 𝑦*)2 between the mean prediction (𝑦*) and the target

(𝑦*) at each test point, and the square root of the average over the test set to produce the

root mean squared error (RMSE). As the RMSE is sensitive to the overall scale of the target

values, we additionally evaluate the negative log probability of the target under the model,

by defining the mean standardized log loss (MSLL) as

MSLL(ŷ*,y*) =
1

𝑝

𝑝∑︁
𝑖=1

(︁
− log 𝑝(𝑦*𝑖 |𝑓, 𝑥*

𝑖 )

+ log 𝑝(𝑦*𝑖 |𝑚(y𝑛), var(y𝑛), 𝑥
*
𝑖

)︁
,

where the first term is the log likelihood of 𝑦*𝑖 given our latent function 𝑓 and the test index

𝑥*
𝑖 . This probability is normalized by the second term, the log likelihood of 𝑦*𝑖 under a trivial

model that predicts using a Gaussian with mean 𝑚(y𝑛) and variance var(y𝑛) of the training

labels.

Table 3.4 shows the overall performance of our approach. We note that the MTGP was

able to estimate the correlation between the ICP and ABP signals—PRx—accurately even

with incomplete data. The average RMSE between the true correlation coefficients and the

MTGP estimated ones with the incomplete data was 0.09 (Table 3.4). This suggests that

the posterior hyperparameter of MTGP, which measures the interactions between ICP and

ABP, may be used as an index to model the cerebrovascular autoregulation mechanism and

thus the risk of secondary brain injury.

We note that the scale of ICP values is normally between 1 to 20 mmHg, and the specific

ICP value determines whether the achieved reduction in RMSE is clinically significant. If

the ICP has already elevated to somewhere near 20 mmHg, any slight increase in ICP may

result in secondary damage to the brain. In this case, even small reductions to RMSE are

desirable to guide the medical interventions.

We also observe that the MTGP provides a significant improvement in interpolating
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values for both signals, as the correlation between the two physiological variables is taken

into account. Particularly, in periods of incomplete data (see Figure 3-6), the predictions

are much more accurate compared to STGP. This shows that the proposed MTGP model

can also be used for accurate interpolation and forecasting of ICP and ABP timeseries in

the applications of advanced alarming and physiological trajectory analysis.

3.3.6 Experiment 2: Using Clinical Notes as Timeseries for ICU

Mortality Prediction

To demonstrate the effectiveness of the proposed MTGP model on features inferred from

sparse, irregularly sampled timeseries, we applied MTGPs to clinical notes from the ICU for

mortality prediction as summarized in Figure 3-7.

Similarly to the data used in 3.2.3, we used 2001–2006 ICU data from the open-access

MIMIC II 2.6 database [89]. For each patient we extracted the SAPS-I score, calculated

from clinical variables over a patient’s first 24-hours in the ICU. We used all notes from

nursing, physicians, labs, and radiology recorded prior to the patient’s first discharge from

ICU. Discharge summaries were excluded because they typically state the patient’s outcome

explicitly. Patients were excluded if their notes had fewer than 100 words, fewer than 6 total

notes in their record, or were under the age of 18. Patient mortality outcomes were measured

at hospital discharge and 1 year post-discharge.

The final cohort consisted of 10,202 patients with 313,461 notes. A random 30% of the

patients (3,040) were held back as a test set. The remaining 70% of patients (7,162) were

used to train topic models and mortality predictors. The test set contained 93,411 notes,

and the training set had 220,005.

Beginning from sparse, irregularly sampled clinical notes, we first performed topic mod-

eling as a form of dimensionality reduction as described in section 3.2.5. The topic inference

resulted in a 50-dimensional vector of topic proportions for each note in every patient’s

record. We concatenated topic vectors into a matrix 𝑞 where the element 𝑞𝑛𝑘 was the pro-

portion of topic 𝑘 in the 𝑛𝑡ℎ note.
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Hyperparameter Construction Once notes were transformed into multi-dimensional

numeric vectors, we used the MTGPs to model the per-note change in topic membership

over a patient’s stay. This is critical for comparing two patients’ records given that patients

have different lengths of stay and note taking intervals depend on staff, clinical condition,

and other factors.

From the topic enrichment measure (𝜑), we chose the topics with a posterior likelihood

above or below 5% of the population baseline likelihood across topics. This yielded nine

topics (see Table ?? for a summary of the chosen topics). We employed MTGP to learn

the temporal correlation between the nine topics and the overall temporal variability of the

multiple timeseries.

From the available data sources, we formed a set of three feature matrices: (1) the

admitting SAPS-I score for every patient, (2) the average topic membership for the nine

identified topics (matrix 𝑞), and (3) the inferred MTGP hyperparameters across the nine

topic vectors from 𝑞. Importantly, the admitting SAPS-I score and mean topic members (1

and 2) are both static measures. SAPS-I collapses data from the first 24 hours of the record,

while the average topic membership collapses the entire per-note timeseries for each patient’s

record into an aggregate measure. Our proposed MTGP hyperparameters (3) complement

these measures with information about the per-note timeseries.

Outcome Classification We considered five feature prediction regimes that combined

subsets of the feature matrices 1, 2, and 3 as an aggregate feature matrix. We trained two

supervised classifiers that were identical in the five feature sets used, but provided different

objective functions for optimization: Lasso logistic regression and L2 linear kernel SVM.

Classifiers were trained to create classification boundaries for two clinical outcomes:

in-hospital mortality and 1-year post-discharge mortality. All outcomes had large class-

imbalance (e.g., in-hospital mortality rates of 10.9%). To address this issue, we randomly

sub-sampled the negative class in the training set to produce a minimum 70%/30% ratio

between the negative and positive classes. Test set distributions were not modified, and

reported performance reflects those distributions. Due to space constraints, we only report
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results on a completely held out test set. We performed 5-fold cross-validation on the re-

maining data, and cross-validation results were similar to those obtained on the completely

held-out test set.

We evaluated the performance of all classifiers using the area under the Receiver Oper-

ating Characteristic curve (AUC) on the held-out test set. Table 3.6 reports results from

the Lasso model. Results obtained using the L2 linear kernel SVM were not statistically

different.

Results SAPS-I had the poorest predictive power, which is understandable given that it

is only an initial snapshot (24 hours) of the severity of illness. We used the static SAPS-

I score due to its status as the gold-standard in clinical scoring, and our argument in the

second experiment is that the MTGP hyper-parameter space complements this clinical score,

rather than competes with it. The average value of the most significant topics significantly

improved upon that predictive power. The performance of MTGP Hyperparameters on their

own was similar to that of the Topics: AUC of 0.749 and 0.624 for in-hospital and 1 year

mortality, respectively.

Given that the hyperparameters were optimized from per-note topic features (that are

themselves the output of an unstructured learning problem), it is most sensible that the top-

ics information should be used in combination with the MTGP hyperparameters to describe

patient state. We obtained improved predictive performance for both mortality outcomes

when combining both MTGP hyperparameters with SAPS-I and the significant topics. This

is likely because the hyperparameters provide complementary information to both SAPS-I

and the significant topics. Both SAPS-I and the topic features capture a single aggregate

measure of membership in certain latent dimensions related to outcome, while the MTGP hy-

perparameters capture movement over the course of a hospital stay within those dimensions.

The best predictive performance occurred when all features were combined, e.g. SAPS-I +

significant topics + MTGP hyperparameters.
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3.4 Discussion

3.4.1 Using Aggregated Clinical Note Topics

Models that incorporated latent topic features were generally more predictive than those

using only structured features, and a combination of the two feature types performed best.

Notably, the combination provides a robustness that is able to perform well initially, lever-

aging primarily the structured information, and then continues to improve over the first 24

hours by incorporating the latent topic features. This resilience is particularly important

since we observed that the first 24 hours of clinical notes appear to be the most meaning-

ful toward predicting in-hospital mortality, while the predictive value of the baseline begins

to steadily decrease. Note that similar features were also useful in predicting psychiatric

readmission. [86]

Our observation of the importance of early data agrees with other reported results. Recall

that, using topics derived from the first 24 hours of notes only, Lehman et al. obtained an

average AUC for in-hospital mortality prediction of 0.78 (± 0.01), and this was increased

to 0.82 (± 0.003) with the SAPS-I variable. Further, Hug et al. obtained an AUC of 0.809

for in-hospital mortality prediction based on information during the first 24 hours of ICU.

As such, we examined our results for in-hospital mortality when using topics derived from

the first 24 hours of notes only (prediction time of 36 hours in Figure 3-3), and obtained

corresponding AUCs of 0.77 for the Time-varying Topic Model, and 0.841 for the Combined

Time-varying Model. Compared to Lehman et al.’s result, this implies that (with enough

data) neither the extra hierarchical learning nor the knowledge-based cleansing of medical

terms before modeling improve prediction results (i.e., an AUC of 0.78 vs. 0.77). Compared

to Hug et al.’s results, this implies that the addition of clinical text provides reasonable

performance boosts to the power of gold-standard structured information like SAPS-II score

(i.e. an AUC of 0.809 vs. 0.841).

Further, when predicting in-hospital mortality, we observed that the Admission Baseline

Model ’s predictive power (i.e., information acquired on admission) becomes much less valu-
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able to predicting mortality as patients stay longer. This is likely because those who are not

discharged within the first day of hospital admission are significantly sicker than those who

are. Note that the average ICU stay time in the MIMIC II database is 3 days, and Figure

3-3 shows that after this time there was no additional predictive power gained by adding the

structured admission information to the latent topic features (i.e., the Time-varying Topic

Model and the Combined Time-varying Model converge).

This convergence draws attention to another interesting observation. Namely, both of

the Time-varying models trended up in their ability to predict in-hospital mortality until

120 hours, and then trended down until the end of prediction. While initially counterintu-

itive, this is likely due to the loss of a significant number of patients (from both death and

discharge) in the available patient cohort. For example, the test set population goes from

4,030 patients (3,626 control/404 positive for in-hospital mortality) to 3570 patients at this

point (3,210 control/360 positive for in-hospital mortality).

Additionally, the predictive power of each topic changed depending on the target outcome.

This appeals to intuition as, in a modern ICU, conditions that lead to in-hospital mortality

are very different from those that would allow for a live discharge leading to a 30 day or 1

year mortality. As such, information about which topics tend to bias a patient towards any

set of outcomes in useful for clinicians, when compared to the typical “black-box” approach

to feature selection.

Finally, much work focuses on retrospective prediction of mortality outcomes. We also

performed these predictions to compare the relative predictive power of different feature types

and were able to achieve retrospective AUCs of 0.9, 0.94 and 0.96 for in-hospital mortality

prediction using the Retrospective Derived Feature Model, Retrospective Topic Model, and

combined Retrospective Topic + Dervied Features Model. However, we re-emphasize that

predictions of mortality with retrospective feature sets are not helpful or relevant for clinical

staff because statistical functions of signals or features (e.g., min/max) and other structured

data (such as ICD-9 codes and EH comorbidities) are not known a priori.
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3.4.2 Incorporating Features of Inter/Intra-signal Movement

The main limitation in using this approach to characterize timeseries is computational cost.

We conducted an exhaustive grid search over the constrained hyperparameter space. We

also used the NLML for the selection of the optimal hyperparameters of the MTGP, which

may be sensitive to parameter initialization (due to the non-convex nature of this optimiza-

tion function). Computational costs may be addressed using a recently proposed Bayesian

optimization for automatically tuning the MTGP hyperparameters [98] in large datasets. In

a ”real-time” setting, the computational cost for 𝑚 tasks is 𝑂(𝑚3𝑛3). An overview of sparse

GP methods is presented in [80], which aims to find a smaller set of pseudo-inputs 𝑛′ to

reduce computational complexity. In [1,7], some of these techniques were used to investigate

sparse MTGPs, which reduce the complexity to 𝑂(𝑚𝑛𝑛′2). Further improvement is possible

by 1) exploiting the Kronecker product [96], 2) limiting the training data to the same time

instances of each dimension of the data [24], or 3) by using recursive algorithms [77]. Ap-

plications that require close-to-real-time retraining (e.g., Experiment 2), would benefit from

these techniques, while operating over longer time-scales would be less sensitive.

Further, in our approach the tasks are modeled with the same hyperparameters 𝜃𝑡. In-

dividual temporal covariance functions 𝑘𝑡 for each task can be introduced using the idea of

convolving two covariance functions, which has been described in [40] and further discussed

in [66]. Our choice was motivated by the lower number of hyperparameters that have to be

learned, and the concern that the introduction of convolved kernels may be inappropriate

for real-world applications without a proper optimization process [40,66].
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Figure 3-3: Linear SVM model performance measured via AUC on three outcomes: in-
hospital mortality, 30 day post-discharge mortality, and 1 year post-discharge mortality. In
each case, the features used are described in detail in Section 3.2.6. Our prediction task is
different from the usual situation where data is accumulated over time. Since fewer patients
have long ICU stays, in this case, we actually lose data points as time goes on, making the
prediction task harder. For example, at time 0 there are 5,784 patients (5,157 controls/627
positives for in-hospital mortality) in the test set. By 72 hours, this had dropped to 5,084
patients (4,591 controls/493 positives for in-hospital mortality) and at 144 hours to 3,496
patients (3,141 controls/355 positives for in-hospital mortality). (Table A.1)
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Table 3.3: Detailed model prediction results for three outcomes: in-hospital mortality, 30 day
post-discharge mortality, and 1 year post-discharge mortality. This also appears in Figure
3-3.

Outcome Pre-
dicted

Model Used AUC Sens. Spec.

In-Hospital Mor-
tality

Admission Baseline Model 0.771 0.999 0.010

Time-varying Topic Model 1 0.728 0.858 0.471
. . . . . .
Time-varying Topic Model 10 0.838 0.686 0.829
. . . . . .
Time-varying Topic Model 20 0.791 0.525 0.853
Combined Time-varying Model 1 0.840 0.638 0.85
. . . . . .
Combined Time-varying Model 10 0.854 0.666 0.844
. . . . . .
Combined Time-varying Model 20 0.798 0.299 0.950
Retrospective Derived Features Model 0.901 0.997 0.108
Retrospective Topic Model 0.944 0.856 0.892
Retrospective Topic + Admission Model 0.944 0.821 0.910
Retrospective Topic + Derived Features Model 0.961 0.915 0.870

30 Day Mortal-
ity

Admission Baseline Model 0.683 0.995 0.075

Time-varying Topic Model 1 0.695 0.150 0.944
. . . . . .
Time-varying Topic Model 10 0.759 0.817 0.551
. . . . . .
Time-varying Topic Model 20 0.665 0.602 0.579
Combined Time-varying Model 1 0.761 0.348 0.885
. . . . . .
Combined Time-varying Model 10 0.796 0.641 0.770
. . . . . .
Combined Time-varying Model 20 0.75 0.011 0.991
Retrospective Derived Features Model 0.745 0.941 0.220
Retrospective Topic Model 0.783 0.342 0.909
Retrospective Topic + Admission Model 0.813 0.872 0.633
Retrospective Topic + Derived Features Model 0.818 0.096 0.985

1 Year Mortality Admission Baseline Model 0.692 0.997 0.021
Time-varying Topic Model 1 0.681 0.218 0.907
. . . . . .
Time-varying Topic Model 10 0.715 0.321 0.870
. . . . . .
Time-varying Topic Model 20 0.662 0.834 0.379
Combined Time-varying Model 1 0.743 0.705 0.665
. . . . . .
Combined Time-varying Model 10 0.760 0.512 0.812
. . . . . .
Combined Time-varying Model 20 0.722 0.451 0.804
Retrospective Derived Features Model 0.776 0.999 0.045
Retrospective Topic Model 0.755 0.358 0.890
Retrospective Topic + Admission Model 0.784 0.314 0.919
Retrospective Topic + Derived Features Model 0.813 0.464 0.887
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Figure 3-4: Graphical model for (a) m single-task Gaussian processes with m sets of: inputs
𝑋 𝑖, temporal covariance hyperparameters 𝜃𝑖𝑡, estimated functions 𝑓 𝑖, noise terms 𝜎𝑖, and
outcomes 𝑦𝑖; and (b) a multi-task Gaussian process which relates m tasks through all prior
variables, with the tasks’ labels 𝑙 and similarity matrix 𝜃𝑐.

Figure 3-5: (a) A sample function with 4 tasks; (b) Single-task GP (STGP) and (c) multi-
task GP (MTGP) predictions on all tasks. The dots represent observations, while dashed
lines and colored areas represent the predictive mean and 95% confidence interval, respec-
tively. The line on the bottom represents the mean absolute error (over the 4 tasks) between
the predictions and the correspondent reference values. We observe that the overall error
obtained in (c) is lower than that in (b), which suggests that the use of MTGP yielded better
predictions by taking into account the correlation between the different tasks.
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Figure 3-6: An example of a single-task GP (STGP) and multi-task GP (MTGP) applied to
intracranial pressure (ICP) and mean arterial blood pressure (ABP) signals from a traumatic
brain injury patient. (a) and (c) show the performance of STGP, whereas (b) and (d) show
the improved performance of MTGP, which takes into account the correlation between ICP
and ABP. Dots represent observations, crosses represent missing observations (test observa-
tions), the dotted line shows the function mean and the shaded area show the 95% confidence
interval. We note that the timescale parameter “selected" by the MTGP, which takes into
account the correlation between the tasks, is shorter than the one selected by the STGP,
which yields to higher likelihood of the test observations (crosses).

Signal Measure STGP MTGP

ICP RMSE 0.91 0.69
MSLL 0.6 0.45

ABP RMSE 2.77 1.98
MSLL 0.65 0.55

PRx-PRx* RMSE - 0.09

Table 3.4: Performance of single-task GP (STGP) and multi-task GP (MTGP). PRx-PRx*
refers to the difference between the reference PRx (Pearson correlation coefficient of ICP
and ABP for a given window) and PRx*, the estimated PRx index (posterior MTGP hyper-
parameter that measures the interaction between the two tasks).
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Figure 3-7: 1) We perform a pre-projection step where clinical notes are transformed into
timeseries using Latent Dirichlet Allocation; 2) the new set of topic proportion timeseries
are fitted using the MTGPs; 3) inferred hyperparameters 𝜃𝐿, 𝜃𝐴, 𝜃𝑐,1, . . . , 𝜃𝑐,6 are derived,
projecting into the new latent space; 4) latent features (hyperparameters) are used as features
in combination with topic proportions and the SAPS acuity score to 5) forecast patient
mortality.
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Top Five Words Possible Topic

In
-h

os
pi

ta
lM

or
ta

lit
y liver, renal, hepatic, ascites, dial-

ysis
Renal Failure

thick, secretions, vent, trach, resp Respiratory infection
remains, family, gtt, line, map Systematic organ fail-

ure
increased, temp, hr, pt, cc Multiple physiological

changes
intubated, vent, ett, secretions,
propofol

Respiratory failure

name, family, neuro, care, noted Discussion of end-of-
life care

Su
rv

iv
al cabg, pain, ct, artery, coronary Cardio-vascular

surgery
chest, pneumothorax, tube, rea-
son, clip
pain, co, denies, oriented, neuro Responsive patient

Table 3.5: Top five words in chosen topics (enriched for in-hospital mortality/survival).

Features Hospital Mortality 1-Year Mortality
SAPS-I 0.702 0.500

Ave. Topics 0.759 0.653
SAPS-I + MTGP 0.775 0.624

Ave. Topics + MTGP 0.788 0.673
SAPS-I + Ave. Topics + MTGP 0.812 0.686

Table 3.6: Prediction results of hospital and 1-year mortality, AUC, for Gaussian process
feature combinations.
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Chapter 4

Voice Disorder Detection in Wearable

Out-patient Devices

4.1 Background

An estimated 7% of the working-age population in the U.S. is affected by a voice disorder [69,

85]. Most cases of voice disorders result from vocal misuse (exerting excessive muscle force

or physical effort while vocalizing). This is typically referred to as vocal hyperfunction. We

define “vocal hyperfunction” to refer to patterns of vocal behavior that could be harmful.

Vocal hyperfunction is not always present, and therefore may not exhibit in clinic. In some

patients vocal hyperfunction causes a deterioration in voice quality and vocal fatigue but

without any underlying tissue pathology; this is commonly referred to as muscle tension

dysphonia (MTD). Unlike those with vocal fold pathology (e.g. nodules or polyps), MTD

patients are notoriously difficult to characterize because there is no consensus on an objective

biomarker. Previous studies have also demonstrated that commonly held “indicators” of

MTD appear frequently in individuals who have no known voice disorder [3, 94].

Because MTD is behaviorally induced, treatment typically involves an attempt to modify

vocal behavior through speech/voice therapy [42]. However, MTD can be manifested in a

wide range of maladaptive vocal behaviors (e.g., various degrees of strain or breathiness)
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whose nature and severity can display significant situational variation (e.g., variation associ-

ated with changes in levels of stress [21]). Clinicians currently rely on patient self-reporting

and self-monitoring to assess the prevalence and persistence of these behaviors during di-

agnosis and management. But these reports are highly subjective and are known to be

inaccurate [9, 71,82].

4.2 Overview

The work reported here is part of an ongoing project to gain insight into the complex rela-

tionships underlying vocal hyperfunction by analyzing data collected from an accelerometer

(ACC) placed on the neck [65]. We use an accelerometer rather than an acoustic microphone

to protect the privacy of subjects. Recent studies have demonstrated some success applying

supervised learning to ACC data to distinguish between patients with and without existing

vocal fold pathology [34]. In this work, our goal was to determine if specific patterns of glot-

tal pulses were associated with MTD, a type of non-phonotraumatic hyperfunction. This is

more challenging in three respects:

• Patients with muscle tension dysphonia (MTD) have a behavioral disorder whereby

they misuse their vocal folds, but do not have an anatomical abnormality. Therefore

their voices are sometimes abnormal and sometimes not.

• While it is possible to obtain subjective expert-generated labels for acoustic recordings,

it is impossible to obtain labels at the level of individual utterances for hundreds of

millions of utterances. Additionally, even if someone were willing to devote the time

to labeling a substantial number of utterances, the mapping between the ACC signal

and voice misuse is not currently known. Consequently, there is no opportunity to use

supervised learning to classify utterances.

• Rather than attempting to classify individual subjects, we attempt to uncover the key

differences between many kinds of intermittently occurring hyperfunctional and normal

voice use—without prior knowledge of what characterizes such behaviors.

We attack the problem of quantifying vocal hyperfunction by clustering glottal pulses
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using symbolic mismatch [100]—a technique previously used to study ECG signals. We

segmented over 110 million glottal pulses from the ACC signals for subjects, and then clus-

tered them into symbols. We then used symbolic mismatch to compare the frequencies and

shapes of those symbols between subjects, leading to a distance measure between each pair

of subjects. Finally, based on this distance measure, we clustered subject-days.

To evaluate our approach, we used 253 subject-days of data obtained from 11 patients

and 11 matched controls (Control). Data from patients was gathered both before they un-

derwent voice therapy (PreTx) and after voice therapy (PostTx). Though we know that each

individual exhibits different vocal behaviors within a day, we hypothesized that subject-class-

specific differences in the distribution of the behaviors would be reflected in the distribution

of subject days in each cluster. To check this we calculated a total concentration measure

based on the density of each class of subject in each cluster.

Devices that use a neck-placed miniature accelerometer (ACC) as a phonation sensor

have shown potential for accurate, unobtrusive, and privacy-preserving long-term monitor-

ing of vocal function [65] (Figure 4-1). The individual periods (pulses) in the ACC signal

have a general shape that reflects the vibratory pattern of the vocal folds during phona-

tion, and vary with changes in vocal function/quality. Recently, researchers have examined

vocal hyperfunction using summary features obtained from ambulatory monitoring [34, 84],

but these assessments were based on aggregates, and were not designed to detect periods

of hyperfunction. Glottal pulses obtained from the ACC signal have a general shape that

describes the acceleration of the vocal folds as they vibrate to create airflow for voice produc-

tion. Because ACC signals have only recently become available, variations in the segmented

pulses are not currently well-characterized.

4.3 Methods

To generate symbols for every subject-day tuple, we segmented each daily ACC signal into

non-overlapping frames to create a set of variable-length, peak-to-peak glottal pulse seg-

ments. We then computed the pulse-to-pulse distance using a lower bounds to dynamic time
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Figure 4-1: A sustained vowel “a”, containing 10 peak-to-peak glottal pulses in 0.05 seconds.

warping (DTW) distance, and created clusters iteratively as described below.

4.3.1 Glottal Pulse Symbolization

Segmentation We begin with the continuous univariate timeseries of a single subject’s

ACC recording on a given day (a “subject-day”). This signal x ∈ 𝑅𝑇 is a collection of

𝑇 samples, i.e. x = {𝑥1, ..., 𝑥𝑡, ..., 𝑥𝑇}, in which measurements are regularly-sampled. We

split the ACC signals into individual glottal pulses by detecting characteristic peaks. Peak

detection involved 1) using an off-the-shelf peak detection algorithm [63] to make a first guess

at peak locations based on amplitude, and 2) using an estimate of the subject’s underlying

vocal pitch to correct missing and spurious peaks. After segmentation, we have a vector of

𝑀 daily glottal pulse segments, xseg = {(𝑥𝑡1 , ..., 𝑥𝑡2), ..., (𝑥𝑡2𝑀−1
, ..., 𝑥𝑡2𝑀 )}, where 𝑡1, ..., 𝑡2𝑀

are increasing but not necessarily contiguous, so that 0 ≤ 𝑡1 ≤ ... ≤ 𝑡2𝑀 ≤ 𝑇 . Notationally,

we re-label this as xseg = {𝑧1, ..., 𝑧𝑀} where 𝑧1 = (𝑥𝑡1 , ..., 𝑥𝑡2), 𝑧𝑀 = (𝑥𝑡2𝑀−1
, ..., 𝑥𝑡2𝑀 ).

The amplitude of each glottal pulse was scaled to units of sound pressure decibels (dbSPL)

based on an estimated linear fitting between ACC signal units and average dbSPL for the

subject on that day to determine periods of voicing. The length of each individual segmented

pulse varied; to compare all pulses, we length-normalized pulses by evenly up-sampling all

segments to the longest segment length.
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Pulse-Pulse Distance Computation Silent segments were grouped by their length into

bins of 1 second, 1 minute, 10 minutes, and an hour or more.1 To account for the large

variation in subjects’ patterns of voice use across days (e.g., teachers typically spoke less on

weekends), we chose to examine each day separately. For each subject-day, we start with the

constructed vector xseg = {𝑧1, ..., 𝑧𝑀} and compute the distance between all pulses 𝑧𝑖 and 𝑧𝑗

using the Keogh Bounds (LB_Keogh) [107] as a surrogate for DTW. LB_Keogh is a tight

lower bound to DTW between a candidate signal 𝐶 and query signal 𝑄, and is considerably

more computationally efficient than DTW.

Symbolization for Symbolic Feature Creation We next used hierarchical clustering

with Ward’s linkage, which minimizes the total within-cluster variance, to cluster a randomly

selected initial subsample of 3,000 pulses per subject-day. We used a distance cutoff of 30%

of the maximum distance to determine 𝑘, the number of clusters. Having chosen 𝑘, we then

used iterative k-means to cluster all of the pulses 𝑧1, ..., 𝑧𝑀 . Each of the 𝑘 clusters can be

considered as representing a class of glottal pulses whose members have a similar shape.

We label each of these classes with its centroid, and create a vector of length 𝑘 of symbolic

features v for each subject-day, where v = {(𝑠1, 𝑓1)..., (𝑠𝑘, 𝑓𝑘)}, 𝑠𝑖 is the 𝑖𝑡ℎ class centroid,

and 𝑓𝑖 =
|𝑠𝑖|∑︀
𝑗 |𝑠𝑗 |

. In creating v, we have now abstracted from a stream of millions of glottal

pulses into a finite alphabet of symbols with matching frequencies of occurrence.

Symbolic Mismatch Distance Measure Once symbolic features v were created for each

subject-day, we defined the overall distance measure between each pair of v’s as the symbolic

mismatch distance 𝐷mismatch[i,j]. For subject-days v𝑖 and v𝑗, 𝐷mismatch[i,j] is the aggregate

sum of the weighted distance between class centroids.

1A lot of any subject’s day is spent in silence; the amount varied from 86%-95%. The mean number of voiced pulses per
patient was 3,427,367.
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Algorithm 1 Symbolic mismatch calculation between subject/day tuple pairs.
Input: Transformed data from subject/day tuples 𝑣𝑖 and 𝑣𝑗
Output: Weighted distance between 𝑣𝑖 and 𝑣𝑗

1: initialize W ← 0
2: for each 𝑠𝑎 ∈ 𝑣𝑖 do
3: for each 𝑠𝑏 ∈ 𝑣𝑗 do
4: W ← W + 𝑓𝑎 * 𝑓𝑏 * LB_Keogh(𝑠𝑎, 𝑠𝑏)
5: end for
6: end for
7: 𝐷mismatch[i, j] ← W

4.3.2 Subject-Day Clustering and Evaluation

We evaluate a clustering of 𝑄 subject-days v1, ...,v𝑄 across 𝑛 clusters in two ways: class con-

centration and subject concentration. For an individual cluster c with some number of total

(subject-day, class label) pairs, i.e., suppose there are 𝑜 pairs of them c = {(v1, l1), ..., (v𝑜, l𝑜)},

class concentration is the cluster’s ratio of the dominant label to the total number of in-

cluster subject-days. Subject concentration is calculated similarly, but we count v from

the same subject only once. For example, suppose we have a cluster with items 𝑐1 =

{(𝑣1−1, 0), (𝑣2−1, 1), (𝑣2−3, 1), (𝑣3−1, 1), (𝑣3−5, 1)}2, the class concentration would be 𝑐𝑜𝑛𝑐𝑐𝑙𝑎𝑠𝑠 =
4

1+4
and the subject concentration would be 𝑐𝑜𝑛𝑐𝑠𝑢𝑏𝑗 =

2
2+1

.

Total Concentration We define the total concentration for both metrics across clusters as

the weighted sum of all individual cluster concentrations. Specifically, for 𝑛 clusters 𝑐1 . . . 𝑐𝑛

with concentrations ℎ1 . . . ℎ𝑛, total concentration is defined as 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑛𝑐 =
∑︀𝑛

𝑖=1 ℎ𝑖 * |𝑐𝑖|.

Note that when there are two classes, the total concentration can range from [0.5, 1], since

the least concentrated cluster possible is 0.5. To check statistical significance, we tested

the null hypothesis that the groupings obtained with 𝐷mismatch were different from a total

concentration measure using random distances. We first define a random distance metric

(RRDM) by sampling random values uniformly as 𝑅𝑅𝐷𝑀 [𝑖, 𝑗] = 𝒰([0,𝑚𝑎𝑥 {𝐷mismatch}]),

where 𝑚𝑎𝑥 {𝐷𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ} is the maximum distance seen from the actual symbolic mismatch.

2Corresponding to subject 1-day 1 with label 0, subject 2-day 2 and subject 2-day 3 labeled 1, etc.
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We sampled distances for each subject/tuple pair v𝑖 and v𝑗 5,000 times, and cluster those

(random) values. We clustered the RRDM values to obtain a distribution of total class

concentration measures, fit an empirical CDF (ECDF) to these values, and computed the

probability (𝑝) of a total class concentration value greater than or equal to ours by chance

(1− 𝐸𝐶𝐷𝐹 (𝑐𝑜𝑛𝑐𝑐𝑙𝑎𝑠𝑠(𝐷mismatch))).

4.4 Experiments

4.4.1 Data

We considered 11 MTD patients with matched controls — a total of 22 subjects. Diagnoses

were based on evaluation by a laryngologist and speech-language pathologist. All patients

were treated with behavioral voice therapy, and each patient was recorded for a minimum of

six days both before and after undergoing treatment. This created a set of three categories

in our data:

• 11 pre-treatment MTD patients (PreTx),

• the same 11 patients after behavioral voice therapy (PostTx), and

• 11 control subjects matched for age, gender, and occupation (Control).

We used a neck-placed miniature accelerometer as a voice sensor and a smart phone as the

data acquisition platform [65]. The raw accelerometer signal was collected at 11,025 Hz,

16-bit quantization, and 80-dB dynamic range in order to obtain neck skin vibrations at

frequencies up to 4,000 Hz. Our dataset contains 253 subject-days, corresponding to over

110 million segmented pulses (details in Appendix A). Working with a continuous ACC

signal for each subject over the course of 7+ days yielded approximately 15 GB of data per

subject.

4.4.2 Clinical Significance

We investigated the utility of our method in addressing three clinical questions:
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1. Can our features be used to diagnose MTD (PreTx vs. Control subjec-

t/days)? To address the first question, we performed an inter-subject comparison

on PreTx vs. Control subjects, where we clustered all pre-therapy subject-days and

all control subject-days. We did not expect a clean separation of all PreTx days from

Control days to occur, because many MTD patients have “good” days where their voice

use is like that of a vocally normal individual. Instead, our objective was to determine

if a clustering of 𝐷mismatch could achieve a high concentration in the PreTx vs. Control

comparison (𝑐𝑜𝑛𝑐𝑐𝑙𝑎𝑠𝑠(𝑃𝑟𝑒𝑇𝑥/𝐶𝑜𝑛)) that was significantly different from those that

could be obtained by chance.

2. Can we detect a treatment effect (paired PreTx vs. PostTx subject/days)?

To address the second question, we perform an intra-patient comparison on PreTx vs.

PostTx subjects where we performed clusterings on a patient-patient basis, (i.e., we

clustered all days, both pre and post treatment, on a patient-by-patient basis).

3. If our features can be used to detect treatment effect, is the effect to move

patients towards “normal” (PostTx vs. Control subject/days)? To address

this question, we performed an inter-subject clustering on the PostTx vs. Control sub-

jects, clustering all post-therapy subject-days and all control subject-days. Our objec-

tive was to determine if this clustering would produce concentrations (𝑐𝑜𝑛𝑐𝑐𝑙𝑎𝑠𝑠(𝑃𝑜𝑠𝑡𝑇𝑥/𝐶𝑜𝑛))

which were not significantly different from those that could be obtained by chance. This

would indicate that patients are difficult to distinguish from controls after they receive

voice therapy.

4.4.3 Baseline Methods

Our symbolic features (SF) were compared over subject-days using symbolic mismatch to

generate a paired distance matrix, and the mismatch distance was clustered using hierar-

chical clustering and Ward’s linkage. We compared clusterings generated from our method

to clusterings from features generated by a recently proposed system for identifying phono-
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traumatic hyperfunctional patients with pathology (nodules or polyps) versus their matched

controls [34].

As in [34], we windowed the regularly sampled x = {𝑥1, ..., 𝑥𝑡, ..., 𝑥𝑇} ACC signal into

five-minute windows, computed the phonation frequency (f0) and acoustic sound pressure

level (SPL) of non-overlapping 50 millisecond frames within each window (i.e., 6000 frames

per window), and extracted statistical features of these acoustically inspired measures (e.g.,

the mean, skew, 5𝑡ℎ percentile value, etc.). Each subject-day is a feature matrix, where the

number of features varied based on the amount of phonation in each subject-day. We also

removed the most correlated features, yielding a total of 22 features. Once generated for each

subject-day, these generate a Vector of Acoustic Features (VAF) that has multiple features

summarizing a given subject-day tuple. We clustered VAF vectors from all subject-day

tuples using k-means clustering with a squared Euclidean distance function.

While the VAF previously detected constantly-present pathology in phonotraumatic pa-

tients, we theorized they would create many incorrectly labeled windows for clustering in

the periodically hyperfunctional MTD population. To address this, we took the feature-wise

mean over all five-minute windows for a single subject-day, to obtain Mean Acoustic Features

(MAF). These vectors were clustered with hierarchical clustering and Ward’s linkage.

We measured the total concentration in all clusterings as described in 4.3.2. For inter-

subject comparisons, we investigated the sensitivity of our method and the baselines by

varying the number of clusters in the final grouping (𝑛) from 2 to 40; for the intra-subject

comparisons we varied 𝑛 from 2 to 10.

4.5 Results

4.5.1 Control vs. PreTx Subjects—Potential for ambulatory screen-

ing tool

After performing clustering on all subject-day pairs from Control and PreTx subjects into

18 clusters, we obtained a total class concentration measure of 0.70. As shown in Figure
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4-2, using the RRDM clustering comparison, the difference between the PreTx and Control

groups was statistically significant at p < 0.001. There were a total of 135 subject/days in the

comparison, and no cluster had data from only a single subject (total subject concentration

measure of 0.65). Given the intermittent nature of voice misuse, it is reasonable that some

days from PreTx patients cluster with Controls.

(a) Clustering of PreTx vs. Control subject-days (b) Result vs. RRDM ECDF

Figure 4-2: We show a) the results of symbolic mismatch clustering of the control subject-
days versus the PreTx subject-days (18 clusters, class concentration = 0.70) and b) the
empirical CDF of the 5,000 RRDM clusterings versus our experimental results (p = 0.001).
As shown in b), Controls and PreTx patients were significantly different.

4.5.2 PreTx vs. PostTx Subjects—Vocal therapy effect in pairs

We investigated if voice therapy had an effect that could be detected in our framework by

using an intra-subject comparison on a patient-patient basis, so that all days from a patient

pre-treatment were compared all days from the same patient post-treatment. As shown in

Table 4.1, the results vary for each patient, with some demonstrating more post-therapy

differences than others. One possible explanation for a smaller intra-subject concentration is

that improved vocal behavior for a particular subject was observable during a smaller time

scale than we examined (e.g., better behavior during their evenings).
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Table 4.1: Total concentration of per-patient PreTx vs. PostTx with three clusters. Con-
centrations that passed the empirical RRDM significance of p < 0.01 are highlighted with
**, and those with p < 0.05 are marked with *.

F023 F027 F040 F048 F052 F064 F069 F071 F100 M035 M074
0.73 0.65 0.81* 1.0** 0.63 0.69 0.67 1.0** 0.86* 0.57 0.79

4.5.3 Control vs. PostTx Subjects—Therapy moves subjects toward

“normal”

(a) Clustering of PostTx vs. Control subject-days (b) Result vs. RRDM ECDF

Figure 4-3: We show a) the results of symbolic mismatch clustering of the control subject-
days versus the PostTx subject-days and b) the empirical CDF of 5,000 random distance
clusterings versus our experimental results. PostTx subject-days were not significantly differ-
ent from the control group, suggesting that voice therapy does indeed move patients toward
vocal normalcy.

As shown in Figure 4-3, after clustering the PostTx patients and Control subjects, we

obtained a total class concentration of 0.63, and a subject concentration of 0.60. There was

no statistically significant difference between these clustering and clusterings of the RRDM

distances (p = 0.56). In this clustering of the 139 total days, PostTx patients only enrich a

few clusters, and many clusters are evenly class-balanced. This suggests that our method is

picking up changes caused by voice therapy, and that these changes are in the right direction.
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4.5.4 Sensitivity Analysis of Clustering Across Baselines and Clus-

ters

After successfully demonstrating differences in PreTx vs. Control subjects-days, and showing

that PostTx subject-days are like those of the Controls, we examined the ability of our

symbolic features (SF) to perform under varying numbers of clusters as compared to other

methods (VAF and MAF).

We first computed the concentration values for which RRDM passes the p < 0.01 signifi-

cance level; our SF features should ideally keep the total concentration of the PreTx/Control

clustering over p < 0.01, and the PostTx/Control clustering under p < 0.01 to demonstrate

that there are consistent differences from the Control subject-days in the PreTx group that

are not present in the PostTx group after therapy. As shown in Figure 4-4, the inter-subject

class concentration increases as the number of clusters grows. The Vector Acoustic Features

(VAF) perform worst, followed by the Mean Acoustic Features (MAF). The MAF PreTx-

Control nears statistical significance. With our method (SF) PreTx-Control clusterings are

significant at the 0.05 level on all but the very first clusters. We also have the PreTx and

PostTx group separate when more than 5 clusters are used, and the separation passes the

RRDM p < 0.01 significance level. Specific clustering results for 𝑛 = 18 (𝑑 = 0.116) are

presented in Sections 4.5.1 and 4.5.3.3

4.6 Discussion

In this work we used unsupervised machine learning to analyze a novel clinical data set

containing long-term time-series data. Prior work with ACC data has focused on targeted

feature extraction for supervised classification of subjects [34]. However, supervised learning

is a poor method for detecting differences in the vocal behavior of MTD patients, because

people with MTD do not always speak in a disordered way, and there is no standard for

3The distance between the the PreTx and PostTx concentrations was maximized in our method when 24 clusters were
used (total class concentration difference = 0.124). However, 𝑛 = 18 minimized the number of clusters over the maximum
concentration difference 𝑑 = 𝑐𝑜𝑛𝑐𝑐𝑙𝑎𝑠𝑠(𝑃𝑟𝑒𝑇𝑥/𝐶𝑜𝑛𝑡𝑟𝑜𝑙)− 𝑐𝑜𝑛𝑐𝑐𝑙𝑎𝑠𝑠(𝑃𝑜𝑠𝑡𝑇𝑥/𝐶𝑜𝑛𝑡𝑟𝑜𝑙), such that 𝑑 was not significantly lower
than the absolute max

𝑛
(𝑑).
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Figure 4-4: The sensitivity of inter-subject clustering results for VAF, MAF and SF methods.
The PreTx group is consistently more concentrated than the PostTx group for all methods,
but only our method demonstrates the SF PreTx/Control clustering passing statistical sig-
nificance.

labeling individual glottal pulses as disordered.

Our method differs from other recent work in three key ways: 1) We segment individual

glottal pulses from the ACC signal rather than taking the traditional fixed-width frames; 2)

We directly judge the relevance of a particular segmented item in our set by its morphology

rather than using transforms derived from expert knowledge; and 3) We summarize a subject-

day using a weighted sum over paired sets of morphological symbols and frequencies rather

than a large set of features, or simple aggregates. From a clinical perspective, our results

demonstrate that an ACC signal can be used to detect a difference in the vocal behavior

of patients and controls. We also showed that vocal therapy has a measurable impact on

patient behaviors.

Time-series symbolization [58] and symbolic representation for time series based on se-

quence shape [74] have previously been used to find time series motifs. Symbolization of

segmented ECG data was used for supervised risk stratification [99] and assessing the clinical

utility of expert-annotated heartbeats [57]. Unlike this prior work, we do not use symbolized

distances as part of a supervised learning regime. Instead, we use these distances to represent
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using a set of density-based prototypes.

More complex generative models have recently been developed for physiological problems,

e.g., using a multi-level latent model to learn individual and population level traits from

clinical temporal data [91].Symbolization is particularly attractive for developing clinical

markers, since symbols are fast to extract and compare [100], and variations in glottal pulse

shape based on voice quality may be detectable with symbolization [51].

Our study uses a week of data because individuals tend to have a regular schedule that

changes over the course of a week. It is possible that less data is needed to understand

voice misuse, however we believe generally that the minimum amount of time needed to

cluster would vary strongly depending on the subject’s degree of hyperfunction, and how

regularly they misuse their voice. For example, a professor may only misuse her voice on

Tuesdays and Thursdays because of the additional strain that a 2 hour lecture adds. Many

standard clinical measures used to identify vocal hyperfunction do not fit the MTD patient’s

behavioral condition. This is likely why the VAF and MAF measures do not work well.

Our work is the first large scale study of vocal misuse based on long-term ambulatory

data with over 100 million segments corresponding to glottal pulses from 253 subject-days

of data. The long-term goal of this multi-disciplinary project is to build a non-invasive

ambulatory system that could be used to 1) diagnose voice disorders, 2) assess the impact

of voice therapy, and 3) help facilitate the adoption of more normal vocal behaviors by

providing biofeedback.
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Chapter 5

Conclusion

In this work, we focused on problems that require recognition of, and response to, patients in

a physiologically compromising states. We specifically targeted the evaluation of representa-

tions of multi-modal clinical data that are useful for predicting important clinical tasks. In

the future, we hope that such methods will be used to provide clinical staff with the support

to improve decision making for patient care.

We covered work that spans coded records from administrative staff, vital signs recorded

by monitors, lab results from ordered tests, notes taken by clinical staff, and accelerometer

signals from wearable monitors. In tackling these problems, our focus was on learning ab-

stractions that generalized across applications despite missing and noisy data. In general,

our experimental process targeted learning techniques that transform diverse data modalities

into a consistent intermediate that improves prediction in clinical investigation.

There are major practical and technical barriers to understanding human health. We be-

lieve that the creation of machine learning methods to distill large amounts of heterogeneous

health data into evidence-based clinical support will advance scientific understanding, and

we hope this will lead to improved human health.

There are many exciting opportunities for work in this vein to continue.

Early Prediction of In-Patient ICU Interventions Our work in this space [35, 36]

focused on clinically actionable prediction tasks, with an emphasis on representations that
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improve task performance on multiple potential targets. We also wanted the latent states to

qualitatively make sense for the task.

There are several limitations to this body of work. First, it was limited to ICU patients

and there are interesting questions about its applicability to broader non-ICU settings, for

example the emergency room or during outpatient treatments. There is also much un-

certainty about the reason for specific clinical behaviors (e.g., why an early prediction of

weaning is confirmed by notes, but did not occur until significantly later). This is difficult to

quantify because we do not have ground truth on the decision making process for any ICU

intervention.

Future directions for this work should include new way to model missingness. We chose

physiological words, but other interesting approaches also exist. There are also many ways

to have a learned representation capture higher-level structure and dependencies between

multi-modal time series data and multiple time-varying targets. It is also an open question

as to how one should best balance learning the distribution of the data with trying to push

a discriminative signal into the learning process (combining supervised and unsupervised

methods).

Representations for Post-Discharge Outcome Prediction This work [30,32] focused

on learning representations of clinical notes that are predictive of in-hospital mortality and

post-discharge mortality. Other work has validated the value of these representations on

predicting psychiatric readmission [86]. Topic and kernel representations provide interesting

spaces for intuitive comparisons of patients, and the representations improve task perfor-

mance. There is also the promise of possible actionability for each of these tasks, for exam-

ple by allocating home visits to patients who are likely to have a psychiatric readmission, or

doing a hospice discharge for patients with a high risk of 30-day mortality.

In general, this work is limited by its use of mortality as a proxy for acuity in the ICU. In

general, modern ICU patients do not die in-hospital unless clinicians turn off support. This

may lead to “decisions” about patient care that may actually be made far before it seems

that they have been, and our learning may actually fall temporally behind clinical decision
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processes. There are also general questions that we did not address about the scalability of

kernel-based methods for larger datasets and the generalization of model-based methods to

multi-center datasets. Finally, this work considered model prediction times that were fixed

or batched, which may limit their usefulness in a more dynamic environment.

New work in this space should consider more diverse measures of severity of illness other

than mortality. For example, one such measure might be the amount of deviation a patient

has from past reported values, which can be considered their own “norm”. There are also

many choices for more robust note representations that also take note authors or types into

account. and many kernels that may be better suited to various forms of intra/inter signal

modeling. Finally, there is much value to combining data across modalities and time in this

work as well.

Voice Disorder Detection in Wearable Out-patient Devices We focused in early

work on predicting pathologies with acoustic-like features [34] for subjects with phonotrau-

matic voice disorders, and then on detecting harmful patterns with glottal-pulse based fea-

tures [33] in subjects with non-phonotraumatic voice disorders. In our more recent work, we

were most excited by the possibility of understanding what moves subjects towards âĂĲnor-

malâĂİ after voice therapy.

This work was limited first by the small size of our patient cohort, which is currently at 50

patients and their matched controls (100 total). While each subject generated a large amount

of data, more work is needed to understand the generalizability of our findings. Further, the

data from non-phonotraumatic subjects has no behavioral ground truth available—meaning

that we do not truly know if a particular behavior most commonly found in a subject

(but not in controls) is a “damaging” one. There is an additional chicken/egg problem in

phonotraumatic subjects, where we only have subjects after they acquire pathology, and so

we cannot know if features most predictive of pathology were in fact caused by it or were the

cause of the pathology. Finally, post-hoc interpretation of the ACC signal is challenging, as

it is not currently a widely-used signal.

Opportunities in this space for more progress should focus on other types of windowing
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for learning, particularly utterance-based analysis. For real understanding, there should also

be testing of detected features in biofeedback studies to understand impact. There is also

interesting new work in the non-clinical setting that should target the use of non-invasive

wearable data to detect harmful behaviors in general. Important questions in this space are

whether we can find meaningful behavioral needles in large haystacks of data.
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Appendix A

Appendices

A.1 Additional Information for Chapter 2

A.1.1 Extracting and Processing Signals

A total of 24 variables corresponding to vital signs, lab results, and static demographic data

were extracted from the MIMIC II 2.6 database. Data was gathered from four ICUs at the

Beth Israel Deaconess Medical Center (BIDMC): medical (MICU), surgical (SICU), coronary

care unit (CCU), and cardiac surgery recovery unit (CSRU).

A patient’s 30-day mortality was extracted by subtracting the patient’s date of death from

time of release from ICU. If the difference was less than 30 days, the patient was removed

from consideration. Physiological variables were the timeseries of 6 nurse-verified vital signs

heart-rate (HR), mean arterial blood pressure (MeanBP), blood oxygenation level (SPO2),

temperature (TEMP), spontaneous respiration rate (RESP), and urine output (URINE); the

timeseries of 11 laboratory measurements blood urea nitrogen (BUN), hematocrit (HCT),

creatinine (CREAT), bicarbonate (BICAR), lactate (LACT), magnesium (Mg), potassium

(K), sodium (Na), glucose (GLU), platelet count (PC), and white blood cell count (WBC);

and 7 static variables admitting age, gender, first SAPS I score, first SOFA acuity score, first

weight, use of pacemaker, and whether the patient was noted as ”at risk” for falls. Timeseries

variables were first binned into hours from when the patient was admitted, and the value
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for that hour was the mean for that hour. To handle missing data, we only incorporated

features with greater than 10% non-missing entries (MEAN BP, TEMP, HR, SPO2, FIO2,

RR, GLU, BICAR, HCT, K), and smoothed the data through sample-and-hold.

Extracting and Processing Outcomes We extracted vassopressor administration as

any medication event with a generic or brand-name vassopressor label, including dopamine,

epinephrine, isuprel, levophed, vasopressin, and neosynephrine. We considered any modifi-

cation of vassopressor settings to be a binary indicator of vassopressor administration in the

hour it occurred in. Because continuing vassopressor administration is not always noted in

the electronic health record, we interpolated any vassopressor gaps less than 4 hours as be-

ing continuously on the medication, unless there was an explicit stoppage of the medication

noted.

From this smoothed timeseries, we computed the start time of the 𝑖𝑡ℎ vassopressor ad-

ministration 𝑡𝑣𝑖𝑛 and its corresponding wean 𝑡𝑤𝑖
𝑛 for each patient 𝑛. Table 2.1 compares the

values of individual variables for patients who received vassopressors to patients who did not

(the controls C). For patients who did receive a vassopressor, we denote the time until the

first administration 𝑡 = 1 . . . 𝑡𝑣1 as V- and the time between the first administration and the

first wean 𝑡 = 𝑡𝑣1 + 1 . . . 𝑡𝑤1 as V+.

A.2 Additional Information for Chapter 3

Patient Cohort Sizes

Table A.1.

A.2.1 List of Inferred Topics

Table A.2.

Topic Top Ten Words

1 cabg, pain, ct, artery, coronary, valve, post, wires, chest, sp
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2 ccu, cath, mg, am, sp, groin, bp, cardiac, hr, cont

3 picc, line, name, procedure, catheter, vein, tip, placement, clip, access

4 biliary, mass, duct, metastatic, bile, cancer, left, ca, tumor, clip

5 liver, renal, hepatic, ascites, dialysis, failure, flow, transplant, portal,

ultrasound

6 ct, contrast, pelvis, abdomen, fluid, bowel, clip, free, wcontrast, iv

7 thick, secretions, vent, trach, resp, tf, tube, coarse, cont, suctioned

8 chest, pneumothorax, tube, reason, clip, sp, ap, left, portable, ptx

9 remains, family, gtt, line, map, cont, levophed, cvp, bp, levo

10 name, neo, gtt, stitle, dr, sbp, resp, cont, wean, aware

11 remains, increased, temp, hr, pt, cc, ativan, cont, mg, continues

12 micu, code, stool, hr, bp, social, note, id, received, cchr

13 chest, pulmonary, bilateral, edema, portable, clip, reason, ap, pleural,

effusions

14 resp, cough, sats, mask, sob, wheezes, nc, status, mg, neb

15 intubated, vent, ett, secretions, propofol, abg, respiratory, resp, care,

sedated

16 gtt, insulin, bs, lasix, endo, monitor, mg, am, plan, iv

17 drainage, pain, abd, fluid, draining, drain, incision, sp, intact, pt

18 heparin, afib, ptt, am, gtt, mg, rate, hr, pvcs, iv

19 name, pacer, namepattern, placement, heart, pacemaker, ventricular, av,

rate, chest

20 left, lung, effusion, lobe, pleural, lower, chest, upper, ct, opacity

21 skin, noted, care, left, applied, changed, draining, coccyx, wound, edema

22 tube, placement, tip, line, portable, ap, reason, position, chest, ng

23 noted, shift, name, pt, patent, patient, foley, agitated, soft, mg

24 hct, pt, gi, blood, bleeding, am, stable, unit, bleed, noted
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25 name, am, mg, able, bp, time, night, times, doctor, confused

26 pain, co, denies, oriented, neuro, plan, diet, po, pt, floor

27 name, family, neuro, care, noted, status, plan, stitle, dr, remains

28 clip, reason, ro, medical, examination, evidence, impression, underlying,

condition, normal

29 neuro, sbp, bp, commands, iv, cough, soft, status, lopressor, swallow

30 skin, stable, social, family, intact, tsicu, id, note, support, endo

31 woman, female, husband, name, pain, patient, pm, am, hospital, noted

32 diagnosis, admitting, name, reason, please, examination, yearold, eval,

findings, underlying

33 name, neck, soft, patient, noted, anterior, epidural, level, posterior,

namepattern

34 ct, contrast, chest, lymph, optiray, images, lesions, iv, nodes, lobe

35 left, stenosis, disease, clip, reason, carotid, severe, report, radiology, final

36 femoral, foot, left, leg, iliac, groin, lower, patent, graft, extremity

37 acute, reason, head, clip, evidence, eval, name, wo, status, ct

38 aortic, aorta, cta, wwo, dissection, recons, contrast, left, aneurysm, chest

39 left, ivc, filter, vein, pulmonary, veins, dvt, clip, inferior, upper

40 left, fracture, ap, views, reason, clip, hip, distal, lat, report

41 spine, cervical, spinal, clip, thoracic, fall, lumbar, vertebral, contrast,

reason

42 hemorrhage, head, ct, left, frontal, contrast, subdural, hematoma, clip,

bleed

43 ct, trauma, contrast, injury, fracture, fractures, pelvis, clip, wcontrast,

sp

44 contrast, brain, head, left, mri, images, mra, stroke, clip, cerebral
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45 catheter, name, procedure, contrast, wire, french, placed, needle, ad-

vanced, clip

46 artery, left, common, distal, catheter, internal, branches, flow, name,

middle

47 vein, stent, catheter, name, mm, portal, tips, balloon, venous, sheath

48 service, distinct, procedural, artery, sel, carotid, left, cath, name, clip

49 catheter, name, performed, embolization, contrast, bleeding, procedure,

mesenteric, extravasation, clip

50 artery, carotid, left, aneurysm, injection, vertebral, internal, evidence,

clip, cerebral

Table A.2: Top ten most probable words for all topics.
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Table A.1: Patient cohort size at each time tested by time-varying models. Note that patients
are removed from a prediction time if they are discharged or die prior to that time.

Cohort Size (Control, Positive)
Time
(Hours)

Total In-Hospital 30 Day 1 Year

0 5784 5157, 627 5597, 187 5058, 726
12 5784 5157, 627 5597, 187 5058, 726
24 5749 5128, 621 5563, 186 5026, 723
36 5563 4998, 565 5382, 181 4855, 708
48 5497 4937, 560 5318, 179 4795, 702
60 5161 4664, 497 4986, 175 4480, 681
72 5084 4591, 493 4911, 173 4407, 677
84 4691 4241, 450 4524, 167 4043, 648
96 4587 4140, 447 4421, 166 3945, 642
108 4116 3710, 406 3963, 153 3530, 586
120 4030 3626, 404 3877, 153 3448, 582
132 3570 3210, 360 3427, 143 3023, 547
144 3496 3141, 355 3354, 142 2956, 540
156 3026 2707, 319 2898, 128 2533, 493
168 2967 2652, 315 2840, 127 2479, 488
180 2580 2291, 289 2468, 112 2138, 442
192 2541 2254, 287 2431, 110 2109, 432
204 2215 1953, 262 2117, 98 1825, 390
216 2186 1925, 261 2090, 96 1802, 384
228 1925 1681, 244 1837, 88 1575, 350

114


	Introduction
	Need for Evidence Generation with Electronic Health Records
	Challenges of Electronic Health Record Data
	Framework
	Organization
	Assumptions


	Early Prediction of In-Patient ICU Interventions
	Background
	Overview
	Data
	Predictive Tasks
	Feature Construction
	Extracting and Processing Signals
	Feature Overview
	SSAM
	Updating Autoregressive Function Parameters
	Updating Physiological State and Transition Parameters

	Evaluation Procedure and Model Settings
	Results
	Predicting Vasopressor Administration Improved by SSAM Features

	Predicting Vasopressor Weaning Improved by SSAM Features
	Quantifying Unnecessary Intervention Time Prior to a Wean
	Clinical Relevance of Discovered States

	Discussion

	Representations for Discharge and Post-Discharge Outcome Prediction
	Background
	Modeling Mortality Risk with Clinical Note Representations
	Overview
	Methods
	Data and Pre-Processing
	Structured and Derived Features
	Topic Inference
	Prediction Task Definition
	Results

	Modeling Clinical Timeseries with Gaussian Process Hyperparameter Representations
	Overview
	Gaussian Processes
	Multi-Task Gaussian Process Models
	Signal Representation via Hyperparameters
	Experiment 1: Using Multiple Noisy Time-Series Data to Interpolate Clinical Signals and Assess Stability
	Experiment 2: Using Clinical Notes as Timeseries for ICU Mortality Prediction

	Discussion
	Using Aggregated Clinical Note Topics
	Incorporating Features of Inter/Intra-signal Movement


	Voice Disorder Detection in Wearable Out-patient Devices
	Background
	Overview
	Methods
	Glottal Pulse Symbolization
	Subject-Day Clustering and Evaluation

	Experiments
	Data
	Clinical Significance
	Baseline Methods

	Results
	Control vs. PreTx Subjects—Potential for ambulatory screening tool
	PreTx vs. PostTx Subjects—Vocal therapy effect in pairs
	Control vs. PostTx Subjects—Therapy moves subjects toward ``normal''
	Sensitivity Analysis of Clustering Across Baselines and Clusters

	Discussion

	Conclusion
	Appendices
	Additional Information for Chapter 2
	Extracting and Processing Signals

	Additional Information for Chapter 3
	List of Inferred Topics



