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Analysis of the Thermal Conductivity of Epoxy and
Reaction Bonded Silicon Nitride Matrix Particulate Composites

by Clifford Stephens
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for the Degree of Bachelor of Science in Materials Science and Engineering

ABSTRACT

The feasibility of creating high thermal conductivity RBSN matrix particulate
composites was studied using various high thermal conductivity filler materials. First,
epoxy matrix particulate composite samples with particles of differing filler materials
were created by colloidal pressing. The relative thermal conductivity, or ratio of the
composite thermal conductivity to the matrix thermal conductivity (Kc/K,,) for the
hexagonal boron nitride (HBN) and chemical vapor deposition grade diamond (CVD-D)
samples were found to be 268 and 88, respectively. These experimental values were
much higher than theoretical predictions (expected value was ~10 for Bruggeman model).
Next, reaction bonded silicon nitride (RBSN) matrix particulate composite samples with
filler particles of HBN and CVD-D were colloidally pressed. The RBSN matrix
composite samples had lower than expected relative thermal conductivities (all under 1).
The good performance of the epoxy-HBN and epoxy-diamond samples relative to
theoretical models has been attributed to a particle percolation. On the other hand, the
low thermal conductivities of the RBSN matrix samples were attributed to microcracks
which caused poor mechanical contact between the RBSN matrix and filler particles. The
microcracks formed during cooling after nitridation and were caused by thermal
expansion coefficient mismatch between the matrix and filler materials. If high thermal
conductivity RBSN matrix particulate composites are to be developed, a high thermal
conductivity filler material with a similar thermal expansion coefficient must be
employed.

Thesis Supervisors:  Professor Yet-Ming Chiang, Department of Materials Science and
Engineering

Dr. John Haggerty, Senior Research Scientist, Department of
Materials Science and Engineering



TABLE OF CONTENTS

Title Page

Abstract

Table of Contents

List of Figures and Illustrations
List of Tables and Graphs
Introduction

Overview
Applications of research
Production process/properties of RBSN

Background theory/mathematical models for solid-state heat transport

Types of carriers in solid-state heat transport
Thermal conductivity in metals

Thermal conductivity in non-metallic crystals
Origins of thermal boundary resistance
Definition of thermal boundary resistance
Mathematical models of boundary resistance
The acoustic mismatch model

The diffuse mismatch model

Quantitative comparison of the models

The Kapitza radius

Thermal conductivity of particulate composites
The Maxwell model

The Bruggeman model

The effect of porosity on thermal conductivity

Experimental Procedure

Epoxy matrix sample preparation
Description of colloidal pressing
Thermal diffusivity measurements
Epoxy matrix composite samples
RBSN matrix composite samples



TABLE OF CONTENTS (continued)

page
Results and discussion 24
Epoxy matrix samples 24
RBSN matrix samples 25
Future RBSN research 27
Conclusion 38
References 39



Figure #1:
Figure #2:

Figure #3:

Figure #4:
Figure #5:
Figure #6:
Figure #7:
Figure #8:

LIST OF FIGURES AND ILLUSTRATIONS

Plot of Rpp ratio vs. dissimilarity for mismatch models
Relative thermal conductivity vs. volume fraction for
Maxwell and Bruggeman models

Epoxy matrix sample data vs. Bruggeman and Maxwell
models

Schematic of die apparatus of a colloidal press
Schematic of thermal diffusivity measurement apparatus
SEM micrographs of HBN-epoxy composite sample
Rpp vs. filler shear modulus and density for epoxy

Rpp vs. filler shear modulus and density for RBSN

page
15
17

29

21
22
30
36
37



Table #1:
Table #2:

Table #3:
Table #4:

Table #5:

LIST OF TABLES

Boundary resistance calculations for epoxy samples
Relative thermal conductivity and Kapitza radius
calculations for epoxy samples

Boundary resistance calculations for RBSN samples
Relative thermal conductivity and Kapitza radius
calculations for RBSN samples

Percent conversion and volume fraction calculations

for RBSN samples

page
31
32

33
34

35



INTRODUCTION

Qverview, The ultimate objective of this study was to assess the feasibility of
creating RBSN matrix composite samples with high thermal conductivities (defined here
as 30 W/m-°K or greater) using various filler materials including aluminum nitride (AIN),
cubic boron nitride (CBN), hexagonal boron nitride (HBN), and diamond. Although pure
RBSN has a thermal conductivity of approximately 7 W/m-°K, its mechanical and
thermal properties may be considerably improved by composite development involving
the addition of dispersed particles of high thermal conductivity material. However, since
most prior art and mathematical models concerning phonon heat transport in composite
materials deal with zero porosity materials (and RBSN has innate porosity), a preliminary
study was done using epoxy as a matrix material. Epoxy was chosen as the material of
choice for the preliminary study primarily for two reasons: low cost and the fact that
before curing, it flows like a low viscosity liquid. This second property was critical,
given the need to produce samples with zero void space (in order to mirror the
mathematical models as closely as possible). Once large boosts in thermal conductivity
were achieved in epoxy matrix samples, research commenced with RBSN as a matrix
material.

Applications of research, RBSN ceramic is an excellent candidate material for
use in applications which require a high thermal shock resistance from high temperature
fluxes and relatively low capacitance. This is due to RBSN’s good mechanical
properties, relatively low dielectric constant, and similar expansion coefficient with some
of the base materials used in these applications. RBSN offers significant processing
advantages over sintered or hot-pressed silicon nitride (Si;Ng4), the most important of
which is a much lower consolidation temperature (on the order of 4C0 - 600°C lower than
Si3N,) and shorter consolidation times. Despite the fact that RBSN possesses an innate
residual porosity on the order of 10 - 25%, fracture strength and oxidation resistances

equal or better the properties of fully-dense Si;N,. "2 Some of the other materials being



presently used in high temperature flux applications are alumina, beryllium oxide (BeO),
silicon carbide (SiC), aluminum nitride (AIN), hexagonal boron nitride (HBN), and
diamond. All of these alternative materials have higher thermal conductivities than
RBSN. The thermal conductivities for these competing materials range from 30 W/m-°K
(alumina) to 2,000 W/m-°K (diamond). A high thermal conductivity is critical for any
potential material to be considered for use in high temperature flux applications so that
heat can be quickly dissipated and removed from the environment of the application.

Production process/properties of RBSN, RBSN is produced by the heating of a
preformed mass of silicon under a nitriding atmosphere until all of the silicon has been
converted into Si3sN,. The silicon preform usually takes the form of a silicon powder
compact generated by any one of a number of pressing schemes (colloidal pressing, etc.).
The nitriding gas is normally nitrogen (N,), a nitrogen/hydrogen (N,/H,) mixture, or
ammonia (NH;). The nitridation reaction causes a 2Z2% volumetric increase in the
material. Because the reaction takes place within the void space of the compacted silicon,
the density of the product material increases without any shrinkage. As mentioned above,
RBSN has a characteristic residual porosity level on the order of 10 - 25% because an
interconnected pore structure is necessary in the nitridation stage to allow for the free
transport of the nitriding gas to all parts of the compact. 2

RBSN production using ultra-high purity silicon provides three major advantages
over normal Si;Ng: high purity in the end product (which improves the thermal
conductivity), shorter nitriding times, and lower processing temperatures. Sintered Si;N,
and conventional RBSN (using low grade silicon) processing involves heating schedules
which require a temperature in excess of the melting point of silicon (1,550°C) and
furnace times of up to 150 hours. However, when using high purity silicon, RBSN
processes typically run at approximately 1,300°C for approximately 20 hours.
Additionally, high purity end product is achieved by default due to the fact that no
sintering aids or other impurities are introduced to the material during the production

1
process.



BACKGROUND THEORY AND MATHEMATICAL MODELS
FOR SOLID-STATE HEAT TRANSPORT

Types of carriers in solid-state heat transport. Modern solid-state heat transport

theory assumes free electrons and phonons to be the dominant carriers of thermal energy
in metals and non-metallic crystals, respectively. Phonons are wavelike (mathematical)
solutions which model atomic lattice vibrations and are quantized into packets of energy
related to the quantum excitation level, or mode, of a given lattice vibration. The
relationship between phonons and lattice vibrations in crystals is analogous to the

relationship between light photons and the vibrational frequency of light waves.’

[hermal conductivity in metals. In the case of metals, an analogy can be easily
drawn between electrical conductivity and thermal conductivity with respect to free
electrons. In Drude theory of electrical conductivity, the conductivity is related to the
mean free path of the electron, which is the average distance an electron will travel due to
the presence of an electric field before colliding with another atom (and subsequently
resume its normal, purely thermal motion). With thermal conductivity, electrons are
assigned a mean free path related to the increased velocity acquired due to thermal
gradients in a material before transferring the extra energy to another atom. The thermal

conductivity (K) of a metal can be expressed in the following manner":

K=p-C-v-A/3 [1]
p = Density of material
C = Heat capacity of material
v = Mean thermal velocity of free electrons in lattice
A = Mean free path of free electrons in lattice

Thermal conductivity in non-metallic crystals. Due to the fact that atoms are

closely coupled in a crystal lattice, increases in vibrational energy resulting from
temperature gradients are constantly transmitted to other parts of the lattice. Debye
(1914) was the originator of the concept in which heat could be transmitted by lattice

vibrations in the form of waves (which in turn led to the modern theory of phonons). In



Debye’s model, the mean free path is considered to be equal to the distance these waves
are able to travel before their intensity is attenuated by scattering to 1/e of its initial value.
In modern theory, the mean free path is a measure of the rate at which energy is
exchanged between different phonon modes. Thus, an expression similar to equation [1]
can be used to describe the thermal conductivity of non-metallic crystals, but with v
being represented by the Debye velocity of the material. The Debye velocity of a
material is closely related to its acoustic properties (ie. how quickly a sound wave

propagates through the lattice) and can be calculated by4:

v=(G/p)" [2]
G = Shear modulus of material

As a general rule, non-metallic crystals with high thermal conductivities will tend to have
the following four traits: low atomic mass, strong interatomic bonding, simple crystal
structure, and low anharnionicity. 3

Origins of thermal boundary resistance. The subject of measuring the thermal
boundary resistance between two materials has been closely studied by several people
during the 20th century. The first research concerning thermal boundary resistances was
carried out by Kapitza in 1941. Kapitza’s research concentrated on metal-liquid helium
interfaces at extremely low temperatures (below 1°K). These liquid-solid interfaces,
called Kapitza boundaries, have become the basis for modelling thermal boundary
resistances in modern solid-state heat transport theory. However, unlike solid-liquid
Kapitza interfaces, which one can automatically assume to have perfect mechanical and
chemical contact, solid-solid interfaces have boundaries and other imperfections (ie.
microcracks, etc.) which cause relatively poor adherance leading to scattering in thermal
carriers (and an accompanying loss of thermal conductivity across the interface).5

Definition of thermal boundary resistance. The specific (thermal) boundary
resistance (sometimes referred to as the Kapitza resistance) across a solid-solid interface

(Rgp) can be defined by the following equation:

Rpp=AT/Q | 3]

10



AT = Temperature discontinuity across interface
Q = Heat flux across interface

The thermal boundary resistance is a function of the number of incident phonons on a
given interface, the energy of each phonon, and the probability that a given phonon wiil
be transmitted across the boundary. Whereas with the thermal conductivity of a material,
the most difficult parameter to calculate is the carrier mean free path, the phonon
transmission probability is the most difficult (and most critical) parameter to determine
for the thermal boundary resistance. >

Mathematical models of boundary resistance. Two widely accepted theoretical
models exist to explain thermal boundary resistance: the acoustic mismatch model (Mazo
and Onsager, 1955)° and the diffuse mismatch model (Swartz, 1986).” The acoustic
mismatch model is considered to be an upper limit of the boundary resistance, while the
diffuse mismatch model is a lower limit. The two models are very similar and many of
the fundamental assumptions made by each model are common to each other. Both
models operate under the assumption that thermal transport across a boundary is due
exclusively to phonons. Also, all phonons incident upon a boundary have only two
distinct possibilities: (1) they can be transmitted across the boundary, or (2) not. The
transmission probability is a function of the phonon mode, wave vector, and frequency.
Although the transmission probability does have some temperature dependence, this
factor is not taken into account by either model. This last assumption is significant
because it allows one to discount the presence of other phonons on the transmission
probability of a given phonon. Next, all anharmonic interactions are discounted which
implies that the transmission probabilities need only be calculated for one side. Finally,
the principle of detailed balance is used. The principle of detailed balance states that in
thermal equilibrium, the number of phonons in a given state (in terms of polarization and
wave vector) leaving one side of an interface is equal to the number of phonons in an
identical state returning from the other side. In order to find the net heat flow at a

boundary, one need only calculate the gross heat transfer from one side of the boundary at

11



the two incident phonon temperatures. The net heat flow is simply the difference
between these two gross heat transfer quantities. Equation [3] results from a
generalization of these concepts. >

The acoustic mismatch model. The critical simplifying assumption made by the
acoustic mismatch model is that phonons are subject to continuum acoustics and that the
boundary interface is modeled as a plane. In other words, phonons are to be treated as
plane waves and phonon wave propagation occurs in space, as opposed to being restricted
to a lattice. Since most phonons have wavelengths much greater than typical interatomic
spacings, this assumption is generally considered to be a safe one. More importantly, the
model restricts incident phonons to four “options” when encountering a boundary:
specular reflection, reflection plus mode conversion, refraction, and refraction plus mode
conversion. Each of these four probabilities, in addition to the angles of reflection and
refraction, can be calculated by invoking the acoustic analog of Snell’s Law for

electromagnetic waves:

sin Oy, = (0, /V,) - sin 6, [4]

B\ran = Angle of phonon transmission

8in = Angle of incidence

v, = Phonon (Debye) velocity in material x
The above equation implies that for each pair of materials, a critical “cone” (or set of
angles less than the critical angle) exists which an incident phonon must lie within in
order to have any chance of being transmitted across the boundary. For solid-solid
interfaces, critical angles can be relatively large and a significant fraction of incoming
phonons have no chance of being transmitted. The fraction of all incoming diffuse

phonons which have any chance of being transmitted (q) can be calculated from the ratio

of the Debye velocities of the two materials:

q=0.5"(v;/v,)*=0.5 - sin® 6 [5]
Oc = Critical angle between material 1 and material 2
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The continuum acoustics assumption allows for the transmission probabilities to
be calculated from the acoustic analog of the Fresnel equations. These relationships can
be derived using the following boundary conditions: (1) the normal and tangential
components of displacement are continuous at the interface and (2) the “normal
component” of the stress tensor is a vector that is the continuous force across the surface
of the interface. It should be noted that these boundary conditions ignore the possibility
of any elastic or inelastic scattering. The mathematical proofs for this quantitative
analysis are given by Auld (1973).% In simple terms, these boundary conditions imply
that if the force acting on the boundary is not continuous, then the interface (which in
itself has zero mass) would be subject to infinite acceleration (which cannot and does not
occur).

The Fresnel equations can be simplified by modelling transmission probabilities
in terms of an acoustic impedance since phonons are conducted in a manner similar to

sound waves. For the acoustic mismatch model, the impedance (Z) is represented by:
Z=p-v [6]

This allows the transmission probability of a phonon (p) to be expressed in a manner

similar to the formula for transmission at transmission line junction:
P=4-2,"2,/(Z +Z,) 71

Thus, an averaged transmission probability for an individual incident phonon (1) would

be given by:

n=p-q (8]
Finally, the thermal boundary resistance can be approximated by way of a Debye model’:

Rgp=4/(p-C-v-m) (9]

13



The diffuse mismatch mode]l, The most important assumption made by the

acoustic mismatch model is that no scattering occurs at the boundary. The diffuse
mismatch model takes the opposite extreme and assumes that all phonons are diffusely
scaticred whzn encountering an interface. This major assumption is why the diffuse
model sets an upper limit to the effect that diffuse scattering can have on phonon
conduction. The model also assumes that acoustic correlations at interfaces are
completely destroyed by the diffuse scattering. In other words, a scattered phonen does
not “remember” where it came from. Thus, the only determinants of the transmission
probability are densities of phonon states (by way of Fermi’s rule) and the principle of
detailed balance because the probability that a phonon is transmitted is independent of its
origins.

The quantitative analysis of the diffuse mismatch model is identical to that of the
acoustic mismatch model in all regards save one: the calculation of the phonon
transmission probabilities. The diffuse scattering assumption is defined by declaring that
the transmission probability for a phonon from material 1 to material 2 is independent of
its incoming wave vector and mode. Thus, the probability of reflection from one side
must equal the probability of transmission from the other. Given this fact, the
transmission probabilities can be expressed in terms of phonon velocities and phonon
densities of state.  Furthermore, the Debye approximation of the transmission
probabilities yields a ratio of the Debye velocities. This implies that the transmission
probabilities differ from the acoustic mismatch model by a density factor.

Quantitative comparison of the mecdels. Figure #1° shows the quantitative
differences in the acoustic mismatch and diffuse mismatch mod-~'s relative to
dissimilarity in the two materials at the interface. The dissimilarity parameter is a ratio of
the densities and Debye velocities of the two materials. As one can see, for most solid-
solid interfaces, the difference in the models is on the order of +30%. Additionally, Weis
and Swartz’ have demonstrated that solid-solid thermal boundary resistances are

relatively insensitive to diffuse scattering effects (diffuse scattering is thought to be on
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Figure #1: Plot of ratio of diffuse mismatch model Rgp, to the

acoustic mismatch mode Ry, vs. dissimilarity

the order of 10%). Thus, the calculations shown in this paper will work off of the
acoustic mismatch model.

The Kapitza radius. Now that the thermal boundary resistance of a solid-solid
interface and the thermal conductivity of a material have been defined, the two must be
related to one another if the thermal conductivity of composites is to be discussed. For
the purposes of this paper, all composites will be assumed to be particulate composites
with uniformly dispersed spherical particles of identical size surrounded by a continuous
matrix. If the thermal conductivity of the filler material is much higher than the matrix
material, two opposing forces, the high thermal conductivity of the filler material and the
thermal boundary resistance between the filler and matrix materials, will drive the level
of the composite thermal conductivity. Given the same volume fraction of filler material,
larger particles (albeit fewer) will provide a smaller total boundary surface area. Thus,
the thermal boundary resistance will actually be lower even with the same amount of

filler material. This fact has been confirmed by Hasselman (1991).'0
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A parameter called the Kapicza radius (ak) of a particulate composite material will

now be defined to be the following:

aK=RBD : KM [IO]
Ky = Thermal conductivity of matrix material

The Kapitza radius is an important parameter because it quantitatively signifies the
particle size at which the effect of the higher innate thermal conductivity of the filler
material is balanced by the thermal boundary resistance at the matrix-particle interfaces.

If one also defines a dimensionless parameter o below as:

a=ag/a {11]
a = Radius of dispersed particles (composite filler material)

the significance of the Kapitza radius can be easily visualized. In Figure #2,' the ratio of
the composite thermal conductivity and the matrix thermal conductivity (K/Ky) is
plotted versus the volume fraction of spherical dispersions. When the particle size is
equal to the Kapitza radius, K-/Ky, is constant with respect to volume fraction of
diamond. However, when the particle sizes are larger than the Kapitza radius, the ratio
increases with respect to volume fraction, and when the particle sizes are smaller, the
reverse holds true. It should be noted that Hasselman (1991) has found that the
conducting limit for a particulate composite at fixed volume fraction is reached when the
particle size reaches approximately 10 times the size of the Kapitza radius. 10

Thermal conductivity of particulate composites. Rayleigh and Maxwell were the
first to research transport properties of composite materials. Their theories were based on
obtaining temperature distributions within the composite and applying these solutions to
find the effective thermal conductivity. However, their analysis focused on small volume
fractions for the dispersed phase and only recently have these models been expaiiied to

allow for larger volume fractions by Hasselman, Johnson (1985),” and Benveniste
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Figure #2: Relative thermal conductivity (K/Ky,) vs. volume fraction of dispersions

for Maxwell and Bruggeman models

(1986)."% If one considers a filler material composed of particles with size a (which can
be converted to o with the appropriate theoretical calculations), thermal conductivity of

Kp, and occupying volume fraction f, one can derive the following equation:

Ke [Kp- (1+2a)+2Ky]+2f- [Kp - (1 -a)-Ky]

Ky [Kp- (1+2a)+2Ky]-f- [Kp - (1-a)-Ky]

[12]

where the thermal conductivity of a material can be experimentally determined by using

the following equation:

K=D [13]

“C-p
D = Thermal diffusivity of material

If one applies the rule of mixtures, then a similar equation results for the composite

thermal conductivity:'o

Ke=Dc {(pp - Cp - fp) +[pm " Cy - (1-1p)] } [14]

17



The Maxwell mcdel. This paper will provide two models for estimating the

relative thermal conductivity of particulate composites: the Maxwell model and the
Bruggeman model. The Maxwell model deals with low volume fractions of the dispersed
phase, and this paper will assume that the model is only valid up to the 20 volume percent
range. For this range of volume fractions, the model agrees very closely with the values
yielded by the Bruggeman model and a plot of the two models in this range can be
superimposed. In the limit of small volume fractions (ie. Maxwell model), equation [12]

reduces to the following:
Ke/Ky=1+3f-[Kp-(1-0)-Kyl/[Kp - (1+2a)+2Ky] [15]

If the thermal conductivity of the filler material is assumed to be much greater than the

matrix thermal conductivity (Kp >> Ky), then equation [13] reduces to:
Ke/Ky=[1+2f-(1-a)/(1+2a)]/[1-f-(1-)/(1 +2a) [16]

Furthermore, if a >> ag and o — 0, and the thermal boundary resistance becomes

negligible, then equation [14] can be simplified to the following:"
Kc/Ky=1+2f/(1-9) [17]

The Bruggeman model. A quantitative analysis of the thermal conductivity of
high volume fraction particulate composites requires a great deal of knowledge
concerning the correlations between particles and their polarizations. These effects can
be estimated to a degree by using Bruggeman medium theory which is based on the
premise that fields of neighboring particles can be accounted for by incrementally adding
the effects of each particle. At each increment, the surrounding medium can be assumed
to be the existing composite at that stage (or concentration). Bruggeman theory vields the
following equation after integration of the differential of equation [8] using the limits of 0

and f:

18



(1- f)3 =(KM/I<C)“+2“)/“'“)- .
{[Kc-Kp- (1-a)]/ [Ky-Kp - (1-0)] 33/

Once again, in the limit where Ky >> K, equation [16] reduces to:
Then, in the limit where a >> ay and a — 0, equation [17] becomes:

Kc/Ky=(1-1)* [20]

The Bruggeman model applies to high volume fractions. However, since the model
assumes a particulate composite with dispersed filler material particles, the upper bound
of the volume fraction range for which the model is valid is limited by the percolation
limit of the particles. The percolation limit is the volume fraction at which all particles in
a particulate composite must be contacting each other. In the case of spherical particles
with cubic and hexagonal lattices, this volume fraction is on the order of 0.6 - 0.7. A plot
of the theoretical relative thermal conductivity vs. particle volume fraction (both valid
volume fraction ranges) for both the Bruggeman and Maxwell models is shown on F igure
#3.10

The effect of porosity on thermal conductivity, As most ceramic materials contain
some amount of innate porosity (RBSN included), this issue must be raised. Pores are
known to be scattering centers for photons and even small fractions of porosity strongly
reduce the photon mean free path. However, since the thermal boundary resistance
models described above do not cover photon conduction, this fact will be ignored. At
relatively low temperatures, voids have a low conductivity in comparison to any solid
phases present and the thermal conductivity decreases linearly with the amount of void

13
space present.
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EXPERIMENTAL PROCEDURE

Epoxy matrix sample preparation. During the first phase of epoxy research, an

alternative sample preparation method to colloidal pressing (described below) was
sought. This step was deemed necessary due to the drawbacks inherent with colloidal
pressing which include long turn-around times for sample production and a general lack
of control over sample volume fractions when working with a low viscosity matrix
material such as epoxy. Epoxy samples were prepared by mixing the epoxy resin and
curing agent by hand and introducing the mixture into a small (approximately 1 cm
diameter and 0.5 cm height) cylindrical container which had hexagonal boron nitride
(HBN) or aluminum nitride (AIN) particles lying at the bottom. The epoxy used for this
research had a commercial name of Epothin and had a relatively low viscosity (similar to
maple syrup) and density (1.13 g/cm?). Samples were prepared in the following three
ways: 1) by pipette, 2) under low pressure (0.1 atm), and 3) by pipette and later
centrifuging. In each case the sample was heated for 1 hour in an oven at 80°C to
accelerate the curing process of the epoxy. Unfortunately, none of the alternative
methods was successful because in each case, the mixing of the resin and curing agent
left behind air bubbles (leaving behind some amount of porosity) which could not be
removed later. Thus, as a result of the observations made on these various processing
methods, colloidal pressing became the sample preparation method of choice for this
study.

Description of colloidal pressing. Colloidal pressing is a method used to produce
composite samples in the form of small cylindrical pellets. Generally, the process yields
samples which are relatively defect free and have a high packing density. A schematic of
the die apparatus of a colloidal press is provided in Figure #4. Colloidal pressing is
facilitated by a slurry which is composed of a solvent (lubricating liquid) which is mixed
with the materials which will form the pellet itself. The slurry is placed between two

opposing pistons in a die and a high amount of pressure (4 - 7 MPa) is applied

20
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Figure #4: Schematic of die apparatus of a colloidal press

bidirectionally. The apparatus used in this research had brass pistons and a brass die.
The frits were both stainless steel, with one being porous in order to allow solvent to pass
through as pressure was applied on the pistons. Membrane filters were used to cover both
frits in order to facilitate solvent extraction through the porous frit and to protect the
sample from any impurities. Due to the size of the die used for this study, samples had a
diameter of 13 mm and thicknesses ranging from 2.5 - 6 mm.

Thermal diffusivity measurements. The thermal diffusivity of each sample was
measured by Prof. D. Hasselman of the Materials Science and Engineering Dept. at
Virginia Polytechnic Institute. The experimental system employed was based on the
pulse diffusivity method. A diagram of the apparatus used in the measurements is shown
in Figure #5.'* In this scheme, the xenon flash lamp deposits a burst of energy on the
face of the sample while an infrared (IR) detector monitors the temperature on the back
surface. The signal output voltage from the detector is recorded as a function of time by a

PC based data acquisition system. The temperature gradient in the sample is kept below
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Figure #5: Schematic of thermal diffusivity measurement apparatus

2°C by periodically varying the energy being sent to the front of the sample by the xenon
flash lamp. Limiting the energy deposited on the sample also prevents driving the IR
detector into the nonlinear response region.

Epoxy matrix composite samples. Attempts were made to prepare one epoxy
reference sample and five epoxy matrix composite samples by colloidal pressing. The
filler materials used in the other five samples were the following: HBN (General Electric
HPC-40 grade, 2-7 pm), cubic boron nitride (CBN) (General Electric industrial grade, 88-
105 pm), chemical vapor deposition grade diamond (CVD-D) (Raytheon, 25-50 pm),
abrasive grade diamond (AG-D) (General Electric, 6-12 pm), and AIN. In the case of
epoxy, neither a solvent nor a binder was not used since the epoxy itself acted as a
lubricant. The AIN sample was unusable because the sample was not able to maintain its
shape after removal from the die due to the small grain size of the stock available. Each of
the samples was heated at 80°C for 1 hour in order to accelerate curing. Due to the fact
that the samples were very fragile prior to curing, the membrane filters were left attached
to the samples during the curing process. The filters were later removed by polishing

with 600 grit paper. The polished samples were then submitted for characterization to

[£9)
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Prof. Hasselman. After the samples were returned, the volumes were calculated using a
water displacement method®® and the samples were weighed. Finally, the HBN sample
was viewed by scanning electron microscopy (SEM) in the axia! and radial directions by
Dr. Julia Sigalovsky of the Materials Processing Center (MPC) at M.L.T. to rule out the
possibility of preferred orientation in the sample due to HBN’s platelet macrostructure.
RBSN matrix composite samples. One pure RBSN reference sample and six
RBSN matrix composite samples were prepared by colloidal pressing. Four of the six
composite samples had HBN as the filler material, while the other two samples had CVD-
D as the filler material. The silicon used for the samples was of ultra high purity and the
stock was kept in a glove box under nitrogeri. The RBSN-HBN composite samples were
formulated so that the resulting samples would have filler particle volume fractions of
approximately 70, 60, 50, and 30 percent after nitriding. The RBSN-diamond samples
were formulated with targets of approximately 65 and 20 volume percent after nitriding.
The liquid used to press the pellets was xylene and no binder was utilized. Unfortunately,
the high volume fraction diamond sample was extremely brittle and crumbled while being
manipulated. The remaining six samples were then nitrided by Anne-Marie Lightfoot of
the M.LT. MPC using high purity nitrogen gas at 19 kPa in a furnace according to the
following specifications: (step 1) 10 minutes hold at 41°C, (2) 356 minute ramp-up
(+3.40°C/min) to 1250°C, (3) 600 minute hold at 1250°C, (4) 220 minute ramp-up
(+0.50°C/min) to 1360°C, (5) 240 minute hold at 1360°C, (6) 80 minute ramp-up
(+0.50°C/min) to 1400°C, (7) 600 minute hold at 1400°C, (8) 390 minute ramp-down (-
3.48°C/min) to 41°C. The samples were weighed before and after nitriding in order to
determine the percent conversion of silicon. The thermal diffusivities were measured and
then X-ray diffraction (XRD) was performed on the surface of each sample by Dr.
Sigalovsky in order to determine the percent conversion of silicon and find any preferred

orientations in the samples.
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RESULTS AND DISCUSSION

Epoxy matrix samples. Boundary resistance calculations for the epoxy samples
have been summarized in Table #1 and relative thermal conductivity and Kapitza radius

calculations have been summarized in Table #2 . The densities of HBN, CBN, diamond,
and epoxy were assumed to be 2300, 3500, 3520,'® and 1148'" kg/m’, respectively.
The heat capacities were assumed to be 700, 700, 509,'® and 1800'" J/kg-°K,
respectively. Finally, the shear moduli were assumed to be 2.29E+10,'° 2.29E+10,"
5.76E+11,'® and 1.00E+09'® kg/m-sec’, respectively.  Substituting parameters into
equation [9] yielded boundary resistances of 1.06E-07, 8.16E-08, and 8.58E-06 K/m>-W,
for HBN, CBN, and diamond, respectively. The volume fractions of the samples were
calculated using the composite mass, composite volume, and densities of the materials
based on the assumption that the samples contained no porosity. The lack of porosity in
the samples was ascertained by viewing a cross section of a HBN sample using optical
microscopy. The diffusivities of the samples were measured to be 3.32E-05, 1.33E-06,
1.05E-05, 1.47E-06, and 1.11E-07 m%/sec, for HBN, CBN, CVD-D, AG-D, and €poxy,
respectively.  The diffusivities were used to calculate the composite thermal
conductivities using equation [14]. K. was found to be 61.44, 2.97, 20.13, and 2.85
W/m-°K, for HBN, CBN, CVD-D, and AG-D, respectively. The relative thermal
conductivities (K-/Ky) were found to be, in order, 267.86, 12.96, 87.76, and 12.41.
Finally, the Kapitza radii (using equation [10]) for these material combinations were all
found to be smaller than 2um.

Since the particle sizes of the filler material stock used for this study were all at
least 10 times greater than the Kapitza radii, Hasselman’s rule of thumb about minimizing
the boundary resistance can be assumed to be in effect and equations [17] and [20] apply
for modeling the above results. While the relative thermal conductivity values for CBN
and AG-D agree very well with both models, the values for HBN and CVD-D exceed the
expected values by an order of magnitude. The relative thermal conductivities of the

epoxy matrix samples are compared with the Bruggeman and Maxwell models in Figure
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#3. One explanation for the relatively high K/K, value of diamond and HBN samples is
that particle aggregrates formed during sample pressing because the volume fraction
approaches the percolation limit and the particles were not uniformly dispersed. As
stated previously, an important assumption of both the Bruggeman and Maxwell models
is isotropic particle dispersion throughout the composite. The SEM micrograph of the
HBN sample shown in Figure #6, which clearly demonstrates a lack of preferred
orientation, lends credence to this explanation. Another possible explanation for the
difference in diamond and boron nitride performance is a difference in the innate thermal
conductivity of the filler materials themselves which is a function of macrostructure and
impurity levels.

Unfortunately, no way exists to directly determine the thermal conductivity of the
filler material itself. If one considers an “ideal” linear relationship between volume
fraction and the thermal conductivity, then the HBN particles must have a thermal
conductivity of at least 120 W/m-°K given the volume fraction of the HBN sample
(approximately 0.5) and the thermal conductivity of epoxy (nearly 0 W/m-°K). Since the
high purity HBN has a thermal conductivity of approximately 200 W/m-°K, the HBN can
be assumed to have relatively low impurity levels. Thus, the thermal conductivity of the
HBN sample seems to show a relatively low negative deviation from the ideal case.
Conversely, the poor thermal conductivities of the diamond and CBN samples seem to
indicate high levels of impurities. The results from this initial epoxy phase were
encouraging and consequently, a similar study using RBSN matrix composite samples
was done.

RBSN matrix samples. Identical calculations to those for epoxy were performed
on the RBSN samples and have been summarized on Table #3 and Table #4. The density,
heat capacity, and shear modulus of RBSN were assumed to be 2580 kg/m3, 800 J/kg-°K,
and 1.30E+11 kg/m-secz, respectively.15 The boundary resistances and Kapitza radii for
HBN and CVD-D were found to be 3.36E-10 and 2.16E-09 K/m*W, and 5.75E-09 and
3.69E-08 m, respectively. Percent conversion (for both XRD and weight difference

methods) and volume fraction calculations for the RBSN samples have been summarized
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on Table #5. These volume fractions, which were all close to the targeted values, have
been used in the thermal conductivity calculations in Table #4. The weight difference
percent conversions were rather normal and ranged from 85.4% - 100.46%, with only one
sample (HBN 70%) being under 91%. The XRD percent conversions were much higher,
ranging from 95.7% - 99.0%. The difference between the values of the two separate
methods probably lies with the fact that XRD only measures the surface. The lower
values for the weight difference method would seem to indicate that, especially in the
case of high volume fraction filler samples, the nitriding gas was blocked from reaching
the raw silicon in certain regions of the sample. Another explanation for this
phenomenon was that impurities had been adsorbed onto the surface of the filler particles,
which then evaporated during nitriding.

Unlike the epoxy composite samples, the RBSN matrix composite samples had
lower relative thermal conductivities than the reference sample (ie. Ko/Ky < 1). The
actual thermal conductivities of the HBN samples were found to be 6.94, 9.55, 8.74, and
7.30 W/m-°K, in order of highest to lowest HBN volume fraction. The lone diamond
sample had a thermal conductivity of 15.71 W/m-°K. One interesting note regarding this
data is that the reference sample was found to have a thermal conductivity of 17.11
W/m-°K, which is almost twice the normally observed thermal conductivity of RBSN.

The RBSN results were disappointing, since the acoustic properties of HBN
match up very well with RBSN, as evidenced by the g, p, and n parameters on Table #3.
Theoretically, the vast majority of the phonons should be transmitted from the matrix into
the HBN particles (and back again). One explanation for the poor results is poor contact
between the matrix material and the dispersed particles. This may be a distinct possibility
considering the relatively high processing temperatures associated with nitriding the
RBSN (1400°C). Since the thermal expansion coefficient of HBN in the radial direction
is slightly larger than that of RBSN (3.4 and 2.9 * 10°/°K, respectively), microcracks
may have formed between the RBSN and HBN during cooling of the samples.
Microcracks around the HBN particles would severely reduce the thermal conductivity,

due tu the fact that the small spaces around the particles would act as pores in terms of the
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thermal conductivity. As previously discussed, porosity significantly reduces the thermal
conductivity of a material because air has a very low thermal conductivity and the small
pockets of space around the particles would cause an extremely high boundary resistance
which would prevent heat from being transferred to the filler particles. In the case of
particulate composites, this problem is exacerbated by the fact that the majority of the
void space is filled with a solid. This implies that the solid’s heat capacity causes the
void to act as a heat sink, and actually reduces the observed thermal diffusivity.

On the other hand, the thermal conductivity of the diamond sample was nearly
identical to the reference sample, which is exactly what both theoretical models predict
for samples with relatively low volume fraction. One additional note which must be
made concerning the HBN samples is that they were all relatively thick (4 - 7 mm). This
thickness may have had the effect of interfering with the incoming laser signal, and thus
may have caused the observed diffusivity to be lower than the actual value. But this
factor must be considered a relatively minor one, and is not a satisfactory explanation for
the unexpectedly poor results.

Future RBSN research, Given the failure of this study to produce high thermal
conductivity RBSN matrix composite material, possible improvements to the HBN
sample processing and/or alternatives to HBN must be sought. In order to eliminate
sample thickness as a major contributing factor, a new series of samples should be
pressed while strictly limiting the thickness to about 2.5 mm. Also, in order to confirm
the poor contact caused by thermal expansion coefficient mismatch, compression testing
to find the modulus behavior and/or an acoustic loss analysis should be performed.

In the case that thinner samples do not improve the thermal conductivity
significantly or that microcracking in the samples is confirmed, an alternative filler
material to HBN must be found, or an improved HBN processing procedure must be
developed. It may be possible to coat HBN particles with a material such as polysilazane,
which is a RBSN forming agent which would bond the HBN particles to the matrix. If
equation [9] is expressed in terms of material properties of RBSN, epoxy, and filler

materials, the following equation results:
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Rap =2 [(Gy Pm)"’ + (Gp " pp)*°1 - Gp™* - pp™* / Cy - Gy [21]

Two plots of the boundary resistance vs. filler particle density and shear modulus relative
to an epoxy matrix and a RBSN matrix are shown on Figure #7 and Figure #8. The plots
clearly show that increasing density and decreasing shear modulus of the filler particies
reduce the boundary resistance between the matrix material and the filler particles. If
HBN proves to be unusable as a filler material, future studies of RBSN composites must
focus on the selection of the filler material. It can be inferred from the above results infer
that 4 factors are crucial in the selection of a filler material: 1) high density, 2) low shear
modulus, 3) high thermal conductivity, and 4) good thermal expansion coefficient match

with RBSN.
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Figure #6: SEM micrographs of radial (upper) and axial (lower)

view of HBN-epoxy composite sample
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CONCLUSION

In this study, high thermal conductivity samples were created using epoxy as a matrix
material with filler materials of HBN and CVD-D. The epoxy results seem to indicate
that high thermal conductivity particulate composite materials can be produced. On the
other hand, the combination of HBN particles in a RBSN matrix failed to provide high
thermal conductivity material. Microcrack testing in the form of compression testing or
acoustic loss analysis should be performed on the RBSN samples used in this study.
Also, thinner RBSN composite samples must be pressed and new diffusivity
measurements taken to confirm that HBN requires special processing (ie. bonding
material, etc.) if it is to be used in RBSN matrix composites. If HBN is ruled out as a
candidate material, an alternative high thermal conductivity material such as diamond

should be studied which matches RBSN’s thermal expansion and acoustic properties.
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