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Comparing optimal relocation operations with 
simulated relocation policies in one-way 

carsharing systems 

Diana Jorge, Gon�alo Correia, and Cynthia Barnhart 

Abstract- One-way carsharing systems allow travelers to pick up 
a car at one station and return it to a different station, thereby 
causing vehicle imbalances across the stations. In this paper, 
realistic ways to mitigate that imbalance by relocating vehicles 
are discussed. Also presented are a new mathematical model to 
optimize relocation operations that maximize the profitability of 
the carsharing service and a simulation model to study different 
real-time relocation policies. Both methods were applied to 
networks of stations in Lisbon Portugal. Results show that real
time relocation policies, and these policies when combined with 
optimization techniques, can produce significant increases in 
profit. In the case where the carsharing system provides 
maximum coverage of the city area, imbalances in the network 
resulted in an operating loss of 1160 €/day when no relocation 
operations were performed. When relocation policies were 
applied, however, the simulation results indicate that profits of 
854 €/day could be achieved, even with increased costs due to 
relocations. This improvement was achieved through reductions 
in the number of vehicles needed to satisfy demand and the 
number of parking spaces needed at stations. This is a key result 
that demonstrates the importance of relocation operations for 
sustainably providing a more comprehensive network of stations 
in one-way carsharing systems, thus reaching a higher number of 
users in a city. 

Index Terms-Mathematical programming, one-way 
carsharing, relocation operations, simulation. 

I. INTRODUCTION

T 
HROUGH the last decades, changes have occurred in

urban transport. Despite greater accessibility provided by 
private transport, the result has been increases in levels of 
congestion, pollution, and non-productive time for travelers, 
particularly in peak hours [ 1]. There are also opportunity costs 
associated with using urban land for parking spaces instead of 
other more productive activities. In America, for example, 
automobiles spend around 90% of their time parked [2]. These 
issues are mitigated by ·public transport, but it has other 
disadvantages, for example, poor service coverage, schedule 
inflexibility and lack of personalization. In addition, providing 
public transport for peak hour demand can result in idle 
vehicles for much of the day, resulting in inefficiencies and 
high cost of service. 

Strategies are needed to address these issues and 
simultaneously provide people the mobility they need and 
desire. One strategy considered is that of carsharing. 
Carsharing systems involve a small to medium fleet of 

vehicles, available at several stations, to be used by a 
relatively large group of members [3]. 

The origins of carsharing can be traced back to 1948, when 
a cooperative known as Se/age initiated services in Zurich, 
Switzerland. In the US, carsharing programs only appeared 
later in the 1980s, within the Mobility Enterprise program [3]. 
In Asian countries, such as Japan and Singapore, these 
systems appeared more recently. 

Carsharing has been observed to have a positive impact on 
urban mobility, mainly by using each car more efficiently [4], 
[5]. The use of carsharing systems generally leads to a fall in 
car ownership rates and thus to lower car use, according to 
Celsor and Millard-Ball [6]. More recently, Schure et al. [7] 
conducted a survey in 13 buildings in downtown San 
Francisco and concluded that the average vehicle ownership 
for households that use carsharing systems is 0.47 
vehicles/household compared to 1.22 vehicles/household for 
households that do not use carsharing systems. Moreover, a 
study by Sioui et al. [8] surveyed the users of Communauto, a 
Montreal carsharing company, and concluded that a person 
who does not own a vehicle and uses carsharing systems 
frequently (more than 1.5 times per week) never reaches the 
car-use level of a person who owns a vehicle: there was a 30% 
difference between them. This idea is reinforced by Martin 
and Shaheen [9] who concluded through a survey in US and 
Canada that the average observed vehicle-kilometers traveled 
(VKT) of respondents before joining carsharing was 6468 
km/year, while the average observed VKT after joining 
carsharing was 4729 km/year, which constitutes a decrease of 
27% (1749 km/year). 

Furthermore, some recent studies concluded that carsharing 
systems also have positive environmental effects. For instance, 
Martin and Shaheen [9] noted from the VKT estimations 
presented before that greenhouse gas (GHG) emissions of the 
major carsharing organizations in the US and Canada can be 
reduced by -0.84 t GHQ/year/household. While most members 
increase their emissions; there are compensatingly larger 
reductions for other members who decrease their emissions. 
Moreover, Fimkom and MUiier [10], through a survey of a 
German carsharing company, concluded that the CO2 
emissions are decreased between 312 to 146 Kg CO2/year per 
average carsharing system user. 

With respect to trip configuration, carsharing systems are 
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divided into round-trip (two-way) systems and one-way 
systems. Round-trip carsharing systems require users to return 
the cars to the same station from where they departed. This 
simplifies the task of the operators because they can plan 
vehicle inventories based on the demand for each station. It is, 
however, less convenient for the users because they have to 
pay for the time that vehicles are parked. In one-way 
carsharing systems, users can pick up a car in a station and 
leave it at a different one [11]. In theory, therefore, one-way 
carsharing systems are better suited for more trips than round
trip services that typically are used for leisure, shopping and 
sporadic trips - short trips in which vehicles are parked a short 
duration [12]. This statement is supported by various studies, 
including that by Costain et al. [13], who studied the behavior 
of a round-trip carsharing company in Toronto, Canada and 
concluded that trips are mostly related to grocery or other 
household shopping purposes. A study performed in Greece 
by Efthymiou et al. [14] also concluded that the flexibility to 
return the vehicle to a different station from the one where it 
was picked up is a critical factor in the decision to join a 
carsharing service. However, one-way carsharing systems 
present an operational problem of imbalances in vehicle 
inventories, or stocks, across the network of stations due to 
non-uniformity of trip demand between stations. Despite this, 
a great effort has been made to provide these flexible systems 
to users in the last years. 

Previous research has proposed several approaches to solve 
this problem, such as: vehicle relocations in order to replenish 
vehicle stocks where they are needed [15], [16], [17], [18], 
[19], [20]; pricing incentive policies for the users to relocate 
the vehicles themselves [21], [22]; operating strategies 
designed around accepting or refusing a trip based on its 
impact on vehicle stock balance [23], [24]; and station 
location selection to achieve a more favorable distribution of 
vehicles [24]. Correia and Antunes [24] proposed a mixed 
integer programming model to locate one-way carsharing 
stations to maximize the profit of a carsharing company, 
considering the revenues (price paid by the clients) and costs 
(vehicle maintenance, vehicle depreciation, and maintenance 
of parking spaces), and assuming that all demand between 
existing stations must be satisfied. In applying their model to a 
case study in Lisbon, Portugal, tractability issues resulted and 
the model was only solvable with time discretization of I 0-
minute steps. The model did not allow integrating relocation 
operations due to the complexity already reached with the 
location problem. 

In this paper, the same case study as the one in [24] is 
considered and station location outputs are generated using 
their model, but now with time discretization of I -minute. 
When a IO minute based model is used, all of the travel times 
between stations are rounded to the next multiple of 10. So, 
users are paying for minutes that they are not really using 
vehicles. Moreover, the vehicles are also considered available 
only in each multiple of IO minutes, while the reality is that 
they could be available earlier. Therefore, a 1 minute based 
model is always more realistic than a 10 minute based model 
or a model that considers larger time steps. 

A new model is presented to optimize relocation operations 
on a minute-by-minute basis, given those outputs for station 
locations brought from the previously referred model. Thus, 
the two problems, station locations and relocation operations, 
will not be considered at the same time. The objective function 
is the same, profit maximization, but in the relocat!ons model, 
a cost for the relocation operations is also added. The vehicle 
relocation solutions generated with this approach are later 
compared to those obtained with a simulation model built to 
evaluate different real-time vehicle relocation policies. With 
this comparison, the impacts of relocation operations on the 
profitability of one-way carsharing systems are then analyzed, 
and insights into how to design and implement real-time 
rebalancing systems are gained. 

The paper is structured as follows. In the next section, a 
new mathematical model is presented to optimize relocation 
operations, given an existing network of one-way carsharing 
stations. Then, a simulation model and a specification of 
several real-time relocation policies are presented. In the 
following section the case study used for testing the relocation 
methodologies is described, as well as the data needed and the 
main results reached. The paper ends with the main 
conclusions extracted from the paper. 

II. MATHEMATICAL MODEL
The objective of the mathematical programming model 

presented in this section is to optimize vehicle relocation 
operations between a given network of stations (using a staff 
of drivers) in order to maximize the profit of a one-way 
carsharing company. In this model, all demand between 
existing stations is assumed to be satisfied. The notation used 
to formulate the model (sets, decision variables, auxiliary 
variable, and parameters) is the following: 

Sets: 
N = {1, ... , i ... N}: set of stations; 
T = {1, ... , t ... T}: set of minutes in the operation period; 
X = {11, ... , it-t, it, it+t, ... , NT}: where it represents 

station i at minute t: set of the nodes of a time-space network 
combining the N stations with the T minutes; 

A1 = { ... , ( it, it+6b) , ... } , it E X: set of arcs over which

vehicles move between stations i and j, \fi, j E N, i * j, 
between minute t and t + 6fj, where 6fj is the travel time (in 
number of minutes) between stations i and j when the trip 
starts at minute t; 

A2 ={ ... ,Cit, it+1), ... }, it EX: set of arcs that represent 
vehicles stocked in station i, \fi EN, from minute t to minute 
t + 1. 

Decision variables: 
R1d t : number of vehicles relocated from i to j from 

t+Bij 

minute t tot+ 6fJ, \f (it, jt+6f
i
) E A1; 

Z1: size of station i, \fi E N, where size refers to the 
number of parking spaces; 
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a1t
: number of available vehicles at station i at the start of a1t 

e N° \fit e X 
minute t, \fit EX. 

(7) 

(8) 
Auxiliary variables: 

Sitit
+i: number of vehicles stocked at each station i from

minute t to t + 1, V{it , it+1) e A2, this is a dependent variable 
only used for performance analysis. 

Parameters: 
D1t

l f : number of customer trips (not including vehicle
t+S j 

relocation trips) from station i to station j from t to t +
c5f1, \f (it, it+6f1) E A1; 

P: carsharing fee per minute driven; 
Cmv: cost of maintenance per vehicle per minute driven; 
c5f1: travel time, in minutes, between stations i and j when 

departure time is t, \fit E X, j E N; 
Cmp: cost of maintaining one parking space per day; 
Cv: cost of depreciation per vehicle per day; 
Cr: cost of relocation and maintenance per vehicle per 

minute driven. 

Using the notation above, the mathematical model can be 
formulated as follows: 

(1) 

subject to, 

The objective function (I) is to maximize total daily profit 
(n) of the one-way carsharing service, taking into
consideration the revenues obtained through the trips paid by
customers, relocation costs, vehicle maintenance costs, vehicle
depreciation costs, and station maintenance costs. Constraints
(2) ensure the conservation of vehicle flows at each node of
the time-space network, and Constraints (3) compute the 
number of vehicles at each station i at the start of time t,

assuming that vehicles destined to i at time t arrive before 
vehicles originating from i at time t depart. Constraints ( 4) 
guarantee that the size of the station at location i is greater 
than the number of vehicles present there at each minute t. In 
practice, size will not be greater than the largest value of a1t 

during the period of operation otherwise the objective function 
would not be optimized. Expressions (5)-(8) set that the 
variables must be integer and positive. 

III. SIMULATION MODEL
In order to test real-time relocation policies, a discrete-event 

time-driven simulation model has been built using AnyLogic 
(xj technologies), which is a simulation environment based on 
the Java programming language. It is assumed that a trip will 
be performed only if there is simultaneously a station near the 
origin of the trip and a station near the trip's destination. The 
effects of congestion on the road network are captured with 
different link travel times throughout the day. 

In each minute, trips and relocation operations are triggered 
and the model updates a number of system attributes, 
including: number of completed minutes driven by customers 
and by vehicle relocation staff; vehicle availability at each 
station; total number of vehicles needed; and maximum 
vehicle stock (that is, number of parked vehicles) at each 
station, which is used to compute the needed capacity of each 
station. These updated values are used to compute the 
objective function. It includes all revenues (price rate paid by 
customers) and costs (vehicle maintenance, vehicle 
depreciation, parking space maintenance, and relocation 
operations). To satisfy all demand, a vehicle is created (the 
fleet size is correspondingly increased) each time a vehicle is 
needed in a given station for a trip and there are no vehicles 
available. Thus the fleet size is an output of the simulation. 
The period of simulation is between 6 a.m. and midnight 
which is the same period used in (24]. At the end of the 
simulation run, it is possible to obtain the total profit and the 
total number of parking spaces needed in each station. 
A. Relocation Policies

Two real-time relocation policies (1.0 and 2.0) were tested 
in the simulation. For each one, it is determined for each 
minute of the day at each station s if the status of s is that of 
supplier (with an excess number of vehicles) or demander 
(with a shortage of vehicles). For policy 1.0, a stations at time 
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t is classified as a supplier if, on a previous day of operations, 
the average number of customer trips destined for that station 
at instant t + x exceeds or equals the average number of 
customer trips that depart that station at the same period. Note 
that only customer trips, and not repositioning trips, are 
included in this calculation. Each station that is not designated 
as a supplier is classified as a demander. In this policy, x is 
varied between 5 and 20 minutes in 5 minutes increments to 
determine the supplier and the demander stations. If s is 
classified as a supplier, its supply is equal to the number of 
extra vehicles (those not needed for serving customer demand) 
at s at time t, multiplied by a relocation percentage that is a 
parameter. Ifs is classified as a demander, its demand for 
vehicles is set equal to the number of additional vehicles 
needed to serve demand at time t + x. For relocation policy 
2.0, the process is the same, but .x is set equal to 1 minute to 
determine the set of supplier stations and the associated 
supplies are determined as described for policy 1.0. The 
demander stations and their demand are determined as in 
relocation policy 1.0. 

A schematic representation of these policies is shown in 
Fig. I. 

Fig. 1 Policies 1.0 and 2.0 schematic representation 

For each time t, given these calculated values of vehicle 
supply or demand at each station, the relocation of vehicles 
between stations is determined by solving a classic 
transportation problem. The objective is to find the minimum 
cost distribution of vehicles from m origin nodes (representing 
supplier stations) to n destination nodes (representing 
demander stations), with costs equal to total travel time. An 
artificial supply node and an artificial demand node are added 
to the network, with all supply and demand concentrated at the 
respective artificial nodes. The artificial supply node is 
connected to the supply nodes, which are linked to the demand 
nodes, and finally the demand nodes are linked to the artificial 
demand node (as shown Fig. 2). For each arc, the following 
three parameters are defined: cost of the arc (travel time); 
lower bound on arc flow (minimum number of vehicles); and 
upper bound on arc flow (maximum number of vehicles). On 
each arc from the artificial supply node to a supply node i, the 
lower and upper bounds on flow equal the supply at i and 
travel time on the arc is 0. For each arc between a supply node 
at station i and a demand node j, the lower bound on flow is 
zero and the upper bound is the minimum of the supply of 
vehicles at i and the number of vehicles demanded at j. On 
each arc between a demand node j and the artificial demand 
node, the lower and upper flow bounds equal the demand at j 
and travel time on the arc is 0. When there is imbalance 
between total supply and total demand either, one extra supply 
node or one extra demand node is created. 

In the simulation, an optimal relocation is determined using 
a minimum cost network flow algorithm that is available in 
the simulation programming language Java [25]. 

Fig. 2 Minimum cost flow algorithm scheme 

As it is referred above, for each simulation run, two tuning 
parameters, the relocation percentage and x, are defined. The 
relocation percentage multiplied by the supply (of vehicles) at 
a supplier station represents the value of the supply input to 
the transportation algorithm. x represents the time period used 
for the minute-by-minute calculation for each station to 
determine its status as either a supplier or demander of 
vehicles. 

Using relocation policies 1.0 and 2.0 as a starting point, 
three variants of these two policies were developed for each of 
them. The first is that each supplier station is required to keep 
at least one vehicle at that station at all time steps, that is, its 
supply is equal to the number of extra vehicles minus I at time 
t, multiplied by the relocation percentage (policies I .A and 
2.A). The second is that the distribution of vehicles at each
station at the start of the day is set to that generated by the
mathematical model defined in the previous section (policies
l .B and 2.8). And the third is the same as the second with
priority given to stations with the greatest demand for vehicles
(policies l .C and 2.C). In practice this is done through
reducing artificially the travel time to those stations that need
a higher number of vehicles, thus making them more attractive
as a destination for the vehicles according to the assignment
method explained before. Travel times to a demander station
are reduced as a function of the relative magnitude of demand
at that station. For example, if demand at station s equals or
exceeds 10% of the total demand for vehicles at all demander
stations, travel times between supplier stations and station s
are decreased by 10% (which is done by multiplying travel
times by 0.9).

A schematic representation of the methodology that is used 
in this paper is presented in Fig. 3. 

Fig. 3 Schematic representation of the methodology used 

IV. LISBON CASE STUDY

The case study used in this paper is the same as in [24]. It is 
the municipality of Lisbon, the capital city of Portugal. Lisbon 
has been facing several mobility problems, such as traffic 
congestion and parking shortages due to the increase in car 
ownership and the proliferation of urban expansion areas in 
the periphery not served by public transport. Moreover, public 
transport, even with the improvements that have been 
achieved, was not able to restrain the growth in the use of 
private transportation for commuter trips. For these reasons, 
the municipality of Lisbon is a good example where different 
alternative transportation modes, such as carsharing, may be 
implemented. 

A. Data

The data needed are the following: a carsharing trip matrix,
a set of candidate sites for locating stations, driving travel 
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times, and costs of operating the system. The trip matrix was 
obtained through a geo-coded survey conducted in the mid-
1990s and updated in 2004 in the Lisbon Metropolitan Area 
(LMA). The survey data contains very detailed information on 
the mobility patterns of LMA, including origins and 
destinations, time of the day and transport mode used for each 
trip. This survey was filtered through some criteria, such as 
age of the travelers, trip time, trip distance, time of the day in 
which the trip is performed, and transport mode used, in order 
to consider only the trips that can be served by this system, 
resulting in 1777 trips. The candidate station locations were 
defined by considering a grid of squared cens (with sides of 
length 1000m) over Lisbon, and associating one location with 
the center of each cell. The result was a total of 75 possible 
station locations. This is obviously a simplification. To 
implement a carsharing system in a city, a detailed study of 
appropriate locations would be necessary. Travel times were 
computed using the transportation modeling software VISUM 
(PTV), considering the Lisbon network and the mobiJity 
survey referred above, and were expressed in minutes. The 
carsharing system is available 18 hours per day, between 6:00 
a.m. and 12:00 a.m. The morning and afternoon peaks
correspond to the periods between 8:00 a.m. and 10 a.m. and
6:00 p.m. and 8 p.m., respectively. To compute the costs
related to the vehicles, it is considered an "average" car,
whose initial cost is 20000€, and that this car is mainly driven
in a city. The costs of running the system were calculated as 
realistic as possible:

Cm1 (cost of maintaining a vehicle): 0.007 euros per 
minute. This cost was calculated using a tool available on the 
internet that was developed by a German company, 
INTERFILE [26], and includes insurance, fees and taxes, fuel, 
maintenance and wear of the vehicle; 

Cv (cost of depreciation per vehicle): 17 euros per day, 
calculated using the same tool referred above [26] and 
considering that the vehicles are used during 3 years. It was 
also considered that the company needed funy financing for 
the purchase of the vehicles with an interest rate of 12% and 
vehicles' residual value equal to 5000€; 

Cr (cost of relocating a vehicle): 0.2 euros per minute, 
since the average hourly wage in Portugal is 12 euros per 
hour; 

Cm2 (cost of maintaining a parking space): 2 euros per 
day, this cost is smaner than the parking fee in a low price 
area in Lisbon, considering that the city authorities would be 
able to give support to these types of initiatives. 

The carsharing price per minute, P, was considered to be 0.3 
euros per minute, which is based on the rates of car2go [27]. 

The station location model [24) was run for three scenarios, 
with a minute-by-minute discretization of time (note that this 
model does not include vehicle relocations). The three 

networks used in this work are the three found in [24], as wen 
as the trip matrix used. In the first, the number of stations was 
constrained to be just 10 (considered a sman network). In the 
second scenario, the stations were freely located to maximize 
profit (any number, any location). In the third scenario, 
stations were located to satisfy an demand in the city (where 
there is demand, there is a station). The results, including 
station locations, number of stations, and associated profits, 
are presented in Fig. 4. 

Fig. 4 Location model solutions 

B. Results

The optimum relocation operations were determined using
model (I )-(8), and an relocation policies were simulated with 
an possible parameters' combinations, for each of the three 
station location solutions (scenarios) generated with the 
approach of [24]. The value of x was varied between 5 and 20 
minutes in 5 minutes increments, as it is referred in Chapter 
III. This range was selected because most travel times are
between these two values. The relocation percentage was
varied between 0% (no relocations) and 100% (an available
vehicles in the supplier stations can be relocated) in 10%
increments. For policies l .C and 2.C, simulation results were
generated for the fonowing combinations of parameters:
0.1/0.9 (more that 10% of demand in a station, 90%
decreasing of travel time), 0.3/0.7, 0.5/0.5, 0.7/0.3, and
0.9/0.1. In the end, the number of simulation runs was 1920.

For an the scenarios, the mathematical model was run in an 
i7 processor @ 3.40 GHz, 16 Gb RAM computer under a 
Windows 7 64 bit operation system using Xpress, an 
optimization tool that uses branch-and-cut algorithms for 
solving MIP problems [28]. The solutions found were always 
optimal. Xpress took about 206min to reach the optimal 
solution for s_cenario 1, 5min for scenario 2, and 8.3s for 
scenario 3. The time that the model took to run is reasonable 
even for the bigger scenario with 69 stations located. The 
factor that influences how quickly the solutions are achieved is 
the number of stations doubtless. 

With respect to the simulation model, there was the need to 
run it many more times than the optimization routine, but each 
time the model took only few seconds to run. 

In Table I, the best simulation results for each relocation 
policy are shown. 

TABLEI 

Station network 
(scenarios) Indicators 

Results for the Different Relocation Policies 
Optimization of the station 

locations 1.0 2.0 I.A 
Best results for each policy 

1.8 1.C 2.A 2.8 2.C 
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x (min) 5 JO 15 5 IO JO JO JO 

Best relocation % 50 90 100 60 80 100 40 90 
Vehicles 390 264 273 262 264 257 267 318 222 

Parking spaces 739 533 490 550 412 409 480 415 334 

69 (full demand Time driven (min) 23711 23711 23711 23711 23711 23711 23711 23711 23711 

attended) Time of relocations 
0 4008 2921 4800 4346 5169 2967 2661 9051 

(min) 
Demand 

0.7/0.3 -
proportion/Travel 

0.9/0.I 
0.1/0.9 

time decreasing 
Profit (€/da�} -1160.7 591.7 742.1 433.3 766.1 726.5 854.9 179.1 695.1 

x (min) 5 5 5 5 15 5 5 5 

Best relocation % 0 0 10 0 10 0 0 0 
Vehicles 121 121 121 121 126 125 121 126 126 

Parking spaces 241 241 241 240 195 195 241 195 195 

34 (free 
Time driven (min) 10392 10392 10392 10392 10392 10392 J0392 J0392 10392 

optimum) Time of relocations 
0 0 0 4 0 54 0 0 0 

(min) 
Demand 

0.1/0.9-
proportion/Travel 

0.3/0.7 
all equal 

time decreasing 
Profit (€/da�} 505.9 505.9 505.9 507.1 512.9{·} 519.1{ .. } 505.9 512.9{·} 512.9(•} 

x (min) 5 5 5 5 5 5 5 5 

Best relocation % 0 0 0 0 0 0 0 0 
Vehicles 22 22 22 22 22 22 22 22 22 

Parking spaces 42 42 42 42 29 29 42 29 29 
Time driven (min) 2125 2125 2125 2125 2125 2125 2125 2125 2125 

10 (small network) Time of relocations 
0 0 0 0 0 0 0 0 0 

(min) 
Demand 

proportion/Travel all equal all equal 
time decreasing 

Objective {€/da�} 164.6 164.6 164.6 164.6 190.W} 190.W} 164.6 190.�·} 190.6{*}
(*) no relocations occur, profit achieved only by bringing the initial availability from optimization 
( .. ) this profit is achieved using relocations and bringing the initial availability from optimization 

Analyzing Table J and comparing to the solution with no 
relocations, policy 1.0, achieves better results only for the 69 
station scenario, increasing from -1160.7€/day (losses) to 
591.7€/day (profit). This profit is achieved by setting the x 
parameter equal to 5 minutes and the relocation percentage 
equal to 50%. Similar results to policy 1.0 are evident for 
policy 2.0, but policy 2.0 achieves a greater profit 
(742.1€/day), with the relocation percentage set to 90%, and x 
equal to 10 minutes. 

Policy I .A achieves better results (a profit of 433.3€/day) 
when compared to the solution with no relocations only for the 
69 station scenario, using a relocation percentage equal to 
100% and x equal to 15 minutes. This profit, however, is 
lower than the profits reached by using policies 1.0 and 2.0. 

For policy 1.8, it is possible to improve profits for all 
scenarios compared to the model with no relocations; 
however, for the 34 station and 10 station scenarios, profit 
increases are achieved by using the initial availability of 
vehicles at each station brought from model (1 )-(8). Profit is 
766.1€/day for the 69 station scenario, using a relocation 
percentage equal to 60% and an x equal to 5 minutes. For the 
scenarios with 34 stations and 10 stations, however, the 
increase in profit is very low. 

With respect to policy l .C, results are better than the no 
relocation solution for the 69 station scenario. The best result, 
726.5€/day, is achieved for two fraction-of-demand, fraction
of travel time scenarios, (0.7/0.3) and (0.9/0.1), a relocation 
percentage equal to 80%, and x equal to 10 minutes. For the 

34 station scenario, the profit is 519.1€/day, which is similar 
to that obtained with no relocations (512.9€/day). 

For policy 2.A, results are similar to those for policy I .A, 
but with greater profit (854.9€/day), using a relocation 
percentage equal to 100% and x equal to 10 minutes. The 
results for policies 2.B and 2.C are similar to those obtained 
for l.B and l.C. 

Policy 2.0 is better than policy 1.0 for the 69 station 
scenario; policy I .A is worse than policy 2.A; and policies 1.B 
and l .C are better than policies 2.B and 2.C. For the network 
with the optimum number of stations located (34 stations), 
policy 1.C is better than policy 2.C, while policies I .A and 1.B 
are similar in effectiveness to policies 2.A and 2.B. Finally, 
for the 1 0 station scenario, the best profit is reached when no 
relocations occur and the initial availability of vehicles at each 
station is brought from model ( 1 )-(8). The small network 
tailored to the demand data makes it difficult to improve profit 
with relocations. 

Although only the best results are presented in Table 1, it is 
important to note that with variations in the relocation 
percentage and x parameters, the objective function values 
fluctuate greatly. This can be seen in Fig. 5 for the 69 station 
scenario and policy 2.A. With x equal to 10 minutes, 
variations in the relocation percentage result in variations in 
the objective function value from -1037.1€/day to 854.9€/day. 
These parameters must be appropriately calibrated for each 
city and travel pattern scenario to produce the best results. 
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�ig. 5 Evolution of profit for the best relocation policy found with 69 
stations located and parameter x equal to l O min 

As a general conclusion, with relocations, improvements in 
profit are achieved through a combination of a reduction in the 
number of vehicles and/or in the number of parking spaces. 
These reductions offset the corresponding increases in staff 
costs and vehicle maintenance costs resulting from the 
relocations. For the 69 station scenario, the greatest profit is 
reached with policy 2.A, which allows a reduction of 31.5% in 
the number of vehicles and a reduction of 35.0% in the 
number of parking spaces relative to the scenario with no 
relocations. The time spent with vehicle relocations in this 
case is 2967 minutes/day (about 50 hours/day). However, 
policy 2.C allows the greatest reduction in the number of 
vehicles (43.1%) and in the number of parking spaces 
(54.8%), but requires about a 3-fold increase in relocation time 
(9051 m!nutes/day). This illustrates that minimizing vehicles 
and parkmg spaces does not necessarily maximize profit. 

In Table 11, for each of the three network scenarios, results 
are compared for the solutions to the station location model 
without relocations [24], the solutions applying the relocation 
optimization model (1)-(8), and the best performing simulated 
relocation policiy. 

Results for the simulated relocation policies are far from the 
optimal relocation solutions, showing that it is difficult to 
design effective real-time strategies based on fixed rules. A 
case in point is the 34 station scenario in which the optimized 
relocations contribute to an improvement in profit of about 
1262 €/day, while the real-time relocation policies improve 
profit only to about 13 €/day. 

Nevertheless, it is important to observe that the policies 
evaluated in this work were able to make profitable the 69 
station scenario that serves all demand in the city. Relocation 
policies, then, can help carsharing companies to provide 
sustainable services to greater numbers of people in expanded 
geographic areas. 

TABLE II 
RESULTS FOR THE DIFFERENT PROBLEMS 

69 stations 34 stations IO stations 
Models Profit (€/day) Improvements (€/day) Profit (€/day) Improvements 

(€/day) Profit (€/day) Improvements 
(€/day) 

Optimization of station locations 
Optimization of relocation operations 
Simulation with the best relocation policy 

-I 160.7
3865.7
854.9

V. CONCLUSIONS

5026.4 
2015.6 

The most convenient carsharing systems for users are one
way systems; however as detailed in the literature, these 
systems require vehicle repositioning to ensure that vehicles 
are located where they are needed ( 17], [21 ], [22]. Several 
approaches have been proposed to try to solve this problem, 
such as an operator-based approach [15], [16] and a station
location approach [24]. With the operator-based approach, the 
stock of vehicles at stations is adjusted by relocating vehicles 
to locations where they are needed. 

In this paper we present two independent tools that can be 
combined: a mathematical model for optimal vehicle 
relocation, and a discrete-event time-driven simulation model 
with several real-time relocation policies integrated. Kek et al. 
[15], [16] developed also an optimization model and a 
simulation model, but in their work only the optimization 
model allows determining the relocation operations. The 
simulation model is just used to evaluate the performance of 
the . sy�te�s when the relocation operations determined by the 
opt1m1zat1on model are performed. Nair and Miller-Hooks 
[17] developed a stochastic mixed-integer programming
model to optimize vehicle relocations, which has the
advantage of considering demand uncertainty. However, they
did not develop a simulation model and a way of determining
relocation operations in real time. Barth et al. [18] presented a
queuing based discrete event simulation model and three ways
of deciding when relocations should be performed, one of 
which, called "Historical predictive relocation", is similar to 
what is proposed in the relocation policies presented here.
Although, there is a higher number of policies and
combination of parameters tested in this work than in [18].
Moreover, Barth et al. [18] did not develop an optimization

505.9 
1768.1 1262.2 
519.1 13.2 

164.6 
322.0 157.4 
190.6 26 

model and ways of combining both optimization and 
simulation. With respect to Barth et al. (19], an aggregated 
approach was developed. They only studied a measure to 
determine if the whole system needs relocations or not, while 
in this paper, each station is treated individually. 

The developed optimization model was applied to the case 
study first introduced by Correia and Antunes [24]. Using the 
alternative networks of stations that were obtained for the city 
of Lisbon, the relocation approaches developed in this 
research were evaluated and compared. 

The optimized relocation decisions for these networks 
indicated significant potential improvements in system profit. 
For instance, the solution covering all demand for the entire 
city ( containing 69 stations) has an estimated daily loss of 
1160 €, but when operations are expanded to include optimal 
relocation decisions, this estimated daily loss is transformed 
into an estimated daily profit of about 3800 €. There are also 
significant economic improvements in the other networks 
(containing 34 and 10 stations). 

Optimal solutions to the relocation model provide upper 
bounds on the economic gains achievable with relocations 
because inputs to the optimization model require a priori 
knowledge of the full pattern of daily trip demands. To 
evaluate the impacts of real-time relocation operations in this 
research, relocation policies were devised and executed in a 
simulation model. For the largest network of stations these 
simulated, real-time relocation strategies, are estimated to 
improve profitability significantly, reaching a profit of about 
855 €/day with the best relocation policy. This is far from the 
optimum; however it is implemented real-time making it more 
likely to be achieved in the real operation when vehicles are 
not reserved one day in advance. For the smaller networks, the 
correspondingly smaller improvement is explained by the fact 
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that the station locations in these networks were specifically 
chosen to reduce the need for repositioning by using the model 
in [24]. By integrating results of the relocation optimization 
model with the relocation policies (for example, using in the 
simulation the optimization's initial vehicle availability at 
each station), improved results are achieved for the relocation 
policies. 

The main conclusion that is drawn from this work is that 
relocation operations should be considered when setting up 
station-based one-way carsharing systems. An important effort 
must be made into studying more deeply what was defined in 
this paper as real-time relocation policies to be implemented in 
the day-to-day operation of these systems, thus allowing the 
sustainability of full network coverage of this service in a city. 
The fact that by introducing relocation policies it was possible 
to transform the worst profitable network (69 stations) into the 
most profitable encourages research into expanding the 
methods to estimate when and how many vehicles should be 
relocated between stations [29]. 

In what respects to the transferability of both models 
(mathematical model and simulation model) to another city, it 
is important to refer that mathematical models always have a 
computation time that is dependent on the problem dimension. 
Thus, as the city size increases, that is, the number of 
carsharing stations', the computation time should also 
increases due to the increasing number of decision variables. 
Regarding the simulation model, this problem is non-existent. 
Therefore, it can be applied to any city independently of its 
dimension. 

Moreover, the results presented in this paper are very 
sensitive to changes in travel demand. So, the simulation 
model that was built in this work should be improved in future 
projects to increase the realism of the day-to-day operation of 
such transportation system, including stochastic trip variability 
and travel time. 
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